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ABSTRACT 

ECOHYDROLOGICAL IMPACTS OF BIOENERGY PRODUCTION IN ASPEN AND 

EUCALYPTUS PLANTATIONS 

By 

Jose Gutierrez Lopez 

University of New Hampshire, May, 2019 

Forecast scenarios predict an increase in the demand of alternative sources of energy 

during the coming decades, such as woody biomass crops (WBC). WBC have the potential to 

become a major challenge for the next generation of researchers, policymakers and land 

managers. However, the current rationale for promoting plant-based over petroleum-based 

energy sources emphasizes the benefits of reduced carbon dioxide and other emissions, while 

giving less attention to potential impacts to water resources.  

It is well documented in the scientific literature that trees use large amounts of water for 

metabolic needs. Water use at the tree and ecosystem level has always been of scientific interest, 

however, the potential impact of water use in bioenergy plantations is often considered a 

“possible environmental impact”. Thus, understanding the ecological implications of water use 

in WBC is essential for their sustainable development. 

The general goal of my research was to assess potential ecohydrological impacts associated 

with the production of biomass for bioenergy from aspen (Populus tremuloides Mich.) in 

Wisconsin, USA, and eucalyptus (Eucalyptus grandis) plantations in Entre Rios, Argentina. My 

doctoral research was part of a large international interdisciplinary NSF-PIRE research project 

that examined the impacts, barriers and opportunities related to bioenergy production across the 

Americas (USA, Mexico, Brazil, Argentina).  
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We selected plantation ages within the most common rotation cycles for each species. In 

Wisconsin, we studied three sites, a 10- and a 24-year-old (YO) coppice plantations, and a 

reference 34 YO mature forest. In Argentina, we studied two 1 YO plantations one at high and 

one at regular density, a 4 YO, a 10 YO plantation, and a reference grassland. This was a unique 

study to determine annual water use based on a combination of tree-level measurements of water 

use using sap flow sensors, and deterministic models of potential evapotranspiration. 

We validated two sap flow methods (heat dissipation and heat ratio), and validated a third 

method (maximum heat ratio) that is capable of measuring with precision high and low sap flux 

densities (Fd, cm3 cm-2 cm1). According to the results from the validation studies, we were able 

to estimate tree-level water use within a 7% error margin (estimated as the difference between 

observed and estimated sap flow in L h-1) using heat ratio and maximum heat ratio methods, 

without generating species-specific parameters. However, using the heat dissipation method, the 

average estimation error without species-specific parameters was -53%, and improved to 5% 

once species-specific parameters were generated. Validating the maximum heat ratio method, 

allowed us to estimate Fd in young trees, which are often excluded from chronosequence studies 

due to their high Fd. Our estimates of Fd at different plantation ages, allowed us to extrapolate 

from the tree to the site level, using real tree-level response to various environmental variables. 

Our analysis of P. tremuloides and E. grandis offered contrasting results. In P. tremuloides 

plantations, water use at the site level generally increased with age, even when site density 

decreased over time (from approx. 6500 to 1900 from 10 to 34 YO). We observed that young 

plantations (10 YO) used 80% of the annual water early in the growing season, compared to a 

45% for the same period in the Mid-aged and Mature plantations. Site effects, specifically soil 

type and the resulting soil saturation (S), had a significant effect on T estimates. After modeling 

the effects of S, creating two artificial scenarios (e.g. limited and non-limited S) the 10 YO site 
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showed the highest sensibility to changes in S, while the 34 YO mature site was the least 

affected. Average stand transpiration by site considering the effects of S increased with age, 

which supported our hypothesis regarding the relationship between stand age and stand T. 

However, the relationship between stand T was not constant across seasons, which according to 

our results might be caused by a higher hydraulic stress observed in the 10YO site, compared to 

the other two sites. 

 On eucalyptus plantations, when the density remained constant, stand T decreased with 

plantation age, reaching maximum water use rates at around 4 YO and declining afterwards for 

the remainder of the typical 15 YO rotation cycles. Due to similar site conditions in terms of soil 

characteristics, we did not observe a strong site effect. Our experimental site at high density (e.g., 

double of a regular site) showed an increase in average site T of 50%, and both 1 YO sites 

presented an opportunistic pattern in water use, increasing when soil water was available, but 

decreasing significantly when soil moisture was limiting. Finally, in both plantations we 

observed that reference evapotranspiration, estimated with the Penman-Monteith equation, was a 

poor predictor of water use in young plantations. We associate these results to the seasonal 

patterns of water use in young plantations.  

 Within the context of bioenergy production, our results provide ample evidence for the 

importance of water use in bioenergy plantations in the early stages of feedstock production. We 

also show that plantation density in fast and slow growing species, impacts the way trees respond 

to water availability in the soil.  
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National trends and major research advancements 

The increasing demand for alternative sources of energy has expanded the research 

frontiers of production and processing systems for bioenergy (Perlack et al. 2005). However, 

unlike algae or agricultural crops (e.g., corn, soybean, grass biomass) woody bioenergy crops 

(WBC) or short rotation woody crops (SRWC) (e.g., poplar or eucalyptus plantations) are still 

behind in technological advancements. Some of the reasons behind this lag are the complexity of 

management strategies, systems and practices that would be required for sustainable large-scale 

production of bioenergy derived from WBC or SRWC; practices that need to be adaptable to a 

variety of local conditions (BRDB 2011, White 2010). In other words, sustainable development 

of WBC is largely dependent on local or regional-based studies. In Argentina, fast-growing 

plantations of the Eucalyptus genus (and other WBC) tends to focus on timber production, and 

the debate over national bioenergy development is limited to small trials, primarily on small 

crops (Perry 2009, van Dam et al. 2009) as will be shown in Chapter IV. As a result, this 

introduction will not discuss the development of the section in Argentina. Conversely, in the 

USA, the bioenergy sector has received more attention and among various topics, it deals with 

the complex debate of the feasibility of feedstock production to meet national demands. 

Despite its complexity, specific areas within the WBC field and important research 

advancements have been conducted, such as: the development of policies (Molony 2011), 

financial analysis (El Kasmioui and Ceulemans 2013), production and harvesting (Abbas et al. 

2011), technological advancements for storage, refinement, yield (Dillen et al. 2013) and the 

impacts to the hydrologic balance (Babel et al. 2011). At the national level, the United States 
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Department of Energy (USDE), through the Bioenergy Technologies Office (BETO) published 

in 2005 an extensive review on the feasibility of the required supply for bioenergy for a variety 

of sources including crops and WBC (Perlack et al. 2005), which covered several potential 

concerns, including transportation, access, costs associated with biomass removal, 

transportations costs, labor availability, among others. In May 2013, the same office published a 

five-year program of research, development, demonstrations and deployment of activities aimed 

to achieve large scale production of bioenergy (BETO 2013). However, both reports (from 2005 

and 2013) give little attention to the potential ecohydrological impacts of bioenergy production. 

Other documents published by the USDE, the United States Department of Agriculture 

(USDA), and the BETO indicate that at the federal level, the complexity of the bioenergy 

industry is such, that issues regarding the impacts to hydrological services or water balance are 

often disregarded as mere “possible environmental impacts” and are not fully addressed (BETO 

2013, BRDB 2011, Perlack et al. 2005, White 2010). The multi-year program released in May of 

2013 by the BETO establishes the objective “(to) maintain or improve water quality, reduce 

consumptive water use, and improve water use efficiency” as the main strategy to deal with 

sustainability issues associated with ecohydrological impacts of bioenergy production. However, 

in this 170+ page document, this is the only mention of a strategy to address hydrologic concerns 

of biomass production (BETO 2013).  

It can be argued then, that the development of national level policies can speed or halt the 

development of projects aimed at understanding the ecohydrological impacts of the 

establishment of WBC or SRWC. This is something the BETO acknowledges, stating that the 

key issues of this year (2015) in the global bioenergy race are: (a) local manufacturing, (b) 

emerging pathways and innovative technologies and (c) national and state policies. Despite the 
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influence of policies, our understanding of the impacts of WBC on local water balance has 

progressed substantially.  

A few examples of important research advancements related to, or that complement 

ecohydrological impacts of bioenergy production and WBC/SRWC, that have not yet been fully 

reflected in national-scale programs are: selection of potential forest species (Christersson 2010, 

Dougherty and Wright 2012, Evans et al. 2010, Tharakan et al. 2003), suitable areas for 

production (Cartisano et al. 2013, Headlee et al. 2013), yields based on stand composition 

(Nelson et al. 2012), guidelines for harvesting (Abbas et al. 2011), hydrological impacts (Babel 

et al. 2011) impacts to soil properties (Baum et al. 2013), environmental impacts (Rowe et al. 

2009, Wu et al. 2013), and nutrient amendments (Li et al. 2012) among others.  

Other research advancements related to WBC within the biotechnology field that are also 

worth mentioning are: the genetic manipulation of trees to increase branch production and total 

biomass in poplar and chestnut trees, which found positive results modifying the CsRAV1 gene 

to induce sylleptic1 branches (Moreno-Cortes et al. 2012). Pilate et al (2012) reported, based on 

20 years of field trials of transgenic trees, that it is possible to reduce lignin in cell walls (to 

increase cellulose yield), but with negative effects on plant growth. Conversely, Wang et al 

(2011) reported increased rates of growth and development in hybrid poplars after the reduction 

of the expression of the SHORT-ROOT gene. Also within this field, the Eucalyptus grandis 

genome was recently published by Myburg et al (2014), which has been considered a landmark 

that will redefine and improve breeding programs oriented towards the production of bioenergy, 

in a similar way the genome of Populus trichocarpa (Torr & Gray) revolutionized breeding 

poplar programs (Tuskan et al. 2006). 

                                                
1 Growth in which branches develop from a lateral meristem, without the formation of a bud or period of dormancy, when the 

lateral meristem is split from a terminal meristem. 
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Water-related research gaps in bioenergy production 

To understand potential ecohydrological impacts of bioenergy production, it is important to 

review first water use at the plant level and the driving factors. Dynamics of plant water use vary 

with age and it is greatly influenced by environmental factors (Gochis and Cuenca 2000, Muller 

and Lambs 2009). For example, a single mature poplar tree can vary from 50 to 100 L of sap per 

day during the peak of the growing season (Wullschleger et al. 1998b), the same tree growing 

under a different set of management or environmental conditions (e.g., high density or extended 

periods of drought) can change drastically its water use patterns and have completely different 

seasonal patterns of water use. Inter-annual (i.e., seasonal) environmental changes, and species-

specific structural changes within the tree, like leaf area and total biomass have similar effects 

(Forrester et al. 2010a, Hubbard et al. 2010). 

 The scientific literature that focus on the driving factors that influence water use patterns 

in forest ecosystems, particularly plantations, can be grouped into two categories: (a) the 

physiological response of plants to changes in resource availability and environmental conditions 

(e.g., light, soil moisture, nutrients, light, temperature), and (b) changes in plant structure and 

growth patterns that result from adaptation to changes in the available growing space and 

subsequent changes in horizontal and vertical stand structure caused by plant interactions (e.g., 

canopy closure, abrasion, etc.), disturbance, or other factors. From this classification, it is 

possible to identify areas where our current scientific understanding is limited. 

 Both physiological changes and structural adaptations in plantations start at the canopy 

and leaf level. Research has shown that LAI and transpiration (or canopy conductance) are 

linearly related in several tree species, including aspen and eucalyptus (Allen et al. 1999, 

Blanken et al. 1997, Forrester et al. 2010a, Kull and Tulva 2000, Wilske et al. 2009).  However, 
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the seasonal changes between these two variables due to the response of trees to resource 

availability or phenology, is often ignored or assumed to be constant. Studies have found that as 

a plantation ages, the portion of the canopy that is shaded, or under constant indirect light, 

increases over time until the stand reaches canopy closure, and the amount of light that reaches 

lower branches is significantly reduced. Lower leaves that are not able to photosynthesize (or 

maintain a positive carbon balance) at reduced light levels, die off, reducing the total 

photosynthetic surface of the canopy (Kozlowski et al. 1991), thus decreasing transpiration and 

water use rates.  

 These patterns of canopy reduction over time and other structural adaptations and 

subsequent impacts on stand water use, are undoubtedly different among species and even within 

the same species growing in different regions. Studies on species specific patterns have found 

that depending on light assimilation, leaf shape and photosynthetic rates (Salisbury and Ross 

1992), trees can continue developing leaves past canopy closure. Clear examples are pine 

plantations, which due to the relative smaller area of individual needles, allow for more light to 

pass through the canopy (high canopy transmittance) (Ewers et al. 2007, Stenberg et al. 1994), 

increasing the amount of light that reaches lower branches. Another advantage of pine needles 

over broad-leaved trees is their ability to photosynthesize at lower light intensities (red and far-

red frequencies (656-714 nm)), typical of the understory (Kozlowski et al. 1991, Taiz and Zeiger 

2002), this allows several conifer species to continue canopy development past canopy closure.  

 Returning to aspen and eucalyptus, given their larger leaf area, low shadow tolerance and 

high water demands, it is highly unlikely for shaded aspen leaves to maintain positive carbon 

balances under these conditions (Pallardy and Kozlowski 1979), reducing the total leaf area and 

the active photosynthetic surface. However, studies looking at the effects of structural 

adaptations (e.g., canopy adaptation to growing space and self-thinning crowns as a result of 
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negative carbon balances) over time of aspen or eucalyptus trees growing in plantations at 

different stand ages are not very common (Forrester et al. 2010a, Kull and Tulva 2000). We 

know however, is that the factors affecting specific canopy closure patterns in plantations, are 

unique, and different from those affecting natural stands of the same species. A clear example for 

plantations is crown abrasion, the reduction in crown size, and the increment of inter-crown 

openings, resulting from sway action, where the altered vertical structure of trees species lowers 

their structural integrity, potentially reducing crown size as the plantation matures (Peltola 1996, 

Sellier and Fourcaud 2009).  

 Physiological changes and structural adaptations have been also observed in eucalyptus 

plantations. In a recent study on eucalyptus plantations varying from 2 to 8 years old, Forrester et 

al (2010a), reported that as trees aged, their sap velocities decreased (observed in 8 YO trees). 

They argue that trees compensate water requirements by modifying their LAI to sapwood area 

ratios. While allometric relationships have long been developed and the growth dynamics are 

well understood for major eucalyptus and poplar varieties, this self-regulation process (by which 

trees balance water requirements with the required area of conductive tissue for water transport) 

(i.e., sapwood area), can have major impacts on water use in WBC where growing patterns are 

modified due to management practices oriented to increase biomass productivity (i.e., high 

density, or short rotations).  

 Belowground dynamics are not the exception; access to soil moisture and nutrients also 

plays an important role in defining canopy shape, LAI and transpiration rates. Research in 

eucalyptus trees has shown that water limitation can reduce canopy development (Beadle in 

(Sandanandan and Brown 1997)), particularly leaf area. Similarly, deficiencies in nitrogen have 

been shown to reduce photosynthetic rates in melaleuca and eucalyptus species (Nguyen et al. 

2003). Conversely, if water and nutrient limitations are eliminated by fertilizing and irrigating, 
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studies in poplar plantations have observed increments in total stand growth of up to 18% (Kim 

et al. 2008). These results were similar to observations on transgenic poplar trees using enriched 

15N as a tracer of nutrient uptake, where it was found a higher nitrogen assimilation and overall 

growth when nutrient limitations were eliminated (Man et al. 2005).  

 Unlike natural forests or plantations for timber production, WBC of eucalyptus and 

poplar are often planted at high densities to increase site productivity (Almeida et al. 2007, 

Tullus et al. 2009). In these sites, canopy closure, maximum LAI, etc., and the subsequent effects 

on water use -as previously discussed- may occur much earlier than in regular unmanaged 

stands, which in turn, can have consequences for the stand water budget (Fernández and Gyenge 

2009, Oguntunde 2007) not fully documented or understood.  

 The timing at which these plant, and stand processes occur, can potentially impact the 

water balance in completely different ways (i.e., early depletion of soil moisture, reduced 

outflows and runoff) in unforeseeable ways. However, due to the relatively new development of 

methods to reliably estimate water use at the plant level (i.e., high precision sap flow methods), 

our current scientific understanding is strongly focused on stand growth dynamics and biomass 

accumulation under various management conditions (Kauter et al. 2003, Tullus et al. 2009, 

Werner et al. 2012), giving less attention to the ecohydrological impacts of WBC (Bungart et al. 

2001, Jassal et al. 2013).  

Considering then the reduction in water use with age in WBC, caused by previously 

discussed physiological changes and structural adaptations, the often-attributed negative impacts 

of increased water use in these plantations, can be potentially managed or regulated with longer 

rotation cycles. The logic behind this argument is that, if a production system is constantly 

running at its maximum capacity (i.e., rotation cycles focused on high productivity), the stress on 

water resources should be similarly intensive. Then increasing rotation cycles will by default, 
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include periods of time when water use requirement for plant growth is not as intensive. The 

later will in turn allow plantations to function as natural regulators of water flows (e.g., reducing 

runoff and increasing infiltration) and, hence, improve impacts on water resource sustainability. 

Understanding how water use changes over time in a plantation or managed forest, can be of 

great value to propose long-term forecasting scenarios of water use and biomass accumulation, 

as shown in  Figure I-1. 

Finally, considering that most eucalyptus and aspen plantations are harvested at or before 

15 years of age (Forrester et al. 2010a, Tullus et al. 2009), and some use even shorter rotation 

cycles, studies of water use dynamics in bioenergy plantations of 15+ years-old, are rare and 

highly important to understanding the implications of water use in WBC plantations of aspen and 

eucalyptus on the overall stability of the ecosystem.  

 

Hydrological services and biomass accumulation tradeoffs 

Hydrological services (HS) are part of the various environmental services that society 

requires from forests, and in many regions of the world represent the base of livelihood of local 

communities. Given that water quality and quantity are considered the most important of services 

forests provide to society (Hamilton et al. 2008), understanding the impacts of WBC have on 

hydrological services is essential for their sustainable development, but most importantly, to  

guarantee that the livelihoods of local communities are not compromised.  

At the ecosystem level, impacts of WBC on HS has been addressed at the national level 

(Cartisano et al. 2013, Davis et al. 2012, White 2010, Zalesny et al. 2012, Zamora et al. 2013), 

and around the world in various environmental conditions in Australia (Sochacki et al. 2007), the 

United Kingdom (Rowe et al. 2009), France (Toillon et al. 2013), Canada (Jassal et al. 2013), 

among several others. The goal of these studies is often to understand direct impacts of biomass 
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production on HS, to provide policy-makers and land managers science-based information to 

achieve sustainable management. Regionally and at the state level, in the USA, several 

publications make evident that steps are being taken to address potential impacts of bioenergy 

production to HS (Indiana: (IDNR 2007); Virginia: (Jackson 2007); South Carolina: (SCFC 

2012); and Wisconsin: (Herrick et al. 2009, Radloff et al. 2012), among others).  

Nonetheless, despite the increasing scientific interest and research initiatives on bioenergy-

water relationships, much work still needs to be done to fully address the ecohydrological 

impacts of the production of bioenergy using various species and growing conditions (BETO 

2013, Perlack et al. 2005). The important issue at hand is that intensive production of bioenergy, 

will likely impact HS that provide direct benefits to society through HS (e.g., water infiltration, 

outflows and water yield). Forest management for HS alone is inherently complex, which 

combined with management that aims to maximize biomass production, results in conflicting 

management strategies due to the constant overlap in goals. Since the primary object of 

bioenergy production of to maximize crop yield, biomass production often leads to higher water 

use at the stand level, reducing water outflows and thus creating direct negative impacts to the 

ecosystem and its HS (e.g., water yield, water balance). 

The dynamics of biomass accumulation (e.g., potential yield, mean annual increment 

(MAI), periodic annual increment (PAI)) are well documented for a variety of softwood species, 

in part due to the strong importance of these studies, which are required to elaborate energy 

scenarios at the national level, as previously mentioned (Perlack et al. 2005). At this point, the 

scientific literature has focused on the most common management systems for WBC, such as: (a) 

short rotations; (b) short rotation with coppice; (c) harvest residues and (f) hazard-fuel reduction 

(White 2010). Short rotation woody crops (SRWC) of softwood species such as hybrid poplars 

(Populus spp.), willow (Salix spp.), Sycamore (Platanus spp.) and silver maple (Acer 
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saccharinum L.) have received the greatest attention (White 2010), in part due to their ability to 

achieve high biomass production over short time spans and with low production inputs, as well 

as their wood properties, known for a relatively easy conversion to fuel (Lasch et al. 2010).  

Coppice systems have also been used in some eucalyptus species (e.g., Eucalyptus grandis), 

which are also commonly managed under short rotations of varying lengths (Dougherty and 

Wright 2012, Mizrachi et al. 2012, Sochacki et al. 2007). 

Previous research on SRWC in poplars and willows has provided evidence on the potential 

impacts to HS under future climate change conditions (Lasch et al. 2010), potential nitrogen and 

CO2 fluxes and greenhouse gas mitigations associated to their production (Balasus et al. 2012, 

Hansen et al. 2013, Verlinden et al. 2013), the impacts of their production to water quality, soil 

organic matter and microbial communities (Baum et al. 2013), and the quality and quantity of the 

biomass that can be harvested (Kauter et al. 2003). However, despite the current state of 

knowledge on SRWC, there are several questions that remain unanswered regarding water use 

patterns and impacts on HS of WBC. 

 

Water use in plantations 

Trees are grown in managed plantations to produce desirable characteristics across the 

stand (bole height and diameter). In WBC, the goal is often to maximize production per unit of 

land (Forrester 2013, Nelson et al. 2012, Tullus et al. 2009). Each year thousands of hectares are 

added to these artificial ecosystems by either managing naturally occurring forests (e.g., aspen 

stands (Tullus et al. 2009)), or by replacing existing land covers (e.g., eucalyptus plantations 

(Forrester et al. 2010a)). In both natural forest under coppice management, and plantations that 

replace existing vegetation, understanding their water use dynamics is fundamental in order to 

foresee potential negative impacts. 
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Establishing a plantation replacing the original land cover changes dramatically the vertical 

and horizontal water dynamics of the new cover. Vertically, the stand dynamics that are altered 

the most in the established plantation are: interception, throughfall, evaporation, transpiration 

and water use partitioning (Dunisch et al. 2003, Forrester 2014b, Massonnet et al. 2008, Zhou et 

al. 2004). Water partitioning (i.e., plants accessing water from different soil layers or water 

sources at a given time  (Campoe et al. 2012, Hunt and Beadle 1998) is modified when trees of 

similar root characteristics and water requirements access intensively the same water resources. 

Horizontally, movement of soil water, nutrient transportation, evaporation, and transpiration 

distribution are the most affected stand dynamics (Binkley et al. 2013, Forrester 2014b), of the 

newly established plantation. Horizontal changes in evapotranspiration patterns are the result of 

low variability of transpiration rates throughout the plantation, which in turn reduces water and 

nutrient movement in the soil. 

The extent to which the land cover change affects water use dynamics is also governed by 

the location of the site, the evaporative demand of the environment and the potential 

evapotranspiration of both the replaced and the introduced land covers. Research in eucalyptus 

plantations in Southeast Australia demonstrated that water use is related to stand age. Their 

results indicate a range from 0.4 mm day-1 to 1.9 mm day-1 in stands of 2 and 6-7 year-old (YO) 

trees, respectively (Forrester et al. 2010a). Hubbard et al (2010) found a range in daily water use 

from 2.6-3 mm d-1 (based on total water use per year) in eucalyptus plantations of 8 YO in 

Southeast Brazil. Studies of water use in 12 YO poplar plantations have found water use ranges 

from 2.2-6.7 mm d-1 in Germany (Petzold et al. 2011). However, since no reference water use 

rate of the replaced ecosystem is provided, it is hard however, to assess the impact these 

plantations had on the water balance. 
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Our scientific understanding of water use dynamics in plantations, and its implications to 

the ecosystem) has increase significantly in the last decade, and has also covered subjects such as 

carbon fixation and nutrient uptake, among others (Binkley 2004, Forrester 2014a, Forrester et 

al. 2006, Forrester et al. 2004, Forrester et al. 2012, Forrester et al. 2010b, Stape et al. 2008, 

Stape et al. 2010, Tricker et al. 2009). However, although many soil-plant-atmosphere processes 

(e.g., photoinhibition, water uptake, etc.) are well understood, there are still few studies that have 

dealt with the potential ecohydrological impacts of bioenergy production in plantations (e.g. 

(Wilske et al. 2009)). Further, log-term plans for bioenergy production, do not fully address 

issues regarding water quality and quantity in bioenergy plantations, and are often regarded as 

mere “potential negative effects” (BETO 2013, BRDB 2011). 

 Higher productivity of plantations of aspen and eucalyptus oriented for bioenergy 

purposes has shown to increase water use rates and result in hydrologic stress at both the plant 

and the stand scale, (Berndes 2008). The timing at which maximum water use occurs, however, 

depends largely on stand dynamics and characteristics of the species. Several studies have 

analyzed water use dynamics in eucalyptus (Forrester et al. 2010a, Hubbard et al. 2010, Morris et 

al. 2004), poplars (Jassal et al. 2013, Kim et al. 2008, Tricker et al. 2009, Xiao et al. 2013), and 

studied their respective biomass accumulation dynamics (Forrester 2013, Forrester et al. 2004, 

Kauter et al. 2003, Tullus et al. 2009), which at this stage are well documented and understood. 

However, only a few studies have linked the water use dynamics, biomass accumulation and 

their respective impacts at the stand and watershed level that result from the production of WBC 

for bioenergy, and how these impacts develop over time as plantations age (Forrester et al. 

2010a, Hunt and Beadle 1998, Jassal et al. 2013, Morris et al. 2004). 

If the amount of biomass accumulated is compared to the amount of water used during the 

same period, it is usually agreed that plants require vast amounts of water for their metabolic 
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needs (Hillel 2004). Based on preliminary results from our measurements in eucalyptus trees, 

trees can transpire in a day the amount of water equivalent to their dry weight. This excessive 

water use can often decrease significantly the water content in the surrounding soil. Based on our 

current understanding of water-carbon exchange dynamics, we can argue that at the ecosystem 

level, plant water uptake is a bidirectional process, in the sense that it can both regulate and 

maintain a balance between water inputs (precipitation, snowfall, etc.) and water outflows 

(runoff, deep percolation, etc.), but these regulation varies depending on the type of forest 

(natural vs. artificial/plantation). 

Using eddy covariance techniques, research conducted in Canada on hybrid poplar 

plantations observed that plantations are able to shift from carbon sources to carbon sinks. 

According to Jassal et al. (2013), a newly established plantation can go from a carbon source (1.5 

Mg C ha-1 y-1) in its first year, to a carbon sink (0.8 Mg C ha-1 y-1) by the third year of 

establishment. Their data also indicates that during high water demand periods, transpiration 

exeeded precipitation. These results provide evidence that even at an early age, hybrid poplar 

plantations can store large quantities of carbon, however, in the process, large quantities of water 

are lost through transpiration (272 and 321mm, 2010 and 2011, respectively). However, a 

recently published large-scale review of several ecosystems ranging from forestlands to pastures, 

provided evidence that water use and carbon acumulation dynamics are strongly influenced by 

latitude and elevation. Their conclude that gross primary productivity and transpiration decline 

with increased elevation, which leads to a reduction in net primary productivity with increasing 

altitude Xiao et al. 2013).  

Studies from around the world (Di Matteo et al. 2012, Dillen et al. 2013, Petzold et al. 

2011, Tullus et al. 2009, Werner et al. 2012, Zalesny et al. 2012) have reported high carbon 

accumulation estimates, unfortunately several of these studies focus on carbon accumulation 
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alone, and no estimates of water use are provided, making it difficult to assess water-carbon 

tradeoffs. However, understanding the local productivity and the potential responses to 

environmental conditions, it is possible to identify management practices that best fit 

environmental conditions of interest.  

 

Methods for water use monitoring in woody species 

Estimating water use at the tree level presents various challenges, which are directly 

associated to the methods used. Generally speaking all methods can be classified into direct or 

indirect. Direct methods are those that measure the actual water use gravimetrically in potted 

trees or using lysimeters (McCulloh et al. 2007, Sperling et al. 2012). Indirect methods rely on 

the measurement of a secondary property, process or variable, to infer water use. Mechanistic 

methods2, such as Penman-Monteith, Priestley-Taylor, are also indirect and are based on 

assumed or validated tree-level responses to environmental variables. Clear examples of indirect 

methods are those that use heat to trace sap movement within the sapwood (Burgess et al. 2001a, 

Cohen et al. 1981, Granier 1985). These methods are commonly referred to as “thermometric”, 

and are themselves classified into those that use constant heat and those with pulsed heat, each 

with their own sub-classification (Vandegehuchte and Steppe 2013b). 

 Thermometric sap flow methods (TSF) are by far the most used to estimate water use at 

the plant level. Sap flow sensors following various methodologies have been used in a variety of 

crop (Bethenod et al. 2000, De Swaef and Steppe 2010, Gerdes et al. 1994, Senock and Ham 

1995, Zhang and Kirkham 1995) and tree species (Allen et al. 1999, Bleby et al. 2004, Fernandez 

et al. 2006, Gebauer et al. 2008). TSF methods are considered an important tool for plant 

                                                
2 Those that describe phenomena in purely physical or deterministic terms 
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irrigation and understanding of plant water use requirements. However, almost all are empirical 

and rely on tree or species-specific calibration (Vandegehuchte and Steppe 2013b). 

Within the TSF methods, the most common ones used on woody species, that were also 

used in my research are: the heat pulse method (HPM, Cohen et al. 1981), the heat dissipation 

method (HDM, Granier 1985), and a relatively recently developed variation of the HPM able to 

measure reverse flows the heat ratio method (HRM, Burgess et al. 2001b). Despite being 

commonly used, several studies have highlighted the weaknesses of both HRM and HDM (Lu et 

al. 2004). The advantages, main contributions and weaknesses of each method, can be easily 

understood considering their working principles. 

The HPM consists of two probes, spaced 0.5 to 1.5 cm apart. The probes are inserted 

parallel to the direction of sap flow. The lower probe is a heating element and the upper probe a 

thermocouple (or set of thermocouples positioned at different sapwood depths). This method 

works by releasing a pulse of heat of known dimensions and its behavior is tracked within the 

wood matrix for a bout 100 seconds after the release of the pulse. To estimate sap velocity (cm h-

1) and sap flow (L h-1), the method relies on the maximum increase in temperature (ΔTemp) 

observed in a thermocouple at a radial distance “r” from the heater, and the time it takes to reach 

this temperature (ΔTime) (Cohen et al. 1981, Marshall 1958). Identifying medium to high sap 

velocities is relatively easily, due to the distinctive sharp peaks when ΔTemp versus ΔTime are 

plotted. At low flows, however, distinguishing ΔTime at maximum ΔTemp becomes more 

ambiguous due to the shape of the curve (i.e., ΔTemp is distributed over a larger time frame). 

The HDM consists of two probes, installed 10-15 cm apart, a heated probe and a 

temperature reference probe. Both probes contain a thermocouple, and the upper probe is kept at 

a constant temperature (~0.2 W m-1) applying a constant current through the heating element 

made of constantan wire. This method has been simplified in a way that no actual temperature 
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measurements are needed, using a single constantan wire to connect both thermocouples (from 

the heating probe and reference temperature probe) from their negative ends, and considering the 

principles of the Seebeck effect, differential voltage in millivolts (mV) can be read across both 

positive ends (copper wire), yielding a mV reading equivalent to the difference in temperature 

between heated and reference thermocouples (Granier 1985). The differential voltage across the 

probes is monitored at short intervals (5-60 seconds), and then averaged over more manageable 

time frames (10-30 minutes). This voltage difference is then correlated to sap flux density (m3 m2 

s-1). While this method was not developed for a specific set of environmental conditions or 

specific range of sap velocities, research has shown it is more suitable for medium to high sap 

flux ranges and for tree species with ring pores.  

The HRM consists of three parallel probes spaced 0.5 cm apart. The middle probe is a 

heating element and the lateral probes are thermocouples. The number of thermocouples varies 

depending on specific (often user-defined) configuration. A typical measurement starts with the 

measurement of temperature for 30 seconds, then a 2-4 second pulse heat (~210 W m-1) is 

applied, and temperature is monitored for another 110 seconds. Heat pulse velocity (cm h-1) and 

sap flow (L h-1) are estimated based on equations that use the ratio of the average change in 

temperature above and below the heater (ΔTemp), estimated from 60 to 100 seconds after the 

heat pulse (Burgess et al. 2001b). HRM was developed for dry environments and scenarios 

where the movement of sap within the trunk is relatively slow. Recent publications have shown 

the method is more suitable for sap velocities ranging from 0 to 45 cm h-1 (Vandegehuchte and 

Steppe 2013a), with the ability to measure inverse flows within the same range. 

 



 

 17 

Important contributions  

All methods played a critical role in improving our understanding in the following five 

major areas of plant physiology: (a) the role of stomatal and boundary layer conductance on 

water use, (b) whole-tree hydraulic conductance, (c) vapor and liquid phase water transport, (d) 

moving of water to and from storage in sapwood and (e) vulnerability of whole-plant to water 

cavitation (Vandegehuchte and Steppe 2013a, Wullschleger et al. 1998a). All methods offer 

unique advantages to estimate water use at the plant level that would be technically difficult 

using alternative methods, such as weighing lysimeters (Bryla et al. 2010, Evett et al. 2009), 

radioactive isotopes (Liesche et al. 2015) or dyes (Burgess et al. 2000). 

