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Abstract — Hybrid-electric vehicles appear to be one of the most promising technologies for reducing

fuel consumption and pollutant emissions. The presented work focuses on a power train architecture

for mild hybrid vehicles where the kinematic energy in the breaking phases is stored in a battery to be

re-used later via the electric motor. This additional traction power allows to downsize the engine and

still fulfill the power requirements. Moreover, the engine can be turned off in idle phases. The complete

mild-hybrid vehicle is modelled in AMESim environment and the fuel consumption for given driving

cycles is estimated. The control strategies for the energy management between the two power sources

are optimized with respect to fuel consumption with a classical dynamic programming (DP) method. We

propose an other method based on Pontryagin Minimum Principle which furnishes results very close

to the DP results for a significantly reduced calculation time. These optimization results furnish the

optimal control laws from which could be derived the control laws to be implemented on the vehicle. To

illustrate the potential of optimization for component design, mild hybrid vehicles with varying battery

and electric motor sizes, with different types of engine (gasoline / natural gas), are evaluated in terms

of consumption gain with the presented methodology.

Keywords: Hybrid vehicle, Modelling, Optimal control, Optimization

INTRODUCTION

Growing environmental concerns coupled with concerns

about global crude oil supplies stimulate research on new

vehicle technologies. Hybrid-electric vehicles appear to be

one of the most promising technologies for reducing fuel

consumption and pollutant emissions [5] :

• Fuel economy. It is well known that the kinetic energy

gained by the classical vehicle after an acceleration can

not be recuperated when braking. One of the advantage

of the hybrid vehicle is the ability to recuperate a part

(depending of efficiencies) of this energy, to store it in

a battery, and to re-use it latter. This electric energy

can therefore be used by an electric motor to power the

vehicle and to save fuel.

• Reduction of pollutant emissions. As using an electric

motor to supply the traction power, it becomes possible

to distribute the power in order to reduce the pollutant

emissions. The engine can also be downsized, and still

fulfill the maximum power requirements of the vehicle,

which can decrease again the pollutant emissions. Last

but not least, hybrid vehicles allow to eliminate the idle

fuel consumption by turning off the engine when no

power is required (system called "stop’n go").

The control of hybrid power trains is more complex than

control of classic engine. Indeed, the control laws have to

deal with the state of charge of the battery, which provides
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the level of energy remaining, and with the variable effi-

ciency of each element of the power train. Optimization

of energy management strategies on given driving cycles is

often used to derive sub-optimal control laws to be imple-

mented on the vehicle (see among others [1], [11], [13], [3]).

IFP, in partnership with Gaz de France and the Ademe,

has combined its downsizing technology with a natural gas

engine in a small urban demonstrator vehicle (VEHGAN

vehicle), equipped with a starter alternator and super capac-

ity manufactured by Valeo ([12]). In this paper, we focus

on this hybrid architecture which is modelled in AMESim

environment. Two different optimization algorithms are pre-

sented and applied on this model:

– a Dynamic Programming algorithm, classically used to

handle this kind of optimal control problem ([13], [11],

[1]),

– an algorithm based on Pontryagin Minimum Principle.

In a third section, we will show some results on the architec-

ture of the VEHGAN vehicle with different kinds of engine,

different sizes of battery and of electric motor.

1 SYSTEM MODELLING AND OPTIMAL CONTROL

PROBLEM

1.1 AMESim Model

AMESim environment combined with IFP libraries Drive,

Engine and Exhaust allows to model anything from a whole

vehicle to the fine behavior of the engine. Figure 1 presents

the scheme of our AMESim model of the VEHGAN : a

mild hybrid vehicle with a natural gas engine and a starter

alternator ([12]).

Figure 1

AMESim Model of the VEHGAN vehicle

This AMESim model consists in a model of :

• the vehicle (mass, wheel inertia, resistance force)

• a driver model (which can anticipate the driving cycle)

• a driving cycle to follow (imposing vehicle speed and gear

shifts)

• a manual gearbox coupled with a clutch

• a 660cm3 Natural gas engine, with fuel consumption map

displaying in Figure 2

• a 3kW starter alternator

• a battery (voltage source and an internal resistance) of

0.4Ah

• and the control unit which manages the energy reparti-

tion between the engine and the electric motor. Control

laws obtained by solving the optimal control problem

presented in section (1.2) can be tested thanks to this

control unit.
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Figure 2

Fuel consumption map of natural gas engine of
VEHGAN vehicle

Figure 3 and 4 display results of a simulation of the natu-

ral gas hybrid vehicle on the NEDC cycle. In this example,

electric motor is used only for small torque requests; we

can also see the regenerative breaking, when the battery is

recharged.

