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PREFACE

Take a set X and the associated set of pseudometrics over X (here ”pseudo” means the

allowance of zero distances). If we impose the condition that the distances must be bounded

by 1, we obtain the set of bounded-by-1 pseudometrics. At first glance, it may seem that

the only extreme bounded-by-1 metrics on X are those given by partitions. That is metrics

that only take the value 0 and 1. With the aid of computer experimentation and linear

programming we see immediately that bounded-by-1 extreme metrics can have a wide variety

of rational distances. Naturally we would like to classify such extreme metrics.

Before beginning the classification process, we try to learn what has been done for just

pseudometrics. If X has cardinality n, it’s set of pseudometrics form a convex cone in(
n
2

)
-dimensional Euclidean space called the metric cone. There is a wealth of literature on

the metric cone. In chapter 2 we give a brief account of the most important and relevant

literature. Most notable, Avis classified many graphical extreme rays of the metric cone

and showed that their local structure can be rationally arbitrary. Bendelt and Dress, whose

motivation stems from the field of phylogeny, gave a canonical decomposition of metrics into

bi-partition metrics (or splits). Using this decomposition evolutionary biologists are able to

construct phylogenetic trees from dissimilarity data given by differences in the morphology

of species. Thus far extreme rays of the cone have only been completely classified up to 6

points [14].

Characterizing extremeness for large classes of extreme metrics thus becomes desirable.

Following Avis we give a new class of extreme rays, called bow-tie metrics, which exhibit a

wide range of rational distances. In chapter 3 we begin our work with bounded-by-1 pseudo-
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metrics on X. Unlike the cone, bounded-by-1 pseudometrics over X form a convex polytope

called the metric body. Extreme rays in the cone induce extreme points in the body, allow-

ing us to transfer extreme data. Using the bow-tie metrics from chapter 2 we show that

any separable bounded-by-1 pseudometric space can be extended to an extreme seperable

bounded-by-1 pseudometric space. Hence, the local structure of a separable bounded-by-1

pseudometric space can be arbitrary (even with the inclusion of irrational distances).

The first extreme bounded-by-one pseudometric we encounter outside of the set of par-

titions is the so-called midpoint metric on 4 points. The midpoint metric is a metric which

expresses a single point as the mid-point of triangle with edges of length 1. The midpoint

metric has only distances 1 and 1�2. Metrics with only these distances are called half-one

metrics. In proving that the midpoint metric is extreme we discover a technique of proof.

In order to characterize the extremeness of a half-one metric we can build a graph, named

the edge graph, whose edges are associated to the degenerate triangle inequalities for the

metric. A half-one metric will then be extreme in the body if and only the components of

its edge graph each contain at least one odd cycle.

Half-one metrics have received some attention. With probability limiting to 1 as n goes

to infinity, half-ones optimize linear objective functions over R(n2). This raises the question of

whether or not half-one metrics outnumber all other extreme bounded-by-1 pseudometrics.

Building off the construction of bow-tie metrics and taking co-products one can produce

large families of extreme metrics which rival the class half-one metrics in size.

A geometric explanation of their tendency to optimize follows. The probability that a

corner on a convex polytope will optimize a linear objective function is proportional to the

size the exterior solid angle at that corner. The solid exterior angle at a corner can be

calculated as the volume of the dual cone at that corner intersected with the unit sphere

centered at the corner. We conjecture that half-one metrics on the average have relatively

large dual cones. For those familiar with the Gauss-Bonnet theorem, the convex polytope

version of theorem replaces curvature on a manifold with the exterior solid polyhedral angles
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at vertices. So, from the optic of Gauss-Bonnet theorem, we mean to guess that extreme

half-ones tend to optimize linear objection functions because they eat up almost all the

curvature of the metric body.

In chapter 4 we treat half-one metrics as the primary object of interest. Every half-one

metric induces an undirected unweighted graph given by its half-length edges. Using this

graph we give a lower bound to the number of half-one metrics and show that half-one

metrics outnumber partition metrics. Every metric with distances greater than or equal to

a half is automatically a metric. These metrics form the upper half of the metric body. The

upper half can be decomposed via decomposing non-extreme half-one metrics. The language

of rigidity and perturbations provides a useful tool in the decomposition and we apply these

concepts to find neighbors of extreme half-one metrics sitting on the boundary of the metric

body.

In chapter 5 we give experimental results on the statistics of bounded-by-1 rational sym-

metric functions with a fixed denominator q, called q-level points. The goal of the exper-

iments was to find large classes of q-level points in R(n2) that are extreme metrics with

probability limiting to 1 as n goes to infinity. As a basis we start with 3-level points. This

investigation led to revisiting the bowtie metric on 6 points. The bowtie generates a highly

symmetric graphical extreme ray of the cone with denominator 3. By understanding com-

pletely why the bowtie metric is extreme, we are able to generalize its construction.

In chapter 6 we shift focus to a subclass of bounded-by-1 pseudometrics, the bounded-

by-1 pseudoultrametrics. Ultrametrics satisfy a stronger version of the triangle inequality.

Every tree metric generates an example of a bounded-by-1 pseudoultrametric. Bounded-

by-1 pseudoultrametrics live in the convex hulls of partition chains. This fact enables us

to determine the topology of so called bounded-by-1 pseudoultrametrics up to homotopy

equivalence. Determining the homotopy type naturally leads to an investigation into the

topology of the order complex of the partition lattice. With the help of SAGE, a mathematics

software system, we found that the homology of the order complex was concentrated in the
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top dimension. This led to the idea that the complex was shellable, a sufficient property for

a simplicial complex to be homotopy equivalent to a wedge of spheres.

It is a known fact that the order complex of the partition lattice is shellable. Indeed,

Bjouner proved that any lattice that admits an L-labelling has a shellable order complex. To

find the number of spheres in the decomposition one can calculate the Euler-characteristic

of the order complex. Traditionally this is does by computing a certain value of the Möbius

associated to the lattice. We improve upon the proof of the Euler-characteristic of the

complex of scaled ultrametrics by giving a computable bijection on the faces of the complex.

We then extend this technique of proof to the context of iterated cycle structures (ICS). ICS

are new mathematical objects which naturally generalize partition chains in the lattice of

partitions. Just as Stirling numbers of the second kind are dual to Stirling numbers of the

first kind, the set of ICS are dual to the lattice of partitions. Future work involves finding a

geometric realization of the ”complex” of ICS.

Eric R. Kehoe
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ABSTRACT

Pseudometrics, The Complex of Ultrametrics,

and Iterated Cycle Structures

by

Eric R. Kehoe

University of New Hampshire, May, 2019

Every set X, finite of cardinality n say, carries a setM(X) of all possible pseudometrics. It

is well known thatM(X) forms a convex polyhedral cone whose faces correspond to triangle

inequalities. Every point in a convex cone can be expressed as a conical sum of its extreme

rays, hence the interest around discovering and classifying such rays. We shall give examples

of extreme rays for M(X) exhibiting all integral edge lengths up to half the cardinality of

X.

By intersecting the cone with the unit cube we obtain the convex polytope of bounded-

by-one pseudometrics M̄(X). Analogous to extreme rays, every point in a convex polytope

arises as a convex combination of extreme points. Extreme rays of M(X) give rise to very

special extreme points of M̄(X) as we may normalize a nonzero pseudometric to make its

largest distance 1. We shall give a simple and complete characterization of extremeness for

metrics with only edge lengths equal to 1/2 and 1. Then we shall use this characterization

to give a decomposition result for the upper half of the M̄(X).

M̄(X) contains the set of bounded-by-1 pseudoultrametrics, U(X). Ultrametrics satisfy

xii



a stronger version of the triangle inequality, and have an interesting structure expressed in

terms of partition chains. We will describe the topology of U(X) and its subset of scaled

ultrametrics, Ũ(X), up to homotopy equivalence. Every permutation on a set X can be

written as a product of disjoint cycles that cover X. In this way, a permutation generalizes

a partition. An iterated cycle structure (ICS) will then be the associated generalization

of a partition chain. Analogously, we will compute the “Euler-characteristic” of the set of

iterated cycle structures.
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CHAPTER 1

Convex Geometry

This chapter develops the basic tools and language of convex geometry for application to

the geometry of the set of metric spaces over a given set. Those familiar with these basic

definitions and constructions may proceed directly to chapter 2.

1.1 Affine Spaces

Definition 1.1.1. An affine subspace V of Rm means the locus of points satisfying a linear

(and generally inhomogeneous) equation Ax = b, A a real r ×m matrix and b ∈ Rr.

Definition 1.1.2. A set of points X = {x1, . . . , xn} ⊂ Rm is affinely dependent if there exist

real numbers λ1, . . . , λn not all zero, such that

λ1x1 + · · ·+ λnxn = 0, λ1 + · · ·+ λn = 0

and X is affinely independent if no such numbers exist.

Definition 1.1.3. An affine combination of points X = {x1, . . . , xn} ⊂ Rm is a linear

combination λ1x1 + · · ·+ λnxn such that λ1 + · · ·+ λn = 1.

A set S ∈ Rm has dimension r, denoted dim(S) = r, if a maximal affinely independent

subset of S contains exactly r + 1 points.

Definition 1.1.4. The unique affine subspace aff(S) of smallest dimension containing S is

called the affine span of S; aff(S) equals the set of all affine combinations of points in S.

(Note that dim(S) := dim(aff(S)).)
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Within Rm, we call affine subspaces with dimension m − 1 (resp. 1 and 0), hyperplanes

(resp. lines and points).

1.2 Convex Sets

Definition 1.2.1. A set S ⊂ Rm is convex if, given points x, y ∈ S, the interval

[x, y] := {λx+ (1− λ)y | 0 ≤ λ ≤ 1} ⊆ S.

Definition 1.2.2. A convex combination of points X = {x1, . . . , xn} ⊂ Rm is an affine

combination λ1x1 + · · ·λnxn with all λi ≥ 0.

Example 1.2.3. Convex Set in the R2

•
λx+ ηy + ζz

λ+ η + ζ = 1
λ, η, ζ ≥ 0

y

x z

Definition 1.2.4. For any S ⊆ Rm, the convex hull, conv(S), means the intersection of all

convex sets containing S; conv(S) contains precisely all convex combinations of points from

S. (Note that dim(conv(S)) = dim(S).)

Definition 1.2.5. A convex polytope P means the convex hull of a finite set of points

{v1, . . . , vn} ⊂ Rm, so

P = {λ1v1 + λ2v2 + · · ·λnvn | ∀iλi ≥ 0, λ1 + · · ·+ λn = 1}

2



We call a polytope of dimension d a d-polytope.

We will speak of the vertex representation or V-rep of P when we give P as the convex

hull of a minimal set of points. Non-trivially, every convex polytope equals some bounded

intersection of finitely many closed half-spaces

P = {x ∈ Rm | H · x ≤ b for some H ∈Mn,m(R) and b ∈ Rn} ;

we will speak of the half-space representation or H-rep when we’ve used a minimal set of

half-spaces.

Example 1.2.6. Convex 3-Polytope in R3

1.3 Conical Sets

Definition 1.3.1. A conical combination of points X = {x1, . . . , xn} ⊂ Rm means a linear

combination λ1x1 + · · ·λnxn such that λi ≥ 0.

Definition 1.3.2. Call a set S ⊂ Rm conical if, for any pair of points x, y ∈ S, the fan

Rx,y := {λx+ ηy |λ, η ≥ 0} ⊆ S.

Example 1.3.3. Conical Set in R2

3



•

•
y

••x

ηy

λx

O

λx+ ηy

Observe that conical implies convex.

Definition 1.3.4. For any set S, define the conical hull of S, cone(S), as the intersection

of all conical sets containing S; cone(S) contains precisely all conical combinations of points

from S. (Note that dim(cone(S)) = dim(S∪{0}) equals the dimension of the smallest vector

space containing S.)

Definition 1.3.5. A pointed convex polyhedral cone C means the conical hull of a finite set

of points {v1, . . . , vn} ⊂ Rm that lie in some closed half-space bounded by some hyperplane

H through 0, but with not all the vi in H itself. So

C = {λ1v1 + λ2v2 + · · ·λnvn | λi ≥ 0∀i} .

Call a polyhedral cone of dimension m an m-cone.

We speak of the ray representation or R-rep of C when we use a minimal set {v1, . . . , vn}.

Every pointed convex polyhedral cone also arises as the intersection of finitely many closed

half-spaces with boundaries all passing through the origin, so

C = {x ∈ Rm | H · x ≤ 0 for some H ∈Mn,m(R)}

and just as with polytopes, we speak of the half-space representation or H-rep when we’ve

used a minimal set of half-spaces.

4



Example 1.3.6. Convex Polyhedral 3-Cone in R3

•
O

Definition 1.3.7. For a polyhedral cone C, the dual cone C∨ means the set

C∨ = {x ∈ Rm | ∀y ∈ C 〈x, y〉 ≥ 0 }

with 〈·, ·〉 the standard inner product on Rm.

We say a hyperplane H supports a closed convex set S if H ∩S 6= ∅ and S lies in exactly

one of the two closed half-spaces bounded by H. If a hyperplane H supports S then we

call H ∩ S a face of S. Every point in the boundary ∂S of S belongs to some supporting

hyperplane of S, and thus lies in some face of S.

Theorem 1.3.8. For an m-polytope (m-cone) S:

1. The faces of S constitute polytopes (polyhedral cones).

2. S has faces of every dimension 1 ≤ d ≤ m− 1.

3. A face of a face of S is a face of S.

4. S equals the convex (conical) hull of its extreme points (extreme rays)

We call a 0-face a vertex or an extreme point, a 1-face an edge (extreme ray), and a m−1

face a facet. A cone S has only one vertex 0.

Example 1.3.9. Extreme point of a convex polytope

5



Example 1.3.10. Extreme ray of a convex polyhedral cone

•
O

Proposition 1.3.11. For S ⊂ Rm a polytope, z ∈ (x, y) ⊂ S, and hyperplane H support-

ing S, z ∈ H if and only if x, y ∈ H. For S a polyhedral cone and z ∈ int(Rx,y) ⊂ S, z ∈ H

if and only if x, y ∈ H.

Proof. Write H as {w ∈ Rm | L(w) = b} with L : Rm → R a linear form and b ∈ R. H sup-

ports S, so we lose no generality assuming L(S) ⊂ (−∞, b].

For the polytope case, suppose L(x) = L(y) = b. For any z ∈ (x, y), z = λx + (1 − λ)y

with 0 < λ < 1 and then

L(z) = λb+ (1− λ)b = b.

6



Figure 1.1: Example of Proposition 1.2.17.

For polyhedral cone case, b = 0 allows taking any linear combination of x and y.

Conversely, for polytopes, suppose z = λx+ (1− λ)y, 0 < λ < 1, and L(z) = b. Since

L(z) = λL(x) + (1− λ)L(y) = b,

either b ∈ (L(x),L(y)) or L(x) = L(y) = b, but L(x),L(y) ≤ b rules out the former. The

polyhedral cone case follows similarly.

7



CHAPTER 2

The Metric Cone

In this chapter we give a brief introduction to the geometry of the metric cone, along with

a short review of the important literature relevant to the work of this thesis. Towards the

end of this section we give the construction of a new class of extreme graphical rays on the

metric cone.

2.1 Definitions and Immediate Consequences

Definition 2.1.1. A pseudometric on X is a function d : X ×X → [0,∞) such that for any

x, y, z ∈ X,

1. d(x, x) = 0

2. d(x, y) = d(y, x) (Symmetry)

3. d(x, z) ≤ d(x, y) + d(y, z) (Triangle Inequality)

We do not impose the positive-definiteness which characterizes metric. So pseudometrics

allow for zero distances between distinct points. For x, y, z ∈ X, should d(x, z) = d(x, y) +

d(y, z), we call the triangle inequality tight (or degenerate).

We denote the set of pseudometrics on a set X byM(X). For the remainder of this chap-

ter, we abuse terminology and abbreviate pseudometric to metric. Write n := {1, . . . , n}

and Mn := M(n). For each pair of points (i, j) with i < j we assign the distance

dij := d(i, j). We thus regard Mn as a subset of R(n2), identify metric d with vector

(d12, d13, . . . , d1n, d23, . . . , dn−1,n) ∈ R(n2), components listed in dictionary order.

8



Theorem 2.1.2 (Avis,1980). Mn forms an
(
n
2

)
-dimensional pointed polyhedral cone in R(n2)

with facets given by

dij + djk − dik = 0 for 1 ≤ i, j, k ≤ n

Proof. First we prove Mn is a cone. We appeal to the half-space definition of a cone. It is

clear that for each triple (i, j, k), dij + djk− dik ≤ 0 defines a closed half-space in R(n2) whose

boundary passes through the origin. SinceMn equals the intersection of finitely many such

closed half-spaces, it forms a cone in R(n2). A small ball around point (1, . . . , 1) ∈ R(n2) lies

in the interior of the cone, making Mn

(
n
2

)
-dimensional. To see that equations

dij + djk − dik = 0 for 1 ≤ i, j, k ≤ n

give the facets of Mn, consider a hyperplane H that intersects the boundary of Mn, but

not its interior. H must intersect the boundaries of some closed half-spaces given by triangle

inequalities. Such an intersection will have maximum dimension when H intersects one single

such closed half-space Hijk, representing dij + djk − dik = 0.

To show that Hijk∩Mn forms a facet we must show that it has a non-empty interior with

respect to the subspace topology. Equivalently, we must show that Hijk contains a metric

not in any other Hlrs. Take for d the metric with

dij = djk = 1�2, d = 1 otherwise.

This d lies in Hijk but no other Hlrs. That makes Hijk ∩Mn is a maximal face (or facet) of

Mn.

Set ∆ijk(d) := dij +djk−dik. Say that metrics d, ρ ∈Mn have the same tight constraints

if ∆ijk(ρ) = 0 exactly when ∆ijk(d) = 0. Since facets correspond to tight constraints we

have:

Corollary 2.1.3. d ∈ Mn generates an extreme ray of Mn if and only if ρ ∈ Mn has the

9



same tight constraints as d implies ρ = λ · d.

2.2 Extreme Rays

Henceforth, abusing terminology, we call a metric d an extreme ray of Mn if d generates

one. The characterization of extreme rays of metric cones has received some attention. The

most basic extreme rays arise from bi-partitions (or splits) of the set n.

Definition 2.2.1. For disjoint, non-empty A and B with A ∪B = n (a split of n), we call

δA,B(x, y) :=


0 ifx, y ∈ A or x, y ∈ B

1 otherwise

a split metric.

Proposition 2.2.2. δA,B is an extreme ray of Mn.

Given a class of extreme metrics, we can ask what types of metrics live in their conical

span. For the split extreme metrics, the conical span comprises precisely the so-called tree

metrics, metrics characterized by the following four point condition:

dT (i, j) + dT (k, l) ≤ max {dT (i, k) + dT (j, l), dT (j, k) + dT (i, l)} .

Buneman [8] gives a complete decomposition of tree metrics into splits. The name arises

because every non-negatively weighted tree T on n points defines a tree metric dT .

Theorem 2.2.3 (Buneman,1970). Every metric dT associated to a weighted tree T can be

expressed in the form

dT =
∑
splits

αA,BδA,B

where αA,B = 1
2

max
i,j∈A
k,l∈B

{dT (i, k) + dT (j, l)− dT (i, j)− dT (k, l)}.

10



Bendelt and Dress [10] generalized Buneman’s results to give a canonical decomposition for

symmetric functions (and hence metrics) into splits and a split-prime component. They

define the isolation indices αdA,B for a metric d and splits (A,B).

αdA,B =
1

2
min
i,j∈A
k,l∈B

{max {d(i, k) + d(j, l), d(i, l) + d(j, k), d(i, j) + d(k, l)} − dij − dkl} .

These indices were first derived for metrics on 4 points, and then generalized to give the

result:

Theorem 2.2.4 (Bandelt-Dress, 1992). Every symmetric function d : X × X → R on a

finite set X can be expressed in the form

d = d0 +
∑

d−splits

αdA,BδA,B

where d0 is split-prime (d0 has no d0-splits). If d is a metric then so is d0.

In the field of phylogeny, one associates dissimilarity coefficients to pairs of species via

differences in their morphology. From these coefficients one can construct a metric and build

a phylogenetic tree dervied from the split component of the metric in the decomposition

above.

A split-prime metric is a metric which cannot be written in terms of splits; so outside their

conical span. The first example of an extreme split-prime metric occurs in M5 represented

as graphical metric by the graph K2,3. We compute distances in a graph by taking the

minimum length of a path between two vertices.

