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Abstract
The Feedback Vertex Set problem is a fundamental computational problem which has been
the subject of intensive study in various domains of algorithmics. In this problem, one is given an
undirected graph G and an integer k as input. The objective is to determine whether at most k
vertices can be deleted from G such that the resulting graph is acyclic. The study of preprocessing
algorithms for this problem has a long and rich history, culminating in the quadratic kernelization
of Thomasse [SODA 2010].

However, it is known that when the solution is required to induce a connected subgraph (such a
set is called a connected feedback vertex set), a polynomial kernelization is unlikely to exist and the
problem is NP-hard to approximate below a factor of 2 (assuming the Unique Games Conjecture).

In this paper, we show that if one is interested in only preserving approximate solutions (even
of quality arbitrarily close to the optimum), then there is a drastic improvement in our ability to
preprocess this problem. Specifically, we prove that for every fixed 0 < ε < 1, graph G, and k ∈ N,
the following holds.

There is a polynomial time computable graph G′ of size kO(1) such that for every c ≥ 1, any
c-approximate connected feedback vertex set of G′ of size at most k is a c ·(1+ε)-approximate
connected feedback vertex set of G.

Our result adds to the set of approximate kernelization algorithms introduced by Lokshtanov
et al. [STOC 2017]. As a consequence of our main result, we show that Connected Feedback
Vertex Set can be approximated within a factor min{OPTO(1), n1−δ} in polynomial time for
some δ > 0.
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1 Introduction

Polynomial time preprocessing is one of the widely used methods to tackle NP-hardness
in practice, and the area of kernelization has been extremely successful in laying down a
mathematical framework for the design and rigorous analysis of preprocessing algorithms for
decision problems. The central notion in kernelization is that of a kernelization algorithm,
which is a preprocessing algorithm that runs in polynomial time and transforms a “large”
instance of a decision problem into a significantly smaller, but equivalent instance (called a
kernel). Over the last decade, the area of kernelization has seen the development of a wide
range of tools to design preprocessing algorithms, as well as a rich theory of lower bounds
based on assumptions from complexity theory [2, 6, 3, 15, 5, 9, 18, 7, 17]. We refer the
reader to the survey articles by Kratsch [19] or Lokshtanov et al. [20] for relatively recent
developments, or the textbooks [4, 8], for an introduction to the field.
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An “efficient preprocessing algorithm” in this setting is referred to as a polynomial
kernelization and is simply a kernelization whose output has size bounded polynomially in a
parameter of the input. The central classification task in the area is to classify any problem
as one which has a polynomial kernel, or as one that does not.

One fundamental class of problems for which polynomial kernels have been ruled out under
certain complexity theoretic hypotheses, is the class of “subgraph hitting” problems with
a connectivity constraint. It is well-known that placing connectivity constraints on certain
subgraph hitting problems can have a dramatic effect on their amenability to preprocessing.
A case in point is the classic Vertex Cover problem. This problem is known to admit a
kernelization whose output has O(k) vertices [4]. However, the Connected Vertex Cover
problem is amongst the earliest problems shown to exclude a polynomial kernel [7] (under a
complexity theoretic hypothesis) and this lower bound immediately rules out the possibility of
such a kernelization for numerous well-studied generalizations of it. Consequently, obtaining
a finer understanding of the impact of connectivity constraints on the limits of preprocessing
is an important objective in furthering the study of preprocessing techniques. This is
even more relevant when one intends to run approximation algorithms or heuristics on the
preprocessed instance.

Unfortunately, the existing notion of kernels, having been built around decision problems,
does not combine well with approximation algorithms and heuristics. In particular, in order
for kernels to be useful, one is required to solve the preprocessed instance exactly. However,
this may not always be possible and the existing theory of kernelization says nothing about
the inference of useful information from a good approximate solution for the preprocessed
instance. In order to facilitate the rigorous analysis of preprocessing algorithms in conjunction
with approximation algorithms, Lokshtanov et al. [22] introduced the notion of α-approximate
kernels. Informally speaking, an α-approximate kernelization is a polynomial-time algorithm
that, given an instance (I, k) of a parameterized problem, outputs an instance (I ′, k′) such
that |I ′|+ k′ ≤ g(k) for some computable function g and any c-approximate solution to the
instance (I ′, k′) can be turned in polynomial time into a (c · α)-approximate solution to the
original instance (I, k).

As earlier, the notion of “efficiency” in this context is captured by the function g being
polynomially bounded, in which case we call this algorithm, an α-approximate polynomial
kernelization. We refer the reader to Section 2 for a formal definition of all terms related to
(approximate) kernelization.

