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ABSTRACT 

 

Following Reichenbach, it is widely held that in making a direct inference, one should base 

one’s conclusion on a relevant frequency statement concerning the most specific reference 

class for which one is able to make a warranted and relatively precise-valued frequency 

judgment. In cases where one has accurate and precise-valued frequency information for two 

relevant reference classes, R1 and R2, and one lacks accurate and precise-valued frequency 

information concerning their intersection, R1R2, it is widely held, following Reichenbach, 

that no inference may be drawn. In contradiction to Reichenbach and the common wisdom, I 

argue for the view that it is often possible to draw a reasonable informative conclusion, in 

such circumstances. As a basis for drawing such a conclusion, I show that one is generally in 

a position to formulate a reasonable direct inference for a reference class that is more specific 

than either of R1 and R2. 

 

 

1. Introduction  

 

Typical instances of direct inference proceed from a premise stating that the frequency with 

which members of a given reference class, R, are members of a respective target class, T, is r, 

and a premise stating that an object, c, is an element of R, and yields the conclusion that the 

probability that c is a member of T is r. In order to abbreviate the description of such 

inferences, I use “PROB” to refer to a probability function that takes propositions as 

arguments, and is understood as designating the personal probabilities that are rational for a 

respective agent, given the evidence that the agent has. I use “freq” to denote a function that 

takes a pair of sets as an argument, and returns the relative frequency of the first set among 

the second (i.e., freq(T|R) = |TR|/|R|). So “freq(T|R) = 0.75” expresses that the relative 

frequency of Rs (elements of R) that are Ts (elements of T) is 0.75. Given this notation, 

typical direct inferences conform to the following principle: 

 

Direct Inference [DI]: cR and freq(T|R) = r is a reason for concluding that PROB(cT) = 

r.
1
 

 

 Following Reichenbach, it is widely held that in making a direct inference, we should 

base our conclusion on a relevant frequency statement concerning the most specific reference 

class for which we are able to make a warranted and (relatively) precise-valued frequency 

judgment (Reichenbach 1949, 374; cf. Venn 1866; Pollock 1990; Bacchus 1990; Kyburg & 

Teng 2001; Thorn 2012; Thorn 2017). In cases where we have accurate and precise-valued 

frequency information for two relevant reference classes, R1 and R2, and we lack accurate and 

precise-valued frequency information concerning their intersection, it is widely held, 
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following Reichenbach, that no inference may be drawn. In such cases, Reichenbach holds 

that there is no formal solution to the problem, and that our only course, if we hope to make 

an inference, is to gather more information concerning the intersection of the two reference 

classes (Reichenbach 1949, 375).
2
 In contradiction to Reichenbach and the common wisdom, 

I follow in the footsteps of Kyburg and Teng (2001) and Pollock (2011), and argue that it is 

often possible to draw a reasonable informative conclusion, in such circumstances. As a basis 

for drawing such a conclusion, I show that one is generally in a position to formulate a 

reasonable direct inference for a reference class that is more specific than either of R1 and R2. 

After presenting my approach in Section 3, I compare it to the approaches of Kyburg and 

Teng (2001) and Pollock (2011), in Section 4. 

 

 

2. Preliminary Discussion 

 

Before proceeding, it will be helpful to get a bit clearer about the sorts of conditions under 

which direct inferences are defeated. There are two plausible principles that provide a partial 

specification of the conditions under which instances of [DI] are defeated:
3
 

 

Specificity Defeat [SD]: If D1 and D2 are direct inferences leading to mutually inconsistent 

conclusions, and the reference class for D1 is more specific than the reference class for D2, 

then D2 is subject to specificity defeat. 

 

Rebutting Defeat [RD]: If D1 and D2 are direct inferences leading to mutually inconsistent 

conclusions, and neither inference is defeated via an application of [SD], then both D1 and D2 

are subject to rebutting defeat. 

 

 The preceding principles encapsulate the two core ‘mechanisms’ by which instances of 

direct inference may interact. In particular, they express the idea that (1) direct inferences 

based on more specific reference classes have priority, and (2) absent the possibility of 

prioritizing by appeal to specificity, conflicting direct inferences are subject to mutual defeat.  

 [SD] and [RD] do not provide a complete specification of the conditions under which 

instances of direct inference are defeated. For one, the principles do not address the treatment 

of direct inferences based on gerrymandered reference and target classes. I will not attempt to 

provide formal criteria for identifying such direct inferences here, but see (Pollock 1990, 84), 

for examples. Rather I will simply assume that direct inferences based on gerrymandered 

reference and target classes are defeated, and cannot serve as defeaters for other direct 

inferences. There is another possible shortcoming of [SD] and [RD], namely: It is plausible 

that direct inferences leading to mutually consistent conclusions can interact, thereby resulting 

in situations where one or both of the direct inferences are defeated (cf. Stone 1987). For 

                                                 
2
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Pollock (1990), Kyburg & Teng (2001), and Thorn (2012, 2017), have recognized something like [SD] and 

[RD], with some variation concerning the treatment of imprecise-valued frequency data. The account of Bacchus 

(1990) recognizes something like [SD], but takes a ‘credulous’ approach to conflicting direct inferences, in cases 

where considerations of specificity are inapplicable. 
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example, suppose we are in a position to make direct inferences in accord with the following 

(generalized) instances of [DI], in the case where R is a proper subset of R:
4
 

 

cR and freq(T|R)  [0, 0.6] is a reason for concluding that PROB(cT)  [0, 0.6]. 