The HPM, was the first TSF method used to explore water use at the plant level. Prior to 

the development of this method, researchers were limited to studies using isotopic tracers or 

chemical dyes, which required to cut the stem to trace sap movement (Huber 1932, Marshall 

1958), and often resulted in extremely high estimates. Using this methodology, it was observed 

that sap flow velocities or sap flux densities had marked and more conservative ranges of sap 

flow rates based on the anatomy of the conducting tissue (i.e., ring porous, diffuse porous and 

non-porous). A comprehensive list of early estimates and a comparison with various methods 

used at the time can be found in early studies (Hinckley et al. 1978). However, Swanson (1994) 

who acknowledged that Marshall’s (1958) work placed sap flow research on a strong theoretical 

base, and today the importance of the method remains unquestioned in the field.  

The HDM has been an invaluable tool that simplified the methodology to estimate water 

use in a wide range of species including Scots pine (Oliveras and Llorens 2001), grapevines 

(Braun and Schmid 1999), Douglas Fir pine (Phillips et al. 2002), cashews trees (Oguntunde et 

al. 2004), coffee trees  (Pimentel et al. 2010), and more recently palms (Sperling et al. 2012). By 

simplifying sap flow measurements, Granier (1987) showed that if the spatial variability is 
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considered during measurements, stand water use can be estimated, something that was 

considered technically challenging or impossible. More recently, studies using HDM have shown 

that stand and tree-level water use can be inferred and modeled from the relationship between 

environmental variables and sap flow (Lambs and Muller 2002, Lundblad and Lindroth 2002).  

HRM, an improvement to the HPM developed by Burgess et al. (2001b) has allowed 

researchers to measure low and reverse flows. These improvements have provided new insights 

on the dynamics of water use. For example, using this method, Burgess et al. (2004) observed 

that Sequoia sempervirens are able to reverse the plant-atmosphere continuum via foliar uptake. 

Previously, using the same methodology, Burgess et al. (2000) provided evidence that upon 

water uptake, Banksia prionotes, an Australian phreatophyte, is able to redistribute water within 

the root system in a process known as “inverse hydraulic lift”. Other relevant finding related to 

measurement precision, is the measurement of nocturnal transpiration (Buckley et al. 2011), 

which we now know in some species can be greater than 10% (Forster 2014), but was previously 

assumed to be zero. And last the measurement of sap flow in individual petioles, which was 

previously possible only via gas exchange measurements due to its low magnitude (flows lower 

than 5 g h-1) (Clearwater et al. 2009).   

 

Weaknesses 

The original work on the HPM by Marshall (1958) was based on the heat convection-

conduction theory for a infinitely large, isotropic and homogeneous medium where an infinitely 

small source of heat could release instantaneous heat pulses, taking point measurements around 

the heat source. In reality, these assumptions are uncommon, resulting in over-estimation of sap 

velocity. Considering sap flow based on wood anatomy properties, specifically the arrangement 

of the conducting tissue (e.g., tracheids or pores), point measurements tend to miss the 



 

 19 

conductive area, especially in ring porous species (e.g., quercus, fraxinus), leading to 

underestimation of sap flow. While the original assumptions of HPM have been addressed 

(Cohen et al. 1981, Kluitenberg and Ham 2004, Vandegehuchte and Steppe 2012), the method 

still faces challenges with ring porous species. Further, to estimate the variability of the radial 

profile, more than one measurement point is needed, increasing the instrumentation, data storage 

and data processing requirements, and installation costs, which can range from 5 to 10 thousand 

dollars (estimated in 2014), per single sap flow station, depending on the sampling detail and 

method or methods used. 

Since the HDM requires constant heat, the user relies heavily on custom-made current 

regulators, which, given the fixed resistance of the heating elements, provide an exact and 

constant temperature. A common error is to apply the wrong current for a given resistance, 

which results in a higher or lower wattage (or heater temperature) than the 0.2 W recommended 

by the method (Granier 1985). A common uncertainty with HDM is the potential effect of the 

wattage applied to the heater on sap flow measurements. Operators often use the original 

equations to estimate sap flux, but modify the characteristics of the sensors to fit requirements of 

the species being studied (Lu et al. 2004). Since the original parameters and equations were 

developed for specific sensor characteristics (e.g., length, resistance of heater, materials, etc.), 

the user can potentially under, or overestimates sap flow rates. HDM requires the precise 

measurement of the maximum temperature observed between the heated and the reference probe 

(ΔTMax), which occurs in the absence of sap flow, particularly at predawn. However, ΔTMax is 

highly influenced by natural temperature gradients (NTG) in the environment (Lu et al. 2004, 

Regalado and Ritter 2007).  

The HRM works as expected within a range of sap velocities from 0 to 45cm h-1 

(Vandegehuchte and Steppe 2013b) and after this range, the linearity between TSF and 
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gravimetric sap flow (GSF) breaks down. In cases where sap velocities are significantly high 

(>70 cm h-1), this relationship disappears altogether. Part of this problem comes from the way the 

method described by Burgess (2001b) works. After the release of the pulse, the ratio is estimated 

from the data collected from temperatures from 40-100 seconds. At this point, based on sap 

velocity speed and NTG’s, deltas for lower thermocouples can be close to zero, resulting in 

fictitious and extremely high ratios, positive and negative. It is possible however, to implement 

new algorithms to process the data and correct for the effect of NTG’s (Vandegehuchte et al. 

2015), and potentially increase the range of velocities the measurable with HRM.  

In technical terms power consumption is a key disadvantage of HDM over HPM and 

HRM. Due to its constant-power requirements, a single HDM probe requires more power per 

unit of time than a HRM. While a single pulse (2-4 seconds) of HRM delivers ~210 J s-1 

(compared to only ~20 J s-1 of HDM), total consumption over time is much lower than HDM. It 

takes only about 10 seconds for a single HDM sensor to use the power consumed by a single 

pulse of HPM and HRM. 

 

Calibration experiments 

The best way to address all these potential sources of error in sap flow studies is through 

the use of calibration or validation experiments, where TSF estimates are compared to GSF. 

Validation experiments are technically challenging, especially if the goal is to validate sap flow 

methodologies for large trees (e.g., (McCulloh et al. 2007, Sperling et al. 2012)). Nonetheless, 

validation experiments are regularly used in laboratory setups (Bush et al. 2010, Clearwater et al. 

1999, Hubbard et al. 2010, Steppe et al. 2010, Sun et al. 2012). However, these are often 

criticized for simplifying and/or omitting environmental (e.g. temperature, solar radiation, etc.) 



 

 21 

and physiological factors difficult to replicate and predict in laboratory setups, such as variability 

of water use within the tree crown. 

Another common technique for validation of sap flow sensors is severing the stems of 

small trees (diameter < 15 cm), put them on water reservoirs, and monitor water use 

gravimetrically, allowing a direct comparison between TSF and GSF. These method, often 

referred to as the “cut-tree method”, has been performed in a variety of species such as Pinus 

patula (Alvarado-Barrientos et al. 2013), Eucalyptus regnans (Dunn and Connor 1993), Aspen 

(Populus tremuloides) and Birch (Betula papyrifera) (Uddling et al. 2009), Sweetgum 

(Liquidambar styraciflua L.), Eastern Cottonwood (Populus deltoids Bart.), White Oak (Quercus 

alba L.), American elm (Ulmus americana L.), Shortleaf pine (Pinus echinata Mill.), Loblolly 

Pine (Pinus taeda L.) (Sun et al. 2012), Olive (Olea europaea), Plum (Prunus domestica L.), 

Orange (Citrus sinensis L.) (Fernandez et al. 2006). The reported variation between TSF and 

GSF observed in these studies (up to five fold in some cases (Hubbard et al. 2010)), together 

with the diversity of species in which validation studies have shown discrepancies (between TSF 

and GSF), confirms the long-standing assumption that sap flow studies require species and site 

specific validations, as long as these are feasible. 

 

Mechanistic methods to estimate water use in non-woody species 

Measurement of water use in non-woody species, particularly grasses and grasslands is 

inherently difficult due to their small stem sizes, and the variety of species to consider per unit of 

area (in the case of grasslands). However, several methods have been developed to estimate 

evapotranspiration rates (ET) in small species, particularly in crops. Similar to woody species, 

the methods can be classified into direct and indirect, where direct methods measure water use 

gravimetrically (Abedinpour 2015, Ruiz-Peñalver et al. 2015, Weaver 1941), and indirect 
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methods measure a secondary property, process or variable (Senock and Ham 1995, Zhang and 

Kirkham 1995), related to water use. However, there is a group of methods, often referred to as 

mechanistic (i.e., those that describe phenomena in purely physical or deterministic terms) that 

rely primarily on environmental factors and species-specific parameters used to estimate large-

scale ET rates. Some of these methods include Penman-Monteith (Allen et al. 1998), the Presley-

Taylor (Priestley and Taylor 1972), Bowen Ratio (Angus and Watts 1984), and Eddy Covariance 

(Twine et al. 2000), among others. 

TSF methods have been successfully used to estimate water use and ET rates at the plant 

level. Senock and Ham (1995) tested the heat balance method on individual stems of tall grasses 

big bluestem (Andropogon gerardii Vitman) and indiangrass (Sorghastrum nutans L. Nash), and 

found a 10% error between TSF and GSF, which for a water use of less than 4 g h-1, is a high 

precision measurement. Zhang and Kirkham (1995) conducted a similar comparison between 

TSF and GSF in sunflower (Helianthus annuus L. 'Hgsun 354') and sorghum (Sorghum bicolor 

(L.) Moench, Funk's hybrid G-522DR), and found good correlation at relatively high sap flow 

rates (>60 g h-1). They concluded that sap flow rate was the main indicator for sensor accuracy, 

in other words, the lower the sap flow rate, the higher the estimation error. Ramirez et al. (2006) 

compared infrared gas analyzer, porometer and TSF (heat balance) with GSF in esparto grass 

(Stipa tenacissima (L.) Kunth), and found overestimations of +125%, +77% and +92%, 

respectively, compared to GSF. They concluded that overestimation scaling up from 

instantaneous transpiration measurements at the leaf level might be in part due to a higher 

concentration of chlorophyll in younger leaves (and thus higher photosynthetic capacity rates). 

Only when the shape of the plant and senescence distribution was considered, indirect water use 

estimated matched GSF by less than 5%. More recently, Clearwater et al. (2009) tested a 

modified version of the HRM on four species kiwi (Actinidia spp.), dwarf schefflera (Schefflera 
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arboricola), karo (Pittosporum crassifolium), and European beech (Fagus sylvatica) to estimate 

sap flow in individual pedicles. They found a linear relationship between TSF and GSF, within a 

sap flow range from as low as 0.025 g h-1, to 1.8 g h-1.  

In natural ecosystems, however, especially grasslands, species and anatomical diversity 

makes difficult to implement intensive TSF measurements (i.e., multiple sensors on various 

species) to cover the natural variability. To overcome this challenge, a common methodology is 

to estimate water loss gravimetrically using weighing lysimeters. Young et al. (1996) estimated 

water use in bermudagrass (Cynodon dactylon x transvaalensis var. Tifway), and observed that 

deep-root water use can significantly reduce deep percolation. Evett et al. (2009) applied the 

same methodology on sweet corn Zea mays L., variety Merit, to develop crop coefficients in the 

Jordan Valley, in Jordan. Besides the successful implementation of the methodology, an 

important outcome from this study was the high cost (>60,000 USD/unit) associated with the 

design and installation of weighing lysimeters. Smaller and more economical versions 

(phytometers) such as the ones used by Weaver (1941) in Indian grass (Sorghastrum nutas) and 

big blustem (Andropogon scoparius), Hinds (1973) in dropping brome (Bromus tectorum), are 

considered now limited due to their inability to perform automated measurements. Recently, 

Ruiz-Peñalver et al. (2015) taking advantage of several technological advancements (i.e., 

automated measurements, data storage, and multiplexing capabilities) developed a relatively 

low-cost weighing lysimeter with the potential to be used in multiple species. Large-scale and 

ecosystem-level measurements, however, are still a limitation for both TSF and gravimetrically-

estimated water use. 

Mechanistic methods (e.g., Penman-Monteith, Priestley-Taylor) address some of these 

challenges describing evapotranspiration in purely physical or deterministic ways (Consoli 

2011). The FAO’s adopted standard Penman-Monteith (PM) (Allen et al. 1998) method, uses a 
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combination of energy balance and aerodynamics to estimate reference ET (mm d-1). When using 

the PM method, it is recommended to collect the required variables above a grass or alfalfa 

reference. Irmak and Odhiambo, (2009) estimated reference ET from measurements above a 

grassland and a crop (Zea mays), and found that where a reference ET does not exist, it is 

possible to use an alternative crop, such as corn to estimate ET. Goulden and Field (1994), 

compared PM, TSF, and whole-canopy (i.e., chambers that covered entire trees) gas exchange 

measurements in oak trees (Quercus agrifolia, Quercus durat), and concluded that gas exchange 

measurements matched those observed mechanistically with PM, which also matched corrected 

TSF. In grassland and pasture, the results have varied. Sumner and Jacobs (2005) used PM, 

Priestley-Taylor (PT), reference evapotranspiration, and pan evaporation methods to estimate 

evapotranspiration in bahia grass (Paspalum notatum Flugge) and rotating agricultural fields of 

strawberries (Fragaria sp.) and brown top millet (Panicum ramosum). In their study, PT, coupled 

with green leaf area index (LAI) and solar radiation, provided better estimates of actual ET, 

compared to PM. They also concluded that PM and PT showed better ET estimates than the 

reference ET or the pan evaporation methods.  

Given that these mechanistic methods were developed for homogeneous land covers, one 

of their weaknesses is their assumed low accuracy to estimate ET in “patchy” conditions, where 

land cover and species distribution is not homogeneous. Moran et al. (1996), tested the 

applicability of remotely-sensed measurements of surface reflectance and temperature, to allow 

the application of PM to estimate ET in heterogeneous grasslands when there is no prior 

knowledge of their percent cover or canopy resistance. They concluded that the approach was 

reasonable, and that sources of error are multiple for this approach, and their impacts on 

estimated ET need to be considered. Similar studies have been conducted in forest lands (Boegh 
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et al. 2009), citrus trees (Dzikiti et al. 2011) and crops (Zea mays) for bioenergy production (Wu 

et al. 2012). 

 

 

Summary 

This literature review covered areas that deal with the development of the bioenergy field, 

and targeted particularly the potential ecohydrological impacts of woody biomass production. I 

discussed the national trends, major research advancements, and showed that based on national-

level documents published by the Bioenergy Technologies Office, and the U.S. Department of 

Energy, the ecohydrological impacts of bioenergy production are often regarded as “possible 

impacts”, and are not fully addressed in long-term program plans. I described and explained 

advancements and weaknesses of the methods used in my research to estimate water use at the 

tree, and stand level, with a strong emphasis on thermometric methods. I also discussed key 

research advancements regarding the production of bioenergy and biomass in general, such as 

the dynamics and relevance of water and nutrients in plantations, where it has been shown that 

lack of nutrients slows down biomass accumulation, but lack of water halts is altogether. Another 

important finding discussed is that stand-level water use in eucalyptus, and possible aspen 

plantations reduces with stand age, as a result of the adaptation to a reduced growing space and 

consequent lower total leaf area per tree. I also discussed the tradeoffs between biomass 

accumulation and hydrological services, and highlighted the gaps related to water-carbon 

tradeoffs in both eucalyptus and aspen plantations, which based on the evidence gathered, it is 

strongly focused on biomass accumulation alone.  
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Figures 

 

Figure I-1 Effects of rotation length of cumulative water use 
 
This diagram shows the projected water use under two rotation scenarios: multiple short rotations 
(top panel), and few rotations (bottom panel). The top panel represents a species where multiple 
short rotations result in higher cumulative water use than the same species under longer rotations 
(bottom panel).  
 
In this diagram: A) the rotation length, B) the cumulative water use, and C) the expected stress due 
to reductions in soil water availability. The black curves represent biomass accumulation. This 
diagram was not designed to represent a specific species or ecosystem. The long-term goal of this 
study, is to explore the possibility to elaborate such forecast scenarios, in order to manage 
plantations to achieve a desired outcome, considering the age response over time of the species 
studied. 
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Abstract 

There is a wide variety of methods to monitor sap flow in conductive tissue of various 

plant types. However, because of the working principles of each method, in general terms most 

methods seem to perform better at either high or low sap flux densities (Fd, cm3 cm-2 h-1). A bi-

directional method capable of measuring both high and low Fd with high accuracy can be of 

great value for the new areas of study where sap flow sensors are deployed in extreme 

environments to monitor the soil-plant-atmosphere continuum and where disentangling sap flow 

from transpiration is as important as it is challenging due the presence of freeze/thaw-induced 

sap flow. We assessed the performance of a new ratio-based algorithm, the maximum heat ratio 

(MHR), and the heat ratio (HR) methods under two controlled experiments: (a) a tree cut 

method with eight one-year-old Eucalyptus grandis trees and (b) an Acer saccharum trunk 

subjected to freeze/thaw cycles, and in the field we tested the performance of both methods on 

two contrasting environments with varying ranges of Fd: (c) three E. grandis plantations (one-, 

four-, and ten-years old),  (d) Escallonia myrtilloides trees growing at 3800 m.a.s.l. Our results 

indicate that MHR and HR had a strong (R2=0.90) linear relationship within a sap flux density 

(Fd, cm3 cm-2 h-1) range of 0-40, above this threshold the linearity disappeared mainly due to the 

noise and fictitious estimates of HR. Using the MHR method, we were able to significantly 

extend the measuring range of HR. With the MHR algorithm, we estimated a maximum Fd range 

of 0-120 (cm3 cm-2 h-1), compared to the maximum of 45 with HR alone. We observed that HR 

had an overestimation memory effect, especially on trees with Fd higher than 50, which was not 

observed with MHR. With MHR we measured a maximum Fd range of E. grandis plantations of 

CHAPTER II 

II MAXIMUM HEAT RATIO: NEW METHOD TO MEASURE HIGH SAP FLUX 
DENSITIES 



 

 42 

0-105 (one-year-old), 0-60 (four-year-old) and 0-35 (ten-year-old). On E. myrtilloides, we 

estimated a maximum Fd range of 0-10 with both methods, and MHR had noisier estimates 

within these low Fd range. In our freeze/thaw experiment, we estimated a Fd range from -16 to 

+38, and both methods had very similar estimates during thawing. Conversely, during freezing, 

HR consistently underestimated Fd (up to 10 cm3 cm-2 h-1), with respect to MHR. Since we were 

not able to regulate the flow within different annuli of the sapwood, our validation is based on 

the correlation between estimated flow and the measured gravimetric water use. With this study 

we show that a simple modification to the HR method, can significantly increase the measuring 

Fd range of the traditional HR method, which can be applied to already collected raw data, where 

HR did not perform satisfactorily. Additionally, we highlight the importance of raw-data 

collection in sap flow measurements. Finally, a low-power method capable of measuring high, 

low and inverse Fd that can be easily corrected for zero flow, can be of great value for studies 

required to capture this entire range with high precision. 

 

Keywords: maximum heat ratio, heat ratio, sap flux, tree-cut experiment 

 

Introduction 

Research studies spanning different ecosystems and growing conditions often rely of 

various sap flow methods to make comparison, making the comparisons difficult or unreliable. 

Two of the most commonly used thermometric sap flow methods are the heat dissipation (HD) 

(Clearwater et al. 1999, Granier 1985) and the heat pulse (HP) methods (Cohen et al. 1981, 

Marshall 1958). Two of the common variations within the HP method include the Tmax (Cohen 

et al. 1981) and the heat ratio (HR) (Burgess et al. 2001a). Both the Tmax and HR methods are 

improvements from the original sensor designed to measure different ranges of sap flux density 
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(Fd, cm3 cm-2 h-1) with high accuracy (Tmax for high, and HR for low and reverse). Due to their 

different performance ranges, the selection of HP sap flow methods is often based on method 

complexity, cost, power use, and more importantly, the expected ranges of Fd to be measured. 

Despite the latest improvements on HP sensors, no single easy-to-use method validated under 

field conditions or using whole trees is capable of measuring low, high and reverse flows with 

high accuracy.  

Sap flow methods have become a fundamental part of studies seeking to  understand 

responses of individual plants  to whole stands and ecosystems to abiotic and biotic drivers 

(Alvarado-Barrientos et al. 2013, Eller et al. 2015, Kagawa et al. 2009, Kukowski et al. 2013, 

Lundblad and Lindroth 2002, Meinzer et al. 2004, Steppe et al. 2006, Vergeynst et al. 2014, 

Zalesny et al. 2006), In physiological studies, sap flow measurements can provide a means of 

identifying underlying mechanisms that explain changes in water movement along the soil-plant-

atmosphere continuum at the individual plant scale. In ecological studies, sap flow measurements 

help examine the responses of ecosystem processes and functions related to water use and 

cycling to environmental change (e.g., disturbance, drought, nutrient amendments, etc.).  In both 

ecological and physiological studies, HP methods capable of measuring extremely low and 

reverse flows (i.e., HR) have received less attention, partially because most studies focus 

primarily on transpiration-induced sap flow, where the vast majority of the flow is unidirectional 

(from the roots to the leaves). Only studies interested in hydraulic redistribution in roots 

(Burgess et al. 2000), foliar uptake, or studies focused on non-transpiration sap flow (e.g., 

freeze/thaw-induced sap flow for studies interested in syrup production) appear to benefit from 

sap flow methods capable of measuring reverse flows. Further, sap flow resulting from 

freeze/thaw cycles (or solid-liquid sap phase change) has not been reported in the scientific 

literature. Currently, we can identify two major fields of study where freeze/thaw-driven sap 
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flow studies can be of great relevance: (a) physiological studies where freeze/thaw sap flow in 

deciduous or evergreen species is the main objective (i.e., syrup production, sap transport and 

relocation of non-structural carbohydrates, etc.) and (b) studies where heat waves or sudden 

changes in temperature might trigger transpiration of evergreen species during winter months 

when sap is commonly frozen. Additionally, studies looking to understand the effects of climate 

change on winter-time transpiration on evergreen species, where there is a strong combination of 

high freeze/thaw-induced sap flow combined with pulses of transpiration-induced sap flow, can 

significantly benefit from ratio-based methods capable of measuring bi-directional flows.  

Most sap flow methods are prone to technical complications and rely on calibrations 

(Swanson 1994, Vandegehuchte and Steppe 2013). For example, HD methods (e.g., Granier 

1985) can result in significant underestimations of Fd (up to 60%) (Cabibel et al. 1991, Lu and 

Chacko 1998, Lundblad et al. 2001, Steppe et al. 2010, Sun et al. 2012). When calibrated, HD methods 

perform equally, or better than HP methods, specially at high Fd ranges (Gutiérrez Lopez et al. 

2018). This documented underestimation, combined with their high-power requirements, often 

leads researchers to select HP method (e.g. Tmax, HR), over a HD method, which leads back to 

the limited measuring range of HP methods previously mentioned. 

Alternatives to the HD and HP methods (e.g., Tmax, HR) exist, such as the Sapflow+ 

method (Vandegehuchte and Steppe 2012b), or the dual method approach (DMA, Forster 2019). 

However, at this time their application is limited. The Sapflow+ method (Vandegehuchte and 

Steppe 2012b) uses four probes to estimate sap flux density. In ecological studies the number of 

probes per sensor is an important factor to consider in the selection of the method to increase the 

sample size and to reduce the effect of wunding. The DMA is a recently published algorithm that 

combines the Tmax and the HR methods. With this algorithm, Fd is determined using Tmax and 

HR methods simultaneously, and the selected Fd is the one that meets a well-defined range 
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criterion. On new sap flow studies, this ratio-based method might be a good alternative to extend 

the measuring range of HR, but the effects of switching from a ratio (HR) to a non-ratio method 

(Tmax) remains to be tested. Another alternative is the compensated heat pulse (CHP) method, 

which has been validated under field and laboratory conditions (Poblete-Echeverria et al. 2012, 

Vandegehuchte et al. 2015), however, this method performs poorly at high Fd ranges (Becker 

1998, Burgess et al. 2000).  

An important advantage of ratio-based methods with equidistant temperature probes from 

the heater (e.g., HR), is that in the absence of sap flow, the temperature difference between the 

temperature probes above and below the heater is nearly zero and the temperature ratios equals 

one. On smaller data sets, this correction can be easily accomplished with the equations provided 

by Burgess et al (2001b). In long-term monitoring studies with large data sets, automatizing data 

analyses to correct for zero flow or seasonal drift, might be easily accomplished using as 

reference vapor pressure deficit (VPD, kPa) data within a given threshold (e.g., 0.2 kPa), or 

when the slope of Fd or the temperature ratios are close to zero for 2-3 consecutive hours. Thus, 

increasing the measuring range of HR (initially estimated to be from -55 to +55 cm3 cm-2 h-1) is 

of great interest for ecological and physiological studies, which could eliminate the need to use 

various methods to make comparisons. To our knowledge, only one study (Vandegehuchte et al. 

2015) has experimented with the data analysis algorithm of HR. According to their modeling, 

estimating the ratio at different time intervals after the heat pulse (compared to the standard 60-

100 s after the pulse), increases the measuring range of Fd, but to this day no validations of any 

additional algorithms to extend the measuring range of HR have been published.  

In this study, we tested and validated a new data analysis algorithm that uses the same data 

as the traditional HR method, the maximum heat ratio (MHR) algorithm. The MHR algorithm is 

an alternative to extend the measuring range of HR, based on a similar algorithm commonly used 
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on HR. Both HR and MHR raw temperature data from thermocouples or thermistors can run 

simultaneously, be processed in situ (using the data logger’s memory) and stored as a single 

value per measurement with limited programing. Additionally, if no data memory restrictions 

exist, all raw data can be stored and both HR and MHR algorithms can be run for comparison 

purposes a posteriori. Considering that sap flow methods are being deployed in extreme 

environments, we conducted a validation in two controlled experiments, (a) a tree-cut experiment 

using eight one-year-old Eucalyptus grandis Hill ex Maiden trees and (b) a freeze-thaw 

experiment. Additionally, we tested the performance of MHR and HR on two scenarios of 

expected low and high Fd (i.e., trees growing at high elevations and cold temperatures, and three 

E. grandis plantations of one, four and ten-years-old). The overarching goal of this study was to 

validate the new MHR algorithm and test its performance on different species and environmental 

conditions. Our specific objectives were to (a) validate the accuracy and precision of two HP 

data analysis algorithms (HR and MHR), (b) establish the maximum Fd range measurable with 

the traditional HR algorithm under controlled conditions, and (c) test the potential for the MHR 

algorithm to extend this range. To our knowledge, no previous studies have assessed and 

validated whether the same data commonly used for HR can be used to estimate high Fd, similar 

to those commonly estimated with HD sensors. In sap flow research a low-power ratio-based 

method capable of measuring high and low Fd at high precision and accuracy, is highly desirable, 

but thus far, no method seems to perform satisfactorily under contrasting Fd ranges. Additionally, 

studies that have previously collected raw data to estimate Fd using the HR method, might 

benefit from the extended measuring range of MHR algorithm, if HR was unable to estimate 

high flows.  
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Materials and methods 

Tree-cut experiment set up 

We used a total of 8 trees ranging from 3-6 cm in diameter (See Table II-1), harvested at 

the installations of the National Agricultural Technologies Institute (INTA) in Concordia, 

Argentina. For comparison purposes, all trees were instrumented with both heat dissipation (HD) 

and HP sensors. All HD sensors had an extra reference sensor (without a heater) installed below 

them to account for natural temperature gradients. To measure gravimetric water use, we used a 

modified tree-cut experiment, where a small water reservoir was attached to each tree with a tire 

tube which was connected to a 20 L bucket (Figure II-1). All buckets were weighed manually 

every 15 min using a single electronic balance with a 1 g resolution for four consecutive days 

(for further details, see:  Gutiérrez Lopez et al. 2018). All tree stems were covered with a 

reflective insulation wrap (ISOLANT 5 mm), and sensors were installed in different cardinal 

directions across the individual trees (two replicates per cardinal direction). 

 

Equipment set up and data collection  

A data logger (CR1000, Campbell Scientific Inc., Logan, UT, USA) and two multiplexors 

(AM1632, Campbell Scientific Inc.) (one for HP and one for HD sensors) were used to read and 

store data during a six-day period (DOY 123-128, 2015). Air temperature and relative humidity 

were monitored with a HMP50 sensor (Campbell Scientific Inc.). Both HD and HP sensors were 

connected using low voltage double-shielded cables (75985K63-Mcmaster), and thermocouple 

cables (TFCC-005-100-Omega) were used as extensions of thermocouples in HP sensors. The 

heaters of the HP sensors had a resistance of ~19 Ω ±0.2 and were connected in parallel and 

controlled with a custom-designed solid-state relay circuit with a maximum current limit of 4 

amperes. The entire station was powered with a 12V 105Ah lead-acid battery. 
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Temperature (T, ºC) of each of the six thermocouples per sensor was recorded at a scan 

rate of ~1.5 seconds for 143 consecutive seconds, at 15-minute intervals (94 temperature data 

points per interval). The full measurement period of HP sensors consisted of consecutive 

measurements of initial temperature (0-30 s), followed by a heat pulse (30-33 s), and ending with 

consecutive measurements of temperatures following the heat-pulse (34-143 sec).  

Gravimetric water use (GWU, mL) was measured with an electronic balance by manually 

weighing the 20 L buckets at 15-minute intervals from 6 AM to 8 PM for four consecutive days 

(DOY 123-126, 2015). The electronic balance had a resolution of 1 g, and all data were recorded 

as mass of water loss per time interval (15 min), assuming that 1 g = 1 mL. We measured GWU 

for all trees simultaneously every 15 minutes. 

 

Data processing and analysis 

All our data were processed with custom-designed scripts developed for JMP Pro 14 (SAS 

Institute, Inc. Cary, NC, USA) and R Studio 1.1.423 (R Studio, Inc) that allowed us to estimate 

Fd and Q for both methods. First, we performed a filtering process of GWU, removing data that 

were collected when the balance malfunctioned, water leaks occurred, or measurements were not 

taken at exact 15 min intervals. To process the data temperature data from the sap flow sensors, 

we first estimated a three-point running average on the raw data for all data series (i.e., 143 s of 

temperature data before and after the heat pulse) from the six thermocouples per sensor (see 

Figure II-1-H). We then estimated the average of the first 30 s (T0) of each data series and 

subtracted this average to estimate increments of temperature before and after the pulse. For HR, 

average temperature was estimated from 60-100 s (T60-100) after the pulse for all thermocouples, 

and heat ratios were calculated by dividing T60-100 of corresponding thermocouples (i.e., upper 

over lower for each monitoring depth). For the MHR algorithm, ratios were estimated using the 
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maximum temperature observed after the pulse (T33-110). Next, heat pulse velocity (vh, cm h-1), 

and vh corrected for wounding (vc, cm h-1) were estimated for HR and MHR, according to 

Burgess et al. (2001a) using the following equations: 

 

 𝑉" =
k
𝑥 𝑙𝑛

𝑣)
𝑣*
3600 Eq. 1     

   

 

 

 𝑉. = 𝑏𝑉" + 𝑐𝑉"* + 𝑑𝑏𝑉"3 Eq. 2        

 

Where k is the thermal conductivity and x the distance between probes, and v1/v2, the 

temperature ratio. 

vc was converted to Fd according to Vandegehuchte and Steppe (2013) using:  

 

 𝐹5 =
𝜌5
𝜌7
8𝑀𝐶 +

𝐶5;
𝐶7
< 𝑉. Eq. 3        

 

Where rd is the density of the sapwood, rs the density of water, MC the volumetric water content 

of the sapwood, Cdw the thermal conductivity of dry wood, and Cs the thermal conductivity of 

water.  

To estimate whole tree water use (Q, mL per measurement), we multiplied the estimated Fd 

obtained from each method (MHR ad HR) by the corresponding sapwood area. During the 

installation of the sensors of Tree 7 and 8, we inadvertently affected the pulse intensity of some 

trees, which resulted in underestimations of Fd, especially on DOY 124 and part of DOY 125. 
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This issue was addressed at midday on DOY 125, and was considered at the time we estimated 

measuring ranges for MHR and HR and during the entire study. 

 

Validation process  

To validate Fd estimates from MHR and HR, we focused on the differences between 

estimated Q for each algorithm and GWU. A direct comparison between measured and estimated 

Fd was not feasible because we cannot regulate the sap flow within different annuli of the 

sapwood. Additionally, our comparison between Fd estimated from both HR and MHR and HD 

sensors is for reference purposes only, because HD sensors measure one point inside the 

sapwood, and our HP sensor design measures three depths (See Figure II-1-H).  

 

Performance MHR on different environmental conditions 

We tested the performance of both HR and MHR algorithms on scenarios o varying ranges 

of ambient temperature, that would result in contrasting Fd ranges: (a) one 17 cm diameter Acer 

saccharum log subjected to artificial freeze-thaw cycles (25 to -15ºC) in Durham, New 

Hampshire, USA (b) one, four and ten-year-old E. grandis plantations in Ubajay, Entre Rios, 

Argentina, growing under temperature fluctuations between 8 to 36ºC, and (c) Escallonia 

myrtilloides trees, growing at 3800 m.a.s.l., in Cuenca, Azuay, Ecuador subjected to temperature 

fluctuations between 4 to 12ºC. The freeze/thaw cycles applied to the A. saccharum log, were 

done using a commercial freezer that was kept at -16 ºC. Every night, the log was placed inside 

the freezer, and it was removed from it the following morning and placed at room temperature 

(26ºC). We also collected data when the log was continuously at lower than -10ºC or more than 

20ºC for more than 24 hours, but we show mainly periods with fast freeze/thaw cycles. GWU 

was not available for any of these study sites because these are ongoing research projects and 
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destructive means for validation was not allowed. Data from A. saccharum was collected in 

January 2018, data for E. grandis plantations in May, 2015, and E. myrtilloides trees in April, 

2018. 