In their work, Lokshtanov et al. considered several problems which are known to exclude
polynomial kernels and presented an α-approximate polynomial kernelization for these
problems for every fixed α > 1. This implies that allowing for an arbitrarily small amount
of error while preprocessing can drastically improve the extent to which the input instance
can be reduced, even when dealing with problems for which polynomial kernels have been
ruled out under the existing theory of lower bounds. In particular, they showed that the
Connected Vertex Cover problem admits an α-approximate polynomial kernelization
for every α > 1. Their result provided a promising starting point towards obtaining a refined
understanding of the role played by connectivity constraints in relation to preprocessing for
covering problems on graphs.

In this paper, we consider one of the most natural generalizations of Connected Vertex
Cover, the Connected Feedback Vertex Set (CFVS) problem defined as follows. In
this problem, the input is a graph G and integer k (the parameter). The goal is to decide
whether or not there is a set S ⊆ V (G) of size at most k such that G[S] is connected and
G− S is acyclic? The set S is called a connected feedback vertex set of G.
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Misra et al. [23] were the first to study the CFVS problem from the point of view
of parameterized complexity and obtained a single-exponential fixed-parameter algorithm,
that is, an algorithm running in time 2O(k)nO(1), where n is the number of vertices in the
input. They also observed that a straightforward reduction from Connected Vertex
Cover implies that CFVS is also unlikely to admit a polynomial kernelization under
standard complexity theoretic hypotheses. This raises the natural question of the existence
of approximate kernelizations for this problem and the tradeoffs between preprocessing speed,
output size and loss in the quality of the preserved solution.

Our results

A formal definition of α-approximate kernels can be found in Section 2.

I Theorem 1. For every fixed 0 < ε < 1, Connected Feedback Vertex Set has a
(1 + ε)-approximate kernelization of polynomial size.

Note that the exponent in the size of our kernelization depends on ε.
The proof techniques we use in order to prove Theorem 1 also lead to a polynomial time

approximation for this problem (Theorem 3) via the following parameterized approximation.

I Theorem 2. There is an algorithm that given a graph G and k ∈ N, runs in polynomial
time and either correctly concludes that G has no connected feedback vertex set of size at
most k or returns a connected feedback vertex set of G of size kO(1).

As a direct consequence of Theorem 2, we obtain the following result.

I Theorem 3. There is a 0 < δ < 1 such that Connected FVS can be approximated within
a factor min{OPTO(1), n1−δ} in polynomial time.

Proof. By iteratively invoking Theorem 2 for k = 1, . . . , n, one can find the least k for which
the algorithm does not return a negative answer and returns a connected feedback vertex
set of the input graph of size at most kc for some fixed c > 0. Since OPT ≥ k, it follows
that the returned solution has size at most OPTc. Moreover, this algorithm always returns a
solution whose size is bounded by n. The theorem follows from fact that the approximation
ratio guaranteed by this algorithm is at most min{OPTc−1, n

OPT} ≤ n
1− 1

c . J

Our approximation result complements the classic result of Yannakakis [25] who showed
that it is NP-hard to approximate within a factor-O(n1−δ) (for any δ > 0) the minimum
number of vertices to delete from a graph such that the resulting graph is connected and
has a property Π which is hereditary, non-trivial, “interesting” on connected graphs, and is
determined by the blocks of the graph. In particular, this result holds if Π = acyclicity.

Related work on connected hitting set problems. Grigoriev and Sitters [16] studied the
design of approximation algorithms for the Connected Feedback Vertex Set problem
on planar graphs and obtained a Polynomial Time Approximation Scheme (PTAS), building
upon the result of Escoffier et al. [13] for Connected Vertex Cover. Eiben et al. [11]
obtained an approximate kernelization for the Connected H-hitting set problem where
H is a fixed set of graphs and the solution is a minimum set of vertices which induces a
connected subgraph and hits all copies of graphs in H, in G. Recently, Eiben et al. [12]
obtained approximate kernelizations for the Connected Dominating Set problem on
various sparse graph classes.

ESA 2019
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2 Preliminaries

A set S ⊆ V (G) such that G− S is a forest is called a feedback vertex set of G. For a path
P , we denote by Vint(P ) the set of internal vertices of the path P . Similarly, we denote by
Vend(P ) the set of endpoints of P . Two paths P1 and P2 are said to be internally vertex
disjoint if Vint(P1) ∩ Vint(P2) = ∅. For a graph G, we denote by CC(G) the set of connected
components of G. For ease of presentation, we will abuse notation and interchangeably
refer to X ⊆ V (G) both as a vertex set and as a connected component of G if clear from
the context.

I Definition 4. Let G be a graph and x, y ∈ V (G). Let P be a set of internally vertex-disjoint
x-y paths in G. Then, we call P an x-y flow. The value of this flow is |P|.

Recall that Menger’s theorem states that for distinct non-adjacent vertices x and y, the
size of the smallest x-y separator is precisely the value of the maximum x-y flow in G.