 

cR and freq(T|R)  [0.6, 1] is a reason for concluding that PROB(cT)  [0.6, 1]. 

 

 In this case, the conclusions of the two direct inferences are consistent. But if neither of 

the two direct inferences were defeated, it would be correct to infer that PROB(cT) = 0.6, 

which is not plausible. So it appears that a direct inference based on a more specific reference 

class can trigger the defeat of a direct inference based on a less specific reference class, even 

if the conclusions of the two direct inferences are mutually consistent. On the other hand, the 

possibility of formulating a direct inference based on imprecise-valued frequency information 

for a narrower reference class does not always result in the defeat of a direct inference for a 

broader reference class. If this was not the case, then all interesting instances of [DI] would be 

defeated, due to (generalized) instances of [DI] of the following form: 

 

c{c} and freq(T|{c}){0,1} is a reason for concluding that PROB(cT){0,1}.
5
 

 

 In the present paper, I will not address the difficult problem of precisely characterizing 

when imprecise-valued frequency information for a more specific reference class yields the 

defeat of a direct inference based on a broad reference class. Rather than do this, I will focus 

on two types of clear case where this problem does not arise, namely: cases where the two 

direct inferences yield mutually inconsistent point-valued conclusions (so direct inference 

based on the broader reference class is defeated by appeal to [SD]), and cases where we have 

no non-trivial frequency information about the value of freq(T|R) for the narrower reference 

class R (so direct inference based on the broad reference class is not defeated by appeal to 

[SD]). 

 So far I have proceeded under the assumption that a reference class R is more specific 

than a reference class R, if R is a proper subset of R. For the sake of addressing 

Reichenbach’s reference class problem, I will need to apply specificity criteria that permit 

arbitration between reference classes whose elements are tuples of different arity (e.g., 

reference classes whose elements are individual objects versus reference classes whose 

elements are ordered pairs of objects). My proposal will involve comparing open first order 

formulae that correspond to respective reference classes. To this end, I will say that an open 

first order formula R(x1,…,xn) encapsulates a set R if and only if R = {c1,…,cn : c1,…,cn 

satisfies R(x1,…,xn)}, or R = {c1 : c1 satisfies R(x1)}, in the case where n = 1. The specificity 

condition that is used in determining the applicability of [SD] is then characterized as follows 

(where “” is used to express material implication). 

 

Specificity: R is more specific than R if and only if 

                                                 
4
 The following are described as generalized instances of [DI], since they involve inference from imprecise-

valued frequency statements to imprecise-valued probability statements. 
5
 In explaining why direct inferences of the present form are not admissible, and do not result in the defeat of 

direct inferences based on non-trivial frequency information, I favor the proposal that it is statements of expected 

frequency (and not of frequency) that are the proper major premises for direct inference (Bacchus 1990, Thorn 

2012). This proposal delivers the correct results, since it permits the use of known frequencies as premises for 

direct inference (since if PROB(freq(T|R) = r) = 1, then the expectation of freq(T|R) is r), and explains why 

imprecise-valued frequency information for more specific reference classes does not yield the defeat of direct 

inferences based on precise-valued frequency information for less specific reference classes (since 

PROB(freq(T|R)S) = 1 does not imply that the expectation of freq(T|R) is in S) (Thorn 2012, 311-13). 
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(1) there are encapsulations R(x1,…,xn) and R(x1,…,xm) of R and R, such that:  

x1,…,xk: R(x1,…,xm)  R(x1,…,xn) (where k = max{m, n}), and 

(2) there are no encapsulations R(x1,…,xn) and R(x1,…,xm) of R and R, such that:  

x1,…,xk: R(x1,…,xn)  R(x1,…,xm) (where k = max{m, n}). 

 

 The idea behind the preceding proposal (which is similar to the proposals of Pollock 

1990, Kyburg & Teng 2001, and Thorn 2011, cf. Pust 2011) is that a reference class R is 

more specific than a reference class R just in case (for some first order specification of R and 

R) any tuple/object that satisfies the first order formula for R also satisfies the first order 

formula for R, but not vice versa. Despite capturing the preceding idea, it must be 

acknowledged that the proposed specificity criteria fail to recognize some intuitive cases of 

specificity. For example, the proposed criteria fail to recognize that {x : x is taller than Bob} 

is more specific than {x,y : x is taller than y}. Note, however, that the present omission is 

harmless, since in any situation where one is in a position to make a direct inference using the 

reference class {x : x is taller than Bob}, one is also in a position to make a direct inference, to 

the very same conclusion, using the reference class {x,y : x is taller than y  y = Bob}. The 

preceding fact effectively ‘disarms’ the counterexample to the proposed specificity criteria, 

since those criteria classify {x,y : x is taller than y  y = Bob} as more specific than {x,y : x 

is taller than y}, which is sufficient for delivering the correct conclusion about which direct 

inferences are subject to specificity defeat via [SD].  

 

 

3. Reichenbach’s Problem and Its Solution 

 

I here consider the problem of determining what to conclude when one is in a position to 

make two competing direct inferences, of the following form, in cases where (i) neither R1 is 

more specific than R2 nor R2 is more specific than R1, and (ii) for all S: if one has non-trivial 

information about the value of freq(T|S), then c is not in S, or R1 is more specific than S, or R2 

is more specific than S:  

 

(DIR1): cR1 and freq(T|R1) = r1 is a reason for concluding that PROB(cT) = r1. 

 

(DIR2): cR2 and freq(T|R2) = r2 is a reason for concluding that PROB(cT) = r2. 

