
Stronger ILPs for the Graph Genus Problem
Markus Chimani
Theoretical Computer Science, Osnabrück University, Germany
markus.chimani@uos.de

Tilo Wiedera
Theoretical Computer Science, Osnabrück University, Germany
tilo.wiedera@uos.de

Abstract
The minimum genus of a graph is an important question in graph theory and a key ingredient in
several graph algorithms. However, its computation is NP-hard and turns out to be hard even
in practice. Only recently, the first non-trivial approach – based on SAT and ILP (integer linear
programming) models – has been presented, but it is unable to successfully tackle graphs of genus
larger than 1 in practice.

Herein, we show how to improve the ILP formulation. The crucial ingredients are two-fold. First,
we show that instead of modeling rotation schemes explicitly, it suffices to optimize over partitions
of the (bidirected) arc set A of the graph. Second, we exploit the cycle structure of the graph,
explicitly mapping short closed walks on A to faces in the embedding.

Besides the theoretical advantages of our models, we show their practical strength by a thorough
experimental evaluation. Contrary to the previous approach, we are able to quickly solve many
instances of genus > 1.

2012 ACM Subject Classification Mathematics of computing → Graphs and surfaces; Mathematics
of computing → Graph algorithms; Theory of computation → Linear programming

Keywords and phrases algorithm engineering, genus, integer linear programming

Digital Object Identifier 10.4230/LIPIcs.ESA.2019.30

Funding Supported by the German Research Foundation (DFG) grant CH 897/2-2.

1 Introduction

The (orientable) genus of a graph G is the smallest number γ such that G can be embedded
on an orientable surface of genus γ. The problem of determining γ is the graph genus problem.

Algorithmically exploiting a low graph genus is a vivid research field that spawned
many results. It plays a key role for the complexity of certain problems, in particular w.r.t.
polynomial-time approximation schemes (PTAS) and fixed parameter tractability (FPT) [8].
Algorithms tailored to achieve faster runtime on planar graphs can often be extended for
the bounded genus setting (given a corresponding embedding, see below). For example, a
bounded graph genus leads to: linear-time graph isomorphism testing [7]; FPT runtime
for dominating set [15]; subexponential FPT runtime for many bidimensional problems,
including vertex cover and variants of dominating set [13]; a quasi-PTAS for capacitated
vehicle routing [1]; stronger preprocessing for several Steiner problems [29]; and many more.

Apart from such algorithmic uses, the problem is of independent interest in graph theory,
where one is concerned with finding the genus of certain graph families (or even single
graphs) [3–5, 12, 17, 18, 21, 22, 24, 26, 30–33,37]. Typically, this involves induction and tedious
arguments for the base cases.

Although genus is one of the best-established measures for non-planarity, its NP-hardness
was proved relatively late in 1989 by Thomassen [35]. In contrast to other non-planarity
measures like crossing number or skewness (or equivalently, maximum planar subgraph),
and even compared to the maximum graph genus problem, there has been little algorithmic

© Markus Chimani and Tilo Wiedera;
licensed under Creative Commons License CC-BY

27th Annual European Symposium on Algorithms (ESA 2019).
Editors: Michael A. Bender, Ola Svensson, and Grzegorz Herman; Article No. 30; pp. 30:1–30:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/228086831?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://orcid.org/0000-0002-4681-5550
mailto:markus.chimani@uos.de
https://orcid.org/0000-0002-5923-4114
mailto:tilo.wiedera@uos.de
https://doi.org/10.4230/LIPIcs.ESA.2019.30
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

30:2 Stronger ILPs for the Graph Genus Problem

progress. In 1988, Thomassen gave an algorithm that computes the genus of a restricted
class of graphs in polynomial time [36] (graphs that have so-called LEW-embeddings). The
problem is in FPT w.r.t. its natural parameterization due to Robertson and Seymour [34];
Mohar gave a constructive proof for such an FPT-algorithm [25]. Still, the proof spans seven
papers of more than 100 pages in total. It was later simplified and extended to graphs with
bounded treewidth [19]. It remains open to find a practically feasible FPT-algorithm [27].
No general approximation algorithm is known, although some progress was recently made for
restricted variants and closely related problems [6,20,23]. The first general exact algorithm –
beyond explicit enumeration – was described only recently [2]. It uses ILP/SAT solving to
optimize over all rotation systems of the input, but fails to compute genera higher than 1 in
practice. Overall, there is no practical, non-trivial algorithm to find low-genus embeddings,
not even heuristically. Clearly, this is a main stumbling block for applying any of the
genus-based algorithms mentioned above in practice.

Contribution. In this paper, we use the existing ILP as a starting point to develop a
practically feasible model. To this end, we establish two novel core ideas. The original
approach needs to model the embedding’s rotation scheme (see below) explicitly, essentially
considering a Hamiltonian cycle problem for each graph node. We show how to only consider
partitions of the bidirected arc set to deduce a rotation scheme; among other benefits, this
allows us to use fewer variables. The second concept is to explicitly consider the cycle
structure of the graph, by examining short, closed walks of the graph. Overall, we obtain
both theoretically and practically stronger LP-relaxations. We thus present the first approach
to compute the genus of (reasonably sized) graphs in practice, even for genera > 1.

2 Preliminaries

We only need to consider biconnected (since genus is additive over biconnected components),
simple graphs where each node has degree ≥ 3: Given an undirected graph, we obtain its
bidirected counterpart by creating two oppositely directed arcs uv, vu for each edge {u, v}.
Given a graphH, we denote its nodes, edges, and arcs by V (H), E(H), and A(H), respectively.
For the input graph G, we may simply write V , E, and A. A closed walk c on a bidirected
graph G is a set of arcs such that the induced subgraph G[c] is connected and for each node
the number of entering arcs is equal to that of leaving arcs. A cycle is a closed walk that
visits no node more than once. For a node v, we refer to the arcs entering (leaving) v as
δ+(v) (δ−(v), respectively). Let N(v) be the nodes adjacent to node v. Given two subsets W ,
U of nodes, we define W ×A U := (W × U) ∩A as the arcs from W to U . Given a partition,
we refer to its partition sets as cells; this term should not be confused with faces of an
embedding. For k ∈ N, let [k] := {1, . . . , k}.

Graph Embeddings. A drawing D of an undirected graph G = (V,E) on an orientable
surface S is a set of points P and curves C on S, such that there are bijections DV : V → P and
DE : E → C. We require that for each edge uv the two endpoints of DE(uv) are DV(u),DV(v).
A drawing is crossing free if for any two edges e, f , DE(e) is disjoint from DE(f) except for
common endpoints. We say that a graph is planar if it admits a crossing free drawing on the
sphere. A crossing free drawing D induces a cyclic rotation scheme Π of edges around each
node, an embedding. From a combinatorial perspective, Π fully specifies D and the genus
minimal surface that D can be drawn on. The regions bounded by edges are the faces of Π.