Parameterized problems and (approximate) kernels. A parameterized problem Π is a
subset of Γ∗×N for some finite alphabet Γ. An instance of a parameterized problem consists
of a pair (x, k), where k is called the parameter. We assume that k is given in unary and
hence k ≤ |x|.

I Definition 5 (Kernelization). Let Π ⊆ Γ∗ × N be a parameterized problem and g be a
computable function. We say that Π admits a kernel of size g if there exists an algorithm
referred to as a kernelization (or a kernel) that, given (x, k) ∈ Γ∗ × N, outputs in time
polynomial in |x| + k, a pair (x′, k′) ∈ Γ∗ × N such that (a) (x, k) ∈ Π if and only if
(x′, k′) ∈ Π, and (b) max{|x′|, k′} ≤ g(k). If g(k) = kO(1) then we say that Π admits a
polynomial kernel.

I Definition 6 ([22]). A parameterized optimization (minimization or maximization) problem
is a computable function Π : Σ∗ × N× Σ∗ → R ∪ {±∞}.

The instances of a parameterized optimization problem Π are pairs (I, k) ∈ Σ∗ × N, and a
solution to (I, k) is simply a string s ∈ Σ∗, such that |s| ≤ |I|+ k. The value of the solution
s is Π(I, k, s).

Since we only deal with a minimization problem in this work, we state some of the
definitions only in terms of minimization problems when the definition for maximization
problems is analogous. The parameterized optimization version of Connected Feedback
Vertex Set is a minimization problem with the optimization function CFVS : Σ∗×N×Σ∗ →
R ∪ {∞} defined as follows.

CFVS(G, k, S) =
{

∞ if S is not a connected feedback vertex set of G,
min{|S|, k + 1} otherwise.

I Definition 7 ([22]). For a parameterized minimization problem Π, the optimum value of
an instance (I, k) ∈ Σ∗ × N is OPTΠ(I, k) = min s∈Σ∗

|s|≤|I|+k
Π(I, k, s).

Consequently, in the case of Connected Feedback Vertex Set, we define

OPT(G, k) = min
S⊆V (G)

CFVS(G, k, S).
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I Remark 8 (Restricting our interest to solutions of size at most k). A reader encountering this
particular definition of parameterized optimization problems for the first time might find the
choice of k + 1 as a threshold a bit counter-intuitive because when one combines it with the
natural notion of approximate solutions in the most intuitive way, the size of the solution
would appear to always exceed k + 1, thus being normalized by this explicit threshold.

However, this definition is in fact equivalent (upto constant factors) to the more seemingly
natural definition and in addition allows us to define the problem we are tackling independently
of the (approximation factor of) algorithms for the problem. An additional point which we
encourage the reader to keep in mind is the following. We consider k as a threshold; for
solutions of size at most k we care about what their size is, while all solutions of size larger
than k are equally bad in our eyes, and are consequently assigned value k + 1. We point the
interested reader to Section 2.1, [22] and Section 3.2, [21] for an in-depth discussion of these
definitions and their motivations.
We now recall the other relevant definitions from [22] regarding approximate kernels.

I Definition 9 ([22]). Let α ≥ 1 be a real number and Π be a parameterized minimization
problem. An α-approximate polynomial time preprocessing algorithm A for Π is a pair of
polynomial-time algorithms. The first one is called the reduction algorithm, and computes a
map RA : Σ∗ × N→ Σ∗ × N. Given as input an instance (I, k) of Π the reduction algorithm
outputs another instance (I ′, k′) = RA(I, k).

The second algorithm is called the solution lifting algorithm. This algorithm takes as input
an instance (I, k) ∈ Σ∗ × N of Π, the output instance (I ′, k′) of the reduction algorithm, and
a solution s′ to the instance (I ′, k′). The solution lifting algorithm works in time polynomial
in |I|,k,|I ′|,k′ and s′, and outputs a solution s to (I, k) such that Π(I,k,s)

OPT (I,k) ≤ α ·
Π(I′,k′,s′)
OPT (I′,k′) .

The size of a polynomial time preprocessing algorithm A is a function sizeA : N → N
defined as sizeA(k) = sup{|I ′|+ k′ : (I ′, k′) = RA(I, k), I ∈ Σ∗}.

I Definition 10 ([22], α-approximate kernelization). An α-approximate kernelization (or
α-approximate kernel) for a parameterized optimization problem Π, and real α ≥ 1, is an
α-approximate polynomial time preprocessing algorithm A for Π such that sizeA is upper
bounded by a computable function g : N→ N. We say that A is an α-approximate polynomial
kernelization if g is a polynomial function.

I Definition 11 ([22]). A polynomial size approximate kernelization scheme (PSAKS) for a
parameterized optimization problem Π is a family of α-approximate polynomial kernelization
algorithms, with one such algorithm for every α > 1.