11



•

•

•

•

•

K2,3

To prove the extremality of K2,3, we first prove a lemma Avis [1] introduced. Suppose a

positively weighted 4-cycle C4

• 12 •

3 • • 4

w12

w23

w34

w14

induces a metric, with distances wij for 1 ≤ i < j ≤ 4, satisfying the tight constraints

w12 + w23 = w13

w14 + w34 = w13

w12 + w14 = w24

w23 + w34 = w24.

Since solving this system by elimination yields w12 = w34 and w23 = w14, we have

Lemma 2.2.5 (Avis, 1980). Let (G,w) be a weighted undirected graph that contains a 4-cycle

(i, j, k, l) having the same tight constraints as C4, then wij = wkl and wjk = wil .

Corollary 2.2.6. K2,3 is an extreme ray of M5

12



Proof. Let d be a metric with the same tight constraints as K2,3 then d can be represented

by the weighted graph

•

•

•

•

•

ab

c d

e

f

By Lemma (2.2.5) e = c, b = f , a = f , and e = d. Similarly, a = c and d = b. Hence, we

obtain the 6-cycle of equalities (a f b d e c), so that d = a ·K2,3.

Corollary 2.2.7. The complete bipartite graph K2,n−2 is an extreme ray of Mn.

K2,3 is an example of a graphical extreme ray. Using the above lemma Avis [1] was able

to show extremality for a large class of graphical metrics. First a definition.

Given a set of vertices V in a graph G, write |V | for its cardinality and ||V || for the

number of edges in the subgraph it induces.

Definition 2.2.8. A dense m-partite graph G is graph in which the vertex set can be

partitioned into disjoint sets V1, . . . , Vm with properties

1. |Vm| ≥ |Vm−1| ≥ · · · ≥ |V1| ≥ 3

2. ||Vi ∪ Vj|| ≥ |Vi| · |Vj| −max {|Vi|, |Vj|}+ 2 for 1 ≤ i < j ≤ m

(Observe that ||Vi ∪ Vj|| ≤ |Vi| · |Vj|.)

Theorem 2.2.9 (Avis, 1980). If G is a dense m-partite graph of order n then dG is an

extreme ray of Mn

From this result Avis showed that almost all graphs on n points of “medium” density are

extreme rays, and that extreme rays can have arbitrary local structure:

Theorem 2.2.10 (Avis, 1980). If d is a rational metric on m points, there exists an n and

an extreme ray ρ ∈Mn so that ρ|m = d.

13



2.3 Bowtie Metrics

Inspired by Avis, we derive a new class of graphical metrics sitting outside his class of dense

m-partite graphs. We start by considering what we call the bow-tie metric B on 6 points,

pictured below; all unspecified distances equal 1.

The Bow-tie

•

•

•

•

•

•

2

2

2

2

2

2

3

We find the following alternative hexagonal view of the Bow-tie suggestive.

Alternative View of the Bow-tie

•

••

•

• •

3

1

1

1

1

11

2 2

2 2

11

solid = 3, dashed = 2, dotted = 1

We can also represent the bow-tie metric graphically:

Graphical View of the Bow-tie
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•

••

•

• •

Proposition 2.3.1. The bow-tie metric B is an extreme ray of M6.

Proof. Consider a metric d having all of the same tight constraints as the bow-tie. We have

labelled selective d distances as shown.

•

••

•

• •

b

a

e

c

fd

gh

The 4-cycle with edge lengths {a, b, g, f}, say, has the same tight constraints as C4, so

Avis’ lemma gives b = f and a = g. Similarly considering all the visible 4-cycles gives,

altogether,

b = f, b = d, c = e, a = e

a = g, c = h, d = h, f = g,

yielding the 8-cycle (f b d h c e a g) of equalities. That means d coincides with the graphical

metric
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•

••

•

• •

a

a

a

a

aa

aa

and thus d = a · B, making the bow-tie an extreme ray of M6.

The symmetric structure of the bow-tie suggests a generalization to any number of points

n ≥ 6. First we need some definitions. Write Πn for the partitions of n.

Definition 2.3.2. Call π = {P1, . . . , Pk} ∈ Πn a cut partition if maxPi ≤ minPi+1 for all

1 ≤ i < k.

π = {{1, 2} , {3, 4, 5} , {6}} is a cut partition of 6, for example. The cells of a partition enjoy

an obvious linear order inherited from n. The sequence of sizes of its cells determine the cut

partition, allowing us to notate this π, say, as 2, 3, 1.

Definition 2.3.3. Given a cut partition π = {P1, . . . , Pk}, let graph Gπ have edges connect-

ing every x in Pi to every x′ in Pi+1, for i from 1 to k− 1. Write Bπ ∈Mn for the graphical

metric associated to Gπ.

Henceforth we add the size restrictions |Pi| ≥ 2 for 2 ≤ i ≤ k − 1, |P1|, |Pk| ≥ 1

The original bow-tie metric B thus equals B1,2,2,1. For a more complex example consider

the metric associated to graph G2,3,4,2,1.
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1 2

3 4 5

6 7 8 9

10 11

12

G2,3,4,2,1

Lemma 2.3.4 (Kehoe, 2019). Bl,r,s,w constitutes an extreme ray of Ml+r+s+w.

Proof. Suppose metric d has the same tight constraints as Bl,r,s,t. Regard d as the weighted

graph (Gl,r,s,t, w) for some non-negative weight function w on the edges of Gl,r,s,t.

Gl,r,s,t generally contains many copies of the bowtie G1,2,2,1 and any two edges that fall

in a common bowtie have equal weights.

Two edges connecting vertices of P2 and P3 have either three or four endpoints between

them. Choosing a vertex in P1, a vertex in P4, and only if necessary, another vertex from

either P2 or P3 as needed, we get six vertices that induce a bowtie. All its edges must have

equal weight, in particular, the two with which we started. So all edges connecting vertices

of P2 and P3 have the equal weights.

But all edges connecting either P1 and P2, or P3 and P4, extend to vertex induced bowties

that must indeed include edges connecting P2 and P3. So all edges have the same weight. w

constant on all of G guarantees the extremality of Bl,r,s,t.

Theorem 2.3.5 (Kehoe, 2019). Let n = n1 + · · ·+nk with n2, . . . , nk−1 ≥ 2, and n1, nk ≥ 1

and k ≥ 4. Then Bn1,...,nk constitutes an extreme ray of Mn. In addition, Bn1,...,nk exhibits

as distances all integer values from 1 to k − 1.

Proof. Let Gn1,...,nk be the graph associated to the graphical metric Bn1,...,nk . Suppose that d

is another metric which satisfies the same tight constraints as Bn1,...,nk . Then we can regard

d as the weighted graph (Gn1,...,nk , w) for some nonnegative weight function on the edges of

17



Gn1,...,nk . Consider the cut partition π = {P1, . . . , Pk} associated to Bn1,...,nk and define Gi as

the restriction of the graphGn1,...,nk to the set of vertices Pi∪Pi+1∪Pi+2∪Pi+3 for 1 ≤ i ≤ k−3.

Then by construction Gi is isomorphic to the graph associated to the generalized bow-tie

Bni,ni+1,ni+2,ni+3
. By Lemma (2.3.4) w|Gi is constant. Since Gi ∩ Gi+1 = Pi+1 ∪ Pi+2 ∪ Pi+3

for 1 ≤ i ≤ k − 3, we have that w is in fact constant over all of G and hence Bn1,...,nk is an

extreme ray.

To show the second half of the theorem, consider any path from P1 to Pk. Then every

integer distance between 1 and k − 1 will be achieved by Bn1,...,nk along that path.

Corollary 2.3.6 (Kehoe, 2019). For each n ≥ 5 there are graphical extreme rays d ∈ Mn

with rational distances
{

1�q, 2�q, . . . , 1
}

for 2 ≤ q ≤ bn
2
c.

Proof. For n = 5 just take the extreme ray 1
2
· K2,3. Now let n ≥ 6 and consider first n

even. Let π = {P1, . . . , Pk} be the cut partition with |P1|, |Pk| = 1 and |Pi| = 2 otherwise.

Notice that k = bn
2
c + 1. If we let ni = |Pi| then

(
1

k−1

)
· Bn1,...,nk is an extreme ray that

has rational distances
{

1�q, 2�q, . . . , 1
}

where q = bn
2
c. We can obtain all other rational

distances with denominator 3 ≤ q < bn
2
c by just considering the metrics Bn1,...,nk−2,nk−1+nk ,

Bn1,...,nk−3,nk−2+nk−1+nk , . . . ,Bn1,n2,n3+···+nk . Now to obtain an extreme ray with denominator

2 on n ≥ 6 points, we simply scale the bipartite graph K2,n−2 by a half.

For odd n is odd, simply require instead that |Pk| = 2 in our initial choice of cut partition.

18



CHAPTER 3

The Metric Body

Whereas the set of pseudometrics form a convex cone, bounding metrics in the cone so no

distance equals more than 1 yields a convex polytope. By considering this truncated cone,

extreme rays give rise to extreme points, but many more arise. Focusing on this polytope, we

can utilize linear programming to study both this new object and the cone, both theoretically

and experimentally.

In this chapter we first start out by introducing the reader to the elements of bounded-by-

1 pseudo metrics and there associated edge graphs. We give a complete characterization of

extremality for an important class of extreme metrics, the so-called half-one metrics. We use

this characterization to give a decomposition of the upper half of the polytope, and finally

leave off with an interesting conjecture on the local geometry of extreme half-ones.

3.1 Definitions and Immediate Consequences

Let X be an arbitrary set.

Definition 3.1.1. A bounded-by-1 pseudometric on X is a function d : X ×X → [0, 1] such

that for any x, y, z ∈ X,

1. d(x, x) = 0

2. d(x, y) = d(y, x) (Symmetric)

3. d(x, z) ≤ d(x, y) + d(y, z) (Triangle Inequality)
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For a specific choice of x, y ∈ X we’ll call bounding constraint d(x, y) ≤ 1 tight (or unital),

in the case that equality holds.

We define the set M̄(X) as the set of bounded-by-1 pseudometrics on X and write M̄n

for M̄(n). Analogous to the cone case, we have:

Proposition 3.1.2. M̄n forms an
(
n
2

)
-dimensional polytope in R(n2) with facets given by

dij + djk − dik = 0 for 1 ≤ i, j, k ≤ n

dij = 1 for 1 ≤ i, j ≤ n

Proof. We appeal to the half-space definition of a polytope. We can express M̄n as the

intersection

M̄n =Mn ∩ [0, 1](
n
2).

We get an H-rep M̄n from the H-rep of Mn by adding some of the half-spaces connected

to the obvious H-rep of the compact unit cube [0, 1](
n
2). (The half-spaces bounded by hy-

perplanes passing through the origin add no new information.) This makes M̄n a polytope

in R(n2). M̄n contains an open ball around the point (1
2
, . . . , 1

2
) in its interior, making M̄n(

n
2

)
-dimensional.

As with the cone, equations

dij + djk − dik = 0 for 1 ≤ i, j, k ≤ n

produce facets of M̄n. To see that dij = 1 for 1 ≤ i, j ≤ n form facets of M̄n, we exhibit

a bounded metric d ∈ Mn with exactly one unital bounding constraint and no degenerate

triangle inequalities: make all distances between distinct points, save one, equal to 3
4
, and

set the the remaining distance 1.

Corollary 3.1.3. Let d ∈ M̄n. Then d is an extreme point of M̄n if and only if, for any
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ρ ∈ M̄n with the same tight constraints as d, we have that ρ = d. Thus an extreme metric is

completely determined by its degenerate triangle inequalities and unital bounding constraints.

In all that follows, metric means a member of d ∈ M̄(X), and we refer to M̄n as the

metric body (for n points). We wish to understand, to the extent possible, the extreme points

of M̄(X). Firstly, as already noted, every extreme ray ofMn generates an extreme point of

M̄n.

Theorem 3.1.4. An extreme ray d ∈Mn gives rise to an extreme point
(

1
max(d)

)
· d ∈ M̄n.

Proof. Suppose d generates an extreme ray inMn. Then d has at least one non-zero distance,

making 1
max(d)

well defined. Suppose d attains its maximum at dij. Defining d̃ =
(

1
max(d)

)
·d,

d̃ ∈ M̄n and d̃ij = 1. Now suppose ρ ∈ M̄n is another metric which satisfies the same tight

constraints as d̃. Then since d is an extreme ray we must have that ρ = λ · d for some λ > 0,

and hence ρij = max(ρ). Since ρ must also share the same length 1 edges with d̃, we have

that ρij = 1. Thus 1 = λ ·max(d), so that ρ = d̃. Hence, d̃ is an extreme point.

As we will see shortly, extreme points of the body generally don’t generate extreme ray

of the cone. The basic idea is that if we start with an extreme bounded metric and drop

the bounding constraints, perturbations may arise that distort the original length 1 edges

independently. Moving from the body to the cone, the equality of length 1 edges becomes

the equality of edges, so new constraints that cut down the dimension of the cone and alter

the set of extreme rays.

Define the bounded generalized bow-tie metrics by

Bn1,...,nk :=

(
1

max(Bn1,...,nk)

)
· Bn1,...,nk .

From our previous results we get

Corollary 3.1.5 (Kehoe, 2019). Bn1,...,nk is an extreme point of M̄n1+···+nk . In addition,

Bn1,...,nk attains all rational values from
{

1
k−1

, 2
k−1

, . . . , k−2
k−1

, 1
}

.
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Corollary 3.1.6 (Kehoe, 2019). For each n ≥ 5 there are extreme metrics d ∈ M̄n with

rational distances
{

1�q, 2�q, . . . , 1
}

for 2 ≤ q ≤ bn
2
c.

3.2 Separable Metric Spaces

On may consider metrics and bounded metrics on sets of any cardinality and the notions of

extreme ray and extreme point carry over. In this section we apply our knowledge of finite

metrics to exhibit some wild behavior in the general situation: modulo a countable number

of points, any separable metric space with distances bounded by 1 occurs as an extreme

metric.

Definition 3.2.1. We call a metric space (X, d) separable if X contains a countable dense

subset.

Regardless of the cardinality of X, M̄(X) constitutes a compact convex set. An extreme

metric d (i.e. extreme point d ∈ M̄(X)) means d doesn’t fall in the interior of any line

segment contecting two points of M̄(X). A perturbation of d means a symmetric function

ε : X ×X → R such that (d− ε, d+ ε) ⊂ M̄(X).

Given the tight constraint

d(x, y) + d(y, z) = d(x, z)

for d ∈ M̄(X), Corollary (1.3.11) implies that

ε(x, y) + ε(y, z) = ε(x, z).

Thus if any one of the quantities ε(x, y), ε(y, z), or ε(x, z) does not equal 0, then so does

at least one other. In other words, perturbing one edge length in a tight triangle entails

perturbing at least two lengths. In particular, perturbing d(x, z), say, would force one also

to perturb either d(x, y) or d(y, z) or both.
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(or both)

Figure 3.1: Effect of a Perturbation

Asserting that d admits only the zero perturbation characterizes d as extreme.

Definition 3.2.2. A metric space (Y, ρ) extends a metric space (X, d) if X ⊂ Y and ρ|X = d.

Theorem 3.2.3 (Kehoe, 2019). Every (X, d) separable metric space can extend to an extreme

separable metric space (X̃, d̃) with X̃ \X countable.

The proof depends on two lemmas.

Lemma 3.2.4. Given metric spaces (X, d), (Y, ρ) with X ∩ Y finite and non-empty, and

with d|X∩Y = ρ|X∩Y , there exists a metric ω on X ∪ Y restricting to both d and ρ on X and

Y respectively, and such that any distance ω(x, y) with x ∈ X \ Y and y ∈ Y \ X satisfies

either ω(x, y) = 1 or, for some z ∈ X ∩ Y ,

ω(x, y) = ω(x, z) + ω(z, y) = d(x, z) + ρ(z, y).

Proof. Defining ω|X = d and ω|Y = ρ, leaves defining ω between points of X and Y not in

the intersection. For x ∈ X \ Y and y ∈ Y \X then define

ω(x, y) := min

{
min
z∈X∩Y

{d(x, z) + ρ(z, y)} , 1
}
.
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Figure 3.2: Definition of ω

Checking that ω defines a metric reduces to checking the triangle inequality for triples

intersecting both X and Y . By symmetry it suffices to check the case where x, z ∈ X and

y ∈ Y . Suppose first that z ∈ X ∩ Y then we check the following three inequalities

1. ω(x, y) ≤ ω(x, z) + ω(z, y)

ω(x, y) ≤ min
w∈X∩Y

{d(x,w) + ρ(w, y)}

≤ d(x, z) + ρ(z, y)

= ω(x, z) + ω(z, y)

2. ω(x, z) ≤ ω(x, y) + ω(y, z)

ω(x, z) ≤ min

{
min

w∈X∩Y
{d(x,w) + d(w, z)} , 1

}
= min

{
min

w∈X∩Y
{d(x,w) + ρ(w, z)} , 1

}
≤ min

{
min

w∈X∩Y
{d(x,w) + ρ(w, y) + ρ(y, z)} , 1

}
≤ min

{
min

w∈X∩Y
{d(x,w) + ρ(w, y)} , 1

}
+ ρ(y, z)

= ω(x, y) + ω(y, z)
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3. ω(y, z) ≤ ω(x, y) + ω(x, z).

Follow the previous proof with the roles of x and y reversed.

We now consider x, z ∈ X \ Y and y ∈ Y \X, and check the three triangle inequalites

1. ω(x, y) ≤ ω(x, z) + ω(z, y)

ω(x, y) = min

{
min

w∈X∩Y
{d(x,w) + ρ(w, y)} , 1

}
≤ min

{
min

w∈X∩Y
{d(z, w) + d(x, z) + ρ(w, y)} , 1

}
≤ ω(x, z) + ω(z, y)

2. ω(x, z) ≤ ω(x, y) + ω(y, z)

ω(x, z) ≤ min

{
d(x, z) + 2 · min

w∈X∩Y
{ρ(w, y)} , 1

}
≤ min

{
min

w∈X∩Y
{d(x,w) + d(z, w) + ρ(w, y) + ρ(w, y)} , 1

}
≤ min

{
min

w∈X∩Y
{d(x,w) + ρ(w, y)} , 1

}
+ min

{
min
u∈X∩Y

{d(z, u) + ρ(u, y)} , 1
}

= ω(x, y) + ω(y, z)

3. ω(y, z) ≤ ω(x, y)+ω(x, z). Follow the previous proof with the roles of x and y reversed.

Thus ω defines a metric on X ∪ Y . By construction, for any x ∈ X \ Y and y ∈ Y \X we

have that ω(x, y) satisfies

ω(x, y) = ω(x, z) + ω(z, y)

= d(x, z) + ρ(z, y)

for some z ∈ X ∩ Y , or ω(x, y) = 1.
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Lemma 3.2.5. Let (X, d) be a metric space with some distance d(x0, y0) irrational. There

exists a countable set C = {x1, x2, . . .} and a metric ω on X ∪ C such that the following

properties are satisfied

1. ω|X = d

2. ω(xi, xi+1) > ω(xi+1, xi+2) for i ≥ 0

3. ω(xi, xj) =
j−1∑
k=i

ω(xk, xk+1) for i < j

4.
∞∑
i=0

ω(xi, xi+1) = ω(x0, y0) = d(x0, y0)

5. ω(xj, y0) = d(x0, y0)− ω(x0, xj) =
∞∑
i=j

ω(xi, xi+1)

6. ω(x, xi) = min {ω(x, x0) + ω(x0, xi), 1} for x ∈ X \ {y0}

7. If ω ∈ (ω0, ω1) then
∞∑
i=0

ω0(xi, xi+1) = ω0(x0, y0)

and
∞∑
i=0

ω1(xi, xi+1) = ω1(x0, y0)

In other words
∞∑
i=0

ω(xi, xi+1) = ω(x0, y0) is a (generalized) tight constraint.

Proof. Use the decimal expansion of irrational d(x0, y0) to write d(x0, y0) =
∞∑
i=0

αi with

(αi) a strictly decreasing non-negative sequence of rational numbers approaching 0 (roughly

exponentially). View the set C, consisting of partial sums of the series together with 0 and

d(x0, y0), as points in a copy of the reals. Let C inherit a metric from the reals.

•
x0

•
x1

•
x2

•
x3
•
x4
••••
y0

α0 α1 α2

d(x0, y0)
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Identify 0, d(x0, y0) ∈ C with x0 and y0 respectively. Finally, as per the previous lemma,

combine the two metrics, on X and on C to obtain a metric ω on X ∪ C.