M. Chimani and T. Wiedera 30:3

Given an embedding Π, we may identify its faces by tracing them as follows: Consider
the bidirected counterpart of G. Starting at a node v, we traverse an arc vw and continue
with the cyclically succeeding arc leaving w (w.r.t. the order of the undirected edges in Π).
We iterate this until we again arrive at vw, closing the traced face’s boundary. Repeating
this operation until all edges are traversed exactly once in both directions gives all faces of Π.
The traversed arcs of a face form a closed walk. If a node (or edge) appears more than once
on the walk, we call this node (or edge) singular. The face tracing will allow us to count the
number fΠ of faces. Using the Euler characteristic |V |+ fΠ − |E| = 2− 2γ, we are able to
determine the lowest-genus (i.e., γ) surface that Π can be drawn on. Algorithmically, we
thus ask for an embedding yielding the maximum number of faces.

Integer Linear Programming. A linear program (LP) consists of a cost vector c ∈ Qd
together with a set of linear inequalities, called constraints, that define a polyhedron P in
Rd. In polynomial time, we can find a point x ∈ P that maximizes the objective value cᵀx.
Unless P = NP, this is no longer true when restricting x to have integral components; the
so-modified problem is an Integer Linear Program (ILP). Conversely, the LP-relaxation of
an ILP is obtained by dropping the integrality constraints on its variables. Typically, there
are several ways to reduce a given NP-hard problem to an ILP. These reductions are referred
to as models. To achieve good practical performance, one aims for a small model where the
objective value of the LP-relaxation is close to that of the ILP. This is crucial, as ILP solvers
rely on iteratively computing LP-relaxations to obtain dual bounds on the integral objective.
When a model has too many constraints to be solved in its entirety, it is often sufficient to
use only a reasonably sized constraint subset to achieve a provably optimal solution. Hence,
we may dynamically add constraints, during the solving process; this is called separation. We
say that model A is at least as strong as model B, if for all instances, the LP-relaxation’s
value of model A is no worse than that of B. If there also exists an instance for which A’s
LP-relaxation yields a tighter value than that of B, we call A stronger than B.

Common Foundation and Predecessor Model. As the known model [2], ours will simulate
the face tracing algorithm. As such, both models share a common foundation that we borrow
from [2]. For the sake of completeness, we repeat its definition below: We use variables
xi that are 1 if and only if face i exists, and variables xai that are 1 if and only if arc a
participates in the boundary of face i. Let f̄ be an upper bound on the number of faces. We
use the shorthands x(I,A) :=

∑
i∈I,a∈A x

a
i and x(A) := x([f̄], A); thereby, we may omit curly

braces when providing sets of cardinality one. Consider the following (by itself insufficient!)
model (1a–1e) that we call ILPBase.

max
∑f̄
i=1 xi (1a)

s.t. 3xi ≤ x(i, A) ∀i ∈ [f̄] (1b)
x(a) = 1 ∀a ∈ A (1c)
x(i, δ−(v)) = x(i, δ+(v)) ∀i ∈ [f̄], v ∈ V (1d)
xi, x

a
i ∈ {0, 1} ∀i ∈ [f̄], a ∈ A (1e)

Following [2], ILPBase ensures that the faces form a partition of the arc set such that each
cell consists of at least three arcs and is a collection of closed walks.

It remains to ensure that the faces are consistent with some rotation scheme of the edges
around the nodes. In [2], this is achieved via predecessor variables, and we denote the model
by ILPPre in the following. It uses ILPBase and additionally (2a–2d). The idea is to establish

ESA 2019

30:4 Stronger ILPs for the Graph Genus Problem

a cyclic order of the incident edges of each node by a cut-based sub-ILP known from the
traveling salesman problem.

xvwi ≥ xuvi + pvu,w − 1, xuvi ≥ xvwi + pvu,w − 1 ∀i ∈ [f̄], v ∈ V, u, w ∈ N(v) : u6=w (2a)∑
u∈N(v):
u6=w

pvw,u = 1,
∑
u∈N(v):
u6=w

pvu,w = 1 ∀v ∈ V, w ∈ N(v) (2b)∑
u∈W,w∈N(v)\W pvu,w ≥ 1 ∀v ∈ V, W (N(v) : ∅ 6= W (2c)

pvu,w ∈ {0, 1} ∀v ∈ V, u, w ∈ N(v) : u 6= w (2d)

3 Realizability Model

In contrast to the explicit modeling of an embedding in ILPPre, we establish the existence
of an embedding implicitly. Our realizability constraints (see (3) later) require only the
variables of ILPBase. We first need some auxiliary concepts. A graph G = (V,A) is loopy if
it is directed, connected, each node has at least one incoming arc, and for each arc uv ∈ A it
holds that K(uv) := G[{s : sv ∈ A} ∪ {t : ut ∈ A}] is a complete bipartite graph Kk,k for
some k ∈ N, such that each arc is directed from the cell of u to that of v w.r.t. the bipartition.

I Lemma 1. Loopy graphs are Hamiltonian, i.e., they contain a cycle traversing all nodes.

Proof. We first show that any loopy graph allows a cycle cover of pairwise node-disjoint
cycles. Assume it does not, consider a collection C of pairwise node-disjoint cycles covering
as many nodes as possible, and let v be an uncovered node. By loopiness, there exists a
bipartition that induces two cells, an arc uv, and K(uv) has a node w (possibly u = w) in
the cell of u, such that w is not contained in any cycle of C: for any ` nodes of one cell in a
cycle c ∈ C, c also contains ` nodes of the other cell. As there are only finitely many nodes,
we find a new cycle by iterating our argument, i.e., traversing the cycle’s arcs in reverse
order, thus increasing our cycle cover; a contradiction.

Now, let C be a node-disjoint cycle cover. For a cycle c ∈ C, an arc a connecting V (c)
with V \ V (c) exists by connectivity. Hence, K(a) contains an arc uv of c and another arc
wx of a different cycle c′ ∈ C. We join c with c′ to a single cycle by replacing uv,wx with
ux,wv. Iterating this yields the claim. J

I Theorem 2. A graph G allows an embedding Π with at least ξ faces if and only if there
exists a partition P of A(G), such that
(a) P consists of at least ξ cells;
(b) every cell of P is a set of pairwise node-disjoint closed walks; and
(c) for all subsets X ⊆ P , nodes v ∈ V (G), and non-empty subsets W (N(v), we have
{wv, vw : w ∈W} 6=

⋃
x∈X{a ∈ x : v incident to a}.