Least Common Ancestor-Closure of sets in trees. For a rooted tree T and vertex set
M ⊆ V (T ) the least common ancestor-closure (LCA-closure) LCA-closure(M) is obtained
by the following process. Initially, set M ′ = M . Then, as long as there are vertices x and
y in M ′ whose least common ancestor w is not in M ′, add w to M ′. When the process
terminates, output M ′ as the LCA-closure of M . The following folklore lemma summarizes
the properties of LCA-closures which we will use in this paper.

I Lemma 12. Let T be a rooted tree, M ⊆ V (T ) and M ′ = LCA-closure(M). Then
|M ′| ≤ 2|M | and for every connected component C of T −M ′, |N(C)| ≤ 2. Moreover, the
number of connected components of T −M ′ which have exactly 2 neighbors in M ′ is at
most |M ′| − 1.

I Observation 2.1. Let T be a rooted tree and T ′ a subtree of T with a unique neighbor in
V (T ) \ V (T ′). If M ⊆ V (T ) \ V (T ′), then LCA-closure(M) is disjoint from V (T ′).

ESA 2019
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3 Overview of our Techniques

This section is devoted to an overview of the proof techniques we use to obtain our results.
Fix 0 < ε < 1 and let (G, k) be the input. Our initial objective is to identify a partition
(A,B, C) of V (G), where |B| = kO(1), G−B is acyclic and there are no edges between A and
C. In other words, B separates A and C. Moreover, we will be able to prove that the vertices
in C only play the role of “connectors” and removing them from a connected feedback vertex
set S of G may disconnect G[S], but will still leave a subset of S which hits all cycles in
G. On the other hand, the interaction of vertices in A with the solution S could be much
more complex. However, the number of connected components of G[A] will be shown to be
kO(1) and these can be shown to have a highly structured neighborhood in B. For instance,
we will be able to ensure (after a small modification to G) that the neighborhood of any
connected component of G[A] can be partitioned into 2 sets T and J such that T is part of
every feedback vertex set of G and |J | = 2. For every such component, the sets T and J can
be efficiently computed from A.

Once we have this partition in hand, we focus on each connected component of G[A]
separately and from each component we identify a set of kO(f(1/ε)) vertices which, together
with B and a kO(f(1/ε)) sized subset of C cover a (1 + ε)-approximate solution. Finally, the
remaining vertices are discarded by either deleting or contracting edges as appropriate. We
note that the high level approach of trying to identify “hitters” and “connectors” among the
vertices is quite natural and has been used in other work [22, 11, 12]. However, the structure
is much more complex in our case due to the highly non-local nature of the forbidden
structures (cycles) and the fact that there is no clear way of completely separating the two
tasks of hitting cycles and connectivity. In fact, the main difficulty arises from the need
to detect and control subsets of vertices which are critical with respect to both objectives
simultaneously.

We now proceed to a slightly more detailed overview of the steps in our algorithm. Let
δ be a positive constant such that (1 + δ)3 ≤ 1 + ε. We also fix a constant ρ = 2O(1/δ)2

satisfying certain appropriate inequalities. As mentioned, our PSAKS for Connected
Feedback Vertex Set has two main parts: a structural decomposition and a reduction
using marking rules.

3.1 Structural Decomposition
The first part of our PSAKS is the decomposition given by Lemma 13 below(also see Figure 1).
To get the required partition (A,B, C) we set B = H ∪X ∪Z where H,X,Z are as defined in
the statement of Lemma 13. We then set C to be the set of vertices in connected components
of G− (H ∪X ∪ Z) which are adjacent to at most one vertex of Z and A to be the rest of
the vertices in G− (H ∪X ∪ Z).

I Lemma 13. There is a polynomial-time algorithm that given a pair (G, k), either correctly
concludes that G has no connected feedback vertex set of size at most k or outputs pairwise
vertex disjoint subsets H,X,Z ⊆ V (G) satisfying the following properties.
1. |H| ≤ (1 + δ

2 )k, |X| = O(k), |Z| = O(k6).
2. H ∪X is a feedback vertex set of G and if G has a connected feedback vertex set S of size

at most k, then there is one of size at most (1 + δ
2 )|S| that contains H.

3. Every connected component of the graph G̃Z = G− (H ∪X ∪ Z) is adjacent to at most
2 vertices of Z and there are O(k6) connected components in G̃Z which are adjacent to
exactly 2 vertices of Z.
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4. No vertex of X has a neighbor in a connected component of G̃Z which is adjacent to 2
vertices of Z and moreover, every vertex in any such component is adjacent to vertices in
O(1/δ) connected components of G[H].

5. For every connected component D in the graph G̃Z with at most 1 neighbor in Z and for
every minimal feedback vertex set S of G−H of size at most 2k, |N(D) \ (H ∪ S)| ≤ 1.

Proof. (Sketch for the construction of H,X,Z). We only sketch the construction of these
sets here.

