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Abstract 

The work presented concerns the development of a quantum-based decision making model utilised in the identification 

of optimal strategies in engineering design under uncertainty in a quantum-like entangled decision making, assessing 

intention interference. Several experiments and decision making paradoxes have manifested the deficiency of rationality 

assumption employed by classical decision making theory, with humans often violating the hypotheses of the expected 

utility theory and Game Theory by making irrational choices. Quantum Decision Theory (QDT) is the basis of the 

proposed decision making model, since only this theory can be employed to develop an operational tool in any social 

interplay, given the preferences of the individuals/players, to assess the quantum probabilities of their strategies. The 

decision makers’ brain is assumed of a dual nature, with brain processes divided to conscious and subconscious 

constituent parts and the computed quantum strategic probabilities consisted of two parts, the first one being rationality 

related and the other one capturing biases, emotions and feelings. Hence, given a priori the preferences of the decision 

makers, this model can be utilised as an operational tool for decision making under uncertainty in the presence of 

entanglement assessing the quantum probabilities of the players’ strategies in any engineering design. This 

quantum-based decision making model, identifying the optimal strategic choices of the stakeholders involved, is 

employed in the presented conceptual design of an Unmanned Air System (UAS), based on both the stakeholders’ 

rationality, personal intuitive feelings and behavioural biases. 

Keywords: Game Theory, Quantum Decision Theory (QDT), Quantum-based decision making model, Nash 

equilibrium, Nash Bargaining Solution (NBS), Unmanned Air System (UAS) 

1. Introduction 

In any decision making process, the identification and structuring of the decision maker’s needs/requirements is the first 

step in the evaluation of the set of different decision alternatives. The goodness of any proposed solution is assessed 

with appropriate attributes, related to these needs and objectives, and is pronounced through the corresponding value 

model. The maximization of value is fundamental to any decision making problem solving and ideally, the value model 

employed in the human decision making process asserts the rational choice of maximum value as the optimal 

alternative.  

Expected utility, multi-attribute utility theory, (Fishburn 1970), (Keeney and Raiffa 1976) and Game Theory (Von 

Neumann and Morgenstern 1953) have been used to measure the preferences of consequences with one or more 

dimensions, capturing the single and multiple decision makers’ attitude towards uncertainty. Game Theory as an 

optimisation tool, modelling decision interactions among rational players as non-cooperative games, has been applied in 

numerous engineering design cases, as presented in Section 2. However various experiments, such as those performed 

by Tversky and Kahneman (1981), (1986) leading them to a Nobel Prize in Economic Sciences, have demonstrated the 

violation of rationality employed by the aforementioned approaches in the selection of the optimal choice. It is 

imperative that modern decision support systems capture the complexity of human decision making related with risk 

attitude in the presence of ambiguity and uncertainty, capturing the aforementioned violation of rationality. 
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As Yukalov and Sornette (2014) discuss human decision making should not rely simply on the rationality basis of 

utility theory but instead on the basic feature of any living creature’s intelligence for optimal decision making which is 

the adaptation to the environment. These decisions are an interaction between the conscious and subconscious brain 

processes. The former can be modelled by the deterministic utility theory, whilst the latter brain process, addressing 

biases, emotions and feelings, exhibits a rather stochastic behaviour that varies not only from one subject to another, but 

also for the same subject in different decisions and timeframes.  

Recently, the mathematical models and concepts of quantum physics were applied in the formulation of uncertainty in 

human decision making to address the demonstrated violations of rationality. The application of quantum theory’s 

mathematical modelling to human decision making and cognition does not necessarily imply that the human brain is 

considered to have a quantum nature. Consequently, these approaches are usually referred to as quantum-like instead of 

quantum mechanical or quantum, (Ashtiani and Azgomi 2015).  

In this paper, we present a novel quantum-based model that can be employed in any non-cooperative complete 

information social game, such as the engineering design, used for the identification of the optimal strategies based on 

the players’ preferences. This model captures successfully not just the rationality but also the subconscious intuitive 

feelings and emotions of the decision makers. The proposed 2-players game, based on Quantum Decision Theory 

(Yukalov and Sornette 2011), takes into account the dual nature, i.e. conscious and subconscious, of human decision 

making. Although most quantum-like methods follow a post-hoc approach to justify experimental findings and 

deviations from rationality, this model, given a priori the preferences of the decision makers as players, can be utilised 

as an operational tool to make decisions under uncertainty in the presence of entanglement. The assessed quantum 

strategic probabilities are then employed in the process of human decision making. Literature review concerning the 

application of Game Theory in any social game, such as engineering design, and the new approach of quantum-like 

decision making covering the deficiency of rationality assumption of classical decision making is presented in Section 2. 

