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Abstract

Objective: To determine whether acoustic reflexes are pervasive (i.e., known with 95 % 

confidence to be observed in at least 95 % of people) by examining the frequency of occurrence 

using a friction-fit diagnostic middle ear analyzer.

Design: A group of 285 adult participants with very good hearing sensitivity underwent 

audiometric and middle ear testing. Acoustic reflexes were tested ipsilaterally and contralaterally 

in both ears across a range of elicitor frequencies. Two automated methods were used to detect the 

presence of an acoustic reflex.

Results: There were no conditions in which the proportion of participants exhibiting acoustic 

reflexes was high enough to be deemed pervasive. Ipsilateral reflexes were more likely to be 

observed than contralateral reflexes and reflexes were more common at .5 and 1 kHz elicitor 

frequencies as compared to 2 and 4 kHz elicitor frequencies.

Conclusions: Acoustic reflexes are common among individuals with good hearing. However, 

acoustic reflexes cannot be considered pervasive and should not be included in damage risk 

criteria and health hazard assessments for impulsive noise.
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INTRODUCTION

The acoustic reflex (AR) has played a role in various methods of assessing the hazards 

posed by impulsive noises (Ward, 1968), as estimated using damage-risk criteria (DRC). If 

the AR, or more generally, middle ear muscle contractions (MEMC), are to play a 

substantial role in DRC, then they must be known to be pervasive (i.e. present in everyone) 

in the exposed population. It is impossible to confirm a 100 % prevalence in a sampled 

population. Therefore, the operational definition of a pervasive response is a minimum of 

95% confidence of a minimum of 95% prevalence (Patterson et al, 1985). This limit is 

equivalent to the lower boundary of the 90 % confidence interval for a prevalence proportion 

that is 0.95 or more. The AR was not determined to be pervasive in a prior study (Flamme et 

al., 2017), and the current study was conducted to confirm or disconfirm these results with a 

different study population and measurement instrument.

The AR is an involuntary contraction of the stapedius and/or tensor tympani muscles of the 

middle ear in response to high-level acoustic stimuli. The middle ear muscle contractions 

(MEMC) are typically assumed to be bilateral and have the effect of increasing middle ear 

impedance in the low frequencies. The afferent limb of the reflex is mediated over cranial 

nerve VIII terminating in the cochlear nucleus, while the efferent limb synapses onto the 

stapedius and tensor tympani muscles via cranial nerves VII and V respectively (Mukerji, 

Windsor and Lee, 2010). However, the central neural circuitry that lies between these two 

limbs is complex and not thoroughly understood (Mukerji et al, 2010). The middle ear 

muscles are also known to respond to non-acoustic stimuli (Djupesland, 1964; Fee, Dirks, & 

Morgan, 1975) and in association with behaviors such as eye closure, vocalization and 

swallowing (Simmons, 1964). The physiologic and/or evolutionary purposes of the AR are 

unclear, though a number of hypotheses have been suggested, including intensity control of 

external or internally generated sound (Borg, Counter & Rosler, 1984), enhancing sensitivity 

to high frequency sounds (Simmons, 1964) and functioning as a vestige of muscle activity 

required for jaw stability in early mammals/amphibians during mastication (Manley, 2010). 

Others have proposed that the AR conferred a survival advantage for predators and prey by 

preserving localization cues during pursuit or flight (Lawrence, 1965).

Factors such as age (Hodges & Ruth, 1987; Hall, 1982), attention (Durrant & Shallop, 1969; 

Robinette & Snyder, 1982), middle ear abnormalities (Jerger et al, 1974a; Nozza et al, 

1992), hearing status (Gelfand, Piper & Silman, 1983), and gender (Flamme et al, 2017; 

Hall, 1982) have been shown to influence the likelihood of observing an AR. For example, 

an AR is more likely to be observed in females as compared to males (Flamme et al, 2017), 

young adults as compared to older adults (Flamme et al, 2017; Silman, 1979), and in 

individuals with normal hearing as compared to individuals with hearing impairments 

