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ABSTRACT 

 

ATRC PROCESSES AND ARCHITECTURES AS TOOLS FOR ADVANCING THE 

COMPLEXITY OF SINGLE-CHAIN POLYMERIC NANOPARTICLES 

by 

Elizabeth R. Bright 

 

Atom transfer radical coupling (ATRC) is gaining recognition for its utility in building 

complex polymeric architectures because it features efficiency, a wide range of compatible 

substrates, and a lack of byproducts. These qualities are especially desirable in applications 

requiring intramolecular cross-linking as in the synthesis single-chain nanoparticles (SCNP).  

This dissertation aims to (I) provide motivation and context for developing ATRC 

technology for intramolecular cross-linking, (II) provide guidance into the impact of catalyst 

selection and substrate on reaction efficiency and morphology, and (III) demonstrate the 

possibility to sequence intrachain ATRC with ATRP to create advanced SCNP architectures.  

Chapter II describes the preparation of SCNP from parent polymers containing alkyl or 

benzyl bromide ester pendants using ATRC catalyzed by copper halides complexes. Tri- or 

tetradentate alkyl or pyridyl amines (PMDETA, TPEN, and TPMA), which tune the redox potential 

of the Cu(I)/Cu(II) system, were directly compared. Coupling efficiency was positively correlated 

with the kATRP of the respective catalyst systems. However, PMDETA complexes afforded greater 

control as evidenced by lower polydispersity. In the case of alkyl halide pendants, selectivity for 

coupling over disproportionation systematically decreased under conditions designed to increase 

the concentration of CuI/L. Polymers with benzyl bromide pendants, which cannot 

disproportionate, tended to produce high molecular weight products, even in ultradilute solutions 

(0.25 –1.0 mg/mL).  
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Chapter III describes the preparation of SCNP from parent polymers capable of initiating 

intra-chain polymerization by ATRP under conditions favoring termination by coupling. Because 

of the wide variety of compatible monomers that have been well-established for ATRP systems, 

the ATRP/C framework both simplifies reaction procedures (one pot polymerization and coupling 

strategies are feasible) and imparts handles with which to control both architecture and 

functionality. To demonstrate this potential, model simple brushes and hyperbranched examples 

were prepared. SCNP with the hyperbranched motif were remarkably dense, a result which 

demonstrates the potential to facilitate more globular SCNP structures using modifications of 

intrachain polymerizations. Methacrylic brush arms, which are not non-ATRC active, could be 

induced to couple by adding 5 equivalents of styrene under the shared ATRP/C conditions. In 

addition, it was determined that hyperbranched SCNP retain “living” ω-ends which may be 

initiated to perform post-collapse polymerizations. A model styrene example is presented; despite 

occurring in an ultradilute solution, the polymerization maintains fidelity to pseudo-first order 

kinetics. 

In sum, there is currently a great impetus for pushing the boundaries of structural and 

functional complexity that can be designed using the single-chain nanoparticle motif. Atom 

transfer radical chemistry is a particularly versatile example and it is my hope that this work 

facilitates the creation of new creative and functional designs. 
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Chapter I: Introduction 

Motivation to Develop Complex Synthetic Macromolecules  

In nature, the ability of a polymer to perform a task depends on a combination of its 

chemical composition and morphology. Together, these tightly controlled structural features 

create remarkably specific chemical associations. This specificity is key because, unlike the 

isolated models of chemistry built in laboratory reactors, biological macromolecules operate in 

complex systems. Further, conditions such as solvent, temperature, and pH are controlled at a 

systems level rather than optimized for individual reactions. Despite this, biomacromolecules 

regularly and often dramatically outperform synthetic analogues in providing structural integrity, 

energy storage, or catalytic activity.1–4  

Given the breadth of these capabilities, it is unsurprising that so much research is 

dedicated to understanding structure-function relationships in biopolymer chemistry. For their 

part, chemists and materials scientists have been developing increasingly sophisticated synthetic 

polymer architectures with the goals of understanding the fundamental principles governing 

biopolymer processes (e.g. protein folding) and advancing these understandings to an application 

stage (e.g. as catalysts, drug delivery systems, or nanoreactors).  

 

The Role of Controlled Radical Polymerizations 

The development of versatile controlled radical polymerization techniques, especially 

atom transfer radical polymerization (ATRP) and reversible addition/fragmentation chain transfer 

polymerization (RAFT), has been one of the most impactful achievements to this end.56,78 The 

combination of control over molecular weight and polydispersity, functional compatibility, and 

control over composition has made sophisticated block and graft copolymer chemistry possible. 

Multi-functional initiators or grafting approaches can be used to create controlled topological 

architectures such as star polymers or bottle brushes. Polymers with these or similarly distinct 
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structures tend to have special and unexpected properties, some of which are technologically 

useful.9–12 For example, bottle brush drug delivery systems tend to outperform their linear 

counterparts. The “living” nature of controlled radical polymerizations makes combinations of 

structural control and block copolymer technology possible, as in the star block13 or brush block14 

architectures shown in Figure 1 and Figure 2. 

 

Figure 1. Strategy for building star block copolymers using a core-first approach and ATRP. Reprinted with 
permission from Ref. 13. Copyright 2016 American Chemical Society.   

 

Figure 2. Bottle brush polymers have a wide variety of uses. Amphiphilicity or other self-assembly mechanisms may 
be incorporated. Reproduced from Ref. 14 with permission from The Royal Society of Chemistry. 

Because these polymerizations are compatible with a wide range of monomers and 

functional groups, it is possible to use chemically distinct monomers for the blocks. This property 

is most often exploited to make frustrated systems or amphiphiles with self-assembly behavior, 

as seen in block copolymer micelles.15,16 However, the possibilities do not end at 

hydrophobic/hydrophilic functionalities. For example, monomers can be designed to form 

predictable motifs on the basis of bulk, hydrogen bonding, or chirality.17 These so-called foldamer 

designs are analogous to the secondary structure of proteins.18 Dynamic chemistries can be used 

to create switchable morphologies. A particularly illuminating example of this is the peptide-based 

photoswitchable loop designed by Wooley and coworkers (Figure 3).19 When triggered by visible 

light, the bis(para-acetamido)azobenzene derivative linker reversibly isomerizes, causing a helix–
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coil transition (Figure 3). Facile access to amphiphilic or otherwise asymmetric and self-

assembling or dynamic motifs represents an important step to mimicking natural processes.  

 

 

Figure 3. Photoswitchable foldamer design by Wooley and coworkers. Adapted from reference 19; Copyright 2000 
National Academy of Sciences. 

Sequence Control 

While self-assembly processes are important, other methods of controlling solution 

architecture are necessary to form robust structures. True architectural control relies on the 

development of efficient sequence-controlled polymerization strategies, which is a significant 

challenge. The majority of attempts at sequence control come from traditional step-growth 

polymerizations such as polycondensations, however, the development of more functionally 

tolerant approaches is necessary. This work often takes the form of ring-opening,20 ayclic diene 

metathesis,21 or “click” reactions22 to create periodic copolymers. Radical step growth 

mechanisms are gaining relevance in this landscape. For example, Li and coworkers recently 

reported the synthesis of periodic vinyl copolymers using atom transfer radical addition and 

coupling (ATRA and ATRC, respectively).23 In their system, two alkyl halides first combined using 
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ATRA, creating a biradical AB block which combines through ATRC to form repeating ABBA 

repeats (Figure 4).  

 

 

Figure 4. ATRA/C method for preparing periodic vinyl copolymers. Reproduced from Ref. 24 with permission from 
The Royal Society of Chemistry. 

Intramolecular Cross-linking 

The capability to efficiently and precisely select multiple functional group placements on a 

chain promises to be revolutionary for both architectural and functional control. Architectural 

control will come from a system of intramolecular cross-linking between functional monomer units. 

Regardless of cross-linking chemistry, these reactions come with a unique set of challenges. 

These may be studied in isolation using the single-chain nanoparticle motif, which generally 

consists of a copolymer chain with cross-links between pendants (Figure 5). Although the concept 

was first reported in the 1960’s by Kuhn and Balmer, SCNP chemistry did not garner significant 

research interest until controlled radical polymerizations dramatically opened the design space.25  

 

Figure 5. Generic representation of the collapse of a parent polymer to a single-chain nanoparticle.  
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As these intramolecular cross-links form, the hydrodynamic radius of the macromolecule 

decreases. This collapse is analogous in form and, ideally, function to the coil-to-globular 

transition seen in protein folding that results in molecules capable of advanced processes like 

molecular recognition or catalysis. The parent polymers are often prepared using controlled 

radical polymerizations because their control over chain length and compatibility with a wide range 

of functional monomers offer significant advantages. First, control over the radius and size 

distribution of the final nanostructures is primarily controlled by manipulating the length of the 

parent chain. Second, broad chemical compatibility maximizes the range of possible post-

polymerization modifications, creating a large design space for architectural modifications such 

as grafting or cross-linking and installations of functional pendants such as catalytic centers or 

fluorophores.  

While, in theory, any cross-linkable comonomer system may be used, practical 

considerations govern the choice of folding mechanism. Regardless of the backbone chemistry, 

the synthesis of SCNP is typically conducted in ultra-dilute solutions to prevent interchain cross-

linking. Therefore, the cross-linking chemistry must be efficient. Also, purification can be 

challenging and typically depends on either precipitation or dialysis. In this regard, byproduct-free 

reactions have a significant advantage. Within these parameters, SCNP have been prepared 

using a wide variety of covalent,26 non-covalent,27 and coordination motifs.28 These have been 

recently summarized by our group and others.29,30 

 

Evaluating SCNP Morphology  

GPC  

As in other polymer work, gel permeation chromatography (GPC) is heavily used in SCNP 

characterization to study the size distribution of a sample. Retention time is calibrated against 

molecular weight for a given column set using well-defined polymer standards. Because 
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intramolecular cross-linking decreases the hydrodynamic volume of the chain, SCNP products 

elute from GPC columns at longer retention times than do their parents (Figure 6). Therefore, 

SCNP products have lower relative molecular weights than those of their respective parent 

polymers. The ability to sort based on size is especially powerful when coupled with other 

instrumentation to perform techniques like multi-angle light scattering (MALS), UV detectors, and 

viscometers, which would otherwise result in an average value rather than a distribution.  

 

Figure 6. GPC evidence of a decrease in hydrodynamic radius after intramolecular cross-linking. 

Light Scattering 

Light scattering is very useful in SCNP characterization because it gives insight into 

molecular weight, form factor, and polydispersity in solution. Molecular weight data from light 

scattering depends on the intensity of scattered light and the refractive index increment dn/dc of 

a given polymer solution.3132 Therefore, it contributes an absolute molecular weight which may be 

meaningfully compared to the apparent molecular weight generated using GPC.33 The effect of 

cross-linking chemistry, functional incorporation, chain length, and other parameters on size have 

been systematically studied using GPC with inline multi-angle light scattering. Some of these 

results are generalizable. For instance, regardless of cross-linking approach, functional 

incorporations in the range of 10–40 mol% tend to be the most efficient. Multi-chain aggregation, 

which results in poor solubility and high molecular weight species, and coupling between near 

neighbors, which does not substantially affect volume, is especially dominant in parents with 

functional monomer incorporations. Due to the dilute solution requirement, designs which rely on 

external cross-linkers tend to require them in a 3 to 8 molar excess of functional pendant to 

maximize collapse efficiency (Figure 7).34 
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Figure 7. GPC-MALS trace of externally cross-linked Diels-Alder system. A maximum degree of collapse was 
observed when the maleimides were in a 9:1 ratio with furan groups on the polymer. Reproduced from Ref. 34 with 

permission from The Royal Society of Chemistry.  

Knowledge of these properties for a given system is important beyond evaluating the 

degree of collapse. Deeper morphological insight, such as density and form factor, can be studied 

by examining how molecular weight scales with size for a given sample or exploiting angular 

dependence in multi-angle light scattering (MALS) to determine the radius of gyration (Rg). 

However, most single-chain nanoparticles are in the sub 10-nm size regime. For this reason, 

accurate determination of Rg requires the small angles only available in x-ray or neutron scattering 

(SAXS or SANS) techniques. Although SANS and SAXS are powerful methods for studying 

particles with radii below 10 nm, the required instrumentation is not widely available.  