Step 1: This step is inspired by Fomin et al. [14]. However, since we need to handle
connectivity constraints, we need to enhance the output of this step further with several
problem specific features. Let H = {v1, . . . , vr} be a maximal set such that for every
i ∈ [r], there is a vi-flower of order 2k+ 1 (2k+ 1 cycles which are pairwise disjoint except
for intersecting at vi) in G−Hi−1, where Hi = {v1, . . . , vi} and H0 = ∅. It is known that
there is a polynomial time algorithm that, given G, v, ` (assuming v is not incident on a
self-loop) either outputs a v-flower of order ` or a set X ⊆ V (G) \ {v} of O(`) vertices
intersecting every cycle containing v [24]. Hence H can be computed in polynomial time.
Furthermore, it can be observed that every vertex in H is part of every feedback vertex
set of size at most 2k. Therefore, if |H| > k, then we may correctly conclude that G has
no feedback vertex set of size at most k.
Let Q be a feedback vertex set of G computed using the 2-approximation algorithm of
Bafna et al. [1]. If |Q| > 2k, then we may correctly conclude that G has no feedback
vertex set of size at most k. Otherwise, H ⊆ Q and we define X = Q \H. Due to the
maximality of H, it follows that for every x ∈ X, there is a set Px which is disjoint from
x, has size O(k) and intersects every cycle containing x in G−H.
For every pair x, y ∈ X such that there is no x-y flow of value 2k + 3 in the graph
Gxy = G − (H ∪ (X \ {x, y})), we denote by Zxy an arbitrarily chosen minimum x-y
separator in the graph G′xy, where G′xy = Gxy if (x, y) /∈ E(G) and G′xy = Gxy − (x, y)
otherwise. By Menger’s Theorem, for every such pair x, y, the size of the set Zxy is
at most 2k + 2. We define J = (

⋃
x∈X Px ∪

⋃
x,y∈X Zxy) \ (X ∪ H), where for every

pair x, y ∈ X such that there is an x-y flow of value at least 2k + 3 in the graph
Gxy = G− (H ∪ (X \ {x, y})), Zxy is defined to be ∅. We now define Y = LCA-closure(J)
with the LCA-closure taken in the graph G−(H∪X) where each tree is arbitrarily rooted.
Since |H| ≤ k and |X| ≤ 2k, it follows that |J | = O(k3) and Lemma 12 implies that
|Y | = |LCA-closure(J)| = O(k3), every connected component of the graph G−(H∪X∪Y )
is adjacent to at most 2 vertices of Y and there are O(|Y |) of these components which
are adjacent to exactly 2 vertices of Y .

Step 2: Since Step 1 guarantees that there are no cycles in G− (H ∪ Y ∪ (X \ {x})) for any
x ∈ X we conclude that no vertex of X can have 2 neighbors in any connected component
of G̃Y = G− (H ∪X ∪Y ). Let R denote the set of all connected components of G̃Y which
have no neighbors in Y , let Q denote the set of all connected components of G̃Y which
have exactly 1 neighbor in Y , and let W denote the set of all connected components of
G̃Y which have exactly 2 neighbors in Y .
For every x ∈ X and y ∈ Y , we define the set Jxy as the set of components of G̃Y
which are adjacent to x and whose neighborhood in Y is exactly {y}. We say that the
set Jx,y is rich if |Jxy| ≥ 2k + 3 and poor otherwise. We call a connected component
in Q poor if it appears in at least one poor set and rich otherwise. Let Qpoor denote
the set of poor components in Q. By definition, the size of the set Qpoor is bounded by
|X| · |Y | · (2k+2) = O(k5). Let P1 denote the neighborhood of X in the set of components

ESA 2019
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H XZ

Type 0 ∪ Type 1

Type 2

Figure 1 An illustration of the decomposition guaranteed by Lemma 13. The (blue) circles below
the set (H ∪ Z ∪X) represent components of G− (H ∪ Z ∪X) with 2 neighbors in Z. Note that
there are no edges between X and such a component.

in Qpoor. Since every vertex of X has at most 1 neighbor in each of these components,
the size of P1 is at most |X| · |Qpoor| = O(k6). Let P2 denote the neighborhood of X in
the set of components of G̃Y with exactly 2 neighbors in Y . Since there are only O(k3)
such components (from Step 1), the size of P2 is O(k4).

Finally, we define Z = LCA-closure(Y ∪ P1 ∪ P2) where the LCA-closure is taken in the
graph G− (H ∪X) with an arbitrary rooting of each tree. From Lemma 12, it follows
that |Z| = O(k6), every connected component of the graph G̃Z = G − (H ∪X ∪ Z) is
adjacent to at most 2 vertices of Z and there are O(k6) connected components in the
graph G̃Z which are adjacent to exactly 2 vertices of Z. Moreover, we will be able to
argue using flow arguments and the definition of rich/poor components that (i) no vertex
of X has a neighbor in a connected component of G̃Z which is adjacent to 2 vertices of Z
and (ii) for every connected component D in the graph G̃Z with at most 1 neighbor in Z
and for any minimal feedback vertex set S of G−H of size at most 2k, S contains all
but at most one vertex of N(D) \H.