(Silman, Popelka & Gelfand, 1978; Jerger, Jerger & Mauldin, 1972).
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The AR is typically measured indirectly by observing changes to a probe signal presented in 

the ear canal (Metz, 1952). Changes in middle ear impedance alter the ear’s response to a 

probe signal. Conventional AR measurements with adults use a 226 Hz probe tone, which is 

used because, under standard atmospheric conditions, a change of one milliliter (ml) of 

effective volume corresponds to a change of one millimho change in admittance. An AR is 

deemed present when the change associated with the elicitor exceeds a specified amount, 

typically 0.02 ml for many research applications. Clinical assessments of reflexes are 

frequently based on the morphology of the impedance change over time rather than a 

specific change in admittance (Gelfand, 2009). An individual’s acoustic reflex threshold is 

the lowest elicitor level (dB HL) at which an impedance change is observed and repeatable. 

Acoustic reflexes have been used clinically as an indicator of stimulus audibility (Silman et 

al, 1978), retrocochlear integrity (Gelfand, 2009) and middle ear status (ASHA, 1990).

Many previous studies attempting to determine the rate of occurrence of the AR (Gelfand & 

Piper, 1984; Silman, 1979; Gelfand et al, 1983) have not focused on estimating its 

prevalence within the population. Instead, these studies focused on use of the AR in clinical 

diagnosis. As a result, AR rates were often reported in terms of ears rather than people. The 

use of individual ears is acceptable for clinical purposes, where ear-specific diagnoses are 

required. However, DRC are applied to the whole person, so ear-specific rates do not apply. 

Additionally, many such studies (Gelfand et al, 1983; Gelfand & Piper, 1984; Gates et al, 

1990; Popelka, 1981) replaced missing values with values one audiometric step above the 

highest presentation level if no AR was observed. This strategy was adequate for the 

purposes of those studies, but it precludes accurate estimates of the prevalence of AR in the 

general population.

Recently, Flamme et al (2017) used data from the National Health and Nutrition 

Examination Survey (NHANES) to estimate the AR prevalence. The NHANES is a large-

scale survey of the civilian, non-institutionalized U.S. population. Data from NHANES can 

be used to examine health trends across the U.S. in areas such environmental exposure, 

diabetes, obesity, vision, and hearing (CDC/NCHS, 2017a). The NHANES includes 

audiometric testing, including audiometry, tympanometry, and acoustic reflexes. Acoustic 

reflex and tympanometry data were collected using a device with a handheld probe (Earscan, 

Micro Audiometrics Corp., Murphy, NC), meaning the ear probe was held in place by 

audiologist-trained technicians during testing. The use of a friction-fit probe reduces the 

probability that probe movement from the tester could influence error rates, which is why 

the friction-fit probe was used in the current study.

Acoustic reflexes were measured ipsilaterally at 1 and 2 kHz for both ears at an intensity of 

105 dB SPL (105 dB HL for 1 kHz and 102 dB HL for 2 kHz). See Flamme et al (2017) for 

a thorough explanation of the settings in which these assessments were conducted. A sample 

of more than 15,000 participants was drawn from the NHANES database. Given the size of 

the dataset, two different automated detection algorithms were used to identify the presence/

absence of an AR and prevalence was estimated overall and with consideration of factors 

such as age, hearing status and gender. The authors were unable to identify any groups 

within the population where the AR prevalence was pervasive (i.e. the lower bound of the 
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90% confidence interval of the prevalence estimate exceeded 95%), even in subgroups of the 

population with the greatest likelihood of an AR.

Flamme et al (2017) estimated the prevalence of AR in three participant groups: all 

participants, participants aged 18–30, and participants aged 18–30 with good hearing, 

defined as H-1 hearing status (Department of the Army, 2011). Previous studies have shown 

that individuals who are younger (Hodges & Ruth, 1987; Hall, 1982) and who have better 

hearing (Silman et al, 1978) exhibit a higher proportion of present AR, which was the case 

with group three (86.9%) compared to groups one and two (74.6% and 85.3%, respectively). 

However, even in individuals with the best hearing and at the youngest age range, the AR 

was not pervasive. Due to the lack of a pervasive AR in any subpopulation, Flamme et al 

(2017) determined that DRC for impulsive noises should not include AR.