Before giving the formal proof, let us provide some intuition on property (c): It models
that the rotation around each node v is consistent. While in ILPPre constraints (2a–2d)
model the rotation explicitly, property (c) ensures the existence of a feasible rotation by
preventing subcycles. In the rotation around v, any two subsequent arcs must share an edge
or a face. Hence, there cannot exist a proper subset W of v’s neighbors, such that exactly the
arcs between v and W belong to a subset X of faces. As shown below this is also sufficient.

Proof (of Theorem 2). (=⇒) We obtain P by creating a cell for each face f of Π: it
contains exactly the arcs traversed by f . This satisfies (a) and (b). Assume that (c)
is not satisfied, i.e., there exist X, v,W (following the above selection rules) such that

M. Chimani and T. Wiedera 30:5

{wv, vw : w ∈W} =
⋃
x∈X{a ∈ x : v incident to a}. Since W is a proper subset of N(v), X

cannot span all faces incident with v. We choose any face contained (not contained) in X
and denote it by f (resp. g). Since Π is an embedding, there exists a sub-sequence of edges
incident with v that corresponds to a dual path from f to g. But according to (c), all edges
incident with X join two faces in X.
(⇐=) We find an embedding Π by forming a face from each component of each cell of P . We
establish feasible rotations around each node v in the following way: Let Dv be a directed
graph with nodes N(v) such that uw ∈ A(Dv) if and only if uv and vw are in the same cell of
P (i.e., the arcs could be traversed in that order when tracing the face corresponding to v’s
component of the cell). A feasible rotation around v corresponds to a Hamiltonian cycle in
Dv. We show that Dv is loopy, and hence Hamiltonian by Lemma 1: By construction of Dv,
K(a) is a Kk,k for some k ∈ N, for each a ∈ A(Dv). By property (b), all nodes of Dv have at
least one incoming arc. For disconnected Dv, let W denote the nodes of a single component
of Dv, and X the cells that induce A(Dv[W]). Then X, v,W contradict property (c). J

The above theorem shows that it suffices to optimize over all partitions of arcs into faces.
Given a feasible partition (w.r.t. Theorem 2), a corresponding embedding is easily determined
in polynomial time following our proof. We can now establish our new model ILPReal, which
extends ILPBase with constraints (3). While the former already establishes properties (a)
and (b), the latter models property (c): the connectivity of the “local dual graph” Dv around
each primal node. Here, index set I corresponds to X from Theorem 2.

x(I, v×A (N(v)\W)) ≥ 1+x(I, v×AW)−2|W | ∀v ∈ V, I ⊆ [f̄],W (N(v) : W 6= ∅ (3)

Separation. Clearly, it is impractical to add all exponentially many constraints (3) when
solving ILPReal. We use a heuristic separation routine to identify a relevant subset of these
constraints. For each LP-feasible solution encountered during the solving process, we proceed
as follows: For each node v we check if all variables xia of its incident arcs a are integral. If
this holds, but the corresponding Dv is disconnected, we found a new violation of (3).

4 Small Faces

The following approach is inspired by the cycle model for the maximum planar subgraph
problem [11]. There, a mapping between small faces and short cycles was used to (only)
strengthen the LP-relaxation of another, by itself sufficient, model. Thus, it was possible to
mostly disregard longer cycles. In our setting we have to be more careful: On the one hand,
we need to consider a far wider range of drawings as we embed on surfaces of higher genera.
On the other hand, we have to directly adapt the core model itself; to continue to have a
sufficient model, we need to precisely encode all, even very large, faces. We will model “short”
faces by new binary y-variables, one for each specific feasible set of arcs. We continue to use
the x-variables for generic, i.e., “large” faces. On sparse graphs, this yields a reduction of
x-variables, as we may drastically decrease the upper bound on the number of generic faces.
Both models, ILPPre and ILPReal, can be extended in this way.

Let Cχ denote the maximal set of closed walks such that each walk’s length satisfies
property χ. Expanding on ILPBase, we parameterize our new model ILPDBase by some D ≥ 2
and obtain (4a–4g) below. We introduce a new decision variable yc for each c ∈ C≤D. Let
y(a) :=

∑
c∈C≤D:a∈c yc and f̄>d any upper bound on the number of faces with length > d.

ESA 2019

30:6 Stronger ILPs for the Graph Genus Problem

max
∑f̄>D

i=1 xi +
∑
c∈C≤D

yc (4a)

s.t. (D + 1)xi ≤ x(i, A) ∀i ∈ [f̄>D] (4b)
x(a) + y(a) = 1 ∀a ∈ A (4c)
x(i, δ−(v)) = x(i, δ+(v)) ∀i ∈ [f̄>D], v ∈ V (4d)∑f̄>D

i=1 xi +
∑
c∈C≤D:|c|>d yc ≤ f̄>d ∀d ∈ {2, . . . , D} (4e)

xi ∈ {0, 1}, xai ∈ {0, 1} ∀i ∈ [f̄>D], a ∈ A (4f)
yc ∈ {0, 1} ∀c ∈ C≤D (4g)

Each arc is contained either in one of the generic faces that each form a set of closed walks (as
for ILPBase), or in a closed walk c with dedicated variable yc, see constraints (4c). Generic
faces are large, as required by constraints (4b). Constraints (4d) are essentially (1d). Albeit
not required for integral solutions, constraints (4e) enforce the previously implicit upper
bound on the total number of faces and bound the number of gradually smaller faces.

Predecessor Model. To obtain ILPDPre, we add equations (2a–2d) to ILPDBase, i.e., the same
set as for the transition from ILPBase to ILPPre. Additionally, we require∑

c∈C≤D:uv,vw∈c yc ≥ pvu,w − x([f̄], uv) ∀v ∈ V, u, w ∈ N(v). (5)

Similar to (2a), this ensures that if an arc uv is contained in a face modeled by a y-variable,
the succeeding arc vw has to be contained in the same face.

Realizability Model. We obtain ILPDReal by starting with ILPDBase and adding the following
constraints to realize property (c) of Theorem 2.

x(I, AvW) ≥ 1 + x(I, AvW) +
∑
c∈C≤D:c∩Av

W
=∅ |c ∩A

v
W |yc − 2|W |

∀v ∈ V, I ⊆ [f̄],W (N(v) : W 6= ∅, AvW := v ×AW, AvW := v ×A (N(v) \W)
(6)

They ensure there is no subset W of arcs at a common node v that is fully assigned to a set
(consisting of I and a subset of C≤D) of face variables that do not have an arc outside of W .

D-Hierarchy: Strength of LP-Relaxations. Clearly ILPBase = ILP2
Base. The value of f̄

has a strong influence on the dual bounds obtained by LP-relaxations. Hence, we describe
how to determine f̄ and f̄>D on general graphs. Let n := |V (G)| and m := |E(G)|. Let
fUB(a, b) := min{a, b − 1a−b=1 mod 2}, f̄ := fUB(m − n, b2m/3c), f̄>2 := f̄ , and f̄>d :=
min{f̄>d−1, b2m/(d + 1)c} for d > 2. The validity of these bounds follows directly from
Eulers formula (assuming non-planar G). We are not aware of any better, general, dual
bounds. In the following comparison of LP-relaxations we always assume the above bounds.