1.2 Optimal Control Problem

The optimal control problem under study consists in min-

imizing the fuel consumption of the vehicle along a given

vehicle cycle, taking into account physical constraints from

battery, engine and electric motor. The general optimiza-

tion problem is the following :
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Figure 3

Engine and electric motor torque simulated with AMESim model of VEHGAN vehicle of Figure 1
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Figure 4

State of charge of the battery simulated with AMESim
model of VEHGAN (Top); First 200s of the NEDC
cycle (Bottom)
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:

min

(

J(u) =

Z T

0

L(x(t), u(t), t)dt + g(x(T ), T )

)

subject to :

ẋ = f(x(t), u(t), t), x(0) = x0

xmin 6 x(t) 6 xmax

umin(t) 6 u(t) 6 umax(t)

(1)

with

– 0 and T : respectively the initial and the final time steps

of the given driving cycle,

– u(t) : Control, i.e. repartition of the energy between the

engine and the motor,

– x(t) : State of Charge (SOC) of the battery,

– L(x(t), u(t), t) : Instantaneous fuel consumption,

– f(t) : Function controlling the variations of state of

charge of the battery,

– g(x(T ), T ) : penalization term handling a constraint on

the final state of charge.

Let introduce other useful notations :

• the requested torque (associated with the chosen cycle)

is written as

Trq(t) = Te(t) + Tm(t) + Tbk(t), (2)

• the engine torque is

Te(t) = u(t)Trq(t), (3)

• the electric motor torque is

Tm(t) = (1 − u(t))Trq(t) (4)

During braking, Trq(t) < 0, the braking torque completes

the electric motor torque to slow down the vehicle.

Tbk(t) = Trq(t) − T
min
m (t) (1) (5)

(1) We neglect any friction torque of the engine
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with Tmin
m (t) is the minimal electric motor torque depend-

ing on the engine speed, thus depending on time.

A simple model is implemented for the battery, the state

of charge of the battery evolves according to

ẋ(t) = −
ω(t)Tm(t)K′

Ubatt(t)ncapa
(6)

with

– ω(t) : Electric motor and engine speed,

– Ubatt(t) : Battery voltage,

– K′ : Scaling constants,

– ncapa : Nominal capacity of the battery.

In the following, we assume that the battery voltage is

constant along the cycle. We set K = K′

Ubatt.ncapa and by

replacing Tm(t) by its expression, we obtain

ẋ(t) = −Kω(t)(1 − u(t))Trq(t). (7)

In this optimal control problem, we make several hypoth-

esis

• the pollutant emissions are not taken into account in the

optimization process,

• the engine speed ωe and the electric motor speed ωm are

equal, ωe = ωm = ω,

• as the optimization problem is applied on a mild hybrid

vehicle, the engine can not be stopped when the torque is

provided only by the electric motor, except for the stop’n

go mode at the idle speed. So, for a command u(t) that

cancels the engine torque and for positive torque request,

the fuel consumption does not vanish (Figure 2),

• recharging the battery is only possible for negative

torques (breaking request), we did not consider recharg-

ing by an additional engine torque beyond the driver

request torque. Thus the command u(t) remains between

0 and 1,

• we neglect any friction torque of the electric motor.

As in the general optimal control problem (1), the com-

mand variable u(t) but also the state variable x(t) are sub-

mitted to several constraints :

• the engine can only produce a positive torque, and is

limited to a maximum torque which depends on engine

speed ω(t) :

0 6 Te(t) 6 T
max
e (ω(t)), (8)

• the electric motor has a maximum torque, and also a

minimum torque during regeneration breaking :

T
min
m (ω(t)) 6 Tm(t) 6 T

max
m (ω(t)), (9)

• the storage capacity implies a minimum and a maximum

state of charge of the battery (which are fixed to 0% and

100% in our example)

xmin 6 x(t) 6 xmax, (10)

• the final state of charge is constrained to be equal to

the initial state of charge to maintain a null electrical

energy balance (to avoid to discharge totally the battery

for minimizing the consumption)

x(0) = x(T ). (11)

Constraints on command u(t) are directly derived from

(8), (9) and (10)

u(t)Trq(t) 6 T
max
e (t), (12)

T
min
m (t) 6 (1 − u(t))Trq(t) 6 T

max
m (t). (13)

In the following, we will write U(t) in continuous time

(respectively Uk in discrete time) for the feasible domain

for u(t) respecting the constraints (12) and (13).