One potential limitation of the Flamme et al (2017) results was that the NHANES study used 

a test device with a handheld probe. Unintended movement of the probe either during or 

after the stimulus presentation could compromise the quality of the reflex recordings. 

Movement artifact during the time window when a reflex is expected could lead to an 

erroneous reflex identification when one was not present (i.e. a false positive response). 

Alternatively, movement artifact when a stable baseline is expected could lead to 

erroneously missing an actual reflex (i.e. a false negative response). The latter would lead to 

underestimates of AR prevalence. Flamme et al (2017) addressed this issue by examining 

the variance distribution of the baseline segments of all AR traces. Even after eliminating the 

noisiest half of the traces, where false negative responses are most likely to occur, the AR 

prevalence still did not meet the pervasiveness criterion in any study group.

The goal of the present study was (1) to determine if using a diagnostic middle ear analyzer 

with a friction-fit probe yields a different probability of observing an AR than was observed 

previously, and (2) to determine whether the results suggest a different decision than 

Flamme et al (2017) with respect to AR pervasiveness.

METHODS

Participants

The participant pool for the current study was drawn from a larger multi-visit study designed 

to examine MEMC under a variety of experimental conditions. During the initial visit of the 

larger study, participants completed questionnaires related to hearing health and noise 

exposure, underwent standard clinical audiological procedures including otoscopy, 

audiometric testing, and middle ear assessment, participated in a brief screening of cranial 

nerves V and VII and completed a short pupillary conditioning experiment. The main goal 

of this initial visit was to determine if participants met the eligibility criteria for the 

remaining part of the larger study.

The data used in the current study included results from all participants who completed this 

first visit and for whom middle ear assessments were available. No effort was made to 

exclude participants based on audiometric, otoscopic, cranial nerve screening or 

questionnaire results. A total of 285 participants ranging in age from 18–68 years were used 
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for this study. The median age of the participants in the study was 21 years old (interquartile 

range: 20 to 23 years). The sample included 199 (70%) females and 86 males. Both the 

young age of participants and the large number of female participants likely resulted from 

the location participants were recruited. The fields of study at the College of Health and 

Human Services (CHHS) at Western Michigan University (WMU) are primarily dominated 

by young adult females.

Participants were recruited using informational flyers distributed throughout the CHHS 

building at WMU and surrounding areas in Kalamazoo, MI and through word-of-mouth 

from previous participants. This study was reviewed and approved by the Human Subjects 

Institutional Review Board of WMU and the Human Research Protection Office of the U.S. 

Army Medical Research and Materiel Command.

Instrumentation

Middle ear analyzer—The Interacoustics Titan Middle Ear Analyzer was used to collect 

the following impedance measures: tympanometry, wideband absorbance, wideband 

tympanometry, AR, and acoustic reflex decay. Only the AR results will be discussed in the 

current study. The probe on the Titan is a friction-fit probe, which remains in the ear without 

being held by the tester. The AR traces were obtained using pure-tone elicitors at 0.5, 1, 2, 

and 4 kHz both ipsilaterally and contralaterally using a conventional 226 Hz probe tone. The 

elicitor duration was over 700 ms. The probe began in the right ear for all participants, 

followed by the left ear. Therefore, measures of AR were obtained in the following order: 

right ipsilateral, left contralateral, left ipsilateral, right contralateral.

Elicitor tones were presented in ascending 5-dB steps between 80 dB HL and 100 dB HL. 

The instrument was configured to discontinue an ascending run once an impedance change 

exceeding 0.05 ml was detected on two consecutive trials. The impedance change of 0.05 ml 

was used instead of the clinically accepted change of 0.02 ml for this study to observe the 

growth of the reflex with increased elicitor intensity. Raw traces of middle ear impedance 

were exported for correlational analyses in the MATLAB (Mathworks, Inc., Natick MA) 

software environment.