I Lemma 3. For every graph G, the LP-relaxation of ILPBase has objective value f̄ .

Proof. The domains (1e) establish f̄ as an upper bound. Set x̃ia = 1/f̄ and x̃i = 1 for all
i ∈ f̄ , a ∈ A. Clearly x̃ is an LP-feasible solution and achieves the claimed objective. J

I Lemma 4. For every graph G, ILPDBase admits an LP-feasible solution with objective
value f̄>D. If G contains no closed walk of length at most D, this value is optimal.

M. Chimani and T. Wiedera 30:7

Proof. The first claim follows from the LP-feasible solution x̃ai = 1/f̄>D and x̃i = 1 for all
i ∈ f̄>D, a ∈ A, and ỹ = 0. When C≤D = ∅, there are no y variables and the domains (4f)
bound the objective from above, yielding the second claim. J

I Lemma 5. Model ILPD+1
Base is at least as strong as ILPDBase for any D ≥ 2.

Proof. Observe that ILPD+1
Base generally contains more y- but fewer x-variables than ILPDBase.

Consider an LP-feasible solution (x̂, ŷ) for ILPD+1
Base . We derive an LP-feasible solution (x̃, ỹ) for

ILPDBase that achieves no smaller objective value. For notational simplicity, let x̂i = x̂ai = 0 for
all i > f>D+1 and β :=

∑
c∈C=D+1

ŷc. For β = 0, already (x̂, ŷ), when interpreted for ILPDBase,

is LP-feasible. Assume β > 0. Let α := f̄>D−
∑f̄>D+1
i=1 x̂i and βa :=

∑
c∈C=D+1:a∈c ŷc ∀a ∈ A.

From α < β it would follow that f̄>D <
∑
i=1 f̄>D+1x̂i + β, a direct contradiction of

constraint (4e) for d = D in ILPD+1
Base . Thus, α ≥ β. We define (x̃, ỹ) by x̃i := x̂i + (1 −

x̂i)β/α,∀i ∈ [f̄>D]; x̃ai := x̂ai + (x̃i− x̂i)βa/β,∀i ∈ [f̄>D], a ∈ A; and ỹc := ŷc,∀c ∈ C≤D. The
objective value (4a) for (x̃, ỹ) in ILPDBase is∑f̄>D

i=1 x̃i +
∑
c∈C≤D

ỹc =
∑f̄>D

i=1
(
x̂i + (1− x̂i)β/α

)
+
∑
c∈C≤D

ŷc

(by xi = 0 ∀i > f̄D+1) =
∑f̄>D+1
i=1 x̂i + β/α ·

(
f̄>D −

∑f̄>D+1
i=1 x̂i

)
+
∑
c∈C≤D

ŷc

(by def. of α, β) =
∑f̄>D+1
i=1 x̂i +

∑
c∈C≤D+1

ŷc,

i.e., equal to that of (x̂, ŷ) in ILPD+1
Base . Assuming constraint (4b) to be violated, we obtain

(D+1)x̃i > (D+1)(x̃i− x̂i)+
∑
a∈A x̂

a
i , since

∑
a∈A βa/β = D+1. This implies (D+1)x̂i >∑

a∈A x̂
a
i , a violation of constraint (4b) already by (x̂, ŷ). Let us show the feasibility of (x̃, ỹ)

w.r.t. constraints (4c) by expanding their left-hand side.

x̃(a) + ỹ(a) =
∑f>D

i=1
(
x̂ai + (1− x̂i)βa/α

)
+
∑
c∈C≤D:a∈c ŷc

(by def. of α) =
∑f̄>D+1
i=1 x̂ai + βa +

∑
c∈C≤D:a∈c ŷc

(by def. of βa) =
∑f̄>D+1
i=1 x̂ai +

∑
c∈C≤D+1:a∈c ŷc (by feasibility of (4c) in (x̂, ŷ)) = 1

Since C=D+1 contains only closed walks, we have
∑
u∈N(v)(βuv − βvu) = 0 for all nodes v.

Constraints (4d) hold, as we see by expanding their left-hand side:∑
vu∈A x̃

vu
i =

∑
vu∈A x̂

vu
i + (x̃i − x̂i)/β ·

∑
vu∈A βvu

(by (4d) in ILPD+1
Base and the above) =

∑
uv∈A x̂

uv
i + (x̃i − x̂i)/β ·

∑
uv∈A βuv =

∑
uv∈A x̃

uv
i

Constraints (4e) maintain their slack, as the first term increases by
∑f̄>D

i=1 (x̃i− x̂i) = β while
the second decreases by β. Clearly, x̃i ≥ x̂i and x̃ai ≥ x̂ai . By α ≥ β we have x̃i ≤ 1. By (4c)
we have x̂ai +βa ≤ 1. Thus, x̃ai > 1 would imply x̃i− x̂i > β. Clearly, we keep 0 ≤ ỹc ≤ 1. J

I Theorem 6. Model ILPD+1
Base is stronger than ILPDBase for any D ≥ 2.

Proof. Restricting ourselves to dense graphs of girth > D+ 1, the claim immediately follows
from Lemmata 3–5. An example of such graphs are the complete graphs on D nodes, where
we subdivide each edge D times. They have girth 3(D + 1) and are dense enough such that
the respective bounds differ: f>D > f>D+1. We note that there are also dense graphs with
high girth that do not allow any general preprocessing techniques. J

ESA 2019

30:8 Stronger ILPs for the Graph Genus Problem

5 Additional Tuning (“Add-Ons”)

In addition to the new models described above, there is a set of supplemental constraints
that may be applied to several of these models. We discuss them in alphabetical order.

Arc-Face. We may require the below trivial constraints explicitly.

xi ≥ xai ∀a ∈ A, i ∈ [f̄] (7)

Branching Rule. To facilitate the fast generation of strong primal bounds, we may initially
restrict the solution space to explicitly modeled faces, e.g., by branching on∑

i∈f̄>D
xi

?= 0. (8)

deg 3-Model. There are only two possible rotations around any degree-3 node v. In ILPPre,
this can be modeled by a single binary variable for v and alternative constraints, partially
replacing (2a–2d), as discussed in [2]. The same holds for ILPDPre, and we use this improvement
in our benchmarks.

Long Faces. In several cases we can establish lower bounds on the length of faces modeled
by the x-variables. Let s(v, w) denote the length of the shortest path between nodes v and w.

I Lemma 7. For arcs uv,wx that traverse the same face f , we have s(v, w)+s(x, u)+2 ≤ |f |.

