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Abstract
We consider practical algorithms for maintaining the dominator tree and a low-high order in directed
acyclic graphs (DAGs) subject to dynamic operations. Let G be a directed graph with a distinguished
start vertex s. The dominator tree D of G is a tree rooted at s, such that a vertex v is an ancestor
of a vertex w if and only if all paths from s to w in G include v. The dominator tree is a central
tool in program optimization and code generation, and has many applications in other diverse areas
including constraint programming, circuit testing, biology, and in algorithms for graph connectivity
problems. A low-high order of G is a preorder of D that certifies the correctness of D, and has
further applications in connectivity and path-determination problems.

We first provide a practical and carefully engineered version of a recent algorithm [ICALP 2017]
for maintaining the dominator tree of a DAG through a sequence of edge deletions. The algorithm
runs in O(mn) total time and O(m) space, where n is the number of vertices and m is the number
of edges before any deletion. In addition, we present a new algorithm that maintains a low-high
order of a DAG under edge deletions within the same bounds. Both results extend to the case of
reducible graphs (a class that includes DAGs). Furthermore, we present a fully dynamic algorithm
for maintaining the dominator tree of a DAG under an intermixed sequence of edge insertions and
deletions. Although it does not maintain the O(mn) worst-case bound of the decremental algorithm,
our experiments highlight that the fully dynamic algorithm performs very well in practice. Finally,
we study the practical efficiency of all our algorithms by conducting an extensive experimental study
on real-world and synthetic graphs.
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50:2 Dynamic Dominators and Low-High Orders in DAGs

1 Introduction

Dynamic graph algorithms have been extensively studied for several decades, and many
important results have been achieved for fundamental problems, including connectivity,
minimum spanning tree, transitive closure, shortest paths (see, e.g., the survey in [13]).
Typically, the goal of a dynamic graph algorithm is to update the solution of a problem,
following the insertion or deletion of an edge, as quickly as possible (usually much faster
than recomputing from scratch). A dynamic graph problem is said to be fully dynamic if it
is required to process both insertions and deletions of edges, incremental if it requires to
process edge insertions only and decremental if it requires to process edge deletions only.
Here we consider two decremental problems in directed graphs, namely maintaining the
dominator tree and a low-high order of a flow graph.

A flow graph G = (V,E, s) is a directed graph (digraph) with a distinguished start vertex
s ∈ V . A vertex v is reachable in G if there is a path from s to v; v is unreachable if no
such path exists. The dominator relation in G is defined for the set of reachable vertices
as follows. A vertex v is a dominator of a vertex w (v dominates w) if every path from s

to w contains v; v is a proper dominator of w if v dominates w and v 6= w. The dominator
relation in G can be represented by a tree rooted at s, the dominator tree D, such that v
dominates w if and only if v is an ancestor of w in D. See Figure 1. If w 6= s is reachable, we
denote by d(w) the parent of w in D. The dominator tree of a flow graph can be computed
in linear time [2, 8, 14, 15]. The dominator tree is a central tool in program optimization and
code generation [11], and it has many applications in other diverse areas including constraint
programming [40], circuit testing [4], biology [1, 29], memory profiling [38], the analysis of
diffusion networks [28], and in connectivity problems [17, 18, 21, 22, 24, 31, 32, 33, 34].

A low-high order of G [25] is a preorder of the dominator tree D such that for all reachable
vertices v 6= s, (d(v), v) ∈ E or there are two edges (u, v), (w, v) ∈ E, where u and w are
reachable, w is not a descendant of v in D, and u < v < w in low-high order. See Figure 1.
Every flow graph G has a low-high order, computable in linear-time [25]. Low-high orders
provide a correctness certificate for dominator trees that is straightforward to verify [46].
By augmenting an algorithm that computes the dominator tree D of a flow graph G so
that it also computes a low-high order of G, one obtains a certifying algorithm to compute
D. Low-high orders also have applications in path-determination problems [45] and in
fault-tolerant network design [5, 6, 26].

In this paper we consider how to maintain the dominator tree and a low-high order of
acyclic flow graphs subject to dynamic operations. We believe that acyclic graphs are not a
significant restriction, since several real-world networks, such as certain types of biological
networks, are acyclic [29]. Furthermore, our results extend to reducible flow graphs (defined
below), a class that includes acyclic flow graphs. Reducible flow graphs are important in
program optimization since one notion of a “structured” program is that its flow graph is
reducible. The dynamic dominator problem arises in various applications, such as data flow
analysis and compilation [10, 16]. Moreover, dynamic dominators can be used for dynamically
testing various connectivity properties in digraphs, such as 2-vertex connectivity, strong
bridges and strong articulation points [32].

The problem of updating the dominator relation has been studied for several decades
(see, e.g., [3, 9, 10, 20, 23, 41, 42]). While for the incremental dominators problem there
are simple algorithms that achieve total O(mn) running time for processing a sequence of
edge insertions in a flow graph with n vertices, where m is the number of edges after all
insertions [3, 10, 23], the decremental version seems much harder. Cicerone et al. [10] achieved
a total O(mn) update bound for the decremental problem in reducible flow graphs, where
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Figure 1 (Top) A flow graph G and its dominator tree D. The numbers correspond to a preorder
numbering of D that is a low-high order of G. (Bottom) The flow graph G′ and its dominator tree
D′ after the deletion edge (g, d).

m is the initial number of edges, but using O(n2) space. For general digraphs, Georgiadis
et al. [20] presented an algorithm that can process a sequence of edge deletions in a flow
graph in O(mn logn) total time and O(n2 logn) space, and can answer dominance queries in
constant time. For reducible flow graphs, Georgiadis et al. [20] presented an algorithm that
achieves O(mn) total running time using only O(m+ n) space. A conditional lower bound
in [20] suggests that it might be hard to substantially improve the O(mn) update bounds
in the partial dynamic (incremental or decremental) problem of maintaining the dominator
tree, even for acyclic flow graphs. As the algorithms in [20] are quite sophisticated, their
implementation was a challenging task. Nevertheless, we show here that this is really worth
the effort, since their efficient implementation performs very well in practice. To produce an
implementation of practical value, we performed a careful engineering and choice of data
structures, including a data structure for an extension of the dynamic list order maintenance
problem [7, 12] and a data structure for maintaining and updating derived edges [25]. To
assess the merits of our implementation in practical scenarios, we conducted a thorough
experimental study.