Audiometric Research Tool—Pure tone audiometric thresholds were obtained using the 

Nelson Acoustics Audiometric Research Tool, which uses National Instruments PXI-4461 

dynamic signal analyzer modules for signal generation and data acquisition functions. The 

dynamic signal analyzer modules were housed within a National Instruments PXI-1082 

chassis and controlled using a National Instruments PXIe-8133 embedded controller. The 

software was configured to determine thresholds according to the modified Hughson-

Westlake procedure (Carhart & Jerger, 1959) and retains the complete stimulus presentation 

history that led to threshold determination. Pure tone air conduction thresholds were 

obtained bilaterally at octave frequencies between 0.125 to 8 kHz plus the inter-octave 

frequencies of 3 and 6 kHz using Sennheiser HDA-200 headphones. Bone conduction 

threshold testing was conducted at 0.5, 1, 2, and 4 kHz using a RadioEar B-71 transducer 

placed on the forehead. Stimulus levels were checked twice daily during the data collection 
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period using the IEC 60318–1 flat plate fixture for air conduction. Bone conduction stimuli 

were calibrated quarterly using the Brüel and Kjær 4930 artificial mastoid.

Procedure

During a participant’s first visit for the larger study, the data for this retrospective study was 

obtained. Participants completed a questionnaire which included questions on history of 

tinnitus, noise exposure (occupational noise, leisure noise, and firearm use), facial nerve 

disorders, such as Bell’s palsy, and concussions. The questionnaire was followed by a video-

otoscopic examination of the external ear and pure tone threshold audiometry. Participants 

were given an opportunity for a short break followed by a cranial nerves screening. The final 

two sets of measures taken during this visit were middle ear assessment and a test of the 

participant’s pupillary response to light and sound.

The data collection procedure was controlled using a custom MATLAB script that controlled 

the data acquisition process (i.e. otoscopy, cranial nerve testing and pupil conditioning) and 

automatically launched proprietary software (i.e. audiometry and middle ear assessment) 

during protocol execution. The visit that included the procedures used in this paper took 

approximately one hour after the participant provided informed consent to participate.

Data Processing/Analysis

The audiometric data collected for each participant were classified into audiometric 

configurations described in Ciletti & Flamme (2008), see Table 1. Each configuration is 

labelled with a letter followed by a number. The letter represents the thresholds in the low 

frequencies (0.5 to 2 kHz), and the number represents the threshold of the worst frequency 

above 2 kHz (Ciletti & Flamme, 2008). Of the 285 participants included in this study, 261 

(92%) participants had audiometric thresholds that were best described by the A11 

configuration. The thresholds in the A11 configuration represented the group with the best 

hearing sensitivity in the NHANES dataset used by Ciletti & Flamme (2008). This 

configuration was characterized by bilateral symmetry and mean pure tone thresholds of 10 

dB HL or less between the stimulus frequencies of 0.5 to 8 kHz, with the exception of a 

mean threshold of 11 dB HL at 6 kHz. Following A11, A19 and A22 were the next most 

frequent configurations and each accounted for approximately 2 % of the sample (i.e., A11, 

A19, and A22 accounted for approximately 96 % of the total sample). These configurations 

are very similar, but were identified separately for men and women in the Ciletti & Flamme 

study.

Reflex Detection Methods

Analyses were performed on all reflex traces collected. Two methods of reflex detection 

were developed and implemented using custom written MATLAB scripts. These methods 

are similar, but not identical to the Frequentist and Bayesian/Kalman methods described in 

Flamme et al (2017). The first method, referred to as the conventional method, identifies a 

reflex as present if the maximum change in the reflex trace is greater than 0.02 ml, based on 

the underlying assumption that this much change would be infrequent in the absence of an 

MEMC. One disadvantage of the conventional method is that the morphology of the reflex is 

not taken into consideration. The second method, referred to as the correlational method, 
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identifies a reflex as present if the correlation between that trace and one of a set of reflex 

prototypes exceeds a correlation coefficient “cut-point”. This procedure required a number 

of analysis steps.

Prototype Determination

The prototypical shapes were selected based on the presence of a stimulus-linked change in 

the trace. All traces collected for each frequency/laterality combination were viewed on the 

same figure, showing reflex growth and morphology patterns. Similar stimulus-linked 

changes across sampled traces were considered candidates for prototypes, and the 11 

original prototypes were selected from emblematic examples in the sample and to maximize 

the differences among the prototypes. Further analyses of the prototypes determined that 

four prototypes were highly correlated (e.g., > 0.93) to at least one of the remaining 

prototypes, and therefore were considered redundant. The seven remaining prototypes 

(Figure 1) were used for the remaining analyses.