2 DYNAMIC PROGRAMMING OPTIMIZATION

Classically, the Dynamic Programing method (DP) is used

to solve the problem (1) ([13], [11]) : it relies on a very

simple idea, the principle of optimality, stated by Richard

Bellman as follows :

An optimal policy has the property that, whatever the ini-

tial state and initial decision are, the remaining decision

must constitute an optimal policy with regard to the outcome

resulting from the first decision.

The principle of optimality (or Bellman principle) suggests

that an optimal policy can be built step by step sequentially,

first by building an optimal policy for the "tail subproblem"

involving the last step, then by extending the optimal policy

to the "tail subproblem" involving the last two stages, and

by iterating until an optimal policy is built for the com-

plete time interval. DP algorithm applied to our problem

furnished an optimal trajectory of the state of charge of the

supercapacitor. First, the optimal control problem (1) is

discretized in time :

min
u∈U

J(u) :=

N−1
X

k=0

Lk(xk, uk), (14)

where Lk(xk, uk) is the cumulated fuel consumption over

the time interval [k, k + 1], xk is the state of charge of the

super capacity at time k, and N is the final time of the

driving cycle.

The constraint on the final SOC (11) is introduced by a

penalizing term g(xN ) = β.(xN − x0)
2 (β, a constant to be

chosen (2)) in (14)

min
u∈U

J(u) :=

N−1
X

k=0

Lk(xk, uk) + g(xN ). (15)

(2) In the following results, the value of 10 has been implemented
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From Bellman principle, the minimum cost Vk(xk) at the

time step k, 0 6 k 6 N − 1, is then expressed as follows :

Vk(xk) = min
uk∈U

(Lk(xk, uk) + Vk+1(fk(xk, uk))) (16)

fk being the function that modelizes the battery state of

charge dynamic in the discrete form of (7). At time N , the

cost function is

VN (xN ) = g(xN ). (17)

This optimization problem is solved backward from final

time step to initial time step using a discretization of func-

tion V in the command space and in the state space. It

allows a fast optimization : (N−1) constrained optimization

problems (16) of one parameter, uk, to be solved with a

fine time discretization of the controller. It furnishes the

optimal power repartition uk at each time step regarding

fuel consumption with constraints on the battery state of

charge. (we refer to [6] for some theoretical results on the

convergence of the method and error estimations).

A direct constrained optimization of (15) is an alternative

method but leads to a large non linear optimization problem

with a large number of inequality constraints. This is the

reason why the DP algorithm is often preferred when the

number of state variables is small (one or two state vari-

ables).

2.1 DP Optimization algorithm

As to get Vk(xk) for different values of xk, a 2-D grid (time

and SOC nodes) is set. A standard time step used in our

examples is 1s, and the SOC step is 0.5%. A classical DP

algorithm consists in computing each feasible command (to

go from a point xi
k to an other point x

j
k+1

), finally taking

the best trajectory (3). In such a method, the state of charge

trajectory remains on the points of the defined grid in the

state space. We propose, in our algorithm, to interpolate

the function V (xk, k) in the state space, for each time step

k. Therefore, it is possible to use a (state) continuous con-

strained optimization algorithm to solve each problem (16).

The optimization algorithm is only used when Trq > 0 :

when the request torque is negative or null, the optimal com-

mand uk is completely known, as the battery is recharged as

much as possible, the command uk being constrained by the

minimal electric motor torque from (13) and by maximum

SOC from (10).

2.2 Results obtained with DP method

DP algorithm described in previous section is applied on the

VEHGAN vehicle problem : the optimal SOC trajectory,

depending of the fuel consumption map and of the vehicle

cycle is displayed for NEDC cycle in Figure 5.

(3) the trajectory which minimizes at each step k the sum
(Lk(xk, uk) + Vk+1(fk(xk, uk)))
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NEDC cycle(Top); Optimal state of charge trajectory
of VEHGAN vehicle computed for NEDC cycle with
DP algorithm (Bottom)

Optimization results obtained with DP method are pre-

sented and commented in section 4.