Viscometery  

Fortunately, evidence of this scaling behavior can also be observed using GPC with an 

online viscometer and multi-angle light scattering (MALS) detector. Intrinsic viscosity, the 

contribution of the solute to the solvent’s viscosity (Equation 2), can be used directly to calculate 

hydrodynamic radius, Rη. The intrinsic viscosity and molecular weight are related by the Mark-

Houwink Equation (Equation 3).  

𝜂" 	= 	
(𝜂 −	𝜂') 𝜂')  

Equation 1. Incremental viscosity, where η is the measured viscosity and ηs is that of the solvent alone. 
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[𝜂] 	= 𝑙𝑖𝑚
/→1

2
𝜂"
𝑐
4 

Equation 2. Intrinsic viscosity, where η is the sample viscosity and c is concentration. 

[𝜂] = 	𝐾6𝑀8 

Equation 3. Mark-Houwink Equation. The Mark-Houwink parameters, K and a, vary based on solvent quality and the 
polymer architecture; [𝜼] is intrinsic viscosity and M is molecular weight. 

𝑅𝜂 = 	 ;
3𝑀[𝑛]
10𝜋𝑁B

C
 

Equation 4. Einstein–Simha Relation, where NA is Avogadro’s number and Rη is the hydrodynamic radius. 

The scaling exponent, a, varies with the quality of the solvent and the polymer architecture. 

Its value is 0.5 for linear chains in a theta solvent. More extended chains have larger a-values, up 

to 2 in the case of a rigid rod conformation, while more globular morphologies lead to a-values in 

the range of 0.3. This is true for other dense morphologies, for example, a can be 0.3–0.5 for 

hyperbranched polymers with long spacers. Though it varies by chemistry, generally speaking, 

parent polymers used in SCNP work have values in the range of 0.8 to 1.12,35  

Trends in intrinsic viscosity can be used to assess the collapse efficiency and final 

morphology in SCNP. Upon intramolecular cross-linking, the intrinsic viscosity tends to decrease 

with the corresponding increase in density as it becomes more like a uniform sphere. In this 

limiting case, it reaches a value of 5/2 divided by density.  

 

Figure 8. SCNP tend to have elongated structures with local cross-links (left) rather than the compact and globular 
morphology which would be expected if coupling between pendants was entirely random (right). 
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The relationship between molecular weight, cross-link density, and hydrodynamic size of 

various SCNP chemistries have been investigated extensively by Pomposo and coworkers. 

Scaling behavior has been studied by compiling SANS and SAXS data.35 They have also 

systematically compared trends in the intrinsic viscosities of synthetic SCNP with those uncovered 

by molecular dynamics simulations. Both approaches have generated evidence that typical 

single-chain nanoparticles (those prepared by the intramolecular cross-linking of statistical 

copolymers) do not take a compact, globular shape. Rather, the trends in their morphology and 

density are more closely comparable to those seen in intrinsically disordered proteins: local 

globules distributed within a generally open chain (Figure 8).36–38 This relative lack of density is 

one of the key architectural challenges in SCNP. Using highly efficient cross-linking chemistries 

at finely tuned incorporations is insufficient to create dense structures. The most impactful 

approaches must modify chain mobility or segmental length between cross-linkable units, the 

primary drivers behind the statistics of cross-linking. 

Orthogonal Folding Approach 

Systems designed with multiple orthogonal covalent cross-linking chemistries have been 

more compact than those designed using only one comparable cross-linker type, even at identical 

overall functional incorporations.39,40 For example, Chao and coworkers designed a system with 

three distinct cross-linking capabilities: supramolecular, anhydride-amine, and thiol-ene click 

chemistry. These were triggered sequentially, and hydrodynamic volume decreased at each step 

(Figure 9).40 Each step in a sequential folding method effectively brings the next cross-linkable 

pendants in closer proximity, and the ultimate product’s volume was 70% smaller than that of the 

parent polymer. However, the requirement for performing multiple transformations in ultradilute 

solutions can result in challenging purification and very low yields.  
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Figure 9. GPC MALS trace of a copolymer capable of multiple orthogonal folding mechanisms. It becomes denser 
after each transformation. Reproduced from Ref. 40 with permission from The Royal Society of Chemistry.  

Intrachain Polymerization Approach 

By nature, intrachain polymerizations also modify segmental mobility and chain length and 

can therefore become a route to globular structures. A diverse set of SCNP prepared through 

intrachain polymerization is available in the literature.41–47 This strategy is particularly useful in 

overcoming restricted motion when using parent polymers with relatively rigid primary backbones. 

In theory, with the proper monomer choice, intrachain polymerization could also become a 

versatile way to functionalize cross-links. 

 

Early Examples of Complex SCNP Designs 

The confluence of these developments has created the opportunity and demand to 

attempt more complex designs. For example, Lutz and Roy used a combination of sequence-

controlled polymerization and orthogonal “click” chemistries to prepare asymmetric SCNP (Figure 

10).48 Their parent polymer system consisted of an inert styrene backbone with a 

pentaflurophenyl-functionalized maleimide on one side, which reacts with an external amine 

cross-linker, and protected propargyl maleimide on the other which couples with a second 

propargyl group upon deprotection.  
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Figure 10. Combination of sequence-controlled polymerizations and intramolecular “click” chemistry was used to 
sequentially control folding. Adapted with permission from Ref. 48. Copyright 2014 American Chemical Society.  

Foldamer chemistry has also been instructive to the creation of single-chain nanoparticles 

with secondary structural characteristics.29,49,50 This potential is well-illustrated by a system 

designed by the Meijer group (Figure 11) which uses a chiral motif (3,3′-bis(acylamino)-2,2′-

bipyridine-substituted benzene-1,3,5-tricarboxamide) in conjunction with hydrophilic polymer 

grafts.51,52 Examples of grafted SCNP are relatively rare. In this case, the hydrophilic grafts shown 

here are used to introduce finer morphological features – in poor solvent, the structure of these 

SCNP are reminiscent of globular proteins with a hydrophobic pocket.53 The chiral motif makes it 

possible to study these changes using circular dichroism.  

 

Figure 11. Single-chain nanoparticle design with a chiral internal structure and hydrophilic grafts. Reproduced from 
Ref. 53 with permission from The Royal Society of Chemistry. 
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Chapter II. Understanding and Promoting Intramolecular ATRC 

 

Introduction 

ATRC as a Versatile Handle for Post-Polymerization Modifications 

 Progress toward truly structurally defined soft nanomaterials is fueled by rapid 

advancement in controlled polymerizations and an increasingly sophisticated toolbox of 

compatible organic transformations. Many current examples are designed for applications in 

medicine and biotechnology such as targeted drug delivery or sensing. Post-polymerization 

modifications, especially “click” reactions and similarly efficient chemistries, are at the heart of the 

advancement of these technologies because they are used heavily to both install functional 

groups and control architecture. They can also be used to prepare diverse species from a 

common precursor and minimize functional incompatibility.  

Architectural control remains a high-priority challenge. The power of the connection 

between form and function in proteins is undeniable. The stable globular designs characteristic of 

tertiary protein structures are reliant on robust intramolecular cross-linking strategies. This is 

especially challenging because of the entropy penalty of forming a conserved structure in solution, 
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however, the scope of these reactions has rapidly expanded in the past decade with the 

development of macrocycles and SCNP, which are prepared using end-to-end and pendant-to-

pendant coupling, respectively (Figure 12).54,55 A range of covalent, dynamic-covalent, and non-

covalent cross-linking strategies is well-documented in the recent literature.  

 

Figure 12. Products of intramolecular cross-linking. 

Among these, atom-transfer radical coupling (ATRC) has the unique potential to become 

a unifying methodology for post-polymerization modifications, especially grafting and cross-

linking. However, it is best known as the undesirable product of termination by coupling during 

atom-transfer radical polymerizations (ATRP). Their mechanistic relationship is shown in Figure 

13. The reductant is an adjunct which can be used to lower the necessary catalyst concentration 

or introduce a degree of oxygen tolerance in ATRP or promote coupling in ATRC. As a synthetic 

tool, it shares many of the advantages of ATRP: it can be performed on a wide range of alkyl 

halide substrates, is tolerant to many functional groups, and can be adapted to suit various 

conditions (low temperatures, aqueous solutions, and minor oxygen exposure).  
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Figure 13. Mechanistic relationship between ATRP and ATRC. 

Because it can be used to directly couple the halogenated ω-ends of ATRP products, 

ATRC is particularly adaptable for the preparation of telechelic, functionally diverse,56–58 and/or 

symmetrical block copolymers (Figure 14).59–61 The first report of its synthetic utility and surprising 

efficiency came from Fukuda and coworkers in 2002.62 Using ATRC, 90% of bromo-terminated 

polystyrene chains could be coupled, thereby doubling their molecular weight in a controlled 

fashion, in a ten minute reaction. Soon thereafter, Yagci demonstrated its utility in forming 

aldehyde, alcohol, carboxylic acid, or amine-functionalized telechelic chains.63 More recently, its 

broad compatibility with copper-mediated polymerizations (CMP) and atom transfer radical 

addition (ATRA) conditions have been exploited in higher-order sequential polymerization-

coupling strategies.23,64 Because it is also efficient and byproduct-free, it is a good candidate for 

intramolecular cross-linking in applications like the synthesis of well-defined macrocycles and 

single-chain nanoparticles.54,65–67  

 

Figure 14. Symmetrical block copolymer synthesis by ATRC.  

Intramolecular ATRC: Role of Reducing Agent  

 In ATRP, the lower valent metal species (CuII/L) serves an important role in limiting the 

number of radicals produced at a given time, thereby controlling the polymerization. As a 
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consequence, high concentrations of this deactivating species (in relation to the corresponding 

activator, CuI/L) suppress termination by ATRC. Although “classical” ATRP conditions have been 

used to couple low molecular weight (~1 kDa) polystyrenes in the absence of monomer, these 

procedures are not popular. More typically, a secondary reducing agent is added to regenerate 

the activating CuI complex and thereby increase the concentration of radicals. Due to the 

persistent radical effect, most applications practically require a reducing agent to undergo efficient 

ATRC.5,68 

In analogy to activators regenerated by electron transfer, or ARGET, ATRP,69,70 the 

reducing agent may be organic or inorganic, most often abscorbic acid or zero-valent metals, 

respectively. Cu0 is a popular choice because it is remarkably user-friendly: copper nanoparticles 

and wires are readily available, effective, and easy to separate from the reaction mixture. Relative 

to organic reducing agents, copper is less likely to participate in side reactions with monomers, 

initiators, or other adjuncts. It comproportionates with the deactivator to generate two CuI 

complexes (as in ATRP, the ligand is added in substantial excess, usually 5 times the molar 

concentration of the metal salt). It may also provide a convenient handle for controlling ATRC 

because copper wire can be wrapped around a magnet (such as a stir bar) which may be removed 

from solution without exposing the flask reaction to oxygen. Switchable procedures of this type 

could be used to streamline sequential polymerization and coupling strategies. 

Intramolecular ATRC: Interaction of Substrate, Ligand, and Process Conditions 

As in ATRP, ATRC is highly sensitive to the properties of the substrate (radical stability 

and propensity to chain transfer or disproportionation) as well as the catalyst system (kATRP varies 

over 8 orders of magnitude depending on the structure of the ligand). In addition, intramolecular 

cross-linking reactions are often performed under unusual reaction conditions (involving 

ultradilute solutions and/or semi-batch procedures) to avoid the formation of aggregates. These 

conditions reduce the coupling efficiency and affect the reaction stoichiometry, effectively 
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increasing the necessary equivalents of the metal salt and ligand. Both effects are consistent with 

other findings in SCNP literature, as described in Chapter I. In analogy to externally cross-linked 

systems, the increased catalyst requirement can be attributed to the considerable difference in 

halide concentration within the pervaded volume of the polymer chain and that of the overall 

solution. The results of the present study provide guidance in the selection of catalyst and reaction 

parameters for performing ATRC under such conditions.  