Cut-point Determination

In order to determine correlation cut-point, 406 reflex traces were randomly selected from 

the dataset. Four authors (KM, GF, ST, KD) independently viewed each trace and made 

binary judgments on the presence/absence of a stimulus-linked change in impedance (i.e., an 

AR). Presence of a reflex was judged only on the morphology of the reflex. The time axis 

scaling remained so that the judge could confirm that the reflex was time-linked to the 

elicitor.

Traces in which all four judges agreed that a reflex was present were classified as true 

reflexes. All other traces, including those where only 2 or 3 of the judges agreed, were 

labeled as no reflex present. Interrater agreement, as represented by Cohen’s kappa statistic 

was (κ=.826), which is considered excellent by conventional interpretation guidelines 

(Lindis & Koch, 1977). The binary indicators for all 406 traces were then used to complete a 

Receiver Operating Characteristic (ROC) curve, which produced the sensitivity and 

specificity of this identification method at various correlation cut-points. The area under the 

ROC curve for this analysis was 0.96, and sensitivity and specificity was maximized at a cut-

point of 0.8617.

Statistical Analysis

Proportions of AR observations and 90 % confidence intervals and analyses of NHANES 

data were calculated using the Stata software package (StataCorp, College Station, TX). The 

90 % confidence interval was used because the lower bound of the 90 % confidence interval 

represents the point above which 95 % of observations would be expected to fall under 

infinite repeated random sampling of a population. Thus, a lower bound of the 90 % 

confidence interval that is greater than a proportion of 0.95 would indicate greater than 95 % 

certainty that 95 % of the sample would exhibit an AR. Analyses of NHANES were 

conducted using complex sample variables (e.g., sample weighting, clusters, and population 

sampling units) in accordance with guidance from the CDC/National Center for Health 

Statistics (CDC/NCHS, 2017b).
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RESULTS

Proportions of Acoustic Reflexes

The results for the correlational detection method are shown in Table 2. Each ear was 

analyzed separately, for each elicitor frequency and each laterality. The bilateral category 

represents the proportion of participants with present AR at the elicitor frequency in both 

ears. An individual is less likely to have an AR in both ears than in only one, and therefore, 

the proportions of AR are lower for the bilateral category than for left or right ear separately. 

Each category also includes “1 or 2 kHz” in the ipsilateral condition for comparison with 

results from the NHANES study (Flamme et al, 2017), analyzed using the same criteria. We 

have calculated the proportion of participants with a reflex present at either 1 or 2 kHz for 

the left ear, right ear, and in both ears for the ipsilateral condition only. This proportion will 

be higher than either 1 or 2 kHz on its own. Similar results for the conventional detection 

method are shown in Table 3. As discussed previously, an AR is considered pervasive when 

the lower bounds of the 90% confidence interval exceed 0.95. We were unable to find a 

category, using either detection method, that met this criterion. It is, however, important to 

notice two trends in these results. First, the proportion of AR was lower for the contralateral 

AR than for the ipsilateral AR at every elicitor frequency. This trend was found with both 

detection methods. The difference (as a percentage) between ipsilateral and contralateral AR 

ranges from 6.7% to 20.4% (mean: 11.9%, SD: 3.87%).

Another important trend in these results is that the proportions of AR at 0.5 and 1 kHz were 

higher than those at 2 and 4 kHz. To quantify this difference, we found the average of the 

proportions at 0.5 and 1 kHz (referred to as 5–1 average) and at 2 and 4 kHz (2–4 average) 

for each condition. The 2–4 average was subtracted from the 5–1 average to calculate the 

difference (presented as a percentage). The mean differences were as follows: 4.3% (SD:

0.43%) for ipsilateral, correlational method; 5.55% (SD:1.90%) for contralateral, 

correlational method; 8.28% (SD:1.81%) for ipsilateral, conventional method; 2.55% (SD:

0.17%) for contralateral, conventional method.

