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Abstract
In the Highway problem, we are given a path with n edges (the highway), and a set of m drivers, each
one characterized by a subpath and a budget. For a given assignment of edge prices (the tolls), the
highway owner collects from each driver the total price of the associated path when it does not exceed
drivers’s budget, and zero otherwise. The goal is to choose the prices to maximize the total profit.
A PTAS is known for this (strongly NP-hard) problem [Grandoni,Rothvoss-SODA’11,SICOMP’16].

In this paper we study the limited supply generalization of Highway, that incorporates capacity
constraints. Here the input also includes a capacity ue ≥ 0 for each edge e; we need to select, among
drivers that can afford the required price, a subset such that the number of drivers that use each
edge e is at most ue (and we get profit only from selected drivers). To the best of our knowledge, the
only approximation algorithm known for this problem is a folklore O(logm) approximation based
on a reduction to the related Unsplittable Flow on a Path problem (UFP). The main result of this
paper is a PTAS for limited supply highway.

As a second contribution, we study a natural generalization of the problem where each driver i
demands a different amount di of capacity. Using known techniques, it is not hard to derive a QPTAS
for this problem. Here we present a PTAS for the case that drivers have uniform budgets. Finding a
PTAS for non-uniform-demand limited supply highway is left as a challenging open problem.
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1 Introduction

In the Highway problem we are given a path graph G = (V,E) with n edges (the highway)
and a set D of m drivers. Each driver i is characterized by a subpath Pi of G, and by a
budget Bi ∈ N+. We have to fix a price pe ≥ 0 one each edge e (the same for all drivers).
Then, for each driver i, we get a profit of p(i) :=

∑
e∈Pi pe (i.e., the total price over the

edges used by i), provided that p(i) ≤ Bi, and otherwise 0. Intuitively, each driver wishes to
travel along subpath Pi, but it is not going to do that if the total requested price exceeds
her budget. Our goal is to choose the prices to maximize the total profit from all drivers.

It is not hard to imagine applications for this problem, besides the obvious one suggested
by its name. For example, highway edges might represent links of a (high-bandwidth)
telecommunication network. Alternatively, one might interpret the highway as a period of
time, and the edges as time slots: now drivers are clients who need a service for a given
interval of time.
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Highway is well studied. It was shown to be weakly NP-hard in [9] via a reduction from
Partition, and strongly NP-hard in [20] via a reduction from Max-2-SAT. There is a simple
O(logm)-approximation that works for much more general instances. This was improved
to O(logn) in [3] using ideas in [26], and to O(logn/ log logn) in [22]. A QPTAS for the
problem was presented in [21]. Finally, a PTAS was given in [25].

In this paper we study the Limited Supply Highway problem (Ls-Highway), which is a
natural generalization of Highway with capacity constraints. Here we are additionally given
an integral capacity ue ∈ N+ for each edge e. A solution is now given by a price pe ≥ 0 on
each edge e plus a subset S ⊆ D of drivers that satisfy the following capacity constraint: the
total number of selected drivers that use each edge e is at most ue, i.e. |{i ∈ S : e ∈ Pi}| ≤ ue.
The profit from each driver is defined in the same way as in Highway, however now we obtain
profit only from the selected drivers S. Observe that there might be drivers that can afford
to pay for the considered prices and are still excluded (i.e., they cannot take the highway)
due to capacity constraints. Capacity constraints make sense in some of the mentioned
applications, e.g., optimal networks might have insufficient bandwidth to accommodate all
candidate users and the authority handling the network could exclude some of these users
(regardless of their budget). The same argument applies to a company selling a limited
resource, such as computational power, over time slots. The best known approximation for
Ls-Highway is, to the best of our knowledge, a folklore O(logm) approximation based on
a reduction to the related Unsplittable Flow on Path problem (UFP). Details about this
reduction are given later.

In this paper we also consider a non-uniform demand generalization of Ls-Highway, next
denoted as NuLs-Highway, where each driver i has a demand di ∈ N. W.l.o.g., we can assume
that di ≤ mine∈Pi{ue} (otherwise driver i can be discarded). Now the subset S of selected
drivers has to satisfy

∑
i∈S:e∈Pi di ≤ ue for each edge e. In particular, Ls-Highway is the

special case of NuLs-Highway where di = 1 for all i. Essentially the same reduction to UFP
as mentioned above provides a O(logm) approximation also for NuLs-Highway.

1.1 Our Results and Technique
The main result of this paper is a PTAS for Ls-Highway (see Section 2).

I Theorem 1. There is a deterministic PTAS for Ls-Highway.

