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—— Abstract

Motivated by the classic GENERALIZED ASSIGNMENT PROBLEM, we consider the GRAPH BALANCING
problem in the presence of orientation costs: given an undirected multi-graph G = (V| E) equipped

with edge weights and orientation costs on the edges, the goal is to find an orientation of the edges
that minimizes both the maximum weight of edges oriented toward any vertex (makespan) and
total orientation cost. We present a general framework for minimizing makespan in the presence of
costs that allows us to: (1) achieve bicriteria approximations for the GRAPH BALANCING problem
that capture known previous results (Shmoys-Tardos [Math. Progrm. ‘93|, Ebenlendr-Krcal-
Sgall [Algorithmica ‘14], and Wang-Sitters [Inf. Process. Lett. ‘16]); and (2) achieve bicriteria
approximations for extensions of the GRAPH BALANCING problem that admit hyperedges and
unrelated weights. Our framework is based on a remarkably simple rounding of a strengthened
linear relaxation. We complement the above by presenting bicriteria lower bounds with respect to
the linear programming relaxations we use that show that a loss in the total orientation cost is
required if one aims for an approximation better than 2 in the makespan.
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1 Introduction

We consider the GRAPH BALANCING problem (GB) where we are given an undirected multi-
graph G = (V, E) equipped with edge weights p : E — R™. The goal is to orient all the edges
of the graph, where each edge can be oriented to one of its endpoints. Given an orientation
of the edges the load of a vertex u is the sum of weights of edges oriented toward it. The
goal is to find an orientation of the edges that minimizes the maximum load over all vertices.

GB was first introduced by Ebenlendr et al. [3] and since its introduction it has attracted
much attention (see, e.g., [10, 18, 6, 2, 12]). Besides being a natural graph optimization
problem on its own, a main motivation for considering GB is the well known GENERALIZED
ASSIGNMENT PROBLEM (GAP) (see, e.g., [15, 3, 16, 19]). In GAP we are given a collection M
of m machines and a collection J of n jobs, along with processing times p; ; (the processing
time of job j on machine i) and assignment costs ¢; ; (the cost of assigning job j to machine
). Each job must be assigned to one of the machines. The processing time of machine i is
the sum of processing times p; ; over all jobs j that are assigned to 4, and the makespan of
an assignment is the maximum over all machines ¢ of its processing time. Additionally, the
total assignment cost of an assignment is the sum of assignment costs c; ; over all machines
¢ and jobs j that are assigned to i. Given a target makespan T, we denote by C(T) the
minimum total assignment cost over all assignments with makespan at most 7. If there
are no assignments with makespan at most T, then C(T) = oco. The goal in GAP, given a
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target makespan T, is to find an assignment with makespan at most 7" and total assignment
cost at most C'(T'), or declare that no such assignment exists. We note that only T is given
to the algorithm whereas C(T") is not. For this bicriteria problem, the celebrated result of
Shmoys and Tardos [15] provides an approximation algorithm that finds an assignment with
makespan at most 27" and total assignment cost at most C(7T).

GB is a captured by GAP since one can: (1) set M to be V and J to be E; and (2) for
each job j € J (which corresponds to an edge e € E) set its processing time to be p. for
the two machines that correspond to the endpoints of e and oo for all other machines. Note
that assigning job j to machine i corresponds to orienting the edge e toward its endpoint
that corresponds to machine i. There are two important things to note. First, GB was
originally defined as a single criterion optimization problem as opposed to GAP which is a
bicriteria optimization problem. Second, the weights p in GB, which represent the processing
times of the jobs, are related, i.e., the processing times do not depend on the vertex the
edge is oriented to. Ebenlendr et al. [3] introduced a novel linear relaxation and rounding
algorithm that achieves an approximation of 1.75 with respect to the optimal makespan.
They also proved that even for this special case, no polynomial time algorithm can achieve
an approximation less than 1.5 unless P = N P, thus extending the hardness of GAP to GB.

In this work we consider the bicriteria GB problem, where we are also given orientation
costs, the equivalent to the assignment costs in GAp. Formally, an edge e = (u,v) has
orientation costs c. . and c., and orienting it to u incurs a cost of c. . Similarly to GAP,
given a target makespan 7', the goal is to find an orientation of the edges with total orientation
cost at most C(T') and makespan at most 7.1 To the best of our knowledge, the bicriteria GB
problem was not previously considered. We say that an algorithm is a («, §)-approximation
if given a target makespan T, it outputs an orientation with makespan at most o7 and total
orientation cost at most SC(T). Thus, [15] is a (2, 1)-approximation to GB. We note that
the algorithm of [3] cannot handle orientation costs and is in fact a (1.75, 0o)-approximation
for GB. A result by Wang and Sitters [18] implicitly gives a (11/6,3/2)-approximation for GB.