Proof. Tracing any such face f yields a path from v to w that neither contains arc uv (it
may contain arc vu) nor arc vx. Similarly, an arc-disjoint path from x to u must exist in f .
The total length of these paths is lower bounded by s(v, w) + s(x, u). J

I Lemma 8. Any face with a singular edge contains at least eight arcs and this is tight.

Proof. Let uv denote the edge that is traversed in both directions when tracing face f .
If tracing f would additionally yield a path from u to v that does not contain uv, the
tracing would similarly yield a path from v to u that does not contain vu. This contradicts
the assumption since f would contain two oppositely directed, closed walks that form two
separate faces. Hence, there exist two arc-disjoint closed walks on the boundary of f , one for
each node u, v. Since there are no deg-1 nodes in a biconnected graph, any subcycle in a
face requires at least three arcs and the claim follows. Considering a genus-1 embedding of
the K4 we can see that it indeed contains such a face of length eight. J

I Lemma 9. Any face with a singular node contains at least six arcs and this is tight.

Proof. If the face f also traverses an edge twice, the bound follows from Lemma 8. Otherwise,
the doubly traversed node has at least four arcs in f , belonging to pairwise different edges,
and hence four incident nodes. A closed walk on this K1,4 requires at least two additional arcs
and the claimed bound follows. A face of length six can be observed in a genus-1 embedding
of the following graph: Take two copies of the K5, remove one edge each, join the graphs by
identifying two deg-3 nodes, and add a new edge between the remaining two deg-3 nodes. J

Let `uv,wx := max{s(v, w)+s(x, u)+2, 6·1k=3, 8·1k=2} with k := |{u, v, w, x}|. Lemmata 7–9
yield the following constraints. When using them in our benchmarks, we separate them.

`uv,wx(xuvi + xwxi − 1) ≤ x(i, A) ∀i ∈ [f̄>D], uv, wx ∈ A : uv 6= wx (9)

M. Chimani and T. Wiedera 30:9

Objective Parity. All above ILPs maximize the number f of faces and deduce γ via Euler’s
formula n+ f −m = 2− 2γ. Thus the parity of f is fixed. This gives room for improved
bounding and cutting by the ILP solver. Using a new variable z ∈ N we may demand

(m− n mod 2) + 2z =
∑f̄>D

i=1 fi +
∑
c∈C≤D

yc. (10)

Symmetry Breaking. For ILPPre it was observed in [2] that symmetry breaking does not
seem to pay off. However, ILPPre only solves genus-1 instances in practice (see below).
Symmetry breaking may hinder heuristics from identifying trivially optimal solutions, but
may be beneficial for harder instances. The approach in [2] enforces that face i has at most
as many arcs as face i+ 1. However, there are typically many faces with the same length in
a low-genus embedding. We consider breaking symmetries by restricting the set of faces that
may contain a given arc. Let ≺ denote an arbitrary but fixed order on the arc set A.

y(a) + x({1, . . . , `}, a) ≥ 1− x(`, {a′ ∈ A : a′ ≺ a}) ∀` ∈ [f̄], a ∈ A (11)

These constraints ensure that any arc is contained either in an explicitly modeled closed
walk or in the lowest-indexed face that it can be placed into. For ILPPre and ILPReal, i.e.,
when there are no explicitly modeled closed walks, we simply set y(a) = 0.

6 Experiments

All algorithms are implemented in C++, compiled with gcc 6.3.0, and use the OGDF (snapshot
2018-03-28) [9]. We use SCIP 6.0.0 [16] for solving ILPs, with CPLEX 12.8.0 as the underlying
LP solver. Each computation uses a single physical core of a Xeon Gold 6134 CPU (3.2 GHz)
with a memory speed of 2666 MHz. We employ a time limit of 10 minutes and a memory limit
of 8 GB per computation. All instances and results, giving runtime and genus (if solved), are
available for download at http://tcs.uos.de/research/min-genus. In our experiments,
we increase parameter D – separately on each graph – until we obtain at least 1000 y-variables.
As they are not required for integral solutions, we omit constraints (4e) by default.

Instance Sets. We consider the 423 and 8249 non-planar graphs of the two established
real-world sets North [28] and Rome [14], respectively. In addition, we use the set of 600
Expander graphs, as established in [10,11] for a related non-planarity measure (skewness):
there are 20 graphs for each feasible parameterization (|V (G)|,∆) ∈ {10, 20, 30, 50, 100} ×
{4, 6, 10, 20, 40}, where ∆ denotes the node degree.

Discussion of SAT-based algorithms. In [2], the SAT-based approach was faster than the
ILP-based one. However, we do not need to directly compare with it.

Both previous approaches solve only instances with genus ≤ 1 in practice. Since the
respective dual bound is trivially given by planarity testing (and enforced in all previous
models), the runtime difference can be attributed to the SAT-solver quickly finding a
satisfying solution. In contrast, standard primal heuristics of ILP-sovlers are weaker, and the
comparably time-consuming LP-relaxations are rarely profitable. However, w.r.t. success-rate,
SAT is only marginally in the lead, if at all: on the Rome graphs, the ILP and SAT solve
2595 and 2667 instances, respectively. For North, “the success-rates of both approaches are
[...] comparable” [2].

ESA 2019

http://tcs.uos.de/research/min-genus

30:10 Stronger ILPs for the Graph Genus Problem

ILPPre ILPReal ILPD
Pre ILPD

Real

0

500

1000

1500

2000

in
st
a
n
ce
s

10 20 30 40 50 60 70 80 90 100

0%

50%

100%

nodes of input

so
lv
ed

(a) Solved Rome graphs by number of nodes.

0

20

40

60

80

in
st
an

ce
s

10 20 30 40 50 60 70 80 90 100
0%

50%

100%

nodes of input

so
lv
ed

(b) Solved North graphs by number of nodes.

Figure 1 Detailed success-rates of algorithms on established benchmark sets. We provide the
relative number of solved instances over the number of nodes, clustered to the nearest multiple of 10.
The gray bars denote the number of instances in each cluster.

Since we can neither employ separation nor LP-relaxations in the setting of SAT-solvers,
there also is no immediate way of using our strengthening results for SAT-based algorithms.
We will see that the new ILP variants clearly dominate the SAT-based variants; e.g., we
solve up to 6797 Rome instances.

Results. The experiments confirm that our new model is not only theoretically stronger
but also better in practice: Using ILPDReal, we are now able to solve 82% instead of just 28%
of the Rome graphs, cf. Table 1. Depending on the instance set, we achieve an average
speed-up of factor 82 to 248. In [2], only graphs with genus 1 (and not all of them) could be
solved. Surprisingly, and in contrast to the observations made in [2], the deg 3-model does
not perform better than the respective base variant: SCIP’s built-in preprocessing reduces
the variable space to essentially the same dimension as obtained when manually applying the
deg 3-model (while possibly retaining some additional information that helps in the solving
process). Also somewhat to our surprise, none of the add-ons (8–11) pay off reliably.