Our starting point is a hierarchical decomposition of G into subpaths (called intervals)
of different levels as introduced in [25]. The whole path G forms the (only) interval of
level 0. Then G is subdivided into Γ = Oε(1) subintervals of level 1 such that for each
subinterval the sum of the prices of the edges in the optimal solution is identical. Note that
this decomposition depends on the unknown optimal solution and cannot be inferred directly
from the input. Recursively, each interval of level ` is subdivided into Γ subintervals of level
` + 1 with the latter property. A driver is said to be in level ` if its path is contained in
an interval of level ` but not in an interval of level ` + 1. The PTAS in [25] guesses this
decomposition recursively. First, it guesses the partition of G into intervals of level 1. This
implies which drivers are of level 0 and – using some additional arguments – for which of them
the total price of the edges of their respective paths exceeds the budget. In more detail, using
some shifting arguments one ensures that essentially each driver of level 0 crosses at least 1/ε
intervals of level 1 completely (and at most two such intervals partially). Since all intervals
of level 1 have the same total price in the optimal solution, up to a factor of 1 + ε this implies
the amount that each driver of level 0 would have to pay if it is contained the optimal set of
drivers. Then all drivers of level 0 are selected whose budget is not exceeded. Afterwards, the
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algorithm continues recursively in the intervals of level 1. Importantly, in order to process an
interval of a level `, one does not need to know which drivers of smaller levels were selected
previously. Instead, each arising subproblem can be described by an interval and a level.
Therefore, the number of possible subproblems is bounded by a polynomial and the whole
algorithm can easily be embedded into a polynomial time dynamic program.

In Ls-Highway this sitution is drastically different. When we want to process an interval
of level ` then it is not clear that we want to select all drivers of level ` whose budget is
not exceeded since we might want to use the available edge capacity for drivers of larger
levels instead. Also, we need to know the previously selected drivers of smaller levels since
they might use capacity on the edges that we then cannot use for drivers of level ` anymore.
Unfortunately, there is an exponential number of possibilities for which drivers have been
selected before and hence we would get a super-polynomial number of possible subproblems.
One could use the profiling technique in [5] in order to ensure that there are only a polynomial
number of possibilities for the capacity taken by drivers from each previous level (with a
small loss in the profit). However, since the number of levels is Ω(logn) this yields a quasi-
polynomial number of combinations for the used capacity from all levels together which is
still too much.

At this point our main idea comes into play. We would like that the path of each driver
of each level `′ starts and ends at the boundary vertex of an interval of level `′ + 1. Then,
when we process an interval of level ` it would be easy to describe the total capacity taken
away from drivers of smaller levels: the total number of such drivers would suffice, knowing
that each of them spans the entire interval. Therefore, consider the drivers of level ` that
start or end in the middle of an interval G′ of level `+ 1, let us say there are m′ such drivers.
For each of them we try to delete a minimal set of drivers of level `+ 1 or larger such that
each edge of G′ is used by at least one deleted driver. If we succeed then this frees up one
unit of capacity along each edge of G′ for each considered driver of level `, and we can use
this extra space to forget the actual portion of G′ that is spanned by this driver. In other
terms, we can imagine that its path spans the entire subinterval G′. If we do not succeed to
delete enough drivers using some edge e then we allocate all remaining capacity on e to the
drivers of level `. In other words, the remaining capacity on each edge of G′ is reduced by
m′ or to zero. Hence, when we process an interval G′ of level ` + 1 in our recursion then
one number in {0, ...,m} suffices to describe by how much the capacity on each edge in G′ is
reduced due to drivers from smaller levels. We perform this deletion procedure for each level
and each interval. This allows us then to devise a polynomial time dynamic program that
computes a solution whose profit is at least as large as the profit of the remaining drivers.

To bound the cost of the above deletion step, by losing a factor 1 + ε in the approximation
ratio the construction in [25] ensures that the path of each driver i of a level ` spans at
least Ω(1/ε) intervals of level ` + 1 and hence its profit is by a factor Ω(1/ε) larger than
the sum of the edge prices in an interval of level ` + 1. Up to constant factors, the latter
is the total profit of the drivers of level at least `+ 1 that we delete for i in the procedure
above. Therefore, the total profit due to the deleted tasks can be charged to i, losing only a
factor of 1 +O(ε).

The non-uniform demand case

Given the above PTAS, it is natural to address the non-uniform version of the problem. In
particular:

I Question 2. Is there a PTAS for NuLs-Highway?

ESA 2019
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Using the hierarchical decomposition from above and ideas from [5] it is not hard to derive
a QPTAS for the problem, i.e., a (1 + ε)-approximation that runs in quasi-polynomial
time (at least for quasi-polynomially bounded capacities). Let Umax = maxe∈G{ue} be the
largest capacity.

I Theorem 3. For any constant ε > 0, there is a deterministic algorithm that computes a
(1 + ε)-approximation for NuLs-Highway in time (n logUmax)Oε(logUmax logm).

Also, using a folklore reduction to UFP one can obtain a O(logm)-approximation for
NuLs-Highway.

I Lemma 4. There is a polynomial-time deterministic O(logm)-approximation for NuLs-
Highway.

We were able to design a PTAS for the interesting special case of uniform budgets (see
Section 3). Suppose that each driver has a budget of B. We partition G into blocks of total
price B/ε each and ensure via a shifting argument that the path of essentially each driver is
contained in some block. We guess this partition via a dynamic program step by step. For
each block, on a high level we show that there is a near-optimal solution in which only Oε(1)
edges within the block have a non-zero price and hence we can guess these edges and their
prices in polynomial time. The problem of selecting the drivers yields an instance of UFP in
which each task uses one of the latter Oε(1) edges. We invoke the known PTAS [23] for this
case and obtain a (1 + ε)-approximation overall.