We study the bicriteria tradeoff between makespan and total orientation cost in GB,
presenting both upper and lower bounds (the latter are with respect to the linear programming
relaxations used in this work). We employ a remarkably simple general framework that
allows us to achieve bicriteria approximations for GB that capture and extend known results.
Furthermore, we consider extensions of GB that allow for: (1) hyperedges to be present, i.e.,
a job can be assigned to more than two machines; and (2) processing times can be unrelated,
i.e., the processing time of a job might depend on the machine it is assigned to. Our results
regarding these extensions improve upon the previously best known algorithms, and are also
based on the general framework presented in this paper. We believe this framework might
be of independent interest to other related scheduling problems.

1.1 Our Results

Our results are of three different flavors: bicriteria upper bounds for GB, bicriteria lower
bounds for GB, and both upper and lower bicriteria bounds for extensions of GB (all lower
bounds are with respect to the linear programming relaxations we use). Let us now elaborate
on each of the above.

L As in GAP, the total orientation cost of an orientation is defined as the sum of orientation costs ce,u
over all vertices u and edges e oriented toward u. C(T') is defined as the minimum total orientation cost
over all orientations with makespan at most 7. If no such orientation exists then C(T') is set to co.
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1.1.1 Upper Bounds

We present a general framework for minimizing makespan in the presence of costs and obtain
two algorithms that achieve bicriteria approximations for GB. This is summarized in the
following two theorems.

» Theorem 1. There exists a polynomial time algorithm that finds an orientation that is
a (1.75 + 7, 1/(2v40.5)) -approximation for GRAPH BALANCING, for every /12 —e <y < 1/4
where € = V33/4 —17/12 2 0.02.

» Theorem 2. There exists a polynomial time algorithm that finds an orientation that is a
(1.75 + 7, 1 + /) -approximation for GRAPH BALANCING, for every 0 <y < 1/4.

Both the above theorems provide a smooth tradeoff between makespan and orientation cost
while capturing previous known results for GB as special cases, i.e., Theorem 1 captures
the (2,1) and (11/6,3/2) approximations of [15] and [18] for v = /4 and v = 1/12 respectively,
whereas Theorem 2 captures the (1.75, co)-approximation of [3] for v = 0. Theorem 1 is
depicted in Figure 1.

1.1.2 Lower Bounds

We present bicirteria lower bounds for GB. As previously mentioned, our lower bounds apply
to a strengthening of the relaxation of [3], which we denote by LPj (see subsection 3.2). The
lower bound is summarized in the follwing theorem and is depicted in Figure 1.

» Theorem 3. For every 0 < v < 1/4 and € > 0, there exists an instance for GRAPH
BALANCING and target makespan T such that: (1) LPy is feasible and has value of OPTyp,,
and (2) every orientation whose makespan is at most (1.75 +v)T has orientation cost of at
least 1/(v+0.75+)OPTy p, .

To the best of our knowledge, all algorithms for GB that find an orientation that achieves an
approximation better than 2 with respect to the makespan use the relaxation of [3] (or no
relaxation at all, e.g., [6]). 2

1.1.3 Extensions

Using our general framework, we present bicriteria algorithms for extensions of GB. The
extensions of GB we consider allow hyperedges and unrelated weights to the edges. It is
important to note that all the upper bounds presented below hold for the single criterion
versions of these problems as well. In particular, we achieve an approximation strictly better
than 2, with respect to the makespan, to several problems that capture GB and are not
captured by the RESTRICTED ASSIGNMENT problem (RA).? To the best of our knowledge,
this is the first polynomial time algorithm with approximation factor better than 2 to the
makespan for problems that capture GB and are not captured by RA. Let us now elaborate
on these extensions.

Recently, Jansen and Rohwedder [10] showed that using a different stronger relaxation called the
configuration LP one can achieve an approximation of less than 1.75 to the makespan. However, this
result does not produce a polynomial time algorithm that orients the edges but rather only approximates
the value of the optimal makespan. Moreover, this result has an unbounded loss with respect to the
orientation cost.

The RA is a special case of GAP where each job has a set of machines it can be assigned to, and has an
equal processing time on each of them.
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The first extension allows for light unrelated hyperedges. Formally, given S € [0, 1], the
input can contain hyperedges whose weight with respect to the vertices it shares may vary,
as long as it does not exceed 8 (we may assume without loss of generality that the largest
weight in p equals 1). We denote this problem by GRAPH BALANCING WITH UNRELATED
LicHT HYPER EDGES (GBUH(f)). A special case of this problem was introduced by Huang
and Ott in [6] who presented a (5/3 4+ 8/3, 0o)-approximation when § € [4/7,1). We improve
upon [6] in three aspects. First, we consider the general bicriteria problem, i.e., orientation
costs are present, and achieve bounded loss with respect to the total orientation cost (recall
that [6] cannot handle orientation costs). Second, we allow any 8 € [0, 1], where [6] allows
for B € [4/7,1) only. Third, we allow the hyperedges to be unrelated, i.e., different weights to
different endpoints, where hyperedge weights in [6] are related. Our result for this extension
is summarized in the following theorem.