Research Objective 

 Although ATRC is most often an undesirable side reaction, it can be used advantageously 

as a post-polymerization modification to create more complex architectures (e.g. telechelic blocks, 

macrocycles, SCNP). Further, its innate compatibility with ATRP systems could greatly promote 

the development of facile sequential polymerization and coupling strategies. While the interaction 

between Cu-mediated ATRP components (including ligands, imitators, monomers, and 

substrates) is well-studied, relatively little is known about the ATRC process. This is especially 

true under conditions favoring SCNP formation, including ultra-dilute solutions or semi-batch 

procedures. The goal of this study is to understand the effect of catalyst and substrate on ATRC 

chemistry under these conditions and relate these to morphologies. We also aim to examine the 

possibility of the formation of an organometallic species as alternative mechanism for 

disproportionation under high concentrations of Cu(I)/L complex.  

Results and Discussion 

Experimental Design 

The model system employed for this study, Scheme 1, is designed to complement and 

expand upon our recent demonstration of the feasibility of performing ATRC to form SCNP using 

methacrylic statistical copolymers with ATRC-active pendants.  
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Scheme 1. Systematic investigation of intramolecular ATRC. 

NMR Methods for Monitoring Extent of Incorporation and Disproportionation 

The ATRC-active comonomer, shown in Figure 15, is modular by design. It consists of a 

methacrylic backbone coupled to a pendant ethylene spacer and terminated by a methyl or phenyl 

bromopropionate. The ester, which activates the carbon toward heterolytic cleavage, is readily 

synthesized using nucleophilic substitution or Steglich esterification; appropriate syntheses, 

including those used here, are well-documented in the literature.71 In analogy to comparable 

ATRP initiating systems, the ability of the R-substituent to stabilize the radical is important to its 

reactivity.  

 

Figure 15. Modular monomer design. 
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While a more highly substituted carbon would be expected to be more active, secondary 

alkanes (where R = Me or Ph in MeBrema or PhBrema, respectively) were selected for this study 

to facilitate tracking by 1H NMR (Figure 15). In both cases, the chemical shift of the proton 

neighboring the halide shifts markedly upfield upon coupling (Figure 16). The coupled fraction, xc, 

was calculated by taking a proportion of the integration of the unreacted alpha proton signals (HA) 

normalized against that of a resonance from the inert ethylene spacer, HB (Equation 5). In the 

case of p(MMA-co-MeBrema), where ATRC faces competition from disproportionation, the 

degree of side product formation (xdis) was calculated using the relative integrations of vinyl 

resonances (Equation 6).  

𝑥/ = 1 − E
2 ∫𝐻B

∫𝐻B + J
∫𝐻K

2) L
M 

Equation 5. Extent of coupling, xc. 

𝑥N"' = 1 − O
∫𝐻P

∫𝐻P + ∫𝐻K
Q 

Equation 6. Extent of disproportionation, xdis. 
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Figure 16. 1H NMR can be conveniently used to track the desired ATRC product as well as alkyl and vinyl byproducts 
caused by competition of disproportionation. To do so, the integration of the signals representing HA, HA’, and Hv can 

be compared with that of the inert ethylene spacer, HB.  

This methodology allowed us to correlate coupling efficiency to morphological insights 

from multi-detection GPC to glean insight into the impact of substrate and catalyst combinations. 

The rich body of knowledge regarding ATRP is highly instructive for ATRC given their shared 

mechanism. Although metal and metal-free catalysts are available, CuIBr/L systems, where L is 

a polyamine or pyridine chelator, are versatile, popular, and well-studied by Matyjaszewski and 

others.70,72–77 In these systems, the effect of ligand structure on ATRP kinetics is pronounced. 

Three of the most common ATRP ligands, PMDETA, TPEN, and TPMA were selected to sample 

this structural diversity and corresponding range of activity, which spans 3 orders of magnitude 

(Figure 17).  

O OO O

C(HB)2
O

x\y

O

Br
HA

PA

O O

(HB)2
O O

HA’

O O

(HB)2
O O

O O

(HB)2
O O

O O

x \ ydis 1 \ ydis 2 \ yc

NPA

HV
HV’

ATRC

O OO O

C(HB)2
O

x\y

O

PhBr
HA

ATRC

O OO O

C(HB)2
O

x\y

O

Ph
HA’

NPBPB



37 
 

 

Figure 17.74 kATRP values measured by Matyjaszewski et al. under the following reaction conditions: 
EtBriB/Cu(I)Br/MeCN/22 °C.  

 

Examples of each backbone chemistry were tested with each ligand in a 50:50 MeCN:THF 

solvent mixture. These results were directly compared to those obtained using the most prevalent 

ATRC conditions, CuIIBr/PMDETA/Cu0 in toluene. 

 

 

Scheme 2. Parent Polymer Synthesis 

Statistical copolymers with molecular weights in the range of 30-50 kDa were prepared 

using reversible addition−fragmentation chain-transfer (RAFT) polymerization (Scheme 2) to 

target the 5–10 nm size regime. RAFT provides a controlled polymerization orthogonal to ATRP. 

The proportion of the functional comonomer (f) was limited 35 mol% to maximize the controlled 

collapse in radius from parent polymer to SCNP according to literature precedent.  
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Effect of Cu0 Reductant on ATRC and Byproduct Formation 

 

Scheme 3. Formation of SCNP with and without Cu0 reductant. 

With this utility in mind, ATRC of PA was performed under both standard and reducing 

conditions (Scheme 3). The 1H NMR spectra of the nanoparticle products, which are shown in 

Figure 18, were used to determine xc and xdis using the procedure described above. Because the 

usual calculation of xc assumes no side reactions at the radical site, it is more accurately 

considered an apparent coupling efficiency. Given the observed tendency of PA to 

disproportionate, an effective coupling constant, xc’, was calculated by subtracting xdis from xc. As 

expected, the extents of coupling and disproportionation were both higher when Cu0 wire was 

included as a reductant (NPA-2) than when standard ATRC conditions were used (NPA-1). 

Indeed, negligible evidence of coupling was observed in the spectrum of NPA-1 (xc’ = 2.8%). The 

extent of coupling of NPA-2 was higher but incomplete (xc’ = 10.0%). Disproportionation was the 

minor product in both cases: xdis = 0.1% and 8.9% for NPA-1 and NPA-2, respectively. These 

results are summarized in Table 1. 
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Figure 18. NMR spectra comparing ATRC with (left) and without (right) a Cu(0) reductant. The integration of 
resonances HV, HA, and HB is used to calculate the extent of coupling and disproportionation.  

Table 1. The efficiency and selectivity of the intramolecular ATRC of PA to form SCNP. 

 PA-1 NPA-1 PA NPA-2 

f 0.339 0.339 0164 0.164 

xdis - 0.001 - 0.089 

xc’ - 0.028 - 0.100 

xc’/ xdis - 28.0 - 1.12 

  

Despite their shared starting material, the ratio of disproportionation to coupling products 

did not scale proportionally; xc’/xdis decreased from 28.0 to 1.12 when Cu0 was present. The 

implication of this result is that the abstraction of an alkyl proton is favored over radical 

recombination when the concentration of the activating CuI complex is relatively high. Given the 

shared substrate, ligand, solvent, and temperature of these systems, this result raises the 
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question of whether a reasonable alternative pathway to disproportionation products could be 

proposed. One possible explanation is that the high activator concentration generated from 

comproportionation of the copper and deactivator species leads to a formation of an 

organometallic CuI species which could undergo β-elimination, thereby producing a catalytic 

disproportionation pathway which may proceed alongside radical abstraction (Figure 19). This 

existence of similar organometallic species is not without precedent; they have been isolated 

using radical traps for certain ARGET ATRP systems.78,79 However, direct comparisons must be 

made cautiously given the large number of variables at play, including the substrate, catalyst 

system, reaction conditions, and/or adjuncts. 

 

Figure 19. The formation of an organometallic species may promote disproportionation. 

Morphological Implications of Inefficient Coupling 

 Because the primary motivation to develop intramolecular ATRC chemistry is architectural 

control, multi-detection GPC and diffusion NMR (DOSY) were used to relate the coupling 

efficiency and disproportionation with their morphological implications.80 The outcomes of these 

competing reaction pathways are conveniently detected and distinguished using GPC with inline 

light scattering and viscometry capabilities. (1) Disproportionation does not noticeably impact the 

hydrodynamic radius or molecular weight; (2) cross-linking between pendants reduces the 

hydrodynamic radius without substantially increasing molecular weight; and (3) intermolecular 

cross-linking dramatically increases both. Therefore, the SCNP products of an efficient 

intramolecular “collapse” are distinguished because they elute before their respective parents, 

effectively decreasing their apparent molecular weights. However, their absolute molecular 

weights are impacted only by the coupling chemistry (e.g. loss of bromide in the case of ATRC).  
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Figure 20. Multi-detection GPC comparing parent polymers PA-1 and PA with their respective SCNP. NPA-1: 
Cu(I)Br/PMDETA, xc’ = 2%; NPA-2: Cu(I)Br/PMDETA/Cu(0), xc’ = 10%.  

 

The traces of NPA-1 and NPA-2, along with those of their respective parent polymers, are 

shown in Figure 20. A very low degree of coupling (e.g. 2.0%, as in NPA-1) is likely to broaden 

the size distribution of the sample due to a large population of chains without cross-links. This 

effect is pronounced in the broad and bimodal multi-angle light scattering (MALS) trace of NPA-

1. As the extent of coupling increases, its polydispersity should decrease to its lower limit, which 

is that of the parent polymer sample. Practically, that degree of size control is possible for all but 

the least efficient cross-linking systems. For example, both the MALS and RI traces of NPA-2 (xc’ 

= 10.0%) share the distribution profile of the parent while eluting at slightly longer retention times. 

Because dRI responses are a function of concentration, comparison between the dRI traces of P 

and NP can be meaningfully related to the coupling efficiency data from NMR. As expected, the 

peak retention times of the RI traces of PA and NPA-1 are practically identical and the distribution 

of NPA-1 is slightly shifted and broadened. 
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ATRC of PA  

Reaction Progress and Byproduct Formation  

 

Figure 21. Tracking coupling and disproportionation of ATRC by 1H NMR. 

 The progression of the competing coupling and disproportionation processes was tracked 

during the ATRC of PA to form NPA-2 (Figure 21). Samples were removed at t = 0, 1, 2, 3, and 

24 h by 1H NMR using an air-tight syringe. The results of this study are summarized in Table 2. 

The extent of coupling, xc’, reached a maximum of 10.0% after 24 h. This system displayed unique 

competitive behavior. Early in the reaction (< 1 h), the desired coupled product was favored (xc’/xdis 

= 2). While both xc’ and xdis increased with reaction time as expected, xc’/xdis decreased to 

approximately unity for subsequent samples. This change in selectivity may correspond to the 
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time required to build the concentration of the activator species. Each halide transfer early in the 

reaction generates a deactivator species, and in the absence of a reducing agent, this species 

would remain deactivated. However, if Cu0 is available, the comproprotionation product with CuII 

produces two equivalents of CuI/L, eventually surpassing the original population. In other words, 

this behavior is consistent with the theory that high CuI/L concentrations promote 

disproportionation through some mechanism, possibly formation of an organometallic species 

followed by and beta elimination as described above. 

Table 2. Progression of coupling and disproportionation in a typical ATRC of PA.  

 

 PA 1 h 2 h 3 h 24 h 

f 0.165 0.166 0.163 0.164 0.164 

xdis - 0.001 0.018 0.068 0.089 

xc’ - 0.002 0.017 0.060 0.100 

xc'/xdis - 2 0.94 0.99 1.12 

 

 

Effect of Ligand System 

Because the nature of the ligand so heavily modifies the reducing potential of the copper 

complex, it is expected to impact the progression of ATRC. There are many reasons for tuning 

the efficiency of halogen extraction, including the possibility to facilitate more efficient coupling or 

adapt the system for sequential ATRA/C or ATRP/C procedures. Further, variations in reduction 
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potential or steric effects from ligand bulk could be expected to impact the formation of an 

organometallic species, thereby providing indirect evidence of such a pathway.  

 

Extent of Coupling 

 

*H20 in CDCl3; Cu(I)Br/L/Cu(0)/1 mg mL-1/toluene/80 °C 

Figure 22. 1H NMR array comparing SCNP created in ATRC of PA (bottom, black); L = PMDETA, TPEN, and TPMA 
for NPA-2 (blue), NPA-3 (green), and NPA-4 (top, red). 