Step 3: We will finally augment the set H by adding some more vertices. Specifically, we will
grow the set H by “buying a cheap set of vertices” as follows. As long as there is a vertex
v which is adjacent to at least d 2

δ e+ 1 connected components of G[H] and contained in a
connected component of G̃Z adjacent to 2 vertices of Z, we set H := H ∪ {v}. When
this process terminates, it must be the case that every vertex which is in a connected
component of G̃Z adjacent to 2 vertices of Z, has at most d 2

δ e neighboring components
of G[H]. A simple counting argument based on the fact that we repeatedly decrease the
number of connected components in G[H] shows that the blow-up in the size of H is at
most a δ/2 fraction of the original value of |H|. J

We call a component D of G̃Z a Type 0 component if |N(D)∩Z| = 0, a Type 1 component
if |N(D)∩Z| = 1 and a Type 2 component if |N(D)∩Z| = 2. Lemma 13 (5) implies that the
Type 0 and Type 1 components (which comprise the set C) only play the role of connectors
and Lemma 13 (3) guarantees that the number of Type 2 components (which comprise the
set A) is O(k6).
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3.2 Marking Rules and Reduction Strategy via Steiner Trees
Once the partition (A,B, C) is computed, the second part of the PSAKS relies on an extension
of the following result of Du et al. [10] to a special case of the Group Steiner Tree problem
where at most one group can have size greater than 1.

I Proposition 14 ([10]). For every p ≥ 1, graph G, R ⊆ V (G), cost function w : E(G)→
N ∪ {0} and R-Steiner tree T , there is a p-restricted R-Steiner tree in G of cost at most
(1 + 1

blog2 pc
) · w(T ).

In the above proposition, an R-Steiner tree is a subtree of G containing R and a p-
restricted R-Steiner tree is a connected subgraph of G containing R and whose edge set can
be written as the union of the edge sets of Steiner trees for some subsets of R of size at
most p where these subsets appear as the leaves of the respective Steiner trees In a similar
spirit to Proposition 14, we show that for every p ≥ 1, graph G, R ⊆ V (G), cost function
w : E(G)→ N ∪ {0} and R-Steiner tree T intersecting a set Z of arbitrary size disjoint from
R, there is a 2p+ 1-restricted R-Steiner tree in G of cost at most (1 + 1

blog2 pc
) · w(T ) which

also intersects Z. We believe that this extension and close variants thereof are likely to have
have future applications in dealing with connectivity constraints. We design a set of marking
rules that achieve the following.

I Lemma 15. There is an algorithm that, given G, k and the partition (A,B, C), runs in
time kO(ρ)nO(1) and marks a set A′ ⊆ A of kO(ρ) vertices such that for any S which is a
connected feedback vertex set of G of size at most k, there is a connected feedback vertex set
of G of size at most (1 + δ)2|S| whose intersection with A is contained in A′.

The main technical difficulty in the above lemma lies in identifying and marking vertices
such that for any subset of S ∩ A which may be performing the dual job of “hit” and
“connect”, the set A′ of marked vertices contains a subset which would do the same job with
only a small increase in size. Moreover, since we deal with each connected component of G[A]
separately, we cannot simply use Proposition 14 or its extension we propose. This is where
the upper bound on the degree of vertices of A into the set H will be crucial (Lemma 13 (4)).

Using Lemma 15, we will show that there is a way to reduce the graph G[A] by deleting
or contracting all but kO(ρ) of the rest of the edges so that the only unbounded set following
this step is the set C. As we know that the vertices in C only perform the job of “connectors”
and are not necessary to hit cycles in G, we will mark the optimal Steiner tree (if it is small
enough) in G for every choice of a sufficiently small subset of A′ ∪ B as the set of terminals
and use Proposition 14 to prove the following.

I Lemma 16. There is an algorithm that, given G, k and the partition (A,B, C), runs in
time kO(ρ2)nO(1) and marks a set C′ ⊆ C of kO(ρ2) vertices such that for any S which is a
connected feedback vertex set of G of size at most k, there is a connected feedback vertex set
of G of size at most (1 + δ)3|S| whose intersection with C is contained in C′.

Finally, we show that we can delete the unmarked vertices in C after marking an additional
kO(1) new vertices and edges simply to remember the cycles passing through C. Since we
chose δ such that (1 + δ)3 ≤ 1 + ε, we will have obtained the required graph. Specifically, we
prove the following lemma.

