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Abstract
We study quantum algorithms working on classical probability distributions. We formulate four
different models for accessing a classical probability distribution on a quantum computer, which are
derived from previous work on the topic, and study their mutual relationships.

Additionally, we prove that quantum query complexity of distinguishing two probability distribu-
tions is given by their inverse Hellinger distance, which gives a quadratic improvement over classical
query complexity for any pair of distributions.

The results are obtained by using the adversary method for state-generating input oracles and
for distinguishing probability distributions on input strings.
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1 Introduction

It is customary for a quantum algorithm to receive its input and produce its output in the
form of a classical string of symbols, quantized in the form of an oracle. This is purely classical
way to store information, and, given intrinsic quantum nature of quantum algorithms, this
might be not the best interface for many tasks. Moreover, even classical algorithms make
use of other interfaces as well. For instance, classical algorithms can receive and produce
samples from some probability distribution. In this paper we study quantum algorithms
working with classical probability distributions.

1.1 Models

We analyse previously used models of accessing classical probability distributions by quantum
algorithms. We prove and conjecture some relations between them. We give more detail in
Section 3, but for now let us very briefly introduce the models.

In one of the models, used in, e.g., [16, 18, 27, 25], the probability distribution is encoded
as a frequency of a symbol in a given input string, which the quantum algorithm accesses via
the standard input oracle. In another model, e.g., [17, 2, 6], the input probability distribution
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is given through a quantum oracle that prepares a state in the form
∑
a

√
pa|a〉. Finally, one

more model, used in [26, 20, 19], is similar but with additional state tensored with each |a〉.
This is the latter model that we champion in this paper. We find this model particularly

relevant because of our belief that an input oracle should be easily interchangeable with
a quantum subroutine, see discussion in [26]. It is relatively easy to see what it means
for a quantum algorithm to output a probability distribution: just measure one of the
registers of its final state. The latter model precisely encompasses all such subroutines. We
conjecture that this model is equivalent to the first model, see also [19], where a similar
conjecture is made.

1.2 Distinguishing two Probability Distributions

Additionally, we study the problem of distinguishing two probability distributions. This
might be the most fundamental problem one can formulate in these settings. Given two fixed
probability distributions p and q, and given an input oracle encoding one of them, the task is
to detect which one, p or q, the oracle encodes. To the best of our knowledge, this particular
problem has not been studied in quantum settings, although similar problems of testing the
distance between two distributions [16] and testing whether the input distribution is equal
to some fixed distribution [18] have been already studied.

Classically one needs Θ
(
1/dH(p, q)2) samples to solve this problem for any p and q, where

dH stands for Hellinger distance. This result is considered “folklore”, see, e.g. [7, Chapter 4].
We prove that for any p and q and for any of the models of access described above, query
complexity of this problem is Θ(1/ dH(p, q)). This constitutes quadratic improvement over
classical algorithm for any pair of distributions p and q. Moreover, our algorithm also admits
a simple low-level implementation, which is efficient assuming the distributions p and q can
be efficiently processed.

1.3 Techniques

Our main technical tool for proving the upper bound is the version of the adversary bound
for state-generating oracles, which is a special case of the adversary bound for general
input oracles [11]. It is stated in the form of a relative γ2-norm and generalises the dual
formulation of the general adversary bound [28, 29] for function evaluation, as well as for other
problems [5, 24]. The dual adversary bound has been used rather successfully in construction
of quantum algorithms, as in terms of span programs and learning graphs [9, 23, 13, 8, 22],
as in an unrelated fashion [10, 4]. Our work gives yet another application of these techniques
for construction of quantum algorithms.

Our upper bound naturally follows from the analysis of the γ2-norm optimisation problem
associated with the task. We also compare our techniques with more standard ones involving
quantum rejection sampling and amplitude amplification in the spirit of [20] and show that
our techniques give a slightly better result.

As for the lower bound, we make use of the version of the adversary bound from [12].
This is a simple generalisation of the primal version of the general adversary bound [21] for
function evaluation, and it is tailored for the task we are interested in: distinguishing two
probability distributions on input strings. Our lower bound is surprisingly simple and gives
a very intuitive justification of the significance of Hellinger distance for this problem.
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2 Preliminaries

We mostly use standard linear-algebraic notation. We use ket-notation for vectors representing
quantum states, but generally avoid it. We use A∗ to denote conjugate operators (transposed
and complex-conjugated matrices). For P a predicate, we use 1P to denote 1 if P is true,
and 0 if P is false. We use [n] to denote the set {1, 2, . . . , n}.