As a second contribution, we show that we can maintain decrementally a low-high order
of a reducible flow graph in O(mn) total time. This implies the first decremental certifying
algorithm [39] for computing dominators in O(mn) total time in reducible flow graphs. It
also immediately provides O(mn)-time algorithms for the following problems:

A data structure that maintains an acyclic flow graph G decrementally, and answers the
following queries in constant time: (i) For any two query vertices v and w, find a path
πsv from s to v and a path πsw from s to w that are maximally vertex-disjoint, i.e., such
that πsv and πsw share only the common dominators of v and w. We can output these
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paths in O(|πsv|+ |πsw|) time. (ii) For any two query vertices v and w, find a path πsv

from s to v that avoids w, if such a path exists. We can output this path in O(|πsv|)
time. Such a data structure (in the static case) was used by Tholey [45] in a linear-time
algorithm for the 2-disjoint paths problem in a directed acyclic graph (DAG).
A decremental version of the fault-tolerant reachability problem [5, 6] in DAGs. We
maintain an acyclic flow graph G = (V,E, s) through a sequence of edge deletions, so that
we can answer the following query in O(n) time. Given a spanning forest F = (V,EF ) of
G rooted at s, find a set of edges E′ ⊆ E \ EF of minimum cardinality, such that the
subgraph G′ = (V,EF ∪ E′, s) of G has the same dominators as G.

An incremental low-high order algorithm with O(mn) total update time was presented in
[19]. As in the dynamic dominators problem, the decremental version seems more difficult
than the incremental. To highlight this aspect, note that a single edge deletion can cause
O(n) changes in a given low-high order even if the dominator tree remains unaltered. See
Figure 2. On the other hand, in the incremental setting, it suffices to update the low-high
order only for the vertices that change parent in the dominator tree.

Our third contribution is an efficient fully dynamic algorithm for maintaining the dom-
inator tree of a DAG under an intermixed sequence of edge insertions and deletions. We
obtain this algorithm by incorporating the insertion method of [23] in our decremental
algorithm. The fully dynamic algorithm does not preserve the O(mn) worst case bound of
the decremental algorithm because the vertex depths in the dominator tree no longer change
monotonically. Despite this, however, our experimental results show that it performs very
well in practice.

𝑥 𝑦 𝑣 𝑢 𝑧 𝑤 𝑡
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Figure 2 An example of propagation of changes in the low-high order after the deletion of an
edge. Vertices are arranged from left to right in low-high order. (a) After the deletion of (x, y), y

violates the given low-high order. (b)-(c) Moving y between z and t causes a new violation at vertex
v, which in turn causes another violation at vertex u after v is placed between z and y. (d) The
low-high order is finally restored when we place u between v and t.

2 Preliminaries

Let G = (V,E, s) be a flow graph with start vertex s, and let D be the dominator tree of G.
For any vertex v ∈ V , we let In(v) denote the set of vertices that have an edge in G entering
v, i.e., In(v) = {u ∈ V : (u, v) ∈ E}. An edge (x, y) of flow graph G is a bridge if its deletion
makes y unreachable from s. Given a rooted tree T , we denote by T (v) the subtree of T
rooted at v (we also view T (v) as the set of descendants of v). Let T be a tree rooted at s
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with vertex set VT ⊆ V , and let t(v) denote the parent of a vertex v ∈ VT in T . If v is an
ancestor of w, T [v, w] is the path in T from v to w. In particular, D[s, v] consists of the
vertices that dominate v. If v is a proper ancestor of w, T (v, w] is the path to w from the
child of v that is an ancestor of w. Analogously, T [v, w) denotes the path from v to t(w).
Suppose now that the vertex set VT of T consists of the vertices reachable from s. Tree T
has the parent property if for all (v, w) ∈ E with v and w reachable, v is a descendant of
t(w) in T . If T has the parent property and has a low-high order, then T = D [25]. For any
vertex v ∈ V , we denote by C(v) the set of children of v in D. A preorder of T is a total
order of the vertices of T such that, for every vertex v, the descendants of v are ordered
consecutively, with v first. A preorder of D is a low-high order of G, if (d(v), v) ∈ E or there
are two edges (u, v), (w, v) ∈ E such that u < v < w, and w is not a descendant of v in D.

A reducible flow graph [30, 44] is one in which every strongly connected subgraph S

has a single entry vertex v ∈ S such that every path from s to a vertex in S contains v. A
flow graph is reducible if and only if it becomes acyclic when every edge (v, w) such that w
dominates v is deleted [44]. We refer to such an edge as a back edge. Deletion of such edges
reduces the problem of computing dominators on a reducible flow graph to the same problem
on an acyclic graph.