 

 I call the problem of determining what to conclude in such cases “Reichenbach’s 

reference class problem”.
6
 Notice that (i) excludes cases where (DIR1) is subject to specificity 

defeat via (DIR2), and cases where (DIR2) is subject to specificity defeat via (DIR1). In 

interpreting (ii), “non-trivial” information should be understood as information that permits 

one to validly infer a conclusion about the value of freq(T|S) that is not implied by one’s 

frequency information for R1 and R2 (i.e., the information that freq(T|R1) = r1 and freq(T|R2) 

= r2). So (ii) excludes cases where (DIR1) and (DIR2) are subject to specificity defeat based on 

information concerning the value of freq(T|R1R2), since freq(T|R1) and freq(T|R2) place no 

constraints on the value of freq(T|R1R2) (assuming {r1, r2}{0, 1} = ). Beyond this, (ii) 

probably excludes more cases than necessary. But rather than attempt to delineate better 

fitting criteria for when the approach to be proposed is applicable, I play it safe, and stick with 

a core set of cases where I am confident that the approach is appropriate. In the end, 
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considered here from other worries concerning the selection of appropriate reference classes (cf. Hájek 2007; 

Thorn 2012). 
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conditions (i) and (ii) will not be very important, since it is intended that the range of cases to 

which the proposed approach is applicable is ultimately determined by [SD]. I will return to 

this point a little later. 

 My approach to Reichenbach’s reference class problem proceeds by applying our 

frequency information for the two competing reference classes, R1 and R2, in order to draw a 

reasonable conclusion about the likelihood that the given object, c, is an element of the given 

target class T. The basic idea is to: (1) form a reference class that is more specific than R1 and 

R2 that includes an object that corresponds to c, (2) determine the frequency of membership in 

T among that reference class, and (3) use the resulting frequency statement to formulate a new 

direct inference, in order to draw a conclusion about the probability that c is in T. As a basis 

for the proposed direct inference, consider the set of pairs whose first element is in R1 and 

whose second element is in R2, such that both elements are in T or both are not, namely: 

{x,y : xR1  yR2  ((xT  yT)  (xT  yT))}. For ease of reference, call this set 

R*. Note that while c is not a member of R*, c,c is. The next thing to notice about R* is that 

it is more specific than R1, and more specific than R2. In particular, x,y: (xR1  yR2  

((xT  yT)  (xT  yT)))  xR1, but not x,y: xR1  (xR1  yR2  ((xT  yT) 

 (xT  yT))), and similarly for R2. Given [SD], the preceding implies that direct inference 

using frequency information for R* takes priority over direct inference using frequency 

information for either R1 or R2, in cases where one has reliable precise-valued frequency 

information for R*. Now notice that in cases where Reichenbach’s reference class problem 

arises, we are always in a position to deduce the precise value of freq({x,y : xT}|R*), via 

the following theorem:
7
 

 

Theorem 1: T,R1,R2: R*    freq({x,y : xT}|R*) = (freq(T|R1)freq(T|R2)) / 

(freq(T|R1)freq(T|R2) + freq(T
C
|R1)freq(T

C
|R2)). 

 

Proof:  

 

Recall that R* = {x,y : xR1  yR2  ((xT  yT)  (xT  yT))}. 

 

Let R*T = {x,y : xR1  yR2  xT  yT}, and  

                  R*Tc = {x,y : xR1  yR2  xT  yT}.  

 

Then we have the following: 

 

R* = R*T R*Tc, 

R*T R*Tc = , 

|R*| = |R*T |+|R*Tc|, 

|R*T | = |TR1||TR2| = freq(T|R1)|R1|  freq(T|R2)|R2|, and 

|R*Tc| = |T
C
R1||T

C
R2| = freq(T

C
|R1)|R1|  freq(T

C
|R2)|R2|. 

 

So, assuming R*  , we have: 

 

freq({x,y : xT}|R*) = |{x,y : xT}R*|/|R*| = |R*T |/(|R*T |+|R*Tc|) 

= (freq(T|R1)freq(T|R2)) / (freq(T|R1)freq(T|R2) + freq(T
C
|R1)freq(T

C
|R2)). 

 

 By appeal to the preceding theorem, we may infer the value of freq({x,y : xT}|R*), 

and then draw a conclusion about the value of PROB(cT), via the following instance of 

[DI]: 

                                                 
7
 Note that if R* = , then the respective case is not one where Reichenbach’s reference class problem arises, 

since R* =  implies that R1R2 = , and thus that cR1 or cR2. 
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(DIR*): c,cR* and freq({x,y : xT}|R*) = r is a reason for concluding that 

PROB(c,c{x,y : xT}) = r  (i.e., that PROB(cT) = r). 

 

 For example, suppose we want to form a judgment about the likelihood that Robert, one 

of the residents of a given apartment building, owns a car, and we are in a situation that is an 

instance of Reichenbach’s reference class problem: We know that Robert lives in a south 

facing apartment (i.e., is in R1) and that the frequency of car ownership among the members 

of R1 is 0.6, and we know that Robert lives on the third floor (i.e., is in R2) and that the 

frequency of car ownership among the members of R2 is 0.4, but we have no information 

concerning the frequency of car ownership among residents of third floor west facing 

apartments (i.e., among R1R2). At this point, we notice that we can form a reference class 

formed of pairs drawn from R1 and R2, as specified by R* (i.e., the set of pairs whose first 

element is a resident of a south facing apartment, and whose second element is a resident of a 

third floor apartment, where both elements are car owners or neither is a car owner). We also 

know that Robert, Robert is an element of R*, and, in the present situation, we can calculate 

that the frequency of pairs whose elements are car owners among R* is 0.5 (by an application 

of Theorem 1). So we are in a position to make a direct inference, via an instance of (DIR*), to 

the conclusion that PROB(Robert, Robert{x,y : xT}) = 0.5, and thus to the conclusion 

that the probability that Robert owns a car is 0.5. 