(X, d)

C
x0
• •y0• • • • ••...

xi
•
x

•x′

1

•

•

•

•

Figure 3.3: Definition of ω (note y0 ∈ X)

ω defines a metric on X̃ := X ∪ C satisfying properties 1 through 6 in the hypothesis of

the lemma.

To prove condition 7 we will first define a sequence of linear functionals on the vector

space VX̃ of real-valued symmetric functions on X̃ × X̃. Let Lj : VX̃ → R be the linear

functional defined as

Lj(η) =

(
j−1∑
i=0

η(xi, xi+1)

)
− η(x0, xj)

for j ≥ 1. Now if η ∈ M(X̃), by the triangle inequality we have that Lj(η) ≥ 0 for all

j. Suppose now that ω0, ω1 ∈ M(X̃) and ω ∈ (ω0, ω1). So ω = λω0 + (1 − λ)ω1 for some

0 < λ < 1. Since Lj(ω) = 0 for all j, by Proposition (1.3.11)

Lj(ω0) = Lj(ω1) = 0 (∗)

for all j ≥ 1 and hence both (ω0(x0, xj)) and (ω1(x0, xj)) define increasing sequences of real

numbers. Now, since

ω(x0, xj) + ω(xj, y0) = d(x0, y0) = ω(x0, y0) (∗∗)
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for any j ≥ 1 we have that ω0 and ω1 must satisfy these same tight constraints. This yields

us upper bounds

ω0(x0, xj) ≤ ω0(x0, y0) , ω1(x0, xj) ≤ ω1(x0, y0)

for all j ≥ 1. Since bounded monotonic sequences converge we have that lim
j→∞

ω0(x0, xj) and

lim
j→∞

ω1(x0, xj) exist. Using (∗) we obtain their values

lim
j→∞

ω0(x0, xj) =
∞∑
i=0

ω0(xi, xi+1) (∗ ∗ ∗)

and

lim
j→∞

ω1(x0, xj) =
∞∑
i=0

ω1(xi, xi+1) (∗ ∗ ∗).

By (∗∗) we also have the limits lim
j→∞

ω0(xj, y0) and lim
j→∞

ω1(xj, y0) exist. Now, since ω ∈

(ω0, ω1), in particular we have

ω0(xj, y0) < ω(xj, y0) < ω1(xj, y0).

Thus 0 ≤ lim
j→∞

ω0(xj, y0) ≤ lim
j→∞

ω(xj, y0) = 0, so that

lim
j→∞

ω0(xj, y0) = 0.

We can compute the corresponding limit for ω1 as

lim
j→∞

ω1(xj, y0) = lim
j→∞

ω(xj, y0)− λω0(xj, y0)

1− λ

= 0.
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From this and (∗∗) we calculate the limits lim
j→∞

ω0(x0, xj) and lim
j→∞

ω1(x0, xj) as

lim
j→∞

ω0(x0, xj) = ω0(x0, y0)

and

lim
j→∞

ω1(x0, xj) = ω1(x0, y0)

Combining these equations with (∗ ∗ ∗) we obtain

∞∑
i=0

ω0(xi, xi+1) = ω0(x0, y0)

and
∞∑
i=0

ω1(xi, xi+1) = ω1(x0, y0)

We now prove our theorem.

Proof of Theorem (3.2.3). Since (X, d) is separable there exists a dense countable subset

A ⊂ X. We will show that we can rigidify any distance in A by adding only at most

countably many points to X. We will break the proof down as follows.

1. Take each irrational distance in A and divide it into countably many rational distances

using Lemma (3.2.5).

2. For each rational distance in A or rational distance generated by an irrational distance

of A, fit this rational distance into an extreme metric on a finite set. Use Lemma

(3.2.4) to extend the metric d to include these extreme metrics.

3. After dividing irrational distances and rigidifying rational distances, we have extended

the metric on X and only added countably many points. Call this new larger metric

space (X̃, d̃) with corresponding dense set Ã.
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4. By construction perturbing any non-unital distance in Ã will have the effect of per-

turbing some non-unital rational distance in Ã. Every rational distance will be rigid

and hence no distance in Ã can move.

5. Since Ã is dense in X̃ no distance in X̃ can move.

We first show that we can divide all the irrational distances into countably many rational

distances. Define the set

Z = {{x, y} ⊂ A | d(x, y) is irrational}

SinceA is countable, Z is also countable. Hence we can order the pairs in Z as {{x1, y1} , {x2, y2} , . . .}.

By Lemma (3.2.5) there exists a countable set C1 = {x1,1, x1,2, . . .} and metric ω1 on X ∪C1

extending d such that properties 1 through 6 in Lemma (3.2.5) are satisfied with x1,0 := x1

and
∞∑
i=0

ω1(x1,i, x1,i+1) = d(x1, y1).

Using recursion, there exists a countable set Cn = {xn,1, xn,2, . . .} and a metric ωn on Xn :=

X ∪C1 ∪ · · · ∪Cn extending ωn−1 satisfying the properties of Lemma (3.2.5) with xn,0 := xn

and
∞∑
i=0

ωn(x1,i, x1,i+1) = d(xn, yn).

for n ≥ 1. Now let

X∞ =
⋃
n≥1

Xn

and define a metric ω onX∞ by the property that ω|Xn = ωn. Note, since ωn+1 is an extension

of ωn for all n ≥ 1 we have that ω is well defined. Similarly define An := A ∪ C1 ∪ · · · ∪ Cn

and

A∞ =
⋃
n≥1

An.

We claim that if we perturb any non-unital edge length in An, this must have the effect of
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perturbing a non-unital rational edge length in An or a non-unital edge length in A . We

proceed by induction on n, taking as a basis for induction A1. Let ω1(x, y) < 1 be any

non-unital edge length in A1 and suppose we perturb this edge length. We then have three

cases to consider

1. x ∈ A \ {y1} and y ∈ C1.

In this case y = x1,i for some i ≥ 1 so that

ω1(x, y) = d(x, x1) + ω1(x1, x1,i)

since this constraint is tight, perturbing ω1(x, y) will have the effect of either perturbing

d(x, x1), a non-unital edge length in A, or perturbing ω1(x1, x1,i), a non-unital rational

length in A1.

2. x = y1 and y ∈ C1

In this case y = x1,i for some i ≥ 1 so that

ω1(x, y) = d(x1, y1)− ω1(x1, x1,i).

Since this constraint is tight, perturbing ω1(x, y) will have the effect of either perturbing

d(x1, y1), a non-unital edge length in A, or perturbing ω1(x1, x1,i), a non-unital rational

length in A1.

3. x, y ∈ C1

In this case ω1(x, y) already constitutes a rational edge length in A1.

This completes the basis for induction. Now assume the induction hypothesis holds for all

k < n. Let ωn(x, y) be any non-unital edge length in An. Without loss of generality we can

31



An

An−1

Cn
xn
• •yn• • • • ••...

xn,i
•
x

•x′

1

•

•

•

•

Figure 3.4

assume that x and y are not both in An−1. We have the following similar cases

1. x ∈ An−1 \ {yn} and y ∈ Cn.

In this case y = xn,i for some i ≥ 1 so that

ωn(x, y) = ωn−1(x, xn) + ωn(xn, xn,i)

since this constraint is tight, perturbing ωn(x, y) will have the effect of either perturbing

ωn−1(x, x1), or perturbing ωn(xn, xn,i), a non-unital rational length in An. By the

induction hypothesis, perturbing ωn−1(x, x1) will have the effect of either perturbing a

non-unital rational edge length in An−1 ⊂ An or perturbing a non-unital edge length

in A.

2. x = yn and y ∈ Cn.

Similar to case 1.

3. x, y ∈ Cn
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In this case ωn(x, y) already constitutes a non-unital rational edge length in An.

This completes the induction.

Perturbing any non-unital edge length in A∞ thus entails perturbing a non-unital rational

edge length in A∞. Indeed, any irrational edge length d(xi, yi) in A must satisfy

d(xi, yi) =
∞∑
j=0

ωi(xi,j, xi,j+1)

which Lemma (3.2.5) makes a tight constraint. Hence, perturbing d(xi, yi) entails perturbing

some non-unital rational edge length ωi(xi,k, xi,k+1) in Ai ⊂ A∞ with k ≥ 0.

We now show that we can rigidify every positive, non-unital rational distance in A∞.

First define the set

W = {{x, y} ⊂ A∞ | d(x, y) ∈ Q ∩ (0, 1)}

SinceA∞ is countable, W is also countable. Hence we can order pairs inW as {{x1, y1} , {x2, y2} , . . .}.

First consider the rational distance ω(x1, y1) in A∞. By Corollary (3.1.6) there exists an

n1 > 0 and an extreme metric ρ1 ∈ Mn1 such that ω(x1, y1) is a value of ρ1. Let (i0, j0) be

the pair of points in n1 where ρ1(i0, j0) = ω(x1, y1). By taking the disjoint union of X∞ and

n1, and then identifying the points x1 and y1 with i0 and j0 respectively we obtain a new

set X̃1 where we view X∞ and n1 as subsets. By Lemma (3.2.4) there exists a metric d̃1 on

X̃1 that restricts to both ω and ρ1 on X∞ and n1 respectively, and such that any distance

d̃1(x, y) with x ∈ X∞ \ n1 and y ∈ n1 \X∞ satisfies

d̃1(x, y) = d̃1(x, z) + d̃1(z, y)

= ω(x, z) + ρ1(z, y)

for some z ∈ {x1, y1}, or d̃1(x, y) = 1. Since d̃1(z, y) lies in an extreme metric, we cannot

perturb it. Now define the subset Ã1 := A∞∪n1. Notice that perturbing non-unital d̃1(x, y)
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in Ã1 with x ∈ A∞ \ n and y ∈ n \ A∞ entails perturbing a non-unital edge length in A∞,

and therefore entails perturbing a non-unital rational edge length in A∞. By successively

rigidifying the positive non-unital rational distances in A∞ and extending the metric using

Lemma (3.2.4) we obtain a sequence of metric spaces
(

(d̃1, X̃1), (d̃2, X̃2), . . . , (d̃n, X̃n), . . .
)

such that (X̃i+1, d̃i+1) is an extension of (X̃i, d̃i) for all i ≥ 1. Let

X̃ =
⋃
n≥1

X̃n

and define the metric d̃ on X̃ by the property d̃|X̃n = d̃n. Define the subset of X̃

Ã = A ∪
(
X̃ \X

)
.

By an induction similar to the above, it is simple to show that perturbing any non-unital

edge length in Ã will have the effect of perturbing a non-unital rational edge length in A∞.

But every non-unital rational edge length in A∞ lies in an extreme metric, and hence cannot

be perturbed. Thus, no edge length in Ã can be perturbed and we have d̃|Ã extreme.

Finally, we show that (X̃, d̃) is an extreme separable extension of (X, d). Since (X̃, d̃) was

built from (X, d) using successive extensions it follows that (X̃, d̃) is an extension of (X, d).

The set Ã will be a dense subset of X̃. Indeed, if x ∈ X̃ then either x ∈ X or x ∈ X̃ \X.

In the latter case, x ∈ Ã. In the former case, any d̃-neighborhood of x will undoubtedly

contain a d-neighborhood of x. Since A is dense in X, this means any d̃-neighborhood of x

must contain points from A ⊂ Ã. Hence, Ã is dense in X̃. Since d̃|Ã is extreme and d̃ is

completely determined by its values on a dense set, it follows that d̃ is also extreme. This

proves the theorem.
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3.3 Extreme Metrics

As noted, bi-partitions give extreme points in the metric body. Actually any partition of

the underlying set X corresponds to an extreme point in the body. Call metric d ∈ M̄(X)

discrete if it takes only the values zero and one.

Associate a partition of X with any (pseudo)metric on X via the equivalence relation ∼d:

x ∼d y ⇐⇒ d(x, y) = 0 for x, y ∈ X

With discrete metrics, we lose no information when we pass to its partition, so henceforth

we identify the set of discrete metrics on X with the set Π(X) of partitions on X.

Proposition 3.3.1. Partitions give extreme points: Π(X) ⊂ ex(M̄(X)).

Proof. Let d ∈ Π(X) and assume (for contradiction) that there exists a non-constant line

segment dt ∈ M̄(X), t ∈ [0, 1], with d = dt∗ for some t∗ ∈ (0, 1).

For x, y ∈ X, suppose that d(x, y) = 0. Then

dt∗(x, y) = t∗d1(x, y) + (1− t∗)d0(x, y) = 0.

But t∗, 1 − t∗ > 0 and d1(x, y), d0(x, y) ≥ 0. Thus d1(x, y), d0(x, y) = 0 and dt(x, y) = 0 for

all t.

Now suppose instead that d(x, y) = 1. Then

dt∗(x, y) = t∗d1(x, y) + (1− t∗)d0(x, y) = 1.
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We can’t have d1(x, y) < 1 lest

dt∗(x, y) < t∗ + (1− t∗)d0(x, y)

≤ t∗ + 1− t∗

= 1

So d1(x, y) = 1, and similarly d0(x, y) = 1, and so dt(x, y) = 1 for all t.

Having dt constant contradicts the assumption.

We first encounter a non-partition extreme metric on 4 points. This metric has a single

point as the common “mid-point” of every edge in a triangle.

Midpoint Metric (Extreme Metric 1 from Table 4.1.1)
•

• •

•

1

1

1

1
2

1
2

1
2

Proposition 3.3.2. The mid-point metric m4 is extreme

Proof. Perturbation cannot affect length one edges when we consider metrics with distances

bounded by 1. Label the half-length distances a, b, and c. Let ε ∈ R(4
2) be a perturbation of

m4.

m4

m4 + ε

ε
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By the tightness of a + b = 1, perturbing distance a positively forces perturbing distance

b negatively. But perturbing b negatively then forces perturbing c positively, which finally

forces perturbing a negatively, contradiction.

We obtained an alternating sequence of positive/negative pertubations on the half-length

edges of m4. We can represent this as a cycle of signed nodes

−
b

+
c

−
+
a

Extremality rested on the impossibility of perturbing a (or any other length 1/2 edge here)

both positively and negatively. This simple idea will generalize to a technique for proving

extremality for large classes of metrics.

The next proposition allows restricting attention to positive-definite (i.e. true) metrics.

Given a set X and a metric d ∈ M̄(X), set X
d

:= X/∼d , the quotient by the equivalence

relation ∼d. Given two equivalence relations ∼1 and ∼2, say ∼1 refines ∼2 if x ∼1 y implies

x ∼2 y.

Proposition 3.3.3. Fix a metric d ∈ M̄(X) and equivalence relation ∼ on X with quotient

X. If ∼ refines ∼d, then d descends to a metric d̄ on X. Moreover, the quotient by ∼d itself

carries a true metric.

Proof. d̄([x], [y]) = d(x, y) gives a well-defined metric. Indeed if x ∼ z and y ∼ w, then

x ∼d z and y ∼d w, so d(x, z) = 0 and d(y, w) = 0. Then

d(x, y) ≤ d(x, z) + d(z, y) = d(z, y)

d(z, y) ≤ d(z, x) + d(x, y) = d(x, y)

and d(x, y) = d(z, y), and similarly d(x, y) = d(z, w). Certainly d̄ inherits symmetry and

takes its values in [0, 1] and if d̄ violated the triangle inequality, so would d.
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For ∼d, d̄([x], [y]) = 0 implies d(x, y) = 0 implies x ∼d y implies [x] = [y] and positive-

definiteness follows.

Metrics also lift. Given ρ ∈ M̄(X), define the covering metric on X by ρ̂(x, y) :=

ρ([x], [y]). We need only check the triangle inequality.

ρ̂(x, z) = ρ([x], [z])

≤ ρ([x], [y]) + ρ([y], [z])

= ρ̂(x, y) + ρ̂(y, z)

Note: ρ̂ = ρ for any ρ, d̂ = d for any refinement of ∼d. So equal covers or (valid) quotients

imply equal metrics.

An equivalence relation ∼ determines a set of metrics,

M̄∼(X) :=
{
d ∈ M̄(X)| ∼ refines ∼d

}
M̄∼(X) constitutes a convex subspace of M̄(X). Indeed:

Proposition 3.3.4. The map M̄∼(X)→ M̄(X) given by d 7→ d̄ is a convex isomorphism.

i.e a bijection that preserves convex combinations.

Proof. Covering provides the inverse.

Theorem 3.3.5. If ∼ refines ∼d and d ∈ ex(M̄(X)) then d̄ ∈ ex(M̄(X))

Proof. Suppose d ∈ ex(M̄(X)) and suppose d̄ ∈ [ρ1, ρ2] then d = ˆ̄d ∈ [ρ̂1, ρ̂2]. Thus d = ρ̂1
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or d = ρ̂2. Without loss of generality assume d = ρ̂1, then we have,

d̄([x], [y]) = d(x, y)

= ρ̂1(x, y)

= ρ1([x], [y])

Thus d̄ = ρ1 so that d̄ ∈ ex(M̄(X))

Since extreme metrics descend to extreme metrics, any extreme metric d descends to an

extreme true metric on a X
d
. Moreover, we can recover any metric as the cover of the unique

true metric to which it descends.

Theorem 3.3.6. Suppose ρ ∈ ex(M̄(X)) then ρ̂ ∈ ex(M̄(X))

Proof. Letρ ∈ ex(M̄(X)). Suppose ρ̂ ∈ [d1, d2] and that ρ̂ = λ1d1 + λ2d2 with λ1 + λ2 = 1

and λ1, λ2 ≥ 0. Then d1 and d2 vanishes wherever ρ̂ vanishes. That makes both d̄1 and d̄2

well-defined on X. We then have ρ = λ1d̄1 + λ2d̄2, so that ρ ∈ [d̄1, d̄2]. ρ extreme implies

ρ = d̄1 or ρ = d̄2. Say ρ = d̄1; then ρ̂ = ˆ̄d1 = d1. So ρ̂ ∈ ex(M̄(X)).

Theorem 3.3.7. The restricted map M̄∼(X) ∩ ex(M̄(X))→ ex(M̄(X)) given by d 7→ d̄ is

a bijection.

Proof. Extreme metrics descend to extreme metrics and extreme metrics have extreme cov-

ers. Then we restrict the convex isomorphism given in Theorem 3.3.4 to get a bijection

between M̄∼(X) ∩ ex(M̄(X)) and ex(M̄(X)) .

All this makes classifying positive-definite extreme metrics tantamount to classifying all

extreme metrics.

We now consider a simple type of co-product on metrics. The reader should understand

the terminology as merely borrowed from category, seeing as we neither develop nor apply

that perspective.
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Definition 3.3.8. Given sets X and Y , and metrics d ∈ M̄(X) and ρ ∈ M̄(Y ), define

metric d t ρ on X
∐
Y by

d t ρ|X×X = d;

d t ρ|Y×Y = ρ;

d t ρ(x, y) = 1;

for x ∈ X and y ∈ Y .

Proposition 3.3.9. d t ρ ∈ M̄(X
∐
Y ). If d ∈ ex(M̄(X)) and ρ ∈ ex(M̄(Y )), then

d t ρ ∈ ex(M̄(X
∐
Y )).

Proof. A triangle not in just X or Y has two sides of length 1 and a third no longer, so the

triangle inequality holds in general.

Given d ∈ ex(M̄(X)) and ρ ∈ ex(M̄(Y )), suppose d t ρ = tα + (1 − t)β with α, β ∈

M̄(X
∐
Y ) and t ∈ (0, 1). Then α and β take the value 1 wherever dt ρ does (see Theorem

3.3.1), so

α = α|X t α|Y ,

β = β|X t β|Y .

Then d = tα|X + (1− t)β|X and ρ = tα|Y + (1− t)β|Y . Extremality of d and ρ then forces

α|X = β|X and α|Y = β|Y . So α = β.

Corollary 3.3.10 (Kehoe, 2019).
n∐
i=1

Bni,1,...,ni,ki is an extreme point of M̄N where

N =
∑

i,j ni,j.

Proposition 3.3.11. Suppose d and ρ lie in the convex hull of {di} and {ρj} respectively.

Then d t ρ lies in the convex hull of {di t ρj}.

Proof. First, for each j, express d t ρj as a convex combination of metrics di t ρj. Then

express d t ρ as a convex combination of the d t ρj.
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Call a metric irreducible if it doesn’t arise as a non-trivial co-product.

3.4 Geometric Structures

Given a set X, write E(X), the edges of X, for the set of unordered pairs {x, y} and T (X),

the triangles of X, for the set of unordered triples {x, y, z}. Symmetry allows considering a

metric d as a function

d : E(X)→ [0, 1].