3 Decremental dominators

The algorithm of Georgiadis et al. [20] is based on the concept of derived edges. Recall that
from the parent property of D, for any edge (v, w) of G, d(w) is an ancestor of v in D. Let
(v, w) be an edge of G, with w not an ancestor of v in D. (Such edges do not exist if G is
acyclic.) Then, the derived edge of (v, w) is the edge (v, w), where v = v if v = d(w), v is the
sibling of w in D that is an ancestor of v if v 6= d(w). If w is an ancestor of v in D, then the
derived edge of (v, w) is null. Note that a derived edge (v, w) may not be an original edge of
G. Given the dominator tree D of a flow graph G = (V,E, s) and a list of edges S ⊆ E, we
can compute the derived edges of S in O(|V |+ |S|) time [25].

Now consider the effect of an edge deletion on the dominator tree D. Let (x, y) be the
deleted edge. We call the deletion of (x, y) regular if (x, y) is not a bridge of G, i.e., y
remains reachable from s after the deletion. We let G′ and D′ denote the flow graph and
its dominator tree after the update (G′ = G \ (x, y)). Similarly, for any function f on V ,
we let f ′ be the function after the update. In particular, d′(v) denotes the parent of v in
D′. By definition, D′ 6= D only if x is reachable before the update. We say that a vertex
v is affected by the update if d′(v) 6= d(v), and unaffected otherwise. If v is affected then
d′(v) does not dominate v in G. Since the effect of an edge deletion is the reverse of an edge
insertion, [23, Lemma 1], and [25, Lemma 4.1] imply the following:

I Lemma 1. Suppose x is reachable and the deletion of edge (x, y) is regular, i.e., y does
not become unreachable after the deletion. Then the following statements hold:
(a) All affected vertices become descendants in D′ of a child c of d(y).
(b) A vertex v is affected if and only if (d(v), v) is not an edge of G′ and all edges (u, v) ∈

E \ (x, y) correspond to the same derived edge (u, v) = (c, v) of G.
(c) After the deletion, each affected vertex v becomes a child of a vertex on the critical path

D′[c, d′(y)].
(d) No vertex on D′[c, d′(y)] is affected. Hence, D′[c, d′(y)] = D[c, d′(y)].

We note that statements (a) and (c) hold for arbitrary flow graphs, while (b) and (d) are
true only for acyclic (and reducible) flow graphs. The algorithm of [20] applies Lemma 1 in
order to locate the affected vertices in some topological order of G as follows. For each vertex
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50:6 Dynamic Dominators and Low-High Orders in DAGs

v we maintain a count InSiblings(v) which corresponds to the number of distinct siblings w of
v such that (w, v) is a derived edge. We also maintain the lists DerivedOut(v) of the derived
edges (v, u) leaving each vertex v. As we locate each affected vertex, we find its new parent
in the dominator tree and update the counts InSiblings for the siblings of v. The first step is
to update InSiblings(y). If InSiblings(y) = 1, then we compute the nearest common ancestor
z = d′(y) in D′ of all vertices in In(y). In this case, by Lemma 1(c), z is a descendant of
a sibling c of y in D. Next, we update the InSiblings(v) counts for all v ∈ DerivedOut(y).
Specifically, we decrement InSiblings(v) if v ∈ DerivedOut(c); if InSiblings(v) = 1 then we
identify v as affected and inserted into a FIFO queue Q. Then we repeat the same process
for each vertex extracted from Q. We can locate the new parent d′(v) of each affected vertex
v in D′ as for y, i.e., by computing the nearest common ancestor in D′ of all vertices in In(v).
This way, however, does not guarantee the desired O(mn) total update time. Therefore,
we locate d′(v) by traversing the critical path D[c, d′(y)] in top-down order, until we find a
vertex u such that In(v) contains a vertex that is not a descendant of u in D′. Then we have
d′(v) = d(u). Finally, we can compute the updated InSiblings counts and DerivedOut lists
in a postprocessing step. The analysis in [20] is based on the fact that the affected vertices
that remain reachable increase their depth in D.

3.1 Efficient implementation
Providing a practical version and an efficient implementation of the above algorithm turns
out to be a very challenging task. In particular, we need to incorporate efficient solutions
to the following subproblems: (i) answering ancestor-descendant queries in the dominator
tree D that changes dynamically, (ii) maintaining dynamically the derived edges of G, and
(iii) handling the deletion of bridges. We note that (i) and (ii) are not needed when we
update D incrementally.

Ancestor-descendant queries. Throughout the execution of the deletion sequence, we need
to test in O(1) time the ancestor-descendant relation between pairs of vertices in D, in order
to locate the new parent of each affected vertex v 6= y. To that end, it suffices to recompute
a preorder and a postorder numbering of the vertices in D after each update, since this
takes O(n) time by simply performing a dfs traversal of D. Then, v is a descendant of u
in D if and only if u ≤ v in preorder and v ≤ u in postorder [43]. Another option is to
represent each order (preorder and postorder) with a data structure for the dynamic list
order problem [7, 12]. Both methods guarantee the desired O(mn) total update bound, but
the use of a dynamic list order data structure gives a much faster implementation in practice.

Here, we also take advantage of the fact that for each affected vertex v we can move
the entire subtree of D(v) in the new location in the dynamic lists, rather than inserting
the vertices in D(v) one by one. Specifically, we remove the subtree D(v) from its current
locations in the two dynamic lists and insert them immediately after d′(v) in the preorder
list and immediately before the first descendant of d′(v) in the postorder list. Thus, we have
immediate access to the appropriate location in the preorder list, but we still need to find
the corresponding location in the postorder list. In order to do this search fast, we maintain,
for each v ∈ D, the list C(v) of the children of v in D ordered in preorder. Then, we can
find the first descendant of a vertex u in the postorder list by repeatedly following the links
to the first child in preorder, until we reach a leaf.