I Theorem 5. There is a deterministic PTAS for NuLs-Highway in the special case that the
budgets of all drivers are identical.

1.2 Other Related Work
The tollbooth problem is the generalization of the highway problem where G is a tree. A
O(logn) approximation was developed in [20], and later improved to O(logn/ log logn) in [22].
Cygan et al. [18] present a O(log logn) approximation for the case of uniform budgets. The
tollbooth problem is APX-hard [26].

The highway and tollbooth problems belong to the family of pricing problems with
single-minded customers and unlimited supply. Here we are given a set of customers: Each
customer wants to buy a subset of items (bundle), if its total price does not exceed her
budget. In the highway terminology, each driver is a subset of edges (rather than a path).
For this problem a O(logn+ logm) approximation is given in [26]. This bound was refined
in [9] to O(logL+ logB), where L denotes the maximum number of items in a bundle and
B the maximum number of bundles containing a given item. Chalermsook et al. [12] showed
that this problem is hard to approximate within log1−ε n for any constant ε > 0. A O(L)
approximation is given in [3]. The latter approximation factor is asymptotically the best
possible for constant values of L unless P = NP as recently proved by Chalermsook et al. [13].

Elbassioni et al. [19] studied the limited-supply highway and tollbooth problems, however
for non-single-minded drivers. Limited-supply pricing problems have also been studied in
their envy-free version [26]: the goal here is to compute a maximum-profit pricing so that
each client that can afford her bundle actually gets it. Cheung and Swamy [17] provided
a O(logU) approximation for envy-free limited-supply highway with uniform capacities U .
Observe that our algorithm does not guarantee envy-freeness. We also remark that requiring
envy-freeness can substantially decrease the optimal profit, hence studying limited-supply
pricing problems without this additional constraint makes sense in many applications.
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The NuLs-Highway problem has several aspects in common with the well-studied Unsplit-
table Flow on a Path problem (UFP). In this problem we are given a path graph G = (V,E),
with edge capacities {ue}e∈E , and a set of tasks T , where each task i is characterized by a
demand di, a subpath Pi of G, and a weight wi. The goal is to select a maximum weight
subset S of tasks such that the total demand

∑
i∈S:e∈Pi di of selected tasks using each edge e

is at most ue. The current best approximation for this problem is 5/3 + ε [24], improving on
earlier results [2, 10, 6, 27, 15, 11, 8, 4]. The problem also admits a QPTAS [5, 7]. There is
also a line of research on finding LP relaxations with small integrality gap for UFP [1, 11, 14].

1.3 Preliminaries
For any positive integer q let [q] := {1, 2, . . . , q}. We are given an ε > 0 and assume w.l.o.g.
that 1/(2ε) is integral and ε ≤ 1/2. Let (OPT, p∗) denote an optimum solution to the
considered instance, with drivers OPT and prices p∗, and opt be its profit. W.l.o.g., OPT
contains only drivers with strictly positive profit. Standard reductions (see e.g. [25]) imply
the following.

I Lemma 6. By losing a factor 1 + ε in the approximation, we can reduce in polynomial time
a given instance of Ls-Highway to an instance of the same problem with O(m2/ε) edges such
that: (1) Budgets are integers between 1 and m

ε ; (2) Optimal prices take values in {0, 1}.

Given the above reduction, we can assume that the sum P ∗ of the optimal prices is known
by trying all the O(m2/ε) possibilities.

For each edge e let De := {i ∈ D : e ∈ Pi} be the drivers whose path contains e, and,
for a subpath G′, D(G′) := {i ∈ D : Pi ⊆ G′} be the drivers whose path is contained in G′.
Given prices p and a subpath G′, we let p(G′) =

∑
e∈G′ pe. Given a driver i and prices p,

we let the associated profit pro(i, p) be p(Pi) if this quantity is at most Bi, and 0 otherwise.
For a subset of drivers S, pro(S, p) =

∑
i∈S pro(i, p) is the total profit of those drivers. In

case of non-uniform demands, we define d(S′) :=
∑
i∈S′ di.

2 A PTAS for Ls-Highway

In this section we present our PTAS for Ls-Highway.

2.1 Hierarchical decomposition
Consider the input instance after applying the preprocessing step from Lemma 6, with
optimal solution (OPT, p∗). We next describe how to extract an almost optimal solution
OPT′ ⊆ OPT with a convenient structure. Here we use the same construction as in [25].

Let Γ = (1/ε)1/ε and γ = 1/(2ε). We add dummy edges on the right of G (w.l.o.g. having
a price of 1 each in the optimal solution) such that we can assume that P ∗ = Γ`∗ for some
integer `∗ = Oε(logm). Since n ≤ m2

ε we can guess in polynomial time the number of dummy
edges that we need and the resulting value of P ∗. Let x ∈ {1, . . . , P ∗} and y ∈ {1, . . . , 1/ε}
be two parameters to be fixed later. We append P ∗ · ((1/ε)y − 1) − x additional dummy
edges to the left of G and x additional dummy edges to the right of G, resp., and we assume
w.l.o.g. that p∗ assigns a price of 1 to each one of them. To simplify the notation, we denote
by G the resulting path, by p∗ the resulting prizing, and by P ∗ the sum of prices in p∗.
Observe that now P ∗ = Γ`∗(1/ε)y.