Taking a closer look at the number of solved instances (Figure 1 and Table 2), we see
that – on average – ILPDReal is superior to all other variants for any graph size. We now
solve real-world instances with non-trivial dual bounds, i.e., when the genus is > 1, e.g.,
we have solved a genus-7 instance on Rome and even a genus-21 instance on North. We
see very clearly, in particular on Rome, that we may order the models ILPPre, ILPReal,
ILPDPre, ILPDReal by increasing success rate. This means that, independent on whether we
apply the small-faces model extension or not, the realizability model is more successful than

M. Chimani and T. Wiedera 30:11

Table 1 Average success-rate s and runtime t on each instance set. Considering the runtime, we
restrict the instances to those solved by all variants. Of the graphs solved by ILPPre, all variants
solved at least 94% (Rome), 99% (North), and 100% (Expander). Particularly, algorithms based
on ILPD

Base always solved all of the instances solved by ILPPre.

Rome North Expander
s [%] t [s] s [%] t [s] s [%] t [s]

ILPPre 27.79 190.23 45.86 139.09 5.26 58.29
ILPPre + deg 3 27.94 186.31 47.52 111.50 5.26 58.53
ILPReal 31.85 70.57 50.83 25.44 5.53 11.33
ILPD

Pre 73.08 2.92 67.14 12.21 17.37 2.24
ILPD

Pre + deg 3 68.09 3.86 65.01 12.47 17.37 2.25
ILPD

Real 81.65 0.91 73.52 7.26 23.95 0.95
ILPD

Real + branch rule (8) 76.41 0.86 73.05 7.29 21.05 0.80
ILPD

Real + all symmetries (11) 81.56 0.91 73.52 7.27 23.95 0.95
ILPD

Real + sepa. symmetries (11) 81.59 0.91 73.76 7.26 23.95 0.94
ILPD

Real + sepa. long faces (9) 81.16 0.95 72.81 7.27 22.89 0.81
ILPD

Real + all #faces cons. (4e) 81.57 0.75 74.00 6.79 23.68 0.86
ILPD

Real + sepa. #faces cons. (4e) 81.60 1.13 74.00 7.02 23.95 1.05
ILPD

Real + parity model (10) 82.33 1.25 73.29 1.11 22.89 1.68
ILPD

Real + all arc-face cons. (7) 75.43 0.98 71.39 7.35 18.95 0.71
ILPD

Real + sepa. arc-face cons. (7) 81.71 1.48 73.76 7.28 23.42 0.76
ILPD

Real + (10) + sepa. (4e,7) 82.40 1.37 74.00 1.20 22.63 1.65
ILPD

Real + (8) + (10) + sepa. (4e,7) 78.07 1.19 75.65 1.18 21.58 1.62

0 10 20 30
0
1
2

primal

d
u
al

(a) ILPPre.

0 10 20 30
0
1
2

primal

d
u
al

(b) ILPReal.

0 10 20 30
0

5

10

primal

d
u
al

(c) ILPD
Pre.

0 10 20 30
0

5

10

primal

d
u
al

(d) ILPD
Real.

Figure 2 Final primal vs. dual bounds on the genus, generated by algorithmic variants on Rome
(without any add-ons). Color and size indicate the number of instances with the respective bounds.
We note that these bounds do not apply to the values of the formal objective value, i.e., the number
of attained faces, but to the genus, which allows a more sensible comparison. Note that without the
small faces extension, neither ILPPre nor ILPReal obtains lower bounds > 1 (i.e., only trivial ones).

ESA 2019

30:12 Stronger ILPs for the Graph Genus Problem

3 4 5 6 7 8 9 10

1

2

3

4

5

6

min. closed walk length D

lo
w
er

g
en
u
s
b
ou

n
d

b
y
re
la
x
ed

IL
P
D B
a
se

1
2
3

4

5

6

7

g
en
u
s

(a) genus bound of LP-relaxation.

6 7 8 9 10
0

2

4

6

8

10

12

·103

min. closed walk length D

#
y
-v
ar
ia
b
le
s

1

2

3
4

5

6

7

g
en
u
s

(b) number of generated y-variables.

Figure 3 Average values of ILPD
Base on the solved Rome graphs, depending on the maximum

length D of explicitly modeled cycles and the genus of the graph. Note that we only solved one
instance with genus 7 on Rome.

Table 2 Number of solved instances in the Expander set for selected variants without add-ons.

nodes 10 20 30 ≥ 50
node degree 4 6 4 6 10 4 6-20 4–40
ILPPre 20 0 0 0 0 0 0 0
ILPReal 20 1 0 0 0 0 0 0
ILPD

Pre 20 20 20 0 0 6 0 0
ILPD

Real 20 20 20 18 0 13 0 0

the predecessor model. The most progress, however, is achieved by activating the small-faces
model extension ILPDBase. As the shapes of the success-rate curves demonstrate, it benefits
both underlying models roughly equally. In particular, we see (cf. also Figure 2 which shows
the final bounds of our core variants on Rome) that even ILPReal, like ILPPre, can only solve
genus 1 instances. This is in accordance with Lemma 3, i.e., that the LP-relaxation of ILPBase
always yields value f̄ . Nonetheless, the success-rates 46% and 51% on North for ILPPre
and ILPReal, respectively, demonstrate that ILPPre is far from solving all toroidal instances.
More complex instances require the small-faces extension ILPDBase. This is also reflected by
the root relaxations of ILPDBase for different values of D, cf. Figure 3. Consistent with theory,
increasing the minimum length D leads to stronger LP-relaxations also in practice, but may
drastically increase the number of variables. Interestingly, generating only triangles, i.e.,
D = 3, yields only a very slight increase on the average dual bound compared to ILPBase on
Rome, possibly caused by the graphs’ sparsity.

Genera in Graph Theory. Our new approach allows us to confirm results from literature,
all with non-trivial dual bounds: In 2015, the circulants of genus ≤ 2 were characterized [12].
Thereby, the authors need to show that 12 specific graphs have genus ≥ 3. For these arguments
alone, they require about nine pages, supplemented by several hours of computation. Using
ILPDReal, we are able to confirm these results (and compute the respective genera) in a matter
of seconds without employing any graph-specific theory. Before, using ILPPre, the arguably
hardest case C11(1, 2, 4) required 180 hours [2]. In 2005, a full paper was dedicated to showing
that the Gray graph has genus 7 [24]. Our tool confirms this result within 42 hours. Similarly,
we confirm a result from 1989 [4] in 250 seconds: the group that is the semidirect product of
Z9 with Z3 has genus 4 (the genus of group Γ is the smallest genus of a Caley graph of Γ).