We implemented the dynamic preorder and postorder lists by adapting the dynamic list
order data structure of Bender et al. [7] that uses a two-level structure (implementing a
numbering scheme) and supports insertions, deletions and order queries in constant amortized
time. We extend this structure so that it can also support the following operation:
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move(u, v, w): Move the items between u and v (inclusive) from their current location in
the dynamic list and insert them right after w.

We implement the above operation as follows. First, we find the representative nodes (in
the top-level structure) for u and v. We check if the left-representative (right-representative,
respectively) has items in the second-level list that do not belong to the moved set of items;
if there are such items then we split the second-level lists and create new representative
items. After this step, both representative items and every other representative item between
them, have only second-level items that belong to the set we want to move. Hence, we can
quickly move the entire set by linking the left-representative and right-representative to
their new position in the dynamic list, right after w. Finally, we check if we can merge the
representatives that we move or split with their neighbours.

In our experiments, we observed that the above method was several orders of magnitude
faster compared to recomputing a preorder and a postorder numbering in D.

Derived edges. Recall that after finding the affected vertices of an edge deletion, we need
to compute the updated InSiblings counts and DerivedOut lists. The only types of edges
that may change their corresponding derived edge are (i) edges entering affected vertices,
and (ii) edges that enter a former sibling of y from a descendant of an affected vertex. Let S
be the set of these edges. As mentioned above, we can compute the derived edges of S in
O(n+ |S|) time [25], which suffices for our O(mn) bound since every edge in S is adjacent
to at least one vertex that changes depth in D. The method given in [25] for computing
derived edges is based on bucket sorting using a preorder numbering of D. This is not
suitable for our framework, since we do not maintain a preorder numbering of the vertices,
but use a dynamic list order data structure instead. Here we propose a more practical
method. First we note that for each edge (u, v) of type (ii), i.e., u is a descendant of an
affected vertex and d(v) = d′(v) = d(y), we have u = c. Now let (u, v) be of type (i), i.e.,
v is affected so d′(v) ∈ D′[c, y) and u is a descendant of d′(v). If u = d′(v) then u = u, so
suppose u is a proper descendant of d′(v). Let wv be the next vertex on D′[c, y] following
d′(v) (wv = d′(d′(v))), and let zu be the nearest ancestor of u such that d′(zu) ∈ D′[c, y].
Then, u = wv if d′(zu) 6= d′(v), and u = zu if d′(zu) = d′(v). Note that we have already
computed wv, for each affected vertex v, when we locate its new parent in D′. Hence, it
suffices to compute zu for all edges (u, v) where u is a proper descendant of d′(v). We do
that by visiting the ancestors of u until we reach zu. First we mark all vertices on D′[c, y],
so we stop our search when reaching a vertex that has a marked parent. To avoid multiple
visits to the same vertices, we maintain at each vertex w a label l(w), initially null. After
we locate zu, we set l(w) = zu for each visited vertex w. Thus, the next search stops at a
vertex w such that d′(w) is marked or l(w) is not null. Therefore, we can compute all the
new derived edges in O(n+ |S|) time as desired.

Unreachable vertices. After the deletion of an edge (x, y), some vertices may become
unreachable. This happens when (x, y) is a bridge of the current flow graph. Since we deal
with acyclic graphs, this means that (x, y) is the only edge entering y from a reachable vertex.
Hence, we can detect easily if (x, y) is a bridge, since we have InSiblings(y) = 0 and d(y) = x.
In order to achieve O(mn) total running time, we can simply recompute the dominator tree
from scratch after each such deletion, since the total number of bridges that can appear is
at most n− 1. In practice, however, this causes a significant slowdown of our algorithm. A
better idea is to handle the deletion of a bridge (x, y) as follows:
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1. Compute the set of edges Y from vertices in D(y) to vertices in D \D(y). Note that
no edge e ∈ Y is a bridge in G \ (Y \ e), since for any vertex v ∈ D \D(y), all edges in
(w, v) ∈ Y correspond to the same derived edge (w, v).

2. Process each edge e ∈ Y as a regular deletion.
3. Delete D(y) from the dominator tree D′ of G′, and update accordingly the data structures.
Note that Steps 1 and 3 take O(m) time. Also, since in Step 2 we have regular deletions, the
total running time remains O(mn).

4 Decremental low-high order

Now we consider how to update a low-high order of an acyclic flow graph G = (V,E, s) after
the deletion of an edge (x, y). First, we show how to achieve an O(mn) total update bound
using a sparsification technique, similar to the one used for the incremental problem in [19].
The idea is to maintain a subgraph H = (V,EH) of G with O(n) edges that has the same
dominator tree as G. By Lemma 1(c), each vertex v with (d(v), v) 6∈ E has two entering
edges (u, v) and (w, v) such that u 6= w; then, it suffices to add two such edges in H.

I Corollary 2. Let H = (V,EH) be subgraph of an acyclic flow graph G such that EH

contains:
(a) All edges (u, v) ∈ E such that u = d(v).
(b) Two edges (u, v) and (w, v) such that u 6= w for each vertex v with (d(v), v) 6∈ E.
Then H has the same dominator tree as G. Moreover, a low-high order of H is also a valid
low-high order of G.