 

Results 

Gravimetric water use 

With exception of Trees 6 and 8, all other trees showed relatively stable GWU rates 

ranging from 0.050 to 0.350 L per 15-min measurement interval. Trees 6 and 8 showed a rapid 

decline in water use in the first day of the experiment, did not recover on the second day, and 

their water use was significantly lower (Tukey-Kramer test: p = <0.0001: Table II-2). As a result, 

trees 6 and 8 were not used in the validation study. Similarly, GWU measurements that were not 

measured at 15-minute intervals were filtered out from the analysis (e.g., Figure II-2: Tree 7, 

DOY 124). Based on night-time gravimetric water use (data not shown), none of the trees 

reached zero night-time transpiration values (Figure II-2).  

 

Measurable Fd range of HR and MHR algorithms  

Using data from our tree cut experiment, we were able to measure a Fd range from 0-45 

(cm3 cm-2 h-1) using the HR algorithm, and a range of 0-130 (cm3 cm-2 h-1) using MHR on one-

year-old E. grandis trees ranging from 3 to 6 cm in diameter. We did not observe significant 

under or overestimations of Q for each algorithm within these ranges when the instrumentation 

was functioning correctly (equipment malfunction resulted in underestimated Q on some trees on 

DOY 124-125; see discussion for further details). The maximum measurable Fd ranges estimated 

by with MHR varied by tree, for example, on Tree 1 we observed a maximum Fd value of 90, 

and on Tree 5 a maximum of 130 (panels B, Figure II-3). We observed a rapid decline in Fd from 
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the first to the second day of our experiment on almost all trees. This reduction was in some 

cases higher than 100%, for example Tree 1, reduced from 90 (cm3 cm-2 h-1, estimated with 

MHR) to less than 40 from DOY 123 to DOY 124. Our analysis suggest that such reduction was 

not associated with changes in VPD. The highest Fd reduction occurred when VPD was lowest 

and when the total daily rate change was minimum (Figure II-3, panel A). 

 

Comparison between MHR and HR algorithms 

An initial comparison between HR and MHR showed that temperature ratios estimated 

with HR were noisier and had a higher number of aberrant positive and negative values (i.e., 

values with a difference higher than four standard deviations), especially at high transpiration 

rates. Conversely MHR ratios appeared more stable and we did not observe extremely high or 

negative values, especially when the full Fd range was higher than 40 (cm3 cm-2 h-1). Averaging 

all data (six days) from Tree 2 (middle thermocouple, which had Fd values as high as 120 (cm3 

cm-2 h-1) Fd estimates derived from MHR and HR algorithms were similar within a range of 0-40 

cm3 cm-2 h-1 (R2=0.90, linear regression: HR = 0.56+1.063*MHR). Above this threshold, the Fd 

estimates differed significantly, mainly due to the abnormally high estimates of HR (Figure II-4, 

DOY 123-128). The correlation between HR and MHR varied significantly within each day and 

seemed to be driven by the daily variations in VPD. For example, the total rate of change in VPD 

on DOY 127 was less than 0.8 kPa, on this day HR and MHR (Tree 2, middle thermocouple) had 

a high correlation within a range of 0-65 cm3 cm-2 h-1 (R2=0.97: HR = -0.339+1.219*MHR; 

Figure II-4, DOY 127). Conversely, when the VPD total rate change was higher (e.g., 1 kPa on 

DOY 124-126), the range for the relationship between HR and MHR was lower (approximately 

0-40 cm3 cm-2 h-1). At high Fd the linearity between HR and MHR was broken mainly due to 

fictitious high flows estimated with HR. This indicates that the maximum measurable range of 
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HR is not only dependent on the maximum Fd of a given tree, but also on the magnitude of the 

increments in Fd. In other words, if Fd increases rapidly, the measuring range of HR might be 

reduced, compared to the range observed if Fd increases more slowly (Figure II-4). 

Differences between MHR and HR were also dependent on the time of the day. From 0 to 

12 h, the correlation between HR and MHR when Fd was lower than 40 cm3 cm-2 h-1 was 

stronger (HR=-0.1303+1.074*MHR, R2=0.96) than between 13-24 h (HR=2.192+1.02*MHR, R2 

= 0.79). Additionally, the HR algorithm showed an overestimation memory effect (average: 5 

cm3 cm-2 h-1) with respect to MHR on the second half of the day (13-24 h) in trees that had Fd 

greater than ~50 cm3 cm-2 h-1. This memory effect was characterized by a continuous 

overestimation, even after Fd estimates were again lower than 50 cm3 cm-2 h-1 (e.g. Figure II-5, 

top panel). Nonetheless, no overestimation was observed when Fd was lower than 50, which 

suggests that this overestimation occurs only when Fd falls outside the measuring range of HR.    

 

Water use (Q) estimates 

Patterns of whole tree water use estimates (Q, L per 15 min measurement interval) from 

HR and MHR algorithms had similar patterns to those of Fd, particularly at low water use rates. 

However, since Q is integrated from different annuli within the sapwood, and some annuli had 

Fd outside the measurable range of HR, the underestimation observed using HR was the result of 

missing values, caused by the limited Fd measurement range of this algorithm. Comparing 

average water use (DOY 123-126, Figure II-6) estimated with each method (HR, MHR) with 

their respective GWU, MHR had a higher correlation (R2=0.82) than HR (R2=0.46). Despite 

neither HR nor MHR being calibrated, both were more accurate than HD in one-year-old E. 

grandis trees. The main error of HD sensors was associated with the parameters (a and b) used to 
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estimate Fd from the flux coefficient (K) (For details see: Gutierrez Lopez et al. 2018). Once the 

parameters were adjusted, no difference was observed between HD and both HP algorithms. 

 

Performance of HR and MHR in contrasting environmental conditions 

In one-year-old E. grandis plantation we estimated Fd values within a range of 0-105 (cm3 

cm-2 h-1) (Figure II-7-A). Fd in this site was often higher than 60 (cm3 cm-2 h-1), which is already 

outside of the upper Fd range for HR that we validated with gravimetric measurements in similar 

trees using a tree-cut experiment. In the four and ten -year-old trees with diameters ranging from 

15 to 30 cm in diameter, we observed maximum Fd values of approximately 50 cm3 cm-2 h-1 for 

four-year-old and 30 cm3 cm-2 h-1 for ten-year-old trees (Figure II-7-B, C). HR and MHR Fd 

estimates followed the same patterns as those observed in our validation experiment, i.e., HR 

overestimated Fd higher than ~50 cm3 cm-2 h-1, were noisier than MHR at high Fd, and had an 

overestimation memory effect on the second half of the day when Fd was higher than 50 cm3 cm-

2 h-1. 

On E. myrtilloides trees, the average range of Fd was 0-5 cm3 cm-2 h-1. At these low Fd, 

MHR estimates were noisier and occasionally were higher than HR Fd estimates (Figure II-7-E). 

On a day with relatively high flows, Fd estimated with HR was 9 cm3 cm-2 h-1, and on the same 

day, MHR estimated a maximum Fd of 12 cm3 cm-2 h-1. This period was characterized by an 

increment in VPD and air temperature, as shown in panel E in Figure II-7. Consistent with 

previous observations, when air temperature and VPD increased rapidly, the linearity between 

HR and MHR disappeared. At low Fd, MHR seemed to be more responsive to changes in VPD, 

than HR. When VPD decreased and increased rapidly, HR detected a smaller or no Fd change, 

with respect to MHR. Fitting a locally estimated smoothing  function (Cleveland 1979, 

Cleveland 1981) to MHR and HR, produced nearly identical Fd estimates. 
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On A. saccharum log which we subjected to freeze/thaw cycles, we observed a total Fd 

range from -20 to 40 (cm3 cm-2 h-1). Under these contracting conditions, HR and MHR had 

nearly identical Fd estimates during thawing, however, during freezing HR underestimated Fd, 

compared with MHR (up to 10 cm3 cm-2 h-1) (Figure II-7-D). While it was not always the case, 

most of the negative Fd were observed during freezing. Both positive and negative flows seemed 

to be more pronounced when the log temperature was kept at lower (e.g., < 10ºC) temperature 

range. When the log temperature was higher than approximately 20 ºC, a freeze cycle did not 

result in high Fd (data now shown). When the log was left for more than 24 outside the freezer at 

room temperature (26ºC), all sap flow ceased and both HR and MHR registered Fd 

insignificantly different from zero. A similar pattern was observed when the log was left 

continuously under -10ºC inside the freezer.  

 

Discussion 

Measurable range of Fd, and expansion using alternative algorithms  

Using the same wood properties (e.g., moisture content, density, etc.) and the same heat 

pulse velocity, Fd estimated with Eq. 4 is similar to vs estimated following Burgess et al. (2001a). 

Thus, we consider it appropriate to compare our results with other studies that have focused on vs 

as a unit of flow. On average, the HR method resulted in a strong correlation between Q and 

GWU within Fd ranges of 0-45 (cm3 cm-2 h-1), with variability among trees, some showing a 

range up to 0-60 on (Tree 2). The MHR algorithm allowed for a wider range of Fd. On the first 

day of our experiment, we estimated Fd up to 130 on Tree 5 (and up to 120 on DOY 126), which 

is considerably higher than the measured range achievable with HR. This range (0-130 cm h-1) is 

higher than the maximum vs observed in other studies and tree species: 83 cm h-1 in E. regnans 

(Vertessy et al. 1997), 33 cm h-1 in P. patula (Alvarado-Barrientos et al. 2013), ~75 in L. 
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tulipifera (Wullschleger and King 2000)], and even the maximum vs reported for E. grandis: 60 

cm h-1 in 4-year old plantations (Benyon 1999), and 60 cm h-1 in ~26 year-old plantations 

(Kallarackal 2010). On grapevines, where the LAI to sapwood area ratios are extremely high, 

studies have measured maximum vs (cm h-1) of 110 using the Tmax method (Intrigliolo et al. 

2009), which is still within the range of Fd measured with MHR. 

The ability to measure high Fd is of great importance in ecological and physiological 

research. Studies often require to comparing the same species at different developmental stages, 

which often results in significantly different ranges of Fd. For example, Forrester et al (2010) 

observed higher Fd in two-year-old Eucalyptus globulus trees, compared to eight-year-old trees 

(average of 13 to 6 cm h-1). According to their results these changes in Fd were strongly 

associated with changes with age of the ratio between LAI and sapwood area (LAI/As). Other 

studies using various sap flow sensors have reported similar patterns of high Fd when the LAI/As 

ratios are high (Alsheimer et al. 1998, Delzon and Loustau 2005, Dye et al. 1996, Forrester et al. 

2010, Kostner et al. 2002). Nonetheless, studies reporting high Fd (>100 cm3 cm-2 h-1) on whole 

rooted trees are rare, which we consider it can be associated, in part, due to the difficulty in 

measuring it. Conversely, in artificial setups commonly used in sensor validation experiments, 

high Fd are often observed. For example, Vandegehuchte and Steppe (2012b) using the Sapflow+ 

method, estimated vh close 150 cm h-1 on artificial columns filled with sawdust. Similarly, in our 

tree cut experiment, the Fd estimated from our sensors were significantly higher than those on 

trees of the same characteristics. We consider that this difference is the result of the removal of 

the root systems, which eliminates the resistance to water flow. This can additionally help 

explain the higher Fd values observed in our study on the first days on the experiment. Vertessy 

et al. (1997) observed a similar pattern, i.e., higher Fd in the first day of a tree cut experiment, 

compared to consecutive days, which was also attributed to the removal of the root system. 
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While vessel clogging or the formation of tyloses or callus tissue around the where the stems 

were cut might explain the reduction over time, as can be seen in Figure II-1, the main reduction 

was from the first to the second day of our experiment. On additional days, the reduction was 

observed in only some trees, but not all. As observed in Figure II-5, estimated average Q and Fd 

for all trees, did not show a significant reduction after the second day of our experiment. 

Additionally, the formation of tylosys is an unlikely explanation of such reduction under short 

periods of time, because tylosys takes longer to form (Kitin et al. 2010, McElrone et al. 2010). 

Clogging of the conductive tissue due to impurities in the water can definitely result in a 

reduction in Fd during our entire study, but it does not explain the reductions from one day to the 

next without changes in consecutive days. 

   

Performance of MHR on different environmental conditions 

 Similar to the results from other studies (Dunn and Connor 1993, Forrester et al. 2010, 

Forster 2017), we observed a reduction in Fd of E. grandis trees as age increased (Figure II-7, A, 

B, C). We measured Fd up to a 105 (cm3 cm-2 h-1) in one-year-old, 60 on four-year-old, and a 

maximum of 40 on ten-year-old trees. Consistent with our result, MHR and HR showed a strong 

linear relationship within a Fd range of 0-55, and HR was noisier, especially closer to the upper 

range. We collected data on these three plantations for several months during the growing season 

and did not observed Fd values higher than 110 but were often higher than the measuring range 

of HR, especially in the one-year-old trees. In this particular study, the MHR algorithm allowed 

us to compare contrasting ranges of Fd, and detect pulses of increased transpiration following 

precipitation events, that were higher than the measuring range of HR. Such comparison would 

not have been possible using HR alone. While there is a practical lower limit on the diameter size 

that HP sensors of a given probe size can measure, the ability to use the same method to make 
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comparisons among and between species can be of great interest in sites with an expected high 

Fd variability. In studies with a high variability of species and tree diameters, a combination of 

HD and HP sensors is often needed before changing the design of the sensors, or selecting a 

different method such as the heat balance (Trcala and Cermak 2012, Vellame et al. 2010, Zhang 

and Kirkham 1995), to be able to account for transpiration of  trees of relatively small sizes in 

the com 

 Despite the ecological importance of transpiration at high elevations (Gale 2004, Smith 

and Geller 1979), studies reporting transpiration based on sap flow measurements are rare. Under 

these conditions, fluctuations in ambient temperature and solar radiation results in sap flow 

patterns that are not well understood. Difficult access to many of these sites renders high-power-

use sap flow methods difficult to implement due to the need of solar panels. Our results on E. 

myrtilloides trees (we show data for only one) growing at 3800 m.a.s.l. show that MHR had 

noisier estimates and occasional higher or lower Fd estimates, compared to HR (Figure II-7, E). 

Given that HR was originally designed for low and inverse flows, the cleaner estimates observed 

within this Fd range were expected. At low Fd ranges, the relationship between MHR and HR 

was as good from 0-8 cm3 cm-2 h-1 (R2 = 0.82). While this might indicate that HR is superior than 

MHR under these conditions, when we applied a locally weighted regression (Cleveland and 

Loader 1994) to both methods, Fd estimates were identical. 

 As sap flow research becomes more prevalent in extreme environments (Chan and 

Bowling 2017), understanding the role of freeze/thaw-driven sap flow and non-traditional water-

loss pathways such as stem water loss or water loss from leafless branches becomes highly 

relevant. For example, Höltä et al. (2018) studied sap pressurization in birch (Betula pendula 

Roth.), and discussed that HD sensors, while accurate within the growing season, they might 

overestimate sap flow during the winter because of the various factors affecting the measuring 
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principle of the method (i.e., the differences in temperature). This has also been highlighted by 

Chan and Bowling (2017) where they subjected HD sensors to conditions similar to those 

expected in very cold climates. In their laboratory experiments, sap flow stopped when the 

temperature of the stem was below the freezing point, which confirmed that HD sensors can 

estimate very small or zero flows, despite sudden changes in temperature. However, in both 

studies, the ability of the HD method to estimate Fd from differences in temperature (an 

important characteristic of the method), becomes a strong limitation under the extreme 

temperature changes observed during winter. Additionally, the unidirectional measuring nature 

of this method, limits the study of freeze/thaw-driven sap flow, which is often bidirectional, and 

often on opposite directions at different depths of the sapwood simultaneously. While not the 

goal of this study, we have observed in both field and Laboratory experiments, that the direction 

of flow at a given sapwood depth, results from the complex interaction between: a) the source of 

the nucleation point during freezing, b) the intensity, frequency and duration of the changes in 

temperature, and c) the mass of the stem and the conducting tissue. When these factors interact in 

specific ways, different sections of the sapwood might be frozen at different times, resulting in 

flow in opposite directions. In our freeze/thaw experiment using both HR and MHR algorithms 

to estimate Fd, we observed that sections inside the sapwood 1.5 cm apart can, under specific 

conditions, have flows in opposite directions (Figure II-7, D). Under such conditions, a single 

measurement point, which is typical of the traditional HD method, might miss some relevant 

patterns that can help explain redistribution of sap for cavitation repair, or redistribution of non-

structural carbohydrates during the winter months (Hartmann and Trumbore 2016, Hölttä et al. 

2018, Quentin et al. 2015). While most of our Fd estimates with both HR and MHR on A. 

saccharum were under the measuring range of HR, on other ongoing research studies on maple 

syrup production, we are aware of Fd as high as 60 cm3 cm-2 h-1 in living tapped trees.  
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  Thermal conductivity of green wood and water changes with temperature (Steinhagen 

1977, Vandegehuchte and Steppe 2012a). Additionally, the conditions under which ice crystals 

form, also affect its thermal conductivity (Bonales et al. 2017). The review on thermal 

conductivity changes with temperature and volumetric water contents provided by Steinhagen 

(1977), indicates that some of the Fd measured at low temperatures might be the result of 

changes in thermal diffusivity at low temperatures. However, according to our results, once 

sapwood temperature in the A. saccharum log was lower than -5 ºC, both HR and MHR 

registered near zero Fd values. According to Bonales et al. (2017) and Steinhagen (1977), 

thermal diffusivity should continue to change below -5 ºC. Then if the Fd we measured as a 

result of freeze/thaw cycles is heavily influenced by changes in thermal diffusivity, such 

influence should also be present at lower temperatures, which as just mentioned is not the case in 

our laboratory experiment. Recently, we observed the same pattern on pine (Pinus silvestris) and 

spruce (Picea abies) trees in an ongoing study on transpiration of boreal forests in Northern 

Sweden: on nearly all monitored trees, once sapwood temperature and sap was below -5 ºC, no 

Fd was measured with either HR nor MHR, eve when sapwood temperature fluctuated between -

5 ºC and -13ºC for several days. Finally, we have tested MHR with both Type-T thermocouples 

and with thermistors, and the only difference we have observed so far, is the higher measurement 

stability of thermistors. At this moment, we are not aware of how HD sensors can truly monitor 

Fd during winter time, considering that the heated probe is maintained at approximately 40ºC, 

which we are certain it results in a bubble of liquid sap around the heating element, which might 

affect Fd measurements during critical times during the winter.  

  

 



 

 61 

Conclusions 

The alterative MHR method allowed us to significantly increase the measuring range of 

HR to Fd values up to 130 cm3 cm-2 h-1, which is greater than the range reported for most tree 

species. In general MHR and HR were well correlated within -45 to 45 in all the species we 

studied, but HR had an overestimation memory effect only when Fd was outside the measuring 

range of HR. At very low Fd (<5) HR resulted in more stable estimates and less noise than MHR, 

however, there was a high correlation between them, and when a smoothing function was applied 

to both, no significant differences were observed. In this study, which is based on field 

measurements and laboratory experiments, we show that MHR is a viable alternative that can be 

easily implemented in three-probe HP sensors to monitor inverse, low and high flux densities. 

Additionally, it can also be applied on previously collected raw data, if HR was unable to predict 

Fd values higher than 60 cm3 cm-2 h-1. However, further research and experiments under 

controlled conditions on different species and wood anatomies are needed to understand how 

thermal diffusivity and thermal conductivity at low temperatures affect sap flow estimates. 
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Figures and tables  

 

 

 
Figure II-1 Diagram of the sensor installation set up. A = the stem, B = heat pulse sensor, C = 
heat dissipation sensor, D = natural temperature gradient sensor E = tire tube, F = tubing 
connected to 20 L bucket, G = fixed-volume reservoir and H = position of thermocouples in each 
sensor 
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Figure II-2 Gravimetric water use for all trees during the four days of our experiment, collected 
at 15-minute intervals. 
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Figure II-3 Sap flux density estimated with HR and MHR in trees 1 and 2. In this graph we 
compare Q (A), and one measuring point with the highest Fd range (B) estimated obtained with 
both algorithms, for trees 1 and 5. Only two of three Fd measurement points are shown per tree. 

��
��

��
��

�

	
�

	
�

�
�

�
�
���


���

���
��

���
�

	
	�

	
��

	
�� ��� �� ��

� �
���

�� ���
 �
�! �

�

�	
"	
#	

�		
��	

$

	
	�

	
��

	
��

����
�%�%�	�� �%"%�	�� �%�%�	�� �%�%�	�� �%#%�	�� �%&%�	��

� �

�	
"	
#	

�		
��	

'�����

'�����

(�

(�

)�

)�

�*+���" �*+���#�*+�����*+�����*+����



 

 65 

 
Figure II-4 Correlation of Fd estimates between MHR and HR algorithms for the middle 
thermocouple of tree 2. In this figure we compare the linearity between MHR and HR. We used 
data from Tree 2 middle thermocouple only. On average both algorithms showed a strong linear 
correlation within a range of 0-40. On DOY 127, this range was from 0-70, but HR Fd estimates 
were slightly higher than MHR 
 

 
Figure II-5 Average water use (top panel) and average Fd (bottom panel) measured directly using 
a scale (GWU) or using an algorithm. In this graph we compare average GWU, with average Q 
for each algorithm, and average Fd for HR, MHR, and our previously calibrated HD Fd estimates 
for reference purposes. Fd estimates for MHR and HR were not calibrated. We can see that only 
HR showed an overestimation memory effect on the second half of the day for both Fd and Q 
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Figure II-6 The relationship between GWU and the MHR and HR algorithms. Here we compare 
average estimated Q for each algorithm, with average GWU. We used all data from Trees 1, 2, 3, 
5, 7 and 8 including the time intervals when Fd was underestimated. All data (Q and GWU) 
corresponds to 15-minute intervals 
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Figure II-7 Ranges of Fd measured with MHR and HR on different species and environmental 
conditions. A) 1 YO, B) 4 YO, and C) 10 YO E. grandis trees, growing in plantations. D) A. 
saccharum log subjected to freeze/thaw cycles, and E) E. myrtilloides tree. Each line for MHR 
and HR is a position inside the sapwood, we show three in E. grandis trees, and two in A. 
saccharum and E. myrtilloides tree. All measurements were collected at 15-minute intervals. 
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Table II-1 Summary of the tree harvesting protocol and sap flow methods installed in each tree  

Tree Diameter Harvest date/time 

1 5.3 May 1, ~8:00 
2 6.1 May 1, ~8:00 
3 3.9 May 1, ~9:00 
4 6.1 May 1, ~12:00 
5 4.3 May 1, ~12:00 
6 6.1 May 3, ~13:00 
7 5.6 May 3, ~13:00 
8 5 May 3, ~15:00 

HPM = heat pulse method 
HDM = heat dissipation method 
 
 
 
 
 
 
Table II-2 Comparison of means of gravimetric water use measured in all trees 

Tree Anova 
DOY 153-156 

Anova 
DOY 154-156 

Welch Anova 
DOY 153-156 

Welch Anova 
DOY 154-156 

1 
average = 394 
 

F = 53.61 
p = <0.0001 

F = 8.68 
p = 0.0003 

F =35.91 
p = <0.0001 

F =7.70 
p = 0.0008 

2 
average = 518 
 

F = 53.61 
p = <0.0001 

F = 6.75 
p = 0.0015 

F = 18.87 
p = <0.0001 

F = 5.00 
p = 0.0084 

3 
average = 347 
 

F = 14.82 
p = <0.0001 

F = 4.25 
p = 0.0158 

F = 17.49 
p = <0.0001 

F = 4.26 
p = 0.0166 

4 
average = 268 
 

F = 53.53 
p = <0.0001 

F = 2.96 
p = 0.054 

F = 38.4 
p = <0.0001 

F = 2.79 
p = 0.0723 

5 
average = 250 
 

F = 3.81 
p = 0.01 

F = 1.55 
p = 0.21 

F = 3.97 
p = 0.0099 

F = 1.56 
p = 0.2150 

6 
average = 112 
 

F = 118.02 
p = <0.0001 

F = 6.02 
p = 0.003 

F = 37.68 
p = <0.0001 

F = 7.59 
p = 0.0008 

7 
average = 397 
 

F = 9.54 
p = <0.0001 

F = 11.43 
p = <0.0001 

F = 10.21 
p = <0.0001 

F = 10.88 
p = <0.0001 

8 
average = 114 

F = 135.77 
p = <0.0001 

F = 15.91 
p = <0.0001 

F = 43.05 
p = <0.0001 

F =11.43 
p = <0.0001 
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Abstract 

Demand for timber and biomass from poplars, specially from short rotation woody crops 

(SRWC) is increasing in the East North Central region in the USA. With an increase in the total 

area managed to meet these needs, understanding how stand level transpiration (T, mm d-1) 

changes during the average rotation length can help improve model parameterization and 

prediction capabilities to estimate T using stand age as a main predictor variable. However, a major 

challenge for this approach is to address site-specific differences that can significantly override the 

age affect. In this study, we monitored three aspen-dominated (Populus tremuloides Michx.) 

natural stands located in Oneida County, Wisconsin, USA: a 34-year-old (Mature) reference 

mature forest, and two coppice-managed plantations (24 and 10-year-old, Mid-aged, Young, 

respectively). Our objectives were to: a) determine whether site age is correlated to stand T, and 

b) assess the role of soil saturation (S, unitless) in driving T and explaining inter-site variability. 

Sap flow sensors were used to estimate average sap flux density (Fd, cm3 cm-2 h-1) at each site, and 

whole-tree water use (Q, L d-1) and T were estimated by multiplying Fd by predicted sapwood area 

(AS , m2) from allometric equations fitted for each site. To test the effects of site-specific 

differences in T estimates, we adjusted a two-dimensional S model for each site, and predicted S 

under two scenarios: limited and non-limited S. Modeled S was used to model stand transpiration 

(Tmod, mm d-1) for each site and determine whether under similar S conditions, age and T are 

correlated. According to our statistical analysis, estimated Mature stand T had a maximum of 5.5 

m d-1 early in the growing season (seasonal average 2.7) and was higher than the Mid-aged and 

Young sites, which both had a maximum early-growing season T of 2.5 mm (seasonal average 1 

 CHAPTER III 
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and 0.3 mm, respectively). Tmod under an S-limiting scenario reduced average transpiration rates 

by ~10% across sites, but these reductions were not significantly different from estimated T. Tmod 

under non-limiting S conditions resulted in significantly higher transpiration rates in the Young 

(+170%), but not in the Mid-aged (+34%) or Mature (+5%) sites. While not significantly different 

between the Mid-aged and Young sites, annual average T was positively correlated with stand age, 

and this relationship was maintained under both S scenarios. Dominant trees accounted for 76% 

of stand T in the Mature site, and 58% and 51% in Mid-aged and Young sites, respectively. These 

results match previous studies in mature aspen forests, and also highlight the important role of 

small-diameter trees in sites where they are present in large numbers. Our results indicate that site-

specific differences in soil properties and their associated moisture availability, can have an 

overriding effect on age, nonetheless, this effect can be accounted for by modeling the effects of 

S on stand T under potentially different S scenarios. Once this approach was applied, stand age 

was related to average stand T. Our results documenting the relationship between stand age and 

water use, combined with our modeling approach to account for site-specific differences, provide 

valuable baseline information for predicting impacts of aspen-dominated SRWC on site water 

balance under different management scenarios. 

 

Keywords: ecohydrology, sap flow, aspen, transpiration, modeling 

 

Introduction 

Despite increasing scientific interest and research initiatives on bioenergy-water 

relationships, there is a strong focus on industrial water use associated with biomass feedstock 

processing (Berndes 2008, Chiu and Wu 2013, IDNR 2007, Perlack et al. 2005, Rupesh et al. 

2016, White 2010, Yeh et al. 2011), and less attention has been given to water use (transpiration, 
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T, mm d-1) associated with plant growth (Hinchee et al. 2009, Jassal et al. 2013, Mueller et al. 

2012, Popp et al. 2014, Powers et al. 2011, Watkins et al. 2015). Consequently, the potential 

ecohydrological impacts of the production of bioenergy might be underestimated. Further, at the 

regional scale, the lack of studies on stand-level T and its impacts on the water cycle, are 

reflected in the absence of strategies to address these issues in long-term bioenergy development 

plans (BETO 2013, Perlack et al. 2005).  

In the East North Central region of the USA short rotation woody crops (SRWC) are 

commonly used to produce wood pellets, timber, and whole tree biomass for bioenergy (Davis et 

al. 2012, Hinchee et al. 2009, Perlack et al. 2005, Zamora et al. 2013), with common rotation 

cycles varying depending on the end use (under three years if it is used for feedstock biomass, or 

up to 15 if trees are sold for timber). At the national scale, about 27% of the renewable energy 

consumed is derived from SRWC, and it is expected to increase from 2% of total energy 

consumed nationally, to 9% by 2030  (White 2010). The rapidly growing demand for alternative 

renewable bioenergy sources will likely result in the expansion of SRWCs and the conversion of 

mature forests into bioenergy plantations.  

Understanding how stand management (e.g., rotation, thinning, etc.) impacts T dynamics is 

fundamental in order to foresee potential negative impacts under future environmental 

conditions, and to improve current management systems or adjust rotation lengths in ways that 

balance both biomass productivity with T rates (Berndes 2010, Berndes et al. 2010). In most 

cases, such as with SRWC, the primary goal is to maximize timber and biomass production per 

unit land area (Forrester 2013, Nelson et al. 2012, Tullus et al. 2009). However, since plant 

productivity and biomass accumulation are directly related to water use (Dillen et al. 2013, 

Kanowski 1997, White 2010, Zamora et al. 2013), management practices aimed at increasing 

biomass productivity are likely to result in higher T rates.  
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Previous research on SRWC in poplars and willows has provided evidence on the potential 

impacts to hydrologic services under current and future climate change conditions (Dimitriou 

and Mola-Yudego 2017a, b, Lasch et al. 2010, Oliver et al. 2015), potential nitrogen and CO2 

fluxes and greenhouse gas mitigations associated to their production (Balasus et al. 2012, Hansen 

et al. 2013, Verlinden et al. 2013), the impacts of their production to water quality, soil organic 

matter and microbial communities (Baum et al. 2013), and the quality and quantity of the 

biomass that can be harvested (Kauter et al. 2003). However, despite the current state of 

knowledge on SRWC, there are several questions that remain unanswered regarding T patterns 

and potential impacts on hydrologic services. For example, the rotation cycle for most short 

rotations of hybrid poplars for biomass feedstock production are under 5 years (Nikiema et al. 

2012, Zamora et al. 2013), while the rotation length is commonly increased to more than 10 for 

timber or wood pellet production (Christersson 2010, Karacic et al. 2003, Liesebach et al. 1999), 

especially for Populus tremuloides Michx. However, rotation cycles for feedstock biomass or 

timber production do not take into consideration potential changes in T over time, which could 

be very helpful in the creation of modelling scenarios using stand age as a main predictor 

variable. In other fast-growing species plantations studies have found a trend in water use 

strongly associated with age. For example, in E. grandis plantations, T increases from the 

moment of the establishment and reaches maximum rates at canopy closure (3-6 years of age), 

followed by decreases in T until transpiration rates are similar to those observed the first year of 

establishment. The subsequent reduction in T has been linked to canopy closure; the faster 

canopy closure occurs, the steeper the post-canopy closure decline in T (Almeida et al. 2007, Du 

Toit 2008, Forrester et al. 2010, Ryan et al. 2008). While a decline in stand T as pronounced as 

what has been observed in E. grandis plantations is not expected in P. tremuloides SRWC 

plantations, primarily due to the relatively slower growth rates. Nonetheless, information about 
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the relationship between T and plantation age can help land managers incorporate stand T in their 

management strategies and define rotation scenarios that take into consideration both biomass 

accumulation and water use at the tree and stand levels. Unlike other fast-growing species (e.g., 

eucalyptus spp.), there is a lack of studies for many SRWCs, including aspen, that address 

changes in T in rotation lengths greater than 10 years, and most studies focused on rotations 

under 5YO (e.g., Bloemen et al. 2017, Gochis and Cuenca 2000, Jassal et al. 2013, Pataki et al. 

2011, Petzold et al. 2011). However, the available studies have observed similar trends to those 

observed in eucalyptus and other fast-growing species. For example, Gochis and Cuenca (2000) 

observed an increment in stand T from 1 to 3 year-old (YO) poplar hybrids (P. trichocarpa x P. 

deltoids) plantations, similar to the results by Wilske et al. (2009) in 3 and 6YO poplars. 

Angstmann et al. (2012) estimated stand T using sap flow sensors in longer rotations (10, 43 and 

77 YO) in sites where P. tremuloides was not a dominant species, and observed an inverse 

relationship with age for aspen trees. When all species were considered, they observed an 

increment from 18 to 43 and a reduction afterwards from 43 to 77 YO. A similar study by Ewers 

et al. (2005) found that average T reduced from 12 to 20YO in sites where P. tremuloides were 

present, and an increment from 20 to 37YO. However, in these sites, P. tremuloides abundance 

was different among sites, which might explain their results. Considering all species in their 

sites, stand T increased with age from 12 to 37YO, similar to the results by Angstmann et al. 