3 PONTRYAGIN MINIMUM PRINCIPLE

OPTIMIZATION

In this section, we propose an alternative method to solve

the optimal control problem (1). It relies on the Pontryagin

Minimum Principle (PMP) and unlike the DP method does

not require any discretization scheme.

3.1 Pontryagin Minimum Principle

The optimization problem (1) with the constraints defined

in section (1.2) is rewritten as :

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

min
u∈U

(

J(u) =

Z T

0

L(x(t), u(t), t)dt + g(x(T ), T )

)

subject to

ẋ = f(x(t), u(t), t), x(0) = x0

xmin 6 x(t) 6 xmax

(18)

We introduce the Hamiltonian function

H(u(t), x(t), p(t)) = L(x(t), u(t), t)+p(t)ẋ(t)+η(t)h(x(t), t),

(19)

p(t) is called the co-state or adjoint variable of our system.

η(t) is the Lagrange multiplier associated with the state

inequality constraints xmin 6 x(t) 6 xmax. In this section,

we simplify the problem by cancelling this constraint. We
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assume here that L is a smooth convex function of u and f

is affine linear versus u.

The Pontryagin Minimum Principle states that a neces-

sary condition of the problem (18) is the existence of p(t)

such that

∂H

∂x
= −ṗ. (20)

If there is no constraint on command variable, we have

also
∂H

∂u
= 0. (21)

We refer to [10] and [2] for further details about Pontrya-

gin Principle.

3.2 Application

The fuel consumption L(t) to be minimized in (18), is

defined by a discrete map L(ω, Te) that can be modelled by

a 2-order polynomial [7], to be used for continuous optimiza-

tion. Choosing a 2-order polynomial ensures an unique solu-

tion (under some assumptions on polynomial coefficients)

and allows to model a large variety of engine maps as shown

in section 4. The fuel map is therefore written as :

L(ω, Te) =

2
X

i,j=0

Kij .ω
i
.T

j
e . (22)

The problem (18) is written as

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

min
u∈U

(

J(u) =

Z T

0

L(ω(t), Te(t))dt + g(x(T ), T )

)

subject to

ẋ = −Kω(t)(1 − u(t))Trq(t), x(0) = x0

xmin 6 x(t) 6 xmax

(23)

From (20) and (7) we obtain

ṗ = 0 ⇒ p = constant = p0. (24)

Without any constraint on the state and on the com-

mand, the minimization problem can be easily solved. The

minimum fuel consumption is then reached for u∗ so as

∂H

∂u
=

∂L

∂u
+ p

∂f

∂u
= 0. (25)

The optimal command u∗ can be calculated easily by

solving the equation (25), which depends linearly on u. u∗

finally depends on p(t), Trq(t) and ω(t)

u
∗(t) = −

2
X

i=0

Ki1ω(t)i + p0.K.ω(t)

2

2
X

i=0

Ki2ω(t)i.Trq(t)

. (26)

The expression of p0 (27) is obtained by replacing u∗(t)

by its expression in the state equation (7), and by integrat-

ing this equation in time

p0(τ) =

x(0) − x(τ) −

Z τ

0

(K.ω(t)(Trq(t) + F (t))dt

Z τ

0

ω(t)2K2

2

2
X

i=0

Ki2ω(t)i.Trq(t)

dt

, (27)

with

F (t) =

2
X

i=0

Ki1ω(t)i

2
2

X

i=0

Ki2ω(t)i.Trq(t)

, (28)

and τ is the considered final time which can be set to a

different value than T as we will see in next section.

3.2.1 Handling constraints on control and state variables

The previous section presents the computation of the opti-

mal control of the continuous problem in a restricted case

where no constraint is introduced. While control constraints

are generally easily taken into account, handling the state

constraints is cumbersome in the continuous optimal control

problem. To handle control constraints, several singular

cases can be found in [2]. In our application, we are not able

to find an analytic solution of the optimal control problem

with control constraints : indeed, these constraints depends

on time (via their dependency on engine speed) and depends

on p0 which depends on final SOC (cf. previous section). By

an iterative method (called algo1 in the following), we can

compute the value of p0 in order to reach the desired SOC

at final time with the control, computed thanks to (26),

projected on bound constraints (coming from the feasible

domain U).