» Theorem 4. Let 0 < 5 < 1. For every max {1/12,8/3 — L/12} <~ < 1/4, there exists a poly-
nomial time algorithm that finds an orientation that is a (1.75 + v,1/(2y+0.5))-approzimation

to GBUH(f).

The second extension further generalizes the first one, and it also allows edges to have
unrelated weights as long as the weights are greater than 3. Unfortunately, we prove that
this problem in its full generality is as hard to approximate as GAP. However, if it is assumed
that the optimal makespan is at least 1 (as before we can assume without loss of generality
that the largest weight in p equals 1), we can achieve improved results. We denote this
problem by GRAPH BALANCING WITH UNRELATED LIGHT HYPER EDGES AND UNRELATED
Heavy EpGes (GBu(f)). 4

» Theorem 5. Let 3 > \/2—1. For every B/3—1/12 < v < 1/a, there exists a polynomial time
algorithm that finds an orientation that is a (1.75 + v,/ (2v+0.5))-approzimation to GBU(S).

We prove that there are values of 8 for which the bicriteria approximation of Theorem
5 is tight. Specifically, we prove the latter for 8 = 1/2 and LP;. The lower bounds are
summarized in the following theorem.

» Theorem 6. For every € > 0, there exists an instance of GBU(0.5) that is feasible to LP
and every orientation has a makespan of at least 11/6 — €. Moreover, for every /12 <y < 1/4,
target makespan T and € > 0, there exists an instance for GBU(0.5) that is feasible to LPy
and has a value of OPTy p,, and every orientation with makespan at most (1.75 4+ )T has
an orientation cost of at least (1=€)/(2y+0.5) - OPT,p, .

In the third and final extension we allow the edges in GB to be unrelated, but the
weights cannot vary arbitrarily. Formally, given a parameter ¢ > 1, every edge e = (u,v)
satisfies pe.y < € Pey a0d Py < € Pe . We denote this problem by SEMI-RELATED GRAPH

BALANCING (SRGB(c)). The following theorem summarizes our algorithm for SRGB(c).

» Theorem 7. There exists a polynomial time algorithm to SRGB(c), that finds an ori-
entation that is a (1.5 + 0.5a, 1/a)-approzimation, where a is the root in the range [0.5,1]
of the polynomial:

(1/c + 1/2) . Cl3 + (5/(2c) — 1/2) . a2 — 7/(2c) ca+ l/c.
4 While the assumption that the largest weight p equals 1 implies that the optimal makespan is least 1

for GB and GBUH(/3), this is not necessarily the case when the edge weights might be unrelated. Thus,
the assumption in GBU(/3) that the optimal makespan is at least 1 is not without loss of generality.
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— Theorem 1 (upper bound)
—— Theorem 3 (lower bound)

NQ)

orientation cost

1.75 1.81 1.85 1.9 1.95 2
makespan

Figure 1 Our bicriteria bounds for GRAPH BALANCING. (a) is given in Shmoys and Tardos [15],
whereas (b) is implicitly given in Wang and Sitters [18].

We remark that the approximation guaranteed by Theorem 7 is never worse than 2 since
it can be proved that a = 1 — Q (1/c), yielding a (2 — 2(1/c), 1 + O(Y/c))-approximation. It
is worth noting that when ¢ = oo, which corresponds to the most general case, even the
configuration LP has an integrality gap of 2 with respect to the makespan (see [4, 17]).

1.2  Our Techniques

We present a remarkably simple framework that allows us to provide bicriteria upper bounds
for both GB and its extensions, i.e., GBUH(3), GBU(S), and SRGB(c). The framework is
based on rounding of a strengthening of the linear relaxation of [3].

The rounding is comprised of two complementary steps, the first local and the second
global. Intuitively, in the first local step, each edge can be oriented to one of its endpoints in
case the relaxation indicates a strong (fractional) inclination toward that endpoint. We note
that in order to quantify this inclination the weight of the edge is taken into account, where
lighter edges are less likely to be oriented. Specifically, denote by z. , € [0,1] how much the
relaxation fractionally orients edge e = (u, v) toward its endpoint u. The local step orients

e toward u if z., > f(p.) for some non-increasing threshold function f : [0,1] — [1/2,1].

As previously mentioned, this step is considered local since only z., and p. are used to
determine whether to orient e, and if so to which of its two endpoints.? In the second global
step of the rounding, we consider the remaining edges which were not yet oriented in the
first local step and apply the algorithm of Shmoys and Tardos [15] which finds a minimum
cost perfect matching in a suitable bipartite graph. As previously mentioned, this step is
considered global since all edges which are not yet oriented are taken into consideration when
computing the matching.