(2012). These results highlight that at the stand level, T is related to stand age, and this 

relationship can only be observed at the stand level in mixed species.  

Deterministic models are commonly used for various species to estimate and model stand T 

under different environmental conditions. Most of these models estimate T using a combination 

of tree or plant-level measurements scaled to the site level, soil water content data, water and 

carbon fluxes measured with eddy covariance, or with energy balance equations (Barella-Ortiz et 
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al. 2013, Bloemen et al. 2017, Domec et al. 2012, Fischer et al. 2013, Jones et al. 2017, Kim et 

al. 2008, Muller and Lambs 2009, Valipour 2015, Wilske et al. 2009, Zhao et al. 2013). 

However, a key limitation of these methods is the need for validation. Studies that rely on energy 

balance equations or eddy covariance measurements (Arneth et al. 1999, Poblete-Echeverria et 

al. 2012, Schume et al. 2005) often validate the measurements against watershed-level 

discharges, which have a strong lag effect on daily T estimates, or plant-based references (i.e., 

sap flux measurements) which can be limited by small sample size (Kume et al. 2010, Peters et 

al. 2018, Smith and Allen 1996). Another limitation is the difficulty in monitoring tree-level T 

for extended periods of time, at time intervals relevant to derive water use estimates for entire 

rotation cycles. On SRWC, most studies cover time frames within one to five years (Allen et al. 

1999, Bloemen et al. 2017, Jassal et al. 2013, Jones et al. 2017, Kim et al. 2008, Perry et al. 

2001, Uddling et al. 2008), primarily due to the limitations previously mentioned. An alternative 

to estimating water use based on continuous measurements over time for plantations managed 

under different rotation lengths, is to study plantations of the same species at different ages in 

chronosequence studies (e.g., Delzon and Loustau 2005, Grau et al. 1997, Naranjo et al. 2011, 

Petrone et al. 2015, Walker et al. 2010, Zewdie et al. 2009). Following this approach, it is 

possible to make inferences about the development of the species/ecosystem of interest over 

time, assuming that site characteristics such as soil type, topography, or nutrients are accounted 

for, and the site has low diversity and is not subjected to extreme disturbances.  

To test whether stand age and average stand-level T relationships can be established for 

SRWC of P. tremuloides, the objectives of this study were to: a) estimate seasonal and daily T of 

three (Young, Mid-aged, and Mature, see next section for details) coppice plantations dominated 

by P. tremuloides and b) determine how variability in site conditions can influence the age effect 

on stand T. Our first hypothesis was that at the tree level, whole tree water use (Q L d-1) would 
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be highest in the Mature site, compared to the other two sites. Conversely, we expected that the 

rate of water uptake per unit sapwood area (i.e., sap flux density; Fd) would be greatest in the 

Young site, and lowest at the Mature site, due to the overall lower leaf area to sapwood area 

ratios. Our second hypothesis was that stand T will increase with stand age, primarily as a result 

of greater total leaf area and leaf area index (LAI, unitless) and overall larger individual tree 

sizes. Specifically, we expected stand T to be correlated with stand age. Finally, we were also 

interested in understanding how variability among sites can override age effects on stand T, and 

if through modeling approaches, it is possible to account for these differences and elucidate the 

underlying relationship between age and stand T. 

The expected increase in the demand for biomass feedstock and timber from SRWCs will 

likely result in an expansion of poplar-dominated forests and plantations in the Midwestern U.S. 

A. Understanding how age and site effects interact to influence stand T can be of great value for 

the development of models to better predict potential ecohydrological impacts of the expansion 

of SRWC on water yield and, hence, improve management strategies for maintaining diverse 

benefits to society. 

  

Methodology  

Description of the study sites 

This study was conducted in three naturally-regenerated aspen (Populus tremuloides 

Michx.) stands located in Oneida County, Wisconsin, USA: a 34-year-old (YO) reference mature 

forest (45°48’24.43”N-89°39’59.18”W), a 24-YO coppiced-managed plantation 

(45°37’14.52”N- 89°35’35.63”W) and a 10-YO a coppice-managed plantation (45°42’47.06”N- 

89°47’30.31”W) (henceforth, Mature, Mid-aged and Young sites).  
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The area is dominated by glacial moraines and outwash plains that create a set of deep 

sand, sandy-loam soils ranging from moderately well-drained to excessively drained. The 

dominant soil types at each site were: Mature (Padus-Pence sandy loams – well drained sandy 

loam and gravelly sandy loam), Mid-aged (Padus-Goodman complex – well drained sandy loam 

and gravelly sandy loam), Young (Sayner loamy sand – excessively drained loamy sand) 

(Hartemink et al. 2012). Soil bulk density, percent sand and clay content, and porosity were 

estimated at each site from 0-60 cm in 15 cm increments (Table III-1) (Cisz-Brill et al, in prep). 

 

Data collection 

The data collected at each site included: whole-tree (Q, L d-1) and stand-level water use 

(T, mm d-1), solar radiation (CNR2, watts m-2), relative humidity (HMP45, RH, %),  and air 

temperature (HMP45, AirT, %), precipitation, vapor pressure deficit (VPD , kPa) throughfall, 

stemflow, volumetric water content (EC5, VWC, cm3 cm-3) and stand characteristics (e.g., 

density, composition, basal and sapwood area). All environmental data were collected at a 

weather station installed near the Mature site. All environmental sensors were read and stored 

every 15 minutes using a CR1000 datalogger (Campbell Scientific. Inc. Utah, USA) from June 

10 to October 5, 2013 (DOY: 167-280). A second set of environmental variables including RH, 

AirT and wind speed (u, m s-1) were downloaded from the MesoWest weather station (ID = 

KRHI). Stemflow and throughfall were measured after precipitation events of varying 

magnitudes using 10 collectors for stemflow installed in trees of various diameters and 20 

collectors randomly distributed in each site for throughfall. However, due to constant overflow, 

we were unable to use our stemflow data. Throughfall data were averaged per collection period, 

and we subtracted the precipitation registered for the same time intervals to estimate 

precipitation interception for each site. A linear equation was fitted between precipitation and 
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percent precipitation interception to compare precipitation interception at each site. VWC was 

measured in the first 100 cm of soil at 20, 40 and 100 cm, with two replicates per site, and 

converted to soil saturation (S, unitless) according to van Genuchten (1980): 

 𝑆 =
𝜃 − 𝜃@
𝜃7 − 𝜃@

 Eq.  III-1    

 

Where S is the saturation, q  the volumetric water content (averaged for the entire 100 cm), 

qr the residual water content (0.05 % for sandy soils, according to (Zhang 2011)), and qs the 

volumetric water content at saturation. qs was estimated as the average porosity from 0-60 cm for 

each site. Once S was estimated, a new class variable was created to identify five S ranges (SR, 

unitless) based on the absolute saturation value: 0.03-0.16, 0.16-0-18, 0.18-0.19, 0.19-0.22, 0.22-

0.38. Additionally, we estimated S for the top 40 cm of soil (S40) for modeling purposes and to 

assess whether soil moisture in the top soil had a higher influence on transpiration rates than the 

entire 100 cm soil profile. 

 

Stand characteristics 

As part of a different study on biodiversity of pollinators Jarvi et al. (2018) ten 100 m2 

plots were randomly established at the Mature and Mid-aged sites, and 50 m2 due to higher tree 

density in the Young site. At each plot, measurements were taken of diameter at breast height 

(DBH) of trees greater than 1 cm in DBH. We used these data to determine species composition, 

stand density and average height (Table IV-3). Using the data from all plots, we determined the 

diameter distribution of P. tremuloides trees for each site in diameter categories in increments of 

1 cm. The diameter distribution estimated for each site was later used in the scaling procedure 

(see “Scaling process” below).  
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For comparison purposes, total above-ground biomass for P. tremuloides trees was 

estimated according to Jenkins et al. (2003) using the following formula: 

 

 𝑏𝑚 = 𝐸𝑥𝑝(𝛽F + 𝛽) ln(𝐷𝐵𝐻)) Eq.  III-2    

Where bm is the total aerial biomass in kg, b0 and b1 the predictor parameters (-2.2094, and 

2.3867, respectively). Biomass was estimated for all trees in each of the 10 plots per site, and 

scaled up to 1 ha to estimate total dry biomass per ha (TDB, t ha-1). For other species present at 

each site, we estimated TDB using Eq.  III-2 selecting their respective b0, and b1 parameters for 

each species, as indicated by Jenkins et al. (2003). 

 

Measurement of sapwood area 

Populus tremuloides is a heartwood species characterized by the presence of diffuse 

pores evenly distributed across the sapwood (Hart et al. 2013); consequently, there is no clear 

boundary to differentiate sapwood from heartwood. While the sapwood is whiter than the 

heartwood, and heartwood is white/light brown or creamy, they are often indistinguishable, 

making it difficult to create allometric equations to predict sapwood area (AS, m2) (Mackes and 

Lynch 2001). To address this issue and ensure accurate measurements, a subset of samples from 

each site were dyed using the following dyes and concentrations: Fuschine (1 and 0.1%), ferric 

chloride (10%), methyl orange (0.1%), bromocresol green (1%) and soaking the samples in ethyl 

alcohol and acetone, following the protocol by Wengert (1976). All dyes were applied on a 

recently sanded sample and monitored over a 48-hour period. The ethyl alcohol was applied 

directly to the samples and monitored while the sample remained wet. A flashlight (Maglite Led 

Pro®) was used to enhance the visibility of sapwood in all samples, referred to here as the light 

diffusion method, whereby light is diffused where the sapwood absorbs the applied chemical. 
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Methyl orange yielded favorable results after approximately 10 minutes of application and 

remained effective for another 20, approximately. However, ethyl alcohol yielded instantaneous 

results, similar to the methyl orange dye, but remained active only while the sample was wet. 

Based on these results, sapwood depth was estimated by combining ethyl alcohol treatment with 

the light diffusion method.  

A total of 74 tree cores were collected (Mature: 24, Mid-aged: 18, Young: 32). Sapwood 

depth and tree diameter were used to estimate AS, m2 following the light diffusion method 

described above. All the samples were taken at the end of the growing season (October 6th, 2013) 

approximately 10 cm below the area where the sensors were installed. One sample was taken in 

the direction of the sap flow sensors and the other one at approximately a 90º angle to cover the 

radial variability of sapwood/heartwood. We sampled the entire width of every stem. All samples 

were shipped to the Ecohydrology Laboratory at the University of New Hampshire and oven-

dried over a 24-hour period. Once AS was estimated we fitted the following equation for each site 

to predict AS (in m2) from diameter (in cm, with bark): 

 𝐴N = 𝐸𝑥𝑝(𝛽F + 𝛽) ln(𝐷𝐵𝐻)) Eq.  III-3    

 

Where AS is the sapwood area, and b0 and b1 the predictor parameters. We estimated 

parameters (b0 and b1) for each site (see Table III-3), but given the relatively low number of trees 

sampled in the Mid-aged site, the R2 between predicted and observed AS was low. To increase 

the predictability of the allometric equation for this site, we merged Mid-aged and Mature into a 

single category and generated b0 and b1 parameters. Ultimately, AS was estimated for the Young 

site using the parameters derived from that site, and for the Mid-aged and Mature sites using the 

parameters derived from the merged data. 
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Tree-level water use 

To estimate average tree-level water use, we used sap flow sensors following the heat 

ratio (HR) method (Burgess et al. 2001b). We selected a total of eight trees per site, based on 

physical characteristics (e.g., diameter, crown size, overall visual health), to cover as much as 

possible the variability at each site. We installed one sap flow sensor per tree at breast height, 

and sensors were installed in all four cardinal positions (North, East, South, West) at each site. 

All sensors were designed and built by JGL at the Ecohydrology Laboratory at the University of 

New Hampshire. Due to the high wildlife (deer) traffic in the area, the sensors were designed to 

include a 4-pin connector that allowed the communication cables to detach from the sensors 

when pulled, to avoid unnecessary damage to our equipment. According to the third law of 

thermocouples, a third metal can be added to the thermocouple without affecting the voltage 

generated at the junction of interest. We tested in the Laboratory sensors with and without the 4-

pin connector at different temperatures and saw no difference in the measured voltages . Each 

sensor set consisted of two probes with three type-T thermocouples and one probe with coiled 20 

W nichrome wire heater. The thermocouples were positioned at 0.5, 1.75 and 3 cm from the base 

of the sensor. During the installation of the sensors, we did not remove the bark from the trees, 

but for some large trees, we used a spatula to create an even surface to facilitate thermocouple 

alignment. After installation, all sensors were covered with 1 m (height) reflective insulation 

(Reflectix ®) to protect the sensors against sudden changes in ambient temperature or sunflecks. 

We estimated heat pulse velocity (Vh, cm h-1) and wound-corrected heat pulse velocity (Vc, cm h-

1) according to Burgess et al. (2001a) using: 

 𝑉" =
k
𝑥 𝑙𝑛

𝑣)
𝑣*
3600 Eq.  III-4    
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 𝑉. = 𝑏𝑉" + 𝑐𝑉"* + 𝑑𝑏𝑉"3 Eq.  III-5    

 

Where Vh is the heat pulse velocity, k is the thermal conductivity and x the distance 

between probes, and v1/v2, the temperature ratio. b, c, and d, are the parameters used to correct 

Vh for wounding effects. Vc was converted to sap flux density (Fd, cm3 cm-2 h-1) according to 

Vandegehuchte and Steppe (2013) with the following equation:  

 𝐹5 =
𝜌5
𝜌7
8𝑀𝐶 +

𝐶5;
𝐶7
< 𝑉. Eq.  III-6    

 

Where rd is the density of the sapwood, rs the density of water, MC the volumetric water 

content of the sapwood, Cdw the thermal conductivity of dry wood, and Cs the thermal 

conductivity of water.  

 

 

Upscaling of plant transpiration 

To scale whole-tree level measurements Q (L d-1) to stand-level transpiration (T, mm d-1), 

first we averaged Fd (estimated using Eq.  III-6) for each site using all the measurement points 

(approximately 24 points per site). Fd data with constant noise (likely the result of sensor, or 

equipment malfunction) were filtered out and not used to estimate site-average Fd. Next, we 

predicted AS of all trees within each of the diameter categories derived from each site (see “Stand 

characteristics” above) using Eq.  III-3. We estimated sap flow (Q, L h-1) for all trees of each 

diameter category multiplying site-average Fd by the predicted AS of each tree. Daily Q (L d-1) 

was estimated first integrating all hourly estimates for each tree, and then averaging the 

integrating measurements for all trees of each site. For each site, T was estimated using the 

following formula: 
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 O
(𝐹5	. 𝐴7)

𝐴

5RS

5RT

𝐷 Eq.  III-7    

 

Where di-dn are the first to last diameter categories, Fd the average flux density (converted 

to L m-2 d-1) , AS the predicted sapwood area (in m2), A the total area (in m2) of the subplots 

(Young = 500 m2; Mid-aged & Mature = 1000 m2), D the ratio (unitless) of aspen trees, with 

respect to other species to correct for the abundance ratio of aspen trees ( Table IV-3). 

 

Cross-site comparison 

 To perform a cross-site comparison and assess the influence of soil water availability on 

our T estimates, we first estimated ET0 using the Penman-Monteith equation (Allen et al. 1998), 

then adjusted a soil water balance model (the bucket model) (Guswa et al. 2002, Rodriguez-

Iturbe et al. 1999) to predict different scenarios of S (Smod) (see below for details). We then fitted 

a linear mixed model (Littell et al. 2006, West et al. 2007) to predict site T, using ET0, S and 

other environmental variables (see below for details). Once the model was fit, we replaced S in 

the mixed model with Smod from the bucket model and estimated stand T at similar S (based om 

the seasonal S average). Finally, we performed a series of statistical analyses on both the initial T 

and the modeled T (Tmod) to test whether different sites responded similarly to S.  

 Reference evapotranspiration was estimated using: 

 

 𝐸𝑇F =
0.408∆(𝑅Z − 𝐺) + 𝛾

900
𝑇 + 273𝑢*(𝑒b − 𝑒c)

∆ + 𝛾(1 + 0.34𝑢*)
 Eq.  III-8    

Where ET0 (mm d-1) is the reference evapotranspiration, D the slope of the vapor pressure 

curve (kPa ºC-1), Rn the net radiation (MJ m-2 d-1), G the soil heat flux density (MJ m-2 d-1), g the 
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psychometric constant (kPa ºC-1), T the mean air temperature (ºC), u2 the wind speed (m s-1), es 

the saturation vapor pressure (kPa), and ea the actual vapor pressure (kPa).  

The bucket model was fit for each site to estimate a general saturation-based water 

balance using the following formula: 

 

 𝑛𝑍@
𝑑𝑆
𝑑𝑡 = 𝐼(𝑆, 𝑡) − 𝐿(𝑆) − 𝑇(𝑆) − 𝐸(𝑆) Eq.  III-9    

 

Where n is the porosity of the soil, Zr soil depth, I(S,t) infiltration rate, L(S) leakage, T(S) 

transpiration, and E(S) the evaporation from the soil. A full description of the parameters used 

for this model is shown in Table III-4, and additional details for the estimation of each parameter 

are shown in Appendix III-II. To reduce the error due to unknown changes in saturated 

conductivity (Ksat) at different soil depths, we limited the modeling to the first 40 cm of soil 

(S40). Once the model was fit for each site (see  

 

 

 
Appendix III-IV for regression between observed vs. predicted S), we artificially increased 

or decreased every precipitation event in the Young and Mature sites to generate Smod  that 

resulted in seasonal S averages for two scenarios: a) where S is a limiting factor (seasonal S 

average of 0.09) and b) where S is not a limiting factor (seasonal S average of 0.2). To minimize 

the artificial changes (increments or reductions) to every precipitation event to produce the S 

scenario of interest, S and precipitation data from the Young site was used to generate the S-

limited scenario and the data from the Mature site to generate the S-non-limited scenario. These 
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sites were chosen due to their low and high S (Young and Mature, respectively), which were 

close to our targeted scenarios.  

The linear mixed model was fit for each site to predict T, using the following general 

equation: 

 𝑇jk5 = 𝑋𝛽 + 𝑍𝛾 + 𝜀 Eq.  III-10    

 

Where Tmod is the modeled (or predicted) site transpiration, X is the series of fixed 

variables (ET0, S40, SR, VPD, RH, AirT, pp, NetRad), Z the random effects (DOY), b and g are 

the slopes of X and Z, and e the error of the model. We tested three configurations of fixed 

variables and selected the model with the lowest corrected Akaike and Bayesian Index criterion 

(Table III-5). Initially, the model was fit using S from the top 40 cm of soil, and once the model 

was fit, S was replaced by estimated Smod corresponding to the non-limiting and limiting S 

scenarios.  

 

Statistical analysis 

All statistical analyses, including model fitting, and analyses of variance, were performed 

in JMP Pro 13 (SAS Institute Inc. Cary, North Carolina, USA). To assess the impact of various 

environmental variables on stand T, as part of our second hypothesis (i.e., higher stand T in 

young stands), first we fitted a Standard Least Squares model, where stand T was the response 

variable, and average AirT, RH, NetRad, VPD, daily precipitation, and S40 the model effects. 

Additionally, this analysis was done at different time intervals to detect seasonal effects. These 

time intervals were selected based on five major S recharge periods: July 10 – July25, July 26 – 

August 6, August 7 – August 27, August 28 – September 9, September 10 – October 8. 
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A similar analysis was conducted on Tmod where we replaced S for Smod corresponding to the 

S limited and non-limited scenarios, to: a) determine how stand T varied across sites under 

similar water contents, and b) test how changes in water content affects stand T, potentially  

overriding the age effect. We used ANOVA’s to assess the effects of individual variables on Q 

or T, or to compare their differences by month or at times of interest. Finally, we averaged Fd 

from 11AM-3PM (considered the Fd daily peaks) and performed a similar analysis as with Q and 

T, adding both S and S40, to test if Fd was influenced by changes in top (40 cm) soil water 

content. 

 

Results 

Meteorological variables  

According to the local weather station in Rhinelander, WI (MESOWEST Station ID: 

KRHI), the study area received 420 mm of precipitation from June 16 to October 5th, 2013. 

Precipitation data collected at each site agreed with the overall pattern but varied in the 

magnitude of each event and in total precipitation. For the same period, we measured a total of 

320 mm. According to the precipitation data, there were two short periods with precipitation 

under 1mm: a 10-day (DOY: 191-202) and a 20-day period (DOY: 118-238). The maximum 

solar radiation observed on clear days varied from approximately 700 to 1050 W m-2, the 

temperature ranged from 1ºC to 32ºC, and relative humidity from 25 to 100%. 

 

General patterns of observed and predicted soil saturation 

Soil saturation within the first 100 cm varied by site (annual average 0.14, 0.16 and 0.24, 

Young, Mid-aged, and Mature, respectively) and these differences were significantly different 
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(P= <0.0001, F=51220). As shown in Figure III-1, S was equally sensitive to precipitation inputs 

at all three sites, which resulted in a similar S seasonal profile.  

The bucket model satisfactorily predicted the general trends of S. As seen in  

 

 

 
Appendix III-IV, combining data from all sites resulted in an R2 between observed and 

predicted S of 0.86 (RMSE = 0.01). The R2 at the Young site between predicted and observed 

was 0.5 (RMSE = 0.01), 0.54 in the Mid-aged site (RMSE = 0.01), and 0.74 in the Mature site 

(RMSE = 0.01). The largest estimation error was observed in the Young site (Figure III-1), 

particularly on the driest day (DOY: 237) and at the end of the growing season (DOY: 275). 

Predicted S was lower in the Young and Mature sites at the end of the growing season, but this 

reduction was likely associated to the fact that the bucket model assumes constant T during the 

entire monitoring period, which results in a reduced modeled S. 

 

 

Stand characteristics and allometric relationships 

Analysis of the stand data showed that density was higher in the Young and Mid-aged 

sites (6680 and 6690 trees ha-1, respectively), compared to the Mature site (4620 trees ha-1), and 

that the percent of dead trees increased with age from 2 to 15%  (Table IV-3). Estimated basal 

areas of P. tremuloides trees were 7.2, 9.2 and 19.4 m2 ha-1 (for Young, Mid-aged, and Mature 

stands, respectively). Total above ground biomass estimates were 145, 101, and 18 tons of dry 

biomass per hectare (TDB h-1)  (Mature, Mid-aged and Young sites, respectively), assuming pure 

aspen sites. Considering all species combined, the total biomass estimates were slightly higher: 

159, 114 and 18 (Mature, Mid-aged, and Young, respectively). Diameter and AS were more 
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strongly correlated in the Young and Mature sites (R2, 0.98 and 0.92, respectively. Table III-3), 

compared to the Mid-aged site (R2, 0.45). Combining all sites, diameter and AS were strongly 

correlated (Figure III-2), but the AS of the Young sites was overestimated (Appendix III-I). 

Conversely, T (L d-1) was poorly correlated with AS or basal area by site. R2 between daily water 

use and diameter was 0.0, 0.09, and 0.08 in the Young, Mid-aged and Mature sites, respectively. 

Combining all sites, the correlation between daily water use and diameter improved (R2 = 0.38), 

but the regression varied during different times of the year (e.g., R2 = 0.6 from DOY 213-236).  

The linear equations fitted for each site between average precipitation and percent interception 
were nearly identical among sites ( 
 
 
 

Appendix III-IV). Based on the precipitation events we sampled, interception was 100% 

of precipitation when the total precipitation was 1.6, 2.2 and 1.6 mm in the Mature, Mid-aged 

and Young sites, respectively. However, based on the intercept of the linear equations, the 

Mature site had higher overall interception rates, and the Mid-aged and Young sites were 4 and 

6% lower, respectively.  

 

Sap flux density patterns  

Averaging all trees per site, and three sapwood depths measured per tree, our results 

indicate that Fd (in cm3 cm-2 h-1) was significantly different among sites (F=1890, p=<0.0001). 

The Mature site showed the highest Fd average (37 ±12), followed by the Mid-aged (26 ±7) and 

Young sites (24 ±7.6). Fd averages were generally stable throughout the measurement period in 

the Mature and Mid-aged sites; however, as shown in Figure III-3, the Young site showed a 

significant reduction after DOY 180 to an average Fd of 5 at the end of the growing season. 

The response of Fd to VPD was different at each site. In the Mature site Fd was linearly 

related to VPD within a range from 0-0.8 kPa, and this response remained similar from June to 
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September, and declined significantly in October (Figure III-4). Our statistical analysis 

considering the entire monitoring period indicated that peak Fd in the Mature site was 

significantly influenced by VPD (F-ratio = 391, p=<0.0001, Table III-6), and a similar response 

was observed in the analysis by SR except during the second SR period (Table III-7). The Fd 

response to VPD in the Mid-aged site showed an inflection point in July and August after 

approximately 0.8 kPa, but was relatively stable throughout the monitoring period (Figure III-4). 

Similar to the Mature site, Fd was influenced by VPD considering the entire monitoring period 

(F-ratio = 6, p=<0.01. Table III-6), and similar results were observed in the analysis by SR, 

except during the second SR period (Table III-7). In the Young site Fd responded similarly to 

VPD as the Mid-aged site in June and July, but it was significantly lower than the other two sites 

the remainder of the growing season. Similar to the other sites, Fd in the Young site continued 

after VPD values were higher than 1.5 kPa, but at much lower rates (< 5 cm3 cm-2 h-1) (Figure 

III-4). In the Young site, the statistical analyses showed that VPD was a strong driver of Fd when 

the entire monitoring period was considered, and a similar response was observed when analyzed 

by time interval (Table III-6 and Table III-7).  

In general, combining all the data, S and S40 had a strong influence on Fd for all sites 

(p=<0.0011, Table III-6). As seen in Figure III-5, the shape of the response curve between Fd 

and VPD was influenced by differences in SR. At lower SR (S < 0.18), Fd showed an inflection 

point at high VPD values (greater than approximately 1.2 kPa); conversely at high S, no 

inflection points in Fd were observed at high VPD, and in the Mature site Fd and VPD were 

nearly linearly correlated. Analyzed by time interval, S had no detectable effects on maximum Fd 

in the Young site in the first interval (time interval 1, F-ratio=0.3, p=0.57), but became a 

significant driver of max Fd in consecutive intervals (Table III-7). Conversely, S had a significant 

(p=<0.0001) influence on maximum Fd rates of both Mature and Mid-aged sites, during the first 
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three intervals. During the interval 4, the interval with the highest precipitation and highest S, 

maximum Fd was not significantly influenced by S in these sites (Mature: F-ratio=0.6, p-

value=0.43; Mid-aged: F-ratio=0.1, p-value=0.81). 

 

Average whole-tree daily water use (Q) trends 

Averaging all estimated Q data per site (321, 156, and 126 trees. Young, Mid-aged, and 

Mature, respectively), the Mature site showed the highest Q (Figure III-6). The maximum 

average Q at this site was 11.6 L d-1, and this site showed a 45% (6.3 L d-1) decrease in Q at end 

of the monitoring period. Average Q in the Mid-aged site was 7.4 L d-1 at the beginning of the 

growing season and declined by 54% towards the end of the growing season (2 L d-1). Similar to 

the Mature site, the Mid-aged site continued to actively transpire until leaf abscission at the end 

of the growing season. The Young site had an average Q of 9.4 L d-1 early in the growing season 

but had a reduction of more than 95% starting on DOY 180 (the first period with reduce 

precipitation), that continued declining until the end of the growing season when Q was 0.3 L d-1. 

 

Site-level transpiration (T) 

Stand-level transpiration (T, mm d-1) varied significantly among sites (Figure III-7, 

p=<0.0001, F=456) and throughout the growing season. The estimated T in the Mature site was 5 

mm d-1 early in the growing season and declined to 2.7 by the end of the growing season. The 

Mid-aged site had a similar pattern to the Mature site, with a daily T of 2.5 at the beginning of 

the growing season and maximum of 1.2 towards the end. By contrast, the Young had a higher T 

(2.8 mm) than the Mid-aged (2.5 mm) site early in the growing season, but decreased rapidly 

after DOY 180, which was the first extended period with no precipitation in the middle of the 

growing season (Figure III-7).   
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According to our statistical analyses combining all the data by site, RH , NetRad and S 

significantly influenced T in all sites (Table III-8). AirT and S40 had a significant influence only 

on the Mature and Mid-aged sites. Conversely, only the Young site seemed to be significantly 

(p=<0.0001*) influenced by VPD and not by AirT or S40. Finally, pp was the only variable that 

did not seem to influence T in any site.  

Splitting the analysis by time interval, in the interval 1, NetRad and S40 significantly 

influenced T at all sites (Table III-9). Only during this first period did pp have a significant 

(p=<0.0185) influence on T in the Mature site; no other significant effects of pp on T were 

observed during the remainder of the growing season on any of the three sites. As the growing 

season progressed no variable seemed to affect T during periods 2 and 3, only the Young site was 

influenced by NetRad (p=<0.0111). In period 4, T in the Young site was significantly (p= 

0.0200) influenced by S40, and at the end of the monitoring period NetRad was the only variable 

with a significant influence on T in both the Mid-aged and the Young sites.  

 

Modeled stand transpiration and effects of soil saturation  

 Modeled stand-level transpiration (Tmod) was strongly correlated with stand T (measured) 

(Figure III-8). R2 between T and Tmod was 0.92 at all sites (RMSE=0.11, 0.12 and 0.33, Young, 

Mid-aged and Mature, respectively). Tmod was estimated after DOY 187 due to the lack of 

measured S prior to this day. Replacing measured S with modeled S for a water-limiting scenario 

(average S=0.09) and a non-limiting scenario (average S=0.2) affected each site differently. First, 

Tmod for the S-limiting scenario resulted in general lower Tmod at all sites: a reduction of -9% 

(with respect to estimated average T) at the Mature site, -10% at the Mid-aged site, and 11% at 

the Young site (Figure III-9). Conversely, Tmod in a S non-limiting scenario (average S = 0.2) 

resulted in significantly larger changes in Tmod in the Mid-aged and Young sites (+34 and +170% 
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increment, respectively) (Figure III-10). The Mature site was the least influenced by high S, and 

Tmod was +5% higher than measured T. A one-way Anova between observed T and Tmod under 

the two saturation scenarios showed no difference in the Mature site (Table III-10. p=0.30, F-

ratio=1.2), and significant differences in both Mid-aged and Young sites (p=<0.001).  

 

Discussion 

Average stand sap flux density and its relationship with whole-tree water use (Q L d-1)  

 Average site-level Fd is commonly used to estimate stand T (Hogg and Hurdle 1997, 

Uddling et al. 2008). Unlike Q, which requires total AS to be calculated, Fd is independent of tree 

size, and in general terms is the result of the interaction of several factors, such as atmospheric 

conditions of (e.g., VPD, NetRad), wood anatomical traits (e.g., ring vs diffuse pores), plant 

water use requirements, and the LA/AS area ratio. Consequently, once the variability (between 

species, within diameter ranges of the same species, or within the sapwood profile) has been 

addressed, Fd can provide near real-time responses of trees to their environment, whether derived 

from heat pulse (Burgess et al. 2001b) or heat dissipation (Granier 1987) sap flow sensors. In the 

absence of strong mid-day depressions in Fd (Lu et al. 2004), maximum Fd represents the 

integrated effects of atmospheric demand, plant physiological traits, and soil water availability. 

Consequently, average stand Fd is a good indicator of mean Q, which can be used to estimate or 

model site T (mm d-1).  

According to our first hypothesis, Q would increase with site age, and Fd was expected to 

show an opposite pattern. We observed increases in Fd with site age from a maximum average of 

22 in Mid-aged and Young plantations to a maximum average of 46 in the Mature reference 

forest. Hogg et al. (1997) measured a maximum sap velocity of 65 (in mm h-1) in 70 YO aspen 

trees, consistent with our trend for aspen-dominated forests. They observed seasonal differences 
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in Fd that were insensitive to changes in VPD. Conversely, we found that VPD was a strong 

driver of Fd, and a strong linear relationship was maintained at low VPD (VPD < 0.8 kPa), which 

we attributed to low stomatal control at low evaporative atmospheric demand, which has been 

previously observed in various species, including poplars and P. tremuloides  trees (Hogg et al. 

1997, Hogg and Hurdle 1997, Oren et al. 1999). Past this VPD threshold, the Fd-VPD 

relationship was no longer linear and occasionally an inflection point was observed. This 

inflection point resulted in a reduction of Fd of up to 40%, before VPD reached maximum values. 

Further exploration of the Fd-VPD relationship showed that it was not driven by VPD or NetRad 

alone. For example, the average for July (Figure III-4) showed a non-linear response in both the 

Mid-aged and Young sites, but not in the Mature sites, suggesting an age or a site interaction. 

While the age effect has been documented for Fd and T (Angstmann et al. 2012, Gochis and 

Cuenca 2000), it is also a plausible explanation, in our study, curve relationships with significant 

reductions in Fd, observed when high VPD and low S occurred simultaneously (SR: 0.16-0.18, 

Figure III-5), regardless of the site age. These results can explain why one study reported a 

correlation between Fd and VPD, but limited prediction of stand T in European beech-dominated 

sites (Renner et al. 2016). On P. tremuloides trees, Ewers et al. (2005) observed a similar linear 

relationship at low VPD, but a relationship that approximated an exponential curve when 

considering all the monitoring period. According to their results, the Fd-VPD relationship was 

also related to site age, with the oldest 37YO stand having a steeper slope compared to the 

younger 20 or 12YO stands, which is similar to the patterns observed in our study.  