It is unfortunate that the same piece of notation, ⊕, is used both for direct sum of
matrices and direct sum of vectors, which is in conflict with each other if a vector, as it
often does, gets interpreted as a column-matrix. Since we will extensively use both these
operations in this paper, let us agree that � denotes direct sum of vectors, and ⊕ always
denotes direct sum of matrices. Thus, in particular, for u, v ∈ Rm, we have

u� v =



u1
...
um
v1
...
vm


and u⊕ v =



u1 0
...

...
um 0
0 v1
...

...
0 vm


.

We often treat scalars as 1× 1-matrices which may be also thought as vectors.

2.1 Relative γ2-norm
In this section, we state the relative γ2-norm and formulate some of its basic properties. All
the results are from [11].

I Definition 1 (Relative γ2-norm). Let X1, X2, Z1 and Z2 be vector spaces, and D1 and D2
be some sets of labels. Let A = {Axy} and ∆ = {∆xy}, where x ∈ D1 and y ∈ D2, be two
families of linear operators: Axy : Z2 → Z1 and ∆xy : X2 → X1. The relative γ2-norm,

γ2(A|∆) = γ2(Axy | ∆xy)x∈D1, y∈D2 ,

is defined as the optimal value of the following optimisation problem, where Υx and Φy are
linear operators,

minimise max
{

maxx∈D1‖Υx‖2
,maxy∈D2‖Φy‖

2
}

(1a)

subject to Axy = Υ∗x(∆xy ⊗ IW)Φy for all x ∈ D1 and y ∈ D2; (1b)
W is a vector space, Υx : Z1 → X1 ⊗W, Φy : Z2 → X2 ⊗W. (1c)

This is a generalisation of the usual γ2-norm, also known as Schur (Hadamard) product
operator norm [14].

In a quantum algorithm with general input oracles, the input oracle performs some
unitary operation O on some fixed Hilbert space. The algorithm can execute either O or
its inverse O−1 on some register. Each execution counts as one query. It is known that
O is equal to one Ox out of a set of possible input unitaries, where x ranges over some
set D of labels. If O = Ox, the algorithm has to perform a unitary Vx on some specified
part of its work-space. The algorithm knows in advance all possible Ox and which Vx
corresponds to each Ox, but it does not know which Ox it is given in a specific execution.
The adversary bound corresponding to this problem is γ2

(
Vx − Vy | Ox − Oy

)
x,y∈D. This

bound is semi-tight: it is a lower bound on the exact version of the problem and an upper
bound on the approximate version.

ESA 2019
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The γ2-norm formalism is modular in the sense that the general task of implementing a
unitary can be replaced by something more specific. For instance, assume that our task is to
evaluate a function f(x). Then the adversary bound reads as γ2

(
1f(x) 6=f(y) | Ox −Oy

)
x,y∈D.

In this case, the bound is tight: it is also a lower bound on the approximate version
of the problem.

As another example, consider the standard input oracle Ox encoding a string x ∈ [q]n.
It works as Ox : |i〉|0〉 7→ |i〉|xi〉, which can be seen as a direct sum of oracles performing
transformation |0〉 7→ |xi〉. Using the modular approach, the corresponding adversary
bound becomes γ2

(
1f(x) 6=f(y) |

⊕
j 1xj 6=yj

)
x,y∈D, where

⊕
stands for direct sum of matrices

(resulting in a diagonal matrix). This is equivalent to the usual version of dual adversary for
function evaluation (up to a constant factor).

Now we consider state-generating input oracles1. In this case, the input to the algorithm
is given by a state ψ ∈ Cm, and the algorithm should work equally well for any unitary
performing the transformation O : |0〉 7→ |ψ〉. Without loss of generality, we may assume
that e0 = |0〉 is orthogonal to Cm, thus the operator O above works in Cm+1.

The corresponding γ2-object can be defined in two alternative ways:

Lψ = ψe∗0 + e0ψ
∗ or Lψ = ψ ⊕ ψ∗.

In the second expression, ψ is an m × 1-matrix and ψ∗ is a 1 × m-matrix, the resulting
matrix being of size (m+ 1)× (m+ 1). In the case of a function-evaluation problem, the
corresponding adversary bound is γ2

(
1f(x) 6=f(y) | Lψx

− Lψy

)
x,y∈D.