 In cases where Reichenbach’s reference class problem arises, it is intended that the 

justification for reasoning by appeal to instances of (DIR*) derives from [SD]. Indeed, R* is 

more specific than R1, and more specific than R2. So [SD] tells us that direct inference based 

on R* takes priority over direct inference by R1 or R2. On the other hand, {x,y : xR1  

yR2  x = y} is more specific than R*, and in any situation where one is in a position to 

make a direct inference using {x,y : xR1  yR2  x = y} as one’s reference class, one is in 

a position to make a direct inference to the very same conclusion using R1R2 as one’s 

reference class. This means that direct inference using informative frequency information for 

R1R2 takes priority to direct inference using frequency information for R*. Note, however, 

that while making a direct inference based on R1R2 would be preferable to making a direct 

inference based on R*, we lack informative frequency information for R1R2 in cases where 

Reichenbach’s reference class problem arises. For this reason, direct inference based on R* 

may be reasonable, in such cases. I here say that direct inference based on R* “may be 

reasonable” in such cases, since in addition to R1R2 (and {x,y : xR1  yR2  x = y}), 

there are many reference classes that are more specific than R*, and in cases where we have 

reliable precise-valued frequency information for a reference class that is more specific than 

R*, direct inference based on R* will be defeated via [SD]. For example, in a case where one 

is justified in accepting the premises for (DIR1) and (DIR2) and one has no non-trivial 

frequency information about the value of freq(T|R1R2), one might yet know that c is a 

member of T (or one might know the frequency of T among some other subset of R1R2 that 

is known to contain c). In such cases, it is clear that one should not form one’s judgment 

concerning the probability that c is a member of T using (DIR*). 

 As I have already stated, the justification for forming one’s conclusion about the value of 

PROB(cT) via an instance of (DIR*) (in cases where Reichenbach’s reference class problem 

arises) derives from [SD]. Beyond this justification, the following four propositions suggest 

that direct inference via (DIR*) yields reasonable conclusions about the value of PROB(cT), 

in the range of cases under consideration: 

 

Symmetry: T,R1,R2: freq(T|R1) = freq(T
C
|R2)  freq({x,y : xT}|R*) = 0.5. 
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Asymmetry: T,R1,R2: freq(T|R1) > freq(T
C
|R2)  freq({x,y : xT}|R*) > 0.5. 

 

Balance: T,R1,R2,r: freq(T|R1) = 0.5  freq(T|R2) = r  freq({x,y : xT}|R*) = r.  

 

Synergy: T,R1,R2,r: 1 > freq(T|R1) = r > 0.5  freq(T|R2) > 0.5  freq({x,y : xT}|R*) > 

r.
8
 

 

 In the range of cases under consideration, I regard the prescriptions deriving from the first 

of the above propositions, Symmetry, as more or less indubitable: If the frequency of Ts in R1 

is identical to the frequency of non-Ts in R2, then the information bearing on the likelihood of 

T vs. non-T, for an object that is a member of both R1 and R2, is symmetric, suggesting that 

one ought to conclude that the object is as likely to be a member of T as not. On the other 

hand, if the frequency of Ts in R1 is greater than the frequency of non-Ts in R2, then 

information bearing on the likelihood of being in T vs. non-T is asymmetric, with the balance 

tilted toward T, suggesting that one ought to conclude that the object is more likely to be a 

member of T than not. Balance yields the result that the likelihood that an object is in T be 

identical to the frequency of T in R2, in cases where a member of R1 is as likely to be a 

member of T as not. Although this principle is probably dubitable, it is intuitively plausible: If 

membership in R1 is neither positively nor negatively probative for membership in T, then 

one should base one’s judgment concerning the likelihood of an object’s membership in T on 

the fact that the object is a member of R2. Synergy yields the result that the likelihood that an 

object is in T is greater than the frequency of T in R1, in the case where the object is a 

member of both R1 and R2, and the frequency of T is greater than 0.5 in both R1 and R2. This 

principle is also intuitively plausible: If having either of two distinct characteristics (R1 and 

R2) makes it likely that an object has some third characteristic (T), then, in the absence of 

countervailing evidence, having both characteristics (R1 and R2) makes it even more likely 

that the object has the third characteristic.  

 Note that the consequent of the preceding conditional does not rely on a commitment to 

the claim that freq(T|R1R2) is greater than both freq(T|R1) and freq(T|R2), though it does 

presumably rely on a commitment to the claim that the expectation of freq(T|R1R2) is 

greater than both freq(T|R1) and freq(T|R2) (i.e., that the probability weighted average of the 

possible values of freq(T|R1R2) is greater than both freq(T|R1) and freq(T|R2)). More 

generally, it must be emphasized that the proposed approach to Reichenbach’s reference class 

problem does not involve a commitment to the claim that freq(T|R1R2) = freq({x,y : 

xT}|R*), in cases where the approach is applied. Rather, when reasoning in accordance with 

(DIR*), ignorance of the value of freq(T|R1R2) is on par with ignorance of the value of 

freq(T|{c}), and presents no defeater for instances of (DIR*). The present point is important, 

since the values of freq({x,y : xT}|R*) and freq(T|R1R2) may differ dramatically, as 

implied by the fact that the values of freq(T|R1) and freq(T|R2) place no constraints on the 

value of freq(T|R1R2), assuming{r1, r2}{0, 1} = . 