The Quantum-based decision making model, as opposed to the classical decision making model of the 2-players 

non-cooperative social game, is presented in Section 3. An application of this model in a case study of engineering 

design, namely the selection of stakeholders’ optimal strategies in a UAS conceptual design, is described in Section 4. 

Finally, primary contributions to the current state of knowledge and conclusions are outlined in Section 5. 

2. Background 

2.1 Game Theory in Engineering Decision Making 

In all social sciences, such as economics, finance, sociology, and psychology, as well as engineering, several decisions 

made by different decision makers can be studied using the Game Theory. In general, all N (>1) players aim to better 

promote their interests, through the maximization of their own particular objective function, while they are affected by 

the others’ choices. 

Although John Von Neumann is considered to be the founder of the Theory of Games (Von Neumann and Morgenstern 

1953), the keystone was set by John Nash with his proposed Nash equilibrium solution of non-cooperative games (Nash 

1950) and the Pareto optimal Nash bargaining solution (NBS) of cooperative games (Nash 1950), leading him to a 

Nobel Memorial Prize in Economic Sciences. The Nash equilibrium constitutes the set of all players’ strategic choices 

and their corresponding payoffs, if each player has chosen a strategy and no player can benefit by changing their 

strategy, while the other players keep theirs unchanged. Nash equilibrium was employed in many engineering design 

cases, for example in the engineering asset management between maintenance chain participants in a negotiation model 

(Trappey, Trappey and Ni 2013), between engineering disciplinary teams for collaborative decision making (Xiao et al. 

2005), and the design of an aero-structural aircraft wing shape optimisation (Desideri 2012). 

The very common situation of indeterminacy arises in non-cooperative games, when these games have either none or 

multiple (pure) Nash equilibriums. In cases of multiple Nash equilibriums, Nash’s product of the payoff/utility 

functions, proposed by Harsanyi (1995), could be utilised as the sole criterion for the selection of the single Nash 

equilibrium solution of the non-cooperative game. However, in general this indeterminacy can be defeated by allowing 

the players to play randomly using the Mixed Strategy Nash Equilibrium (MSNE). The randomisation of the pure 

strategies is employed for two reasons, first when there is not one pure strategy to be selected and second to confuse the 

other player. The indifference of the players between the strategic choices is used in the determination of the MSNE, i.e. 

the computation of the corresponding probabilities is done by equating the expected utilities of the player’s strategies, 

(Hargreaves Heap and Varoufakis 2004). MSNE was employed for example in the design of tradable credit schemes on 

networks (He, Yin and Shirmohammadi 2013), in defining transport equilibrium (Dixit and Denant-Boemont 2014) and 

the design and analysis of auction-driven dynamic spectrum access in cognitive radio networks (Zhong et al. 2014). 

Nash equilibrium of games between non-cooperative players does not guarantee the property of Pareto Optimality of 

the solution obtained. However, if players cooperate through a bargaining process, they will be rewarded with the 
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Pareto optimal Nash bargaining solution (NBS), based on the criterion of maximization of the product of utilities’ 

distances from the disagreement points, Nash (1950). Harsanyi and Selten (1972) generalized the bargaining problem 

for two or more players of not equal relative authorities. NBS has been identified in several cases modelled by 

cooperative games such as the design and management of microwave access networks (Jiao et al. 2011), design of 

controllers in a multi-agent team cooperation approach (Semsar-Kazerooni and Khorasani 2009), and collaborative 

product development (Arsenyan, Buyukozkan and Feyzioglu 2015). 

2.2 Quantum Theory and Decision Making 

Quantum Theory also known as quantum mechanics and quantum physics gradually arose first from Max Planck who 

introduced in the 1900’s the solution to the black body radiation problem and the Albert Einstein’s 1905 paper 

explaining the photoelectric effect, (Jammer 1966). Niels Bohr in the 1910’s developed the theory of the atomic 

structure and the emanating radiation. Many great scientists and physicists such as Max Planck, Niels Bohr, Werner 

Heisenberg, Louis de Broglie, Arthur Compton, Albert Einstein, Erwin Schrödinger, Max Born, John von Neumann, 

Paul Dirac, Enrico Fermi, Wolfgang Pauli, Max von Laue, David Hilbert and others set the foundations of quantum 

mechanics, with several of them been awarded with the Nobel Prize for their contributions. 