Let us also state the version of the adversary bound for the decision problem with
state-generating input oracles. This is the version we will use further in the paper. Assume
we have a collection of states ψx ∈ X for x ∈ D0, and a collection of states ψy ∈ X for
y ∈ D1. The task is to distinguish the two classes of states. Let D = D0 ∪D1. Using the
general case, we obtain the following version of the adversary bound.

I Theorem 2. The quantum query complexity of the decision problem with state-generating
oracles as above is equal to γ2

(
1 | Lψx

− Lψy

)
x∈D0,y∈D1

up to a constant factor.

An explicit optimisation problem for γ2
(
1 | Lψx

− Lψy

)
x∈D0,y∈D1

is given by

minimise maxz∈D
(
‖uz‖2 + ‖vz‖2)

subject to
〈
vx, (ψx − ψy)⊗ uy

〉
+
〈
(ψx − ψy)⊗ ux, vy

〉
= 1 ∀x ∈ D0, y ∈ D1;

uz ∈ W, vz ∈ X ⊗W ∀z ∈ D.
(2)

This result follows from general results of [11], see the full version of the paper, where we
also give a stand-alone implementation and analysis of the corresponding quantum algorithm.

3 Models

In this section we formally define four different models how a quantum algorithm can access
a classical probability distribution p = (pa)a∈A. These models were briefly explained in the
introduction. We would like to understand relations between them, and, ideally, prove some
equivalences between them.

1 The results below will appear in an updated version of [11] (to appear). Alternatively, refer to the full
version of the paper.
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(i) A standard input oracle encoding a string x ∈ An for some relatively large n, where pa
is given as the frequency of a in x:

pa = 1
n

∣∣∣{i | xi = a}
∣∣∣.

(ii) A standard input oracle encoding a string x ∈ An for some relatively large n, where
each xi is drawn independently at random from p.

(iii) A quantum procedure that generates the state

µp =
∑
a

√
pa|a〉 =�

a

√
pa. (3)

(iv) A quantum procedure that generates a state of the form∑
a

√
pa|a〉|ψa〉 =�

a

√
paψa, (4)

where ψa are arbitrary unit vectors.

As mentioned in the introduction, model (i) is used in [16, 18, 27, 25]. It has a down-
side that the probabilities pa must be multiples of 1/n. All other models are free from
this assumption.

Model (ii) seems like the most obvious way to encode probability distribution as a classical
string, which a quantum algorithm can later gain access to. Up to our knowledge, this
model has not been previously used. It has a downside that the distribution p is encoded
as a probability distribution over possible input strings, which is not usual for quantum
algorithms. The acceptance probability of the quantum algorithm depends both on the
randomness introduced by the algorithm and the randomness in the input.

Model (iii) is the one used in [17, 2, 6]. And model (iv) is used in [26, 20, 19]. Both of
these two models assume that the input oracle prepares a quantum state, which again is not
very common for quantum algorithms.

I Proposition 3. We have the following relations between these models.
(a) Models (i) and (ii) are equivalent assuming n is large enough. More precisely, no quantum

algorithm can distinguish models (i) and (ii) encoding the same probability distribution
unless it makes Ω(n1/3) queries.

(b) Model (iv) is more general than model (i). This means that any algorithm working in
model (iv) can be turned into an algorithm working in model (i) with the same query
complexity.

(c) Model (iv) is strictly more general than model (iii). This means there exist problems
where model (iii) allows substantially smaller query complexity than model (iv).

Proof. We leave (a) for the end of the proof, and let us start with (b). Note that using one
query to the input oracle of model (i), it is possible to prepare that state

1√
n

∑
i

|i〉|xi〉 =
∑
a∈A

[
1√
n

∑
i:xi=a

|i〉
]
⊗ |a〉,

which is a legitimate input state in model (iv) if one swaps the registers.

Now let us prove (c). It is obvious that model (iv) is more general than model (iii). To
prove that (iii) cannot simulate (iv), consider the collision problem [15]. In this problem, a
function f : [n]→ [n] is given, and one has to distinguish whether f is 1-to-1 or 2-to-1. In
terms of model (i), this boils down to distinguishing a probability distribution p which is
uniform on [n] from a probability distribution q which is uniform on half of [n].

ESA 2019
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In model (iii), this problem can be solved in O(1) queries because the state µp as in (3)
has inner product 1/

√
2 with all µq. On the other hand, by [1, 3], quantum query complexity

of this problem in model (i) is Ω(n1/3). As model (iv) is more general than model (i), this
gives the required lower bound.