 A significant worry regarding (DIR*) was pointed out by a referee for this paper. The 

worry is that there are many reference classes narrower than R* whose relative frequencies 

                                                 
8
 All of the principles follow straightforwardly from Theorem 1. For example, asymmetry is straightforward 

consequence of the fact that freq(T|R1) > freq(T
C
|R2) implies freq(T|R2) > freq(T

C
|R1), for all T, R1, and R2. For 

synergy, notice that for all T, R1, R2: if  = freq(T|R2) – 1/2, then (freq(T|R1)freq(T|R2)) / (freq(T|R1)freq(T|R2) 

+ freq(T
C
|R1)freq(T

C
|R2)) = (freq(T|R1)/2 + freq(T|R1)) / (1/2 + (2freq(T|R1) – 1)). So, for reductio, one 

may assume that (freq(T|R1)/2 + freq(T|R1)) / (1/2 + (2freq(T|R1) – 1))  freq(T|R1) (for some T, R1, R2), 

which implies that (freq(T|R1)/2 + freq(T|R1)) / (1/2 + (2freq(T|R1) – 1))  (freq(T|R1)/2 + 

freq(T|R1)(2freq(T|R1) – 1))) / (1/2 + (2freq(T|R1) – 1)), and thus that freq(T|R1)/2 + freq(T|R1)  

freq(T|R1)/2 + freq(T|R1)(2freq(T|R1) – 1), which is absurd, since 2freq(T|R1) – 1 < 1. 
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can be determined in a manner similar to the value of freq({x,y : xT}|R*). Consider, for 

example, the following reference class: 

 

R
†
 = {x,y,z : xR1  yR2  zR2  ((xT  yT  zT)  (xT  yT  zT))}. 

 

In a manner similar to freq({x,y : xT}|R*), we can compute the value of freq({x,y,z : 

xT}|R
†
), namely: 

 

freq({x,y,z : xT}|R
†
) =  

           (freq(T|R1)freq(T|R2)
2
)  /  (freq(T|R1)freq(T|R2)

2
 + freq(T

C
|R1)freq(T

C
|R2)

2
). 

 

This leaves the possibility of formulating the following instance of [DI]: 

 

(DIR†): c,c,cR
†
 and freq({x,y,z : xT}|R

†
) = r† is a reason for concluding that 

PROB(c,c,c{x,y,z : xT}) = r†  (i.e., that PROB(cT) = r†). 

 

 Notice (DIR*) and (DIR†) will typically yield conflicting conclusions. For example, if 

freq(T|R1) = 0.75 and freq(T|R2) = 0.25, then freq({x,y : xT}|R*) = 0.5 and freq({x,y,z : 

xT}|R
†
) = 0.25. So (DIR*) tells us to infer that PROB(cT) = 0.5, and (DIR†) tells us to infer 

that PROB(cT) = 0.25. Further, note that R
†
 is more specific than R*, and this yields the 

defeat of (DIR*), via [SD]. 

 The key to addressing the present problem is to notice that for any direct inference such 

as (DIR†), it is possible to formulate a direct inference with a reference class that is more 

specific than R
†
 that yields the same conclusion as (DIR*). For example, in the face of R

†
 and 

(DIR†), we can formulate the following reference class, and a corresponding instance of [DI]: 

 

R
†
* = {x,y,z : xR1  yR2  y = z  ((xT  yT)  (xT  yT))}. 

 

(DIR†*): c,c,cR
†
* and freq({x,y,z : xT}|R

†
*) = r is a reason for concluding that 

PROB(c,c,c{x,y,z : xT}) = r  (i.e., that PROB(cT) = r). 

 

 Notice that freq({x,y,z : xT}|R
†
*) = freq({x,y : xT}|R*). So (DIR†*) permits us to 

reason to the same conclusion as (DIR*). Next, notice that R
†
* is more specific that R

†
 (which 

is evident, since R
†
* is a proper subset of R

†
). So (DIR†) is defeated due to our frequency 

information for R
†
*. If we like, we can adopt the terminology of Pollock (1990, 87), and say 

that (DIR*) is “reinstated”, due to the defeat of (DIR†). Regardless, if (DIR†*) is undefeated, we 

can use it to reason to the very same conclusion as the one that we would have reached using 

(DIR*). There is, however, a residual problem: It is possible to formulate variants of R
†
 that 

yield the defeat of direct inferences such as (DIR†*). Consider, for example, the reference 

class: {x,y,z,w : xR1  yR2  y = z  wR2  ((xT  yT  wT)  (xT  yT  

wT))}. Of course, we can also formulate further variants of R
†
* (e.g., {x,y,z,w : xR1  

yR2  y = z = w  ((xT  yT)  (xT  yT))}) that can be used to formulate defeaters 

for direct inferences based on the variants of R
†
, and so on. So it looks like it is possible to 

formulate an infinitely extending ‘regress’ of direct inferences, with each direct inference 

yielding the defeat of the preceding element of the regress. A reasonable means to halt such a 

regress (and reach the conclusion recommended by (DIR*)) is to demand a finite upper bound 

on the size of the tuples that may form the elements of a permissible reference class. Such a 

measure will stop the regress, since, for all n, the n-tuple variant of R
†
* is more specific than 

the n-tuple variant of R
†
, which means that an upper bound on the arity of tuples for 
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permissible reference classes, will result in the defeat of all variants of R
†
, but not of all 

variants of R
†
*. In fact, we need only demand that for every context, there is some (as large as 

one likes) finite upper bound that applies in that context. Once again, we can adopt the 

terminology of Pollock (1990, 87), and say that (DIR*) is “reinstated”, due to the defeat of all 

variants of (DIR†). Regardless, demanding an upper bound on the arity of tuples for 

permissible reference classes, will leave an undefeated variant of (DIR†*), and the conclusion 

of this direct inference will be equivalent to the conclusion of (DIR*). 