Concerning the inequality state constraints, [8], [10], [4],

[2], [6] have studied the general problem (18). In our appli-

cation, we can show that p(t) presents discontinuities at

the time steps where the state inequality constraints are

saturated. The time steps where such discontinuities occur

are not a priori known : this prevents us to solve explicitly

the continuous optimal control problem with these state

constraints.

3.2.2 PMP Optimization algorithm

Considering the difficulties described in the previous section,

we propose a heuristic iterative method that allows to find a

sub-optimal trajectory from the constrained continous opti-

mal control problem (18). The proposed algorithm consists

in an initialization step and 3 steps :
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Figure 6

The proposed algorithm based on Pontryagin Minimum Principle.

0. algo1 is applied on the NEDC driving cycle [0, T ] (see

Figure 6 Step 0). The obtained optimal trajectory vio-

lates the state constraints, the farthest SOC (ie the "most

violated point") from the bounds being for instance on

the figure at point (x(tv) = −37%, tv = 818s). The

initial time is called ti, here set to 0.

1. The SOC at tv is projected on the nearest bound of

the feasible state domain (for instance, SOC is fixed to

xmin = 0 at point tv).

2. algo1 is applied again on [ti, tv] (see Figure 6 Step 2). If

the obtained trajectory still violates the state constraints

on [ti, tv], steps 1 and 2 are applied again on the farthest

SOC from the bounds (defining a new point tv). This

procedure is repeated until the trajectory remains on the

feasible domain. Then the last point tv becomes the new

initial time ti in step 3.

3. algo1 is applied on [ti, T ] (see Figure 6 Step 3). If the

obtained optimal trajectory still violates the state con-

straints, steps 1 and 2 are repeated. This sequence is

repeated until we reach the final step T at the desired

final SOC, without violating the state constraints (Figure

6 bottom right).

3.3 PMP compared to DP Results

Using the same fuel consumption map and vehicle cycle

than with Dynamic Programming, we can compare the two

optimization algorithms along the NEDC driving cycle on

Figure 7.

The two curves are very similar, the commands u(t) being

very similar too. We now compare the two algorithms on

Urban Artemis driving cycle [9], with the same fuel con-

sumption map, on Figure 8.

We notice again that the 2 curves are almost super-

imposed. In the following will be presented some results

obtained with Pontryagin Principle algorithm, as it is about

1000 times faster than DP (DP algorithm computation time

is about 1 hour), and gives quite the same results than

DP. The small differences between the 2 algorithms can be

minimized by taking smaller time and space discretization

steps in DP, but it leads to a too expensive computation

time.

4 RESULTS

In this section we present results for different kinds of

engine, different sizes of battery, and different sizes of elec-

tric motor. As our mild-hybrid vehicle is a urban vehicle,

we will present results on the urban Artemis driving cycle.

For all simulations, we will assume that initial SOC is 80%,

final SOC of 80% being introduced as a constraint to be

close to initial SOC.
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Figure 7

NEDC cycle(Top); Optimal state of charge trajectory of VEHGAN vehicle computed for NEDC cycle with PMP & DP
algorithm (Bottom).
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Urban Artemis cycle(Top); Optimal state of charge Trajectory of VEHGAN computed with PMP & DP algorithm (Bottom).

IFP — E-COSM — (ScripTEX o570104 : 1
er

specimen) — 8 —



Rousseau et al. / Constrained Optimization of Energy Management for a Mild-Hybrid Vehicle 9

4.1 Different kind of engine

The both following results, natural gas engine and gasoline

engine, were obtained with a battery capacity of 0.4 Ah,

and a 3 kW electric motor, as on the VEHGAN vehicle, on

Figure 9 and 11.

4.1.1 Natural Gas engine

The first engine used is a natural gas engine, from the

VEHGAN project.
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Figure 9

Urban Artemis driving cycle with natural gas engine :
optimal state of charge trajectory (Top); electric
motor torque (Bottom)

As the natural gas engine has an efficiency growing with

the torque (the best operating points being between 2500

and 4500 rpm and over 60Nm, see Figure 2), the optimiza-

tion decreases the fuel consumption using the electric motor

in the worth efficiency points, i.e. when ω < 2500 rpm. As

using electric motor on low torque operating points would

lead to worth operating points as illustrated on Figure 10,

only high torque operating points are modified by an active

hybrid mode.