ESA 2019
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Based on p∗, we define a hierarchical decomposition of G into nested subpaths (invervals).
The starting point is the interval G of level 0. Given an interval G′ of level `, we partition it
into Γ subintervals G′1, . . . , G′Γ of level `+ 1, with uniform price. Observe that intervals of
level ` have price P ` := P ∗/Γ` = Γ`∗−`(1/ε)y. We stop the recursion at intervals of level `∗,
which have constant price (1/ε)y = Oε(1).

For each interval G′ we denote by `(G′) its level. We say that a driver i is at level ` if Pi
is fully contained in an interval of level ` but in no interval of level `+ 1. For each driver i,
we let `(i) be its level and q(i) be the number of intervals of level `(i) + 1 which are fully
contained in Pi. Based on the above decomposition and notation, we define an approximate
profit function pro∗ for each driver i of level `(i) < `∗ as follows

pro∗(i) =
{

0 if q(i) < γ or q(i) · P `(i)+1 > Bi

q(i) · P `(i)+1 otherwise.
(1)

For drivers i of level `∗, we use the standard definition of profit, i.e. pro∗(i) = p∗(Pi) for
p∗(Pi) ≤ Bi, and pro∗(i) = 0 otherwise. Intuitively, pro∗ counts the profit of a driver i in
level ` only if Pi spans many subintervals of level `+ 1, i.e., at least γ many. For counting
the profit, we ignore the two subintervals that Pi only partially overlaps with. Since Pi gets
the full profit of at least γ subintervals, the difference is only a factor of 1 +O(ε). On the
other hand, it could be that pro∗(i) > 0 but i’s budget is exceeded. In this case it is still true
that pro(i, p∗) ≥ pro∗(i) if i had a budget of γ+2

γ Bi ≤ (1 +O(ε))Bi. Therefore, intuitively
we will pretend in the sequel that all drivers have a (larger) budget of γ+2

γ Bi and repair this
by scaling all edge prices at the very end. As usual, for S ⊆ D, pro∗(S) =

∑
i∈S pro∗(i). We

next let OPT′ ⊆ OPT be the drivers i ∈ OPT with strictly positive pro∗(i) (hence of profit
at least γP `(i)+1).

I Lemma 7 ([25]). There exist values of x and y such that pro∗(OPT) = pro∗(OPT′) ≥
(1−O(ε))opt.

In the following we assume that the input graph is preprocessed according to the pair (x, y)
given by Lemma 7: this is w.l.o.g. since we can try all the constantly many options. By pro∗
we will denote the approximate profit function given by this choice.

2.2 A Structured Solution
At this point we introduce the most critical and novel idea in our PTAS. We extract from
OPT′ a large profit subset OPT′′ that is even more structured. Intuitively, our goal is to
limit the interaction between drivers of different levels. More formally, in OPT′′ for each
interval G′ of some level `′ there exists a value m′ such that on each edge e of G′ the drivers
of level `′ or larger use at most max{0, ue −m′} units of capacity and the drivers of levels
`′ − 1 or smaller use the remaining capacity. Our algorithm will later select the drivers
in the order of their levels, from small to large. Hence, in order to describe the capacity
available on G′ for the drivers level `′ or larger it suffices to know m′ for which there are
only m+ 1 possibilities. This will be useful to define our algorithm as a polynomial time
dynamic program.

Initially we set OPT′′ = OPT′. Then we gradually move some drivers from OPT′′ to a
set of deleted drivers DEL. We will guarantee that the profit of deleted drivers is a small
fraction of the profit of drivers that are still in OPT′′ at the end of the process.
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G′
j ...

m(G′
j)

...

Figure 1 For the red driver we delete a set of short drivers whose paths are contained in G′j ,
depicted in striped red, that together completely cover G′j . For the yellow driver we do not find
such a set among the remaining drivers and delete drivers (depicted in striped yellow) that cover a
maximal set of edges in G′j . The gray drivers remain in the solution.

It is convenient to describe the construction of DEL in terms of a recursive procedure
delete. This procedure, described in Algorithm 1, takes as input a tuple (G′, `′,m′) where G′ is
a subpath, `′ ∈ {0, . . . , `∗} is a level, and m′ ∈ {0, . . . ,m} is some capacity. Note that w.l.o.g.
we can assume that ue ≤ m for each edge e. Furthermore, OPT′′ and DEL are considered as
global variables. We initialize (OPT′′,DEL) to (OPT′, ∅), and run delete(G, 0, 0).