The above two-phase rounding is not sufficient on its own to obtain our claimed results, and
we further strengthen the relaxation of [3] by forcing additional new constraints. Intuitively,
for every vertex u our constraints state that if a collection of edges S touching u has total
weight of more than 7" then not all edges in S' can be chosen. We enforce the above constraints
for all subsets of size at most k, for some fixed parameter k, resulting in a strengthened
linear relaxation which we denote by LP;. It is important to note that these constraints
cannot be inferred from the original relaxation of [3], and thus are required in our analysis of
the above two-phase rounding.

5 This rounding was used in Wang and Sitters [18] with a specific “step” threshold function f to implicitly
obtain a (11/6,3/2)-approximation for GB.
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1.3 Additional Related Work

Lenstra et al. [11] introduced the classic well known 2-approximation to the single criterion
GAP. They also proved that no polynomial time algorithm can approximate the makespan
within a factor less than 1.5 unless P = N P. This was followed by Shmoys and Tardos [15]
who introduced the bicriteria GAP and presented a (2, 1)-approximation for it. A slightly
improved approximation of 2 — 1/m for the makespan was given by Shchepin and Vakhania
[14]. If the number of machines is fixed polynomial time approximation schemes are known
[5, 8]. For the case of uniformly related machines (each machine i has speed s; and assigning
job j to machine i takes pi/s, time) Hochbaum and Shmoys [13] presented a polynomial time
approximation scheme. The RESTRICTED ASSIGNMENT problem (RA) is a special case were
each job has an equal processing time on the machines it can be assigned to (for every job
j and machine i: p; ; € {p;,00}). For this special case, Svensson [16] proved that one can
approximate the value of the optimal makespan by a factor of 33/17 using the configuration
LP, that was first introduced by Bansal et al. for the SANTA CLAUS PROBLEM [1]. This was
subsequently improved by Jansen and Rohwedder [9] who presented an approximation of 11/e.
If one further assumes that the processing times have only two possible values [7] presented
an improved approximation of 5/3. The above results [16, 9, 7] do not present polynomial
time algorithms that produce a schedule with the promised makespan, but only approximate
the value of the makespan.

When considering GB, Jansen and Rohwedder [10] recently showed a similar flavor result:
using the configuration LP one can estimate the value of the optimal makespan by a factor
of 1.75 — ¢, for some small constant ¢ > 0. However, as before, [10] does not produce an
orientation in polynomial time. The special case of GB where only two processing times are
present admits a (tight) 1.5-approximation (given independently by [6, 2, 12]).

To the best of our knowledge, no work on GB considered orientation costs and in particular
the tradeoff between makespan and orientation cost.

1.4 Paper Organization

Section 2 contains the required preliminaries. In Section 3 we present our general framework
and apply it to GB to obtain bicriteria algorithms. Section 4 contains our bicriteria lower
bound for GB. Finally, in Section 5 we consider the mentioned extensions of GB and apply
the framework to these extensions to obtain improved algorithms.

2 Preliminaries

Given a multi-graph G = (V, E) and a vertex u € V denote by §(u) = {e € E | u € e} the
collection of edges incident to u. In addition define: F(u) £ {S C d(u) | > cgpe < 1}, ie.,
the collection of feasible subsets of edges incident to w (for simplicity of presentation we
further assume without loss of generality that T"= 1 since we can scale all processing times
by T'). Moreover, we denote by OPT,p and OPT},p, the optimal value of a feasible solution
to the relaxation LP and LP} respectively.

The algorithm of Shmoys and Tardos [15] is a key ingredient in our framework, thus we
present it not only for completion but also since understanding its inner-working helps in
analyzing our algorithms. Recall that [15] is a (2, 1)-approximation for GAP. We assume
without loss of generality that T' = 1 since one can scale the processing times by T'. First,
the relaxation in Figure 2 is solved, where J is the set of jobs and M is the set of machines.
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(LPgap)

R 5 2
JET ieM

s.t Z ;=1 VjeJ (Job)
i€M
Zﬂﬂz‘,jpi,j <1VieM (Load)
JjeT
Zi; =0 VieM,5€T :pi;>1
Ti; >0 VieM,j €T

Figure 2 The relaxation by Shmoys and Trados [15] to GAP.

The variable z; ;, for each i € M and j € J, indicates whether job j is scheduled on machine
i. Note that if there is no feasible solution to the relaxation, then the algorithm declares
there is no schedule with makespan at most 7.