  The development of LAI over time, and its impacts on the LAI/AS ratio, can also have a 

strong impact on stand average Fd across stands of different ages. In natural aspen forests, where 

initial tree density is not controlled, studies have measured canopy covers up to 100% and LAI 

up to 3.8 within 10-15 years (Frouz et al. 2015, Huang et al. 2013). In young sites with high 
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densities the LA/AS ratio per tree can be higher than a site with the same age but lower tree 

density, which may explain the similarly high maximum Fd observed in between our Young and 

Mid-aged site (see Figure III-3). Management operations, such as thinning (Rytter and Stener 

2005) and self-thinning resulting from competition (Huang et al. 2013, Trugman et al. 2016) 

reduce the number of stems and sapwood area and increases growth rates of remaining tees, 

thereby increasing the LA/AS ratio. Thus, in aspen coppice plantations, an initial prediction 

would be that LA/AS increases over time due to more rapid increases in total leaf area relative to 

AS, compared to an undisturbed stand. This should result in increasing rates of Fd with age, 

which matches our findings on average Fd changes with age. Although we were unable to obtain 

LAI data for our study, the positive relationship between AS and stand age observed in our study 

(Table IV-3: average AS 8.5 to 24 cm2 tree-1,  Young and Mid-aged, respectively), was likely 

related to increasing Fd and the LAI/AS ratio over time. Although  LAI would initially decline 

after thinning, Petrone et al. (2015) found that reductions in T and potentially the LA/AS ratio 

resulting from partial harvesting, can recover to pre-harvest conditions within two years. Further 

research is needed into this specific topic under different growing densities at different ages can 

help better predict annual water budgets (Gochis and Cuenca 2000, Kim et al. 2008, Muller and 

Lambs 2009, Wilske et al. 2009).  

Finally, according to our results, Q was on average lower in both young sites, compared 

to the mature site (Figure III-6; p=<0.001, difference: 3.8 for both), but not between the Young 

and the Mid-aged sites (p=0.9, difference: 0.009). While on average tree diameter was directly 

related to site age (Table IV-3), seasonal changes in mean Q were more complex and did not 

follow a clear trend with age throughout the growing season. Before DOY 185, we observed a 

similar Q between the Young and Mature sites, both of which were higher than the Mid-aged 

site. After DOY 185, Q decreased in the Young site and was lower than the Mid-aged and 
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Mature sites. Consequently, our results only partially support our hypothesis, when the entire 

average for the monitoring period is considered. These temporal trends may relate to changes in 

WUE in response to stand development and environmental drivers. For example, at leaf level, 

studies have found increments in water use efficiency (WUE) with tree age (Vickers et al. 2012, 

We et al. 2018, Weiwei et al. 2018). In poplar hybrids (Populus deltoides x Populus 

petrowskyana) plantations, Jones et al. (2017) observed an increase in WUE from 1 to 3YO of 

plantations establishment, that plateaued after the third and fifth years. The higher tree T rates 

observed early in the growing season, might be the result of lower WUE of P. tremuloides trees, 

and the significant reduction, which coincided to low S, might be explained by the well 

documented sensitivity of young P. tremuloides trees to seasonal drought, compared to older 

trees  (Greer et al. 2018, Vickers et al. 2012). 

 

Relationship between stand age and T 

Our second hypothesis was that that stand T would increase with stand age, due to the 

larger tree size and higher LA and LAI in older stands. Both LA and LAI, as well as tree size, are 

known to be directly related to stand T. Studies on poplar hybrids have estimated stand T rates 

from 5 to 8 mm d-1 in young poplar plantations (ages between 1-3 YO) (Gochis and Cuenca 

2000, Kim et al. 2008, Wilske et al. 2009), and their high transpiration rates are often associated 

with high stand densities. Angstmann et al. (2012) estimated significantly higher transpiration 

rates on stands dominated by 18YO P. tremuloides trees, compared to 43 and 77YO trees. 

Considering these observations, our second hypothesis was that at the stand level the Young site 

will have higher transpiration rates resulting from higher transpiration, growth and stand 

densities, than the Mature forest (Angstmann et al. 2012, Bloemen et al. 2017, Jones et al. 2017, 

Oliver et al. 2015, Peterson and Peterson. 1999). However, our results did not support this 
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hypothesis, and contrary to our initial prediction, we observed a trend of increasing T with stand 

age. Similar to the tree-level results, Mature stand T was significantly greater compared to both 

Mid-aged and Young sites but no clear difference was observed between the Mid-aged and 

Young sites (Figure 1-7). Despite the high density (6690 trees h-1), high Fd (Figure III-3) and 

high tree T before DOY 185, stand T in the Young site was higher than Mid-age site only before 

DOY 180, but lower than the Mature site. While these results agree with the study by Perry et al. 

(2001), where modeled T was similar between 8-9 and 24-34 YO stands, the observed trend at 

the tree level contradicts the reduction with age reported for P. tremuloides by Angstmann et al. 

(2012).  

A recent study by Berry et al. (2018), highlighted the importance of tree size distribution, 

and its influence on estimates of stand T. They observed based on modeling and tree level 

measurements, that large trees can contribute significantly more to stand T than smaller trees. 

Similar studies in montane tropical forests, have found that dominant trees (13% of stand tree 

density) can contribute to nearly 80% of the stand transpiration (Aparecido et al. 2016). In our 

sites, the upper 25 percentile (considered dominant trees) of the diameter distribution per site 

accounted for 76%, 58% and 51% (Mature, Mid-aged and Young, respectively) of total stand T. 

These results support previous studies (Aparecido et al. 2016, Berry et al. 2018), particularly our 

Mature site. However, the Young and Mid-aged sites had similar densities (~6600 trees h-1) and 

smaller trees accounted for nearly 50% (40% Mid-aged, 50% Young) of total stand T. Thus, in 

these sites, the relative contribution of smaller trees, is significantly higher than in old/mature 

sites, which highlights the importance of site density and the relative abundance of a large 

number of smaller trees in younger stands when tree-level measurements are scaled up to the 

stand level. 
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The importance of site factors in explaining water use patterns 

Our statistical analysis showed that S was significantly different across sites. In order to 

further elucidate the role of S in controlling water use patters, we modeled T (Tmod) under two 

scenarios: a limiting and a non-limiting S (average 0.09, and 0.2). Studies have documented that 

P. tremuloides trees and poplars in general, are sensitive to changes in soil moisture (or soil 

saturation: S). Pataki et al. (2000) studied sap flow in various dominant species in the Rocky 

Mountains, USA (Pinus contorta, Abies lasiocarpa, Pinus flexilis, and P. tremuloides). In their 

study, aspen trees were the least sensitive to changes in soil moisture. However, Larcheveque et 

al. (2011) observed that different poplar clones have different responses to S, but in general most 

poplar clones are sensitive to changes in soil water content. On irrigated sites, Kim et al. (2008) 

observed that reductions in irrigation of hybrid poplars can reduce growth by about 18%. In P. 

tremuloides in particular, soil water availability has been identified as the main driver of growth 

and T (Peterson and Peterson. 1999). Moreover, several studies have concluded that site selection 

is an important factor when establishing new poplar SRWC, to guarantee maximum growth rates 

(Angstmann et al. 2012, Petzold et al. 2011). 

In our sites, percent sand content was higher in the Young (0-60 cm soil profile mean: 

86%) site than the Mid-aged and Mature sites (Table III-1). We consider that soil type is perhaps 

the major factor defining differences among sites, that could only be overwritten by slope, which 

was not an issue in our sites. In general, soil structure in combination with other factors such as 

precipitation and evapotranspiration, have been identified by various studies as the drivers for 

soil moisture dynamics (D'odorico et al. 2000, Guswa et al. 2002, Isham et al. 2005, Puma et al. 

2005, Puma et al. 2007). Specifically, sand percent content has a strong control on infiltration 

and retention curves (Kosugi et al. 2002, Yang et al. 2004, Zhang 2011), which ultimately define 

S, water available for plant uptake and thus stand T rates. S was on average lower in the Young 
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site, but it was not related to sand percent content by site (Figure III-1). Sand content was in fact 

lower in the Mid-aged site (73%), but S was higher in this site, compared to the Young site, 

which had a higher percent sand content (86%).  

In this study, Tmod in a S-limiting scenario resulted in similar transpiration rates across 

sites with an average reduction of -10% (with respect to observed T) across sites (Figure III-9). 

Conversely, Tmod under a S non-limiting scenario, increased significantly (with respect to Tmod 

estimated under a S-limiting scenario) in both Mid-aged and Young sites (+34 and +170% 

increment, respectively. Figure III-10). Estimated T and Tmod were significantly different among 

scenarios in the Mid-age (F-ratio = 15.28, p=<0.0001) and Young (F-ratio = 7.96, p=0.0058) 

sites. The Mature site had a 5% increment but was not significantly different than estimated T (F-

ratio = 1.71, p=0.193). As shown in Figure III-11, while not significantly different between the 

Mid-age and the Young sites (especially early in the growing season; see Figure III-9 and Figure 

III-10), T increased with stand age from 10 to 34YO. Thus, since a general trend was maintained 

between average Tmod and site age under limiting and non-limiting S conditions, we conclude that 

under similar site conditions, stand age can be used to estimate average T. Gochis and Cuenca 

(2000) observed a similar trend (increment in T with age) in an irrigation study but in shorter (1-

3YO) rotations. However, unlike our sites, they reported no stress or growth limitations due to 

low S. The trend observed in our study, was opposite to the study by Ansgtmann et al. (2012) 

considering P. tremuloides trees alone, their results showed a reduction in T with age for P. 

tremuloides (18 to 77 YO), which could be explained due to the lower contribution of P. 

tremuloides  to total stand T. Considering all the species in their study, stand T increased from 10 

to 43YO, consistent with our study, and later decreased after that from 43 to 77YO. Similar 

increments from the time of plantation establishment, and reductions after canopy closure have 

been observed in fast growing species. Almeida et al. (2007) and Forrester et al. (2010), 
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observed these trends in stand T and Fd within the common rotation cycles of Eucalyptus spp. 

trees. Site density has shown to control the peaks and reductions in T,  when initial plantation 

density is high, studies on Eucalyptus grandis have found a peak in T (and subsequent decline) 

within the first three years of establishment (Almeida et al. 2007, Du Toit 2008, Ryan et al. 

2008). Unlike most Eucalyptus plantations, in SRWC the stand density changes over time as a 

result of natural die-offs and pre and commercial thinning. While changes in T are expected as a 

result of thinning, Petrone et al. (2015) observed that P. tremuloides stands in particular, can 

return to pre-thinning T rates within two years. Then in long-rotation studies of expected T rates, 

the effects of thinning on T estimates can be relatively easily accounted for.  

 

Limitations of our study and recommendations for future studies 

 Soil moisture has been considered a strong factor regulating T and growth rates in poplars 

and P. tremuloides trees (Bloemen et al. 2017, Chen et al. 2014, Larcheveque et al. 2011). While 

we were able to monitor soil moisture to a depth of 100 cm in all sites, our modeling makes two 

strong assumptions. First that S in the first 40 cm of soil has the strongest influence on T. While 

in fast growing plantations most of the fine roots are located in the top 50 cm of soil (Bouillet et 

al. 2002, Laclau et al. 2001), deep roots may still be able to access water from deeper soil 

profiles (Toillon et al. 2013, Xi et al. 2013). The second assumption in our model is that changes 

in S is linearly related to stand T and Fd. According to Larcheveque et al. (2011), this relationship 

might be true within a volumetric water content range of 5-20%, but the slopes may change as 

water content decreases. In modeling scenarios, the effects of T on soil moisture are expressed as 

a curve (extraction curve) (Guswa et al. 2002, Rodriguez-Iturbe et al. 2006, Rodriguez-Iturbe et 

al. 2001), with different slopes depending on the expected extraction rates (Rodriguez-Iturbe et 

al. 2001). At the Young and Mid-aged sites, S varied significantly and we are confident on the 
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slopes estimated for these two sites, however, in the Mature site, it was never lower than 0.14, 

and consequently, the slope estimated by our model in this particular site, might underestimate 

the effects of S on stand T.  

 Two common limitations in sap flow studies are the sample size and the proper 

determination of stand-level AS  (Berry et al. 2018). Sample size is directly linked to equipment 

cost, and the spatial distribution of the species of interest. With wired sap flow stations, most 

studies limit the cable length between 10 and 15 m, to reduce to signal to noise ratio. This creates 

a radius around the sap flow station for the selection of the trees to be monitored, which can 

leave diametric categories or species of interest outside this radius. In single-species stands, 

Kume et al. (2012) recommended an optimal sample size of 15 measuring points to capture most 

of the tree-to-tree Fd variability. However, this recommendation was developed for heat 

dissipation sensors with only one measuring point per sensor. As described in our methods 

section, we monitored a total of 24 measuring points distributed across 8 different trees; despite 

the relatively small sample size, we captured the entire radial profile of all trees monitored. 

Proper determination of AS and the Fd radial profile in large trees is difficult, and can lead to 

major under or overestimations of tree and stand T (Alvarado-Barrientos et al. 2013, Ford et al. 

2004, Gebauer et al. 2008, Kubota et al. 2005, Poyatos et al. 2007). To address sapwood depth 

radial variability, we collected two cores per tree to estimate AS, and measured sapwood depth on 

four points per tree. Additionally, we installed trees in all four cardinal directions to cover the 

potential radial variations in Fd, and in all our trees the entire Fd radial profile was monitored. 

Finally, studies on P. tremuloides  trees have reported diameters of 24 cm in 150 YO trees 

(Bond-Lamberty et al. 2002, 2014), thus we extended our sampling range for AS to include trees 

up to 25 cm in diameter, and adjusted allometric equations for each site and predicted AS with 

site-specific equations (see Table III-3). Species-specific allometric equations are of great value to 
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scale up plant-to-stand level processes (Bond-Lamberty et al. 2002, Jenkins et al. 2003, Perala 

1993), but adjusting equations for a specific site can reduce the error associated with the 

estimation of AS.  

 Based on our experience, we make the following recommendations to future studies 

looking to estimate stand-level annual water balances or interested in modeling stand-level T. 

First, establish a weather station (with all the variables needed to estimate ET0: air temperature, 

relative humidity, incoming short-waver radiation, outgoing long-wave radiation, wind speed) 

and additionally monitor soil moisture, precipitation, photosynthetically active radiation prior to 

the deployment of sap flow sensors. This weather station can be deployed months in advanced, 

to parameterize models from using sap flow data (when it becomes available) to estimate stand 

transpiration. Next, track the development of LAI, and in evergreen species, we recommend 

measuring it two or three times during the growing season, to address potential variability due to 

crown development. Monitor both throughfall and stemflow, considering that in P. tremuloides 

trees 15 cm in diameter, precipitation events under 30 mm (over two or three days) overfilled our 

containers, which were designed to fit 10 L. For throughfall, a minimum of thirty collectors per 

site are recommended, which should also be designed to fit the precipitation expected for a 

monitoring period. Next, we recommend establishing replicates under different site conditions, 

and developing a site profile (i.e., soil characteristics, stand density, allometric equations, etc.) 

for each. If sap flow sensors are used to estimate Fd, under budgetary constraints, the design of 

the sensors can be modified to allow them to detach from the communication cables, so that the 

heat source and temperature probes remain in the trees. This way, the same data logger and 

multiplexor (approx. 70% of the cost of a sap flow station) can be moved between sites (where 

sensors of the same design will be installed in the trees) at intervals of 10-15 days. With the site 

and environmental variables monitored at each site, it is possible to estimate stand-level 
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transpiration for the periods where no Fd was not monitored at each site, using various gap-filling 

procedures (i.e., a linear mixed model) similar to the one used in our sites. If runoff is difficult to 

monitor, a model can be adjusted to the soil saturation of each site, and based in soil properties to 

estimate potential runoff and infiltration.   

 

Conclusions  

 In this study we estimated tree and site-level transpiration of three aspen-dominated sites 

(10, 24 and to 34 YO). Our overarching goal was to determine the relationship between site age 

and stand transpiration. Establishing such relationship can be of great value for the bioenergy 

industry, to elaborate scenarios of potential hydrological impacts associated with the production 

of whole biomass or timber in short rotation woody crops (SRWC). Considering the transpiration 

rates observed in previous studies, we hypothesized that the Mature site will have higher 

transpiration rates (mm d-1) because of higher LAI and overall larger tree size. Our results did 

not fully support this hypothesis.  

In general, we observed an increment in stand T with age (season average: 0.57, 1.12, and 

2.7 mm d-1 for Young, Mid-aged and Mature sites, respectively), which varied seasonally. 

However, our statistical results showed that site characteristics, specifically S resulting from 

differences in soil type, had a strong effect on the estimated stand T. S followed the trend 

observed for T, and according to our statistical analyses, was a strong driver of the response to Fd 

to VPD. When high VPD and low S occurred simultaneously, the VPD–Fd response changed 

from linear to a curve, that reduced Fd at high VPD. Finally, site effects could override age 

effects, but addressing such site effects allowed us to establish a trend between T and stand age.  

To address site effects in estimated T rates, we modeled transpiration under two contrasting 

S conditions, a limited and a non-limited scenario (seasonal average 0.09, and 0.2). Under our 
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limited scenario, T rates decreased by about 10%, with insignificant differences from observed T. 

Conversely, in the non-limiting scenario, the modeled T increased significantly (160%) with 

respect to observed T. Modeled T in the Mid-aged and Mature sites increase by 34% and 5%, but 

was only statistically greater in the Mid-aged site. Since both in observed and modeled T 

increase with age, we conclude that there is evidence to indicate that stand age can be used in 

modeling scenarios to elaborate scenarios of whole biomass and timber in SRWC of aspen-

dominated sites.  
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Figures and tables 

 

 
Figure III-1 Predicted vs. observed soil saturation (S) in the first 40 cm of soil throughout the 
growing season. S was predicted with the bucket model assuming a depth of interception of 2 
mm, and a maximum initial T of 2.37 for the Mature site, and 2.15 for the Mid-aged and Young 
sites. Further details can be found in Table III-4. 
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Figure III-2 Estimated regression between sapwood area (AS) and basal area (m2). The blue line 
is the equation fitted using all data. AS was predicted at each site using site-specific allometric 
equations. b0 and b1 parameters estimated for each site, and regression coefficients can be found 
in Table III-3. 
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Figure III-3 Maximum sap flux density (Fd, cm3 cm-2 h-1) by site during the entire monitoring 
period. The solids dots are the Fd and the lines a locally weighted scatterplot smoothing 
(LOWESS) function fitted with an alpha = 0.1 

 

 
Figure III-4 Response of Fd to VPD at different times of the year. For visualization purposes, we 
first binned Fd into VPD increments of 0.1. The error bars represent one standard deviation from 
the mean, and were estimated from binned data 
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Figure III-5 Response of Fd to VPD at different soil saturations. Saturation ranges are shown at 
the top of each panel. Fd was binned by VPD increments of 0.1. The error bars for each data 
point represent one standard deviation, and were estimated from binned data. Soil saturation 
ranges shown at the top of each panel was estimated from the soil saturation average estimated 
from all the sites 
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Figure III-6 Tree-level average transpiration (L d-1) during the monitoring period. Average tree T 
(L d-1) is the average from 126, 156, ad 321 trees (Mature, Mid-aged and Young, respectively) 
for which water use was predicted multiplying average Fd vs. the estimated AS of each tree. The 
solids lines are a locally weighted scatterplot smoothing (LOWESS) function fitted with an alpha 
= 0.1.  
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Figure III-7 Estimated stand transpiration (T, mm d-1) for each site. Solids lines are a locally 
weighted scatterplot smoothing (LOWESS) function fitted to the observations per site, with an 
alpha = 0.1. Shaded lines represent one standard deviation from the mean, estimated for the 
LOWESS function. 
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Figure III-8 Linear regression between predicted and scaled up transpiration by site. The solid 
line is the fitted linear equation using data from all sites (y= 0.0 + 1.0*X ,F=911, p-
value=<0.0001, Adjusted R2 = 0.91).  

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

● ●

●

●

●●●●

●

●
● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

0 1 2 3 4 5

0

1

2

3

4

5

Measured stand transpiration (mm d-1)

M
od

el
ed

 s
ta

nd
 tr

an
sp

ira
tio

n 
(m

m
 d

-1
)

●

●●

●

●●
●

●

●

●
●

●
●
●

●

●

●

●

●

●●

●●

●

●

●

●●
●

●
●●●●

●
●●●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●●

●

●

●
●
●

●
●●
●

●

●
●

●

●

●

●
●

●
●●

● ●●
●

●

●

●
●●●●

●
●●

●

●
●●
●●●

●

●●
●●

●●●●●
●
●●●

●

●

●
●
●

●

●

●

● ●

●

●
●

●
●

●
●
●
●
●

●
●
●
●

●
●●

●

●●

●
●
●●
●
●●●●
●

●
●
●

●●

●

●

●

●

●

Mature
Mid−aged
Young



 

 113 

 
Figure III-9 Observed (dots) vs. modeled transpiration (Tmod) (solid lines) in a saturation-limiting 
scenario. Soil saturation = 0.09, was estimated with the bucket model (Further details and 
parameters used to estimate S, can be found in Table III-4.). Shaded lines represent one standard 
deviation from the mean, estimated for the observed T values. 
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Figure III-10 Observed (dots) vs. modeled transpiration (Tmod) (solid lines) in a saturation non-
limiting scenario. Soil saturation = 0.2, was estimated with the bucket model (Further details and 
parameters used to estimate S, can be found in Table III-4.). Shaded lines represent one standard 
deviation from the mean, estimated for the observed T values. 
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Figure III-11 Comparison of seasonal average transpiration by site. Modeled = estimated with 
linear mixed model (see Table III-5 for details and AICc/BAI indeces), S-limited = estimated 
with average S of 0.09, S non-limited = average S of 0.2 
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Table III-1. Soil characteristics per site (From Cisz-Brill et al in Prep) 

Site Depth 
(cm) 

Bulk 
density 
(g cm3) 

Sand 
(%) 

Clay 
(%) 

Porosity 
(%) 

Young 0-15 0.81 81 3 69.28 
15-30 1.15 85 3 56.78 
30-45 1.29 88 2 51.15 
45-60 1.33 91 3 49.85 

Mid-aged 0-15 0.55 73 3 79.09 
15-30 1.03 73 4 61.05 
30-45 1.22 69 6 54.13 
45-60 1.57 75 5 40.71 

Mature 0-15 0.79 78 4 70.20 
15-30 1.09 74 5 59.05 
30-45 1.29 79 5 51.22 
45-60 1.27 90 4 52.20 

 

 

 

 

Table III-2 Stand characteristics 

Site Density 
(trees ha-1) 

Density -
aspen 
only 

Mortality 
rate (%) 

Average 
diameter 
(cm) 

Average sapwood 
area* (m2) 

Average 
height 
(m) 

Subsample 
N 

         
 

Young 6680 6420 2% 3.72 
(± 0.98) 

 

0.000849 
(±0. 0.000429) 

7 321 
 

Mid-aged 6690 1560 10% 8.45 
(± 4.13) 

 

0.00239 
(±0.00366) 

16 156 
 

Mature 4620 1260 15% 12.8 
(± 4.41) 

 

0. 00604 
(±0.00584) 

16.4 126 
 

All 5996  9% 6.85 
(± 4.73) 

 

0.00203 
(±0.00383) 

  

*Average sapwood area per tree, using N trees of the subsample 
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Table III-3 Parameters for allometric equations to predict sapwood area from diameter 

Site β0 β1 StErr 
- β0 

StErr 
- β1 RMSE *R2  

Young -9.4313 1.7609 0.0999 0.0515 0.0015 0.98 
 

Mid-aged -10.9021 2.2130 1.5476 0.5553 0.0257 0.45 
 

Mature -12.5719 2.8180 0.5938 0.1953 0.0227 0.92 
 

Mid-aged + 
Mature 

-12.5498 2.8093 0.4367 0.1456 0.0241 0.91 
 

All -11.8421 2.5744 0.3360 0.1124 0.0208 0.95 
 

*Linear relationship between predicted and observed sapwood area 

 

Table III-4 Vegetation and soil parameters used to fit the bucket model 

Vegetation parameters Young Mid-aged Mature 

Depth of Interception 2 2 2 

Maximum E (mm d-1) 0.5 0.5 0.5 

Maximum T (mm d-1) 2.15 2.15 2.37 

Saturation at stomatal closure 0.08 0.08 0.08 

Saturation at wilting point 0.04 0.04 0.04 

Root depth (cm) 40 40 40  

Soil parameters    

Porosity (n) 0.63 0.71 0.64 

Saturated Conductivity E (mm d-1) 300 300 300 

Hygroscopic saturation 0.02 0.02 0.02 

Field Capacity 0.3 0.3 0.3 

Drainage Curve Parameter 5 5 5 
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Table III-5 Corrected Akaike and Bayesian information criterion for each of the models tested by 

site.  

Site Fixed effects 
 

- 2 log 
likelihood AICc BIC 

Young 
AirT, RH, NetRad, VPD, ET0, 

WindS, pp, S40 
 

-80.29 -52.08 -26.70 

 RH, VPD, S40, SR 
 -66.18 -52.79 -36.75 

 ET0, S40, SR 
 -55.55 -42.52 -28.61 

Mid-aged 
AirT, RH, NetRad, VPD, ET0, 

WindS, pp, S40, SR 
 

-88.29 -60.01 -34.84 

 RH, VPD, S40, SR 
 -25.38 -9.96 5.84 

 ET0, S40, SR 
 -45.65 -32.29 -18.92 

Mature 
 

AirT, RH, NetRad, VPD, ET0, 
WindS, pp, S40, SR 

 
60.6 97.4 127.4 

 RH, VPD, S40, SR 
 153.28 168.67 184.70 

 ET0, S40, SR 101.47 114.50 128.33 
 

 

Table III-6 Mixed-model result for maximum Fd by site (full monitoring period) 
 Mature Mid-aged Young 

Source F Ratio Prob > F F Ratio Prob > F F Ratio Prob > F 

AirT 315 <.0001* 699 <.0001* 63 <.0001* 

RH 586 <.0001* 1807 <.0001* 371 <.0001* 

NetRad 37 <.0001* 2 0.1232 18 <.0001* 

ET0 196 <.0001* 40 <.0001* 95 <.0001* 

VPD 391 <.0001* 6 0.0150* 1063 <.0001* 

S 21 <.0001* 156 <.0001* 171 <.0001* 

S - 40 cm 16 <.0001* 99 <.0001* 112 <.0001* 
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Table III-7 Mixed-model result for maximum Fd by site (analysis split by time interval) 
Time 

interval 
Source Mature Mid-aged Young 

F Ratio Prob > F F Ratio Prob > F F Ratio Prob > F 

1 

AirT 28.0 <.0001* 13.8 0.0002* 8.7 0.0034* 
RH 74.5 <.0001* 17.1 <.0001* 42.4 <.0001* 

NetRad 2.7 0.0998 0.0 0.9982 8.4 0.0039* 
ET0 4.0 0.0462* 34.5 <.0001* 14.2 0.0002* 
VPD 20.6 <.0001* 5.9 0.0153* 16.7 <.0001* 

S 35.7 <.0001* 63.6 <.0001* 0.3 0.5766 
S - 40 cm 16.3 <.0001* 77.1 <.0001* 0.0 0.8238 

2 

AirT 27.7 <.0001* 77.1 <.0001* 83.0 <.0001* 
RH 9.6 0.0022* 4.9 0.0285* 163.2 <.0001* 

NetRad 10.1 0.0019* 2.2 0.141 9.3 0.0026* 
ET0 10.9 0.0012* 2.6 0.109 11.9 0.0007* 
VPD 1.4 0.2299 0.0 0.9752 124.8 <.0001* 

S 25.4 <.0001* 62.8 <.0001* 14.3 0.0002* 
S - 40 cm 20.8 <.0001* 59.3 <.0001* 12.2 0.0006* 

3 

AirT 99.6 <.0001* 70.2 <.0001* 51.3 <.0001* 
RH 123.7 <.0001* 108.9 <.0001* 81.7 <.0001* 

NetRad 3.9 0.0481* 1.4 0.2455 8.5 0.0037* 
ET0 6.0 0.0148* 1.9 0.1673 16.0 <.0001* 
VPD 48.2 <.0001* 74.4 <.0001* 78.6 <.0001* 

S 70.0 <.0001* 74.5 <.0001* 199.4 <.0001* 
S - 40 cm 89.4 <.0001* 109.7 <.0001* 208.3 <.0001* 

4 

AirT 31.2 <.0001* 90.9 <.0001* 3.8 0.0531 
RH 47.1 <.0001* 177.8 <.0001* 29.5 <.0001* 

NetRad 1.0 0.3153 0.5 0.4646 12.4 0.0005* 
ET0 0.0 0.8315 0.0 0.8392 24.8 <.0001* 
VPD 10.2 0.0015* 23.8 <.0001* 20.8 <.0001* 

S 0.6 0.4358 0.1 0.8152 33.7 <.0001* 
S - 40 cm 2.8 0.0929 0.0 0.847 17.1 <.0001* 

5 

AirT 23.5 <.0001* 50.8 <.0001* 0.0 0.8285 
RH 32.7 <.0001* 166.0 <.0001* 12.4 0.0005* 

NetRad 1.7 0.1986 8.8 0.0033* 0.0 0.9662 
ET0 5.7 0.0180* 19.7 <.0001* 3.7 0.0551 
VPD 5.8 0.0170* 71.5 <.0001* 18.3 <.0001* 

S 19.8 <.0001* 4.6 0.0326* 7.2 0.0076* 
S - 40 cm 20.0 <.0001* 6.5 0.0112* 7.9 0.0052* 
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Table III-8 Standard Least Squares results on the effects of site-level transpiration 

Source 
Mature Mid-aged Young 

F Ratio Prob > F F Ratio Prob > F F Ratio Prob > F 

AirT 15.85 0.0002* 21.66 <.0001* 0.10 0.86 

RH 5.93 0.0173* 26.01 <.0001* 0.0002* 0.0486* 

NetRad 70.33 <.0001* 29.89 <.0001* 0.0173* 0.0212* 

VPD 0.27 0.60 2.62 0.11 <.0001* 0.0039* 

precip 0.47 0.50 0.12 0.73 0.60 0.80 

S40 13.48 0.0004* 10.43 0.0018* 0.50 0.11 

S 10.65 0.0016* 24.17 <.0001* 0.0004* 0.00 
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Table III-9 Standard Least Squares results on the effects of site-level transpiration by saturation 

range 
Time 

interval 
Variable 

Mature Mid-aged Young 

F Ratio Prob > F F Ratio Prob > F F Ratio Prob > F 

1 

AirT 0.06 0.81 1.01 0.35 0.56 0.48 

RH 1.87 0.21 0.35 0.57 0.21 0.66 

NetRad 15.57 0.0056* 13.08 0.0085* 5.94 0.0450* 

VPD 0.02 0.88 5.01 0.06 2.87 0.13 

pp 9.32 0.0185* 5.10 0.06 0.00 0.96 

S40 35.13 0.0006* 20.45 0.0027* 186.74 <.0001* 

2 

AirT 0.45 0.55 0.02 0.90 7.43 0.05 
RH 0.00 0.99 0.03 0.88 2.93 0.16 

NetRad 0.16 0.71 0.33 0.62 1.27 0.32 
VPD 0.14 0.73 0.33 0.62 0.06 0.82 

pp 0.04 0.85 0.03 0.87 0.59 0.48 

S40 0.11 0.76 7.30 0.11 6.98 0.06 

3 

AirT 0.07 0.80 0.04 0.85 0.08 0.78 
RH 0.03 0.87 0.08 0.79 0.77 0.40 

NetRad 0.15 0.70 0.00 0.96 8.74 0.0111* 
VPD 0.59 0.46 0.15 0.71 0.00 0.99 

pp 0.05 0.83 0.48 0.50 0.02 0.88 

S40 0.50 0.49 0.74 0.41 0.39 0.54 

4 

AirT 2.85 0.11 5.29 0.0353* 0.16 0.70 
RH 4.79 0.0439* 3.20 0.09 0.06 0.81 

NetRad 2.70 0.12 0.82 0.38 0.14 0.72 
VPD 2.28 0.15 0.73 0.40 3.63 0.07 
pp 0.43 0.52 0.00 0.97 4.16 0.06 
S40 0.00 0.97 1.65 0.22 6.67 0.0200* 

5 

AirT 0.01 0.93 1.21 0.30 0.45 0.52 

RH 1.41 0.26 0.00 1.00 1.53 0.24 
NetRad 3.95 0.08 11.03 0.0077* 13.17 0.0046* 

VPD 2.02 0.19 0.43 0.53 3.38 0.10 
pp 0.27 0.62 0.11 0.74 2.10 0.18 

S40 0.18 0.68 0.01 0.94 0.32 0.58 
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Table III-10 Summary of modeled stand transpiration 

Site 
Measured T 

Tmod  
S-limited 

Tmod  
Non S-limited 

F-ratio 
P-value 

Average StDev Average StDev Average StDev R2 

Mature 2.58 0.11 2.34 
(-9%) 

0.12 2.79 
(+8%) 

0.12 1.20 
0.3020 

0.0 
Mid-aged 1.08 0.04 0.97 

(-10%) 
0.04 1.47 

(+45%) 
0.04 12.78 

<0.0001 
0.07 

Young 0.341 0.67 0.29 
(-10%) 

0.50 0.93 
(+160%) 

0.48 1.70 
<0.0001 

0.06 
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Appendices 

 

Appendix III-I Linear regression between predicted and observed sapwood area 
 

A different equation was fir for each site, and the blue line represents the linear regression 
observed for all sites.  