The high-level idea behind delete is as follows. Intuitively, G′ is some interval of level `′,
and m′ is some uniform capacity that is reserved along G′ to allocate drivers from previous
levels whose path overlaps with G′. We remark thatm′ might exceed the capacity ue available
on some edge e ∈ G′, in which case drivers from level `′ or larger cannot use edge e (in
other words, the residual capacity on edge e is max{0, ue −m′}). Consider the subdivision
of G′ into subintervals G′1, . . . , G′Γ. Let us focus on a specific G′j , and consider the drivers of
level `′ in OPT′′ ∩D(G′) whose path intersects Gj , let us denote them by OPT′′`′(G′j). Let
OPT′′`′,part(G′j) and OPT′′`′,span(G′j) be the subset of them with G′j 6⊆ Pi and G′j ⊆ Pi, resp.
In order to define the residual capacity for drivers in D(G′j) the drivers in OPT′′`′,span(G′j)
are not problematic: they use a uniform amount of capacity along G′j . In order to handle
the problematic drivers OPT′′`′,part(G′j), the procedure delete removes some drivers from
OPT′′ ∩D(G′j) of level `′ + 1 or larger. This leaves some free capacity that can be used to
ignore the exact extend by which each i ∈ OPT′′`′,part(G′j) overlaps with G′j . Ideally, for each
i ∈ OPT′′`′,part(G′j), we would like to find a minimal set of drivers DELi(G′j) ⊆ OPT′′∩D(G′j)
that spans G′j , i.e., such that each edge of G′j is used by at least one driver in DELi(G′j).
However, there might not be enough drivers available for this in which case we rather take
one such set with the largest possible span of edges of G′j . This process is illustrated in Figure
1. After deleting all drivers in the sets DELi(G′j) for all i ∈ OPT′′`′,part(G′j) we can safely set
the (residual) capacity on edge e for drivers of level larger than `′ (whose path is contained
in G′j) to max{0, ue −m′ −m`′(G′j)} where m`′(G′j) := |OPT′′`′(G′j)|. We then recurse in
each subinterval G′j of G′ by calling delete(G′j , `′ + 1,m′ +m`′(G′j)). We stop the recursion
once we reach an interval of level `∗ in which case we do not delete any further drivers.

Consider OPT′′ at the end of the root call delete(G, 0, 0). This is obviously a feasible
solution (being a subset of OPT′). Let us show that it has large profit.

I Lemma 8. We have that pro∗(OPT′′) ≥ (1−O(ε))pro∗(OPT′)

Proof. Let us show that pro∗(DEL) ≤ 4
γpro∗(OPT′′) = O(ε)pro∗(OPT′′). We use a charging

argument. Consider an interval G′ of level `′ and one of its subintervals G′j . Note that, by
construction, the total price over G′ and G′j is P `

′ and P `′+1 = P `
′
/Γ, respectively. Consider

ESA 2019
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Algorithm 1 Procedure to build the sets OPT′′ and DEL.
delete(G′, `′,m′)
1: if `′ = `∗ then
2: halt;
3: Let G′1, . . . , G′Γ be the partition of G′ into subintervals of level `+ 1;
4: for j = 1, . . . ,Γ do
5: Let OPT′′`′(G′j):={i ∈ OPT′′ ∩D(G′):`(i)=`′, E(Pi) ∩ E(G′j) 6=∅};
6: Let m`′(G′j)=|OPT′′`′(G′j)|;
7: Let OPT′′`′,part(G′j) := {i ∈ OPT′′`′(G′j) : G′j 6⊆ Pi};
8: for every i ∈ OPT′′`′,part(G′j) do
9: Let Ei(G′j) be the edges used by OPT′′ ∩D(G′j);
10: Let DELi(G′j) be a minimal subset of OPT′′ ∩D(G′j) that spans Ei(G′j);
11: Set OPT′′ ← OPT′′ \DELi(G′j) and DEL← DEL ∪DELi(G′j);
12: delete(G′j , `′ + 1,m′ +m`′(G′j));

any i ∈ OPT′′`′,part(G′j). Observe that i cannot be deleted in the next recursive calls, hence
it finally belongs to OPT′′. Let us charge the loss due to the removal of DELi(G′j) to i.

By the minimality of DELi(G′j), each edge e ∈ G′j can be used by at most two drivers in
DELi(G′j). It thus follows that pro∗(DELi(G′j)) ≤ 2p∗(G′j) ≤ 2P `′+1. On the other hand,
pro∗(i) ≥ γP `

′+1, hence pro∗(DELi(G′j)) ≤ 2
γpro∗(i). Observe that each driver i in OPT′′

of level `′ can be charged by at most two sets DELi(G′a) and DELi(G′b), associated with the
(at most) two subintervals G′a and G′b of level `′ + 1 that partially overlap with Pi (since the
subintervals that are fully spanned by Pi do not charge i). It follows that

pro∗(DEL) =
∑
G′
j
,i

pro∗(DELi(G′j)) ≤
2
γ

∑
G′
j
,`′,i∈OPT′′

`′,part
(G′

j
)

pro∗(i) ≤ 4
γ

pro∗(OPT′′). J

One can show that, if in the recursion above a call delete(G′, `′,m′) arises, then in OPT′′

on each edge e of G′ the drivers of level `′ or larger use at most max{0, ue −m′} units of
capacity. We will use this property in our dynamic program below.