Given a solution x to LPgp, the algorithm of [15] constructs a weighted bipartite graph
G = (J,S, F), which will be described shortly. Afterwards, the algorithm finds a minimum
cost perfect matching to the side J, i.e., each vertex in J is matched to a vertex in S.
Using this matching the algorithm assigns each job to a machine. The bipartite graph G

is constructed as follows, where we assume that 7 = {1,2,...,n} is the set of jobs and S
is a collection of “slots”. Machine i is allocated k; = (Z?:l x; ;| slots which we denote by
slot(i, 1), ... slot(i, k;), each having a capacity of 1. For each machine i sort the jobs in a

non-increasing order of their processing time p; ;, and for each job j in this order add z; ;
units of job j to the next non-full slot of machine ¢ (starting from slot(¢,1)). If z; ; is larger
than the remaining capacity of the slot, which we denote by r, add r units of job j to that
slot and x; ; — r units of job j to the next slot. An edge connecting job j and a slot (¢, /) is
added to E if some of the z; ; units of j were added to the slot (¢, ), and its cost is set to
¢ ;. A description of [15] appears in Algorithm 1.

Algorithm 1 Shmoys-Tardos (x, p, c).

1 Construct the bipartite graph G = (J, S, F) as described above.
2 Find in G a minimum cost perfect matching with respect to J.
3 For each job j € J, assign j to machine i if the slot that is matched to j belongs to .

We say a slot is full if the remaining capacity of that slot is 0. Additionally, we say a
job j is on top of a slot if j is the first job to be inserted to that slot. It can be proved that
the load on machine ¢ in the output of Algorithm 1 is at most 1 + p; 1, where p;; is the
processing time of the job on top of slot(i, 1), i.e., the largest processing time of a job that is
fractionally scheduled on machine i. Since, p; 1 < 1, the makespan of the assignment is at
most 2. Furthermore, it can be shown that the cost of the assignment is at most OPTyp, ,»,
and thus at most C(T).

We remark that when one is aiming to solve the single criterion version of this problem,
i.e., finding an assignment that minimizes the makespan, a binary search could be preformed
to find the smallest T' such that the linear relaxation is feasible. In general, any (a, §)-
approximation for the bicriteria problem implies an approximation of « for the single
criteria problem.
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(LP)
min Zng,uce,u
ecE uce
s.t Z Tew =1 Vee E (Edge)
u€e
Z TeuPe < 1 YueV (Load)
ecd(u)
Z Tew <1VueV (Star)

ecd(u): pe>0.5

Ie,uZO VueV,eeé(u)

Figure 3 The relaxation by Ebenlendr et al. [3] to GB.

3 The General Framework and Graph Balancing

We start by describing the general framework in the setting of GB. For simplicity of
presentation, given a target makespan T, if there exists an edge e such that p. > T the
algorithm immediately declares that there is no orientation with makespan at most 7.
Otherwise, we scale the processing times by T'. Thus, without loss of generality, T'= 1 and
pe < 1 for every e € F.

Currently, we consider the relaxation of [3], which we denote by LP, with the addition
of an objective function that minimizes the orientation cost.® This relaxation appears
in Figure 3.

Note that the Star constraint of LP implies that at most a total fraction of 1 of big edges,
i.e., edges whose weight is larger than 1/2, can be oriented toward u. Moreover, we note that
later we strengthen this relaxation by adding additional constraints.

Once the processing times are scaled by T, the algorithm solves the relaxation LP. If
there is no feasible solution to the relaxation, then the algorithm declares that there is no
orientation with makespan at most 7. Thus, from this point onward we assume that LP is
feasible and focus on the rounding.

Recall that the rounding consists of only two steps, the first local and the second global.
In the first step, some of the edges might be oriented, where an edge e is oriented toward u
if ze o > f(pe) for a given threshold function f : [0,1] — [i/2,1]. We employ the framework
for threshold functions f which are monotone non-increasing, thus making lighter edges
less likely to be oriented compared to heavier edges. In the second step, the remaining
un-oriented edges are oriented using Algorithm 1. The framework is described in Algorithm 2.
It receives as an input: (1) the graph G = (V, E, p, ¢); (2) x a solution to the relaxation; (3)
a threshold function f.

Algorithm 2 Framework(G = (V, E, p, ¢), %, f).

1 For each edge e and u € e: if z., > f(p.) then orient e to u and remove e from E.
(Local Step)
2 Execute Algorithm 1. (Global Step)

6 In Section 5 we also need the constraint that appears in the relaxation of [15] which states that e, =0
if pe,w > 1, for every e € F and u € e.
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Note that the Local Step of Algorithm 2 is well defined, i.e., no edge is oriented to both its
endpoints. This is due to the Edge constraints and the fact that for each p € [0,1]: f(p) > /2.
Note that the framework captures Algorithm 1 as a special case since one can choose f = 1.
We now focus on bounding the makespan and orientation cost produced by the framework,
for a general threshold function f. This analysis will be useful for the rest of the paper.