 
 

 

 

0.00 0.01 0.02 0.03 0.04

0.00

0.01

0.02

0.03

0.04

Measured sapwood area (m2)

Es
tim

at
ed

 s
ap

wo
od

 a
re

a 
(m

2 )

Linear regression − all sites



 

 124 

 
Appendix III-II Steps to estimate bucket model components 
 
The first parameter in the bucket model is infiltration, which is calculated based on the current S, 
and the depth of precipitation as: 
 

 𝐼n(𝑆(𝑡o̅), 𝑡T) = min	[𝑃(𝑡T), 𝑛𝑍𝑟(1 − 𝑆(𝑡o̅))] Eq.  III-11    

 
Where I´(S(ti), ti ) is the infiltration at ti, at a saturation ti^, min the minimum value between [ , ], 
P(ti) depth of net precipitation, nZr soil depth of porosity n, and S(ti^) the saturation before ti^ 

 
When saturation is higher than field capacity (Sfc), in the absence of soil evaporation or any 
additional precipitation is converted to leakage using:  

 
 

 𝐿(𝑆) = 𝐾7xy
𝑒z{N|N}~��|)

𝑒z{)|N}~��|)
 Eq.  III-12    

 
 
 

Where L(s) leakage at a saturation S, Ksat saturated conductivity, b is an infiltration soil 
parameter and Sfc saturation at field capacity 

 
 

A nominal value was used for E(S) (see Table III-4), and was adjusted to different S, using: 
 

 𝐸(𝑆) = �

0																											𝑆 < 𝑆"
𝑆 − 𝑆"
𝑆∗ − 𝑆"

𝐸							𝑆" < 𝑆 < 𝑆∗

𝐸																												𝑆 ≥ 𝑆∗
� Eq.  III-13    

 
Where Sh is the hygroscopic saturation, S* the saturation at stomatal closure, E the maximum 
evaporation from the soil 

 
 

The maximum transpiration estimated early in the monitoring period was used for T(S). Similarly 
to E(S), T was adjusted to different S, considering that T is directly influenced by water 
availability.  

 

 𝑇(𝑆) = �

0																											𝑆 < 𝑆;
𝑆 − 𝑆;
𝑆∗ − 𝑆;

𝑇							𝑆; < 𝑆 < 𝑆∗

𝑇																												𝑆 ≥ 𝑆∗
� Eq.  III-14    
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Where T(s) is the transpiration at saturation S, Sw the saturation at wilting point, S* the saturation 
at stomatal closure, and T the maximum transpiration per site. 
 
 
 
 
Appendix III-III Adjusted equations for throughfall data 
 

In this graph, we show the average precipitation estimated for the time interval when the 
throughfall was measured. Each point is the average of 20 collectors installed per tree. Dashed 
lines represent the linear functions fitted for each site.  
Linear equations fitted for each site: Mature: y=101.2-7121*x (R2=0.93), Mid-aged: y=95.66-
7127*x (R2=0.76), Young: y=93.3-7116*x (R2=0.96) 
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Appendix III-IV Regression between observed and predicted soil parameters 
Predicted and observed values correspond to S for the first 40 cm of soil.  
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Abstract 

 Demand for timber from fast growing species is increasing in Argentina. Current 

management alternatives such as rotation cycles are strongly focused on biomass and timber 

accumulation, and little attention has been given to changes in tree and stand water use within a 

rotation cycle. Incorporating age-related changes in water use into management plans can help 

land managers mitigate potential negative effects associated with high water use rates of fast-

growing species. In this study we measured stand transpiration (T, mm d-1) in four Eucalyptus 

grandis W. Hill ex Maiden plantations near Ubajay, Entre Rios, Argentina having three different 

ages, 10, 4 and 1 years old (YO), at regular density, and one 1YO plantation with high (double) 

density (1YOHD). Reference potential evapotranspiration (ET0) (Penman-Monteith) and crop 

evapotranspiration (ETk) estimated for a fallow site with minimal pasture cover (Pasture) 

provided reference conditions for comparative purposes. We analyzed inflection points of sap 

flux density (Fd, cm3 cm-2 h-1) for VPD (IPVPD) and PAR (IPPAR) by fitting a local polynomial 

regression (LOESS) surface to the relationship between Fd and AirT, VPD or PAR and hysteresis 

curves (HVPD and HPAR, VPD and PAR respectively) to assess the effects of stand age and 

density on tree response to environmental stress. Fd was measured using the maximum heat ratio 

method (MHR) and scaled up to estimate stand transpiration based on allometric relationships 

with sapwood area. Our results indicate that T in E. grandis increased with age from 1 to 4 years 

and decreased significantly at 10 years. During the peak of the growing season T was 5.2, 3 and 

2.2 mm d-1 (4YO, 10YO, and 1YO, respectively) in the regular density sites, and up to 3.4 mm d-

1 in the high-density 1YO site. During the same period ETk was 3.3 and ET0 4.2 mm d-1. During 

the peak of the 2015 dry season, T in the 10YO and 4YO stands were similar and did not differ 
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significantly from ETk, while the 1YO and the 1YOHD stands had significantly lower T rates and 

were very similar with each other. Comparing across the four treatments, the 1YOHD was more 

responsive to precipitation events than the other sites. Inflection points generated at varying soil 

moisture conditions, were more pronounced at lower VPD when soil moisture was low, 

suggesting that both soil moisture and VPD are important in controlling stomatal response to 

moisture stress. Comparing across treatments, the 10YO maintained relatively stable inflection 

points across a wide soil moisture range, while the 1YOHD showed the greatest variability, 

indicating more opportunistic water use behavior, increasing their water use rates when soil 

moisture was abundant, but reducing to similar rates of other sites of the same age when soil 

moisture is limiting. Analysis of hysteresis curves, indicated that HVPD were larger at lower soil 

moistures, despite the reduced Fd rates. A significant reduction and inversion of the Fd -VPD rate 

change before VPD reached maximum values, followed by a rapid decline during VPD reduction 

in the second part of the day, resulted in the commonly-observed butterfly curves for HPAR. 

Butterfly hysteresis curves, which are associated with reversals in Fd -VPD change rates, 

resulting from hydrologic stress, were observed in all sites except the 10YO. In general, our 

results indicate that mature (10YO) E. grandis plantations, are more capable of regulating 

transpiration rates under high VPD and low soil moisture, reducing their risk for hydraulic 

failure, compared to younger sites. 

 

Introduction  

Demand for timber products, especially of fast growing species like Eucalyptus grandis 

W. Hill ex Maiden, is increasing globally (Berndes 2008, Perez-Cruzado et al. 2011, Stape et al. 

2010) and in Argentina (Braier et al. 2004). At the same time, climate change forecasts predict 

an increase in climate variability, including greater frequency and severity of extreme weather 
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events such as drought and strong precipitation events (Burke et al. 2006), which may exert new 

constraints on the potential for sustainable production of timber and bioenergy feedstocks. 

Understanding water use patterns (transpiration, T mm d-1) in woody plantations is an important 

step to implement appropriate management alternatives designed to promote resilience of 

plantations to climate variability and extreme weather events.  

Highly productive timber and bioenergy plantations are known for their high-water 

requirements (Dunn and Connor 1993, Jassal et al. 2013), which can result in undesirable 

hydrological consequences. In particular, fast growing species such as E. grandis have the 

potential to use large amounts of water, altering stand-level water balance and reducing water 

yield at the watershed scale (Almeida et al. 2007a, Wilske et al. 2009). Additionally, in areas 

where intensive grazing or agricultural production have reduced the infiltration capacity of the 

soil, even moderate precipitation events can lead to high overland flows, soil erosion and 

flooding (Adler and Morales 1999, Bouza et al. 2016). Some of these negative environmental 

impacts of land use can be partially mitigated by establishing woody plantations, through their 

potential to enhance soil hydraulic properties such as infiltration capacity and hydraulic 

conductivity. 

Compared to most other tree species commonly used for fast growing plantations, studies 

on eucalyptus trees have reported exceptionally strong stomatal control on T rates during both 

soil and atmospheric moisture stress (Almeida et al. 2007a, Hubbard et al. 2010, Myers et al. 

1996). Native to Eastern Australia, E. grandis trees have adaptive strategies that allow them to 

respond quickly to changes in precipitation patterns and soil water availability due to its strong 

seasonal changes in soil water availability (Boland et al. 2006). However, when they are 

established as plantations on sites where soil moisture is not limiting, they are capable of 

significantly increasing their water use and biomass accumulation (Almeida et al. 2007a, Stape et 
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al. 2004, Stape et al. 2010). This strong self-regulation suggests that E. grandis trees can adjust 

their transpiration to optimize the use of various resources under a range of environmental 

conductions, such as low soil moisture, high vapor pressure deficit (VPD, kPa), and high 

photosynthetic active radiation (PAR, mmol m-2 s-1), while also avoiding excessive physiological 

stress or damage to tissues when soil moisture is limiting. However, it is not clear whether these 

self-regulation mechanisms are equally present in old and young E. grandis plantations.  

The common management practices used in eucalyptus plantations to maximize 

productivity, such as short rotations or increased planting density, significantly influence both T 

rates and biomass accumulation. Aboveground, increasing stand densities or pruning (when 

higher timber quality is desired) changes processes of canopy foliage development and the 

timing of maximum leaf area index (LAI, m2 m-2), which is directly related to stand water use 

(Forrester et al. 2010). Additionally, research has shown that in fast growing species, LAI 

patterns can peak and decline within the first six years of the common rotation cycles (0-15 

years) (Almeida et al. 2007a, Forrester et al. 2010). In E. grandis in particular, this increase and 

reduction in LAI can occur within the first 3 years (Almeida et al. 2007b, Du Toit 2008, Ryan et 

al. 2008), often resulting from punning or thinning, which is done to increase timber quality and 

direct carbon allocation (Forrester 2013, Forrester et al. 2012). When pruning is not part of a 

management strategy, reductions in LAI over time have also been associated to low 

photosynthetic rates in lower branches and their subsequent die off when leaves are unable to 

maintain a positive carbon balance (Kozlowski et al. 1991). Additionally, in both woody trees 

and palms, height has been associated to reductions in stomatal conductance, resulting from an 

increase in the energy needed to transport water from the roots to the leaves, which can limit 

transpiration and potentially reduce LAI (Renninger et al. 2009, Schafer et al. 2000, Williams et 

al. 2001). 
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Belowground, studies have shown that preferential carbon allocation commonly observed 

in young eucalyptus plantations to stems and leaves results in shallower roots (Bouillet et al. 

2002, Laclau et al. 2001). While shallow rooting may be a disadvantage in terms of water uptake 

from deep soil profiles, it can also be a desirable trait to promote surface soil infiltration and 

reduce runoff. Young E. grandis trees with underdeveloped root systems might be more likely to 

suffer from hydrologic stress when soil water content in the upper soil horizon is low (Bouillet et 

al. 2002), and the atmospheric demand is high (high VPD). In contrast, older trees with well-

established root systems have the ability to access deeper water sources throughout the growing 

season (Brando 2018, Engel et al. 2005, Fan et al. 2017, Giardina et al. 2018, Xi et al. 2018), 

when water in the top soil is limiting. Recent studies have shown that larger trees are more 

resilient to drought in general, and that their photosynthetic rates respond differently to changes 

in soil moisture, compared to younger and smaller trees (Brienen et al. 2017).  

Hysteresis, which refers to the lag response between two variables, can also be 

understood as the rate change over time between two variables. In soils and other artificial 

porous media, the observed hysteresis between water content and water tension has been 

attributed to various factors, including the contact angles between water and the pore spaces, and 

the structure of the macro and micropores (Haines 1930, Staple 1965). However, in general 

terms it is known that in porous media, these factors point towards the different forces or 

energies required to refill, or empty the pores at different volumetric water contents, and the 

energy loss during the process, which makes the process inherently irreversible with zero energy 

loss (Haines 1930, Pavlakis and Barden 1972, Staple 1965). Early studies of water flow in 

porous media offered simplified analogies to understand the presence of inflection points (Haines 

1930, Staple 1965). First, direct comparison of water flow through a common porous medium 

and sapwood are not appropriate, because of the fundamental differences in the arrangement of 
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the matrix (i.e., tightly packed spheres vs. a collection of small conduits for soil and sapwood, 

respectively). However, the cases which arise as result of flow through porous media, and that 

have received extensive attention (Haines 1930, Pavlakis and Barden 1972, Staple 1965), are of 

great value in understanding hysteresis areas, inflection points, and more importantly how they 

are related to tree hydraulics and their value in synthesizing the general stress in the soil-plant-

atmosphere continuum. First, the pendular case which refers to the minimum amount of water 

that conductive tissue can have, where there is only a small film of water trapped in spaces where 

the contact angles of two walls are too small, and where the force holding the water is higher 

than the force that was needed to empty the pore spaces. At higher water contents, there can be 

two clear distinctions, the funicular case, and the capillary case. In the funicular case, several 

pores are filled with water, and there is an uneven and irregular distribution of the filled pores 

and empty pores. In this case, there is a virtual network of connectivity between the filled pores 

that surround the empty pores. In the capillary case, all pores are filled and there is a continuous 

and air-free connectivity of the water filling the pores. Models with glass and ceramic beads have 

shown that changes in water content within the pendular case are reversible and symmetrical 

with respect to the force applied during emptying or refilling. During the funicular and capillary 

cases, in an open system such as cut stem, and in the absence of stomates, the equilibrium of 

water potential and water content resulting from evaporation from the other end (or transpiration 

if stomates are present), can only be accomplished through transmission of water tension inside 

the conductive tissue, or through the flow of water. The tortuous water network created in the 

funicular case, increases the contact area between water and air, which increases the resistance to 

water flow and equilibrium. Such increases in surface area, together with the increase in 

resistance to equilibrium at low water contents, results in a delayed response between water flow 

and equilibrium to evaporative potential i.e., VPD.  
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Hysteresis areas created by the relationship between sap flux density (Fd, cm3 cm-2 h-1)  

and VPD (HVPD) or PAR (HPAR) are commonly reported in the literature (Brum et al. 2018, 

Zeppel et al. 2004), and various studies have explained their observed patterns (Zeng et al. 2016, 

Zhang et al. 2014). The diel patterns commonly observed: clock, anticlockwise or butterfly-like 

patterns, where scanning lines are present in the hysteresis curves, allow us to make inferences 

about the drivers and limiting factors of Fd and daily transpiration, much of which comes from 

early studies on flow through porous media (Haines 1930, Pavlakis and Barden 1972, Zeng et al. 

2016). In simple terms, hysteresis curves show which variables (e.g., soil moisture, VPD, PAR) 

if any, result in increased resistance to water movement through the sapwood. In plant studies, 

extensive research that has been dedicated to similar curves known as “cavitation curves” in the 

field of tree hydraulics to understand the relationships between pore structure and adaptation to 

hydraulic stress (Cochard et al. 2009, Meinzer et al. 2009, Pfautsch 2016, Tyree 2003).  

Adding inflection curves between Fd and VPD (IPVPD) and PAR (IPPAR), to the study of 

hysteresis areas, can further help us understand which variables exert the strongest controls on Fd 

and T rates. While in three hydraulics, there is no clear boundary at which water content in the 

sapwood changes from funicular to capillary state, the point where the rate change between 

conductivity and pressure changes significantly, indicates the points when sufficient air has 

entered the sapwood to increase its resistance to water flow, decreasing its conductivity. This 

point is termed air-entry pressure and it seems to vary significantly depending on the 

characteristics of the species and even the method used (Martin-StPaul et al. 2014, Meinzer et al. 

2009). However, at the plant level, stomatal closure is an earlier response mechanism whereby 

swelling of the guard cells, cause by inhibition of the activity of proton pumps and the delivery 

of abscisic acid into the guard cells, results in stomatal closure (Daszkowska-Golec and Szarejko 

2013, Tallman 2004). The process of stomatal regulation occurs much earlier and at much lower 
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pressure deficits than those needed for air entry. And similar to the response between resistance 

to water flow and pressure deficits (e.g., VPD) in sapwood, an inflection point can be identified 

between the rate change between water flow (i.e., Fd) and VPD. As a result, this inflection point 

can integrate the stress response from the soil to the atmosphere and be a great indicator of the 

environmental conditions or combination of them (e.g., soil saturation, VPD, PAR) at which 

stomatal closure is triggered. Additionally, it has been well documented that in soils and 

conductive tissues in plants, conductivity increases directly with water content (Staple 1965, 

Vergeynst et al. 2014). In the case of Fd in plants, its rate change with respect to VPD or PAR, 

and the hysteresis resulting therein, not only depends on the physical characteristics of the 

conductive tissue such as vessel diameter and sapwood area. It is also driven by the water 

content of the sapwood, and other regulatory mechanisms within the plant, such as stomatal 

control, or root access to water, which are directly associated to hydraulic stress.  

While they are not commonly the focus of research studies, IPVPD and IPPAR are often 

observed and attributed generally to stomatal regulation. At the leaf level, four major factors that 

have been studied extensively can help better establish the link between inflection points 

stomatal regulation and the resilience of different plants to various environmental stressors. First, 

water stress triggers the production of abscisic acid (ABA), which can close already opened 

stomates, or prevent closed stomates from opening (Daszkowska-Golec and Szarejko 2013, 

Tallman 2004). Additionally, high sucrose concentrations in the apoplast in the midday, resulting 

from lower water content during dry conditions, have been shown to inhibit midday stomatal 

apertures (Lu et al. 1997, Lu et al. 1995), through the exceeding capacity of guard cells to 

catabolize ABA internalized from the apoplast. Such excess of non-degraded ABA, as previously 

mentioned, can trigger stomatal closure, but also result in the inhibition of the stomatal aperture 

next day. Third, during the daytime, guard cells are capable of catabolizing both endogenously-
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produced and some of the ABA absorbed from the apoplast, but the osmotica (Niu et al. 1997) 

used for stomatal opening seem to change during the day; ions early in the day and sucrose 

replaces ions later in the day (Talbott and Zeiger 1996). The last one is the well documented age-

related changes in leaf morphology and leaf anatomy commonly observed in eucalyptus trees. 

Increase presence of cuticular waxes and xeromorphic traits have been observed as E. regnans 

and E. grandis trees age (Battie-Laclau et al. 2014, England and Attiwill 2005), which allow 

them to resist drought and limit their exposure to sunlight, which in turn increases their resilience 

to severe weather. 

Previous studies have quantified how T water use varies with plantation ages of different 

eucalyptus species (Almeida et al. 2007b, Forrester et al. 2010, Hubbard et al. 2010, Liu et al. 

2017, Morris et al. 2004, Salama et al. 1994). However, most were based on modeled reference 

potential evapotranspiration (ET0) assuming no soil moisture limitation or were estimated from 

daily changes in water table depth. Only a few studies are based on tree-level (sap flow) 

measurements (e.g., Engel et al. 2005, Forrester et al. 2010), yet we are not aware of any studies 

conducted in E. grandis, or that included different plantation ages as well as both regular and 

high-density stand conditions. Further, water use models based on ET0, which are commonly 

used to elaborate large-scale T studies, often disregard the well documented peaks and declines 

in LAI with age, and the differences in response and its effects on stand T. Thus, understanding 

how different plantation ages respond to changes in environmental conditions such as soil water 

content, VPD or PAR is important in order to design the best management practices to maximize 

site productivity (e.g., biomass accumulation) while minimizing potential hydrological and 

physiological risks. Additionally, due to the growing interest in Argentina for timber wood from 

E. grandis (Sanchez Acosta 2012), studying the physiological responses to VPD or PAR at 
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different growing stages can significantly improve management practices through our 

understanding of resilience of E. grandis at different growing stages. 

Our goal for this study was to estimate whole tree (Q, L d-1) and stand-level T in 

Eucalyptus grandis plantations of three different ages, 10, 4 and 1 years-old (YO) at regular 

density (henceforth; 10YO, 4YO, 1YO), one one-year-old at a high (double) density (1YOHD), 

and reference crop evapotranspiration (ETk) in an adjacent fallow pasture site (common during 

rotation cycles). Our two main objectives were: (a) understand the relationship between 

plantation age, density, and tree and stand-level transpiration rates, and (b) assess the response of 

different plantations ages to variations in atmospheric and soil moisture stress, to understand 

resilience of eucalyptus plantations at different growing stages. Our first hypothesis is that, 

similar to previous studies, stand T will increase from 1 to 4 YO, and decrease after that resulting 

in lower T in the 10YO site. Our second hypothesis is that older (4 an 10YO) plantations, will 

be less susceptible to environmental changes (VPD and soil moisture), which will be reflected in 

smaller hysteresis areas for VPD and PAR at low S, and in inflection points at higher VPD rates 

when soil moisture is limiting. These results can help managers to better understand how 

transpiration in E. grandis plantations changes over time and develop planting designs and 

rotation cycles that optimize both hydrological and biomass production.  

 

Materials and methods 

Study sites 

Our study was conducted in three Eucalyptus grandis Hill ex Maiden plantations located 

near Ubajay, Entre Rios, Argentina of ten (31°49'02.8"S 58°14'28.1"W), four (31°48'06.5"S 

58°15'10.6"W), and one- (31°48'05.7"S 58°15'07.4"W) -year-old (YO) at regular density, and 

one one-YO plantation at high density (henceforth: 10YO, 4YO, 1YO, and 1YOHD). All sites 
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were a year older by the end of our study, but for simplification purposes we will refer to each 

site by the initial age. For comparison purposes, we also monitored an adjacent fallow land with 

sparse pasture cover (Pasture), due to its recent establishment. This site represents the 

conditions when no vegetation cover is established. The soils in the region belong to the order of 

Mollisols, subgroup fluventic hapludolls, with sandy loam texture in the top-soil and sandy clay 

loam in the subsurface. The topographic symbol reported is MJFv-2. They are cataloged as low-

productivity soils and characterized by deficient drainage. They are also considered highly 

susceptible to erosion, although current erosion rates are considered moderate (Alberto Tasi 

2009, INTA 2014). Soil density, porosity, and structure for each site are shown in Table IV-1 

(from Cisz-Brill et al.). The four-year average precipitation derived from a weather station 

located at El Palmar National Reserve is 1262 mm y-1. Annual temperature ranges from an 

average minimum of 5ºC to an average maximum of 32ºC (SIGA 2015). 

 

Data collection 

Tree and site level transpiration 

Water use was estimated at the tree-level using heat pulse methods following the 

maximum heat ratio (MHR) method (Gutiérrez Lopez et al. In Prep.), and one heat dissipation 

(HD) method (Granier 1985). Details for HD sensor construction and calibration, including 

current regulators can be found online (Gutiérrez López 2015, Gutiérrez Lopez et al. 2018). Each 

MHR sensor set consisted of two probes with three type-T thermocouples and one probe with 

coiled nichrome wire heater of 20 W. The thermocouples were positioned at 0.5, 1.75 and 3 cm 

from the base of the sensor. Sensors were designed and built by JGL at the installations of the 

National Agricultural Technologies Institute (INTA) in Concordia, Argentina, and at the 

Ecohydrology Laboratory at the University of New Hampshire in Durham, NH, USA. We 
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selected a total of twelve trees that represented the stem diameter distribution and other physical 

characteristics (e.g., crown size, overall visual health) within each site. All sap flow and 

environmental data were stored every 15 minutes using CR1000 (Campbell Scientific Inc., 

Logan Utah, USA) data loggers, and AM16/32 multiplexers (Campbell Scientific Inc.). Our 

equipment was programed to use one multiplexor per sap flow method (i.e., heat pulse, and heat 

dissipation sensors). MHR and HD sensors were installed at breast height (1.2 m), and positioned 

across all four cardinal directions (North, East, South, West) to account for radial variability 

among trees. To avoid affecting the thermal properties of the trees, and to avoid unwanted 

reductions of sapwood conductivity, or production of excessive scar tissue, we did not remove 

the bark of any trees. Instead we conducted an initial sampling to determine the average bark 

depth (cm) of all sites at breast height and modified the sensor design to make sure the 

thermocouples were in contact with the sapwood without having to remove the bark. By not 

removing the bark, we observe that some trees had pushed out the MHR sensors during growth, 

thus self-adjusting the position of the thermocouples inside the sapwood during the monitoring 

period. This process was not observed in HD sensors, perhaps as a result of the smaller epoxy 

resin in contact with the tree. Due to site accessibility caused by road blockages and field 

logistics that impeded regular access to the sites, the sap flow stations were turned on and off 

intermittently, and we adjusted a linear mixed model (see below for details) to fill gaps during 

periods without sap flow measurements. 

 

Environmental variables 

Volumetric water content (EC5, cm3 cm-3) at three depths (20, 40 and 100 cm), air 

temperature (AirT, HMP45, ºC), and relative humidity (RH, HMP50, %) were measured at each 

site. No soil moisture data was collected in 2014 for 1YO and Pasture. Additionally, a weather 
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station was installed at the pasture site to monitor net radiation (CNR2, W m-2), RH (%), AirT 

(HMP45, ºC), precipitation (ONSET, mm), photosynthetically active radiation (PAR) (LI-190R, 

mmol m-2 s-1), and wind speed (03101, m s-1) at 15-minute intervals.  

Data from the weather station were used to estimate potential evapotranspiration (ET0) 

and crop evapotranspiration (ETk) in the Pasture site following the FAO Penman-Monteith 

(Allen et al. 1998, Allen et al. 1999) equations. We used factory-provided parameters to convert 

soil permittivity into volumetric water content. For comparisons across sites, and to perform 

statistical analysis without the influence of soil porosity, volumetric water content was converted 

to soil saturation (S) for two soil depth ranges, 0-100 cm and 0-40 cm of soil according to 

Vangenughten (1980) using the following equation:  

 𝑆 =
𝜃 − 𝜃@
𝜃7 − 𝜃@

 Eq.  IV-1    

Where S is the saturation, q  the volumetric water content (averaged for the entire 100 

cm), qr the residual water content (0.05 % for sandy soils, according to (Zhang 2011)), and qs the 

volumetric water content at saturation. qs was estimated as the average porosity for the profile of 

interest for each site. Additionally, to compare across sites, and to estimate expected runoff and 

infiltration rates, we adjusted the Bucket model (Guswa et al. 2002a, Porporato et al. 2004) for 

each site, using the following formula: 

 𝑛𝑍@
𝑑𝑆
𝑑𝑡 = 𝐼(𝑆, 𝑡) − 𝐿(𝑆) − 𝑇(𝑆) − 𝐸(𝑆) Eq.  IV-2    

 

Where n is the porosity of the soil, Zr soil depth, I(S,t) infiltration rate, L(S) leakage, T(S) 

transpiration, and E(S) the evaporation from the soil. A full description of the parameters used 

for this model is shown in Table III-4, and additional details for the estimation of each parameter 

are shown in Appendix III-II. Precipitation and transpiration needed in the model were estimated 
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at each site (see details below), and we used reference values of saturated conductivity for the 

soil type. 

   

Stand characteristics 

Considering that all sites were established at fixed spacings, (3 x 2.5 m, in regular density 

sites and 3 x 1.5 m in high density sites), site density, average diameter and height were 

estimated at each site following the line-to object approach (Ducey 2018, Lynch et al. 2018) 

(Table IV-3). Ten 10-m sections were randomly located at each site, at least 20 m from the edges, 

and we measured the diameters and heights of all trees within each 10-m section and counted the 

number of missing trees due to mortality. Diameters were binned for each site at 1 cm intervals, 

and a we estimated a diameter distribution charts for each site, which were later used in the 

scaling-up process (see below). To estimate sapwood area (AS, m2) for each site, we injected a 

0.05% safranin solution directly into the sapwood about 10 cm below the area where the sap 

flow sensors were installed and collected a sample 5 cm above the sensor using a Pressler Drill 

(Suunto, Vantaa, Finland) 48 hours after the application of the dye, and sapwood, total length 

and bark depth were measured immediately after the samples were collected. All tree cores were 

oven-dried over a 24-hour period to estimate volumetric water content and wood density. Once 

AS was estimated for each tree, an allometric equation was adjusted for each site between 

diameter with bark and estimated AS, using the following equation: 

 𝐴7 = 𝐸𝑥𝑝(𝛽F + 𝛽) ln(𝐷)) Eq.  IV-3    

 Where AS is the sapwood are in m2, D the diameter, and b0 and b1 the predictor 

parameters. Additionally, to increase sample size and the prediction power of the allometric 

equations, we merged both 10YO and 4YO sites (considered Mature), and both 1YO sites 

(considered Young), and generated parameters for both Mature and Young categories, 
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additionally to the parameters by site, and a set of global parameters (all sites). The parameters, 

estimated errors and R2 with respect to observed measurements are shown in Table IV-4.  

 Additionally, we monitored diameter increments in all sites (10YO, 4YO, 1YO, 1YO-

HD), at intervals of approx. 2-3 weeks. Due to the lower growth rates, we collected only three 

measurements in the 10YO site. In 2014, diameter was initially measured at 40 cm from the 

ground surface in the 1YO sites, due to the smaller diameters at breast height. We fit a quadratic 

function only within the measured points, to account for changes in diameter in sapflow 

calculations (see below for details). Finally, total biomass for comparative purposes at each site 

was estimated following the adjusted model by Wink et al. (2015): 

 𝐿𝑛(𝑇𝐵) = −𝑎 + 𝑏 ∗ ln(𝐷𝐵𝐻) + 𝑐 ∗ ln	(ℎ) Eq.  IV-4    

 

Where TB the total aerial biomass, a, b and c are the adjusted parameters (3.32, 2.12, and 

0.65, respectively), and h the tree height

 

Data processing and analysis 

All data were processed with custom-designed scripts developed for JMP Pro 13 (SAS 

Institute Inc., Cary, NC. USA), and R Studio (R Core Team, Vienna, Austria) that allowed us to 

estimate heat pulse velocity (vh), sap flux density (Fd, cm3 cm-2 h-1) and whole tree sap flow (Q, 

L d-1) for each tree. First we estimated the heat ratios following the maximum heat ratio method, 

which we previously validated for E. grandis trees (Gutiérrez Lopez et al. In Prep.). Heat pulse 

velocity (vh cm h-1),  and vh corrected for wounding (vc) were estimated according to Burgess et 

al. (2001) using the following equations: 

 𝑉" =
k
𝑥 𝑙𝑛

𝑣)
𝑣*
3600 Eq.  IV-5    
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 𝑉. = 𝑏𝑉" + 𝑐𝑉"* + 𝑑𝑏𝑉"3 Eq.  IV-6    

 

Where Vh is the heat pulse velocity, k is the thermal conductivity and x the distance 

between probes, and v1/v2, the temperature ratios. b, c, and d, are the parameters used to correct 

Vh for wounding effects. Vc was converted to Fd according to Vandegehuchte and Steppe (2013) 

with the following equation:  

 𝐹5 =
𝜌5
𝜌7
8𝑀𝐶 +

𝐶5;
𝐶7
<𝑉. Eq.  IV-7    

Where rd is the density of the sapwood, rs the density of water, MC the volumetric water 

content of the sapwood, Cdw the thermal conductivity of dry wood, and Cs the thermal 

conductivity of water.  

 

Scaling sap flux measurements to estimate stand T 

To estimate tree (Q, L d-1) and stand-level T, first we averaged Fd (estimated using Eq.  

III-6) for each site using all the measurement points for MHR sensors (approximately 24 

measuring points per site). Thermocouples that showed constant noise (likely the result of 

sensor, or equipment malfunction) were filtered out and not used to estimate site-average Fd. 

Next, we predicted AS of all trees belonging to each diameter category for each site (see Stand 

characteristics above) using the allometric equation adjusted for each site (Eq.  III-9), and 

estimated sap flow Q for all trees of each diameter category multiplying site-average Fd by their 

respective predicted AS. Q was estimated integrating all measurements per day (96), and average 

Q was estimated averaging all trees in the subsample per site. Site transpiration (T, mm d-1) was 

estimated using the following formula: 
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 O(𝐹5	. 𝐴7. 𝑛)
5RS

5RT

𝐷
𝑁 Eq.  IV-8    

 

Where di-dn are the first to last diameter categories, Fd the average flux density 

(converted to L m-2 d-1), AS the predicted AS (in m2), n the total number of trees per each diameter 

category, D the number of trees per hectare, and N the number of trees in the subsample.  

 

Gap filling  

To fill gaps of T, we fitted the following linear mixed model by year (2014, 2015) in JMP 

PRO 13 for each site:  

 𝑇jk5 = 𝑋𝛽 + 𝑍𝛾 + 𝜀 Eq.  IV-9    

 

Where Tmod is the modeled (or predicted) site transpiration, X is the series of fixed 

variables (AirT, RH, NetRad, VPD , ET0, WindS, pp, S), Z the random effects (DOY), b and g are 

the slopes of X and Z, and e the error of the model. We tested three configurations of fixed 

variables, first with all variables, then removing S, to be able to estimate Tmod for days when S 

data was missing. The third model was adjusted selecting the variables that had the overall 

highest influence on Tmod for all sites (ET0, PAR and NetRad), and to address the potential 

redundancy of including variables with high correlation. In Table III-5 we show the corrected 

Akaike and Bayesian Index criterion for each model fitted including both years. 

 

Hysteresis and inflection points of sap flux density 

 To test our second hypothesis, first we filtered out days with precipitation events or with 

forecasted conditions, and then generated hysteresis graphs for each site between average Fd -
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VPD and Fd-PAR. All data, including Fd, PAR and VPD, were normalized with respect to the 

maximum values observed for each variable at each site. All data were split into four S ranges 

(0.2-0.55, 0.55-0.75, 0.75-0.9, 0.9-1.0), and we created a hysteresis graphs with normalized data 

for each of these S ranges. Finally, we used the geometry library in R-studio 1.1.423 and 

estimated the hysteresis area of VPD and PAR (HVPD, unitless; HPAR, unitless, respectively). 