Comparison across groups

To compare the results from the current study to the results presented in Flamme et al 

(2017), four participant groups were further analyzed to determine the proportion of 

individuals in each group with an AR at 1 or 2 kHz. The four participant groups, based on 

age and audiometric results, included: any age and any audiogram configuration (all 

participants), any age and an audiogram best described by the A11 configuration (Ciletti & 

Flamme, 2008), individuals 18–30 years old with any audiometric configuration, and 

individuals 18–30 years old with an audiogram best described by the A11 configuration. The 

numbers of participants in each group, as well as the proportions of individuals in each 

group with an AR at 1 or 2 kHz in both ears and the 90% confidence intervals for both 

detection methods are shown in Table 4. The results represented in Table 4 show that the AR 

is very common in these participant subgroups. The proportion of AR was above 90% in all 

participant groups for both detection methods. However, the lower bounds of the 90% 

confidence intervals did not exceed 0.95 for any of the groups using either detection method. 

Even in the fourth group, which includes individuals who are young (18–30 years) and have 
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very good hearing (hearing levels best described by the A11 configuration), the AR rates did 

not meet the criterion for pervasiveness. We confirmed the results of Flamme et al (2017) 

which concluded that the AR was very common, but was not pervasive.

Comparison to NHANES

The mean thresholds of individuals with audiometric configurations best described by A11 

(Ciletti & Flamme, 2008) for the current study were typically better than the thresholds used 

originally to define the A11 audiometric configuration. For example, the threshold at 1 kHz 

as described by A11 is 4 dB HL, but the mean threshold at 1 kHz for the current study was 0 

dB HL for both the left and right ears. The mean thresholds for the current study and the 

A11 configuration are shown in Figure 2. The mean thresholds for individuals with 

thresholds best described by the A11 audiometric configuration were better than the A11 

audiometric configuration at all frequencies (0.5 kHz to 8 kHz). In order to provide a more 

precise comparison, the NHANES data used in Flamme et al (2017) were re-analyzed using 

only participants whose thresholds fell within the interquartile range (IQR) of individuals 

best described by A11 in the current study. The same analysis and reflex detection methods 

described in Flamme et al (2017) were used.

The proportion of bilateral AR reported in Flamme et al (2017) for the youngest population 

(aged 18–30 years) with the best hearing (audiograms best described by A11) using either 

detection method from that study was 0.91 with a 90% confidence interval from 0.89 to 

0.92. Using only NHANES participants with audiograms within the IQR of the current 

study, the proportion increased to 0.94 with a 90% confidence interval from 0.91 to 0.98. 

These highly screened results from NHANES are most comparable to participant group 4 in 

Table 4, where the proportions in the current study matched the highly screened NHANES 

group within one percent, and continue to demonstrate lack of AR pervasiveness.

DISCUSSION AND IMPLICATIONS

Summary

The current study was undertaken to determine whether the proportions of acoustic reflexes 

observed in a laboratory study using a diagnostic middle ear analyzer with a friction-fit 

probe were similar to the nationally-representative (NHANES) results obtained using a 

screening device and handheld probe. The results obtained in the current study confirm the 

nationally-representative results of Flamme et al (2017) and reaffirm the conclusion that 

acoustic reflexes are common, but not pervasive. In spite of the large sample of young 

participants with excellent hearing, we remain unable to find a subpopulation in which AR 

are pervasive.

It is possible that cases of absent acoustic reflexes could be associated with reductions to the 

numbers of synapses the inner hair cell and auditory nerve fibers, which can be described as 

cochlear neuropathy. Recent work with mouse models (Valero et al. 2016) suggests that 

neuropathy induced by noise exposure might reduce or degenerate synapses to auditory 

nerve fibers and thus disturbing acoustic reflexes. It is not clear whether this phenomenon 

was a large contributor to the results of this study or if cochlear neuropathy might explain 
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differences in the probabilities of responses across frequency and stimulus-probe 

configurations. However, the results of Valero et al. (2016) and other related work are 

relevant to the issue of reliance on AR by DRC for impulsive noise.