Let us start by focusing on bounding the makespan. We start by presenting a simple but
crucial observation. The observation states that if an edge e = (u,v) was not oriented at the
Local Step then z., and z., cannot vary much. It is important to note that this is the only
place in our proof we use the fact that e is an edge, i.e., the job that corresponds to e can be
assigned to only two machines u and v (otherwise our algorithm could have been applied to
the more general problem of RA).

» Observation 1. Let e = (u,v) € E such that e was not oriented to either u or v in the
Local Step. Then 1 — f(pe) < Tew < f(pe).

Proof. e was not oriented toward u in the Local Step, and therefore z. ., < f(p.). Additionally,
the Edge constraint implies that z., =1 — x4, and since e was not oriented toward v in
the Local Step then 1 — ¢ ,, < f(pe). This concludes the proof. <

Now we focus on bounding the makespan. Fix a vertex v € V', and denote the slots that

were allocated to u in Algorithm 1 by: slot(u, 1), ..., slot(u, k) or alternatively by s1, ..., Sg.

For i € {1,2,...,k} let e; be the edge on top of slot(u,4) and denote its processing time by
pi;. We assume without loss of generality that ppy1 = 0 and Te, ,u = 1 (one can simply
add a 0 weight edge that is fully oriented toward u).” Additionally, denote by e, ..., e} the
edges that were oriented to u in the Local Step, and denote by q1, ..., q:, their processing
times respectively. Lastly, for a slot s and edge e we denote by y. s the fraction that e is
assigned to s.

We now introduce a new observation that lower bounds the fractional load in the first

slot of u, 7.€.; 3 cg1ot(u,1) Ye,s1Pe- This observation will be useful in bounding the load on w.

» Observation 2. The fractional load in the first slot of u is at least:

> Yesipe = (1= f(p1))p1 + f(p1)p2.

e€slot(u,l)

Proof. From Observation 1 we know that ., > 1 — f(p1). Moreover, since e; is the first
edge to be inserted to the first slot, then it is contained fully in slot(u,1). Therefore,
Yer,s1 = Teyu > 1 — f(p1). Recall that po < p1. Since slot(u, 1) is full and its capacity equals
1, we can conclude: ZeEslot(u,l) Ye,s1Pe = f(p1)p1 + (1 — f(p1))p2- <

Now we introduce a lemma that is inspired by [15] and upper bounds the load on w.

» Lemma 8. Let €),... e}, be the edges that were oriented to u in the Local Step, and let
qi,---,q: be their processing times respectively. Then,

t k t
da+d pi <1+ (1= f(@)a + f(pr)pr+ (1= f(p1))p2-

i=1 i=1 i=1

7 Alternatively, we can also assume py4o = 0 and Teppow = 1 as well.
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Proof. First, recall that for every 1 < s < k—1 slot(u, s) has a capacity exactly 1. Moreover,
the slots are filled with edges in decreasing order of processing time. Therefore, we can
deduce that foreach 1 <7<k — 1:

Z Ye,s;Pe 2 Z Ye,s; Pi+1 = Pi+1 Z Ye,s; = Pi+1-

e€slot(u,i) e€slot(u,i) e€slot(u,i)

Since at most one edge from each slot can be selected in the Global Step, the load on u from
edges that oriented to u in the Global Step is at most Zle pi. From the above inequality,
along with Observation 2, we can conclude that:

t k
ZqﬁZm Zqz+p1+p2+2pz<Zqz+p1+pz+z Z Ye,s;De
=1 i=1

=2 e€slot(u,i)

< Z ¢ +p1+p2+ Z Z Ye,s;Pe — Z Ye,s1Pe

=1 e€slot(u,i) e€slot(u,l)
< qu tpitpat Y Tewpe — (1= F(p1))p1 + f(p1)p2)
e€d(u)
< Z% +f(p1)p1 + (1 - f(pl))pQ + (1 - Z,f QZ l)
i=1

t

=1+ (1= f(g:)g + f(pr)pr + (1 = f(p1))p2.

i=1

The last inequality follows from the Load constraint on u, and the fact that the edges
e}, ..., e, were removed from F at the end of the Local Step. <

Lastly, we observe that all of the big edges, i.e., edges whose weight is larger than 1/2, that
are not oriented toward w in the Local Step are assigned to the first slot. This is summarized
in the following observation.

» Observation 3. Let e be an edge in slot(u,i) such that i > 1. Then, p, < /2.

Proof. Assume for the sake of contradiction that p. > 1/2. Since the slots are filled in
a non-increasing weight order, all edges in slots 1,2,...,7 — 1 are filled with fractions of
edges whose processing time is greater than /2. Therefore, Zeeé(u): pesi/a Teu > 1, which
contradicts the Star constraint on wu. |

Let us now focus on the orientation cost. The following lemma upper bounds the
orientation cost of the orientation produced by Algorithm 2.