 To determine inflection points of Fd for both VPD and PAR, we estimated monthly 

averages of Fd for each site, binned in 15-minute intervals. A Locally Weighted Scatterplot 

Smoothing (LOESS) (Cleveland 1981) was fitted (span of 0.9, n= 1:1000) to each Fd-PAR and 

Fd-VPD response curves. Each LOESS predicted data was treated as a vector of size (n) 1:1000, 

and the inflection point was considered the value at which the difference: [(1+lag) : n] – n [1: (n-

lag)] = inflection threshold, where: lag = 5% of n, and inflection threshold = 0.1. The inflection 

threshold value of 0.1 was selected to identify the point in the Fd -VPD or Fd -PAR response 

curves before the slope of the fitted LOESS line turned zero, and to identify inflection points that 

did not result in slopes =< 0, which occurred frequently in our data. 

 

Statistical analysis 

We selected Fd within 11AM-5PM, to capture the maximum Fd rates of each site and 

analyzed how maximum Fd was influenced by various environmental variables (AirT, RH, 

NetRad, VPD , ET0, WindS, pp, S). We fitted a mixed linear model by site, where the 

environmental variables were the fixed effects and DOY, Month and Year the random effects 

(Table IV-7). A similar analysis was performed for stand T for each site, using a Standard Least 

Squares model with a Restricted Maximum Likelihood (REML) method in JMP Pro 13 (Table 

IV-6). We treated all environmental factors as fixed effects, and DOY of each year as a random 

variable. Each site was analyzed independently by year detect year-specific effects. Differences 
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among sites for periods of interest were done in JMP PRO 13 with ANOVA’s and Tukey tests at 

alpha values of 0.05. Finally, hysteresis areas (HPAR; HVPD) were analyzed with a standard least 

squares model in JMP PRO 13, using HPAR and HVPD as response variables, and month, site and 

saturation range as model effects.  

 

Results  

Soil saturation  

 During the monitoring period, our sites received a total precipitation of ~650 mm, often 

concentrated in pulses of 5 and up to 12 days. Soil bulk density (g cm-3) was significantly 

different between soil depths (F-ratio=7.86, p=0.0069), but no significant difference was 

observed by site (F-ratio=3.60, p=0.055), and since porosity was estimated as a function of bulk 

density, the results for density where similar (site: F-ratio=3.85, p=0.059; depth: F-ratio=8.06, 

p=0.006). Due to the high sand content across sites (Table IV-1), S increased and decreased 

rapidly after significant precipitation events, and in response to stand transpiration (see details 

below). In general, S was higher in 2014, than 2015 (Figure IV-1, Figure IV-2, panel A for both), 

as a result of higher precipitation. Considering the entire (100 cm) soil profile, the 4YO site had 

the lowest average S, and based on 2015 data, the Pasture site had the highest. In 2014, on two 

occasions after two precipitation events greater than 30 mm, most sites had a S close to 100%. 

Conversely, in 2015, soils were never fully saturated, even after significant precipitation events. 

According to our S modeling in the upper 40 cm using the bucket model (Guswa et al. 

2002b), S followed a similar trend as the S observed in the same soil profile (panel B, Figure 

IV-1, Figure IV-2). However, despite following a similar S trend, the coefficient of regression 

between modeled and predicted was in general low for all sites (R2 = 0.41, 0.34, 0.53 and 0.27, 

for 10YO, 4YO, 1YO, and 1YOHD, respectively), except Pasture (R2 = 0.91). While no data 
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were collected in January 2015, our S modeling indicates that the upper 40 cm of soil had S 

higher than 90% after an eight-day period with precipitation events greater than 10 mm.  

 

 

Allometric relationships  

 Considering data from all sites, the AS predicted with the exponential model (Eq.  III-2) 

had a strong correlation (R2=0.94, RMSE= 0.0012) with observed AS (Appendix IV-III). As 

shown in Table IV-4, the correlation between observed and predicted AS for each site was higher 

in both 1YO (R2=1, RMSE= 0.0) and 1YOHD (R2=0.98, RMSE= 0.003), primarily because most 

trees sampled were 100% sapwood. The coefficient of regression declined as the plantation age 

increased, primarily due to the presence of trees with relatively thin sapwood depths for their 

diameters. Combining the 4YO and 10YO sites into a Mature category, did not improve the 

coefficient of regression (R2=0.86, RMSE= 0.0018) between observed and estimated AS. 

Similarly, combining data from 1YO and 1YOHD into a “Young” category did not result in any 

improvement (R2=0.96, RMSE= 0.0003); however, for both categories, merging the data 

significantly increased the diameter range, which increases the predictive power of the models 

we fitted. 

 

Whole-tree water use 

For whole tree water use (Q, L d-1), at regular density sites we observed an increase in Q 

from 1YO to 4YO, and a reduction thereafter (between 4YO to 10YO). The high-density site 

(1YOHD) was on average lower than the 1YO regular density site and followed a similar trend 

as the other sites (Figure IV-3). Towards the end of the monitoring period, 4YO and 1YO sites 

had similar Q (4.94 ±0.24 and 4.86 ±0.11, respectively) and were significantly higher than 10YO 
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and 1YOHD (1.7, 2.1, respectively). Analyses of variance among sites by month indicates that Q 

was significantly different (p=<0.0001) among sites during all months except March (p=0.0561). 

In 2014 (November and December) the 4YO site had the highest Q (12.2 ±1.7 L d-1) followed by 

1YO (7.8 ±0.8 L d-1), 10YO (5.4 ±0.6 L d-1) and finally 1YOHD (7.3 ±0.9 L d-1). In 2015 

(February, March, April and May) the pattern was similar, with the 4YO site having the highest 

Q (8.5 ±0.64 L d-1), followed by the 1YO (7.76 ±0.44 L d-1), and similar Q for both the 10YO 

and 1YO-HD (4.6 and 5 L d-1). During the driest period in 2015 (DOY 97-107), 4YO and 10YO 

had similar Q (approx. 4 L d-1), and both 1YO and 1YOHD showed the lowest Q (approx. 3, and 

1.7 L d-1, respectively).  

 

Stand-level water use 

In 2014, the 4YO site had a maximum T (all in mm d-1) of 5.2, followed by the 1YOHD 

(3.4), 10YO (3), and 1YO (2.2). For the same period, the maximum ETk estimated for the Pasture 

site was 3.7 (Figure IV-4). In general, all sites increased transpiration after precipitation events, 

but there was a clear difference in the response observed in 2014 and 2015. In 2014, precipitation 

events resulted in significant increments in T, particularly at the 4YO and 1YOHD sites. For 

example, the 1YOHD site increased T by approximately 85% after the precipitation events on 

DOY 302-307. By contrast, T in the 10YO site increased by less than 5% after the same 

precipitation event. In 2015, there was a similar trend in T rates across sites, with 4YO and 

1YOHD having a similar maximum T of 3 mm d-1, followed by 10 YO and 1YO with a 

maximum of 2 mm d-1 (Figure IV-5). However, after DOY 63, at the onset of a 43-day rainless 

period, and also the period the with the lowest S (see: Figure IV-2), we observed clear 

differences by age group; both 4YO and 10YO had similar T (average 1.1) and greater than both 

1YO and 1YOHD sites (average 0.5 mm d-1). Considering both years, the 10YO and 1YO, had 



 

 159 

the lowest variability in T (standard deviation: 0.55 and 0.50, respectively), and the 4YO the 

highest (standard deviation: 1.3), followed by the 1YOHD (0.92).  

Estimated cumulative T for the entire monitoring period (220 days, Sept 2014-May 2014) 

followed a similar pattern as that observed for Q and T. In regular density sites, cumulative T 

was higher in the 4YO site (526 mm), followed by the 1YOHD (360), the 10YO (320), and the 

1YO site had the lowest total water use (265 mm). For the same period, estimated ET0 for the 

Pasture was 400 mm, and the total precipitation was 820 mm (Figure IV-6).  

Considering all the data over the entire sampling period Nov 2014 – May 2015, S in the 

upper 40 cm had the strongest influence on daily T across all sites (Table IV-6). No other 

variable had a significant effect on all sites, however, VPD and AirT significantly influenced 

daily T at the 10YO, 4YO, and 1YOHD sites (p-value = <0.0001, 0.0112, and 0.0118, 

respectively). PAR and NetRad significantly affected T at the 10YO and 1YO sites (PAR p-

value=<0.0001 and <0.001. NetRad p-value=0.0130 and 0.0042, respectively for 10YO and 

1YO), but not at the 4YO and 1YOHD sites.  

 

Inflection points of sap flux density and hysteresis  

Within each site, Fd -VPD response curves changed significantly during the monitoring 

period, while annual patterns were generally similar across sites despite differences in 

magnitude. All sites showed a linear relationship between Fd and VPD, when VPD was under ca. 

2 kPa (Figure IV-7). After this threshold, all sites had an inflection point between a VPD range 

of 1.5-2.4 kPa, but no inflection points were observed at VPD greater than 2.5 kPa. Comparing 

rates of Fd at different temperatures, all inflection points occurred between 26 and 30ºC (data not 

shown). Except for the 10YO site, the IPVPD of all sites were influenced by precipitation and 

changes in S. In March, a 30 mm precipitation event that followed a 43-day rainless period 
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(DOY 63-106, 2015) resulted in increments in Fd, but no significant changes in the inflection 

points were observed in this month, partially because monthly averages include periods of high 

and low S. Analyzed by S ranges (0.2-0.55, 0.55-0.75, 0.75-0.9, 0.9-1.0), IPVPD showed a clear 

increasing trend at higher S (Appendix IV-IV). The respective IPVPD were 1.95, 2.01, 2.08, and 

2.18 kPa, respectively for increasing S ranges. However, these differences were not statistically 

different (F-ratio=1.47, p=0.27) within the S ranges we selected. Testing more extreme S ranges 

resulted occasionally in significant differences (data not shown), but in general the trend of 

increased IPVPD at high S remained.   

Analyzed by site including all data from each site, inflection points were not statistically 

different (F-ratio=2.38, p=0.11). Removing the high-density site (1YOHD) from the analysis, 

which had the highest IPVPD variability (average: 2.18 ±0.27 kPa) of all the sites, resulted in 

statistically different inflection points by site (F-ratio=7.67, p=0.01). Inflection points for 

regular-density sites were on average greatest for the 10YO (2.12 kPa), Intermediate for 1 YO (2 

kPa), and lowest for the 4 YO (1.93 kPa) (Appendix IV-IV). Fd patterns after the observed 

inflection points (when present) showed different patterns for each site, with the least changes 

observed in the 10YO site. The other sites showed a stagnation or reduction in Fd rates at low S. 

The 1YO and 4YO sites showed reductions in Fd after the inflection points even at high S, and 

conversely, the 1YOHD site showed an opportunistic pattern, increasing inflection points at high 

S. 

Fd -PAR response curves showed a negative exponential curve for most of the sampling 

period and increments in PAR did not result in sharp inflection points, in contrast to those 

observed for VPD (Figure IV-8). According to our analysis all inflection points occurred within a 

range of 1.5-2.2 mmol m-2 s-1, and during periods of high S no inflection point was observed in 

the 10YO site in response to PAR. Changes in S resulted in changes in the shape of the Fd -PAR 
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response curve, but only towards the end of the growing season (April) the response curve was 

significantly negative after reaching the inflection point (average 0.9 mmol). Finally, while most 

sites had an inflection point greater than 1 mmol from November through March, the 10YO site 

had an inflection point in February at a much higher PAR (1.9 mmol), and no inflection point 

was observed for November, December, and March.  

HVPD showed a high rate-change (e.g., slope of the Fd -VPD line) in early morning, that 

plateaued when approaching maximum VPD. From maximum to minimum VPD, the reduction 

in the Fd -VPD rate was highest immediately following VPD declines, resulting in a clockwise 

HVPD pattern (Figure IV-9). In general, we observed higher Fd ranges at high S (0.8-1.0), 

compared to low S (0.2-0.4); however, HVPD followed an opposite pattern. First, despite the 

higher Fd rates at high S, HVPD were in fact higher at lower S (Figure IV-9: first panel from left), 

resulting from an inversion in the Fd -VPD rate-change, i.e., Fd decreased while VPD was still 

increasing. Despite the trend observed of increasing HVPD at lower S, when all sites were 

included, the changes were not statistically different for the S ranges analyzed (F-ratio=2.42, P-

value= 0.13). We observed a clear relationship between plantation age and HVPD (10YO, 

1YOHD, 1YO, 4YO, increasing order), but this trend was not statistically significant (F-

ratio=2.97, P-value= 0.09).     

HPAR showed a high rate of change that remained stable from minimum to maximum 

PAR. During PAR reduction, there was a sharp increment in the Fd -PAR rate-change at the 

onset of reducing PAR, which resulted in an anti-clockwise pattern (Figure IV-10). While no 

statistical differences were observed in PAR for the four S ranges tested, HPAR increased 

significantly at higher S (F-ratio=34.62, P-value=<0.0001), and was strongly correlated with site 

(4YO, 1YOHD, 1YO, 10YO, increasing order) (F-ratio=24.3, P-value=0.0001). At low S the 

initial high Fd -PAR rate-change reduced significantly, and turned negative (i.e., Fd decreased 
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while PAR continued increasing) before PAR reached maximum values in 4YO, 1YO and 

1YOHD sites. During PAR reduction, the significantly lower Fd -PAR rate-change resulted in a 

“butterfly” shape.   

Statistical analysis of maximum daily Fd, showed that PAR had a significant influence on 

the 4YO only (F-ratio=18.1, P-value=<0.0001), which was also the site with the highest HPAR, 

but no significant influence on the other sites (All, Table IV-7). Conversely, VPD hat a stronger 

influence on maximum Fd in all sites (p=<0.0001, for all), and the results were similar by AirT 

and RH. Removing S from the model source did not change the response patterns between 

maximum Fd and VPD for any of the sites. Based on this analysis, the only difference was that 

both 4YO and 1YOHD sites were significantly influenced by PAR (p=<0.0001, and 0.0046, 

respectively) (Table IV-7). 

 

Discussion  

Change in stand T with plantation age 

Our first hypothesis, that stand T would increase from 1 to 4 YO, then decrease to a lower 

T in the 10YO site, was supported by our results, as daily whole-tree water use Q initially 

increased from 6.2 to 9.07 L d-1, then sharply declined to 4.5 L d-1. In fact, during most of the 

growing season, Q was higher in 1YO, compared to 10YO. Comparing the two 1YO sites, Q was 

consistently lower in 1YOHD, and during the wet season, Q was similar between the 10YO and 

1YOHD sites. Similar reductions in tree-level water use with age have been extensively reported 

in the scientific literature in natural forests (Alsheimer et al. 1998, Kostner et al. 2002), and 

plantations (Delzon and Loustau 2005, Forrester et al. 2010), despite some studies suggesting an 

opposite pattern (Dye 1996, Naranjo et al. 2011).  
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Reductions in Q with stand age have been attributed to several factors, such as greater 

limitation on stomatal conductance resulting from increases in water potential when tree height 

increases (Brienen et al. 2017, Ewers et al. 2007, Han 2011, Schafer et al. 2000). In our sites, 

despite the average height increasing from 5.6 m in 1YO trees to 15 m in 4YO trees, Q increased 

within this age range, while the much smaller height increased from 4YO to 10YO (15 to 17 m) 

seems insufficient to account for the nearly 50% reduction in average Q observed. Further, in E. 

grandis, such reductions have been reported to start much earlier (i.e., 1.5  to 3 years) before 

reaching maximum tree height, and continued to decline even when tree heights remain stagnant 

(Almeida et al. 2007b, Du Toit 2008, Ryan et al. 2008). Other studies have attributed this 

reduction to nutrient deficiencies such as N or P (Ward et al. 2008), resulting from multiple 

intensive short rotations. Data available on soil fertility at our sites (top 60 cm) indicates that 

only P was on average low (0.013 Mg ha-1) but sufficient for growth in the entire soil profile 

studied, with higher concentration sin the top 15 cm. In terms of nutrient depletion due to 

intensive rotations, there is not a clear trend in extractable P at different rotations (Brill et al, 

unpublished). Other studies have suggested that reductions in soil water availability might 

account for the decline in water use with age (Ainsworth and Rogers 2007, Oguntunde 2005); 

however, our S data clearly show (Figure IV-1) that even when soil water was plentiful, 

differences in Q remained.  

Doubling stand density in 1YOHD, compared to 1YO, reduced Q by about 20% early in 

the growing season and increased Q by about 60% at the end of our study. Considering that these 

two sites were established under the same site characteristics (i.e., slope, soil type, etc.) and 

exposed to similar environmental conditions, an initial explanation for the reductions in whole 

tree water use observed between these two sites is the available growing space for individual 

trees, and reductions in LAI at the tree level. In general, reductions in Q with tree age observed 
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in this and similar reductions reported in other studies (Alsheimer et al. 1998, Delzon and 

Loustau 2005, Forrester et al. 2010, Kostner et al. 2002) are mostly due to a combination of the 

following factors: differences in management practices, the methods used to estimate tree water 

use rates, which may be limited to specific tree sizes (e.g., potted trees or weighing lysimeters), 

and primarily, the LAI stage and age of the stands. The development of LAI over time has been 

extensively studied in natural forests and plantations. In general, LAI increases from the time of 

establishment of the vegetation cover, and can remain constant after a slight reduction in mixed 

natural forests, or reduce significantly (40-60%) before stabilizing in fast growing species such 

as E. grandis (Almeida et al. 2007a, Du Toit 2008). 

The development pattern of LAI seems to differ in forests and plantations (Allen et al. 

1999, Blanken et al. 1997, Forrester et al. 2010), and consequently, its role as a main driver of 

both water use and primary productivity may also vary (Ares and Fownes 2000, Campoe et al. 

2012, Jassal et al. 2013). Delzon and Loustau (2005) observed LAI (and tree water use) 

reductions in Pinus pinaster Ait. sites from 2.8 m2 m-2 in 10YO stands, to 1.9 in 54YO sites, 

followed by stable LAI in the 92YO stands. In a similar study, Alsheimer (1998) observed a 30% 

(visually estimated from their graphs) reduction in LAI of Picea abies natural forests from 40 to 

140YO stands. Both P. pinaster and P. abies are relatively slow-growing species, and similar 

results have been observed for fast-growing species at sites that are also past the canopy closure 

stage. In Eucalyptus regnans mature forests of 50, 90, 150 and 230YO, Dunn and Connor (1993) 

observed that despite stable sap velocities (average of 11.4, 11.5, 9.9 and 11.8 mm h-1, 

respectively), LAI decreased with age. In E. globulus plantations in southeastern Australia, 

Forrester et al. (2010) observed a decline in Fd and Q with increasing age in 2, 4, 5, 6, 7 and 8YO 

plantations. However, in this study, LAI peaked at around 6YO, which is consistent with 

plantations growing in drier environments. In E. grandis in particular, studies have observed 
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peaks in LAI and Q at 3YO (Almeida et al. 2007a) and 2YO (Du Toit 2008). These studies 

indicate that the more quickly canopy closure and LAI peaks occur with age, the steeper the 

decline afterwards (Almeida et al. 2007b, Du Toit 2008, Ryan et al. 2008). In our regular-density 

sites, Q declined by approximately 60% from 4YO to 10YO, consistent with previous studies 

conducted in E. grandis plantations (Almeida et al. 2007a). 

At the stand level, Q was not a good indicator of the estimated T. On average the 4YO 

site had the highest T, followed by 1YOHD, 1YO and 10YO (whole season average: 0.98, 0.81, 

0.62, 0.48 mm d-1, respectively), and excluding the high-density site, average T was strongly 

correlated with stand density (R2 = 0.91, RMSE=80.5).  These findings indicate a strong age 

effect, with T increasing rapidly during the early years of stand development, from 1 to 4YO in 

our sites, followed by a sharp decline after reaching maximum T rates, estimated at four years 

since plantation establishment in this study. These results strongly align with previous studies on 

eucalyptus plantations at similar densities that, depending on the age range studied, have seen an 

increase in the first years, followed by a decline in stand T (Almeida et al. 2007a, Dunn and 

Connor 1993, Dye 1996, Engel et al. 2005, Forrester et al. 2010, Liu et al. 2017).  

 

Sensitivity of eucalyptus plantations to environmental stress 

Our second hypothesis stated that older plantations (>4YO) would be less susceptible to 

environmental changes and show a larger buffering capacity, as reflected in a lower hysteresis 

area for VPD and PAR (HVPD and HPAR), and inflection points of Fd (IPVPD) at higher VPD and 

PAR (IPPAR) at lower soil saturations (S), compared to younger sites (1YO, 1YOHD). In our 

study, we observed that the initial Fd -VPD rate change was linear at low VPD (approximately 

1.8 kPa), which is consistent with findings from previous studies on diverse tree species (Kostner 

et al. 2002, Ma et al. 2017, Wang et al. 2005). According to our results, most inflection points 
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occurred after this linear relationship, between a VPD of approximately 1.5-2.4 kPa. IPVPD were 

higher on average in the 1YOHD stand (2.18 kPa), followed by the 10YO, 1YO and 4YO stands 

(average: 2.12, 2.0, and 1.93 kPa, respectively). This pattern, however, may be attributed to a 

more opportunistic water use behavior of the 1YOHD site, which increased significantly its 

IPVPD at high S, resulting in a higher overall average. While differences among sites were 

expected due to differences in LAI and rooting depth, inflection points among sites were very 

similar in November (1.85 kPa ± 0.11). This low variability in IPVPD can be attributed to high 

precipitation registered in November, which resulted in similar S across sites (Figure IV-1). 

Considering that VPD, PAR, and S did not vary significantly across the study sites in November, 

these results strongly suggest that under similar environmental conditions, E. grandis trees of 

different sizes and ages exhibit similar threshold responses to VPD, regardless of their 

differences in Fd, which at times differed by up to 400% within sites. While our study was not 

designed to allow for analysis of  inflection points by tree size, differences in hydraulic 

properties (i.e., P50: where 50 percent of the conductivity has been lost) by stem size have been 

observed for cavitation curves of various species including eucalyptus trees (Meinzer et al. 2009, 

Wheeler et al. 2013). The greatest difference in IPVPD was observed in the months of March and 

April 2015, which was primarily the result of the differences observed among sites (10YO=2.35, 

4YO=1.8, 1YO=1.67, and 1YODH=1.65 kPa), in particular, to the reduction of inflection points 

in the young stands, which seemed to respond most strongly to reductions in S. This response 

was reflected in our results for stand transpiration, where S in the top 40 cm was found to exert a 

significant control across all stands (Table IV-6).  

Recent studies have observed that repetitive exposure to hydrologic stress induces a 

memory effect on the regulatory functions of guard cells (Virlouvet et al. 2018, Virlouvet and 

Fromm 2015), and that this effect remains active even after the stress is eliminated. These results 
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may can help explain the degree of variability in inflection points observed in this study, since 

younger trees, which presumably have not experienced as much hydrologic stress previously, 

may have a weaker memory system compared to older trees, potentially leading to greater 

increases in Fd rates when water was available. Conversely, the 10YO stand, which potentially 

had a better developed memory system due to its age and greater exposure to seasonal drought, 

did not increase Fd in response to water availability.   

In our sites, low S reduced inflection points in all stands (Appendix IV-IV), and while 

these inflection points were not statistically different, there was a clear trend that supports what 

previous studies have found regarding the strong regulatory mechanisms for E. grandis hybrids 

(Soares and Almeida 2001). Overall, in mature E. grandis plantations, studies have found that 

daily maximum stomatal conductance decreases significantly when pre-dawn leaf water potential 

becomes more negative, supporting a strong stomatal regulation of mature E. grandis trees when 

soil water is limiting (Almeida and Soares 2003, Soares and Almeida 2001). However, 

comparisons of IPVPD with other studies are difficult because they are not commonly reported in 

the literature. 

 Similar to what has been observed in other studies, PAR peaked before VPD, on average 

two hours earlier considering the entire dataset (data not shown). Compared to IPVPD, IPPAR did 

not result in significant stagnation or reductions in Fd. At the leaf level, increments in blue light 

trigger proton pumps in guard cells, which induce stomatal opening, however, while light 

saturation can be achieved in the early hours of the morning, light saturation primarily limits CO2 

uptake, and typically does not limit transpiration (Buckley 2005, Quinones et al. 1996, Zeiger 

2000, Zhu et al. 1995). A cross-site comparison showed that the 10YO site was the least 

responsive to PAR and did not reveal any inflection points during most of the monitoring period 

(Figure IV-8). An initial explanation for this pattern could be rooting depth (Duursma et al. 2011, 
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Fan et al. 2017, Laclau et al. 2001) and access to soil water, which could limit stomatal closure if 

trees had access to a stable water source. However, considering that the 10YO stand was not the 

wettest (based on S in the first 100 cm. Figure IV-1, Figure IV-2), and that it showed relatively 

small IPVPD, the observed patterns contradict the expected behavior for this stand (i.e., larger 

IPVPD and IPPAR). A more likely explanation are changes in leaf morphology and anatomy. 

England and Attiwill (2005) observed a significant reduction in leaf width and area in E. regnans 

associated with age. In their study, as trees aged, leaf area reduced, and a stronger expression of 

xeromorphic traits (e.g., increased presence of cuticular waxes) was observed. Battie-Laclau 

(2014) observed similar patterns in two-year-old E. grandis trees in a nutrient amendments study 

in Brazil. Such anatomical adaptations, specifically the reduction in leaf size, can significantly 

lower the total area exposed to incoming radiation, effectively lowering the need for transpiration 

as a cooling mechanism. Additionally, the patterns observed of whole-tree water use (see 

previous Discussion section), fully align with these changes in leaf morphology and anatomy.   

 

Hysteresis areas for VPD and PAR  

 In our sites, the PAR-VPD rate-change was higher (i.e., PAR increased faster than VPD) 

early in the morning when VPD was increasing, and similar high rate-changes were observed 

during the period of declining VPD in the afternoon, which resulted in an anticlockwise 

hysteresis loop. This anticlockwise pattern is typically observed when a variable that has a 

delayed, but direct effect on another one (e.g., PAR and VPD) is plotted as a dependent variable 

(x axis) binned by time increments. 

 As shown in Figure IV-9, there was a clear difference in the HVPD by site and by S. 

Considering that the area of the hysteresis curve reflects the degree of resistance between the 

dependent (Fd) and the independent variables (VPD or PAR) (Everett and Smith 1954, Haines 
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1930, Klomkliang et al. 2014, Pavlakis and Barden 1972), the overall lower hysteresis areas 

observed in the 10YO site indicates that this site was under lower stress, compared to the other 

sites. Additionally, the 10YO stand had the lowest overall variability of HVPD area at different S, 

and the hysteresis area at low S was statistically smaller than for the other stands. These results 

suggest that the 10YO trees had adaptations or regulating mechanisms that allowed them to 

reduce resistance to Fd despite limited soil water availability, while maintaining constant Fd 

rates. Increased rooting depth providing access to deeper water sources is a known factor that can 

limit stomatal closure (Pereira et al. 1992), thereby reducing the stress to sap flow and reducing 

the hysteresis areas. However, as discussed in the previous section, the soil in the 10YO stand 

was at times drier than the other sites in the top 100 cm, and thus a higher hysteresis area would 

be expected. While access to deeper soil depths where soil moisture is higher is currently 

unaccounted for, because we only measured soil moisture within the first 100 cm of soil, this was 

not reflected in our measurements of whole-tree water use (Figure IV-3), where we observed that 

10YO trees had a lower whole-tree water use, compared to trees in the younger stands. 

Additionally, it was observed that after precipitation events, younger stands showed an increment 

in transpiration rates and reductions in HVPD, but the 10YO site only reduced its HVPD without 

increasing Fd rates. In terms of water use efficiency between 10YO and other sites, our results 

are in accordance to what it was observed by Otto et al. (2014), where they observed that in 

terms of biomass productivity, mature trees had a higher water use efficiency, compared to 

young trees. 

 Considering that IPVPD occurred at higher VPD in the 10YO stand than in the other 

stands, a simple stomatal closure mechanism to reduce resistance to Fd in mature trees seems to 

insufficiently explain the patterns observed. In this particular case, the memory effect of guard 

cells described in the previous section (Virlouvet et al. 2018, Virlouvet and Fromm 2015), which 
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involves a higher expression of ABA rate-limiting genes, seems to better explain both patterns of 

IPVPD and HVPD. The presence of such a memory effect combined with documented changes in 

leaf anatomy and leaf morphology in Eucalyptus trees, can result in overall reductions in the 

resistance to sap flow, which in turn will result in stable HVPD and HPAR when reductions in S 

combined with high VPD occur. 

Further exploration of our data showed that HPAR had a butterfly pattern at low S (Figure 

IV-10). Hysteresis curves with a butterfly pattern have been observed in several studies (Brum et 

al. 2018, Ewers et al. 2002, Ma et al. 2017, Zeppel et al. 2004), which can be explained in part, 

by the shifting nature of the factors that drive stomatal closure. In studies of flow through porous 

medium and general studies of hysteresis, the lines resulting from the partial influence, or a shift 

or interruption in the variables driving the response of the curve, are known as “scanning curves” 

(Everett and Smith 1954, Haines 1930, Klomkliang et al. 2014, Pavlakis and Barden 1972, 

Staple 1965, Zeng et al. 2016), which are commonly created in studies of pore structure 

(Klomkliang et al. 2014, Zeng et al. 2016), by inverting or modifying the water or vapor content 

of the pores. The butterfly pattern observed for HPAR, can be explained considering both the 

patterns of IPVPD and HVPD. First, as shown in Appendix IV-IV, inflection points for VPD 

resulted in significant reductions in Fd in all stands except the 10YO stand. This pattern is also 

evident in Figure IV-9, where we show that Fd inflection points occurred before VPD reached 

maximum values, with the exception of the 10YO stand, which did not show an inflection point 

and maintained a reduced HVPD. This reduction in Fd resulting from an increase in the resistance 

to water flow through the sapwood due to limiting soil moisture, interrupted the expected HVPD 

loop, and lowered the expected maximum point of the HVPD loop. In the absence of 

environmental factors inducing inflection points, the hysteresis loop will follow the outer 

margins of a loop that defines that system. But when one variable experiences constraints and 
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releases, resulting in one or multiple scanning curves, hysteresis loops will present the butterfly 

pattern which can have more than one loop. Since soil moisture is unlikely to change 

significantly enough multiple times in one day to produce multiple scanning curves, solar 

radiation or PAR likely play the major driving force in creating these additional loops.  

 In conclusion for out second hypothesis, our results indicate that mature E. grandis trees 

develop regulatory mechanisms that allow them to reduce transpiration rates, that seems to be 

active not only when soil moisture is limiting, but also when soil water is plentiful. Our initial 

hypothesis was that sensitivity to environmental changes, such as high VPD and low S, would 

decline with plantation age, and while we expected both 4YO and 10YO to show such lower 

sensitivity, we only saw this pattern in 10YO trees. Considering these results and the current 

evidence, we conclude that there is partial evidence to support our hypothesis, and emphasize the 

need for more long-term monitoring to better understand the effect of plantation age on water use 

patterns in response to environmental change. At the same time, our results suggest that it takes 

more than four years for the regulatory mechanism to have measurable effects. 

 

Implications for management 

 Approximately 70% of the total area planted with E. grandis in Argentina is located in 

the Province of Entre Rios (SAGPYA 2001), with a high concentration of plantations on the 

West side of the Uruguay River. However, the demand for whole biomass for bioenergy from 

this or other tree species is very low, compared with other biomass sources such as sugar cane, 

corn, and other grains (Goldstein and Gutman 2010, Rozenberg et al. 2009, van Dam et al. 

2009). Most of timber production is currently used in industry for packing, particle boards and 

housing (e.g., flooring, frames, etc.) (Sanchez Acosta 2012). Consequently, intensive short 

(<2YO) rotations of E. grandis for biomass or bioenergy purposes are unlikely to occupy large 
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areas in the region. However, there is a strong potential to modify management practices to use 

eucalyptus plantations as providers for environmental services, specifically to help mitigate 

flooding or river overflows. In this study, increasing plantation density in 1YO plantations 

increased their cumulative stand level water use by 34% (~80 mm). Additionally, 1YO high-

density plantations seem to be more responsive to precipitation inputs during both the wet and 

the dry season, reflected in their increased T after each precipitation event. This response pattern 

was also observed in the 1YO site, but the increase in T was higher in the high-density plantation 

(Figure IV-6). 

 The area of Entre Rios, is highly sensitive to flooding, in part due to its location (Ulla 

2015), and many argue that flooding events in 2015 were primarily influenced by El Niño. 

Despite this, evidence suggests that planning and preparedness has not been efficiently 

implemented. As a result, on December 27, 2015 the government announced long-term plans to 

build two aqueducts in Concordia, Entre Rios. While it is known that trees have a limited control 

on major environmental events such as river overflows, or major rainfall events, they have a 

strong potential to increase soil infiltration and reduce runoff  (Bronstert and Kundzewicz 2006, 

Calder and Aylward 2006). Engineering projects focused on flood control have a higher impact 

when they are accompanied by watershed and land-use management practices (Calder and 

Aylward 2006). Our analysis of S in the first 100 cm of soil indicates that there is a higher 

potential for infiltration under plantations, than in soils covered by pasture in both the wet and 

the dry seasons, and that this infiltration potential increases in high-density plantations (Figure 

IV-4, Figure IV-5).  