Write [x, y, z] for the triangle inequality

d(x, z) ≤ d(x, y) + d(y, z).

So we don’t distinguish [z, y, x] from [x, y, z]. Let T (X) denote the set of such triples. When

the context is clear, we’ll omit the dependence on X for all geometric constructions on X.

To maintain a consistency of notation with edges and triples, we’ll often use the bracket

notation [x, y] to denote the edge {x, y}. Given two edges [x, y] and [y, z] sharing a common

point we form the triple,

[x, y] ∨ [y, z] := [x, y, z].

We consider that [x, y] contained in [x, y, z] and write

[x, y] ⊂ [x, y, z]

if {x, y} ⊂ {x, y, z}. We call an ordered triangle [x, y, z] degenerate, with long side [x, z], and

short sides [x, y] and [y, z] if,

d(x, z) = d(x, y) + d(y, z).

Proposition 3.4.1. A true metric d ∈ M̄(X) has at most one degenerate triple with points
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in any given triangle {x, y, z} ∈ T (X).

Given any distance function d and any degenerate ordered triangle, the other two triangle

inequalities on the same points hold automatically.

Proof. Suppose, say, both [x, y, z] and [y, x, z], so d(x, z) = d(x, y)+d(y, z) and also d(y, z) =

d(x, z) + d(x, y). Then d(x, y) = d(x, z)− d(y, z) = d(y, z)− d(x, z) = 0, and we don’t have

a true metric.

For any non-negative function d, d(x, y) + d(y, z) = d(x, z) implies

d(y, z) + d(x, z) = 2d(y, z) + d(x, y) ≥ d(x, y).

3.5 Metrics on a Finite Set and Linear Programming

In this section we introduce linear programming tools which enable us to classify a large

elementary class of extreme metrics. Proposition (3.1.2) allows us to embed M̄n into Rm

with m =
(
n
2

)
using E(X) as a natural basis; we label coordinates of M̄n in dictionary order

of the indices when convenient.

Once embedded, finding extreme metrics in M̄n translates to a linear programming

problem. Specifically, M̄n produces a polytope in Euclidean space defined by the inequalities,

dik − dij − djk ≤ 0, 1 ≤ i < j < k ≤ n; (3.5.1)

dkj − dki − dij ≤ 0, 1 ≤ i < j < k ≤ n;

dji − djk − dki ≤ 0, 1 ≤ i < j < k ≤ n;

dij ≤ 1, 1 ≤ i < j ≤ n;

dij ≥ 0, 1 ≤ i < j ≤ n. (3.5.2)
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Thus M̄n equals the intersection of 3
(
n
3

)
+ 2
(
n
2

)
half-spaces, written succinctly as M̄n =

{d ∈ Rm | Hd ≤ b}.

We now develop some language to discuss our problem from the context of linear pro-

gramming.

Definition 3.5.3. Call a vector d ∈ Rm feasible if it satisfies Hd ≤ b.

In the context of metric spaces, feasibility means a vector that defines a metric.

Definition 3.5.4. Given a vector (not necessarily a metric) d ∈ Rm, let Ad and ad denote

the maximum set of rows of H and b respectively so that Ad · d = ad. We call (Ad, ad) the

active constraints, Ad the active matrix and ad the active vector. Call a vector d ∈ Rm a

basic solution if Ad has a maximum rank, so (Ad, ad) defines it.

The active constraints determine which supporting hyperplanes of M̄n in the H-rep

contain d.

The theory of linear programming (LP) tells us that extreme points of a polytope coincide

with basic feasible solutions of the associated LP-problem. Thus an extreme metric d will

arise as the unique solution to an equation Ad = a where A and a specify m equations

refining the fundamental inequalities given (3.5.1), (3.5.2) above.

Every extreme metric d satisfies a defining system of linear integer equations, so d ∈ Qm.

Thus we need only understand what makes rational metrics extreme. For a rational metric

d let den(d) denote the minimal denominator (non-zero) such that den(d) · d ∈ Zm. If

den(d) = r we’ll call d an r-den metric. We’ll write M̄r
n for all rational metrics with

minimum denominator r and ex(M̄r
n) for just the extreme ones.

Definition 3.5.5. Let [i, j, k] ∈ T then we define e[i,j,k] to be the m-dimensional row vector
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such that,

e[i,j,k]([i, k]) = 1;

e[i,j,k]([i, j]) = −1;

e[i,j,k]([j, k]) = −1;

e[i,j,k]([q, l]) = 0 , [q, l] * [i, j, k].

The row vector e[i,j,k] encodes the data from the [i, j, k]-triangle-inequality.

Definition 3.5.6. For d ∈ M̄n,

Ud = {E ∈ E|dE = 1},

comprises the unital edges associated to d, the edges on which d takes the value 1. Nd = E\Ud

comprises the non-unital edges.

Given a true metric d ∈ ex(M̄n) with r = |Ud|, we wish to write a minimal active matrix

A which defines the extreme point d as a basic feasible solution to Hd ≤ b and retains all

active unital constraints.

We begin with the tedious but necessary task of ordering. Take the edges E in dictionary

order and identify Ud as a subset {iq}ri=1 of {1, . . . ,m} of cardinality r indexed so iq < iq+1.

Similarly, we identify Nd as a subset {lq}m−ri=1 of {1, . . . ,m} of cardinality m − r indexed so

lq < lq+1. Write ej for the the row vector in Rm with a 1 in the jth position, and 0 elsewhere.

Theorem 3.5.7 (Kehoe, 2017). d uniquely solves Ad = a where (Aj denoting the jth row

of A):

Aiq = eiq , 1 ≤ q ≤ r;

Alq = eTq , 1 ≤ q ≤ m− r;
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and

aj =


1 j ∈ {iq}

0 j ∈ {lq},

and the Tq represent distinct elements of T (not just of T ), and each E ∈ Nd belongs to

some Tq.

Proof. From the discussion earlier we know that an extreme true metric d will be the unique

solution to an equation Ad = a where A and a arise from m equations strengthening the

inequalities (3.5.1), (3.5.2). Now let S denote the r×m matrix with rows taken from the set

{eiq | 1 ≤ q ≤ r}

Append the matrix S to the matrix A, use S to zero out any entries in columns corresponding

to unital edges, and permute columns to bring non-unital edges to the left and unital edges

to the right. Obtain thereby a block diagonal matrix

X :=

A′ 0

0 S

 .

Since rank(A′) + rank(S) = m and rank(S) = r, we have that rank(A′) = m − r. Thus we

can modify A, substituting in rows of S while maintaining full rank and using row vectors

corresponding to unital edges of d. Of course we must adjust the entries of a accordingly.

Now for any E ∈ Nd there must be a degenerate triangle T containing E represented by

a row in A, or else a column of A would equal 0. As we assume we have a true metric d,

Theorem (3.4.1) says we have, represented in A, degenerate triangles distinct in T . Finally

obtain the desired A and a by now permuting rows so that they occur in an appropriate

order, as per the requirements of the theorem.
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3.6 The Edge Graph

Start with Γ, the undirected graph whose nodes stand for the edges in E , two nodes connected

in Γ if the corresponding edges belong to a triangle. One calls Γ the line graph L(Kn) of the

complete graph Kn.

Given a metric d ∈ M̄n build a signed subgraph, Γd, of Γ, with nodes representing the

non-unital edges in Nd and edges associated to degenerate triangles as follows.

Given a degenerate triangle of non-unital edges [i, j, k] for d, (so long side [i, k]), connect

the nodes representing [i, j], [j, k], and [i, k] with positive and negative edges as depicted

below.

[i, k]

[i, j] [j, k]

+

-

+

Given a degenerate triangle [i, j, k] for d with long side [i, k] unital, simply connect [i, j]

and [j, k] with a negative edge.

[i, j] [j, k]
-

Γd encodes graphically the H-rep of d, allowing us to explore the linear dependence of

degenerate triangles. As a signed graph, Γd has positive and negative induced subgraphs

that we write as G+ and G−.
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Figure 3.5: Edge Graph of the bow-tie metric B1,2,2,1

(dashed=negative, solid=positive)

Definition 3.6.1. Call a signed subgraph κ of Γ short-sided if κ = κ−.

The edges in short-sided graphs correspond to triangles in X, allowing the study of syzy-

gies of degenerate triangles in terms of graph notions.

Figure 3.6: Edge Graph of the Midpoint Metric

Definition 3.6.2. By a path γ we shall mean a subgraph of Γ whose distinct nodes {[i1, j1], . . . , [ik, jk]}

(k ≥ 2) occur connected each to the next and each consecutive pair [il, jl], [il+1, jl+1] share

a common index. The edges of γ correspond to triangles Tl = [il, jl] ∨ [il+1, jl+1].

By the edge space of any subgraph κ ⊂ Γ we mean the linear subspace Vκ ⊂ Rm (of

dimension δκ) with vectors supported on the coordinates corresponding to vertices in κ. Let

πκ : Rm → Vκ denote orthogonal projection.
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Proposition 3.6.3. Consider a short-sided path γ with vertices {[i1, j1], . . . , [ik, jk]} and

also the associated finite sequence {eTl}k−1
l=1 of triangle inequality encoding vectors. Write γ0

for the subpath {[i2, j2], . . . , [ik, jk]} and Vγ0 for the vector space with basis the nodes of γ0.

Projecting the {eTl}k−1
l=1 onto Vγ0 produces a linearly independent set, namely {πVγ0 (eTl)}k−1

l=1 .

Proof. Perform row reduction on the matrix having rows {πVγ (eTl)}k−1
l=1 .

First replace eT2 with, R2 = eT1 − eT2 ; so R2([i1, j1]) = −1, R2([i3, j3]) = 1 and zeros.

Next replace eT3 with R3 = R2 + eT3 , so R3([i1, j1]) = −1, R3([i4, j4]) = −1 and zeros.

In general R1 = eT1 and eTl gets replaced with

Rl = Rl−1 + (−1)l+1eTl =
l∑

q=1

(−1)q+1eTq .

Then Rl([i1, j1]) = −1 and Rl([il+1, jl+1]) = (−1)l and zeros beside. Projection onto Vγ0

produces a diagonal matrix with non-zero diagonal entries, so linearly independent rows.

Row operations don’t affect linear independence, so the same holds for {πVγ0 (eTl)}k−1
l=1 .

For later use, we give the elementary matrix and inverse associated to the row operations

in the proof:

E =



1

1 −1

...
...

. . .

1 −1 . . . ±1


E−1 =



1

1 −1

−1 1

. . . . . .

∓1 ±1


.

Corollary 3.6.4. Let τ be a short-sided tree with root τ∗. If τ0 = τ \ τ∗ then {eT}T∈E(τ) is

a linearly independent set over Vτ0.

Proof. Write τ as a union of short-sided paths τ = γ1 ∪ · · · ∪ γp so that

1. γq has vertices
{

[iq1, j
q
1 ], . . . , [iqkq , j

q
kq

]
}

;

48



2. τ∗ = [i11, j
1
1 ] ∈ γ1; and

3. γq ∩ (γ1 ∪ · · · ∪ γq−1) = [iq1, j
q
1 ] for all 1 < q ≤ p.

Induct on the number of paths in the union.

For the base case, apply (3.6.3) to τ = γ1.

For τ ′ = τ ∪ γs, τ = γ1 ∪ · · · ∪ γs−1, suppose, by induction, we already have linear

independence for {eT}T∈E(τ) over Vτ0 .

Write τ ′0 = τ ′ \ τ∗. Since γs ∩ τ = [is1, j
s
1], Vγs0 ∩ Vτ0 = 0. Then the linear independence of

{eT}T∈E(τ) over Vτ0 and {eT}T∈E(γs) over Vγs0 together give linear independence of {eT}T∈E(τ ′)

over Vτ ′0 = Vγs0
⊕

Vτ0 , completing the induction.

Definition 3.6.5. A cycle means a subgraph of Γ whose vertices we can list distinctly as

{[i1, j1], . . . , [ik, jk]}, k ≥ 3, so that [il, jl] and [il+1, jl+1] share a common index, and also

[ik, jk] and [i1, j1]. The edges of the cycle connect [il, jl] to [il+1, jl+1] for 1 ≤ j ≤ k − 1, and

[ik, jk] to [i1, j1]. The cycle has associated triangles, first Tl for 1 ≤ l ≤ k − 1 same as the

path from [i1, j1] to [ik, jk], and also Tk := [ik, jk]∨ [i1, j1]. Call a cycle odd or even according

to the parity of k.

Proposition 3.6.6. Fix a short-sided cycle θ with vertices {[i1, j1], . . . , [ik, jk]}. {eTl}kl=1 forms

a linearly independent set over Vθ if and only if θ has odd parity.

Proof. Just modify the proof above for paths. Replace rows eTl for 1 ≤ l ≤ k − 1 with

Rl =
∑l

q=1(−1)q+1eTq getting values, Rl([i1, j1]) = −1 and Rl([il+1, jl+1]) = (−1)l and zero

otherwise. Then replace eTk with Rk =
∑k

q=1(−1)q+1eTq getting values

Rk([i1, j1]) =


0 k is even

−2 k is odd
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and 0 otherwise.

k even makes Rk = 0 makes {R1, . . . , Rk−1, Rk} linearly dependent over Vθ, so likewise

{eTl}kl=1. For k odd, replace Rj, j < k with R′j = Rj − 1
2
Rk. Then {Rk, R

′
1, . . . , R

′
k−1} forms

a diagonal matrix, hence the linearly independence of {eTl}kl=1 over Vθ.

Again we can calculate the elementary matrix representing the final step in the row

reduction above for the odd cycle,

Ck =



1 . . . . . . −1
2
−1

2

. . .
...

...

1 −1
2
−1

2

1
2
−1

2

1 1


, Ck

−1 =



1 . . . . . . . . . 1
2

. . .
...

1 1
2

1 1
2

−1 1
2


Theorem 3.6.7 (Kehoe, 2017). For κ ⊂ Γ any connected short-sided subgraph with one odd

cycle, we will have {eT}T∈E(κ) is a linearly independent set over Vκ.

Proof. Write κ = θ ∪ τ 1 ∪ · · · ∪ τ p with θ an odd cycle, the τ q disjoint trees with each

root τ q∗ ∈ θ. By construction θ and τ q shares only the vertex τ q∗ . Proposition (3.6.6) gives

{eT}T∈E(θ) linearly independent over Vθ, and Corollary (3.6.4) gives {eT}T∈E(τq) linearly

independent set over Vτq0 . Then from

Vθ ∩ Vτq0 = 0 1 ≤ q ≤ p

Vτq ∩ Vτs = 0 q 6= s

we have {eT}T∈E(κ) linearly independent set over Vκ = Vθ
⊕

Vτ10
⊕
· · ·
⊕

Vτp0 .

We shall call a connected graph containing exactly one odd cycle a germ (think about
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what they look like), and a disjoint union of germs a colony. We now have the immediate

corollary.

Corollary 3.6.8. Given a short-sided colony κ ⊂ Γ, {eT}T∈E(κ) forms a linearly independent

set over Vκ.

Theorem 3.6.9 (Kehoe, 2017). If Γd, for a true metric d, contains a spanning short-sided

colony, then d ∈ ex(M̄n).

Proof. Suppose Γd contains a spanning short-sided colony κ. Then Vκ = Rm−r ⊂ Rm where

r = |Ud|, and e(κ) = m − r. Theorem (3.6.8) makes {eT}T∈E(κ) linearly independent over

Rm−r. Label the m − r triangles as Tq for 1 ≤ q ≤ m − r and define the matrix A and the

vector a as,

Aiq = eiq 1 ≤ q ≤ r

Alq = eTq 1 ≤ q ≤ m− r

with Aj denoting the jth row of A and,

aj =


1 j ∈ {iq}

0 j ∈ {lq}

Then d uniquely solves Ad = a, so constitutes a basic feasible solution to the associated

LP problem defined at the beginning of Section 3.5. Basic feasible solutions coincide with

extreme points, so d ∈ ex(M̄n).

We now give a partial converse to Theorem (3.6.9).

Theorem 3.6.10 (Kehoe, 2017). Consider a true metric d ∈ ex(M̄n) with Γd short-sided.

Then each component of Γd contains an odd cycle.
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Proof. Theorem (3.5.7) says d uniquely solves a type of matrix equation Ad = a. Writing

Aj (resp. aj) for the jth row of A (resp. a), A has the form

Aiq = eiq 1 ≤ q ≤ r

Alq = eTq 1 ≤ q ≤ m− r,

and a the form

aj =


1 j ∈ {iq}

0 j ∈ {lq}

Moreover we will have the Tq distinct in T , and for each E ∈ Nd there will exist a q such

that E ⊂ Tq. This last property guarantees that Γd spans.

Γd short-sided and spanning makes every long side of a triangle T ∈ E(Γd) unital. Thus

the triangles Tq associated to the vectors Alq = eTq define a spanning subgraph κ of Γd with

the property that e(κ) = v(κ), as we must have the same number of equations and variables.

Indeed, we argue that e(κs) = v(κs) for each germ in the colony. Having e(κs) > v(κs) would

make {eT}T∈κs linearly dependent over Vκs . By hypothesis, our degenerate triangles have

their long edges unital, so this linear dependence would contradict A’s having full rank.

Having κs connected with e(κs) = v(κs) means κs contains only one cycle θs. If θs even,

we get {eT}T∈E(θs) linearly dependent over Vθs by Theorem (3.6.6), contradicting full rank

for A again. So we have θs odd.

The question now arises, do extreme true metrics with short-sided spanning graphs Γd

exist?

Theorem 3.6.11 (Kehoe, 2017). If Γd for a true metric d contains a spanning short-sided

colony κ, d constitutes an extreme 2-den metric.

Proof. Theorem (3.6.8) makes d extreme. Decompose κ = κ1t· · ·tκp into germs. Theorem

(3.5.7) then makes d the unique solution of matrix equation Ad = a with the matrix A
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associated to κ (including rows associated to unital edges). Permuting rows and columns

(to group edges and triangle inequalities according to the germ that contains them) and row

reduction techniques as in Theorems (3.6.6) and (3.6.3), we can write,

A = E(Ir
⊕

N1

⊕
· · ·
⊕

Np)

where E ∈ Mm(Z), | det(E)| = 1, Ir stands for the r × r identity matrix (corresponding

to unital edges), and the Nq for v(κq) × v(κq) diagonal matrices having |(Nq)11| = 2 and

|(Nq)ii| = 1, i > 1.

Then we have that E−1 ∈Mm(Z) and N−1
q = 1

2
M for M ∈Mv(κq)(Z) so that,

2d = 2A−1a

= 2(Ir
⊕

N−1
1

⊕
· · ·
⊕

N−1
p )E−1a

= (2Ir
⊕

M1

⊕
· · ·
⊕

Mp)E
−1a ∈ Zm

Using the hypotheses that 0 < d ≤ 1 we get that dI = 1
2

for any I ∈ Nd.

We end the chapter with two results characterizing extremality for 2-den true metrics or

half-one metrics.

Corollary 3.6.12 (Kehoe, 2019). For a half-one metric d, extremality implies that each

component of Γd contains an odd cycle and conversely. For d ∈Mn an extreme ray half-one

metric, Γd contains an odd cycle.

Proof. For half-one metrics d, Γd = Γ−d . Then extreme rays in Mn give extreme points of

M̄n.

Now one naturally asks what addition conditions on a half-one metric d, guarantee ex-

tremality for d as a ray? The simple nature of body extremality for half-one metrics raises
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hopes for a simple characterization of cone extremality. Getting such a large class of ex-

treme rays might lead to a canonical decomposition of the split-prime component given in

the decomposition by Bendelt and Dress (see Chapter 1).

Considering non-short-sided graphs might lead to insight into metrics with higher de-

nominators. One might start with graphs containing only a single node incident to positive

edges.