 

Differences between the samples prepared using each catalyst were evident in their 

respective 1H NMR spectra (Figure 22). Full spectra are available in Appendix A. The extent of 

coupling, xc, positively correlated with the kATRP of the catalyst complexes, following the order 

NPA-4 > NPA-3 > NPA-2. At first glance, this is unintuitive because higher kATRP ligands should 

promote a rapid buildup of the Cu(II)/L species, thereby suppressing ATRC through the persistent 

radical effect. However, these results indicate that the Cu0 reduction pathway is sufficiently 

favored to avoid this consequence. Signal broadening, which can be caused by intramolecular 

cross-linking and is therefore common in SCNP chemistry, is also more pronounced in the 
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samples prepared using TPEN and TPMA. No evidence of the alpha proton is visible above the 

noise in the spectrum of NPA-4, the sample produced using TPMA as a ligand. While this is 

largely attributed to differences in reactivity, it could also be due to the significant broadening of 

neighboring signals. Because f, the incorporation of functional monomer, remains unchanged 

through this process, its value was used to determine xc for this system.  

 

 

Figure 23. Vinyl region of the 1H NMR spectra of series A. Top to bottom: NPA-4 (L = TPMA), PA, NPA-3 (L = 
TPEN), NPA-2 (L = PMDETA). 

Unfortunately, signal broadening also precluded the calculation of xdis for this system. 

Signals for the disproportionation product are visible, but the signal to noise ratio was not sufficient 

for integration in the case of NPA-4 (Figure 23). Qualitatively, however, higher kATRP ligands 

seemed to result in a decrease in the proportion of disproportionation products formed. Because 

higher kATRP ligands promote the generation of the Cu(II)/L species, they would be expected to 

suppress the formation of an organometallic species and thereby limit the ratio of 

disproportionation to coupling to that of the direct interaction between pendants.  

Size and Conformation  

DOSY NMR and GPC-MALS were used to determine the radius of each species in THF. 

Additionally, morphological considerations were evaluated by determining the Mark-Houwink a-

5.85.96.06.16.26.36.46.5
ppm
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parameter of each sample. The trends in these data corroborate the trends in xc noted above, 

and the relevant data are tabulated in Table 3. 

Table 3. Series A Polymer Properties 

Sample L 
Mn  

(kDa) 

Mw  

(kDa, MALS) 

Mw (kDa, 

DOSY) 
Ð 
 

Rη 

(nm) 

Rh 

(nm) 

ηn 

(mL/g) 
M-H-S a f xc' 

PA-1 - 48.84 76.86 - 1.57 4.54 - 20.06  0.34 - 

NPA-1 PMDETA* 39.84 62.95 - 1.58 4.56 - 15.86 0.634 0.34 0.028 

PA - 34.25 38.17 38.0 1.11 4.40 2.50 17.83 0.925 0.17 - 

NPA-2 PMDETA 39.84 43.04 13.8 1.08 4.06 1.87 15.86 0.803 0.17 0.201 

NPA-3 TPEN 38.15 43.22 9.62 1.09 4.15 1.67 16.08 0.734 0.17 0.351 

NPA-4 TPMA 40.87 44.87 10.7 1.10 4.00 1.74 11.41 0.727 0.16 0.463 

*no Cu0 reductant 

GPC 

GPC traces for Series A from the MALS and RI detector are shown in Figure 24. The 

height of the traces are normalized to the intensity of the highest signal to facilitate the comparison 

of retention time and dispersity. The maximum intensities of the MALS and RI traces were scaled 

to 1 and 0.5, respectively, to facilitate comparison while avoiding overlapping signals. As 

expected, each of the SCNP products (NPA2–NPA4) elutes at a longer retention time than that 

of the parent polymer, providing evidence for intramolecular cross-linking and corresponding 

decrease in hydrodynamic radius. The polydispersity remained low in each case. The trend in 

shifts to longer retention times roughly follows the order of xc, however, NPA-3 and NPA-4 had 

very similar retention times. The viscometric data tells a similar story: all SCNP have lower intrinsic 

viscosities than PA. Interestingly, the molecular weights calculated from both light scattering and 

calibration were moderately elevated compared to that of the parent. Mark-Houwink parameters 
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and diffusion NMR were used to further probe this result and create a more complete picture of 

the resultant morphologies. 

 

 

Figure 24. Series A GPC traces and M-H-S plots comparing the morphologies of SCNP products using PMDETA, 
TPEN, and TPMA catalyst systems. The activity of the ligand, approximated by kATRP, was positively correlated with 

increased coupling efficiency, leading to more compact structures. 

Mark-Houwink-Sakurada a-parameter 

Trends in the Mark-Houwink a-parameter were examined to compare the change in 

solution morphology induced by ATRC using each ligand. The Mark-Houwink-Sakurada plots in 

Figure 24 were created using differential pressure trace of the gel permeation chromatogram (a 

detailed procedure is available in the Supplementary Material). As described above, a value of 

approximately a = 0.8 is considered typical for a methacrylic copolymer in a good solvent such as 

THF. The a-value of the p(MMA-co-MeBrema) parent is 0.92, which is in line with those 

expectations. In accordance with expectations from other SCNP systems, the observed a-values 

for the SCNP after ATRC were smaller (Table 3). The observed trend modestly correlates with 

ligand activity, obeying the order NPA-2 > NPA-3 > NPA-4. 

DOSY NMR 

Diffusion NMR was used to determine the Stokes radius and apparent molecular weight 

(MW) of each sample. MW was determined using a calibration curve of PS standards as described 
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below in accordance with well-established methods.80–82 For a series of SCNP prepared from a 

common parent polymer, the apparent molecular weight should be inversely correlated with xc. 

The Mw calculated for the parent polymer was in good agreement with the molecular weight data 

gathered from GPC (Mw, MALS = 38.17 kDa; Mw, DOSY = 38.0 kDa). As predicted, the apparent 

molecular weights were lower for NPA-2–4 than for PA.  

The Stokes radius, like the viscometeric radius, is a hydrodynamic radius which can be 

determined absolutely. Further, the sample was dissolved in THF for both GPC and DOSY 

experiments. Therefore, the two are expected to be in good agreement for non-interacting 

materials. Interestingly, the calculated Stokes radius of each sample was smaller than the 

corresponding viscometric radius. The mechanism behind this behavior is unclear. In order to 

further investigate, the Bayesian projections of the DOSY spectra were compared (Figure 25).  

 

 

Figure 25. Bayesian projection of DOSY plots for Series A. The x-axis is normalized such that the diffusion coefficient 
of THF is 0.0. Molecular volume decreases from left to right. Top to bottom: NPA-3, NPA-2, NPA-1, PA. 

Although quantitative integration of the Bayesian projections requires low sample 

concentrations (and correspondingly high magnet strengths and long instrument times), the 

distribution of signals in the SCNP spectra was instructive. The shift to smaller volumes was 

apparent, however, the signals display an abnormal peak shape. Given that the GPC trace did 

-0.10-0.07-0.04-0.010.020.050.080.110.140.170.200.230.260.290.320.350.38
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not show this behavior, this observation is most probably an effect of low resolution. Repetition 

using an extended number of scans time may be instructive to this end, however, very long 

acquisitions demand that the instrument maintain stable gradients for an extended period, which 

proved prohibitively challenging. 

ATRC of PB, p(MMA-co-PhBrema) 

 

Scheme 4. ATRC of PB. 

 As in the previous section, ATRC was performed using three ligands (PMDETA, TPEN, 

and TPMA) with a common parent polymer. To facilitate comparison between the results, the 

same molecular weight and incorporation were targeted. However, the SCNP prepared from PB 

proved notoriously difficult to isolate due to solubility issues. Operating on the assumption that 

this was due to the highly stable radical generated in halide abstraction, which may react to form 

multi-chain aggregates upon concentration of the crude product, the reaction was attempted at 

lower concentrations, first at 0.5 and then at 0.25 mg/mL. While samples prepared at 0.25 mg/mL 

showed some improvement in solubility, these attempts did not satisfactorily resolve the issue. 

The polymer seemed to interact with the GPC column and contain some low molecular weight 

species. This was attributed to excess catalyst trapped within the pervaded volume of the chain, 

and rigorous purification methods were applied (filtration through neutral alumina followed by 

dialysis over 72 h and reprecipitation). Acids could not be used for fear of degrading the 

O OO O

O

x\y

O

OO

OO

x\y

O OO O

O

x\y

O

Cu(0)
Cu(I)Br/L

1:1 MeCN:THF
55° C
16 h

Br



50 
 

methacrylic backbone. The results of this procedure are shown in Figure 26, the GPC-MALS trace 

of NPB-3. This purification procedure was adapted to examine the remainder of the series. 

 

Figure 26. The GPC-MALS traces of PB (solid line), and NPB-3 before (small dashed line) and after (long dashed 
line) rigorous purification to remove low molecular weight species. 

 

Effect of Ligand System and Unexpected Molecular Weight Profiles 

 

Figure 27 GPC-MALS Traces of Series B (standard procedure at 0.25 mg/mL). 

The GPC-MALS trace of samples prepared in this manner are shown in Figure 27. The 

broadened traces and shortened retention times are typically associated with the formation of 

multi-chain aggregates rather than single-chain nanoparticles. While the MALS traces have been 

normalized to facilitate direct comparison, the RI traces are presented as-obtained to highlight 
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low sample concentrations in NPB-2 and NPB-3. Given the shared structure of these samples 

with PB and the evidence of aggregation, this is attributed to sample lost during pre-injection 

filtration with a 0.45 micron syringe filter.  

 

Modified “Continuous Addition” Process Conditions 

Therefore, an alternative procedure was attempted to circumvent aggregation. In an 

adaptation of a “continuous addition” procedure first reported by Harth and coworkers, the parent 

polymer solution (10 mg/mL, 100 mg polymer) was added by syringe pump over 4 h to a Schlenck 

flask with the other components (15 mL total solvent, final polymer concentration 2.5 mg/mL).83 

With the exception of CANP-3, examples prepared in this manner did not show signs of 

aggregation, instead shifting to longer retention times. Further, they were soluble enough for 

analysis by solution NMR.  

Extent of Coupling 

 

 

Figure 28. 1H NMR array comparing SCNP created in ATRC of PB prepared using a continuous addition procedure. 
Cu(I)Br/L/Cu(0)/1 mg mL-1/1:1 MeCN:THF/55 °C; L = PMDETA, TPEN, and TPMA for NPB-2, NPB-3, and NPB-4, 

respectively. 

The determination of coupling efficiency was made using a similar procedure to that 

described for Series A. Where possible, the reaction was tracked using the relative integration of 
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α-proton signals (e) and ethylene spacers (f or g) in the 1H NMR (Figure 28). As predicted, the α-

proton resonances shifted upfield significantly upon abstraction of the halide in ATRC (e’). The 

resonances from the phenyl ring, a, b, and c, shifted downfield. Signal broadening was observed 

in CA-PB-3 and CA-PB-4. As noted above, this is not an unusual finding for intramolecularly cross-

linked systems. 

Size and Conformation 

 

 

Figure 29. GPC-MALS trace of CA-NPB-2, 3 and 4 (continuous addition procedure). 

However, the dispersity increased from that of the parent polymer in each case, as 

evidenced by broader GPC traces and higher proportions of Mw to Mn (Ð) (Figure 29). The 

inconsistency of results obtained using ATRC of PB regardless of ligand obscure any trends that 

might otherwise be observed. Although the coupling behavior observed by 1H NMR is similar to 

that observed for PA, the GPC data raises the question of whether this result is generalizable. 

Notably, the products of intramolecular and intermolecular ATRC cannot be discerned using 1H 

NMR. Mark-Houwink parameters and DOSY NMR were examined for this purpose.  
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Mark-Houwink-Sakurada a-parameter 

 

Figure 30. M-H-S plot of Series B (standard procedure). 

The observed trend in the Mark-Houwink a-parameter is the reverse of that seen in Series 

A (aNP-2 < aNP-3 < aNP-4). However, the phenomenon can be similarly attributed to the relatively high 

coupling efficiency of CuI/L complexes with TPEN and TPMA. Together, the relatively high M-H-

S a-values, increases in polydispersity, and shifts to longer retention times point some 

combination of two behaviors: a combination of coupling between near neighbors (resulting in a 

more rigid and cylindrical morphology) and the continued formation of a small concentration of 

multi-chain aggregates.  