2.3 Dynamic program
We describe an algorithm that computes a solution with a profit of at least pro∗(OPT ′′),
pretending that each driver i has an increased budget of γ+2

γ Bi. Afterwards, we scale down
the prices by a factor γ+2

γ in order to respect the original budgets. Together with Lemma 8
this yields an approximation factor of 1 +O(ε). For the sake of simplicity, in the sequel we
will compute only the value of the desired solution while a straightforward extension yields
an algorithm that finds the corresponding set of drivers and also the pricing for the edges.

A natural idea is to define a recursive algorithm that guesses the hierarchical decomposition
into intervals and the values m(G′j) corresponding to OPT′′. Suppose we are given a tuple
(G′, `′,m′) consisting of an interval G′, a level `′, and an integer m′. The reader may imagine
that in the hierarchical decomposition above G′ is of level `′ and m′ units of capacity are
taken away on each edge of G′ due to drivers of levels smaller than `′. If `′ < `∗ we guess the
corresponding subdivision into subintervals G′1, . . . , G′Γ of level `′ + 1 (each of them having
length at least P `′+1), and the associated values m(G′j), i.e., we try all possibilities for them.
Via a reduction to UFP we select the drivers of level `′: for each driver i with Pi ⊆ G′ but



F. Grandoni and A. Wiese 54:9

Pi 6⊆ G′j for each G′j , we introduce a task i′ with path Pi′ := Pi and demand di′ := 1. For
q(i) being the number of intervals G′j with G′j ⊆ Pi we define

wi′ :=
{

0 if q(i) < γ or q(i) · P `′+1 > Bi

q(i) · P `′+1 otherwise.
(2)

Observe that to guarantee that we get a profit of wi′ from driver i we would need that i has a
budget of at least γ+2

γ Bi. This can be fixed at the end by scaling down prices by a factor γ+2
γ

(with a small profit loss). We define the edge capacities by u′e := min{m(G′j),max{0, ue−m′}}
for each edge e in a subinterval G′j . Since all drivers have unit demand this instance of UFP
can be solved exactly in polynomial time (see, e.g., [16]). Then we recurse on each interval
G′j such that the corresponding subproblem consists of the tuple (G′j , `′ + 1,m′ +m(G′j)).
Finally, the solution for (G′, `′,m′) is the most profitable solution obtained in this way over
all of the guesses above.

If we are given a tuple (G′, `′,m′) with `′ = `∗ (the reader may again imagine that G′
is an interval of level `∗) then we guess directly the optimal pricing p∗ which is one of the
polynomially many options to assign a total price of (1/ε)y = Oε(1) to the edges of G′ such
that each edge gets a price in {0, 1}. Selecting the drivers yields again an instance of UFP.
For each driver i with Pi ⊆ G′ we introduce a task i′ with path Pi′ := Pi, demand di′ := 1,
and weight wi′ = p(Bi) if p(Bi) ≤ Bi and wi′ = 0 otherwise. Each edge e has a capacity of
u′e := max{0, ue −m′}. Again, since all drivers have unit demand we can solve this instance
of UFP in polynomial time [16]. The solution for (G′, `′,m′) is then the most profitable
solution over all guesses. We return the solution to (G, 0, 0).

As it is described above, this algorithm does not have polynomial running time since in
each subproblem we enumerate a polynomial number of guesses and the recursion depth is
Ω(logn). However, each recursive call is specified by a tuple (G′, `′,m′) and there are only a
polynomial number of those. Hence, we can embed our algorithm into a polynomial time
dynamic program, see Algorithm 2. For each cell (G′, `′,m′) denote by DP (G′, `′,m′) the
value stored in it.

Algorithm 2 Dynamic program to approximate Ls-Highway. Here G′ denote a subpath of G of
length at least P `′ , `′ ∈ {0, . . . , `∗} a level, and m′ ∈ {0, . . . ,m} a capacity.
compute DP (G′, `′,m′)
1: if `′ < `∗ then
2: for all possible subdivisions of G′ into subpaths G′1, . . . , G′Γ of length at least P `′+1 each do
3: for all possible values m(G′j) ∈ {0, . . . ,m}, j = 1, . . . ,Γ do
4: construct the UFP instance I ′ associated with (G′,m′, {G′j}j , {m(G′j)}j);
5: solve I ′ optimally, let wufp(I ′) be the resulting profit
6: compute

w(G′,m′, {G′j}j , {m(G′j)}j) := wufp(I ′) +
Γ∑

j=1

DP (G′j , `′ + 1,m′ +m(G′j))

7: DP (G′, `′,m′)← largest value w(G′,m′, {G′j}j , {m(G′j)}j) computed in Step 6
8: if `′ = `∗ then
9: for all possible assignments p = {0, 1}E(G′) with p(G′) = P `∗ = (1/ε)y do
10: construct the UFP instance I ′ associated with (G′,m′, p);
11: solve I ′ optimally, let wufp(I ′) be the resulting profit
12: DP (G′, `′,m′)← largest value wufp(I ′) computed in Step 11
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Let us consider the recursive partition of G that corresponds to (G, 0, 0), i.e., the intervals
of the partition achieving the maximum in Line 7 and recursively their subpartitions achieving
the maximum in their respective subproblems. Let G be the intervals in this partition. For a
given G′ ∈ G we let `′(G′) andm′(G′) denote the associated values of `′ andm′. Furthermore,
if `′(G′) < `∗, let {G′j}j and {m(G′j)}j be the corresponding values achieving the maximum in
Step 7. By ALG(G′) we denote the UFP solution corresponding to the cell (G′, `′(G′),m′(G′))
that achieves the maximum value in Step 7 or 12. Note that the solution associated with
(G, 0, 0) is ALG = ∪G′∈GALG(G′). By pALG we denote the pricing induced by the values p
achieving the maximum in Step 12.