3.7 Perturbations

A non-extreme metric d must lie between two other metrics, neither equal to d itself. Say

d ∈ [dα, dβ]; then both dα and dβ share d’s unital edges and degenerate triangles. Hence any

perturbation ε ∈ Rm of d must satisfy,

1. εij + εjk = εik whenever dij + djk = dik

2. εij = 0 whenever dij ∈ {0, 1}

This identifies perturbations of d with the row space of Ad, Pd. Call a perturbation ε feasible

when d+ ε constitutes a metric. Trivially

Proposition 3.7.1. If dij + djk = dik = 1, then εij = −εjk for any perturbation ε. �

Proposition 3.7.2. Suppose metric d has connected short-sided edge graph Γd. Fix (τ, E0),

a rooted spanning tree for Γd. Denote tree distance from E0 to E given by l(E). Then any

perturbation ε of d equals a constant multiple of,

η(E) =


(−1)l(E) , E ∈ Nd

0 , E ∈ Ud
(3.7.3)

Proof. Γd short-sided makes every long side of a degenerate triangle unital. Thus we may

identify degenerate triangles of d with the edges of Γd. Let ε be any perturbation of d and

54



suppose E adjacent to E ′. Proposition (3.7.1) says that ε(E) = −ε(E ′). Then Γd connected

makes ε determined by its value at the root of the tree E0. Thus

ε(E) =


(−1)l(E)ε(E0) , E ∈ Nd

0 , E ∈ Ud .

Hence ε = ε(E0)η as claimed.

Corollary 3.7.4. If metric d has short-sided edge graph Γd decomposed into components

as Γd = κ1 t · · · t κp and ηi defined, component by component, as in (3.7.3), then any

perturbation ε of d has the form

ε(E) =


ciηi(E) , E ∈ κi

0 , E ∈ Ud

with the ci ∈ R. If κi contains an odd cycle, ci = 0.

Definition 3.7.5. We call a component κ of Γd rigid if ε|κ = 0 for every perturbation ε.

If d has a short-sided component κ, Proposition (3.6.6) makes κ rigid if and only if κ

contains an odd cycle.

Corollary 3.7.6. Let d be a metric with short-sided edge graph Γd and let D denote the num-

ber of non-rigid components of Γd. Then dim(Pd) = D. For a basis for Pd, take {η1, . . . , ηD},

the ηi as defined in (3.7.3).
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CHAPTER 4

Half-one Metrics

Let Hn and ex(Hn) denote the set of half-one metrics and extreme half-one metrics on n

points respectively. Any vector d ∈ Rm such that di ∈
{

1
2
, 1
}

automatically gives a half-one

metric on n points. When extreme r-den metrics compete for abundance, this automatic

feasibility gives the half-one metrics and advantage. Half-ones also tend to have more (linear)

dependencies among their degenerate triangles.

This chapter gives a lower bound for the cardinality of Hn and a new decomposition

result for a significant part of the metric body.

4.1 A lower bound for |Hn|

Given d ∈ Hn, we build a graph Gd with vertices {1, . . . , n} and edges Nd. So d(x, y) = 1/2

in d entails adjacency in Gd and conversely. Gd disconnected will say exactly that d equals

the co-product of two half-one metrics on smaller sets. Every graph G has an associated line

graph L(G), vertices of L(G) matching edges of G and connected when the matching edges

share a vertex. A basic graph theory says passing from G to L(G) preserves connectivity.

Certainly, Γd ⊂ L(Gd) but when does L(Gd) = Γd? The equality fails if and only if Gd has

triangles: in a half-one, two non-unital edges make the short sides in a degenerate triangle if

and only if have the third side unital. Having Gd a tree certainly guarantees Gd triangle-free.

Proposition 4.1.1. Gd a tree but not a path makes d extreme.

Proof. Gd has a vertex v with degree at least 3. So (at least) three non-unital edges I1,

I2, and I3 share the vertex v. Then L(I1), L(I2), and L(I3) form a 3-cycle in L(Gd) = Γd.
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Having L(Gd) connected, Corollary (3.6.12) makes d extreme.

More generally, write ∆(G) for the maximum degree of a vertex in a graph G. The same

argument (and the observation above about co-products) gives:

Proposition 4.1.2 (Kehoe, 2018). Gd triangle-free and ∆(C) ≥ 3 for every component C

in Gd makes d extreme. �

We’ll use the result about trees to calculate a lower bound on the number of extreme

half-one metrics. At the same time it will allow us to compare, for a given n, the cardinality

of all half-one metrics and all metrics derived from partitions. Write Bn = |Πn| for the Bell

numbers.

Proposition 4.1.3 (Kehoe, 2018). |ex (Hn) | > nn−2 − n!
2

for all n and |ex (Hn) | > Bn for

n sufficiently large

Proof. By Cayley’s formula, n points admit nn−2 spanning trees; subtracting off the spanning

paths, for n ≥ 2,

nn−2 − n!

2
< |ex(Hn)| .

Berend and Tassa [3] given an upper bound for the Bell numbers Bn:

Bn <

(
.792n

ln(n+ 1)

)n
.

Thus,

Bn

|ex(Hn)|
<

(
.792

ln(n+1)

)n
n2

1− n!
2nn−2

→ 0

So that eventually,

Bn < |ex(Hn)| .
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Exhaustive enumereation shows that the number of extreme half-one metrics first ex-

ceeds the number of partitions at n = 5. We can go further. Computer experiments strongly

suggest the extremality of almost every half-one metric on n points for n large.

Conjecture 4.1.4. |Hn| ∼ 2(n2) i.e. limn→∞
|Hn|

2(
n
2)

= 1.

Heuristic: Let d ∈ Hn and pick a half-length edge [i, j] ∈ Nd. Now, pick another two

distinct points l, k that are not endpoints of [i, j]. If we pick edge-lengths from the set
{

1
2
, 1
}

with equal probability for the remaining edge lengths on the complete graph with vertices

{i, j, k, l} with probability 1
16

we obtain the extreme mid-point metric m4. Thus we can

expect [i, j] to lie in 1
16
·
(
n−2

2

)
extreme midpoint metrics. n large then makes it extremely

likely that every non-unital edge of d lies in an extreme mid-point metric, making d itself

extreme.
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4.2 The Upper Half of M̄n

By the upper half of M̄n we mean the convex body M̄≥ 1
2

n = M̄n ∩ [1
2
, 1]n. Metrics living in

this section of the body have a particularly nice decomposition.

Theorem 4.2.1 (Kehoe, 2018). Let d ∈ M̄≥ 1
2

n then d arises as a convex combination of

extreme 2i3j-den metrics where 0 ≤ i+ j ≤ bm+1
2
c

We begin with a result about decomposing mere vectors.

Lemma 4.2.2. Let p ∈
[

1
2
, 1
]n

with p1 ≤ · · · ≤ pn. Then we can express p as a convex

combination of n+ 1 vectors hi

hik =


1
2

1 ≤ k < i

1 i ≤ j ≤ n

using coefficients ξk given by,

ξk =


2
(
p1 − 1

2

)
, k = 1

2 (pk − pk−1) , 2 ≤ k ≤ n

2 (1− pn) , k = n+ 1

Proof. Basically the lemma just says that the points in a simplex arise as convex combina-

tions of the extreme points, but we have use for the precise numerics.

We’ll solve the system,

p =
n+1∑
i=1

ξihi

1 =
n+1∑
i=1

ξi
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where ξi ≥ 0. This yields the augmented matrix



1 1 · · · 1 1

1 1
2
· · · 1

2
p1

...
. . . . . .

...
...

1 · · · 1 1
2

pn


By subtracting row i− 1 from row i for 3 ≤ i ≤ n+ 1, subtracting half of row 1 from row 2,

and then subtracting row n+ 1 from row 1 we obtain the reduced augmented matrix



1
2

0 · · · 0 p1 − 1
2

0 1
2
· · · 0 p2 − p1

...
. . . . . .

...
...

0 · · · 0 1
2

1− pn


We then solve for the coefficients ξi as

ξi =


2
(
p1 − 1

2

)
, i = 1

2 (pi − pi−1) , 2 ≤ i ≤ n

2 (1− pn) , i = n+ 1

The non-negativity of these coefficients follows from pi ≥ pi−1 and p ∈
[

1
2
, 1
]n

.

Of course, now by permutating, we can express any vector p ∈
[

1
2
, 1
]n

as a convex

combination of half-one vectors.

Applying this result to M̄n we obtain the corollary,

Corollary 4.2.3. M̄≥ 1
2

n =
[

1
2
, 1
]m

Proof. Every half-one vector h ∈ Rm is a half-one metric on n points, and a convex combi-
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nation of metrics is again a metric. Or we could simply observe that for any d ∈
[

1
2
, 1
]m

,

dij + djk ≥ 1
2

+ 1
2

= 1 ≥ dik so d automatically satisfies the triangle inequality.

The rest of the story comes down to decomposing the non-extreme half-one metrics.

Proposition 4.2.4 (Kehoe, 2018). Let d be a non-extreme half-one metric with Γd connected.

Then d equals the average of either two partitions, a partition and extreme positive-definite

3-den, or two extreme positive-definite 3-dens.

Proof. Let (τ, E0) be a rooted spanning tree for Γd and define l (E) as the tree distance from

the root E0 to E in τ . By Proposition (3.7.2) every perturbation of d has the form p(ε) = εη

with η the sign function,

η(E) =


(−1)l(E) , E ∈ Nd

0 , E ∈ Ud

Set dε := d + p(ε). We now find the interval I over which dε is a metric. We have five

non-trivial determining cases to consider for checking the triangle inequality.

1. 1
2

+ ε ≤
(

1
2

+ ε
)

+
(

1
2

+ ε
)

=⇒ −1
2
≤ ε

2. 1
2

+ ε ≤
(

1
2
− ε
)

+
(

1
2

+ ε
)

=⇒ ε ≤ 1
2

3. 1
2
− ε ≤

(
1
2

+ ε
)

+
(

1
2

+ ε
)

=⇒ −1
6
≤ ε

4. 1
2

+ ε ≤ 1 + 1 =⇒ ε ≤ 3
2

5. 1 ≤ 1 +
(

1
2

+ ε
)

=⇒ ε ≤ 1
2

In general we get a metric dε for −1
6
≤ ε ≤ 1

6
.

Should we have every equilateral triangle of d uniformly signed (case 1 or opposite), we

get a metric dε even for −1
2
≤ ε ≤ 1

2
. Letting ε ∈

{
−1

2
, 1

2

}
, we obtain two partitions which

average to d.
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Suppose now that an equilateral triangle [i, j, k] falls into case 2. Then by letting ε =

−1/6 we obtain a 3-den metric d̃ such that,

d̃ij = d̃jk = 1
3

, d̃ik = 2
3

Since dim(P (d)) = 1, d must lie on an edge of M̄n and thus making d̃ extreme. The

proposition follows by similar arguments for the other cases.

Theorem 4.2.5 (Kehoe, 2018). Let d be a non-extreme half-one metric such that Γd has

exactly N ≥ 1 non-trivial components and no isolated points. Then d arises as a convex

combination of 2N extreme 2i3j-den metrics for 0 ≤ i+ j ≤ N . In the case that Γd contains

isolated points d will be a convex combination of 2(N + 1) such metrics.

Proof. Suppose Γd has multiple components and let Zd ⊂ Γd be the set isolated points of

Γd. Given an edge E ∈ Zd we can rigidify E by deforming its distance to 0 or 1. Isolated, E

lies only in triangles where the adjacent edges either both have length 1/2 or both 1. Hence,

the deformation preserves metricity. Deforming an isolated point to either 0 or 1 will have

the effect of collapsing or joining (as nodes in the graph) the adjacent edges in every triangle

in which the isolated point lies. Of course the original metric equals the average of these

two deformations. So without loss of generality we can assume that Γd contains no isolated

points.

Decompose Γd into non-rigid and rigid components as,

Γd = κ1
NR t · · · t κDNR t κ1

R t · · · t κD
′

R

where “NR” and “R” denote non-rigid and rigid respectively. Observe that we may view

d as the co-product of metrics associated to these components. Moreover decomposition of

one “summand” in the co-product yields a decomposition of the metric as a whole, just by

leaving all distances outside the component fixed. Thus we may apply (4.2.4) one component
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at a time.

Define the perturbed metric dε = d+ p(ε) where,

p(ε) =


εηi(E), E ∈ κiNR

0, otherwise

with ηi defined as in Corollary (3.7.4). Let α and β be the minimum and maximum value

respectively that ε can obtain so that dε enjoys metricity; compactness of M̄n guarantees

their existence. If d lives in an r-face of M̄n, we d arises as a convex combination dα and dβ

both living in a r′-face of M̄n where r′ < r. We then apply the same process to both dα and

dβ, continuing until we obtain a set S of extreme metrics. Since each metric in the process

equals a convex combination of the two following, d will live in the convex hull of S.

The process just described takes no more than D steps, the number of non-rigid compo-

nents of Γd. In the case that d has isolated points, this only adds one more step while not

changing the denominators involved. Thus we bound the number of denominator altering

steps by the number D′ of non-rigid components with at least 2 points.

We can now calculate the type of denominators we could encounter in the prescribed

process. At any give step, we’ve focused on one non-rigid component to which we can

apply (4.2.4). Write [i, j, k] for a non-degenerate triangle in that component that becomes

degenerate upon perturbation. Write ∆ = dij + djk − dik > 0. By (4.2.4)

∆− qε = 0 where q = ±1,±2, or ± 3

so that,

ε =
∆

q
q = ±1,±2, or ± 3.

Hence if d is an r-den metric then the perturbed metric is a r′-den for r′ a divisor of rq.
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Hence d is a convex combination of 2i3j-den metrics where 0 ≤ i+ j ≤ D′.

We now come to the proof of the main theorem,

Theorem (Kehoe, 2018). Let d ∈ M̄≥ 1
2

n then d is a convex combination of extreme 2i3j-den

metrics where 0 ≤ i+ j ≤ bm+1
2
c

Proof. Let d ∈ M̄≥ 1
2

n then by Corollary (4.2.3) d arises as a convex combination of half-one

metrics. By Corollary (4.2.5) every non-extreme half-one metric has a decomposition as a

convex combination of extreme 2i3j-den metrics. We can give an upper bound on i + j by

considering a partition of m with the maximum number of parts and at least one isolated

point. Without loss of generality, we can assume m odd, so that we pair off edges leaving

one isolated. Thus, we have that i+ j ≤ m+1
2

. This completes the proof.

4.3 Neighbors of Half-One Metrics

Given an extreme metric d we would like to find its neighbors in M̄n, meaning extreme

points of M̄n connected to d by an edge of the metric body. Neighbors of d arise by choosing(
n
2

)
− 1 linearly independent active constraints from (Ad, ad). Such a choice will generate a

1-dimensional affine subspace L of Rm. If L intersects M̄n at more than d, then L will lie

on an edge of d and hence generate a neighbor of d.

If we choose d to be a half-one metric and decide to keep all of the unital constraints,

then an appropriate choice of constraints for a neighbor of d will be equivalent to picking a

spanning tree for a component in the edge graph of d. Of course, some spanning trees will

not generate any neighbor due to infeasibility.

For starters, assume Γd connected. d a half-one metric makes Γd short-sided. Now pick

a spanning tree τ for Γd. From previous results we have {eT}T∈τ linearly independent, in

particular over Vτ . We can generate neighbors of d by keeping the same unital edges as d

and perturbing non-unital edges according to the perturbation p(τ,E0) : R → Rm associated
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to the sign function η(τ,E0) for (τ, E0) with E0 some arbitrarily chosen root. Thus we perturb

by p(ε) = εη where

η(τ,E0)(E) =


(−1)l(E), E ∈ Nd

0, E ∈ Ud

and l is the associated tree distance from the root E0. Note that if one changes the root of

τ we obtain the same sign funtion η and hence the same perturbation p up to sign. Indeed,

Proposition 4.3.1. Let (τ, E0) and (τ, E ′0) be the same tree with different roots, then

η(τ,E0) = ±η(τ,E′0).

Proof. 2-color the nodes of τ (so that adjacent nodes don’t receive the same color). The

even parity of the length between nodes means precisely that the nodes have the same color.

Thus η(τ,E0) and η(τ,E′0) will differ by a sign or not according to whether or not E0 and E ′0

receive the same color.

To each tree spanning tree τ we have an associated 1-dimensional affine subspace Lτ

through d. We want to know when Lτ is the affine span of an edge of M̄n, i.e. when τ

generates an extreme neighbor.

Definition 4.3.2. Fix an edge T = [i, j, k] ∈ E(Γd) in the edge graph, so a degenerate

triangle. Call T positively signed with respect to rooted spanning tree (τ, E0) if ητ,E0([i, j]) =

ητ,E0([j, k]) = +1; call T negatively signed if ητ,E0([i, j]) = ητ,E0([j, k]) = −1. Otherwise call

T polar.

Theorem 4.3.3 (Kehoe, 2019). Let d ∈ ex(Hn) with Γd connected. Given a spanning tree

τ ⊂ Γd signed by any given root, τ generates an extreme neighbor dτ of d if and only if

τC = Γd \ τ does not contain both a positively signed edge and a negatively signed edge. If

τ does generates an extreme neighbor, dτ take the form of a partition metric or 3-den true

metric.
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Proof. Suppose τC contains a positively signed edge T+ and a negatively signed edge T−.

Let pτ denote the perturbation associated to τ for some arbitrarily chosen root. Now we

have two degenerate triangle for d, T+ = [i, j, k] and T− = [u, v, w] and the perturbation

pτ (ε) violates feasibility for dij + djk ≥ 1 if ε < 0 and for duv + dvw ≥ 1 if ε > 0. That leaves

only ε = 0 so that Lτ does not generate an extreme neighbor.

If τC does not contain both a positively signed edge and a negatively signed edge, without

loss of generality assume that τC contains only positively signed edges and polar edges. If

ε < 0 none of the triangle inequalities associated to positively signed edges of τC get violated,

and thus the perturbation pτ will generate a ray which intersectsMn on an edge [d, dτ ]. As

per the proof of Theorem (4.2.4), dτ must take the form either of partition metric or 3-den

true metric.

If d does not have a connected edge graph, we still obtain a 1-dimensional affine space in

Rm through d via a spanning tree τ for a single component κ of Γd. Since all the components

of d are rigid, we “loosen” up a component by removing edges until we have our τ .

Corollary 4.3.4 (Kehoe, 2019). Suppose d ∈ ex (Hn) with Γd disconnected. Let τ be a

spanning tree for a component κ of Γd. Then τ generates an extreme neighbor dτ of d if

and only if κ \ τ does not contain both a positively signed edge and a negatively signed edge.

In the case that τ generates an extreme neighbor, we have that dτ is either a cover of an

extreme half-one metric or an extreme 6-den metric.

Proof. Viewing the metric as a co-product, we apply the previous theorem to one summand.

In the case that dτ exists the edge lengths associated to the component κ will either be 0’s

and 1’s or 1
3
’s and 2

3
’s. By taking a common denominator with the other half length edges

we obtain either denominator 2 or 6 respectively.

If we decide to keep all but one unital constraint, say dI0 = 1, we get a few possibilities

for choosing
(
n
2

)
− 1 active constraints of (Ad, ad) for generating possible neighbors.

1. We could choose a spanning colony for Γd.

66



2. We could choose germs for all but one component κ, and for κ choose any spanning

subgraph with an even cycle.

3. We could choose germs for all but one component κ, and for κ we choose any spanning

tree τ . Finally, for some germ gi contained in component κi we add an edge of κi \ gi

to gi to obtain a subgraph λ of κi.

Determining the denominators of these types neighbors remains to do. With Proposition

(3.6.6) in mind, we would need to develop machinery to keep track of the unital edges

associated to edges in the edge graph.
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CHAPTER 5

Experimental Results

This chapter reports on results from some ongoing experiments concerning the geometry of

the metric body M̄n.

5.1 Extreme Points

Computation can identifying extreme points in M̄n. We calculated the following lists of

extreme points of M̄n using Multi-parametric Tool Box (mpt3), a Matlab based compu-

tational geometry software. We enumerated the vertices of M̄n using the simplex method,

see [5]. Here we list the positive-definite extreme metrics, scaled to integer points, as row

vectors in Rm. In addition, we mod out by the appropriate symmetric group to remove

equivalent extreme points on a set of the same cardinality.