DOSY NMR 

Although DOSY would ideally be performed in THF to facilitate a direct comparison 

between the hydrodynamic radii from light scattering and diffusion (viscometeric radius and 

Stokes radius, respectively), some samples exhibited poor solubility in THF. For this reason, 



54 
 

samples from this series were prepared in DMF-d7. The apparent molecular weight of the parent 

polymer and sample prepared using PMDETA (CA-NPB-2) were of sufficient quality for analysis 

while the signals for CA-NPB-3 and CA-NPB-4 were weak due to low solubility. The MW and Rh 

values for PB are in agreement with those obtained using GPC. The apparent molecular weight 

and Rh of CA-NPB-2 are smaller, providing evidence that the desired intra-chain cross-linking 

desired to form SCNP occurred.  

Table 4. Series B-CA DOSY 

Sample D (m2/s) MW (kDa) Rh (Stokes) 

PB 6.13 x 10-11 51.5 4.44 

CA-NPB-2 6.67 x 10-11 41.71 4.08 

CA-NPB-3 

(weak signal) 
2.11 x 10-11 747.98 12.90 

CA-NPB-4 

(weak signal) 
2.39 x 10-11 1.70 1.14 

 

Table 5. Series B Polymer Properties 

Sample L 
Mn 

(kDa) 

Mw 

(kDa) 
Ð 

Rh(v) 

(nm) 

ηn 

(mL/g) 

M-H-S 

a 
f xc Notes 

PB - 50.81 55.407 1.09 5.07 17.740 0.850 0.174 -  

NPB-2 PMDETA - 200.12 - - - - 0.172 0.024 
aggregation,  

low solubility  

CA-NPB-2* PMDETA 50.56 64.10 1.15 8.51 11.91 1.200 0.174 0.031  

NPB-3 TPEN 288.13 330.00 1.15 8.60 14.731 - - - aggregation 

CA-NPB-3* TPEN 55.13 143.30 2.60 6.14 17.710 1.369 - -  

NPB-4 TPMA 872.24 1085.03 1.24 10.153 8.134 - - - aggregation 
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CA-NPB-4 TPMA 49.90 55.60 1.11 4.99 8.450 1.542 - - broadening 

 

ATRC of terpolymer PAB 

The unique behavior of PB, especially its tendency to form multi-chain aggregates under 

unfavorable conditions, is presumably due to the stabilization of the radical from the benzyl and 

ester moieties. If this is the case, it is effectively forming a persistent radical under ATRC 

conditions. This raised the question of whether this behavior could be used adventitiously to drive 

the formation of ATRC over disproportionation (a problem exclusive to MeBrema) and prevent 

aggregation (a problem exclusive to PhBrema) if the two substrates were concurrently present. 

To test the feasibility of this application of the persistent radical effect, a model p(MMA-co-

MeBrema-co-PhBrema) terpolymer was made (Scheme 5) and reacted under ATRC conditions 

to form NPAB (Figure 32). 

 

Scheme 5. Synthesis of terpolymer PAB using RAFT.fMeBrema = 33.1 mol% fPhBrema = 38.1 mol%, Mw = 15 kDa. 

 Unlike other samples using PhBrema (PB series), the ATRC of PAB to product NPAB did 

not require special care. Standard collapse conditions (1 mg/mL) were used without the formation 

of aggregates. This is particularly impressive because an overall high functional incorporation was 

used (33.1 mol% MeBrema and 38.1 mol% PhBrema). Evidence of the alpha proton neighboring 

the bromine from PhBrema (signal at 5.46 ppm in PAB, Figure 31) is completely absent from the 

	



56 
 

1H NMR of NPAB, suggesting that most of the PhBrema units formed the desired coupled 

products (Figure 32). However, unreacted MeBrema groups remain (unfortunately, the signals 

are too convoluted to accurately determine xc).  

There are also signals in the alkene region that can be assigned to the disproportionation 

product. This is an especially curious result given that (1) the persistent radical effect would 

govern that MeBrema should preferentially couple to PhBrema in this case and (2) MeBrema was 

present in a slight molar excess. This behavior is supporting evidence for the existence of a 

second pathway to disproportionation. It would be of future interest to explore whether this is the 

case and, if so, whether it occurs through the formation of an organometallic species.  

 

Figure 31. 1H NMR of terpolymer PAB15. The broad signal in this case is due to a highly concentrated sample.  
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Figure 32. 1H NMR of SCNP made from terpolymer PAB.  

The GPC data showed evidence of an efficient collapse SCNP formation. The change in 

molecular weight can be attributed to a loss of bromides, particularly given the high overall 

functional incorporation. The hydrodynamic radius, intrinsic viscosity, and Mark-Houwink a-

parameter all decrease from those of the parent. Further, the GPC trace shifts to a longer retention 

time and maintains narrow size dispersity (Figure 33).  
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Figure 33. GPC-MALS traces of PAB and NPAB. 

Table 6. Characterization of PAB and NPAB. 

Sample L Mn (kDa) 
Mw  

(kDa, MALS) 
Ð 
 

Rη 

(nm) 

ηn 

(mL/g) 
M-H-S a fPhBrema fMeBrema 

PAB - 10.10 11.61 1.15 3.65 20.13 0.574 0.33 0.38 

NPAB PMDETA 9.30 10.63 1.14 2.79 15.14 0.443 - - 

Conclusions 

This work represents significant progress into understanding the impact of catalyst and 

substrate on ATRC chemistry under conditions favoring intramolecular cross-linking. The copper 

reducing agent was necessary to efficiently form intrachain cross-links. This property could be 

exploited to efficiently create sequenced ATRP/ATRC designs.  

Coupling efficiency was positively correlated with kATRP for a given ligand even though 

these ligands tend to promote the formation of a high concentration of the deactivator species. 

This speaks to the efficiency of the Cu(0) wire reducing agent at regenerating the active species. 

Parents with pendant MeBrema moieties tended to form the desired SCNP product, but 

the efficiency of coupling was hindered by competition from disproportionation. The degree of 

disproportionation seemed to vary systematically with the theoretical concentration of the Cu(I) 

species in solution. This result suggests the existence of an alternative pathway to the 

disproportionation product which depends on Cu(I). Future work should be done to explore the 

formation of an organometallic species as alternative mechanism for disproportionation under 

high concentrations of the Cu(I)/L complex. 
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Parents with pendant PhBrema moieties were highly prone to aggregation, regardless of 

ligand system. A continuous addition strategy was used to mitigate this effect with mixed success. 

A terpolymer system was prepared to explore the possibility of using the persistent radical effect 

adventitiously. Theoretically, the challenges faced by MeBrema and PhBrema-based ATRC 

systems (disproportionation and aggregation) could be addressed using their combination. A 

proof-of-concept showed promising results to this end.
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Chapter III. Sequencing ATRP and ATRC to form advanced SCNP 

architectures 

Introduction 

As discussed in the Introduction of this dissertation, the most popular approach to 

promoting dense, globular single-chain nanoparticles is the the installation of orthogonal cross-

links. However, the application of these approaches is limited because today’s examples require 

multiple post-polymerization modifications and corresponding challenging and inefficient 

purifications. Although they are not always selected for this reason, intrachain polymerization 

strategies, present a viable means for impacting both of the primary drivers behind the statistics 

of intramolecular cross-linking, chain mobility and segmental length between cross-linkable 

units.41,42,45  

 

Scheme 6 Reimagining p(MMA-co-MeBrema) as both an ATRP macroinitiator and SCNP precursor. 

We imagined that these factors might be addressed by using relatively dense non-linear 

parent polymer chains. There is limited but promising support for this idea in the literature. For 

example, ATRC has been used to couple polystyrene brush ends to form SCNP, albeit in several 

steps.84 TEM images showed that the worm-like bottle-brush morphology of the parent formed a 

Pn – Br  +  CuBr/L                         Pn  +  CuBr2/L

kt     Pm

Pn – Pm

Cu(0)

Scheme 1. Mechanism of atom transfer radical coupling.
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globule after collapse. Interestingly, Lu and coworkers reported physical evidence of 

intramolecular cross-linking (lower-than expected mechanical strength after cross-linking) when 

they prepared organogels by performing ATRC on hyperbranched acrylates prepared using 

ATRP.85 This result was particularly remarkable because the reactions were performed in the bulk 

or concentrated solutions, conditions which heavily favor intermolecular cross-linking in linear 

analogues.  

 

Figure 34. Preparation of a diverse set of architectures from a common substrate under a unified set of reaction 
conditions by sequencing ATRC with ATRP. 

Having developed an understanding of the behavior of the p(MMA-co-MeBrema) system 

for ATRC, we envisioned it as a platform from which it would be possible to efficiently and flexibly 

perform sequences of ATRP and ATRC (Figure 34). Although only a handful of similar 

methodologies exist today, ATRC has been used to efficiently prepare grafted topologies or cross-

links in isolation.86,87 In theory, the introduction of a controlled intrachain polymerization would 

allow for the inclusion of functional monomers, whether chiral, reactive, or simply structurally 
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diverse. The existence of a unified set of reaction conditions between polymerization and coupling 

is especially convenient because it circumvents the multiple purification steps so commonly 

required in the formation of complex macromolecules.  

 

Figure 35. SCNP with low DP “hyperbranched” cross-links. 

In addition, it is possible to use bifunctional monomers (capable of both polymerization 

and coupling) to create hyperbranched cross-links. These systems could dramatically impact the 

statistics of folding due to their both their unique architectures and introduction of a large number 

of cross-linkable moieties. To my knowledge, there are no SCNP containing hyperbranched motifs 

in the literature to date. 

Research Objective 

To explore this new design space, we designed a series of experiments comparing SCNP 

created with brush, and hyperbranched polymers of a comparable chemical composition. One of 

the major motivations of this work was to determine whether controlled polymerizations were 

possible in ultra-dilute solutions. If so, it would theoretically be possible to sequence 

polymerization and coupling to form architecturally or chemically complex species under a unified 

set of conditions or potentially in one pot. The objectives were therefore (1) demonstrate the 

presence of intact ω-chain ends after ATRP/C procedures by performing a post-collapse 

polymerization and (2) monitor monomer conversion to study the polymerization kinetics for a 

model system. 
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Results and Discussion 

Comparing ATRC in the presence of MMA or MeBrema 

 Conditions developed for the ATRC of MMA-co-MeBrema, PA, are described at length in 

Chapter 2 of this dissertation. Although TPMA produced the most efficient ATRC collapse, 

PMDETA was selected to better control the polymerization component of the sequence. 

Hereafter, this set of conditions (Cu(I)Br/PMDETA/Cu0/80 ºC, 1 mg/mL, toluene) is referred to as 

the ATRP/C combined conditions.  

 

Scheme 7. Formation of p(MMA-co-MeBrema-g-MeBrema) hypergrafted SCNP. 

PA was reacted under the ATRP/C combined conditions in the presence of 10 equivalents 

of MMA or 4 equivalents of MeBrema to produce PA-MMA10 and PA-MeBrema4, respectively 

(Scheme 7). The monomer equivalents were selected to target the same final molecular weight 

range and thereby facilitate direct morphological comparison. ATRP is usually performed in much 

more concentrated solutions (1 g/mL is typical, but concentrations may vary from bulk to 10 g/mL). 

It was therefore uncertain whether polymerization could efficiently occur to form the brushes. 

Furthermore, molecular weight control in a typical ATRP can be achieved by monitoring the 

conversion of monomer (either through GC or NMR) and adjusting the reaction time in real time. 

This is impractical for dilute-solution systems, especially for those on the 100 mg scale. However, 

despite these foreseen challenges, early results were extremely promising.  
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Figure 36. Preparation of brush polymers or “knit” SCNP using MMA or inimer. 

Figure 36 compares the SEC-MALS traces for the parent chain PA, brush PA-MMA10, 

and corresponding SCNP, NPA-MeBrema4. The formation of PA-MeBrema4 was characterized 

using GPC. The molecular weight as determined by MALS increased after polymerization, and 

the shift to a longer retention time is consistent with the successful formation of SCNP through 

ATRC between the pendant alkyl bromide units. As a control, the procedure was repeated using 

MMA as a monomer, removing the polymer’s ability to participate in ATRC. The expected increase 

in molecular weight was this time accompanied by a shift to a shorter retention time, which is 

consistent with the formation of the anticipated brush polymer.  