 It strikes me as plausible that, for each context, there is some upper bound on the size of 

the tuples that may form the elements of a suitable reference class (e.g., the bound n
n
, in the 

case where n is the number of elements in the domain about which one is reasoning). That 

said, I am not aware of a direct and compelling argument in favor of such bounds. There is, 

however, a relatively compelling indirect argument in favor of such bounds.
9
 The argument 

(by reductio) turns on the assumption that principles in the vicinity of the principles expressed 

in the preceding sections (namely, [DI], [SD], and [RD]) are correct, and the assumption that 

some direct inferences are undefeated. In that case, notice that absent an upper bound on the 

size of the tuples that may form the elements of a suitable reference class (or absent an 

equivalent mechanism, e.g., as suggested in footnote 7), the application of [SD] (assuming 

something in the vicinity of the specificity condition introduced in the preceding section) 

would yield the defeat of all direct inferences, via infinitely extending ‘regresses’ of direct 

inferences. As an illustration, suppose we wish to make a respectable direct inference based 

on the frequency statement freq(T|R) = 0.6. Notice that we may formulate a defeater for the 

proposed direct inference based on the following frequency statement: freq({x,y : 

xT}|{x,y : xR  yR  ((xT  yT)  (xT  yT))}) = 9/13. Yet we can also 

formulate a defeater for the latter direct inference based on the following frequency statement: 

freq({x,y : xT}|{x,y : xR  x = y}) = 0.6. And so on. So if we think that some direct 

inferences are uniquely reasonable, then we have reason to adopt a measure of the sort that is 

needed to rescue (DIR*) from (DIR†) and its variants. 

 Before proceeding, I should mention that the proposed approach to Reichenbach’s 

reference class problem permits of generalization along at least four dimensions, in order to 

apply in situations where: (i) the number of relevant intersecting reference classes for which 

we have frequency information (here R1 and R2) exceeds two, (ii) we have frequency 

information for finer-grained target classes (e.g., we know the values of freq(TS|R1), 

freq(TS
C
|R1), freq(T

C
S|R1), and freq(T

C
S

C
|R1)), (iii) our frequency information for the 

intersecting reference classes (here R1 and R2) is imprecise-valued, and (iv) we have non-

trivial frequency information for the intersection of the relevant reference classes (here 

R1R2). Discussion of situations where any of (i) through (iv) apply is left to another 

occasion. That said, it is important to acknowledge that (along with situations of type (iv)) 

situations of type (i) and (ii) can generate defeaters for instances of (DIR*).  

 

 

4. Other Proposals 

 

The treatment of Reichenbach’s reference class problem proposed here has some competitors. 

Before concluding the present paper, I briefly compare my proposal with the two most 

plausible competitors, namely: the proposal of Kyburg and Teng (2001), and the proposal of 

Pollock (2011).  

                                                 
9
 Alternatively, one could achieve similar ends by more or less equivalent means. For example, one could 

maintain that inference to a particular probability statement is ‘ultimately’ undefeated (cf. Pollock 1990, 89-90), 

if, for all n, there is an undefeated direct inference to that probability statement, so long as we only consider 

direct inferences whose reference classes consist of tuples of length n or less. 
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4.1. Comparison with Kyburg and Teng  

 

In adjudicating between direct inferences such as (DIR1) and (DIR2) (where neither R1 is a 

proper subset of R2 nor R2 is a proper subset of R1), Kyburg and Teng (2001) propose that we 

conclude that PROB(cT) lies within the smallest interval that includes r1 and r2. For 

example, if freq(T|R1) = 0.4 and freq(T|R2) = 0.6, then the account of Kyburg and Teng 

recommends the conclusion that PROB(cT)  [0.4, 0.6]. 

The proposal of Kyburg and Teng frequently leads to conclusions that are more 

conservative than the ones proposed in the present paper. Indeed, while the account of Kyburg 

and Teng recommends the conclusion that PROB(cT)  [0.4, 0.6], in the case where 

freq(T|R1) = 0.4 and freq(T|R2) = 0.6, my proposal recommends the conclusion that 

PROB(cT) = 0.5, in accordance with symmetry (as described in the preceding section). If 

freq(T|R1) = 0.4 and freq(T|R2) = 0.7, the account of Kyburg and Teng recommends the 

conclusion that PROB(cT)  [0.4, 0.7], whereas my proposal recommends the conclusion 

that PROB(cT) = 14/23  0.61, in accordance with asymmetry. If freq(T|R1) = 0.5 and 

freq(T|R2) = 0.7, then the account of Kyburg and Teng recommends the conclusion that 

PROB(cT)  [0.5, 0.7], while mine recommends the conclusion that PROB(cT) = 0.7, in 

accordance with balance. In other cases, the proposal of Kyburg and Teng recommends 

conclusions that are inconsistent the ones proposed within the present paper. For example, if 

freq(T|R1) = 0.6 and freq(T|R2) = 0.7, then the account of Kyburg and Teng recommends the 

conclusion that PROB(cT)  [0.6, 0.7], whereas the approach of the present paper 

recommends the conclusion that PROB(cT) = 7/9  0.78, in accordance with synergy. 