To prove (a), we show that if one can distinguish models (i) and (ii), one can distinguish
a random function from a random permutation, and the result follows from the lower bound
of Ω(n1/3) for this task from [30]. Indeed, let p be a probability distribution and let y be
a fixed string encoding p as in model (i). Let σ : [n]→ [n] be a function, and consider the
input string x given by xi = yσ(i), which can be simulated given oracle access to σ (as the
string y is fixed). If σ is a random permutation, then x is a uniformly random input string
from model (i). If σ is a random function, then x is distributed as in model (ii). J

4 Distinguishing Two Probability Distributions

Recall the definition of Hellinger distance between two probability distributions p and q on
the same space A:

dH(p, q) =
√

1
2
∑
a∈A

(√
pa −

√
qa
)2
.

Up to a constant factor, it equals ‖µp − µq‖ and 1− 〈µp, µq〉, where µp and µq are as in (3).
In this section, we prove the following result:

I Theorem 4. For any two probability distributions p and q on the same space A, and any
model of accessing them from Section 3, the quantum query complexity of distinguishing p
and q is

Θ
(

1
dH(p, q)

)
.

Note that this is quadratically better than complexity of the best classical algorithm for
every choice of p and q. Note also that for this problem model (iii) is equal in strength to
the remaining models.

The proof of main involves proving lower and upper bounds in all four models, but,
luckily, we can use relations from Proposition 3. The outline of the proof is as follows. We
prove upper bound in model (iv), which implies upper bounds in all other models as model
(iv) is the most general of them. As for the lower bounds, we prove it for model (ii), which
implies lower bounds in models (i) and (iv). For model (iii), we prove the lower bound
independently. As a bonus, we prove an upper bound in model (iii) as a warm-up for the
upper bound in model (iv).

In most of the proofs, we will use α for the angle between the vectors µp and µq. Note that

α = Θ(‖µp − µq‖) = Θ(dH(p, q)).
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4.1 Analysis in Model (iii)
In this section, we analyse the problem in model (iii).

B Claim 5. Quantum query complexity of distinguishing probability distributions p and q
in model (iii) is Θ

(
1/ dH(p, q)

)
.

Proof. Let us start with the upper bound. Let O be the input oracle, and let U be a unitary
that maps |µp〉 into |0〉 and |µq〉 into cosα|0〉 + sinα|1〉. Now use quantum amplitude
amplification on the unitary UO amplifying for the value |1〉. The algorithm can be also
made exact using exact quantum amplitude amplification.

Now let us prove the lower bound. Let Op be the input oracle exchanging |0〉 and |µp〉
and leaving the vectors orthogonal to them intact. Similarly, let Oq exchange |0〉 and |µq〉.
Simple linear algebra shows ‖Op − Oq‖ = O(α). Let AO be a query algorithm making t
queries to O and distinguishing Op from Oq. Then,∥∥AOp −AOq

∥∥ ≤ t‖Op −Oq‖ = O(tα).

As this must be Ω(1), we get that t = Ω(1/α). C

4.2 Upper Bound in Model (iv)
The aim of this section is to prove the following claim.

B Claim 6. Quantum query complexity of distinguishing probability distributions p and q
in model (iv) is O

(
1/dH(p, q)

)
.

We prove this claim by constructing a feasible solution to (2). In the full version of the
paper, we explain how to implement this algorithm time-efficiently and give a comparison to
an algorithm using more typical techniques.

Let ψ and φ be some vectors encoding p and q, respectively, as in model (iv). That is,

ψ =�
a

√
paψa, and φ =�

a

√
qaφa,

where ψa and φa are some normalised vectors. Our goal is to come up with a feasible solution
to (2) with ψx and ψy replaced by ψ and φ.

We first analyse a pair of vectors √paψa and √qaφa for a fixed a. We would like to get a
construction in the spirit of (2) that “erases” directions ψa and φa, and only depends on the
norms √pa and √qa. One way is to use the following identity:〈√

paψa,
√
paψa −

√
qaφa

〉
+
〈√

paψa −
√
qaφa,

√
qaφa

〉
= pa − qa. (5)

We combine this identity over all a, add weights ca, and re-normalise:〈
�a ca

√
paψa

4
√∑

a c
2
apa

, (ψ − φ) · 4
√∑

c2
apa

〉
+
〈

(ψ − φ) · 4
√∑

c2
aqa,
�a ca

√
qaφa

4
√∑

a c
2
aqa

〉
=
∑
a

ca(pa − qa),

which gives

γ2

(∑
a

ca(pa − qa)
∣∣∣ Lψ − Lφ)

ψ,φ
≤
√∑

a

c2
apa +

√∑
a

c2
aqa.