I Lemma 17. There is an algorithm that given G, k and the outputs of Lemma 13, Lemma 15
and Lemma 16 runs in time kO(ρ2)nO(1) and either correctly concludes that G has no connected
feedback vertex set of size at most k or returns a graph G′ such that:
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1. |V (G′)| = kO(ρ2).
2. Every minimal connected feedback vertex set of G′ of size at most (1 + ε)k is contained

in V (G′) ∩ V (G) and is also a connected feedback vertex set of G.
3. For every S which is a minimal connected feedback vertex set of G of size at most k, G′

has a connected feedback vertex set of size at most (1 + ε)|S|.

We summarize the steps of our algorithm below.

1. (Lemma 13) In polynomial time, identify a partition (A,B, C) of V (G) such that:
|B| = kO(1), G− B is acyclic, and B separates A and C.
For every connected feedback vertex set S of G, G− (S \ C) is acyclic.
Every connected component of G[A] has exactly 2 neighbors in B and there are kO(1)

connected components in G[A].
2. (Lemma 15 + Lemma 16) In time kf(1/ε)nO(1), mark sets A′ ⊆ A and C′ ⊆ C of kO(f(1/ε))

vertices such that for any S which is a connected feedback vertex set of G of size at
most k, there is a connected feedback vertex set of G of size at most (1 + ε)|S| whose
intersection with A (C) is contained in A′ (C′).

3. (Lemma 17) In time kf(1/ε)nO(1), compute a graph G′ with kO(f(1/ε)) vertices where:
Every minimal connected feedback vertex set of G′ of size ≤ (1 + ε)k is contained in
V (G′) ∩ V (G) and is also a connected feedback vertex set of G.
For every S which is a minimal connected feedback vertex set of G of size at most k,
G′ has a connected feedback vertex set of size at most (1 + ε)|S|.

3.3 The PSAKS and Factor-OPTO(1) Approximation
We are now ready to prove Theorem 1 by translating Lemma 17 into a PSAKS for Con-
nected Feedback Vertex Set under the framework from [22]. Recall the definition of
the parameterized optimization version of Connected Feedback Vertex Set has the
optimization function CFVS : Σ∗ × N× Σ∗ → R ∪ {∞} defined as follows.

CFVS(G, k, S) =
{

∞ if S is not a connected feedback vertex set of G
min{|S|, k + 1} otherwise

We define OPT(G, k) = minS⊆V (G) CFVS(G, k, S). We point out that ∞ can be replaced
in our setting with a sufficiently large value depending on |V (G)| while serving the same
purpose and avoiding potentially undefined operations.

I Theorem 1. For every fixed 0 < ε < 1, Connected Feedback Vertex Set has a
(1 + ε)-approximate kernelization of polynomial size.

Proof. We begin by describing the reduction algorithm. If G is a forest, then return (G′, 0)
where G′ is the empty graph. Henceforth we ignore this corner case and assume that G
contains a cycle. Given G, k and ε, we execute the algorithm of Lemma 17. If this algorithm
concludes that G does not contain a connected feedback vertex set of size at most k, then we
return the instance (G′, k) where G′ is a connected graph with k + 1 vertex disjoint cycles
and having O(k) vertices. Clearly such a graph exists. For instance, take the disjoint union
of k + 1 triangles and connect them in the form of a path by selecting exactly one vertex
from each triangle. Otherwise, suppose that this algorithm returns a graph G′. Then the
reduction algorithm returns the instance (G′, k′) where k′ = (1 + ε)k. At this point, we may
assume that G is connected and so V (G) is a connected feedback vertex set of G. If G′ has
multiple connected components containing cycles, then it cannot have a connected feedback
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vertex set of any size, implying (by Lemma 17 (3)) that G cannot have a connected feedback
vertex set of size at most k. Therefore we fall back into the previous case and so we may
assume going forward that G′ is also connected (if there are multiple components but only
one contains cycles, then discard the rest) and so V (G′) is a connected feedback vertex set
of G′. The polynomial bound on the size of the output instance and the time required to
obtain G′ follow from Lemma 17.

We now describe the solution lifting algorithm as follows. Let S′ be the given solution
for (G′, k′). If S′ is not a connected feedback vertex set of G′, then the algorithm outputs
∅ as the solution for (G, k). If S′ is a connected feedback vertex set of G′ and |S′| > k′,
then the algorithm outputs V (G) as the solution for (G, k). Finally, if S′ is a connected
feedback vertex set of G′ and |S′| ≤ k′, then the algorithm returns S′ as the solution for
(G, k). We denote by S the output of the solution lifting algorithm. Clearly, the solution
lifting algorithm runs in polynomial time.