4.1.2 Small Gasoline Engine

We now use a gasoline fuel map to optimize the fuel con-

sumption for a 600cm3 gasoline engine .

As displayed on Figure 12, the optimized operating

points are quite the same than ones of natural gas engine.

Nevertheless, as the gasoline engine does not present a good

efficiency at high torque operating points, the electric motor

is also useful in high torque requests.
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Figure 11

Urban Artemis driving cycle with gasoline engine :
optimal state of charge trajectory (Top); electric
motor torque (Bottom)

4.2 Different sizes of battery

In this section we optimize the fuel consumption for the

natural gas engine, with different sizes of battery. As we

can see on Figure 9, the state of charge crosses the point

xmin = 0 %, meaning that the whole range of the state of

charge of the battery is used. Then, if we increase the bat-

tery capacity, the optimization algorithm should give better

results in term of fuel consumption.

With a battery capacity of 0.4 Ah, we obtain a fuel con-

sumption of 5.90 l/100km, while a pure thermic mode

consumption gives 6.08 l/100km on the whole cycle, so

we decreased the consumption of 2.9 %. Optimizing the

torque repartition with a battery capacity two times big-

ger, i.e 0.8 Ah, we obtain the same fuel consumption :

5.90 l/100km.

We obtain the same consumptions with the two battery

sizes because of the low power of the electric motor, which

is often saturated at regenerative breaking.

4.3 Increasing the Electric motor torque power

From the conclusion of these last results, we multiply by two

the minimum and maximum electric motor power, to take

advantage of a higher energy when regenerative breaking.

We also increase the size of the battery, to have coher-

ent battery capacity regarding to regenerative breaking and

maximum electric motor power. Figure 14 presents the SOC

evolution and the electric motor torque. The fuel consump-

tion with this new electric motor reaches 5.87 l/100km, i.e
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Figure 10

Operating points of engine in hybrid mode obtained by PMP algorithm for the urban Artemis Driving Cycle with a natural
gas engine.
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Figure 12

Operating points of engine in hybrid mode obtained by PMP algorithm for the urban Artemis Driving Cycle with a gasoline
engine.
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Figure 13

Urban Artemis driving cycle with natural gas engine
and a 0.8 Ah battery capacity : optimal state of charge
trajectory (Top); electric motor torque (Bottom)

−3.4 % compared to pure thermic mode, and −0.5 % com-

pared to the smaller electric motor and battery. The Figure

15 resumes all the results obtained.
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Figure 14

Urban Artemis driving cycle with natural gas engine,
a 6 kW electric motor and a 1.2 Ah battery capac-
ity : optimal state of charge trajectory (Top); electric
motor torque (Bottom)
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Thermic mode
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6.08

Figure 15

Results with different sizes of battery and of electric
motor on Artemis Urban Cycle.

4.4 Discussion

The previous results show that it is possible to decrease by 2

to 4% of fuel consumption along a urban driving cycle with

this mild hybrid vehicle. Activating the stop’n go mode

would save around 10 to 15 %, but it would also decrease

the available electric energy from battery, as this energy

must be used to turn on the engine after a stop.

5 CONCLUSIONS

In this study, we have presented two of the three most

used methods in optimal control optimization. The heuris-

tic method based on Pontryagin Minimum Principle, well

known in the free state constraint case, has been applied

successfully to our state constrained problem, with very

similar results to Dynamic Programming methods and a

computation time divided by 1000. Nevertheless, there is

currently no theoretical proof to confirm the presented vali-

dation results. Moreover, there are some limitations to this

approach, mainly the assumptions on the fuel consumption

map, modelled by a smooth convex function of control u

(2-order polynomial) ; this limitation could lead to a bad

approximation of the real fuel consumption for some partic-

ular engines.

The case study, a mild hybrid vehicle, does not present as

good results as could be obtained with a full hybrid, in terms

of fuel consumption gain. So in future work will be studied

optimization applied to full-hybrid vehicles, as the ability to

turn off the engine while the electric motor only power the

vehicle is a key advantage. Other degrees of freedom, as the

gear-shifting sequence should also be taken into account in

the optimization problem. Reduction of pollutant emissions

will also be studied by considering a second state.

From optimization results could be derived a suboptimal

feedback law [1], [11], [13] based on state of charge and/or

speed measurements.
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