The incorporation of functional monomer was tracked using 1H NMR experiments (Figure 

37). After intra-chain polymerization to produce NPA-MeBrema4, the integration of the pendant 

ethylene signals increased relative to those of the backbone methacryloyl moieties. An average 

conversion of 50% was achieved over a 24 h reaction time. We determined that approximately 

85% of the bromide units remained unreacted by comparing the integration of signal a with those 

of b and c. This finding indicates that a relatively small number of cross-links were formed. As 

such, it may be possible to further react NP1 through these “live” pendants to extend the chains, 

promote further collapse by intramolecular cross-linking, or introduce application-targeted 

functionalities.  
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Figure 37. 1H NMR of Hypergrafted SCNP NPA-MeBrema4 (4 eq. inimer). 

The small number of functional equivalents chosen for the first example was selected to 

keep the molecular weights moderate and thereby circumvent issues with solubility or 

aggregation. Given the success of the proof-of-concept, the reaction was repeated with a higher 

number of functional equivalents (10) to explore the true nature and potential limitations of the 

hyperbranched cross-link motif. As may be expected for a large molecular weight polymer, the 1H 

NMR signals are broad (Figure 38). This being the case, it is not possible to reliably determine 

whether “live” bromo-terminated chain ends are intact by simple NMR. However, the retention 

time increased and intrinsic viscosity decreased upon hypergraft formation, suggesting the 

formation of a denser structure (Figure 39).  

 

Figure 38. 1H NMR of Hypergrafted SCNP NPA-MeBrema10 (10 eq. inimer). 
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Figure 39. The fit of the intrinsic viscosity to the MALS trace for PA (blue) and NPA-MeBrema10 (red).  

 

Kinetics of and Livingness of ATRP/C 

 

Figure 40. Extending the arms of hyperbranched chains was used to test for the presence of “live” halogenated chain 
ends. 

The “livingness” of the hyperbranched chain, can, however, be assessed by attempting 

further polymerization. This experiment also presents the opportunity to examine the kinetics of 

ATRP in ultra-dilute solutions, which may be instructive to future work in intrachain polymerization 

techniques. NPA-MeBrema10 was reacted under the combined ATRC conditions with 50 

functional equivalents of styrene and aliquots were removed over time to assess monomer 

conversion by tracking the disappearance with of vinyl peaks in the monomer against the those 

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.0
ppm

1

2

3

Parent Polymer
p(MMA-co-MeBrema)

Hypergrafted SCNP

Extended Hypergrafted SCNP

= MeBrema

= styrene



67 
 

from the methacryolyl backbone (Figure 41). Somewhat surprisingly, the plot shows reasonable 

fidelity to the pseudo first order kinetics typically observed in SCNP. However, the 1H NMR of the 

final product (Figure 40) displayed extremely broad signals, which is common for both high 

molecular weight species and SCNP.  

 

Figure 41. Kinetic plot of ATRP/C showing reasonable fidelity to the pseudo first order kinetics usually observed in 
ATRP.  

Comonomer Graft System 

In order to exploit the benefits of hyperbranching while keeping molecular weights low, a 

co-monomer graft was attempted using 10 functional equivalents of MMA and 4 of MeBrema 

(Scheme 8). The rationale behind this approach is analogous to that behind segmented 

hyperbranched polymer work, which employs spacing between hyperbranched units to control 

the properties.88 Using this design, the molecular weight of the polymer could be increased 

substantially while nominally impacting its radius. The overall incorporation of functional units 

remained unchanged from the NPA parent to the NPA-MMA-MeBrema product. 
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Scheme 8. Reaction of PA under combined ATRP/C conditions in the presence of MMA and MeBrema to form NPA-
MMA-MeBrema. 

Coupled Brush System 

 

Figure 42. Coupled brush SCNP. 

The natural comparison to these systems is the ATRC of to couple brush polymer ends, 

similar to those prepared by Liu and coworkers.84 Any ATRC chemistry used to create telechelic 

blocks is expected to function similarly to form cross-links, meaning that most brush polymers 

made in a grafting-from ATRP approach could be convinced to form intramolecular cross-links 

under the proper conditions. Most examples of ATRC in the literature are block copolymers with 

styrene.24,55,56,59,89–91 As a proof-of-concept, the brush polymer NPA-MMA-20 was reacted under 

the combined conditions in the presence of 5 functional equivalents of styrene. Although its 

dispersity was higher than that of the parent, decreases in intrinsic viscosity, the Mark-Houwink a 

parameter, and the hydrodynamic radius were observed. The MALS trace showed a shift to a 

longer retention time, indicating a successful collapse (Figure 43).  
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Figure 43. GPC-MALS of coupled brush SCNP. 

 

Kinetics of ATRP/C 

Higher molecular weight MeBrema and MMA examples were also prepared (Table 7). 

Although NMR was not a robust characterization technique for these species, their molecular 

weights by GPC were close to the target. NPA-MMA-20 maintained a narrow molecular weight 

population while that of the hyperbranching example broadened. This could be expected for its 

expected morphology, which includes a complex mixture of coupled and branched products. The 

Mark-Houwink a-parameters of these species are also instructive – while that of NPA-MMA-20 is 

greater than one (characteristic of a brush), that of NPA-MeBrema-10 is below 5 (characteristic 

of a globule).  

Table 7. Comparison of GPC characterization data for higher molecular weight brushes.  

 NPA-MeBrema-10 NPA-MMA-20 

Mw 2.21E+05 2.11 x 105 

Mn 1.33E+05 1.82E x 105 

Đ 1.66 1.16 
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[η] 19.87 6.92 

RH 7.25 5.79 

M-H-S a 0.362 1.663 
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Table 8. Summary of Properties of Polymers and Brushes or SCNP products of ATRP/C. 

Sample f 
Mw 

kDa 

Mn 

kDa 
Đ [η] 

R η 

(nm) 
a Notes 

NPA-MMA-20-

STY-5 
- 2.21 x 105 1.33 x 105 1.66 15.87 5.25 0.358 Coupled Brush 

NPA-MMA-20 - 2.11 x 105 1.82 x 105 1.16 16.92 5.79 0.963 
MMA Brush 

(large) 

NPA-MMA-

MeBrema-10-

STY-5 

- 4.04 x 105 3.54 x 105 1.14 13.65 5.83 0.373 

1) MeBrema 

Hypergraft 

2) STY 

NPA-MMA-

MeBrema-10  
- 2.30 x 105 2.06 x 105 1.12 14.20 5.13 0.521 

MeBrema 

Hypergraft 

PA 0.220 3.68 x 104 3.90 x 104 1.06 15.73 4.55 0.323 PA(37k) 

NPA-MeBrema-4 0.721 1.16 x 105 
8.44E x 

104 
1.37 4.73 3.88 0.533 

Low dp 

“hyperbranched” 

SCNP 

NPA-MeBrema-

4-sty 
0.093 3.09 x 105 2.47 x 105 1.25 6.60 6.25 0.172 

1) Low dp SCNP-

hype 

2) STY 

NPA-MeBrema-

4-sty (repeat) 
0.345 1.87 x 105 9.59 x 104 1.95 14.13 5.58 0.279 

Low dp SCNP-

hype 

NPA-MMA-10 0.327 54.1 x 104 4.33 x 104 1.32 21.82 5.20 0.380 MMA Brush 
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NPA-MeBrema-4 0.684 50.3 x 104 6.48 x 104 1.12 11.01 4.79 0.381 
Low dp SCNP-

hype 

         
 

Conclusions 

We found that poly(methyl methacrylates) decorated with pendant bromopriopionate units 

can be converted to SCNP using a facile intra-chain polymerization process. Our early findings 

suggest that the coupling of a small proportion of the chains drives SCNP formation while the 

majority of pendant ends remain active.  

A range of topologies was prepared using a common p(MMA-co-MeBrema) precursor 

prepared using RAFT polymerization, where MeBrema is active both as an ATRP initiator and a 

coupling substrate. Sequences of ATRP and ATRC were therefore possible using a unified set of 

reaction conditions. The topologies prepared include MMA brushes, styrene brushes, MeBrema 

hypergrafts, p(MMA-co-MeBrema) copolymer hypergrafts and hypergrafts. The brush and 

hyperbranched morphologies had Mark-Houwink alpha parameters characteristic of rod-like and 

globular-like morphologies, respectively. The globular nature of the hypergrafted SCNP 

morphology may be exploited by future designs to mimic the hydrophobic pockets found in nature.  

It was possible to perform the atom transfer radical polymerization of styrene from SCNP 

hypergrafts in a controlled fashion; monomer conversion approximately obeyed pseudo first order 

kinetics. This evidence of chain end fidelity speaks to the possibility of building more complex 

systems through further functionalization or chain extension. However, thorough characterization 

of these species by NMR or GPC becomes increasingly difficult with advanced molecular weight 

and corresponding inflexibility. 
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Chapter IV. Experimental  

General Experimental Section 

Solvents 

 Anhydrous solvents [tetrahydrofuran (THF), acetonitrile (MeCN), toluene (tol.)] passed 

through drying agent with nitrogen pressure, were obtained from an Innovative Technology, Inc. 

Solvent Delivery System prior to use and stored over 4 Å molecular sieves.  

Reagents 

 All reagents were received from commercial sources and were used as received unless 

otherwise noted. Reagents were purchased from the indicated suppliers and used without further 

purification unless otherwise stated: 

1. Methyl methacrylate and 2-hydroxyethyl methacrylate were filtered through a plug of basic 

alumina before use.  

2. 4-Cyano-4-[(dodecylsulfanylthiocarbonyl)sulfanyl]pentanoic acid was recrystallized from 

methanol and 2,2′-azobisisobutyronitrile from ethanol before use. Freshly purified samples 

were blanketed with nitrogen, stored in the freezer, and used within a week.  

3. Copper (I) bromide (approximately 100 mg in 10 mL) was purified before each use by stirring 

in glacial acetic acid at room temperature for at least 1 h. The resulting light gray powder was 

recovered by vacuum filtration, washed with ethanol and diethyl ether (2 x 5 mL each), and 

dried under vacuum for at least 1 h. This was critical to the success of ATRC using these 

substrates. 
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Dichloromethane (DCM, Fisher Scientific), petroleum ether (Sigma-Aldrich), toluene (Fisher 

Scientific), tetrahydrofuran (THF, inhibited with BHT, Fisher Scientific), 4-cyano-4-

[(dodecylsulfanylthiocarbonyl)sulfanyl]pentanoic acid (Sigma-Aldrich), 2,2′-azobisisobutyronitrile 

(Sigma-Aldrich), methyl methacrylate (Sigma-Aldrich), copper(I) bromide (STREM Chemicals 

Inc.), 2-hydroxyethyl methacrylate (HEMA, Sigma-Aldrich), triethylamine (TEA, Sigma-Aldrich), 

toluene (EMD Chemicals), 2-bromopropionyl bromide (Sigma-Aldrich), α-bromoisobutryl bromide 

(Sigma-Aldrich), α-bromophenylacetic acid (Sigma-Aldrich), sodium sulfate (Fisher Scientific), 

N,N,N′,N″,N″-pentamethyldiethylenetriamine (PMDETA, Sigma-Aldrich), N,N,N′,N′-Tetrakis(2-

pyridylmethyl)ethylenediamine (TPEN, Fisher Scientific), Tris(2-pyridylmethyl)amine (TPMA, 

Fisher Scientific), copper(0) (The Hilman Group Inc.), methanol (Fisher Scientific), 4-

(dimethylamino)pyridine (DMAP, Sigma-Aldrich), N,N′-dicyclohexylcarbodiimide (DCC, Alfa 

Aesar), sodium bicarbonate (Fisher Scientific), alumina (activated basic, Alfa Aeser), alumina 

(neutral, Alfa Aeser), chloroform-d (CDCl3, Cambridge Isotope Laboratories), tetrahydrofuran-d6 

(THF-d6, Cambridge Isotope Laboratories), and N,N-dimethylformamide-d7 (DMF-d7, Cambridge 

Isotope Laboratories). 