Scaled extreme true metrics on 4 points modulo S4.

|ex
(
M̄4

)
| = 19

Table 4.1.1

2 1 2 1 2 1

1 1 1 1 1 1

Scaled extreme true metrics on 5 points modulo S5.

|ex
(
M̄5

)
| = 259
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Table 4.1.2

1 2 1 1 1 2 2 1 1 2

1 2 1 1 1 2 2 1 2 2

1 2 1 1 2 2 2 2 1 2

1 2 1 1 2 2 2 2 2 2

1 2 1 2 2 2 1 1 1 2

1 2 2 2 1 1 1 2 2 2

1 1 1 1 1 1 1 1 1 1

Scaled extreme true metrics on 6 points modulo S6. |ex
(
M̄6

)
| = 27263

Table 4.1.3

1 2 1 1 1 1 2 2 2 2 1 1 1 2 2

1 2 1 1 1 1 2 2 2 2 1 2 2 2 2

1 2 1 1 1 1 2 2 2 2 1 1 2 2 2

1 2 1 1 1 1 2 2 2 1 1 1 2 2 2

1 2 1 1 2 1 2 2 3 1 1 2 2 1 1

1 3 1 3 3 2 2 4 4 4 4 2 2 4 2

1 2 1 2 1 1 2 3 2 3 2 1 3 2 3

1 3 1 3 3 2 2 4 4 4 2 2 4 4 4

1 3 1 3 3 2 2 4 4 4 2 2 2 4 4

2 4 1 2 2 2 3 4 4 3 2 4 3 1 4

1 3 1 2 2 2 2 3 3 2 1 3 3 1 3
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1 3 1 2 2 2 2 3 3 3 1 2 3 1 3

1 3 1 2 2 2 2 3 3 2 1 3 3 1 2

1 3 1 2 2 2 2 3 3 3 1 3 3 1 2

1 2 1 1 1 1 2 2 2 1 2 2 1 2 2

1 2 1 1 1 1 2 2 2 2 1 2 1 2 1

1 2 1 1 1 1 2 2 2 1 1 2 2 1 1

1 3 1 2 2 2 2 3 3 2 1 3 1 3 2

1 2 1 1 1 1 2 2 2 1 1 2 1 2 1

1 2 1 1 1 1 2 2 2 2 2 2 2 2 2

1 2 1 1 1 2 2 2 2 2 2 2 2 2 2

1 1 1 1 1 1 2 2 2 1 1 2 2 2 2

1 2 1 1 2 1 2 2 2 1 1 2 2 2 1

1 2 1 1 2 1 2 2 2 1 2 1 2 2 1

1 2 1 1 2 1 2 2 2 1 1 2 2 2 2

1 2 1 1 2 1 2 2 2 2 1 2 2 1 1

1 2 1 1 2 1 2 2 2 1 1 2 2 1 1

1 2 1 1 2 1 2 2 2 1 2 2 2 1 2

1 2 1 1 2 1 2 2 2 2 1 1 2 2 2

1 2 1 1 2 1 2 2 2 2 1 1 1 1 2

1 2 1 1 2 1 2 2 2 1 1 2 1 1 2

2 4 2 2 1 4 4 4 1 2 4 3 4 3 3

2 4 2 2 1 4 4 4 1 4 4 3 4 3 3

1 3 2 1 2 2 3 2 1 1 3 3 3 3 3

1 2 2 1 3 1 3 2 2 3 3 3 1 3 2

1 2 1 1 2 1 2 2 1 1 1 2 2 1 1
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1 2 1 1 1 2 2 2 2 1 2 2 1 2 2

1 3 1 2 2 2 2 3 3 2 3 3 1 3 2

1 3 1 2 2 2 2 3 3 2 3 3 1 3 3

1 3 2 1 2 3 3 2 3 3 2 3 1 3 3

1 1 1 1 1 1 2 2 2 2 2 1 2 1 1

1 3 2 1 2 3 3 2 3 3 3 1 1 2 3

1 3 2 1 2 3 3 2 3 2 3 1 1 3 3

1 2 1 1 1 2 2 2 2 2 1 2 1 2 1

1 4 1 3 3 3 2 4 4 4 2 4 2 4 2

1 4 1 3 3 4 2 4 4 4 2 4 2 4 2

1 2 1 2 1 1 2 3 2 3 3 1 3 2 3

1 2 2 2 2 1 3 3 3 4 2 2 4 4 4

1 2 1 1 1 1 2 2 2 1 2 2 1 2 1

1 2 1 1 2 2 2 2 1 2 1 1 2 2 2

1 1 1 1 2 1 2 2 1 1 1 1 2 1 2

1 2 1 1 2 2 2 2 1 1 2 1 2 1 2

1 2 1 1 2 2 2 2 1 1 1 1 1 1 2

1 2 1 1 2 2 2 2 1 2 1 2 2 1 2

1 2 1 1 2 2 2 2 1 2 2 2 2 1 2

1 2 1 1 2 1 2 2 1 2 2 2 2 2 2

1 2 1 1 2 2 2 2 2 1 2 2 1 1 1

1 2 1 1 1 2 2 2 1 2 2 1 1 2 1

1 2 1 1 2 2 2 2 2 2 1 2 2 2 2

1 2 1 1 2 2 2 2 2 2 1 2 2 1 2

1 2 1 1 2 2 2 2 2 2 1 1 2 2 2

1 2 1 1 2 2 2 2 2 2 2 2 2 2 2

1 2 1 1 1 2 2 2 1 2 1 1 1 2 1
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1 1 1 1 1 1 2 2 1 2 1 2 1 1 2

1 2 1 1 2 2 2 2 1 2 1 1 1 2 2

1 2 1 2 2 2 2 2 1 2 2 2 1 2 1

2 1 2 2 2 1 2 2 2 1 1 1 2 2 2

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

For n > 6 we found the number of extreme points too large to compute in a reasonable

amount of time; the output grows at least exponentially (see the previous section) and the

simplex algorithm takes longer since the size of the instances grows quadratically.

5.2 Half-ones Optimize Linear Objectives

Given a linear form f ∈ Rm with m =
(
n
2

)
we can ask at what points of M̄n does f obtain its

maximum. Compactness of M̄n guarantees that f attains its maximum. In particular, the

maximum principle in convexity theory says that a convex function f attains its maximum,

d∗, on the boundary of M̄n. So d∗ lies in a face of M̄n. Reapplying the maximum principle

and restricting f to ever lower dimensional subfaces, we eventually obtain an extreme metric.

Experiments suggest that d∗ almost always equals an extreme half-one metric for large

n (figure below). Earlier we saw that half-one metrics outnumber partitions (see Theorem

(4.1.3)). These experimental results lead one to wonder if half-one metrics simply outnumber

all q-den metrics for q > 2? We investigate this question.

Call a positive rational point d ∈ [0, 1]m with denominator q a q-level point, and denote

the set thereof by Inq . Certainly |Inq | increase with q. Rational points x ∈ [0, 1]m that

represent metrics must satisfy 3
(
n
3

)
triangle inequalities. The ratio of triangle inequalities to

edges for metrics on n points equals n−2. That makes it increasingly difficult as q grows for

a random rational point x to come out a metric. Of course 2-level points represent metrics,

the half-ones, automatically.

To interrogate the probability that a random q-level point comes out a metric, we can

calculate the probability that a triple in a given q-level point satisfies the triangle inequalities.
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Consider triples of numbers from the set {1, . . . , q} where q ∈ Z+. Call (a1, a2, a3) feasible if

ai + aj ≥ ak for all distinct i, j, k. We count feasible triples by counting their complement.

Fixing a3 = k ≤ q, consider bi-partitions, meaning equations a1 + a2 = s, of s < k. s has

exactly s bi-partitions, so that the number of sums where a1 + a2 < k equals

k−1∑
s=1

s =
k(k − 1)

2

=

(
k

2

)

Then summing k from 1 to q yields the number of triples that fail one-triangle inequality

q∑
k=1

k(k − 1)

2
=
q(q + 1)(q − 1)

6

=

(
q + 1

3

)
.

A triple that fails one triangle inequality automatically satisfies the other two. Thus the
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number of infeasible triples equals

q(q + 1)(q − 1)

2

making the number of feasible triples

q3 − q(q + 1)(q − 1)

2
=

1

2
q
(
q2 + 1

)

Now we get the probability of feasibility for a random triple as

Pq = 1− 1

2
q
(
q2 + 1

)
=

1

2
− 1

2q2
(5.2.1)

Letting q →∞ we obtain the asymptotic probability for (rational) triple feasibility,

PQ =
1

2
.

From a geometric viewpoint, we just calculated the volume of M̄3. Indeed, if we pick all the

rational points in the unit cube with denominator q then ask for the proportion of points

that land in M̄3 we obtain an approximate volume. Taking a limit as q → ∞ gives the

exact value. [2]. If x < y < z, we have (x, y, z) feasible if and only if we have (z−x, z− y, z)

infeasible. This involution thus yields an alternative derivation of PQ = 1
2
.

We are almost ready to give a bound on the probability for a q-level point to be a metric.

First we state an important theorem on the independence of triangles.

Theorem (Spencer 1968). A set of n points can be covered by C(n) independent (edge-
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disjoint) triangles where

C(n) =


1
3

(
n
2

)
, n 6≡ 5 mod 6

1
3

(
n
2

)
− 1 , n ≡ 5 mod 6

and C(n) is the maximum possible value.

Fix a maximal independent triangle covering
{
T1, . . . , TC(n)

}
of X and let P denote the

standard probability measure on [0, 1]m (Lebesgue measure). Pairing Spencer’s theorem

with (5.2.1),

P
(
Imq ∩Mn

)
≤ P

({
d ∈ Imq |Tj is feasible for all j

})
=

(
1

2
− 1

2q2

)C(n)

From this we can see that, as n grows large, it becomes increasingly unlikely for a random

q-level point to come out a metric. In fact we can use this bound to prove the following

Corollary 5.2.2. |Inq ∩Mn| ≤ 2

(
3

√
q3

2
− q

2

)(n2)
and Vol(Mn) ≤ 2

(
1
3√2

)(n2)
. In particular

Vol(Mn)→ 0 as n→∞.

Proof. |Inq ∩Mn| = P
(
Inq ∩Mn

)
q(

n
2). For the second part, take the limit as q → ∞ and

then the limit as n→∞.

However unlikely a q-level point to come out a metric, q-level points generally far out-

number half-one metrics. The bound above doesn’t have the strength to make metrics arising

from q-level points rare in M̄n compared to half-one metrics. The bound does make trying to

sample extreme q-level metrics via a uniform distribution on q-level points is nearly useless

when n is large. We need a different strategy for obtaining an approximation of the number

of extreme q-level metrics.
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Idea: As n grows large, two triangles chosen at random become increasingly unlike to share

an edge. Sharing no edges makes their feasibility or not in q-level point independent. By

the central limit theorem the distribution on the number of feasible triangles and degenerate

triangles becomes approximately normal. ( We show an example of the progression of this

normalization for a sample of uniformly chosen 3-level points on the next page). Why not

use these approximating Gaussian distributions to make estimates on the number of extreme

metrics?

To make such estimates, we’ll need an indicator of extremality. Certainly we can check

the rank of the active matrix for each q-level point, but making many rank calculations for

large matrices costs time. Instead we use the number of degenerate triangles for a q-level

metric as an indicator of extremality. Indeed, for q-level point to come out a basic solution

requires at least
(
n
2

)
active constraints. If a q-level metric has many degenerate triangles

compared to the number of edges, extremality becomes likely.

Thus we want to search for those points both highly feasible and highly degenerate. A

degenerate triangle in a q-level point makes the other two associated triangle inequalities

automatically satisfied. Hence, at least for a triangle, degeneracy implies feasibility.
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Question: Does degeneracy imply feasibility in general? What is the relationship between

the two?

We answer this question with certainty in an extreme case.

Proposition 5.2.3. For d ∈ R(n2) strictly positive, d having more than
(
n
3

)
degenerate tri-

angles makes d feasible.

Proof. For strictly positive d, no triangle has more than one degenerate triangle inequality.

By the pigeonhole principle, the condition makes every triangle of d degenerate and hence

feasible.

To investigate further we run an experiment with 3-level points to look for a correlation

between feasibility and degeneracy.

Experiment 1: Pick N uniformly distributed q-level points, calculate their number of fea-

sible triangles and degenerate triangles. Plot a frequency distribution, and search for high

feasibility, high degeneracy points.

We plot the results of this experiment below for 3-level points in R(n2) for n = 7, 10, 15, 20
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and N = 106, 107.

We can see that as n grows large degeneracy increases but at the cost of feasibility.

What causes this drop in feasibility? Infeasibility for a 3-level triangle occurs only when

the distances take the form (1
3
, 1

3
, 1). This infeasibility conflicts with degeneracies having

the form (1
3
, 2

3
, 1). Each degeneracy of this type requires 1’s and 1

3
’s, thereby increasing the

probability that some other triangle comes out infeasible. In general, q-level points having

an ample supply of degenerate triangles of the form a + b = c where a < b promotes the

occurrence of infeasibility: if we encounter many distances of size a and c, we will likely come

across a triangle where a+ a < c.

We then have two ways in which we could obtain feasible 3-level points. Either limit the
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amount of 1
3
’s or limit the amount of 1’s. Consider again the example of the Bow-tie:

•

••

•

• •

The Bow-tie enjoys feasibility, has few unital edges (indeed just one), but many degenerate

triangles. It serves as a prime example for generalization. One very important feature

of the Bow-tie is that every triangle involving the unital edge is degenerate, this ensures

feasibility of the Bow-tie and creates a “core” of degeneracies around the unital “stem” for

the remaining lower level degeneracies (1
3
, 1

3
, 2

3
) to link to. Define the set

B3
n,1 =

{
d ∈ I3

n | ∃!I ∈ E : dI = 1,∀T ∈ T : I ⊂ T =⇒ T is degenerate
}

Since we disallow triangles of the form (1
3
, 1

3
, 1) every member of B3

n,1 defines a metric. Having

degeneracies for every triangle formed off of the unital edge will create an anchor point for

the (1
3
, 1

3
, 2

3
) degenerate triangles, so that we will be able to emulate the nature of half-one

metrics.

The discovery of the large class of extreme points given by the co-products of generalized

bow-ties, indeed leads us to expect at least as many non-half-one extremes metrics as extreme

half-one metrics. We expect not the particular abundance of half-one metrics, but something

about the geometry of the body near a half-one metric that causes them to optimize randomly

chosen linear objective functions so often. By this geometric feature we mean the sharpness

of the extreme point, the size of the dual-cone at the extreme point. Of course this dual-cone
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size gives, up to normalization, the probability of the particular extreme point maximizing

an random objective function. So we conjecture that the sum of the exterior solid polyhedral

angles over all extreme half-one metrics on n points limits to the volume of an
(
n
2

)
-dimensional

sphere of radius 1. For those familiar with the Gauss-Bonnet theorem, the convex polytope

version of theorem replaces curvature on a manifold with the exterior solid polyhedral angles

at vertices. So, from the optic of Gauss-Bonnet theorem, we mean to guess that extreme

half-ones tend to optimize linear objection functions because they “eat” up almost all the

curvature of the metric body. Random half-one tend to sit on far more hyperplanes that

mere extremality requires, because they have so many degenerate triangles. We guess that

intersecting so many “extra” half-spaces makes these points “sharp” and their dual cones

large.

Calculating spherical polyhedral angles exactly and in general turn out a difficult task,

but a bound on such angles may suffice when summing over a large family of vertices. We

hope in the future to investigate the hyper-geometric series that come about from calculating

such polyhedral angles.
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CHAPTER 6

The Complex of Ultrametrics and Iterated Cycle Structures

In this chapter we shift focus to another important class of metrics, the ultrametrics, gen-

erated by the partition metrics. We will describe the structure of so called ultrametrics up

to homotopy equivalence. This will require an investigation into the topology of the order

complex of partition lattices. There, we will give a new proof of the Euler-characteristic of

this complex, and extend this proof technique to the context of iterated cycle structures, an

object analogous to chains in the lattice of partitions.

6.1 Definitions and Preliminaries

Definition 6.1.1. A bounded-by-1 pseudoultrametric means a function

d : X ×X → [0, 1] such that for any x, y, z ∈ X

1. d(x, x) = 0

2. d(x, y) = d(y, x) (Symmetric)

3. d(x, z) ≤ max {d(x, y), d(y, z)} (Strong Triangle Inequality)

The set of bounded-by-1 pseudoultrametrics will be denoted by U(X) and simply Un if

X ∼= {1, . . . , n}. Using the same abbreviation as we did for bounded-by-1 pseudometrics,

we’ll call any member of Un an ultrametric. A routine check shows that every ultrametric is

in fact a metric. When looking for examples, partitions metrics form an important class of

ultrametrics.
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Satisfying the strong triangle inequality puts great a deal of restrictions on the number

of degrees of freedom for choice of ultrametric. The proposition below makes this precise.

Proposition 6.1.2. Every triangle [x, y, z] for an ultrametric d is isosceles. Furthermore,

if d ∈ Un then d has at most n distinct distances.

Proof. Consider the triangle [x, y, z] then we have the three simultaneous conditions,

d(x, z) ≤ max {d(x, y), d(y, z)}

d(x, y) ≤ max {d(x, z), d(y, z)}

d(y, z) ≤ max {d(x, y), d(x, z)}

We’ll assume that we have at least two distinct distances, or else we would already have an

isosceles triangle. Without loss of generality assume that d(x, y) < d(x, z). By the third

inequality d(y, z) ≤ d(x, z). If d(y, z) = d(x, z))done. But if d(y, z) < d(x, z) the first

condition give d(x, z) ≤ d(x, y), contradiction.

We will prove the second part of the proposition by induction. The result hold trivially

for n = 1 and n = 2 since triangles do not appear until n = 3; we’ll take n = 3 as our

induction base. Indeed, when n = 3 we have only one triangle, isosceles by the previous

result. Hence we indeed have at most two distinct non-zero distances.

Now assume d ∈ Un and the proposition is true for n − 1. We can restrict d to the set

[n − 1] = {1, . . . , n− 1}, so that by the induction hypothesis d has at most n − 1 distinct

distances on [n− 1]. Consider now 1 ≤ i ≤ n and the necessarily isosceles triangles [1, i, n].

Thus din ∈ {d1i, d1n} or d1i = d1n.

In the first case, din either equals one of the n − 1 distances given by restriction or the

single distance d1n.

In the second case, d1n equals one of the original n− 1 distances.

Assume w.l.o.g. that din defines a new distance. Consider the isosceles triangle [i, j, n]

where 1 ≤ j ≤ n− 1. Then djn ∈ {dij, din} lest din equal one of the original n− 1 distances.
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That makes djn equal one of the n distinct distances already defined. In any case, d has at

most n distinct distances, completing the induction.

Given an ultrametric d ∈ Un and point t ∈ Id = [0, 1] \ Im(d) called a threshold, we can

define a new function dt defined by,

dt(i, j) =

 0, d(i, j) < t

1, d(i, j) > t

Proposition 6.1.3 (Feldman, Kehoe, 2019). dt is a partition metric.

Proof. We’ll prove that dt defines an equivalence relation on [n]. Reflexivity and symmetry

are immediate consequences of the definition of metric. Now suppose x ∼ y and y ∼ z. Then

d(x, y) < t and d(y, z) < t then by the strong triangle inequality,

d(x, z) ≤ max {d(x, y), d(y, z)}

< t.

Hence x ∼ z, proving transitivity.

Now that we know ultrametrics give rise to partitions we would like to know the rela-

tionships between the partitions that arise from a given ultrametric by varying the threshold

t ∈ Id. Before we get into describing the relationships involved, we need to first learn about

the structure of the lattice of partitions, a well-known object of study.

6.2 Shellable Posets and Their Order Complexes

In this section we develop the language and machinery to describe the structure of Πn.

Definition 6.2.1. A partially ordered set (poset) (P ,≤) means a set P together with a

relation ≤ satisfying the conditions below, for a, b, c ∈ P .
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1. a ≤ a (reflexivity);

2. a ≤ b and b ≤ a implies a = b (anti-symmetry);

3. a ≤ b and b ≤ c implies a ≤ c (transitivity).

If context makes the relation ≤ clear, we call a poset by the name of the underlying set P .

In the case that a 6= b we will say a < b. Note that we don’t assume every pair of elements

in a poset comparable.

We call a poset P bounded if it has a least element 0̂ and a greatest element 1̂. Given

bounded P we define the sub-poset P̂ = P \
{

0̂, 1̂
}

.

Definition 6.2.2. A chain of length k in P between a, b ∈ P means a collection of elements

{ai}ki=1 such that a = a1 < · · · < ak = b. We call a chain C between a and b refinable if we

can find another chain C ′ between a and b such that C ( C ′.

We call a finite poset pure if all maximal chains have the same length.

Proposition 6.2.3. A pure poset P satisfies the Jordan-Dedekind condition: all unrefinable

chains between two comparable elements a and b have the same length.

Proof. Take two unrefinable chains C, C ′ between a and b of length k and l respectively. Then

C and C ′ extend to two maximal chains Ĉ and Ĉ ′ respectively. Without loss of generality we

can choose chains Ĉ and Ĉ ′ so that

Ĉ \ C = Ĉ ′ \ C ′.