Note that the two edges in Corollary 2(b) exist by Lemma 1(c). Clearly H = (V,EH)
has O(n) edges as required. Now, we can compute a low-high order of H in O(|EH |) = O(n)
time using the static algorithm of [25]. The algorithm arranges the children C(x) of each
non-leaf vertex x of D in a local low-high order δx. First, we place all vertices v ∈ C(x)
with (x, v) ∈ E in arbitrary order in δx. Then, we process the remaining children of x in
topological order. For each such vertex v, H contains edges (u, v) and (w, v) such that u 6= w,
so u and w precede v in the topological order and are already located in δx. Hence, it suffices
to insert v in any location in δx between u and w. When we have computed all the local
low-high orders, we can get the complete low-high order of G by arranging each subtree D(v)
of D immediately after v. After the deletion of (x, y) we need to update H in order to ensure
that it still satisfies Corollary 2. We can do this during the update of the derived edges, after
we have located all their affected vertices and their new parents in D′. Therefore, we get the
following result.

I Theorem 3. We can maintain a low-high order of a reducible flow graph G with n vertices
through a sequence of edge deletions in O(mn) total time, where m is number of edges in G
before all deletions.

4.1 Bounded search algorithm
Here we present an algorithm that updates a low-high order much faster in practice than
the above algorithm. To that end, we also need to maintain the lists DerivedIn(v) of the
derived edges (u, v) entering each vertex v. The algorithm is based on two ideas. First, we
observe that it is easy to update the low-high order for the affected vertices. The problematic
case is to update the low-high order for unaffected vertices. For the latter case, we propose
a bounded search process that identifies the vertices that may need to be relocated in
low-high order.
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Affected vertices. The crucial observation is that the decremental dominators algorithm
of Section 3 discovers the affected vertices in topological order. Thus, after we move all
the affected vertices in their new locations in D′ and update their incoming derived edges,
we can position them in low-high order. For each affected vertex v, if (d(v), v) 6∈ E, then
DerivedIn(v) contains two vertices u and w such that u < w in low-high order, so we can
insert v between these two vertices.

Unaffected vertices. Now we deal with the more challenging case of updating the low-high
order of unaffected vertices. As we already observed, a single edge deletion may cause many
changes in a given low-high order, even if there are no affected vertices. (See Figure 2.) Our
first step is to identify the initial set I of unaffected vertices that violate the low-high order
after updating the dominator tree and the low-high order of the affected vertices. Fixing the
low-high order of the vertices in I may invalidate the low-high order of other vertices that
are reachable from I. So, our next step is to compute a set X (I ⊆ X) of vertices that may
need to be relocated in low-high order due to the changes in the low-high order of I. The
next lemma determines the location of the vertices in I.

I Lemma 4. Let v be an unaffected vertex that violates the given low-high order after
updating the dominator tree in response to an edge deletion (i.e., v ∈ I). Then d′(v) = d(y).

Proof. A vertex v may violate the low-high order only if it has an entering edge (u, v) such
that u is a descendant of an affected vertex and the derived edge of (u, v) changes. From
the parent property of the dominator tree we have that for all (v, w) ∈ E with v and w

reachable, v is a descendant of d(w) in D. Since, by Lemma 1(c), all affected vertices become
descendants of a child c of d(y), the derived edge of (u, v) changes only if v is a child of d(y).
Since v is unaffected, d′(v) = d(v) = d(y). J

The above lemma also helps us limit our search for candidate vertices that may need to
be relocated in the low-high order in response to the update of the position of the vertices in
I. Since I consists only of children of d(y), we only need to search among the unaffected
children of d(y) that are reachable from I. As we relocate vertices in low-high order, this
process may cascade. See Figure 2.

In order to bound the total running time of our algorithm by O(mn), we maintain a
sparse spanning subgraph H = (V,EH) of G with O(n) edges that satisfies Corollary 2,
together with the derived edges EH of EH . We also maintain the invariant that for each
vertex v such that (d(v), v) 6∈ E, the two derived edges (u, v), (w, v) ∈ EH are such that
u < v < w in low-high order.

Our algorithm, FixLH(y), computes a set of vertices X ⊆ C ′(d(y)) that we will need to
process in order to ensure that they satisfy a low-high order of G′. Initially, we set X = I

and execute a search from each vertex in I in order to discover vertices that may violate
the given low-high order due the replacement of the vertices in I. During this search, we
would like to avoid any unnecessary propagation of changes in the low-high order. To achieve
this, when we process a vertex u ∈ X, we examine its outgoing derived edges in EH . For
each such edge (u, v) we test if v satisfies the current low-high order without considering the
derived edges from X. If this is not the case, then we insert v into X. This bounded search
is outlined by Procedure scan. Note that we can only afford to check a constant number k of
entries in DerivedIn(v) in order to have O(n) running time per deletion. (In our experiments
we set k ≤ 3.) Thus, we get the following result.

I Lemma 5. Algorithm FixLH correctly updates the low-high order of the children of d(y) in
D′ in O(n) time.
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Algorithm 1 FixLH(y).

1 I = children of d(y) that violate the low-high order of G after the deletion /*I ⊆ {y}
if y is not affected; otherwise, I contains unaffected children of d(y) that

have an entering edge from a descendant of an affected vertex */

2 initialize X = I /*X will contain the unaffected children of d(y) that need to be

relocated in low-high order */

3 foreach vertex u ∈ I do
4 if u not scanned then scan(u)
5 end
6 Process vertices in X in topological order to place them in low-high order using the

edges in EH

Procedure scan(u).