Biases and Limitations

The proportions of responses found in the current study were considerably higher than 

would be observed in the general population. Prior studies (Flamme et al, 2017; Hall, 1982; 

Hodges & Ruth, 1987) have shown that the probability of reflex detection declines with a 

decrease in hearing sensitivity, male gender, and increasing age. It is also possible that the 

proportion of individuals exhibiting AR would have been higher if broadband elicitors (e.g., 

white or pink noise) had been used. We elected not to evaluate broadband noise stimuli for 

this component of the study because broadband elicitors were included in other aspects of 

the overall project and because the main purpose of these analyses was to make a 

comparison to the tonal elicitor results described in Flamme et al. (2017).

The median age of participants was 21 years old (interquartile range: 20 to 23 years) and 

70 % of the individuals were female, which both lead to what is likely an overestimate of the 

proportion of AR seen in the general population. If the gender distribution of the participants 

had been more equal and/or the average age of participants had been higher, it is likely that 

the proportions of AR observed would decrease (Flamme et al, 2017; Hall, 1982).

It is important to note that the results of the current study apply to stimulus durations that are 

considerably longer and at lower levels than the impulsive sounds addressed by a DRC for 

impulsive noise. The observation of an AR for a long-duration signal does not necessarily 

imply that short-duration signals like gunshots will also elicit an AR among people with 

robust AR for long-duration signals. In this study, presentations were not made at higher 

levels because the levels tested here were similar to those used in the prior study and to 

ensure the safety of the volunteer research participants (Hunter et al., 1999; Schairer, et al., 

2007), who were exposed to high-level signals in other study procedures. It is also important 

to note that responses at higher levels could be more likely to elicit middle ear muscle 

contractions through alternate neural pathways (e.g., eye blinks), which are very likely to 

produce middle ear muscle contractions (Tasko, et al., 2017).

Suggestions for future research

The current study and Flamme et al (2017) examined only the AR at 1 and 2 kHz in relation 

to the pervasiveness of the AR. This was a limitation of the NHANES data set, as those were 

the only two frequencies obtained. However, as our results showed, AR at 0.5 and 1 kHz 

were more common than AR at 2 and 4 kHz. Therefore, a more comprehensive study 

including all four test frequencies could lead to a different decision about inclusion in DRC 

and may be worthwhile to explore if the investigators in that study manage the capitalization 

on chance across multiple observations. One complication to such a study, however, is that 

the inclusion of AR in a DRC would involve the generalization of results obtained with non-

impulsive sounds to impulsive sounds. In the current study, we judged a person as having an 

AR if reflexes were observed in at least one of the two elicitor frequencies under 

consideration, which represents as little as 50 % of the elicitors presented. In such a case, the 
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response observed to one elicitor stimulus was not shown to generalize to a similar stimulus 

of equal duration. The finding of AR for only one elicitor stimulus confirms the integrity of 

some portions of the reflex arc, but it is not sufficient evidence to ensure that this arc will be 

activated by a substantially different stimulus such as an impulse.

The finding that the proportions of AR were lower for the contralateral condition than for the 

ipsilateral condition suggests that bilateral contractions are not sufficiently dependable to 

justify their inclusion in DRC for impulsive noise, even among individuals with very good 

hearing sensitivity. This finding is perhaps an outcropping of the impressions of Mukerji et 

al (2010), who expressed the position that the neural pathways triggering the MEMC are 

more complex than suggested by conventional wisdom. Future research surveying the 

conditions leading to MEMC could augment neurophysiological studies of the anatomy and 

physiology of the nuclei involved in the MEMC.
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Figure 1. 
Prototypes used for correlation method of AR detection. Each plot represents time on the 

horizontal axis and reflex magnitude on the vertical axis. Note that a change in the upward 

direction represents a decrease in admittance. Prototypes were identified visually during 

review of AR traces, and the traces plotted in this figure were taken from raw traces.
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Figure 2. 
Mean thresholds for the participant group in the current study. The light gray line with filled 

diamonds represents the A11 audiometric configuration.
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Table 1.

Definitions of selected audiometric configurations from Ciletti & Flamme (2008). Tabled values represent 

mean audiometric thresholds (dB HTL) for each configuration.