M. Chimani and T. Wiedera 30:13

7 Conclusion

We have presented novel ILP models for the graph genus problem, proved their theoretical
strength, the existence of a hierarchy of ever stronger LP-relaxations, and positively evaluated
them in practice, e.g., by solving 82% instead of the previous 28% of the Rome instances. We
are now able to solve real-world instances with genera up to 21. This is in stark contrast to
the previous models that – on the same set of instances – succeeded only on toroidal graphs.

It remains open whether even stronger models can be found by a more careful examination
of the face structure. What additional properties of the embedding may be modeled? Is
it possible to better exploit singular nodes or edges, particularly when they are adjacent?
Further, we expect that our algorithms would benefit from strong primal heuristics but we
are not aware of any general such algorithms. Currently, optimal dual bounds are often
identified long before an optimal solution is found.

References
1 Amariah Becker, Philip N. Klein, and David Saulpic. A Quasi-Polynomial-Time Approximation

Scheme for Vehicle Routing on Planar and Bounded-Genus Graphs. In ESA 2017, pages
12:1–12:15, 2017. doi:10.4230/LIPIcs.ESA.2017.12.

2 Stephan Beyer, Markus Chimani, Ivo Hedtke, and Michal Kotrbcík. A Practical Method for
the Minimum Genus of a Graph: Models and Experiments. In SEA 2016, LNCS 9685, pages
75–88, 2016. doi:10.1007/978-3-319-38851-9_6.

3 C. Paul Bonnington and Tomaz Pisanski. On the orientable genus of the cartesian product of
a complete regular tripartite graph with an even cycle. Ars Comb., 70, 2004.

4 Matthew G. Brin, David E. Rauschenberg, and Craig C. Squier. On the genus of the
semidirect product of Z9 by Z3. Journal of Graph Theory, 13(1):49–61, 1989. doi:10.1002/
jgt.3190130108.

5 Matthew G. Brin and Craig C. Squier. On the Genus of Z3 × Z3 × Z3. Eur. J. Comb.,
9(5):431–443, 1988. doi:10.1016/S0195-6698(88)80002-7.

6 Chandra Chekuri and Anastasios Sidiropoulos. Approximation Algorithms for Euler Genus
and Related Problems. In FOCS 2013, pages 167–176, 2013. doi:10.1109/FOCS.2013.26.

7 Jianer Chen. A Linear-Time Algorithm for Isomorphism of Graphs of Bounded Average Genus.
J. Disc. Math., 7(4):614–631, 1994. doi:10.1137/S0895480191196769.

8 Jianer Chen, Iyad A. Kanj, Ljubomir Perkovic, Eric Sedgwick, and Ge Xia. Genus characterizes
the complexity of certain graph problems: Some tight results. J. Comput. Syst. Sci., 73(6):892–
907, 2007. doi:10.1016/j.jcss.2006.11.001.

9 Markus Chimani, Carsten Gutwenger, Mike Juenger, Gunnar W. Klau, Karsten Klein, and
Petra Mutzel. The Open Graph Drawing Framework (OGDF). In Roberto Tamassia, editor,
Handbook on Graph Drawing and Visualization, pages 543–569. Chapman and Hall/CRC,
2013. URL: https://crcpress.com/Handbook-of-Graph-Drawing-and-Visualization/
Tamassia/9781584884125.

10 Markus Chimani, Ivo Hedtke, and Tilo Wiedera. Exact Algorithms for the Maximum Planar
Subgraph Problem: New Models and Experiments. In SEA 2018, pages 22:1–22:15, 2018.
doi:10.4230/LIPIcs.SEA.2018.22.

11 Markus Chimani and Tilo Wiedera. Cycles to the Rescue! Novel Constraints to Compute
Maximum Planar Subgraphs Fast. In ESA 2018, LIPIcs 112, pages 19:1–19:14, 2018. doi:
10.4230/LIPIcs.ESA.2018.19.

12 Marston Conder and Ricardo Grande. On Embeddings of Circulant Graphs. Electr. J. Comb.,
22(2):P2.28, 2015. URL: http://www.combinatorics.org/ojs/index.php/eljc/article/
view/v22i2p28.

13 Erik D. Demaine, MohammadTaghi Hajiaghayi, and Dimitrios M. Thilikos. The Bidimensional
Theory of Bounded-Genus Graphs. Disc. Math., 20(2):357–371, 2006. doi:10.1137/040616929.

ESA 2019

https://doi.org/10.4230/LIPIcs.ESA.2017.12
https://doi.org/10.1007/978-3-319-38851-9_6
https://doi.org/10.1002/jgt.3190130108
https://doi.org/10.1002/jgt.3190130108
https://doi.org/10.1016/S0195-6698(88)80002-7
https://doi.org/10.1109/FOCS.2013.26
https://doi.org/10.1137/S0895480191196769
https://doi.org/10.1016/j.jcss.2006.11.001
https://crcpress.com/Handbook-of-Graph-Drawing-and-Visualization/Tamassia/9781584884125
https://crcpress.com/Handbook-of-Graph-Drawing-and-Visualization/Tamassia/9781584884125
https://doi.org/10.4230/LIPIcs.SEA.2018.22
https://doi.org/10.4230/LIPIcs.ESA.2018.19
https://doi.org/10.4230/LIPIcs.ESA.2018.19
http://www.combinatorics.org/ojs/index.php/eljc/article/view/v22i2p28
http://www.combinatorics.org/ojs/index.php/eljc/article/view/v22i2p28
https://doi.org/10.1137/040616929

30:14 Stronger ILPs for the Graph Genus Problem

14 Giuseppe Di Battista, Ashim Garg, Giuseppe Liotta, Roberto Tamassia, Emanuele Tassinari,
and Francesco Vargiu. An Experimental Comparison of Four Graph Drawing Algorithms.
Comput. Geom., 7:303–325, 1997. doi:10.1016/S0925-7721(96)00005-3.

15 John A. Ellis, Hongbing Fan, and Michael R. Fellows. The dominating set problem is
fixed parameter tractable for graphs of bounded genus. J. Algorithms, 52(2):152–168, 2004.
doi:10.1016/j.jalgor.2004.02.001.

16 Ambros Gleixner, Michael Bastubbe, Leon Eifler, Tristan Gally, Gerald Gamrath, Robert Lion
Gottwald, Gregor Hendel, Christopher Hojny, Thorsten Koch, Marco E. Lübbecke, Stephen J.
Maher, Matthias Miltenberger, Benjamin Müller, Marc E. Pfetsch, Christian Puchert, Daniel
Rehfeldt, Franziska Schlösser, Christoph Schubert, Felipe Serrano, Yuji Shinano, Jan Merlin
Viernickel, Matthias Walter, Fabian Wegscheider, Jonas T. Witt, and Jakob Witzig. The
SCIP Optimization Suite 6.0. Technical report, Optimization Online, July 2018. URL:
http://www.optimization-online.org/DB_HTML/2018/07/6692.html.