 

Reactions 

 Glassware and Teflon coated magnetic stir bars were dried in an oven at 75 °C prior to 

use. Sigma-Aldrich natural rubber septa were used. Unless otherwise noted, nitrogen gas was 

introduced to the reaction vessel through a Tygon® tube with a needle or glass inlet adapter. 

Henke Sass Wolf Norm-ject® plastic syringes were used for volumetric addition of reagents with 

oven-dried Popper & Sons needles, Precision Glide sterile needles, or Sterican® sterile needles 

unless otherwise noted. 
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Flash Chromatography 

 Flash column chromatography was performed with Silicycle SiliaFlash P60 Flash Silica 

Gel or with a Teledyne Isco CombiFlash Rf 200 purification system. Purifications using 

CombiFlash Rf used RediSep® pre-packed silica gel columns (20-70 µm particle size). 

Preparative chromatography was completed with Analtech Uniplate Silica Gel GF 100 micron UV 

254 glass-backed plates. Thin Layer Chromatography (TLC) analysis used Whatman polyester-

backed Silica Gel, 60 Å, 250 µm thickness, on flexible plates with a fluorescent indicator. Mobile 

phases were prepared per-use as described in the detailed experimental section. 

Instrumentation 

NMR 

Nuclear Magnetic Resonance (NMR) spectra were measured on a Varian Mercury Plus 

400 FT-NMR operating at 400 MHz for 1H and 100 MHz for 13C spectroscopy. All 1H resonances 

were reported relative to an internal standard tetramethylsilane (TMS, δ 0 ppm), unless otherwise 

noted.  

Diffusion-ordered spectroscopy (DOSY) experiments were performed on a Varian 

UnityINOVA 500 spectrometer running VnmrJ 3.2 and equipped with a 5 mm broadband probe. 

20–30 mg of polymer was dissolved in 0.75 mL of THF-d6 or DMF-d7. All samples were stabilized 

at 25 °C for 10 min before acquisition. The maximum gradient strength was 0.135 T/m. The pulse 

sequence used was a DOSY bipolar pulse paired stimulated echo with convection compensation 

(Dbppste_cc). The following acquisition parameters were employed: diffusion gradient length = 

2.0 ms, diffusion delay = 200 ms, gradient stabilization delay = 0.5 ms, gradient steps = 15, and 

transients = 16. The relative molecular weight (Mw) of each polymer was determined by 

referencing the diffusion coefficient to a calibration curve generated from polystyrene standards 

analyzed under the same conditions (Figure 44, Table 9). DOSY spectra were processed with 
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MestReNova 11.0 software. Diffusion coefficients were gathered by performing a Bayesian 

transform and selecting the maximum intensity of the diffusion projection.  

 

 

Figure 44. DOSY Calibration Curve prepared for narrowly disperse PS standards in THF-d6. 

Table 9. Diffusion coefficients used to DOSY calibration curve, above. 

Mw (kg/mol) D (m/s2) log (Mw) log(D) 

3.6 4.42251E-10 3.556303 -9.354331 

7.6 3.19107E-10 3.880814 -9.496064 

14.0 2.30253E-10 4.146128 -9.637795 

62.1 1.75426E-10 4.793092 -9.755906 

99.0 1.66037E-10 4.995635 -9.779795 

200.0 1.49005E-10 5.30103 -9.826799 
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Figure 45. DOSY Calibration Curve prepared for narrowly disperse PS standards in DMF-d7. 

Table 10. Diffusion coefficients used to DOSY calibration curve, above. 

MW D (m^2/s) log(MW) log(D) 

7.82 1.36E-10 3.893206753 -9.8664611 

25.10 8E-11 4.399673721 -10.09691 

53.50 5.8E-11 4.728353782 -10.236572 

105.20 4.5E-11 5.02201574 -10.346787 

410.00 2.8E-11 5.612783857 -10.552842 

 

SEC 

SEC was performed on a Tosoh EcoSEC dual detection (RI and UV) SEC system coupled 

to an external Wyatt Technologies miniDAWN Treos multiangle light scattering (MALS) detector. 
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Samples were run in THF at 30 °C at a flow rate of 0.35 mL/min. The column set contained one 

Tosoh TSKgel SuperH2500 (6 × 150 mm) column, one Tosoh TSKgel SuperHM-M (6 × 150 mm) 

column, one Tosoh TSKgel SuperH3000 (6 × 150 mm) column, one Tosoh TSKgel SuperH4000 

(6 × 150 mm), and two Tosoh TSKgel SuperH-L guard columns (4.6 × 3.5 cm).  

 

Refractive Index Increment (dn/dc) 

Unless otherwise noted, refractive index increment values (dn/dc) were calculated online 

assuming 100% mass recovery (RI as the concentration detector) using the Astra 6 software 

package (Wyatt Technologies) by selecting the entire trace from analyte peak onset to the onset 

of the solvent peak or flow marker. The resultant dn/dc values were corroborated by those 

calculated for each polymer backbone chemistry (MMA, PS, p(MMA-co-MeBrema), and p(MMA-

co-PhBrema) using a multiple injection volume method. An example of this process is shown in 

Figure 46. The raw dRI was integrated for each of three injection volumes. These integral values 

were plotted against effective concentration and the slope of the linear fit was then divided by the 

detector constant (calibrated using narrow PDI polystyrene standards supplied by Wyatt).  
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Figure 46. Determination of dn/dc of a PMMA research sample using the multiple injection volumes method. 

Both methods gave the expected values for polystyrene (dn/dc = 0.185, Mn = 30K) when 

applied to a narrow PDI PS standard supplied by Wyatt. Absolute molecular weights and 

molecular weight distributions were calculated using the Astra 6 software package. All polymer 

solutions characterized by SEC were 1.0 mg mL–1 and were stirred magnetically for at least 12 h 

before analysis. 

 

Mark-Houwink parameters 

The Mark-Houwink a parameter for each sample was determined by taking the slope of 

the linear fit of the Mark-Houwink-Sakurada plot (log(ηn) vs. log(MW)) of the differential pressure 

GPC trace.  
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Detailed Experimental Section 

Syntheses in Chapter II 

Monomer Synthesis 

 

Monomer 1 (MeBrema)71 

2-hydroxyethyl methacrylate (4.90 mL, 0.040 mol), triethyl amine (5.63 mL, 0.040 mol), and DCM 

(30 mL) were added to a dry, 100 mL round bottom flask equipped with a stir bar. The mixture 

was stirred at 0 °C and a solution of 2-bromopropionyl bromide (4.65 mL, 0.044 mol) in DCM (5 

mL) was added dropwise. The reaction mixture was allowed to warm to room temperature after 

45 minutes and stirred overnight. The salt byproduct was removed by vacuum filtration and the 

filtrate was washed with DI water (2 x 25 mL) and a saturated sodium bicarbonate solution (2 x 

25 mL). The organic layers were combined and dried over anhydrous sodium sulfate. The solvent 

was concentrated under reduced pressure to afford a pale yellow oil (9.28 g, 0.035 mol) in an 

87% yield. 1H NMR (400 MHz, CDCl3, 𝛿, ppm): 1.83 (d, 3H, CH3), 1.95 (s, 3H, CH3), 4.37–4.45 

(m, 5H, CH2), 5.60 (s, 1H, C=CH2), 6.14 (s, 1H, C=CH2). 13C NMR (400 MHz, CDCl3, 𝛿, ppm): 

18.5, 21.8, 39.9, 62.2, 63.6, 126.4, 136.0, 167.2, 170.2. 
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Figure SI 1. 1H NMR of MeBrema. 

 

Monomer 2 (PhBrema)71 

Synthesis of Monomer 2 (PhBrema). α-bromophenylacetic acid (6.45 g, 0.030 mol) and DCM (75 

mL) were added to a 100 mL round bottom flask equipped with a stir bar. The resulting solution 

was cooled to 0 °C with stirring, HEMA (1.82 mL, 0.015 mol), DCC (6.19 g, 0.030 mol), and DMAP 

(0.37 g, 3 mmol) were added, and the reaction was allowed to warm to room temperature and 

stirred overnight. The reaction mixture was filtered through a silica plug. The filtrate was 

concentrated under reduced pressure and the crude product (a yellow oil) was purified by flash 

column chromatography using a 4:1 hexanes:ethyl acetate solution as eluent to obtain the pure, 

pale yellow product (2.79 g, 8.56 mmol) in a 65% yield. 1H NMR (400 MHz, CDCl3, 𝛿, ppm): 1.90 

(dd, 3H, CH3), 4.34–4.39 (m, 2H, CH2), 5.37 (s, 1H, CH), 5.56 (p, 1H, C=CH2), 6.06 (p, 1H, 

C=CH2), 7.31–7.40 (m, 3H, Ar-H), 7.50–7.60 (m, 2H, Ar-H). 13C NMR (400 MHz, CDCl3, 𝛿, ppm): 

18.5, 46.6, 62.1, 64.1, 126.5, 128.9, 129.1, 129.6, 135.7, 135.9, 168.3, 167.2. 
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Figure SI 2. 1H NMR of PhBrema. 

General Procedure for RAFT 

Monomers (methyl methacrylate, MeBrema, and/or PhBrema), CTA (4-cyano-4-

[(dodecylsulfanylthiocarbonyl)sulfanyl] pentanoic acid) and initiator (2,2′-azobis(2-

methylpropionitrile)) were dissolved in dry toluene (1 g/mL) in a 10 mL Schlenk flask equipped 

with a magnetic stir bar. The solution was sparged with nitrogen for 30 min, then heated at 

80 °C for 12–20 h. Conversion was monitored via 1H NMR. At 50–80% conversion, the 

polymerization was halted by removing the solution from heat and exposing it to atmosphere. It 

was then diluted with 2–5 mL THF, precipitated into cold hexanes, and dried under vacuum to 

afford a white powder. Spectra, GPC traces, and all other relevant characterization for these 

materials is available in Appendix A, below. 

General Procedure for Intramolecular ATRC 

The polymer was dissolved in dry, degassed THF (10 mL) and stirred overnight. The solution was 

added to a separate 200 mL Schlenk flask containing a mixture of dry and degassed acetonitrile 

and THF (45 and 35 mL, respectively), and a stir bar wrapped in copper(0). The flask was 
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subjected to at least 3 cycles of freeze-pump-thaw and backfilled with argon for 40 min then 

placed in an oil bath at 55 °C and allowed come to temperature. The ligand (PMDETA, TPMA, or 

TPEN, 10 equivalents to functional monomer unit) was then added and the reaction was allowed 

to stir overnight. After 14-16 h, the reaction mixture was then opened to air and immediately put 

through a plug of neutral alumina twice to remove the copper bromide catalyst. The crude 

nanoparticle was isolated by removing the solvent through rotary evaporation. It was then taken 

up in 2–5 mL of THF, precipitated into cold hexanes, and filtered to afford a fine white to pale 

yellow powder in up to a 60% yield. Spectra, GPC traces, and all other relevant characterization 

is available in Appendix A, below. 

 

Cu(0)-free Control for Intramolecular ATRC 

 

NPA-1.  

A 200 mL Schlenk flask containing the parent polymer (PA) (100 mg), Cu(I)Br (2–5 eq.), dry and 

degassed toluene (95 mL), PMDETA (10 eq.), and a magnetic stir bar was subjected to three 

cycles of freeze-pump-thaw. The reaction was backfilled with nitrogen and stirred for 16 h at 80 

°C. It was then removed from heat, opened to atmosphere and immediately filtered through a plug 

of neutral alumina to remove the copper catalyst. The nanoparticle solution was concentrated 

under reduced pressure, taken up in a minimal volume of THF (2–5 mL), and precipitated into 

cold hexanes. The resulting white to light green powder product was recovered using vacuum 
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filtration (25-45 mg recovered). Spectra, GPC traces, and all other relevant characterization is 

available in Appendix A, below. 

ATRC of a Terpolymer to Examine the Persistent Radical Effect 

 

 

NPAB.  