1 foreach derived edge (u, v) ∈ EH do
2 if v 6∈ X and (d(v), v) 6∈ E then
3 if u < v in low-high order then
4 examine the first k = O(1) edges in DerivedIn(v) to find a replacement

derived edge e = (w, v) with w 6∈ X and w < v in low-high order
5 end
6 else
7 examine the first k = O(1) edges in DerivedIn(v) to find a replacement

derived edge e = (z, v) with z 6∈ X and v < z in low-high order
8 end
9 if a replacement derived edge e was found then

10 replace (u, v) with e in EH

11 end
12 else
13 insert v into X
14 scan(v)
15 end
16 end
17 end

Proof. To prove the correctness of algorithm FixLH, first note that it correctly updates the
low-high order of all vertices in X. Now we need to argue that the remaining vertices satisfy
the updated low-high order. Observe that any vertex v that is visited during the search for
X, is not inserted into X only if (d(v), v) ∈ EH or if both derived edges in EH entering v
are not in X. Clearly, the same holds for all vertices that are not visited during this process.
Hence, any vertex v 6∈ X does not violate the computed low-high order before and after
relocating the vertices in X.

Now we argue that the algorithm runs in O(n) time. Each vertex v may change its two
entering edges in EH at most O(1) times, since we look for replacement edges only in the
first O(1) edges in DerivedIn(v). Thus, DerivedIn(v) will be examined in lines 4 and 7 of
Procedure scan a constant number of times in total for each v, so we spend constant time for
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each vertex. Finally, we need to process the vertices of X in topological order. Note that
the vertices may be inserted in X in arbitrary order. We can sort them topologically by
computing a topological order of the of subgraph of H = (V,EH) that is induced by the
vertices of X. Since EH has O(n) edges, this steps also takes O(n) time. J

I Remark 6. We also test the following, slightly more complicated, variant of Algorithm
FixLH. In line 6, where we place each vertex of u ∈ X in low-high order, we do not use
only the derived edges entering u that are contained in EH , but also consider a constant
number of derived edges entering u contained in E \ EH . Let E(u) be the set of derived
edges entering u that we consider in order to decide the location of u in the low-high order.
Also, let V (u) = {w ∈ V : (w, u) ∈ E(u)}, i.e., the vertices from which the derived edges in
E(u) originate. Then, we place u right after the median vertex in V (u), sorted with respect
to the low-high order. By doing this placement for u, we hope that Procedure scan will have
better chances for locating replacement derived edges.

4.2 Implementation issues
We extend our decremental dominators algorithm of Section 3 so that it also maintains a
low-high order as described above. The following implementation issues affect the efficiency
of our algorithm in practice.

Representation of a low-high order. Since a low-high order is a preorder of D, we can use
the same dynamic list order data structure as in Section 3.1. This choice, however, has the
serious drawback that we may need to update the data structures for both the preorder and
the postorder of D much more often than in Section 3.1. For this reason, we use a separate
dynamic list order data structure for the low-high order, which is updated independently of
the preorder and the postorder of D.

Unreachable vertices. As in the decremental dominators algorithm of Section 3.1, we have
to take special care of how the deletion of a bridge (x, y) is handled. To that end, we first
tested the two methods mentioned in Section 3.1: (a) Run a static algorithm to recompute
the dominator tree D and a low-high order from scratch, and (b) Process each edge e = (u, v)
with u a descendant of y in D and v not a descendant of y in D as a regular deletion (e
cannot be a bridge) and update the low-high order after each such deletion. Then delete
(x, y), making all descendants of y in D unreachable from s.

Unlike the decremental dominators algorithm, choice (b) here is not always superior to (a)
because during the sequence of regular deletions a vertex may be scanned several times when
the FixLH process is executed. Hence, we also implemented the following improvement, which
updates the low-high order of unaffected vertices after the sequence of regular deletions is
processed. Specifically, we first update the dominator tree as in (b) but do not compute the
complete low-high order after each regular deletion of an edge e = (u, v). As we process each
regular deletion (u, v), we also fix the low-high order of each affected vertex. Let A? denote
the set of all affected vertices found during all regular deletions. For each edge (w, t) such
that w is a descendant of an affected vertex in A? we insert t in a list I?. We compute a set
X? of vertices which may need their low-high to be updated by executing scan(v), starting
from all vertices v in I? that have not been scanned yet. Finally, we sort X? topologically
and update the low-high order of all vertices in X?.

All of the above three methods are executed in O(m) time per bridge deletion, so they
all guarantee the O(mn) total running time. In our experiments, however, the last method
turned out to be an order of magnitude faster than (a) and (b).
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5 Empirical Analysis

We wrote our implementations in C++, using g++ v.4.6.4 with full optimization (flag -O3)
to compile the code. We report the running times on a Dell Precision Tower 7820 CTO
Base machine running Ubuntu (16.04 LTS), equipped with an Intel Xeon Gold 5118 2.3 GHz
processor with 16 MB L3 cache and 192GB DDR4-2400 RAM at 2,666 MHz. We did not use
any parallelization, and each algorithm ran on a single core. We report CPU times measured
with the getrusage function.

Table 1 Graph instances used in the experiments. The original graphs are taken from [35] and
[37], and were converted to DAGs by including vertices and edges reachable from the start vertex and
deleting depth-first search back edges. The graph categories are: source code (SC), social network
(SN), peer to peer network (P2P), web graph (WG), communication network (CN), and product
co-purchasing network (PN). The number of vertices n and edges m refer to the produced instances.