17 David A. Hoelzeman and Saïd Bettayeb. On the genus of star graphs. IEEE Transactions on
Computers, 43(6):755–759, 1994. doi:10.1109/12.286309.

18 Mark Jungerman and Gerhard Ringel. The genus of the n-octahedron: Regular cases. J.
Graph Theory, 2(1):69–75, 1978. doi:10.1002/jgt.3190020109.

19 K. Kawarabayashi, B. Mohar, and B. Reed. A Simpler Linear Time Algorithm for Embedding
Graphs into an Arbitrary Surface and the Genus of Graphs of Bounded Tree-Width. In FOCS
2008, pages 771–780, 2008. doi:10.1109/FOCS.2008.53.

20 Ken-ichi Kawarabayashi and Anastasios Sidiropoulos. Beyond the Euler Characteristic:
Approximating the Genus of General Graphs. In STOC 2015, pages 675–682, 2015. doi:
10.1145/2746539.2746583.

21 Michal Kotrbcík and Tomaz Pisanski. Genus of the Cartesian Product of Triangles. Electr.
J. Comb., 22(4):P4.2, 2015. URL: http://www.combinatorics.org/ojs/index.php/eljc/
article/view/v22i4p2.

22 Valentas Kurauskas. On the genus of the complete tripartite graph Kn,n,1. Disc. Math.,
340(3):508–515, 2017. doi:10.1016/j.disc.2016.09.017.

23 Yury Makarychev, Amir Nayyeri, and Anastasios Sidiropoulos. A Pseudo-approximation for
the Genus of Hamiltonian Graphs. In APPROX 2013, pages 244–259, 2013. doi:10.1007/
978-3-642-40328-6_18.

24 Dragan Marusic, Tomaz Pisanski, and Steve Wilson. The genus of the GRAY graph is 7. Eur.
J. Comb., 26(3-4):377–385, 2005. doi:10.1016/j.ejc.2004.01.015.

25 Bojan Mohar. A Linear Time Algorithm for Embedding Graphs in an Arbitrary Surface. J.
Disc. Math., 12(1):6–26, 1999. doi:10.1137/S089548019529248X.

26 Bojan Mohar, Tomaz Pisanski, Martin Skoviera, and Arthur T. White. The cartesian product
of three triangles can be embedded into a surface of genus 7. Disc. Math., 56(1):87–89, 1985.
doi:10.1016/0012-365X(85)90197-9.

27 Wendy Myrvold and William Kocay. Errors in graph embedding algorithms. J. Comp. and
Sys. Sciences, 77(2):430–438, 2011. doi:10.1016/j.jcss.2010.06.002.

28 Stephen C. North. 5114 directed graphs, 1995. Manuscript.
29 Marcin Pilipczuk, Michal Pilipczuk, Piotr Sankowski, and Erik Jan van Leeuwen. Network

Sparsification for Steiner Problems on Planar and Bounded-Genus Graphs. ACM Trans.
Algorithms, 14(4):53:1–53:73, 2018. doi:10.1145/3239560.

30 Gerhard Ringel. Das Geschlecht des vollständigen paaren Graphen. Abhandlungen aus
dem Mathematischen Seminar der Universität Hamburg, 28(3):139–150, 1965. doi:10.1007/
BF02993245.

31 Gerhard Ringel. On the genus of the graph Kn ×K2 or the n-prism. Disc. Math., 20:287–294,
1977. doi:10.1016/0012-365X(77)90067-X.

32 Gerhard Ringel and J. W. T. Youngs. SOLUTION OF THE HEAWOOD MAP-COLORING
PROBLEM. PNAS USA, 60(2):438–445, 1968. doi:10.1073/pnas.60.2.438.

https://doi.org/10.1016/S0925-7721(96)00005-3
https://doi.org/10.1016/j.jalgor.2004.02.001
http://www.optimization-online.org/DB_HTML/2018/07/6692.html
https://doi.org/10.1109/12.286309
https://doi.org/10.1002/jgt.3190020109
https://doi.org/10.1109/FOCS.2008.53
https://doi.org/10.1145/2746539.2746583
https://doi.org/10.1145/2746539.2746583
http://www.combinatorics.org/ojs/index.php/eljc/article/view/v22i4p2
http://www.combinatorics.org/ojs/index.php/eljc/article/view/v22i4p2
https://doi.org/10.1016/j.disc.2016.09.017
https://doi.org/10.1007/978-3-642-40328-6_18
https://doi.org/10.1007/978-3-642-40328-6_18
https://doi.org/10.1016/j.ejc.2004.01.015
https://doi.org/10.1137/S089548019529248X
https://doi.org/10.1016/0012-365X(85)90197-9
https://doi.org/10.1016/j.jcss.2010.06.002
https://doi.org/10.1145/3239560
https://doi.org/10.1007/BF02993245
https://doi.org/10.1007/BF02993245
https://doi.org/10.1016/0012-365X(77)90067-X
https://doi.org/10.1073/pnas.60.2.438

M. Chimani and T. Wiedera 30:15

33 Gerhard Ringel and J. W. T. Youngs. Das Geschlecht des vollständigen dreifärbbaren Graphen.
Commentarii Mathematici Helvetici, 45(1):152–158, 1970. doi:10.1007/BF02567322.

34 Neil Robertson and Paul D. Seymour. Graph minors. VIII. A Kuratowski theorem for general
surfaces. J. Comb. Theory, Ser. B, 48(2):255–288, 1990. doi:10.1016/0095-8956(90)90121-F.

35 Carsten Thomassen. The graph genus problem is NP-complete. J. Algorithms, 10(4):568–576,
1989. doi:10.1016/0196-6774(89)90006-0.

36 Carsten Thomassen. Embeddings of graphs with no short noncontractible cycles. J. Comb.
Theory, Series B, 48(2):155–177, 1990. doi:10.1016/0095-8956(90)90115-G.

37 Arthur T. White. The genus of the complete tripartite graph Kmn,n,n. J. Comb. Theory,
7(3):283–285, 1969. doi:10.1016/S0021-9800(69)80027-X.

ESA 2019

https://doi.org/10.1007/BF02567322
https://doi.org/10.1016/0095-8956(90)90121-F
https://doi.org/10.1016/0196-6774(89)90006-0
https://doi.org/10.1016/0095-8956(90)90115-G
https://doi.org/10.1016/S0021-9800(69)80027-X

	Introduction
	Preliminaries
	Realizability Model
	Small Faces
	Additional Tuning (``Add-Ons'')
	Experiments
	Conclusion