» Lemma 9. Given f:[0,1] — [0,1/2], let ¢ = (inf{f(p)|p € [0,1]})"*. Then Algorithm 2
with [ outputs an orientation with a cost of at most ¢ - C(T).

3.1 Graph Balancing — Upper Bound on Tradeoff Between Makespan
and Orientation Cost

Let us now focus on applying the framework, with an appropriate threshold function f, to
GB. First, we present a theorem that achieves part of the tradeoff claimed in Theorem 1, and
only in the next subsection we show how to extend this tradeoff to fully achieve Theorem 1.
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» Theorem 10. There exists a threshold function f such that Algorithm 2 finds an orientation
that is a (1.75 + 7, 1/(2y+0.5)) -approximation, for every /12 <y < 1/a,

The function f, we use in the proof of Theorem 10 is the following:

fa(pe) - (1)

1 if pe <12

a if pe > 1/2
where 2/3 < o < 1. The following lemma upper bounds the makespan of Algorithm 2 with
the above f,.

» Lemma 11. The makespan of the orientation produced by Algorithm 2 with f, is at most:
1.5 4 0.5a, where 2/3 < o < 1.

Proof. Consider the number of edges that were oriented toward u in the Local Step. First,
we note that from the Star constraint on u, at most one edge can be oriented toward v in
the Local Step. If this is not the case then let ] and e/, be edges oriented to w in the Local
Step. Then, pe,,pe, > /2. However, Ze, 4 + Tepn > @+« > 2/342/3 > 1, which contradicts
the Star constraint on u. Hence, there are only two cases to consider.

Case 1: Assume no edge is oriented toward u in the Local Step. Therefore, using Lemma 8
and Observation 3 the load on u is at most:

k
> pi <1+ fa(p)pr + (1= fa(p1))p2 < 1.5+ falp1)(p1 — 0.5)

=1
<15+a-(1-05) =15+ 050,

where the last inequality follows from the fact that the expression: fo(p1)(p1 — 0.5) is
maximized when p; =1 (and thus f,(p1) = ).

Case 2: Assume there is exactly one edge that was oriented toward u in the Local Step.
Recall we denote this edge as €| and its processing time by ¢;. Since ¢; > 1/2 and
Te, o > v, then it must be the case that p; < 1/2 (otherwise Observation 1 implies that
Te, u + Teyu > @+ 1 —a =1, which contradicts the Star constraint for u). Therefore,
from Lemma 8 the load on u in the output of Algorithm 2 is at most:

k

a+ > i <1+ (1= fal@)an + falp)pr + (1= fa(pr))p2 <1+ (1= a)q1 + 1
i=1

<14(1-a)+05=25—a<15+05q

The second inequality follows from the fact that ps < p; and f,(q1) = « (since ¢1 > 1/2),
whereas the third inequality from the fact that p; < /2. In addition, the last inequality
follows from the fact that 2/3 < a < 1. <

Now, we are ready to conclude the proof of Theorem 10:

Proof of Theorem 10. Applying Lemma 11, Lemma 9 and choosing v = 0.5 — 0.25 finishes
the proof. <

We now show that the analysis of Algorithm 2 with a threshold function f, is tight.

Formally, we prove the following lemma:
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» Lemma 12. For every /2 < a < 1 there exists an instance such that the output of
Algorithm 2 with f, has makespan at least max {1.5 + 0.5c,2.5 — a} and orientation cost at
least 1/a - OPTLp.

Lemma 12 shows the analysis of Algorithm 2 with a threshold function f, is tight.
Consequently, in order to extend the bicriteria tradeoff of Theorem 10, and obtain Theorem 1,
we require a different threshold function and a stronger relaxation.

3.2 Graph Balancing — Extending the Tradeoff

It is important to note that Lemma 12 implies that using Algorithm 2 with LP and the
threshold function f, cannot achieve an approximation better than 11/6 with respect to the
makespan. To this end we strengthen LP using the following constraint (which we denote by
Set constraints):

dwew SIS -1 VueV,VSCH(u):S¢ Flu)and |S| <k (Set)
ecS

We call the new relaxation LP;.® Intuitively, the Set constraints enforce that given an
infeasible set of edges S touching u not all edges of S can be oriented toward u. In fact, for
our specific choice of a threshold function f we use k = 3. Thus, no separation oracle is
required when solving the relaxation. The exact result is formulated in the following theorem:

» Theorem 13. There exists a rounding function f such that Algorithm 2 finds an orientation
that is a (1.75 + v,1/(2y+0.5))-approximation, for every 1/12 —¢/2 < v < /12, where € =
V33/2 — 17/g,

Note that this theorem extends the tradeoff achieved in Theorem 10, and together both
theorems achieve the tradeoff of Theorem 1. The threshold function f. we use in the proof
of Theorem 13 is defined as follows:

23—e ifpe > 12
felpe) = {23 +¢/2 if 13 <p. <12 (2)
1 if p. < 1/3

where 0 < e < Vv33/2 — 17/5. The following lemma upper bounds the makespan:

» Lemma 14. The output of Algorithm 2 with the threshold function fc, has a makespan of
at most 11/6 — €/2.