Unrefinability guarantees that this set subtraction reduces Ĉ and Ĉ ′ by exactly the numbers

of elements in C and C ′ respectively. If we let n = length(Ĉ), by purity we obtain the equation

n− l = n− k implying l = k.

Definition 6.2.4. We call a finite, bounded, pure poset P graded. The rank ρ(x) for x ∈ P

(a graded poset) equals the length of any unrefinable chain from 0̂ to x.
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We say that b covers a denoted a ≺ b if we have only the chain {a, b} between a and b.

Every finite poset P has an associated simplicial complex ∆(P) called its order complex.

For those not accustomed to the language of simplicial complexes, we now give a brief

account.

Definition 6.2.5. Fix n > 0 an integer. A k-simplex ∆ denoted [i1, . . . , ik+1] means a size

k + 1 subset {i1, . . . , ik+1} ⊂ {1, . . . , n}.

Definition 6.2.6. Call an r-simplex an r-face ∆′ of a k-simplex ∆ if ∆′ ⊂ ∆.

Definition 6.2.7. A simplicial complex K means a finite family of simplices ∆ ⊂ {1, . . . n}

such that if ∆1 ∈ K and ∆2 ⊂ ∆1 then ∆2 ∈ K.

We call a simplicial complex K k-dimensional if the maximum dimension over every

simplex in K equals k. In the case where every simplex occurs as the face of a k-simplex we

call K pure.

Definition 6.2.8. To every finite poset P we associate the simplicial complex ∆(P) with

simplices given by chains in P .

To every simplicial complex we can associate a topological space called its carrier or

geometric realization. To define this space we first define the associated geometric notions

of simplices.

Definition 6.2.9. We call k + 1 vectors {x1, . . . , xk+1} affinely independent exactly when

we have the k vectors {x2 − x1, . . . , xk+1 − x1} linearly independent.

Definition 6.2.10. A geometric k-simplex ∆ ⊂ Rm denoted [x1, . . . , xk+1] means the convex

hull of k + 1 affinely independent points in Rm. Thus

∆ = Conv
(
{xi}k+1

i=1

)
.

Call k the dimension of the simplex ∆.
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Definition 6.2.11. An r-face of a geometric k-simplex ∆ = Conv
(
{xi}k+1

i=1

)
means an

r-simplex occurring as the convex hull of r + 1 points in {xi}k+1
i=1 .

Fix a k-dimensional simplicial complexK. Fix a geometric (n−1)-simplex ∆ = [x1, . . . , xn] ⊂

Rm. Label the vertices of ∆ as {1, . . . , n}. For each simplex ∆′ = [i1, . . . , ik] ∈ K identify ∆′

with the a copy ∆′ of the geometric simplex [xi1 , . . . , xik ] ⊂ ∆. We now define an equivalence

relation ∼ on the disjoint union of all such geometric simplices arising from K. Given two

simplices ∆1 and ∆2 we identify their common face ∆1 ∩∆2. A geometric realization of K,

or carrier of K means a topological space,

K =

( ∐
∆i∈K

∆i

)/
∼

Here K is a geometric simplicial complex.

Definition 6.2.12. A geometric simplicial complex K is a set of geometric simplices such

that:

1. Every face of a simplex in K is again a simplex in K;

2. The intersection of two simplices in K equals a common face of the two.

Note: The way the equivalence relation was defined above by gluing common faces to-

gether guarantees the second condition for the geometric realization of a simplicial complex.

Proposition 6.2.13. A bounded poset P has a contractible carrier ∆(P).

Proof. P bounded makes its geometric realization a cone over 0̂ (or 1̂). So we have the

contraction (t, x) 7→ (1− t)x+ t0̂.

Unboundedness of the poset makes determining the topology of the carrier tricky. Shella-

bility offers one particularly nice condition for determining the topology of a simplicial com-

plex.
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Definition 6.2.14. Call a pure k-dimensional simplicial complex K shellable if we can order

its maximal faces {∆1, . . . ,∆N} so that for each l = 1, . . . , N − 1

(
l⋃

i=1

∆i

)
∩∆l+1

equals a pure (k − 1)-dimensional simplicial complex.

Every pure shellable simplicial complex has a deformation to a bouquet of spheres of the

same dimension. In the language of topology

Theorem 6.2.15. (Bjorner, 1984) Given a shellable pure k-dimensional simplicial complex

K

K '
∨
i

Sk.

We call a poset P shellable if and only if it has a shellable order complex ∆(P). Deter-

mining the shellability of a given complex turns out NP-complete, meaning we can verify

quickly that an ordering gives a shelling, but we have no efficient general algorithm to deter-

mine if a given complex has a shelling. This leads us to seek classes of labellings on chains in

P that will guarantee the shelling of its order complex. One such labeling is an L-labeling.

Given a finite poset P define C(P) = {(a, b) ∈ P × P | a ≺ b}.

Definition 6.2.16. An edge labeling of P means a function λ : C(P) → Λ with Λ another

poset.

Definition 6.2.17. Call an unrefinable chain a1 ≺ · · · ≺ an is rising if λ(a1, a2) < · · · <

λ(an−1, an).

Definition 6.2.18. An L-labeling of a graded poset P means an edge labeling λ : C(P)→ Λ

that satisfying

1. Between two comparable elements a ≤ b there exists a unique rising unrefinable chain

a = a1 ≺ · · · ≺ an = b;
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2. Referring to the unrefinable chain above, if a ≺ c and c 6= a2 then λ(a, a2) < λ(a, c).

Theorem. (Bjorner,1980) An L-labeling makes graded poset P shellable.

We refer the reader to [7] for the proof of this theorem.

Proposition 6.2.19. P̂ is shellable if and only if P is shellable.

Proof. Every maximal face in ∆(P) contains 0̂ and 1̂ as vertices. Hence, removing
{

0̂, 1̂
}

from P always reduces the dimension of the intersection of the ith maximal face in any

shelling order with the union of the previous maximal faces by exactly 2.

The proposition above gives us a powerful tool for determining the shellability of un-

bounded posets. This tool will be very useful later on to determine the topology of a certain

important subset of ultrametrics. We now apply these results on posets to the poset of

partitions.

6.3 The Poset of Partitions Πn

Definition 6.3.1. Given P, P ′ ∈ Πn partitions of the set [n] = {1, . . . , n}, call P finer than

P ′ if for any part A ∈ P there exists a part A′ ∈ P ′ such that A ⊂ A′. Equivalently, call P ′

coarser than P .

Definition 6.3.2. For P ∈ Πn, |P | equals the number of parts (subsets of [n]) contained in

P .

Lemma 6.3.3. If P,Q ∈ Πn with P strictly finer than Q, then |P | > |Q|. More specifically,

two parts of P merge together in Q.

Proof. Strictly finer means P finer than Q but P 6= Q. So P has a part x properly contained

in some part y ∈ Q. z = y \ x intersects some part w 6= x of P . We must have w ⊂ y

lest two parts of Q intersect non-trivially. Hence parts x and w in P merge in Q. So that

|P | > |Q|.
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Proposition 6.3.4. The set of partitions Πn forms a graded poset (Πn,≤) with P ≤ P ′ for

P finer than P ′. Furthermore, the discrete partition furnishes the initial partition 0̂ and the

indiscrete partition the terminal partition 1̂.

Proof. Πn clearly has the structure of a poset. The discrete partition has no refinement,

the indiscrete partition no coarsening. Moving up a chain from discrete to indiscrete, the

number of cells decreases, so chains have length at most n. We can’t have a maximal chain

shorter than n, or we’d have more than two cells merge in one step and we could refine the

chain.

Figure 6.1: Lattice of Partitions of a 4-Element Set Tilman Piesk

Proposition 6.3.5 (Bjorner,1970). Πn admits an L-labeling making both Πn and Π̂n shellable.

Proof. Fix comparable partitions P ≤ Q. If Q covers P , P ≺ Q, we know that exactly two

parts xP,Q and yP,Q of P merge together in Q. Define the map λ : C(Πn)→ [n] as

λ(P,Q) = max {min {xP,Q} ,min {yP,Q}}

More generally, all unrefinable chains between comparable partitions P and Q have the

same length by the Jordan-Dedekind condition. We proceed by induction the length k of
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unrefinable chains between P and Q. For the basis we choose k = 2, we case k = 1 vacuous.

Suppose P ≤ Q and assign to each part x of P the number nx = min{x}. Then define the

set

AP,Q = {(x, y) ∈ P × P |x, y distinct and merge in Q}

Let (x, y) be the minimum in AP,Q with respect to (nx, ny) in the dictionary order. Then let R

denote the partition formed from P by merging x and y. By construction λ(P,R) < λ(R,Q).

If R′ is any other cover of P , the two parts merged from P to form R′ will not satisfy the

minimality condition above and hence λ(P,R) < λ(P,R′). In addition, since x and y must

eventually merge in Q we have that λ(P,R′) > λ(R′, Q) so that P ≺ R ≺ Q is the unique

unrefinable rising chain. This proves the base case.

Now assume λ satisfies the conditions for an L-labeling if P and Q sit at length k from

one another. Now if P and Q are length k + 1 from each other let x be the part of P which

is maximum with respect to nx. Then let y be the part in Q which contains x. Define the

partition Pk to be the partition formed from Q by unmerging x from y. By induction there

exists a unique unrefinable rising chain C : P = P1 ≺ · · · ≺ Pk such that if P ≺ R and

R 6= P2. Then λ(P, P2) < λ(P,R). Obtain chain C ′ from C by appending Q at the end.

Since we chose Pk so that it contained the maximum part of P with respect to nx, we have

that λ(Pk−1, Pk) < λ(Pk, Q). This makes C ′ an unrefinable rising chain. In addition, any

unrefinable rising chain connecting P to Q must include Pk as its penultimate member. For

if not, x will be merged at some previous point in the chain, contradicting that the chain is

rising. Thus, given an unrefinable rising chain from P to Q we obtain an unrefinable rising

chain from P to Pk. By the induction hypothesis this chain must equal C, making C ′ the

unique unrefinable rising chain from P to Q. The chain C ′ inherits the second condition of

an L-labeling from the subchain C. This completes the induction.

Corollary 6.3.6. The carrier of order complex ∆(Π̂n) is homotopy equivalent to a wedge of

(n− 3)-spheres.
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The numbers of spheres in the decomposition above can be found by computing the

Euler-characteristic of ∆(Π̂n). In the literature one usually does this by computing the

values of a certain Mobius function associated to Πn, which amounts to counting maximal

chains with strictly decreasing Jordan-Holder sequences [See [7]]. Below we provided new

proof that avoids this by defining an involution on the set of faces of ∆(Π̂n).

Definition 6.3.7. The Euler characteristic χ (K) of a k-dimensional simplicial complex K

is given by the formula

χ (K) =
k∑
i=0

(−1)iki

where ki denotes the number of i dimensional faces in K.

Theorem 6.3.8 ( Feldman, Kehoe, 2019). There exists a computable bijection on the faces

of ∆(Π̂n). As a result,

χ(∆(Π̂n)) = (−1)n−1(n− 1)! + 1

Proof. Let X = {1, . . . , n}. We proceed by induction on n. We take n = 3 as base for the

induction due to the non-vacuity of the chains. Here chains have length 1 and consist of a

single partition which must separate 3 elements into 2 parts. The 3 possible partitions of

this form make ∆(Π̂3) a set of three points, χ(Ũ3) = 3, as predicted.

In general, assume now that the formula holds for n − 1. We define an involution J on

the set of faces of ∆(Π̂n) so that J matches unfixed faces to faces of a different parity in

the Euler characteristic formula; this reduces calculating the Euler characteristic to counting

and signing the fixed points of J .

The faces of ∆(Π̂n) correspond to non-empty chains that omit both extreme partitions

(discrete and indiscrete), the set of which naturally bijects with the set of all chains that do

contain both extreme partitions, but not just. An involution on the latter set immediately

transfers to one on the set of faces of ∆(Π̂n), so we describe J there. Let S = {n} and have

J fix all chains of partitions that either
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1. contain a partition of size n − 1 that does not feature S, so n lies in the only part of

size 2;

2. consist solely of the two extreme partitions and the size 2 partition containing S.

Now given any other chain, C = {Pi}i, define the set

AC = {P ∈ Πn |S ∈ P, ∃i Pi ≤ P ≤ Pi+1}

and let

π = min
|P |
{AC}

where |P | denotes the number of parts of P . In words, π equals the minimum size partition

which contains the singleton S that may fit into the chain C. Define J on these chains to be

J(C) =

 C ∪ π , π /∈ C

C \ π , π ∈ C

In any case J2(C) = C, hence J defines an involution. In particular, J gives a bijection on

the set of faces of ∆(Π̂n). We can see that J either fixes a face or matches faces differing by

one dimension. J effectively toggles the presence of a partition π obtainable from a partition

in C by splitting off singleton S from whatever non-singleton part that contains S. Note that

we cannot toggle the presence of the partition π for chains of type 2 above. Indeed, deleting

the size 2 partition would yield the chain consisting solely of the extreme partitions; a chain

that corresponds to no face of ∆(Π̂n).

We now classify all fixed points C of type 1 according n’s partner n0 in the 2-element

part belonging to n−1 size partition in C. We have exactly n−1 possibilities for n0, making

n − 1 classes of chains. Since each class makes the same contribution to the calculation of

the Euler characteristic, we will fix n0 and consider only type 1 chains in the n0 class.

Transform all these chains by first deleting n from every part in every partition in every
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chain where it occurs, purging empty cells that might result, and finally removing (every

copy of) every extreme partition. We then obtain the set of all extreme-partition-free chains

of partitions of the n−1 element set X \S, including the empty chain. We have the following

observations

1. Removing the point n from every partition in C will leave two copies of the discrete

partition, both of which get removed.

2. Removing n will not cause any partitions in any type 1 chain C to collapse. Indeed,

only the discrete partition separate n from n0. We can think of {n, n0} as a “fat point.”

3. If we start with a chain associated to a face of ∆(Π̂n), append each end with extreme

partitions, find we have a type 1 chain, delete n from every part of every partition in

said chain, and then remove extreme partitions, we then obtain a chain one partition

shorter than the one with which we started.

4. Shortening chains by 1 changes the sign of the contribution to the Euler characteristic

that the corresponding faces make.

5. The unique 3-partition chain consisting of the two extreme partitions and the one size

n− 1 partition having all the elements of X \ {n, n0} as singletons transforms to that

chain consisting solely of extreme partitions.

From these observations we can calculate the Euler characteristic of ∆(Π̂n). Observations 1

and 2, tell us that we can bijectively match type 1 class n0 k-faces of ∆(Π̂n) to (k− 1)-faces

of ∆(Π̂n−1) for k ≥ 1. Observations 3 and 4 tell us that fixed points of type 1 in the class of

n0 make the contribution

(−1)χ(∆(Π̂n−1)) + 1 = (−1)
(
(−1)n−2(n− 2)! + 1

)
+ 1

= (−1)n−1(n− 2)!
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to the Euler characteristic of ∆(Π̂n). Finally, there are exactly n−1 classes of type 1 chains,

and there is exactly one type 2 chain; registering as a 0-face of ∆(Π̂n). Hence,

χ(∆(Π̂n)) = (n− 1)
(
(−1)n−1(n− 2)!

)
) + 1

= (−1)n−1(n− 1)! + 1

This completes the proof of the theorem.

Once we know the Euler-Characteristic the number of spheres in a wedge of spheres

W =
∨N
i=1 S

k with k > 1 will be equal to (−1)k (χ(W )− 1)

Corollary 6.3.9. The carrier of order complex ∆(Π̂n) is homotopy equivalent to a wedge of

(n− 1)! (n− 3)-spheres.

We now turn our attention back to the space of ultrametrics.

6.4 The Complex of Ultrametrics

Let P t
d denote the partition associated to the threshold metric dt for d ∈ Un and t ∈ Id.

We have the following theorem describing the structure of {P t
d}t∈Id .

Theorem 6.4.1 (Feldman, Kehoe, 2019). The collection Cd = {P t
d}t∈Id forms a chain of

length 1 ≤ k ≤ n in Πn where k is the number of non-unital distances of d and P t
d ≤ P t′

d for

t ≤ t′.

Proof. We first prove that Cd is in fact a chain in Πn. Consider 0 ≤ t ≤ t′ ≤ 1 and A ∈ P t
d

with x0 ∈ A, then there exists A′ ∈ P t′

d such that x0 ∈ A′. Given x ∈ A−{x0} we have that

d(x, x0) < t ≤ t′ thus dt′(x, x0) = 0 so that x ∈ A′. Hence, A ⊂ A′ so that P t
d ≤ P t′

d . This

proves that Cd is a chain in Πn.

Now, since d ∈ Un by Proposition (6.1.2) we have that d admits

1 ≤ k ≤ n non-unital distances 0 = δ1 < δ2 < · · · < δk < 1. Let δk+1 be unity, which
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may or may not be a distance of d. We claim that P t
d is constant on the intervals (δi, δi+1)

for 1 ≤ i ≤ k + 1. Equivalently, suppose that t, t′ ∈ (δi, δi+1) then we can show that P t
d

and P t′

d define the same equivalence relation; calling their associated relations ∼t and ∼t′

respectively. If x ∼t y then d(x, y) < t < δi+1, but d(x, y) ∈ {δ1, . . . , δk, δk+1} so that

d(x, y) = δj for j ≤ i. Hence, d(x, y) ≤ δi < t′ showing that x ∼t′ y. By symmetry of the

argument, we obtain that P t
d and P t′

d define the same equivalence relation. Thus P t
d = P t′

d

and P t
d (t not fixed) is constant on (δi, δi+1). Not only is P t

d piecewise constant, but it obtains

distinct values on the intervals (δi, δi+1). Indeed, if d(x, y) = δj then x ∼δj y but x �δi y for

i < j. From this we deduce that |Cd| = k, the number of non-unital distances of d.

To any given ultrametric d we can now associate a chain of partitions Cd, but we can go

further. As it turns out, d can be realized as the unique convex combination of partition

metrics induced by Cd.

Proposition 6.4.2 (Feldman,Kehoe, 2019). Given d ∈ Un, d can be written uniquely as a

convex combination of the partition metrics induced by Cd. Moreover, the coefficients in the

convex combination are all positive.

Proof. Let δ1 < · · · < δk denote the non-unital distances of d, and let δk+1 = 1. Choose

ti ∈ (δi, δi+1) for 1 ≤ i ≤ k. Consider xj, yj ∈ X such that d(xj, yj) = δj then we obtain the

equations,

δj =
k∑
i=1

λidti(xj, yj)

=

j−1∑
i=1

λi
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for 1 ≤ j ≤ k − 1. In the case that d takes the value of unity, we obtain the equation,

1 =
k∑
i=1

λidti(xj, yj)

=
k∑
i=1

λi

which is exactly the convexity condition. If d does not take the value of unity then we only

have the previous set of equations plus the condition that the coefficients {λi}ki=1 satisfy the

convexity constraint. In any case solving for coefficients amounts to solving the augmented

matrix,



1 0 · · · 0 δ2

...
. . . . . .

...
...

1 · · · 1 0 δk

1 · · · 1 1 1


which has the solution,

λj =
∑j+1

i=2 (−1)i+j+1δi for j = 1, . . . , k

Since 0 = δ1 < δ2 < · · · < δk ≤ 1 we have that λj > 0 , and this completes the proof.

From here one might wonder, if convex combinations of partitions in a chain always give

rise to ultrametrics. Our next proposition gives this converse.

Theorem 6.4.3 (Feldman, Kehoe, 2019). Let C = {Pi}ki=1 be a chain of partitions of length

k and denote the associated set of partitions metrics as {di}ki=1, then we have following,

1. Any convex combination partition metrics di gives an ultrametric. i.e. Conv(C) ⊂ Un.

2. {di}ki=1 forms an affinely independent set of points in Rm
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3. If d =
∑

i λidi with
∑

i λi = 1 and λi > 0 for all i then each Pi is a threshold partition

of d. Specifically, Cd = C where Pi = P t
d with

i−1∑
j=1

λj < t <

i∑
j=1

λj

for 1 ≤ i ≤ k.

Proof. We begin by proving 1. Let {λi}ki=1 ⊂ R≥0 such that
∑k

i=1 λi = 1, we need to check

that d =
∑
λidi is an ultrametric. It is sufficient to check that d satisfies the strong triangle

inequality. We’ll show this in two steps. First consider x, y ∈ X. Since C forms a chain

of partitions we have that if di(x, y) = 1, then dj(x, y) = 1 for all j < i. Similarly, if

di(x, y) = 0, then dj(x, y) = 0 for all j > i. Now let Jxy denote the maximum index so that

di(x, y) = 1 and let J = 0 in the case that no such index exists. Then we have,

d(x, y) =

Jxy∑
i=1

λi .