A 200 mL Schlenk flask containing the parent polymer (PAB) (100 mg), Cu(I)Br (5 eq.), dry and 

degassed toluene (100 mL), PMDETA (10 eq.), and a magnetic stir bar was subjected to three 

cycles of freeze-pump-thaw. The reaction was backfilled with nitrogen and stirred for 18 h at 80 

°C. It was then removed from heat, opened to atmosphere and immediately filtered through a plug 

of neutral alumina to remove the copper catalyst. The nanoparticle solution was concentrated 

under reduced pressure, taken up in a minimal volume of THF (2–5 mL), and precipitated into 

cold hexanes. The resulting white to light green powder product was recovered using vacuum 

filtration (48 mg recovered). Spectra, GPC traces, and all other relevant characterization is 

available in Appendix A, below.
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Syntheses in Chapter III 

Preparation of Brushes and Hypergrafts 

A 200 mL Schlenk flask containing the appropriate parent polymer (50 mg), monomer (MMA, 

STY, PhBrema, or MeBrema, 10–100 eq.), Cu(I)Br (2 eq.), Cu(0) wire, dry and degassed toluene 

(100 mL), and a magnetic stir bar was sparged while stirring at 80 °C for 30 min. The ligand 

(PMDETA, 5 eq.) was then added to the flask containing the parent polymer via airtight syringe 

and the reaction was stirred for 16 h. It was then removed from heat, opened to atmosphere and 

immediately filtered through a plug of neutral alumina to remove the copper catalyst. The 

nanoparticle solution was concentrated under reduced pressure, taken up in a minimal volume of 

THF (2–5 mL), and precipitated into cold hexanes. The resulting white to light green powder 

product was recovered using vacuum filtration (30–60% yield). Spectra, GPC traces, and all other 

relevant characterization is available in Appendix A, below. 
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PA30  

Figure SI 3. 1H NMR of PA30 (2). 
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Figure SI 4 
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Figure SI 5 
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D = 0.613E-11 

Solvent = DMF 
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PAB15 
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Figure SI 6 
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ATRC Products 

NPA Series dn/dc 

 

Figure SI 7. The multiple injection volume method was used to determine refractive index increment for SCNP products 
made with p(MMA-co-MeBrema); dn/dc = 0.0792.  
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p(MMA-co-MeBrema) EB-4-7 
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Reaction Progress of NPA-2 
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Series A: Variations in L 

NPA-2 
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Series B: Variations in L, Continuous Addition 
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Hyperbranched and Brush Architectures 
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Appendix B: Additional Reactions Not Described in this Dissertation 

Dimerization by ATRC 
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SCNP via Thermal Diels-Alder Chemistry 

Introduction 

Due to its reliability, versatility, and accessibility, the Diels-Alder reaction between furans 

and maleimide is commonly used to form and cross-link materials such as self-healing polymers, 

dendrimer formation, and SCNP.22,92–94 Its efficient, favorable reactivity is a result the combination 

of electron-deficiency in the maleimide dienophile with the favorable S-cis constrained 

conformation of the furan diene. In this experimental design, copolymers of methyl methacrylate 

(MMA) and furfuryl methacrylate (FMA) are cross-linked through multi-functional maleimide 

external cross-linkers. The system provides a readily-accessible platform to examine the details 

and optimize the conditions of the cross-linking reactions. We have recently established a user-

friendly externally cross-linked SCNP synthesis using this chemistry.34 

 

Figure 47. An illustration of the substantial physical difference between freely diffusing functional groups (left) and 
those tethered to a polymer backbone (right). When external cross-linkers are used for systems like that on the right, 

they should be used in a 2 to 3 fold excess to adjust their stoichiometry to account for the local concentration. 

The ease of this model system provided the opportunity to study the effect of several 

variables on morphology. For example, during the optimization process, we discovered that a 

molar excess of external cross-linkers was required to promote efficient folding can efficiently 

proceed in dilute solution. This result was unexpected due to the highly efficient DA reaction 
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between this pair. This accounts for the significant difference between local and global 

concentration of functional groups tethered to polymer chains in ultra-dilute solutions (Figure 47). 

 

The goals of the present study were to establish an ideal percent incorporation of FMA 

monomer, changing chemical properties and degree of functionality of the external cross-linker, 

and developing a methodology that does not require dilute solutions (Figure 48). The results of 

this experiment are especially valuable because they can be directly related to an internally cross-

linked DA SCNP system.34  

 

Figure 48. Key variables in the design of SCNP via thermal Diels-Alder reactions. 

We demonstrated the synthesis and characterization of a range of SCNP prepared using 

Diels-Alder chemistry. Parent polymers were prepared using RAFT polymerization with a FMA 

incorporation of 10, 20, 30, and 40% (Scheme 9) and reacted with one of three multi-functional 

maleimide cross-linkers to afford SCNP as indicated in Scheme 10.  Structure and percent 

incorporation of the parent polymer was verified by 1H NMR (Figure 49), and while the resultant 
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nanoparticles were insoluble in NMR solvents, the collapse was monitored by gel permeation 

chromatography, multi-angle light scattering, and viscometric data.  

Experimental 

 

Scheme 9. The preparation of furan-incorporated Diels-Alder active via RAFT. 

Poly(methyl methacrylate-co-furfuryl methacrylate). Methyl methacrylate and furfuryl methyl 

methacrylate were added in the appropriate ratio to a stirring solution of 4-Cyano- 4-

[(dodecylsulfanylthiocarbonyl)sulfanyl]pentanoic acid (0.336 mL of a 0.02 g/mL stock solution), 

and azobisisobutyronitrile ( 0.137 mL of a 0.002 g/mL stock solution) in DMF (0.527mL) at 0 °C. 

The reaction mixture was sparged with argon for 30 minutes, then allowed to stir at 80 °C for 24 

hours. The crude product was precipitated into cold methanol and recovered by vacuum filtration. 

GPC: Mn =2.906 x 104 (±0.966%), and Mw/Mn =1.252 (±1.216%). 1H NMR (400 MHz, CDCl3) δ 

7.44 (s), 6.41 (s), 6.36 (s), 4.98 (s), 3.60 (s), 1.81- 0.83 (m). 

 

Scheme 10. An intrachain thermal Diels-Alder reaction between furan functionalized parent polymers and bi- or tri- 
functional external cross-linkers was used to form SCNP. 

SCNP of the above (standard method). In an oil bath stirring at 40°C, 100 mg of the appropriate 

polymer was added to 100 mL of THF. Once dissolved, the appropriate maleimide (9 eq.) was 

added. The mixture was brought to a reflux and monitored every 24 hours by GPC. After 72 hours, 
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the mixture was concentrated in vacuo to approximately 2 mL and pipetted into a cellulose dialysis 

bag, which was allowed to stir at room temperature in 500 mL THF for three days to remove 

excess cross-linker. The dialysis solvent was changed twice daily for up to 3 days. The SCNP 

solution was then concentrated by rotary evaporation. The resulting SCNP display poor solubility 

in NMR solvents. 

 

 SCNP (continuous addition method). In an oil bath stirring at 40°C, 100 mg of the appropriate 

polymer was added to 49, 19, or 9 mL of THF. Once dissolved, a solution of the appropriate 

maleimide (9 eq.) in 1 mL THF was added over one hour by syringe pump. The mixture was 

brought to a reflux and monitored every 24 hours by GPC. After 72 hours, the majority of solvent 

was removed in vacuo and the resultant solution, approximately 2 mL, was pipetted into a 

cellulose dialysis bag, which was allowed to stir at room temperature in 500 mL THF for three 

days to remove excess cross-linker. The dialysis solvent was changed twice daily for up to 3 days. 

The SCNP solution was then concentrated by rotary evaporation. The resulting SCNP display 

poor solubility in NMR solvents. 

Results and Discussion 

The combination of the four parent polymers with varying FMA incorporation with the three 

external cross-linkers resulted in a matrix of twelve SCNP results, which are represented in the 

shift in retention time by MALS, demonstrated in Figure 51. In each case, collapse with nine-

functional equivalents of cross-linker resulted in an increase in retention time corresponding to 

the expected decrease in hydrodynamic radius a polymer would experience during collapse. The 

degree of collapse, however, varied by both cross-linker and FMA incorporation in the parent 

polymer.  
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Figure 49. FMA incorporation of the parent chains was calculated by comparing the integrations of the 1H NMR 
signals for peak E representing methyl protons in the MMA moieties and A representing a furfuryl proton in the FMA 

moieties.  

Notably, a greater degree of collapse was seen in SCNP formed with the trifunctional 

cross-linker, even at the same number of functional equivalents. This is consistent with the 

expectation that, particularly in dilute solution, the collapse is governed by the probability of the 

functionalities meeting in solution. Differences between the phenyl or hexyl spacer were more 

subtle, with the flexible hexyl unit resulting in a slightly smaller particle size. Especially for furan 

incorporations at or below 30%, the external cross-linker with the phenyl spacer was less 

successful in the DA reaction. This is highlighted in Figure 50. This can be attributed to the 

inductive effect of the phenyl group on the maleimide unit.  
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Figure 50. A focused comparison of the effects of varying cross-linker for polymer B. 

 

Mn (kDa) Đ Rh(v)n (nm) [η]n (mL/g)

Polymer 26 1.1 5.6 44.2

25 1.2 5.5 45.1

21 1.2 5.3 47.0

21 1.2 5.4 52.0
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Figure 51. Array of GPC-MALS traces showing the collapse to form SCNP using rigid or flexible di- or tri- functional 
cross-linkers with 10–40 mol% furfuryl methacrylic parents.  

 Although all levels of FMA incorporation showed DA activity, the greatest degree of 

collapse was achieved using parents with a functional incorporation of approximately 20 mol%. 

Furthermore, some complications were observed at higher percent incorporations. These were 

interpreted as reactions among the furan units along the polymer backbone, detected by tailing 
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and broadening of the size distribution in the MALS trace (see NP-A2 in Figure 51). In particular, 

parent polymer samples around 40% incorporation developed solubility challenges even absent 

cross-linker. Because both the success of a 20% incorporation and challenges near 40%, 10-30% 

incorporations are presented as the ideal operating range for this system; these findings are 

consistent with other SCNP systems, including the analogous internal Diels-Alder cross-linked 

system.  

 

Figure 52. 1H NMR of furan-functionalized methacrylate parent polymers. Clockwise from top left: P-A, P-B, P-C, and 
P-D. 

 Although these optimizations result in an improved collapse efficiency, the ultra-dilute 

conditions remain prohibitive for many applications. To address this concern, we adapted a 

continuous addition methodology pioneered by Harth for the purpose of conducting intramolecular 

collapses at concentrations two to ten times greater than is customary (a typical concentration for 

SCNP formation is 0.5-1 mg/mL).83 In this method, a concentrated polymer solution is slowly 
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added to a solution of the external cross-linker (Figure 53). Each aliquot of polymer, then, is 

effectively cross-linked under ultradilute conditions. This method was effective in increasing the 

total reaction concentration while preventing undesired intermolecular cross-linking. Furthermore, 

the degree of collapse increased with concentration; this result is in stark contrast to the control 

experiment employing the standard procedure. When the entire polymer solution is added at 

once, intermolecular cross-linking occurs at higher polymer concentrations, and multi-chain 

aggregates are observed in the broadened and left-shifted MALS trace of the products (Figure 

54).  

 

Figure 53. A syringe pump is used to slowly add concentrated polymer solution. 
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Figure 54. Polymer concentrations can be increased ten-fold using the continuous addition procedure, with higher 
degree of collapse being observed at higher concentrations without the appearance of multi-chain aggregates. 

Conclusions 

SCNP were prepared using a facile thermal Diels-Alder reaction between furan-

functionalized methacyrylic copolymers and di- or trifunctional maleimide cross-linkers. At 

identical functional equivalencies, examples prepared with tri-functional cross-linkers 

demonstrated higher greater degrees of collapse than observed in difunctional cross-linked 

systems. In addition, parent polymers with a functional incorporation of 20 to 30 mol% resulted in 

the most globular and well-controlled morphologies. A continuous addition methodology was used 

to reduce the solvent requirement and thereby improve the scalability of the design. The method 

also promoted intra-chain cross-linking as evidenced by longer retention times than those 

observed for samples prepared using standard methods. Overall, the results of this study speak 

to the potential of physical characteristics and process development to address some of the most 
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pressing challenges in SCNP chemistry, including scalability, modified stoichiometry, and the 

entropic penalty of folding.  
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