We now prove that this reduction algorithm and the solution lifting algorithm together
constitute a (1 +ε)-approximate kernelization for Connected Feedback Vertex Set. We
show that if CFVS(G′, k′, S′) ≤ c ·OPT(G′, k′), then CFVS(G, k, S) ≤ (1 + ε)c ·OPT(G, k).
In the case where we concluded that G has no connected feedback vertex set of size at
most k and returned (G′, k), notice that CFVS(G′, k, S′) = CFVS(G, k, S) and OPT(G, k) =
OPT(G′, k) = k+1. Hence, we are left with the following cases which arise when the invocation
to Lemma 17 returned a graph G′. We will use the fact that OPT(G′, k′) ≤ (1+ε)OPT(G, k).

Case 1: S′ is a connected feedback vertex set of G′ and |S′| > k′. In this case, S = V (G).
We now consider two subcases: G has a connected feedback vertex set of size at most k
or it does not. If G has no connected feedback vertex set of size at most k, it follows that
OPT(G, k) = CFVS(G, k, V (G)) = k + 1. This is because G is connected and so V (G) is
a connected feedback vertex set. Therefore,

CFVS(G, k, V (G))
OPT(G, k) = 1 ≤ (1 + ε) · CFVS(G′, k′, S′)

OPT(G′, k′) . (1)

Hence, we may assume that G has a connected feedback vertex set of size at most k.
That is, OPT(G, k) ≤ k. But this implies the following.

CFVS(G, k, V (G))
OPT(G, k) = k + 1

OPT(G, k) ≤ (1+ε)· k′ + 1
OPT(G′, k′) = (1+ε)CFVS(G′, k′, S′)

OPT(G′, k′) . (2)

Case 2: S′ is a connected feedback vertex set of G′ and |S′| ≤ k′. In this case, OPT(G′, k′) ≤
k′. We consider two subcases: |S′| ≤ k or k + 1 ≤ |S′| ≤ k′. In the former subcase we
have the following.

CFVS(G, k, S)
OPT(G, k) = CFVS(G, k, S′)

OPT(G, k) = CFVS(G′, k′, S′)
OPT(G, k) ≤ (1 + ε)CFVS(G′, k′, S′)

OPT(G′, k′) . (3)

And if k + 1 ≤ |S′| ≤ k′, then we have the following.

CFVS(G, k, S)
OPT(G, k) = CFVS(G, k, S′)

OPT(G, k) = k + 1
OPT(G, k) ≤ (1 + ε) k + 1

OPT(G′, k′)

≤ (1 + ε)CFVS(G′, k′, S′)
OPT(G′, k′) . (4)
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Case 3: S′ is not a connected feedback vertex set of G′. Then, the set returned by the
solution lifting algorithm, ∅, is also not a connected feedback vertex set of G and so,
CFVS(G′, k′, S′) = CFVS(G, k, ∅). As a result, the required inequality follows and this
completes the proof of the theorem. J

Lemma 17 also implies the following OPTO(1)-approximation for Connected Feedback
Vertex Set.

I Lemma 18. There is a polynomial time algorithm that given G, k, either correctly concludes
that G has no connected feedback vertex set of size at most k or returns a connected feedback
vertex set of G of size kO(1).

Proof. Given G, k, we set ε to be an arbitrary constant between 0 and 1, say 1
2 . We then

invoke Lemma 17 to either correctly conclude that G has no connected feedback vertex set
of size at most k or compute the graph G′ guaranteed by the lemma. In the former case we
return the same. Otherwise, we check for each connected component of G[V (G′) ∩ V (G)]
whether it is a connected feedback vertex set of G. If such a component exists, then we
return the vertex set of this component and otherwise we conclude that G has no connected
feedback vertex set of size at most k. The correctness follows from the fact that if G contains
at least one connected feedback vertex set of size at most k then at least one connected
component of G[V (G′)∩V (G)] is guaranteed to contain a connected feedback vertex set of G
according to Lemma 17 and such a connected component by itself must also be a connected
feedback vertex set of G. This completes the proof of the lemma. J

4 Conclusions and Open Problems

Our result on approximate kernelization for Connected Feedback Vertex Set provides
another useful data point in improving our understanding of the extent to which (approximate)
preprocessing can be performed in the presence of connectivity constraints. Moreover, we
believe that our techniques could have further applications in the design of approximate
kernels for covering problems with connectivity constraints. Finally, this line of investigation
offers several interesting opportunities for further research.

For instance, is there a space efficient PSAKS for Connected Feedback Vertex Set?
In a space efficient PSAKS, we require the size of the output to be bounded by f( 1

ε ) · kc,
where f is a computable function and c is a constant independent of the error parameter ε.
Essentially, a PSAKS is an apt analogue of a PTAS in the approximate kernelization world
and an Efficient PSAKS is a natural analogues of an Efficient PTAS in this setting. We end
by pointing out that the existence of a space efficient PSAKS is open even in the case of the
Connected Vertex Cover problem.
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