We acknowledge that a simplistic afforestation program is not the only solution to reduce 

runoff or to reduce soil erosion risk during mild or moderate precipitation events. However, the 

current demand for E. grandis timber (and other species) (Bouza et al. 2016, Sanchez Acosta 
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2012, Winck et al. 2015) offers the opportunity to implement management alternatives aimed to 

produce timber in the long-term, while increasing the soil infiltration capacity in the short term. 

Due to the fast peaks in stand T, E. grandis plantations can be established at high densities, to 

promote soil infiltration in the first year or two. Since LAI and T are directly related, if high T 

rates are no longer desired in one site, thinning or pruning can directly reduce T, thus allowing 

more water to remain in the soil. Forrester et al. (2013) conducted a pruning/thinning experiment 

om E. nitens and found that while pruning removed 75% of the leaf area, biomass productivity 

decreased only 12%. Unlike Pinus trees, where a removal of only 20% of the leaf area can 

significantly reduce growth rates, E. grandis increase their light absorption efficiency (Forrester 

2013). These observations are consistent with our results. As seen in Figure IV-8, unlike VPD, 

increments in PAR did not seem to result in significant reductions in tree Q. Further, the 

relationship between PAR and Q were nearly linear in the 10YO site, where LAI has been 

reduced through management, compared to other sites. 

 

Conclusion  

Our results indicate that sap flux density and stand-level T increased from 1 to 4YO, to 

later decrease from 4 and 10YO. Whole tree average daily water use rates were higher in at 4 

years and significantly lower at 10 years, which coincides with previous studies on this species. 

Changes in water availability in the soil seem to influence strongly how Fd  and Q responded to 

VPD, but not to PAR, and the 10YO site did not seem influenced significantly by VPD, PAR or 

changes in S, as reflected by both inflection points and hysteresis areas, suggesting that old trees 

have better mechanisms to cope with environmental stress, unlike young (1-4 year-old) 

plantations. Cumulative water use indicates that 1YO high-density plantations use 34% more 
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water plantations the same age at regular densities (146 mm y-1), conversely, T in the 10YO was 

25% lower than the 1YO site. 
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Figures and Tables 

 

 
Figure IV-1 Soil saturation by site, 2014. A: soil saturation estimated for the first 100 cm of soil 
profile. B: Soil saturation estimated for the first 40 cm of soil. Solid lines represent the S 
estimated for each site using the bucket model  
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Figure IV-2 Soil saturation by site, 2015. A: soil saturation estimated for the first 100 cm of soil 
profile. B: Soil saturation estimated for the first 40 cm of soil. Solid lines represent the S 
estimated for each site using the bucket model. Pluviometers were uninstalled on DOY 120 
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Figure IV-3 Average whole-tree water use by site and month of the year. Error bars = standard 
error of the mean 
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Figure IV-4 Stand transpiration during the wet season in four bioenergy plantations in Argentina 
No precipitation data on DOY 334 due to equipment failure 
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Figure IV-5 Stand transpiration during the dry season in four bioenergy plantations in Argentina 
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Figure IV-6 Estimated cumulative water use for the entire monitoring period (November 2014-
May 2015).  
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Figure IV-7 Response of average sap flux density per site to VPD, at different months of the year 
(shown at the top of each panel). A Locally Weighted Scatterplot Smoothing Model was fitted to 
each response curve, and inflection points were estimated along the fitted line before the slope = 
0, to allow the detection of inflection points that did not result in Fd -VPD response curves with 
slopes <= 0. Dashed lines show the coordinates of the inflection point (if found), and crossed 
circle symbols represent the inflection point for each line. 
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Figure IV-8 Response of average tree-level sap flux density per site, to PAR at different months 
of the year (shown at the top of each panel). A Locally Weighted Scatterplot Smoothing Model 
was fitted to each response curve, and inflection points were estimated along the fitted line 
before the slope = 0, to allow the detection of inflection points that did not result in Fd -VPD 
response curves with slopes <= 0. Dashed lines show the coordinates of the inflection point (if 
found), and crossed circle symbols represent the inflection point for each line. 
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Figure IV-9 Hysteresis response between VPD and sap flux density, at different soil saturation 
ranges (shown at the top of each panel). VPD and Fd data were normalized by dividing the value 
of row n, over the maximum value of the corresponding column of n. Additionally, data 
corresponding to days with precipitation events, or with cloud cover were not used in this graph. 
Arrows represent the direction response of Fd to VPD (primarily clockwise). 
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Figure IV-10 Hysteresis response between Fd and PAR, at different soil saturation ranges (shown 
at the top of each panel). PAR and Fd data were normalized by dividing the value of row n, over 
the maximum value of the corresponding column of n. Additionally, data corresponding to days 
with precipitation events, or with cloud cover were not used in this graph. Arrows represent the 
direction response of Fd to PAR (primarily anti-clockwise). 

 
 

 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0.0 0.4 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

PAR_1

Fd
_1

0Y
O

_1
0.2−0.4

●

●

●

●

10YO
4YO
1YO
1YOHD

N
or

m
al

ize
d 

sa
p 

flu
x 

de
ns

ity

0.0 0.4 0.8

PAR_2

Fd
_1

0Y
O

_2

0.4−0.6

0.0 0.4 0.8

PAR_feb

Fd
_1

0Y
O

_f
eb

0.6−0.8

0.0 0.4 0.8

PAR_4

Fd
_1

0Y
O

_4

0.8−1.0

Normalized PAR



 

 185 

 
Table IV-1 Soil properties by site (from Cisz-Brill et al.) 
 

Site Depth 
(cm) 

Bulk 
density  
(g cm3) 

Porosity 
(%) 

Sand 
(%) 

Clay 
(%) 

Silt 
(%) 

10YO 

0-15 1.26 52.36 0.76 0.09 0.15 
15-30 1.53 42.29 0.76 0.09 0.15 
30-45 1.58 40.47 0.66 0.20 0.14 
45-60 1.63 38.51 0.66 0.20 0.14 

4YO 

0-15 1.43 45.93 0.80 0.08 0.13 
15-30 1.50 43.56 0.80 0.08 0.13 
30-45 1.56 41.02 0.71 0.17 0.12 
45-60 1.66 37.49 0.71 0.17 0.12 

1YO 

0-15 1.55 41.62 0.71 0.12 0.17 
15-30 1.63 38.34 0.71 0.12 0.17 
30-45 1.64 38.12 0.61 0.22 0.16 
45-60 1.65 37.76 0.61 0.22 0.16 

1YOHD 

0-15 1.55 41.62 0.71 0.12 0.17 
15-30 1.63 38.34 0.71 0.12 0.17 
30-45 1.64 38.12 0.61 0.22 0.16 
45-60 1.65 37.76 0.61 0.22 0.16 
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Table IV-2 Vegetation and soil parameters used to fit the bucket model 

Vegetation parameters 10YO 4YO 1YO 1YOHD Pasture 

Depth of Interception 2 2 4 3 2 

Maximum E (mm d-1) 2 2 2 2 2 

Maximum T (mm d-1) 5 5 3.6 4 4 

Saturation at stomatal closure 0.3 0.3 0.3 0.3 0.3 

Saturation at wilting point 0.205 0.205 0.205 0.23 0.16 

Root depth (cm) 40 40 40 40 40 

Soil parameters           

Porosity (n) 0.45 0.4 0.45 0.45 0.45 
Saturated Conductivity E (mm 

d-1) 200 200 200 200 200 

Hygroscopic saturation 0.02 0.02 0.02 0.02 0.02 

Field Capacity 0.3 0.3 0.3 0.3 0.3 

Drainage Curve Parameter 9 9 9 9 9 

 
 
 
 
 
 
Table IV-3 Stand characteristics 

Site 
Actual 
density 

(trees ha-1) 
Mortality 
rate (%) 

Average 
diameter 

(cm) 

Average 
sapwood 

area* (m2) 

Average 
basal area 

(m2) 

Average 
height 

(m) 
Subsample 

N 

         
 

10YO 1118 7% 18.2 0.0127 
(±0.0036) 

0.0272 
(±0.0123) 

17.5 68 
 

4YO 1386 40% 14.7 0.0099 
(±0.0015) 

0.0175 
(±0.0070) 

15 70 
 

1YO 1380 25% 5.71 0.0027 
(±0.0013) 

0.0027 
(±0.0013) 

6.01 56 
 

1YO-HD 3112 24% 4.35 0.0017  
(±0.0010) 

0.0017  
(±0.0011) 

5.29 91 
 

*Average sapwood area per tree, using N trees of the subsample 
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Table IV-4 Parameters and allometric equations adjusted for each site to predict sapwood area 
with tree diameter 

Site β0 β1 StErr - β0 StErr - β1 RMSE *R2 

10YO  -8.1033 1.2854 0.5570 0.1812 0.0021 0.88 

4YO  -6.6478 0.7610 0.2763 0.1004 0.0006 0.92 

1YO  -9.4789 2.0090 0.0233 0.0111 0.0000 1 

1YOHD  -9.0174 1.7342 0.1902 0.0872 0.0003 0.98 

Mature  -7.8337 1.1946 0.3638 0.1218 0.0018 0.86 

Young  -8.9164 1.7143 0.1857 0.0871 0.0003 0.96 

All  -7.8786 1.2104 0.1649 0.0570 0.0012 0.94 
 
 
 
Table IV-5 Corrected Akaike and Bayesian information criterion for each of the models tested by 
site.  

Site Fixed effects - 2 log 
likelihood AICc BIC 

10YO 

AirT, RH, NetRad, VPD, 
ET0, WindS, pp, S  -6.4 21.1 38.6 

AirT, RH, NetRad, VPD, 
ET0, WindS, pp 3.4 27.8 44.5 

ET0, PAR, NetRad 7.3 20.9 32.0 

4YO 

AirT, RH, NetRad, VPD, 
ET0, WindS, pp, S 112.7 139.8 158.4 

AirT, RH, NetRad, VPD, 
ET0, WindS, pp 127.2 151.3 168.8 

ET0, PAR, NetRad 130.3 143.8 155.2 

1YO 

AirT, RH, NetRad, VPD, 
ET0, WindS, pp, S 22.2 50.4 158.4 

AirT, RH, NetRad, VPD, 
ET0, WindS, pp 26.5 49.7 70.3 

ET0, PAR, NetRad 55.0 68.1 81.3 

1YOHD 

AirT, RH, NetRad, VPD, 
ET0, WindS, pp, S 83.0 109.4 130.1 

AirT, RH, NetRad, VPD, 
ET0, WindS, pp 107.1 130.5 150.4 

ET0, PAR, NetRad 110.3 123.5 136.3 
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Table IV-6 Summary of the fixed effects tests for the linear mixed model run for each site. For 
each site, the response variable was site T, the fixed effects the environmental variables (Source), 
and to account for changes overtime, DOY was considered the random variable 
 

Source 
10YO 4YO 1YO 1YOHD 

F Ratio Prob > F F 
Ratio Prob > F F Ratio Prob > F F Ratio Prob > F 

ET0 0.2 0.7 4.7 0.0316* 1.7 0.2 9.6 0.0023* 

AirT 24.2 <.0001* 6.6 0.0112* 2.3 0.1 6.5 0.0118* 

RH 2.7 0.1 15.4 0.0001* 0.2 0.7 26.3 <.0001* 

PAR 68.2 <.0001* 0.1 0.7 43.8 <.0001* 0.6 0.5 

VPD 0.2 0.7 10.6 0.0013* 3.4 0.1 20.8 <.0001* 

pp 7.2 0.0082* 0.1 0.8 5.6 0.0192* 1.1 0.3 
NetRad 6.3 0.0130* 0.8 0.4 8.4 0.0042* 0.6 0.4 

S40 14.2 0.0002* 10.2 0.0017* 14.9 0.0002* 32.3 <.0001* 
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Table IV-7 Summary of the effects of environmental variables on daily maximum Fd (11AM-
5PM)  
 

  
Source 

10YO 4YO 1YO 1YOHD 

  F Ratio Prob > F F Ratio Prob > F F Ratio Prob > F F Ratio Prob > F 

All 

ET0 6.6 0.0102* 5.5 0.0187* 0.7 0.4 2.4 0.1 

AirT 167.2 <.0001* 288.0 <.0001* 102.9 <.0001* 240.5 <.0001* 

RH 370.0 <.0001* 349.6 <.0001* 130.4 <.0001* 303.3 <.0001* 

PAR 1.1 0.3 18.1 <.0001* 2.2 0.1 1.3 0.3 

VPD 222.9 <.0001* 335.5 <.0001* 172.4 <.0001* 269.5 <.0001* 

pp 2.9 0.1 0.1 0.8 3.0 0.1 0.2 0.7 

NetRad 7.3 0.0071* 0.8 0.4 1.8 0.2 4.3 0.0393* 

S 2.2 0.1 3.9 0.1 1.5 0.2 3.9 0.1 

No S 

ET0 56.9 <.0001* 33.1 <.0001* 10.4 0.0013* 0.0 0.9 

AirT 327.2 <.0001* 484.0 <.0001* 649.9 <.0001* 441.8 <.0001* 
RH 643.3 <.0001* 638.0 <.0001* 1003.6 <.0001* 707.3 <.0001* 

PAR 0.0 0.9 91.2 <.0001* 0.6 0.4 8.0 0.0046* 
VPD 552.0 <.0001* 786.7 <.0001* 1066.4 <.0001* 765.5 <.0001* 

pp 6.6 0.0103* 0.9 0.4 0.1 0.8 1.5 0.2 
NetRad 54.9 <.0001* 7.1 0.0077* 15.4 <.0001* 1.0 0.3 
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Appendices  
 
Appendix IV-I Steps to estimate bucket model components 
 
The first parameter in the bucket model is infiltration, which is calculated based on the current S, 
and the depth of precipitation as: 
 

 𝐼n(𝑆(𝑡o̅), 𝑡T) = min	[𝑃(𝑡T), 𝑛𝑍𝑟(1 − 𝑆(𝑡o̅))] Eq.  IV-10    

 
Where I´(S(ti), ti ) is the infiltration at ti, at a saturation ti^, min the minimum value between [ , ], 
P(ti) depth of net precipitation, nZr soil depth of porosity n, and S(ti^) the saturation before ti^ 

 
When saturation is higher than field capacity (Sfc), in the absence of soil evaporation or any 
additional precipitation is converted to leakage using:  

 
 

 𝐿(𝑆) = 𝐾7xy
𝑒z{N|N}~��|)

𝑒z{)|N}~��|)
 Eq.  IV-11    

 
 
 

Where L(s) leakage at a saturation S, Ksat saturated conductivity, b is an infiltration soil 
parameter and Sfc saturation at field capacity 

 
 

A nominal value was used for E(S) (see Table III-4), and was adjusted to different S, using: 
 

 𝐸(𝑆) = �

0																											𝑆 < 𝑆"
𝑆 − 𝑆"
𝑆∗ − 𝑆"

𝐸							𝑆" < 𝑆 < 𝑆∗

𝐸																												𝑆 ≥ 𝑆∗
� Eq.  IV-12    

 
Where Sh is the hygroscopic saturation, S* the saturation at stomatal closure, E the maximum 
evaporation from the soil 

 
 

The maximum transpiration estimated early in the monitoring period was used for T(S). Similarly 
to E(S), T was adjusted to different S, considering that T is directly influenced by water 
availability.  

 

 𝑇(𝑆) = �

0																											𝑆 < 𝑆;
𝑆 − 𝑆;
𝑆∗ − 𝑆;

𝑇							𝑆; < 𝑆 < 𝑆∗

𝑇																												𝑆 ≥ 𝑆∗
� Eq.  IV-13    
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Where T(s) is the transpiration at saturation S, Sw the saturation at wilting point, S* the saturation 
at stomatal closure, and T the maximum transpiration per site. 
 
 
 
 
 
Appendix IV-II Linear regression between observed and estimated T for each site. The dashed 
line represents a 1:1 relationship, and the solid line the linear regression (R2=94) combining 
observed and predicted for all sites. In Table III-5 we show the variables used in the linear mixed 
model, and the AICc and BIC corresponding to each model.  
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Appendix IV-III Relationship between diameter and estimated sapwood area (m2). The grey line 
represents the equation fitted to all the data (R2 = 0.94, RMSE = 0.0012). In Table IV-4, we 
show the parameters adjusted for each site. Additionally, we merged data from both one-year-old 
sites, and data from 4YO and 10YO, to increase the predictability of the model.   
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Appendix IV-IV Sap flux density response curves to VPD at different soil saturations (shown in 
the top of each panel). A Locally Weighted Scatterplot Smoothing Model was fitted to each 
response curve, and inflection points were estimated along the fitted line before the slope = 0, to 
allow the detection of inflection points that did not result in Fd -VPD response curves with slopes 
<= 0. Dashed lines show the coordinates of the inflection point (if found), and crossed circle 
symbols represent the inflection point for each line.  
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Overarching goals of this study 

My doctoral research was part of a large international interdisciplinary NSF-PIRE research 

project that examined the impacts, barriers and opportunities related to bioenergy production 

across the Americas (USA, Mexico, Brazil, Argentina). This dissertation is focused on two 

countries, USA and Argentina. The general goal of this research was to assess the potential 

ecohydrological impacts associated with the production of biomass for bioenergy from aspen 

(Populus tremuloides Mich.) in Wisconsin, USA, and eucalyptus (Eucalyptus grandis) 

plantations in Entre Rios, Argentina.  

As part of this dissertation, we conducted a validation and calibration studies of two sap 

flow methods. First, we calibrated the heat dissipation (HD) method and assessed the effects of 

heater wattage on sap flux density (Fd) estimates. This paper was not included in this 

dissertation, but if has been published and it is fully available for readers (Gutierrez Lopez et al. 

2018). We also estimated the measuring range of Fd for E. grandis and validated a new method 

that extended the measuring range of HR method and allowed us to measure low and inverse Fd 

with high precision; the maximum heat ratio (MHR) method. This later study was included in 

this dissertation and the results were used to estimate Fd in E. grandis trees. This conclusion, 

however, is focused on Chapters III and IV, which dealt with the potential ecohydrological 

impacts of the production of feedstocks for bioenergy under two environmentally different sites. 

 CHAPTER IV  

V GENERAL CONCLUSSIONS  
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In our case studies in the USA and Entre Rios, Argentina, we set to determine if plantation 

age could be correlated to site T, which can be of great value to elaborate long-term modeling 

scenarios. Such modeling scenarios can help us determine the optimum rotation lengths to 

provide maximum timber growth, while minimizing potential negative ecohydrological impacts. 

The overarching objectives of this research were: (a) to determine how site transpiration (T, mm 

d-1) changes both seasonally and at different plantation ages, (b) how different environmental 

variables such as precipitation (pp), soil saturation (S), air temperature (AirT), relative humidity 

(RH) and photosynthetic active radiation (PAR) and solar radiation affect T rates at different 

plantation ages. We tested different hypotheses at each site, based on their respective general 

management goals, and the environmental conditions that drive plant growth and water use at 

each site.  

 

Wisconsin study site 

To test if stand age and average water use relationships can be established in SRWC of P. 

tremuloides, the general goals of this study were: a) to estimate seasonal and daily T of three 

(Young, Mid-aged, and Mature, see next section for details) coppice plantations dominated by 

Populus tremuloides Mich., and b) determine how site effects can override the age effect on 

stand T. Our first hypothesis is that at the tree level, water use would be higher in the Mature 

site, compared to our Young site, while sap flux density would be higher for the latter. Our 

second hypothesis is that stand T will increase with stand age, primarily as a result increments 

of total leaf area and LAI, larger individual tree size and higher growth rates. Our third 

hypothesis is that site effects can override age effects on stand T, but addressing these 

differences can allow us to establish a relationship between age and stand T. 
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Summary of results for Wisconsin 

According to our statistical analysis, estimated Mature stand T had a maximum of 5.5 m d-1 

early in the growing season (seasonal average 2.7) and was higher than the Mid-aged and Young 

sites, which had both a maximum early-growing season T of 2.5 mm (seasonal average 1 and 0.3 

mm, respectively). Modeled transpiration (Tmod) under a S-limiting scenario reduced average 

transpiration rates by ~10% across sites, but these reductions were not significantly different from 

estimated T. Tmod under non-limiting S conditions resulted in significantly higher transpiration rates 

in the Young (+170%), but not in the Mid-aged (+34%) or Mature (+5%) sites. While not 

significantly different between the Mid-aged and Young sites, annual average T was positively 

correlated with stand age, and this relationship was maintained under both S scenarios. Dominant 

trees accounted for 76% of stand T in the Mature site, and 58% and 51% in Mid-aged and Young 

sites, respectively. In Young sites, our results highlight the important role of small-diameter trees. 

Our results indicate that site-specific differences can have an overriding effect on age, however, 

as long as site variability is addressed, stand age can be related to average stand T. Curves of 

expected water use with age can be of great valuable to the bioenergy industry, to elaborate 

potential scenarios of water use in aspen-dominated short rotation woody crops (SRWC). Finally, 

further research is needed under various environmental conditions to validate the existence of a 

water use curve in aspen-dominated or SRWC plantations.  

 

Argentina study case 

In Argentina our goal was to estimate whole-tree (Q, L d-1) and stand-level T in 

Eucalyptus grandis plantations of three different ages, 10, 4 and 1 years-old (YO) at regular 

density (10YO, 4YO, 1YO), one one-YO at a high (double) density (1YOHD), and reference 

crop evapotranspiration (ETk) in an adjacent fallow pasture site (common during rotation 
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cycles). In this site, the main objectives were: (a) first, to understand the relationship between 

plantation age, density, and tree and stand-level transpiration rates, and also (b) to assess the 

response of different plantations ages to variations in atmospheric and soil moisture stress, to 

understand resilience of eucalyptus plantations at different growing stages. We tested three main 

hypothesis, the first hypothesis was that stand T would increase from 1 to 4 YO, and decrease 

after that resulting in lower T in the older (10YO) site. Our second hypothesis was that older (4 

an 10YO) plantations, would be less susceptible to environmental changes (VPD and soil 

moisture), which would be reflected in smaller hysteresis areas for VPD and PAR at low S, and 

in inflection points at higher VPD rates when soil moisture is limiting.  

 

Summary of results for Argentina 

We analyzed inflection points of sap flux density (Fd, cm3 cm-2 h-1) for VPD (IPVPD) and 

PAR (IPPAR) by fitting a local polynomial regression (LOESS) surface to the relationship 

between Fd and AirT, VPD or PAR. Additionally we studied hysteresis curves of Fd for VPD and 

PAR (HVPD and HPAR, respectively) to assess the effects of stand age and density on tree 

response to environmental stress. In these sites, we tested and validated the maximum heat ratio 

method (MHR), which allowed us to extend the measuring range of the traditional heat ratio 

method, and a full chapter of this dissertation was dedicated for the validation of sap flow 

methods. Fd was then estimated with the MHR and used to estimated Q, which was later scaled 

up to estimate T using allometric equations developed between diameter and sapwood area.  

In this site, T increased with age according to our first hypothesis from 1 to 4YO, and after 

that decreased significantly at 10YO. During the peak of the growing season, average T was 2.2, 

5.2 and 3 mm d-1, 1YO, 4YO and 10YO, respectively, in the regular-density sites. In the high-
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density 1YO site, maximum T during the same period was 3.4 mm d-1. We also observed that this 

site was the most responsive to precipitation inputs than the other sites.  

Inflection points generated at varying soil moisture conditions, were more pronounced at 

lower VPD when soil moisture was low, suggesting that both soil moisture and VPD are 

important in controlling stomatal response to moisture stress. Our comparison across treatments 

showed that the older (10YO) site was less sensitive to changes in soil moisture and maintained 

relatively stable inflection points across a wide soil moisture ranges. Conversely, the 1YOHD 

showed the greatest variability, indicating more sensibility and at the same time more 

opportunistic water use behavior, increasing their water use rates when soil moisture was 

abundant, but reducing to similar rates of other sites of the same age when soil moisture was 

limiting. Our analysis of hysteresis areas showed that the hysteresis area for Fd -VPD (HVPD) 

were larger at lower soil moistures, despite Fd rates being lower at low soil moisture. Analyzed 

by soil moisture range a butterfly-shape curve for hysteresis areas between Fd and PAR (HPAR) 

was observed at low soil water contents. Such butterfly patterns in the hysteresis graphs, which 

are associated to hydrologic stress, were observed in all sites except the 10YO. We associated 

the lack of butterfly patterns in hysteresis graphs in the 10YO site, to its ability to withstand 

higher hydrologic stress due to a combination of site characteristics and to its more developed 

root system, which might allow them to have access to a larger soil profile. In general, our results 

indicate that mature (10YO) E. grandis plantations, are more capable of regulating transpiration 

rates under high VPD and low soil moisture, reducing their risk for hydraulic failure, compared 

to younger sites. 

 



 

 209 

General limitations of our study and recommendations for future studies 

 As discussed in their respective chapters, the study of site and watershed transpiration is 

commonly limited in both time and space. The limitations, however, are often related to the 

practicality of the measurements. In both the USA and Argentina, we relied on sap flow 

measurements to estimate Q and stand T. While sap flow sensors offer a higher precision in the 

measurements of tree water use, the number of sensors that can be maintained and deployed, 

often reduces the number of sites that can be monitored. To focus on our research question, we 

focused on deploying sensors across different site ages, and we tried to cover as much as 

possible the variability within each site.  

In our study in Wisconsin, USA, site effects were found to significantly influence tree and 

stand-level water use rates. Various environmental variables such as photosynthetic active 

radiation (PAR), air temperature, relative humidity, precipitation and vapor pressure deficit 

(VPD) remained relatively stable across sites. However, soil properties differed across sites, 

which resulted in significant differences in soil moisture and soil saturation (S). Soil moisture 

has been considered a strong factor regulating T and growth rates in poplars and P. tremuloides 

trees (Bloemen et al. 2017, Chen et al. 2014, Larcheveque et al. 2011). According to our 

analysis, it also had strong effects on Fd.  

In Entre Rios, Argentina, while the soil types were homogeneous cross sites, analysis of S 

showed that S was significantly different among sites. In this site, soil water in the top 40 cm 

(S40) appeared to have a stronger influence on site T, but not on the diel patterns of Fd, which 

could be explained by the shape of the hysteresis curves we observed. Hysteresis graphs for VPD 

showed a compensation in Fd at low VPD’s, which explains the lack of statistical significance 

observed for site T, which considers the entire transpiration for a given day.  
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While we were able to monitor soil moisture to a depth of 100 cm in all sites, the modeling 

used to estimate site T makes two assumptions. First that S in the first 40 cm of soil has the 

strongest influence on T. While in fast growing plantations most of the fine roots are located in 

the top 50 cm of soil (Bouillet et al. 2002, Laclau et al. 2001), there are deeper roots can access 

water from deeper soil profiles (Toillon et al. 2013, Xi et al. 2013), and the root distribution is 

expected to be different at different plantations ages. The second assumption in our model is that 

changes in S are linearly related to Fd and stand T. According to Larcheveque et al. (2011), this 

relationship might be true within a volumetric water content range of 5-20%, but the slopes are 

different at high or low water contents. In modeling scenarios, the effects of T on soil moisture 

are expressed as a curve (extraction curve) (Guswa et al. 2002, Rodriguez-Iturbe et al. 2006, 

Rodriguez-Iturbe et al. 2001), with different slopes depending on the expected extraction rates 

(Rodriguez-Iturbe et al. 2001). S varied significant in the Mature site S, however, it was never 

lower than 0.14, and consequently, the slope estimated by our model might underestimate the 

effects of S in this site.  

 Two common limitations in sap flow studies are the sample size and the proper 

determination of stand-level AS  (Berry et al. 2018). Sample size is directly linked to equipment 

cost, and the spatial distribution of the species of interest. With wired sap flow stations, most 

studies limit the cable length between 10 and 15 m, to reduce to signal to noise ratio. This creates 

a radius around the sap flow station for the selection of the trees to be monitored, which can 

leave diametric categories or species of interest outside this radius. On single-species stands, 

Kume et al. (2012) recommended an optimal sample size of 15 measuring points to capture most 

of the tree-to-tree Fd variability. However, this recommendation was based om heat dissipation 

sensors with only one measuring point per sensor. As described in our methods section, we 

monitored a total of 24 measuring points distributed across 8 different trees, then while our 
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sample size was smaller, we captured the entire radial profile of all trees monitored. Proper 

determination of AS and the Fd radial profile in large trees is difficulty, and can lead to major 

under or overestimations of tree and stand T (Alvarado-Barrientos et al. 2013, Ford et al. 2004, 

Gebauer et al. 2008, Kubota et al. 2005, Poyatos et al. 2007). To address sapwood depth radial 

variability, we collected two cores per tree to estimate AS, and measured sapwood depth on four 

points per tree. Additionally, we installed trees in all four cardinal directions to cover the 

potential radial variations in Fd, and in all our trees the entire Fd radial profile was monitored. 

Finally, studies on P. tremuloides  trees have reported diameters of 24 cm in 150 YO trees 

(Bond-Lamberty et al. 2002, 2014), thus we extended our sampling range for AS to include trees 

up to 25 cm in diameter, and adjusted allometric equations for each site and predicted AS with 

site-specific equations (see Table III-3). Species-specific allometric equations are of great value to 

scale up plant-to-stand level processes (Bond-Lamberty et al. 2002, Jenkins et al. 2003, Perala 

1993), but adjusting equations for a specific site can reduce the error associated with the 

estimation of AS.  

 Based on our experience, we make the following recommendations to future studies 

looking to estimate stand-level annual water balances or interested in modeling stand-level T. 

First, establish a weather station (with all the variables needed to estimate ET0: air temperature, 

relative humidity, incoming short-waver radiation, outgoing long-wave radiation, wind speed. 

Additionally, soil moisture, precipitation, photosynthetically active radiation) earlier in the 

growing season, and in deciduous species, to install the weather station a month or two prior to 

the onset of transpiration. Next, track the development of LAI, and in evergreen species, measure 

it two or three times during the growing season, to address potential variability due to crown 

development. Monitor both throughfall and stemflow, considering that in P. tremuloides trees 15 

cm in diameter, precipitation events under 30 mm (over two or three days) overfilled our 
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containers, which were designed to fit 10 L. For throughfall, a minimum of thirty collectors per 

site are recommended, which should also be designed to fit the precipitation expected for a 

monitoring period. Next, we strongly recommend stablishing replicates under different site 

conditions, and develop a site profile (i.e., soil characteristics, stand density, allometric 

equations, etc.) for each. If sap flow sensors are used to estimate Fd, under budgetary constraints, 

the design of the sensors can be modified to allow them to detach from the communication 

cables, and remain in the trees. This way, the same data logger and multiplexor (approx. 70% of 

the cost of a sap flow station) can be moved between sites (where sensors have been previously 

installed in the trees) at intervals of 10-15 days. With the site and environmental variables 

monitored at each site, it is possible to estimate stand-level transpiration for the periods where no 

Fd was not monitored at each site, using various gap-filling procedures (i.e., a linear mixed 

model) similar to the one used in our sites. If runoff is difficult to monitor, a model can be 

adjusted to the soil saturation of each site, and based in soil properties to estimate potential 

runoff and infiltration.   

 

Recommended next steps 

One of the goals of this study was to determine if stand age could be related to average 

transpiration. If such relationship can be established, it would be possible to established reliable 

long-term scenarios of water use, and consequently, assess the potential ecohydrological impacts 

of the production of bioenergy. As mentioned in the Chapter 1, one of the reasons behind the 

absence of strategies to address water-related issues in long-term bioenergy development plans 

(BETO 2013, Perlack et al. 2005), is the lack of continuous monitoring studies, particularly in 

fast growing plantations, which are essential to parameterize models.  
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As part of the long-term goal of this study, what we recommend as the next step for this 

research is to use the data collected and the models fitted in this study, to generate water use 

scenarios at different rotation lengths, including modeled biomass accumulations, as shown in 

Figure V-1. The major challenge in the next steps, will be to integrate the fitted water use models 

for each site, and biomass accumulation models for a given species (e.g., P. tremuloides and E. 

grandis), to test whether such long-term water use scenarios can yield similar results to those 

elaborated with mechanistic models alone or based on long-term mass balance approaches, 

where they are available. Some of the mechanistic methods mentioned in the introduction of this 

study were: Penman-Monteith (Allen et al. 1998), the Presley-Taylor (Priestley and Taylor 

1972), and Eddy Covariance (Twine et al. 2000). Once the water use curve over time has been 

determined for a given species, and the long-term forecasted water use has been estimated (as in 

Figure V-1), the results can be compared with those estimated from those estimated from 

mechanistic models. In long-term ecological research stations, where site T is often estimated 

from water mass balance approaches over longer periods of time, estimates from both 

mechanistic models and water use curves over time can be validated. This approach of course 

will be limited in sites with high species diversity, if all dominant species are not considered to 

elaborate the expected water use curves of various rotation lengths. Finally, as mentioned in their 

respective chapters, temporal and spatial limitations of common sap flow studies need to be 

addressed in order to elaborate the described long-term water use scenarios. 
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Figures 

 

Figure V-1 Diagram showing to projected water use under two rotation scenarios  
 
Multiple short rotations (top panel), and few rotations (bottom panel). The top panel represents a 
species where multiple short rotations result in higher cumulative water use than the same species 
under longer rotations (bottom panel). In this diagram: A) the rotation length, B) the cumulative 
water use, and C) the expected stress due to reductions in soil water availability. 
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