ESA 2019
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Dividing by
∑
a ca(pa − qa), we get that complexity of distinguishing p from q is at most

O

(√∑
a c

2
apa +

√∑
a c

2
aqa∑

a ca(pa − qa)

)
. (6)

Using triangle inequality√∑
a

c2
a(√pa +√qa)2 ≤

√∑
a

c2
apa +

√∑
a

c2
aqa ≤ 2

√∑
a

c2
a(√pa +√qa)2,

so (6) is equivalent to

O

(√∑
a c

2
a(√pa +√qa)2∑
a ca(pa − qa)

)
.

Now it is easy to see that it is minimised to

O

(
1√∑

a(√pa −
√
qa)2

)
= O

(
1

dH(p, q)

)
when ca = (√pa −

√
qa)/(√pa +√qa).

4.3 Lower Bound in Model (ii)
We use the following version of the adversary lower bound from [12].

I Theorem 7. Assume A is a quantum algorithm that makes T queries to the input string
x = (x1, . . . , xn) ∈ D, with D = An, and then either accepts or rejects. Let P and Q be two
probability distributions on D, and px and qy denote probabilities of x and y in P and Q,
respectively. Let sP and sQ be acceptance probability of A when x is sampled from P and Q,
respectively. Then,

T = Ω
(

min
j∈[n]

δ∗PΓδQ − τ(sP , sQ)‖Γ‖
‖Γ ◦∆j‖

)
, (7)

for any D ×D matrix Γ with real entries. Here, δP [[x]] = √px and δQ[[y]] = √qy are unit
vectors in RD; for j ∈ [n], the D ×D matrix ∆j is defined by ∆j [[x, y]] = 1xj 6=yj ; and

τ(sP , sQ) =
√
sP sQ +

√
(1− sP )(1− sQ) ≤ 1− |sP − sQ|

2

8 . (8)

In our case, δP = µ⊗np and δQ = µ⊗nq . We construct Γ as a tensor power G⊗n, where G
is an A×A matrix satisfying

Gµq = µp, ‖G‖ = 1, and ‖G ◦∆‖ is as small as possible,

where ∆ is the A×A matrix given by A[[a, b]] = 1a 6=b. Then,

δ∗PΓδQ = ‖Γ‖ = 1, and ‖Γ ◦∆j‖ = ‖G ◦∆‖,

and adv gives the lower bound of Ω
(
1/‖G ◦∆‖

)
.
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We construct G as follows. Recall that α is the angle between µq and µp. Then, G is
rotation by the angle α in the plane spanned by µq and µp and homothety with coefficient
cosα on its orthogonal complement. That is, in an orthonormal basis where the first two
vectors span the plane of µq and µp, we have

G =


cosα − sinα 0 · · · 0
sinα cosα 0 · · · 0

0 0 cosα · · · 0
...

...
...

. . .
...

0 0 0 · · · cosα

 .

Clearly, Gµq = µp and ‖G‖ = 1. Let G′ = G− cosα I. We have

‖G ◦∆‖ = ‖G′ ◦∆‖ ≤ 2‖G′‖ = 2 sinα = O
(
dH(p, q)

)
.

For the inequality we used that γ2(∆) ≤ 2, see [24, Theorem 3.4]. This gives the required
lower bound.

5 Summary and Future Work

In this paper we considered quantum algorithms dealing with classical probability distribu-
tions. We identified four different models, and proved various relations between them. We
conjecture that models (i), (ii) and (iv) are equivalent.

Also, we considered the problem of distinguishing two probability distributions and
obtained precise characterisation of its quantum query complexity in all four models in terms
of Hellinger distance between the probability distributions. The complexity turned out to be
exactly quadratically smaller than the classical complexity of this problem for all pairs of
distributions.

We showed that the corresponding algorithm can be implemented efficiently given that the
probability distributions p and q can be handled efficiently. We also compared our algorithm
with a more standard approach using rejection sampling and amplitude estimation.

This raises a number of interesting open problems. The first one is to prove or disprove the
conjecture that models (i) and (iv) are equivalent. Another interesting problem is to come up
with a nice γ2-characterisation of probability distribution oracles like gamma2StatePreparing
characterises state-generating oracles. Unfortunately, we do not have any hypothesis of how
this characterisation might look like. Finally, we would be interested in further quantum
algorithms based on techniques of Section 4.2.
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