In the face of direct inferences that support contradictory conclusions, the basic idea of 

Kyburg and Teng is to adopt a conclusion that is: (1) consistent with the conclusions of the 

two direct inferences, and (2) relatively informative. While their approach is not without some 

prima facie plausibility, it is also, arguably, ad hoc. Regardless, it appears that advocates of 

Kyburg and Teng’s approach should be open (if not compelled) to accept the approach to 

Reichenbach’s reference class problem proposed in this paper, since the approach of Kyburg 

and Teng is committed to the preference for direct inferences based on frequency information 

for more specific reference classes. In particular, Kyburg and Teng are committed to prefer 

direct inference via R* over either of R1 and R2, according to their criteria for sharpening by 

richness (Kyburg & Teng 2001, 215-7). Furthermore, since freq({x,y : xT}|R*) = 

(freq(T|R1)freq(T|R2)) / (freq(T|R1)freq(T|R2) + freq(T
C
|R1)freq(T

C
|R2)) is a mathematical 

truth (given R*  ), an appropriate direct inference based on frequency information for R* 

is available in all cases where Reichenbach’s reference class problem arises.  

 

4.2. Comparison with Pollock (2011)  

 

Pollock’s approach to direct inference differs from the approach taken here, due to the 

former’s formulation within Pollock’s general framework of ‘nomic probabilities’, where 

statements of nomic probability, rather than frequency, are taken as the proper major premises 

for direct inference (Pollock 1990). The framework of Pollock’s approach is thus 

idiosyncratic and highly non-standard. However, it turns out that most of Pollock’s insights 

can be re-expressed within a framework where statements of frequency are taken as the 

proper major premises for direct inference.
10

 I think much clarity is gained when Pollock’s 

insights are so expressed, and so I will present Pollock’s ideas concerning the reference class 

problem within such a framework. In that case, the account of Pollock has several affinities to 
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 Pollock’s system also permits direct inference using frequency statements, by appeal to a principle that 

Pollock calls “PFREQ” (Pollock 1990, 70). 
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the approach to Reichenbach’s reference class problem proposed within the present paper. 

Indeed, in the face of competing direct inferences based on a pair of reference classes R1 and 

R2, Pollock proposes to (1) form a judgment about the frequency of T among a reference class 

that contains c and is more specific than either R1 or R2, and (2) use the resulting frequency 

judgment as the major premise for a new direct inference. Furthermore, the conclusions 

entailed by Pollock’s approach are identical to the ones entailed by mine, under certain 

limiting conditions, as described below. 

In the face of Reichenbach’s reference class problem, Pollock proposes that one directly 

estimate the value of freq(T|R1R2) by locating the triple consisting of T, R1, and R2 among 

an appropriate set of similar triples. The appropriate reference class, according to Pollock’s 

account, is {,1,2 : ,1,2U  freq(|1) = v  freq(|2) = w  freq(|U) = u}, where v 

is freq(T|R1), w is freq(T|R2), u is freq(T|U), and U is the set of all objects. Call this reference 

class R
Poll

. Pollock shows that freq({,1,2 : freq(|12)  (vw(1u)) / (u(1vw) + 

vw)}|R
Poll

)  1, on the assumption that |U| is very large.
11

 Based on the preceding frequency 

statement, it is possible to infer that PROB(freq(T|R1R2)  (vw(1u)) / (u(1vw) + vw)) 

 1, by the following instance of [DI]: 

 

(DIPoll): T,R1,R2R
Poll

 and  

freq({,1,2 : freq(|12)  (vw(1u)) / (u(1vw) + vw)}|R
Poll

)  1  

is a reason for concluding that  

PROB(T,R1,R2{,1,2 : freq(|12)  (vw(1u)) / (u(1vw) + vw)})  1  

(i.e., that PROB(freq(T|R1R2)  (vw(1u)) / (u(1vw) + vw))  1). 

 

One significant worry about Pollock’s approach is that it generally yields implausibly 

strong conclusions about the value of freq(T|R1R2). For example, in the case where 

freq(T|U) = 0.5, freq(T|R1) = 0.4, and freq(T|R2) = 0.6, Pollock’s approach yields the 

conclusion that PROB(freq(T|R1R2)  0.5)  1, where the approximation can be made as 

tight as one likes by assuming that U is sufficiently large. In other words, given the described 

frequencies and the assumption that U is sufficiently large, it is correct to be virtually certain 

that freq(T|R1R2) is exactly or almost exactly 0.5. Unlike Pollock’s approach, the approach 

of the present paper avoids the preceding problem, since it is based on making a deductive 

inference to the value of freq({x,y : xT}|R*) (which is above reproach), rather than an 

inference to the value of freq(T|R1R2).  

Another feature of Pollock’s approach is that it depends on the possibility of making a 

judgment concerning the value of freq(T|U). This limits the applicability of the approach. 

Beyond this, Pollock’s approach frequently yields peculiar conclusions about the value of 

freq(T|R1R2), depending on one’s judgment of the value of freq(T|U). In particular, extreme 

values of freq(T|U) (i.e., values that are far from 0.5) lead to extreme conclusions regarding 

the value of freq(T|R1R2). For example, if freq(T|R1) = 0.5, freq(T|R2) = 0.5, and freq(T|U) 

= 0.01 (only 1% of objects are in T), then (DIPoll) tells us to infer that PROB(freq(T|R1R2)  

0.99)  1. This peculiarity of Pollock’s approach is especially awkward inasmuch as freq(T|U) 

will tend to be extreme-valued, since in typical cases either T or T
C
 will consist of a very 

small minority of the set of all objects, U. For example, suppose T is the set of gun owners. 