Graph Details
Graph Type n m Reference

linux SC 1524 3687 KONECT [35]
advogato SN 2320 17809 KONECT [35]
p2p-Gnutella31 P2P 14149 32363 SNAP [37]
Amazon0302 PN 55414 126663 SNAP [37]
Soc-Epinions1 SN 17117 158754 SNAP [37]
web-BerkStan WG 29145 169870 SNAP [37]
WikiTalk CN 49430 664139 SNAP [37]
Amazon0601 PN 276049 1259198 SNAP [37]
web-Google WG 600493 2013471 SNAP [37]

Table 1 shows some statistics about the graphs used in our experimental evaluation. In
all test instances we select the first vertex of the graph as the start vertex. (Choosing a
random start vertex produces similar results.) We produce decremental instances as follows.
The number of edges that will be deleted is controlled by a parameter p ∈ [0, 1]. Let m be
the initial number of edges in the graph. We create a sequence of deletions by choosing
bp ·mc edges in the original graph uniformly at random. For each graph and each choice of p,
we create 10 such random instances using different seeds for the initialization of the random
functions, and report the average running times. (For a given input graph, two values p1 < p2
of p, and a fixed seed, the deletion sequence for p1 is a subsequence of the deletion sequence
for p2.) The algorithms compute (in static mode) the dominator tree (and a low-high order
for the decremental low-high order algorithms) of the original graph and then they run in
decremental mode, processing the sequence of deletions. Note that during the execution of
the algorithms some vertices may become unreachable, and thus some subsequent deletions
may involve a disconnected portion of the graph. These deletions are detected and ignored
by all algorithms. For computing dominators in static mode we use the SNCA algorithm
from [27], which is a simplified variant of the classic Lengauer-Tarjan algorithm [36] that
performs very well in practice. (Algorithm SNCA was generally faster than other well-known
algorithms tested in [27].) As an intermediary, this algorithm computes a sparse subgraph H
of the input graph G that has the same dominators as G. The indegree of each vertex in
H is at most 2, so H has at most 2(n− 1) edges (the start vertex has zero indegree). For
computing a low-high order, we augment this algorithm with the low-high order algorithm
for acyclic graphs from [25]. We speedup the computation of a low-high order by using only
the edges in H (instead of all the edges of G).
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Dominators. We compare our efficient algorithm, Decr of Section 3, with two dynamized
versions of SNCA. (We did not consider the algorithm of Cicerone et al. [10] since it requires
O(n2) space, and therefore is impractical for large graphs.) The first algorithm, DSNCA1,
first tests if the deleted edge (x, y) belongs to the sparse subgraph H. If not, then the
dominator tree is not affected and the algorithm does nothing. Otherwise, it simply runs
SNCA from scratch. The second algorithm, DSNCA2, also performs the same test, but if
(x, y) ∈ H, then it computes the nearest common ancestor z of x and y in D and runs SNCA
only for the subgraph of G induced by D(z).

The average running times are reported in Table 3. Our experimental results show that
the new algorithm Decr is much faster than both DSNCA1 and DSNCA2. In particular, Decr
is consistently at least two orders of magnitude faster than DSNCA1 and DSNCA2. For
several graphs considered in our experiments, a large fraction of the vertices tended to get
disconnected from the start vertex after the deletion of about 50% of the edges, and therefore
many subsequent deletions are ignored. We also observe that recomputing the dominator
tree only for the subgraph induced by D(z) (where z is the nearest common ancestor of x
and y in D) does not provide a significant improvement in the running time of DSNCA, and
it may even cause slowdown in some instances, due to the overhead of computing the nearest
common ancestor of x and y in D.

Fully-dynamic case. We also report some experimental results for our fully dynamic al-
gorithm, that we refer to as Dyn, that maintains the dominator tree of a DAG under a mixed
sequence of edge insertions and deletions. We obtain this algorithm by incorporating the
insertion method of [23] in our decremental algorithm. Note that, as in our decremental
algorithm, we need to maintain the same data structures for the derived edges and for
the dynamic preorder and postorder lists. (These data structures are not required in the
incremental setting.) The fully dynamic algorithm does not preserve the O(mn) worst case
bound of the incremental or the decremental algorithm because the vertex depths in the
dominator tree no longer change monotonically. Despite this, however, our experimental
results show that it performs very well in practice.

We produce fully dynamic instances as follows. The number of edges that will be inserted
and deleted are controlled by parameters pi ∈ [0, 1] and pd ∈ [0, 1], respectively. Let m be
the initial number of edges in the graph. We create a sequence of insertions and deletions by
choosing mi = bpi ·mc random edge insertions and md = bpd ·mc random edge deletions.
This means that the flow graph initially has m′ = m−mi edges. For each graph and each
choice of pi, pd, we create 10 such random instances using different seeds for the initialization
of the random functions, and report the average running times. The algorithms compute (in
static mode) the dominator tree of the original graph and then they run in fully-dynamic
mode, processing the (intermixed) sequence of insertions and deletions. As in the decremental
algorithm, we compute the dominator tree in static mode with the SNCA algorithm from [27].
In the fully-dynamic mode, the type of each update operation is chosen uniformly at random,
so that there are mi insertions interspersed with md deletions. During this simulation that
produces the dynamic graph instance we keep track of the edges currently present in the
graph. If the next operation is a deletion then the edge to be deleted is chosen uniformly at
random from the edges in the current graph.

Here we only give some preliminary experimental results, presented in Table 2, and defer
to the full version of the paper for a more comprehensive experimental study. As in the
decremental setting, we observe significant speed ups with respect to DSNCA1 and DSNCA2.
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Table 2 Average running times in seconds over 10 random intermixed update sequences of edge
insertions and deletions. The suffixes in the graph names correspond to the percentage of inserted
edges and deleted edges, respectively.