I Lemma 9. ALG respects the capacity constraints.

Proof. For a given G′ ∈ G, let ALG↓(G′) := ∪G′′∈G:G′′⊆G′ALG(G′′) be the union of all the
UFP solutions corresponding to subintervals contained in G′ (G′ included). We will show by
induction on decreasing values of `′(G′) that ALG↓(G′) is a feasible solution w.r.t. residual
capacities max{0, ue −m′(G′)} i.e.

|De ∩ALG↓(G′)| ≤ max{0, ue −m′(G′)}, ∀e ∈ G′.

The claim then follows since m′(G) = 0 and ALG↓(G) = ALG.
For the base case `′(G′) = `∗ this is true by the definition of the edges capacities for the

case that `′ = `∗. Suppose next the claim is true up to the value `′ + 1, and consider G′ with
`′(G′) = `′. Consider any edge e ∈ G′j , for some j ∈ [Γ].

|De ∩ALG↓(G′j)| ≤ max{0, ue −m′(G′)−m(G′j)}.

By construction and the definition of the edge capacities for the case that `′ < `∗ we have

|De ∩ALG(G′)| ≤ min{m(G′j),max{0, ue −m′(G′)}}.

Thus

|De ∩ALG↓(G′)| = |De ∩ALG(G′)|+ |De ∩ALG↓(G′j)|
≤min{m(G′j),max{0, ue −m′(G′)}}+ max{0, ue −m′(G′)−m(G′j)}
≤max{0, ue −m′(G′)},

where the last inequality follows easily by distinguishing the cases ue −m′(G′) ≤ 0, 0 <
ue −m′(G′) ≤ m(G′j), and ue −m′(G′) > m(G′j). J

The proof of the following lemma follows by constraining the choices of the algorithm
in order to mimic the construction of OPT′′. The crucial step is to show that, for a
subproblem (G′, `′,m′) (corresponding to an interval G′ in the hierarchical decomposition due
to Section 2.1) the drivers in OPT′′∩D(G′) of level `′ (denote them by OPT′′(G′, `′)) define a
feasible solution for the associated UFP instance whose weight is precisely pro∗(OPT′′(G′, `))
by the definition of the tasks weights of these instances.

I Lemma 10. DP (G, 0, 0) = pro∗(ALG) ≥ pro∗(OPT′′).

Finally, we scale down the price on each edge by a factor γ+2
γ ≤ 1 +O(ε), i.e. we return the

solution (ALG, γ
γ+2p

ALG). This way, all drivers in ALG respect the original budgets and we
achieve a profit almost as large as DP (G, 0, 0).

I Lemma 11. pro(ALG, γ
γ+2p

ALG) ≥ γ
γ+2DP (G, 0, 0).
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Proof. It is sufficient to show that, after scaling prices, the budget of each driver i ∈ ALG
is not exceeded. It then follows that the profit associated with i is precisely γ

γ+2 times its
weight wi′ in the corresponding UFP instance. W.l.o.g. we can assume that wi′ > 0. If the
level ` of i is `∗, the claim is trivial since pro(i, pALG) = wi′ . In other words, the budget of i
is respected even without scaling the prices. Otherwise, with the usual notation, by definition
we have that q(i) ≥ γ and q(i) · P ` ≤ Bi. By construction the total price associated with i is

pALG(Pi) ≤ (q(i) + 2)P ` ≤ γ + 2
γ

q(i)P ` ≤ γ + 2
γ

Bi.

Hence γ
γ+2p

ALG does not violate the budget of i as required. J

Our algorithm runs in polynomial time since we have a polynomial number of DP-cells
and the computation for each takes polynomial time. Now the proof of Theorem 1 follows
immediately from Lemmas 8-11.

3 A PTAS for NuLs-Highway with Uniform Budgets

In this section we present a PTAS for NuLs-Highway when all drivers have the same budget
B. It is not hard (modulo technicalities) to extend our result to the case that the ratio of
largest to smallest budget is upper bounded by a given constant.

We will use the following folklore result for the highway problem (and more generally for
item pricing problems), that immediately extends to Ls-Highway and NuLs-Highway.

I Lemma 12 (Close To Budget Lemma). Given any α ∈ (0, 1], in any optimal solution
(OPT, p∗) to NuLs-Highway at least a fraction (1− α) of the profit is due to drivers whose
profit is at least α times their budget.