Obviously, the frequency of elements of the set of gun owners among the set of all objects is 

vanishingly small, which leads Pollock’s approach to issue peculiar conclusions when T is the 

set of gun owners.  
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 It is demonstrable that the approximations expressed by the two instances of “” approach strict identity as the 

size of U approaches . 
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While Pollock’s approach delivers peculiar conclusions about the value of freq(T|R1R2) 

in cases where freq(T|U) is extreme-valued, the approach delivers the same results as my 

approach, regarding the value of PROB(cT), in cases where freq(T|U) = 0.5. Given the 

divergence of Pollock’s approach and my approach in cases where freq(T|U)  0.5, it would 

be nice if there was a way to adjudicate between the two approaches, beyond appeals to the 

fact that Pollock’s approach yields unintuitive conclusions. A more conclusive argument in 

favor of one or the other approach would show that the reference class (R* or R
Poll

) for one of 

the relevant direct inferences ((DIR*) or (DIPoll)) is more specific than the other.
12

 Indeed, 

(DIR*) and (DIPoll) support conflicting conclusions, and the correct way to resolve such 

conflicts, when they can be resolved, will be to appeal to the claim that the reference class for 

one of the direct inferences is more specific than the other.  

As it turns out, R* corresponds to a more specific reference class than R
Poll

. I say 

“corresponds”, in this instance, since we will need to reformulate R* as a reference class 

whose elements are quintuples, in order to produce the desired result. The needed 

reformulation of R*, denoted “R*”, is: {x,y,,1,2 : x1  y2  ((x  y)  (x  

y))   = T  1 = R1  2 = R2}. It should be observed that the claim that R* is a 

‘reformulation’ of R* is not unfairly prejudicial to R
Poll

 or (DIPoll), since absent the claim that 

R* is a reformulation of R*, we could directly formulate a variant of (DIR*) that (i) employs 

R* as its reference class, and (ii) yields a conclusion that is equivalent to the conclusion of 

(DIR*).
13

 In either case, it is crucial to observe that R* is more specific than R
Poll

. That is: 

x,y,,1,2: (x1  y2  ((x  y)  (x  y))   = T  1 = R1  2 = R2)  

(,1,2U  freq(|1) = v  freq(|2) = w  freq(|U) = u), but not x,y,,1,2: (,1,2U 

 freq(|1) = v  freq(|2) = w  freq(|U) = u)  (x1  y2  ((x  y)  (x  

y))   = T  1 = R1  2 = R2). As with Kyburg and Teng, Pollock is committed to the 

preference for frequency information for more specific reference classes. So, given that R* 

(or, strictly speaking, R*) corresponds to a more specific reference class than R
Poll

, advocates 

of Pollock’s approach should give up their approach, in favor of mine.
14

 

Despite the preceding line of reasoning, which supports my approach over Pollock’s, 

Pollock’s idea that the value of freq(T|U) could have a bearing on what conclusions we should 

draw is plausible. In fact, it is quite clear that the value of freq(T|U) can have a bearing on 

PROB(cT). For example, suppose that freq(T|U) = 2/3, freq(T|R1) = 0.5, freq(T|R2) = 0.5, 

and U = R1R2. In that case, it is derivable that freq(T|R1R2) = 0. Note, however, that the 

present example violates the suppositions under which Reichenbach’s reference class problem 

arises, namely, the assumption that the value of freq(T|R1R2) is unknown. So the fact that 

the value of freq(T|U) could have a bearing on the value of freq(T|R1R2), does not 

demonstrate a flaw of the proposed approach to Reichenbach’s reference class problem. 

 

 

 

 

                                                 
12

 Alternatively, we may regard the conflict as being between (DIPoll) and a ‘non-classical’ direct inference to a 

conclusion concerning the expectation of freq(T|R1R2) based on freq({x,y : xT}|R*). A direct inference of 

latter sort is licensed and takes priority, according to the account of direct inference defended by Pollock (1990, 

2011), since R* is more specific than R
Poll

. 
13

 In particular, the result is achieved by a direct inference of the following form: From c,c,T,R1,R2R* and 

freq({x,y,,1,2 : xT}|R*) = r infer that PROB(c,c,T,R1,R2 {x,y,,1,2 : xT}) = r (i.e., PROB(cT) = 

r). Notice that under the described conditions, freq({x,y,,1,2 : xT}|R*) = freq({x,y : xT}|R*). 
14

 In fact, Pollock is committed to a slightly more restrictive account of specificity. In order to meet Pollock’s 

own specificity condition (Pollock 1990, 127, 128, 132), we would need to replace R* with {x,y,,1,2 : x1 

 y2  ((x  y)  (x  y))   = T  1 = R1  2 = R2  freq(T|R1) = v  freq(T|R2) = w  

freq(T|U) = u}. 



13 

 

5. Conclusion 

 

The proposed solution to Reichenbach’s reference class problem turns on the reasonableness 

of forming a judgment regarding PROB(cT) via (DIR*). In cases where one’s relevant 

information is limited to the statements that appear within the premises of (DIR1) and (DIR2), 

the judgment supported by (DIR*) is reasonable. In other cases, we may possess accurate 

precise-valued frequency information concerning the value of freq(T|R1R2). In such cases, 

inference by (DIR*) will be defeated (in accordance with [SD]). That inference by (DIR*) may 

be defeated, in some cases, is a natural and appropriate limitation of the proposed approach.
*
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