Configuration Gender 0.5 kHz 1 kHz 2 kHz 3 kHz 4 kHz 6 kHz 8 kHz

A11 Both 7 4 5 3 5 11 8

A19 Male 10 8 8 10 14 19 18

A22 Female 12 9 9 10 13 22 19
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Table 2.

Proportions of acoustic reflexes determined using the correlational detection method. The low boundary of the 

confidence interval is presented in boldface because it is the key outcome for this study. Note that the 90 % 

confidence intervals for the “1 or 2 kHz” rows were calculated for a single proportion rather than adjusting for 

the combination of two proportions, which would expand the range between confidence limits.

Ipsilateral Contralateral

Stimulus Frequency

90% confidence limits 90% confidence limits

Proportion Low High Proportion Low High

Left Ear

 500 Hz 0.92 0.89 0.94 0.83 0.79 0.87

 1000 Hz 0.94 0.91 0.96 0.86 0.82 0.89

 2000 Hz 0.89 0.85 0.92 0.79 0.75 0.83

 4000 Hz 0.90 0.86 0.92 0.75 0.71 0.79

 1 or 2 kHz 0.96 0.94 0.98 – – –

Right Ear

 500 Hz 0.92 0.88 0.94 0.85 0.81 0.88

 1000 Hz 0.93 0.90 0.95 0.82 0.78 0.86

 2000 Hz 0.88 0.85 0.91 0.80 0.76 0.84

 4000 Hz 0.87 0.84 0.90 0.80 0.75 0.83

 1 or 2 kHz 0.94 0.91 0.96 – – –

Bilateral

 500 Hz 0.86 0.83 0.89 0.76 0.72 0.80

 1000 Hz 0.89 0.85 0.92 0.76 0.72 0.80

 2000 Hz 0.83 0.79 0.87 0.72 0.67 0.76

 4000 Hz 0.83 0.79 0.86 0.69 0.64 0.73

 1 or 2 kHz 0.92 0.89 0.94 – – –
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Table 3.

Proportions of acoustic reflexes determined using the conventional (0.02 ml change) method. Other details are 

similar to Table 2.

Ipsilateral Contralateral

Stimulus Frequency

90% confidence limits 90% confidence limits

Proportion Low High Proportion Low High

Left Ear

 500 Hz 0.96 0.93 0.97 0.80 0.76 0.84

 1000 Hz 0.95 0.93 0.97 0.81 0.77 0.84

 2000 Hz 0.87 0.83 0.90 0.79 0.74 0.82

 4000 Hz 0.87 0.84 0.90 0.77 0.73 0.81

 1 or 2 kHz 0.97 0.94 0.98 – – –

Right Ear

 500 Hz 0.94 0.92 0.96 0.81 0.77 0.85

 1000 Hz 0.94 0.92 0.96 0.79 0.74 0.82

 2000 Hz 0.88 0.85 0.91 0.78 0.74 0.82

 4000 Hz 0.88 0.84 0.91 0.77 0.73 0.81

 1 or 2 kHz 0.95 0.93 0.97 – – –

Bilateral

 500 Hz 0.92 0.89 0.94 0.72 0.67 0.76

 1000 Hz 0.91 0.88 0.93 0.71 0.66 0.75

 2000 Hz 0.81 0.77 0.85 0.69 0.64 0.73

 4000 Hz 0.82 0.78 0.85 0.68 0.63 0.73

 1 or 2 kHz 0.93 0.90 0.95 – – –
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Table 4.

Proportion of bilateral acoustic reflexes (at 1 kHz or 2 kHz) by participant group and detection approach. 

Other details are similar to Table 2.

Correlational Conventional

90% confidence interval limits 90% confidence interval limits

n Proportion Low High Proportion Low High

Group 1:

 Any Age +
 Any Audiogram 285 0.92 0.89 0.94 0.93 0.90 0.95

Group 2:

 Any Age +
 A11 audiogram 261 0.94 0.91 0.96 0.94 0.91 0.96

Group 3:

 18–30 y.o. +
 Any audiogram 245 0.92 0.89 0.95 0.93 0.89 0.95

Group 4:

 18–30 y.o. +
 A11 audiogram 238 0.95 0.92 0.97 0.94 0.91 0.96
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