Proof. Assume by contradiction the claim is not true, and consider the drivers i ∈ S ⊆ OPT
whose profit in p∗ is less than α · Bi. Then the pricing p∗/α achieves a profit larger than
OPT from S, a contradiction. J

Let us first show that a solution with a convenient structure exists. Let (OPT, p∗) be
an optimal solution. Using Lemma 6 we can assume that the price of each edge is in {0, 1}
and that B ∈ {1, ...,m/ε}. Let P ∗ be the sum of the optimal prices, and h∗ be the smallest
integer such that P ∗ ≤ (h∗ − 1)Bε . We guess P ∗ and hence we then also know h∗. For a
choice of x ∈ {0, . . . , 1

εB − 1} to be defined later, we append x edges to the left of the input
graph G, and y = (h∗ − 1)Bε − P

∗ + 1
εB − x edges to its right. W.l.o.g. we assume that each

new edge has a price of 1 in (OPT, p∗). For simplicity, we still denote by G the resulting
graph, by p∗ its optimal pricing, by P ∗ the total price of all edges and we define h∗ := P ∗ε/B.
Observe that p∗(G) = h∗Bε .

By OPT′ ⊆ OPT we denote the drivers i whose profit in p∗ is at least ε ·Bi. By applying
Lemma 12 with α = ε one has that pro(OPT′, p∗) ≥ (1− ε)opt. We next define a solution
(APX, papx), with APX ⊆ OPT′. Subdivide G in h∗ subpaths Bj (blocks) with total price
exactly B

ε each. Discard all drivers i ∈ OPT′ whose path Pi contains edges in two different
blocks: let APX be the remaining drivers. Subdivide each Bj into 1/ε3 subpaths Bj,k of
optimal price exactly ε2B each (sub-blocks). In papx set the price of the rightmost edge
in each sub-block to 1

1+ε · ε
2B and the price of any other edge to zero (note that we use

fractional prices even though we assumed the optimal solution to have prices in {0, 1}).
Let us show that the profit of the new solution is large enough for a proper choice of x.
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I Lemma 13. There is a choice of x in the above construction such that pro(APX, papx) ≥
(1−O(ε))opt.

We devise now a dynamic program that computes a solution with a profit of at least
pro(APX, papx). Intuitively, it guesses step by step the above partition into blocks. Then for
each block B it guesses its partition into subblocks, sets a price of 1

1+ε · ε
2B to the rightmost

edge of each subblock and computes a subset of drivers from D(B) maximizing the profit
from the selected drivers. The problem of selecting these drivers yields special instances of
UFP (one for each block) in which there are 1/ε3 special edges (the edges with non-zero
price) such that each input task uses at least one of them (all other drivers yield zero profit
and can be discarded). We invoke the known PTAS for this special case [23].

Formally, first we guess the value for x ∈ {0, . . . , 1
εB − 1} due to Lemma 12. Observe

that B ≤ m/ε due to Lemma 5 and hence there are only m/ε2 options for x. We start by
preprocessing the instance as described before for the considered x: let N be the final number
of edges, and let us label them from 1 to N from left to right. Let G`,r be the subpath of G
with leftmost edge ` and rightmost edge r. The DP table is indexed by pairs (r, h) where r
is some edge and h ∈ {1, . . . , h∗}. Intuitively, the value of DP (r, h) is the maximum profit
that is achievable by drivers whose path is contained in G1,r in the following way:
1. We divide G1,r into h blocks Bj , subdivide each block into 1/ε3 sub-blocks, and assign

the price ε2B
1+ε to the rightmost edge of each sub-block (and 0 otherwise).

2. We select a set of drivers such that the path of each driver is fully contained in some
block.

As usual, we can associate to DP (r, h) a specific solution of the same profit. At the end, we
output the solution in the cell DP (N,h∗).

Consider a given DP-cell DP (r, h). For all values ` with 1 ≤ ` < r we do the following:
we partition G1,r into a block G`,r and a remaining part G1,`−1. We consider all the possible
O(n1/ε3) ways to subdivide G`,r into sub-blocks B1

`,r, . . . , B
1/ε3

`,r such that none of them is
empty. For any such choice, we define a UFP instance UFP ({Bk`,r}k) as follows. The graph
is G`,r, with the corresponding edge capacities ue, e ∈ G`,r. For each driver i with Pi ⊆ G`,r,
we define a task i′ with path Pi′ := Pi and demand di′ := di. We define its weight wi′ as
follows: assign price ε2B

1+ε to the rightmost edge in each sub-block; set wi′ to the total price on
the edges of Pi′ if this is at most Bi, and 0 otherwise. We discard a task i′ if with wi′ = 0.

Note that in this instance of UFP each task must use one of the 1/ε3 edges with non-zero
price. We invoke the PTAS in [23, Theorem 3.3] for this special case. Let alg(`, r) be the
maximum weight of any computed UFP solution for this choice of ` (over all partitions
B1
`,r, . . . , B

1/ε3

`,r ). Observe that this value depends only on ` and r. If r − ` + 1 < 1/ε3
then there can be no partition in which all sub-blocks are non-empty and therefore we set
alg(`, r) = 0. Given the above quantities, we define

DP (r, h) := max
1≤`<r

{alg(`, r) +DP (`− 1, h− 1)}

where we define DP (0, h) = 0 for all h and DP (r, 0) = 0 for all r. Finally, we output the
solution in the DP-cell DP (N,h∗).
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