Now we conclude with the proofs of Theorems 13 and 1.

Proof of Theorem 13. Follows immediately from Lemmas 14 and 9, and choosing v =
/12 — €/2. <

Proof of Theorem 1. Follows immediately from Theorems 10 and 13. <

8 Similarly to LP, for some of the extensions of GB we add that ze ., = 0 if pe,o, > 1 (for every e € E
and u € e).
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4 Lower Bound on The Tradeoff Between Makespan and Cost

We show that using LPy for every k € N, one must loose in the total orientation cost when
obtaining an approximation for the makespan that is strictly better than 2. This is in
contrast to the classic result of [15] for which one can achieve an approximation factor of 2
with respect to the makespan with no loss in the assignment cost. This result is formulated
in Theorem 3.

5 Extending Graph Balancing to Hyperedges and Unrelated Weights

5.1 Graph Balancing with Unrelated Light Hyperedges

Let us recall the definition of GBUH(), where 8 € [0,1]. The input consists of a hypergraph,
where each vertex represents a machine and each hyperedge represents a job. The jobs are
of two types, “light” and “heavy”. Every light hyperedge e € F is associated with weights
Pe,u, one for each vertex u € e (i.e., e is unrelated since it has a different processing time
for each of the machines it can be assigned to). The requirement is that p. . < 5 for evert

u € e. On the other hand, every heavy hyperedge e € E must in fact be an edge, i.e., |e| = 2.

Such a heavy e is associated with a single weight p. € [0,1] (i.e., e is related since it has the
same processing time for each of the two machines it can be assigned to). In the above, as
previously mentioned, we assume without loss of generality that the largest weight equals
1. For both types, light and heavy, orienting e toward one of its endpoints is equivalent to
assigning the job e represents to the machine that is represented by the vertex e was oriented
to. It is important to note that when 8 = 1 the problem is exactly GAP, and when S =0
the problem is exactly GB.

Our result for GBUH(f) is summarized in Theorem 4, which improves upon the previous

result of [6] (refer to Section 1 for a thorough discussion on how our result improves upon [6]).

To the best of our knowledge, our result provides the first approximation better than 2 with

respect to the makespan of a natural problem that captures GB but is not captured by RA.

5.2 Graph Balancing with Unrelated Light Hyperedges and Unrelated
Heavy Edges

The problem of GBU(f) further generalizes the above GBUH(f) as it allows heavy edges to
have unrelated weights. Formally, every heavy edge e = (u,v) € E is associated with two
weights pe ,, and pe o, i.e., e is unrelated since p ,, indicates the processing time of the job e

represents on the machine that is represented by u. The requirement is that pe 4, pe.v € (5, 1].

As mentioned earlier, it is assumed that the value of the optimal makespan is at least 1
(otherwise the problem is as hard as GAP). Our results relating to GBU(3) are formulated
in Theorems 5 and 6.

5.3 Semi-Related Graph Balancing

Consider the general problem of UNRELATED GRAPH BALANCING, which is identical to
GB except that an edge can have a different weight depending on its orientation: p. ., and
Pe,w for every e = (u,v) € E, i.e., the weights are unrelated. This generalization of GB was
already considered in [17, 4], who presented lower bounds for the problem. Specifically, they
showed that the even the configuration LP (which captures LP;) has an integrality gap of 2
with respect to the makespan.
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makespan approximation
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Figure 4 Makespan approximation as a function of the value c.

We consider an interesting special case of the above problem where the weights are still
unrelated, but cannot vary arbitrarily. Formally, each edge e = (u,v) € E has two weights
depending on the vertex e is oriented to, which satisfy: pe . < ¢ pey and pey < € Pey
(where ¢ > 1 is a parameter of the problem). We denote this problem by SEMI-RELATED
GRAPH BALANCING (SRGB(c)).

Our result for SRGB(c) is formulated in Theorem 7. Note that SRGB(c¢) captures GB when
¢ =1, and indeed in Theorem 7 we achieve a (11/6, 3/2)-approximation for SRGB(c) when ¢ =1
(similarly to Theorem 10). Moreover, when ¢ = oo Theorem 7 achieves a (2, 1)-approximation
for SRGB(c), matching the integrality gap of [17, 4]. Finally, we also show that in general
Theorem 7 provides a (2 — Q(1/c), 1 + O(Y/c))-approximation for SRGB(c).

Figure 4 shows the makespan approximation obtained in Theorem 7 as a function of c.

In order to prove Theorem 7 we use Algorithm 2 and LP; (replacing p. with p. ,) with a
suitable choice of a threshold function f.
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