Graph_insertion_deletion Fully Dynamic Dominators
DSNCA1 DSNCA2 Dyn

soc-Epinions1_10_10 11.720 9.072 0.248
soc-Epinions1_30_40 10.620 8.956 0.228
soc-Epinions1_40_20 10.696 7.396 0.268
Amazon0302_30_40 0.900 1.424 0.104
web-BerkStan_30_40 0.156 0.284 0.080
web-BerkStan_40_20 0.992 1.584 0.072

Low-high order. Here we examine the efficiency of our algorithm Decr-LH, using the slightly
more complicated variant for placing of a vertex in low-high order, described in Remark 6.
In some instances, this variant performed significantly better than the simple version, as
shown in Figure 3. We compare the running time of Decr-LH with a dynamized version of
SNCA that also computes a low-high order of an acyclic flow graph. This algorithm, that
we refer to as DSNCA-LH, works as follows. It maintains a sparse subgraph H = (V,EH)
of G such that for each v 6= s, (d(v), v) ∈ EH , or EH contains edges (u, v) and (w, v) with
u < v < w. When we delete an edge (x, y) we test if this edge belongs to H. If not, then
the dominator tree and the low-high order are not affected, so we do nothing. Otherwise,
we look into the entering edges of v and try to find a replacement edge for (x, y) so that y
satisfies the current low-high order. If this fails, then we compute the dominator tree and
the low-high from scratch.
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Figure 3 Running time of two implementations of Decr-LH. The first, Decr-LH-Simple, uses the
simple method for placing of a vertex in low-high order, as described in Algorithm FixLH, while the
second, Decr-LH-Median, uses the method described in Remark 6.
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Table 3 Average running times in seconds over 10 random deletion sequences. The suffixes in
the graph names correspond to the percentage of deleted edges p = 5%, 10%, 20%, 40%, and 80%.
Running times exceeding 2.5 hours are not reported.

Graph_deletion Decremental Dominators Decremental Low-High
DSNCA1 DSNCA2 Decr DSCNA-LH Decr-LH

linux_05 0.060 0.056 0.001 0.272 0.001
linux_10 0.108 0.116 0.001 0.604 0.001
linux_20 0.228 0.212 0.004 0.974 0.004
linux_40 0.428 0.396 0.004 1.488 0.004
linux_80 0.620 0.640 0.004 2.212 0.004
advogato_05 0.084 0.084 0.008 0.760 0.008
advogato_10 0.080 0.080 0.004 0.828 0.012
advogato_20 0.084 0.080 0.004 0.780 0.008
advogato_40 0.084 0.080 0.008 0.684 0.008
advogato_80 0.084 0.080 0.008 0.784 0.008
p2p-Gnutella31_05 0.916 0.788 0.020 4.648 0.064
p2p-Gnutella31_10 1.924 1.712 0.032 4.912 0.072
p2p-Gnutella31_20 2.696 2.520 0.040 6.340 0.100
p2p-Gnutella31_40 2.260 2.116 0.048 5.096 0.104
p2p-Gnutella31_80 2.504 2.188 0.044 5.368 0.088
Amazon0302_05 6.936 10.276 0.188 32.136 1.740
Amazon0302_10 7.720 11.148 0.168 38.216 1.920
Amazon0302_20 6.480 10.088 0.152 34.404 1.668
Amazon0302_40 7.436 11.040 0.170 41.552 1.860
Amazon0302_80 8.376 11.892 0.172 45.224 2.084
soc-Epinions1_05 5.116 3.480 0.072 10.188 0.092
soc-Epinions1_10 10.708 7.684 0.092 21.540 0.112
soc-Epinions1_20 20.996 14.480 0.124 45.308 0.144
soc-Epinions1_40 43.012 31.372 0.204 97.144 0.204
soc-Epinions1_80 100.472 62.528 0.312 198.832 0.340
web-BerkStan_05 5.204 4.464 0.060 16.300 0.224
web-BerkStan_10 10.524 8.976 0.072 31.724 0.348
web-BerkStan_20 18.176 14.468 0.152 63.608 0.656
web-BerkStan_40 26.252 17.928 0.204 118.252 0.900
web-BerkStan_80 31.044 23.872 0.212 401.040 0.992
WikiTalk_05 71.068 97.160 0.984 159.068 2.120
WikiTalk_10 141.392 192.788 1.212 329.100 2.888
WikiTalk_20 282.890 386.008 1.772 945.708 4.100
WikiTalk_40 569.240 746.324 2.480 1533.260 6.436
WikiTalk_80 923.448 1122.870 3.364 2010.560 7.956
Amazon0601_05 871.088 790.916 1.424 2879.210 36.380
Amazon0601_10 1564.340 1417.060 2.524 4723.031 41.568
Amazon0601_20 2202.820 2118.520 1.920 4878.070 43.888
Amazon0601_40 2388.700 2068.550 3.756 7674.280 50.004
Amazon0601_80 2505.030 2395.961 4.276 7706.976 55.644
web-Google_05 2644.380 >2.5h 1.320 11914.512 6.792
web-Google_10 4767.340 >2.5h 1.756 >2.5h 10.420
web-Google_20 7160.680 >2.5h 3.344 >2.5h 16.476
web-Google_40 >2.5h >2.5h 4.444 >2.5h 20.108
web-Google_80 >2.5h >2.5h 4.892 >2.5h 20.528
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The corresponding average running times are reported in the last two columns of Table 3.
As above, our efficient algorithm Decr-LH is much faster than DSNCA-LH. We also observe
that in most instances, maintaining a low-high order with our decremental algorithm Decr-LH
incurs a relatively low overhead with respect to Decr. For some instances, such as product
co-purchasing networks and web graphs (Amazon0302, Amazon0601, web-BerkStan and
web-Google), however, the overhead of maintaining a low-high order is significantly higher.
In our experiments this was due to the fact that a low-high order may change substantially
(i.e., many vertices will be inserted into set X maintained by Algorithm FixLH), even if the
dominator tree remains the same. (See Figure 2.)
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