Let z ∈ X and assume, with out loss of generality, that Jxy ≥ Jyz then

d(x, z) =
k∑
i=1

λidi(x, z)

≤
k∑
i=1

λi max {di(x, y), di(y, z)}

=

Jxy∑
i=1

λi max {di(x, y), di(y, z)}

=

Jxy∑
i=1

λi

= d(x, y)

= max {d(x, y), d(y, z)}

Hence d satisfies the strong triangle inequality, so that d is an ultrametric.
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We now prove that {di}ki=1 form an affinely independent set of points in Rm. Let vi =

d1 − di for 2 ≤ i ≤ k, we must show that {vi} form a linearly independent set of vectors in

Rm. Suppose not, then it is necessary that

k∑
i=2

λidi =

(
k∑
i=2

λi

)
d1

where λi0 6= 0 for some 2 ≤ i0 ≤ k. Let λ =
∑k

i=2 λi then,

k∑
i=2

λi
λ
di = d1.

Now, since the partitions in C are distinct we have that P1 < P2. Thus, there exist x, y ∈ X

separated in P1, but together in the same part in P2. Hence, di(x, y) = 0 for all i ≥ 2 so

that,

1 =
k∑
i=2

λi
λ
di(x, y)

= 0

a contradiction.

Finally we prove 3. Suppose d =
∑

i λidi with
∑

i λi = 1 and λi > 0 for all i. Then let

x, y ∈ X. By 1,

d(x, y) =

Jxy∑
i=1

λi (6.4.4)

Suppose
i−1∑
j=1

λj < t <

i∑
j=1

λj. (6.4.5)

Then we’ll show that Pi = P t
d. Let ∼i and ∼t denote the equivalence via Pi and P t

d respec-
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tively. Suppose that x ∼i y. Then dj(x, y) = 0 for all j ≥ i so that,

d(x, y) =
i−1∑
j=1

λjdj(x, y)

≤
i−1∑
j=1

λj

< t

Hence x ∼t y. Now if x ∼t y then,

d(x, y) =

Jxy∑
j=1

λj

< t

By (6.4.5), Jxy ≤ i − 1, so that di(x, y) = 0 and hence x ∼i y. We now prove that in fact

Cd = C; we can do this by calculating the number of distances of d. By (6.4.4), there exist

at least k non-unital distances (including zero). If Pk = {X} then λk will not contribute to

d in distance, and hence d has exactly k non-unital distances. If Pk 6= {X}, then d takes on

unity and will still have exactly k non-unital distances. By Theorem (6.4.1), Cd is a chain of

length k. Hence, Cd = C. This completes the proof.

We can now precisely describe the structure of Un.

Theorem 6.4.6 (Feldman, Kehoe, 2019). The set of ultrametrics Un is the carrier of the

pure (n− 1)-dimensional simplicial complex Πn.

Proof. We can embed the poset Πn into R(n2) by identifying partitions with their associated

partition metrics. By Theorem (6.4.3) the convex hulls of the associated geometric simplices

will be ultrametrics.
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We now turn our attention to the primary object of interest, the subcomplex of scaled

ultrametrics.

6.5 Scaled Ultrametrics

Just as one can scale a metric and have it remain a metric, one can similarly affinely scale

an ultrametric and have it remain an ultrametric. We define affine scaling by (a, b) ∈ R2 by

first identifying d in Rm with the natural coordinates and then scaling each component, i.e.

(a, b) · d := (a · d12 + b, a · d13 + b, . . . , a · dn−1,n + b)

Notice that affine scaling does not affect self zero distances (condition 1) above.

Proposition 6.5.1. Let (a, b) ∈ R2 and d ∈ Un then d̃ = (a, b) ·d ∈ Un as long as 0 ≤ d̃ ≤ 1.

Proof. Assume 0 ≤ d̃ ≤ 1 then the only condition to check is the strong triangle inequality,

condition 3 above. But of course for x, y, z distinct

a · d(x, z) + b ≤ a ·max {d(x, y), d(y, z)}+ b

= max {a · d(x, y) + b, a · d(y, z) + b}

The rest of the cases are routine checks.

Corollary 6.5.2. Every non-constant ultrametric d admits a unique affine scaling (a, b) so

that d̃ = (a, b) · d ∈ Un with min(d) = 0 and max(d) = 1. (Here the min is taken over

d ∈ Rm, in other words, taking the minimum over the non-trivial distances of d.)

Proof. Let m = min(d) and M = max(d) then solve for a, b in the system

am+ b = 0

aM + b = 1
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so that a = 1
M−m and b = −m

M−m . Since M > m we have that a, b are well defined and

the affine scaling will preserve minima and maxima. The result follows now as a direct

corollary.

Let Ũn := {d ∈ Un | min(d) = 0,max(d) = 1} define the set of scaled ultrametrics. If

we let R denote the set of constant ultrametrics then we can equivalently define Ũn as

Ũn = (Un −R) /R2 with orbits under the action of affine scaling being identified with the

unique zero-one representative given above.

Theorem 6.5.3 (Feldman, Kehoe, 2019). Ũn is the carrier of the pure subcomplex ∆(Π̂n)

of codimension 2 sitting in ∆(Πn), given by the convex hulls of chains of partitions in Πn

that do not contain either the discrete or indiscrete partition.

Proof. Let d ∈ Ũn then by Proposition (6.4.2) d induces a chain of threshold partitions Cd

such that d is the unique convex combination,

d =
∑
P∈Cd

λPdP

where
∑

P∈Cd λP = 1 and each λP > 0. Since d is a scaled ultrametric there exists distinct

xI , yI ∈ X such that d(xI , yI) = 0. Hence,

d(xI , yI) =
∑
P∈Cd

λPdP (xI , yI)

= 1

So that dP (xI , yI) = 1 for all P ∈ Cd, and therefore no P in Cd can be the indiscrete partition.

Similarly, no P in Cd can be the discrete partition either. Thus d ∈ ∆(Π̂n) ⊂ R(n2). It is

readily seen that inclusion of the discrete or indiscrete partitions in a convex combination

for an ultrametric will automatically disallow non-trivial zero distances or unital distances

respectively. Hence, Ũn is the carrier of ∆(Π̂n)

101



Corollary 6.5.4 (Feldman, Kehoe, 2019). Ũn is homotopy equivalent to a wedge of (n− 1)!

(n− 3)-spheres.

6.6 Iterated Cycle Structures

We now use the proof technique developed to calculate the Euler-characteristic in the last

section to calculate a sort of Euler characteristic of the space of iterated cycle structures.

Given a set X, call an element of Sym(X) a cycle structure on X, and non-trivial unless

equal to the identity permutation. Given σ ∈ Sym(X), let |σ| denote its set of cycles, and

||σ|| the number of cycles.

Definition 6.6.1. An iterated cycle structure (ICS) on X of length m ≤ |X| means a finite

sequence (σ1, σ2, · · · , σm) such that

1) σ1 = idX ;

2) σi+1 constitutes a non-trivial cycle structure on |σi|;

3) ||σm|| = 1.

Write ICS(X) for the set of all iterated cycle structures on X.

Example 6.6.2. ICS of length 4 in ICS(13)

••

• • • •

•

•

•

••
• •
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To each ICS (σ1, σ2, · · · , σm) we can associate cycle-number sequence (||σ1||, ||σ2||, · · · , ||σm||).

By grouping members of ICS(X) according to their cycle-number sequence and summing over

all possible cycle-number sequences we obtain the cardinality of ICS(X).

Let St(n, k) denote the Stirling numbers of the first kind. St(n, k) counts the number of

permutations of n elements which are composed of k cycles. For for a cycle-number sequence

{n1, n2, . . . nm} there are exactly
m−1∏
i=1

St(ni, ni+1)

choices of ICS. Rather than sum over all possible cycle-number sequences we can use matrix

algebra to simplify our calculations.

Let St denote the n by n matrix over Z+ with entries given by,

St(i, j) =

 St(i, j) , i > j

0 , i ≤ j

Proposition 6.6.3 (Feldman, Kehoe, 2019). Stk(n, 1) counts the number of ICS of length

k + 1.

Proof. We first look at the case k = 1, here St(n, 1) = St(n, 1); the number of ICS of length

2. For k ≥ 2 we compute,

Stk(n, 1) =
n∑

j1=1

Stk−1(n, j1)St(j1, 1)

=
n∑

j1,j2=1

Stk−2(n, j2)St(j2, j1)St(j1, 1)

...

=
n∑

j1,j2,...,jk−1=1

St(n, jk−1)St(jk−1, jk−2) · · ·St(j2, j1)St(j1, 1)
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By letting j0 = 1 and jk = n we obtain

Stk(n, 1) =
n∑

j1,...,jk−1=1

(
k−1∏
i=0

St(ji+1, ji)

)

Using the fact that St(i, j) = 0 for i ≤ j we have,

Stk(n, 1) =
∑

1≤j1<...<jk−1≤n

(
k−1∏
i=0

St(ji+1, ji)

)

=
∑

1≤j1<...<jk−1≤n

(
k−1∏
i=0

St(ji+1, ji)

)

Each summand above is the number of ICS for a cycle-number sequence (1, j1, . . . , jk−1, n).

After summing these over all possible cycle-number sequences of length k + 1 we obtain the

desired result.

Corollary 6.6.4 (Feldman, Kehoe, 2019). |ICS(n)| =
∑n−1

k=1 Stk(n, 1)

Write n for the set {1, 2, 3, . . . , n}. The numbers |ICS(n)| have received some attention;

the sequence, goes

1, 1, 5, 47, 719, 16299, 513253, 21430513, 1145710573, . . .

Now attach weight wn,m = (−1)n−m to each element (σ1, σ2, · · · , σm) of ICS(n).

Theorem 6.6.5 (Feldman, Kehoe, 2019). For all n > 1, the total of the weights on ICS(n)

equals 1.

Proof 1. We proceed with strong induction on n. For the base case we take n = 1. Here

there is only the identity, the weight of which is 1. Now assume the result holds for k < n.
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Fix σ ∈ Sn and then consider the set,

Sσ = {(σ1, σ2, . . . , σm) ∈ ICS(n) |σ2 = σ} .

We can naturally identify Sσ with ICS(||σ||) by treating σ2 as an atom. Since ||σ|| < n, by

the induction hypothesis we have

∑
(σ1,σ2,...,σm)∈ICS(Sσ)

wn,m =
∑

(σ1,σ2,...,σm)∈ICS(Sσ)

(−1)n−||σ||w||σ||,m−1

= (−1)n−||σ||+1
∑

(σ1,σ2,...,σm)∈ICS(Sσ)

w||σ||,m−1

= (−1)n−||σ||+1 · 1

= (−1)n−||σ||+1

Finally we must compute the sum of these weights over all σ ∈ Sn sans the identity. To do

this we’ll simply calculate the whole sum and then adjust for the identity after.

It is a well-known fact in combinatorics that
∑n

k=1(−1)kSt(n, k) = 0. Hence,

∑
σ∈Sn

(−1)n−||σ||+1 =
n∑
k=1

 ∑
||σ||=k

(−1)n−k


=

n∑
k=1

(−1)n−kSt(n, k)

= (−1)n
n∑
k=1

(−1)kSt(n, k)

= 0

To finish, adjust for the omission of the identity, (which would have counted −1), getting

total weight 1, as desired.

We now give an alternative proof of Theorem (6.6.5) by using a similar technique for the
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computation of the Euler-characteristic of the complex of scaled ultrametrics.

Proof 2. The standard order on n induces an order on every |σi| in every ICS of the form

(σ1, σ2, · · · , σm) on n: to compare cycles in |σi|, using the induced order on |σi−1|, find and

then compare their minimal elements.

For cycle structure σ with cycles s1, s2, s3, . . . in increasing order define the prime of σ

to be the cycle structure σ′ = ((s1s2), s3, . . .) on |σ|. Let ICS∗(n) be the complement of the

ICS (idn, (12), ((12)3), (((12)3)4), ...). For (σ1, . . . σm) ∈ ICS∗(n) let j denote the last index

where σj+1 6= σ′j. Then precompose σj+1 with (12). One of two possibilities occur:

1. 1 and 2 are in the same cycle s1 that break into two distinct cycles s1 and s2 in the

new ordering.

2. 1 and 2 are in different cycles s1 and s2 that merge into one cycle s1 in the new ordering

Define the involution J : ICS∗(n) → ICS∗(n) by sending (σ1, . . . , σm) to the ICS which has

σj+1 replaced with σj+1 ◦ (12) and the remaining cycle structures the successive primes of

σj+1 ◦ (12). In case 1 above priming σj+1 ◦ (12) will merge s1 and s2 back into a cycle s1

in the new ordering. By the maximality condition on j, priming after this point will yield

an ICS which agrees with (σ1, . . . , σm). Thus the involution J effectively removes a cycle

structure from (σ1, . . . , σm) in case 1 or adds a cycle structure to (σ1, . . . , σm) in case 2. In

either case we pair off members of ICS∗(n) which are of the opposite parity according to

their weight. Hence the total of the weights over ICS(n) will just be the weight of the ICS

(idn, (12), ((12)3), (((12)3)4), ...) which is 1.

Definition 6.6.6. A pointed ICS on X means an ICS (σ1, σ2, · · · , σm) with one marked

cycle structure σi, 1 < i ≤ m

Write ICS+(X) for the set of pointed ICS’s on X. As before we attach weight (−1)n−m

to each element (σ1, σ2, · · · , σm) of ICS(n). Note that the choice of distinguished cycle does

not affect the weight.
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Write Bn for the nth Bell number, the number of partitions of a set with cardinality n.

Theorem 6.6.7 (Feldman, Kehoe, 2019). For all n > 1, the total of the weights on ICS+(n)

equals Bn− 1. As a variation, define subset ICS⊕(X) ⊂ ICS+(X) by requiring that an ICS’s

final cycle not get marked. Then for all n > 1, the total of the weights on ICS⊕(n) equals

Bn − 2. Indeed consideration of only those elements of ICS+(n) that do have their final

cycle marked brings us back to the previous theorem, so subtracting them all away reduces

the weight by 1.

Before we give a proof of this theorem we prove a useful lemma relating Bell numbers

and Stirling numbers of the first kind

Lemma 6.6.8 (Feldman, Kehoe, 2019).

Bn − 1 =
n−1∑
k=1

Bk · St(n, k) · (−1)n−k+1

or equivalently

1 =
n∑
k=1

Bk · St(n, k) · (−1)n−k .

Proof. Bk ·St(n, k) counts all partitions on all sets of cycles in cycle structures with k cycles.

Excluding the choice of discrete partition of the identity cycle structure, let π be such a

partition of a cycle structure σ. The partition π naturally induces a partition πn on the

set n by forgetting the cycle structure (just look at the points the cycle structure covers in

every part). Since π is not a partition of the identity cycle structure there must be a part in

π whose corresponding part in πn contains at least 2 points. We’ll call such a part a “fat”

part.

Now from all fat parts in π identify in π the fat part P which contains the cycle with

minimum element a of n. Let b be the next largest element of n that is an element of any

cycle in P . Note: a and b only depend on πn and not on the cycle structure. Let σ′ denote

the cycle structure σ ◦ (ab). Just as in the Proof 2 of Theorem (6.6.5), σ ◦ (ab) will change
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the number of cycles by a factor of 1, thereby changing the parity of the weight (−1)n−k.

Define J(π) to be the partition of the cycle structure σ′ such that J(π)n = πn. Then J is

a parity switching involution and thus matches partitions of different parities in the right

hand side of the claimed identity above. Since we have excluded the discrete partition of the

identity cycle structure we obtain,

0 =

(
n∑
k=1

Bk · St(n, k) · (−1)n−k

)
− 1

The lemma is proved.

Proof of Theorem (6.6.7). Given a cycle structure σ, ICSs in ICS+(n) with σ2 = σ, will

either have σ2 marked, or not.

Collecting together ICSs with σ2 marked, seeing as we have no further cycle structure

marked, we may appeal to the previous theorem by treating the cycles of σ2 as atoms. These

ICSs thus contribute a total weight of (−1)n−||σ||+1.

We now proceed with strong induction on n. Taking as base case n = 2, we have one

pointed ICS (the marked transposition ICS) and it has weight B2−1 = 1. Collecting together

ICSs with σ2 unmarked, and using the induction hypothesis, we may assume we have total

weight, just of those elements in ICS+(n) with unmarked σ2 = σ equal to (−1)n−||σ||+1 ·

(B||σ|| − 1).

Putting the two cases together gives the total weight from ICSs with σ2 = σ as (−1)n−||σ||+1·

(B||σ||).

By Lemma (6.6.8) we have that the sum of weights over ICS+(n) is

n−1∑
k=1

(−1)n−k+1 · St(n, k) · (Bk) = Bn − 1

The theorem is proved.
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Proof 2. We give a bijective proof of the theorem in its variant form. Call all partitions of

a set other than the discrete and indiscrete non-trivial. Assuming that finite set X carries

a total order, we build an involution IX on ICS⊕(X) with manifestly weight-canceling 2-

cycles and positively-weighted fixed points that bijectively code non-trivial partitions of X.

Specifically, we obtain In.

The structure of IX must certainly reflect the manner of coding partitions, but rather

than exhibiting a specific IX , we describe a general recipe for constructing IX relative to

a broad class of coding strategies. We can work with any method of encoding non-trivial

partitions of a given ordered set X as elements of elements of ICS⊕(X) provided it meets

the following stipulations:

(i) code elements (for non-trivial partitions of X) have σ2 marked;

(ii) code elements have length |X| (and hence positive weight); and

(iii) the element ω generated by priming all the way occurs as a code.

Aside from these particulars, the description of IX will stand indifferent to coding particulars.

By (ii), every cycle structure σi, i ≥ 2 in every code element possesses, aside from 1-

cycles, one single 2-cycle. Note that since B2− 2 = 0 and B3− 2 = 3 = 6!/2, the code space

indeed has sufficient capacity.

In the spirit of the previous proof, the definition of In begins by separating two cases

according to whether or not an an ICS has σ2 marked.

Included within the set of elements with marked σ2, by the stipulation above, sit all

the code elements. In must leave code elements fixed. Nevertheless, we now utilize the

involution specified in the second proof of the previous theorem. Recall, this involution

fixed just a single element, namely ω, and we’ve stipulated that ω codes a partition. Thus

In will ultimately also leave it fixed. However where the old involution paired other code

elements with particular negatively-weighted, σ2-marked elements of ICS⊕, we shall call these

negatively-weighted elements level 2 shadow codes, and (for now) leave the behavior of In

undefined both on code elements and their shadow codes. Note that the old fixed point has
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no shadow, so the number of shadow codes equals Bn − 3.

For ICSs with σ2 unmarked, we iterate the procedure in the previous paragraph. Specif-

ically for each cycle structure σ on n, we apply the involution from the previous theorem to

those ICSs with σ2 = σ and σ3 marked, generating level 3 shadow codes; then with σ2 and

σ3 specified and σ4 specified and marked, for level 4 shadow codes. Carried to completion,

this phase of the involution definition leaves as still unspecified the involution’s behavior on

two classes of elements of ICS⊕:

(i) permutation codes at every level; and (ii) shadow codes of every level. To deal with

these, we start with just level 2 and level 3.

Now recall how in the previous proof we used transpositions to construct an involution

verifying

1 =
n∑
k=1

Bk · St(n, k) · (−1)n−k .

This involution preserves the number of cells in a partition even as it changes the cycles

the cells contain. In particular, the involution still remains well-defined upon dropping all

indiscrete (1-celled) partitions from the story. So already we have an involution that proves

1 =
n∑
k=1

(Bk − 1) · St(n, k) · (−1)n−k

or

Bn − 2 =
n−1∑
k=1

(Bk − 1) · St(n, k) · (−1)n−k−1 .

To apply this, we now introduce into the mix partitions on the cycles of the identity

permutation, encoded as usual, meaning as ICSs with σ2 (not σ3) marked followed by prim-

ing. Never mind for the moment that we have already defined the involution on these! The

transposition involution matches

(i) certain partitions of n− 1 cycles with

(ii) these partitions of n cycles (1-cycles!).

Now we fix everything by rematching the partitions in (i) with the previous partners of the
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partitions in (ii), and thus we liberate the partitions in (ii) to serve as the desired fixed

points. Of course Bn − 2 partitions together with ω give the desired result.
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