Although, quantum theory managed to explain and describe the atom better than classical mechanics and 

electromagnetism, humans and social groups as complex systems too, not only have a large number of unobservable 

states but also are extremely prone to being disturbed by measurements taken. Hence, following the brief introduction 

given by Ashtiani and Azgomi (2015) and Busemeyer (2009) presented in (Bruza et al. 2009), concerning the 

understanding of behavioural measures based on quantum probability principles, quantum theory could be employed as 

an alternative mathematical method for generating probability models.  

Several observed decision making paradoxes and fallacies prove that classical decision making theory is incapable of 

effectively capturing human decision making, based on choices prescribed on the rationality basis of utility theory, 

Yukalov and Sornette (2014). A typical decision making paradox is the disjunction effect, i.e. the violation of the 

“sure-thing principle” formulated by Savage (1954): if alternative A is preferred to alternative B, when event X1  

occurs and A is also preferred to B, when event X2 occurs, then A should be preferred to B, when either X1 or X2 occur. 

The disjunction effect as a psychological phenomenon is the violation of the following total probability law: 

𝑃(𝐴|(𝑋1 ∪ 𝑋2)) = 𝑃(𝑋1) ⋅ 𝑃 (
𝐴

𝑋1
) + 𝑃(𝑋2) ∙ 𝑃(𝐴/ 𝑋2)                                      (1) 

An example of the disjunction effect, presented in (Tversky and Shafir 1992), concerns the two-step gamble setup. A 

group of people could gamble and could either win or lose a certain amount of money; then, they could play again for a 

second time. According to their experiments, the majority would accept the second gamble when they knew the result 

of the first one (either win or lose), but only a minority would gamble again if the outcome of the first gamble was 

unknown to them. This experiment manifested the inherent aversion of humans towards uncertainty when making a 

decision (not knowing the outcome of the first gamble in this example). Other well-known decision making paradoxes 

that cannot be addressed by the expected utility theory, are the Allais paradox, (Allais 1953), the conjunction fallacy 

(Tversky and Kahneman 1983) and the Ellsberg paradox  (Ellsberg 1990).  

Quantum-like decision-making has been used as a new approach to cover the deficiency of rationality assumption 

employed in classical decision-making. Ashtiani and Azgomi (2015) presented all proposed quantum-like decision 

making models and discussed about their post-hoc nature. Most of these models are capable of addressing certain 

classical decision making paradoxes and justifying their experimental findings and deviations from rationality; but they 

fail in capturing the behaviour of average decision makers in a decision-making framework. Only Quantum Decision 

Theory (QDT)  of Yukalov and Sornette (2011) can be used as an operational tool to make decisions under certainty in 

the presence of entanglement, given a priori the preferences of the players/decision makers. Other well-developed 

quantum decision-making models include the models of Busemeyer, Wang and Townsend (2006), Agrawal and Shard 

(2013) and Khrennikov (2010). Busemeyer, Wang and Townsend (2006) presented a rather simple and easy to 

understand quantum dynamic model describing in a post-hoc nature the disjunction effect in the prisoner’s dilemma 

game. The quantum decision making model of Agrawal and Shard (2013) was based on QDT and focused also on the 

explanation of the disjunction effect providing general kinds of operators for the quantum interference equations. In the 

rigorous mathematical model of Khrennikov (2010), quantum-like information is processed based on classical 

electromagnetic signals induced by joint activity of neurons, assuming quantum computer functioning of the human 

brain. All of these models have a close similarity with QDT, incorporating an interference term in their formulation to 

justify the total probability law violation. 

QDT is the only quantum method that can be employed within a general decision making framework not only to capture 

the decision makers’ preferences through the classical utility theory, but also to address their beliefs, emotions and 
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feelings through the interference term. This theory, presented by Yukalov and Sornette (2011), is based on the 

mathematical theory of complex separable Hilbert spaces through the superposition of composite prospects. It does not 

assume quantum properties of the brain; however it uses quantum techniques to generalize classical probability theory 

and address entangled decision-making, non-commutative subsequent decisions and intention interference. 

In QDT, the probabilities of choosing different alternative actions are evaluated both consciously and subconsciously 

based on their usefulness and appeal/attraction to the decision maker. Very briefly, the basic aspects of QDT as 

presented in (Yukalov and Sornette 2014) are the following: 

The closed linear envelope of the set of elementary prospects represented by vectors |𝑛⟩, composing the space of mind, 

is: 

ℋ ≡ 𝑆𝑝𝑎𝑛{ |𝑛⟩}                            (2) 

The prospects 𝜋𝑗 from the given set ℒ are represented by the vectors |𝜋𝑗⟩ in the mind space. Then the prospect 

operators, which correspond to the local observables’ operators in quantum theory, are defined as:  

�̂�(𝜋𝑗) ≡ |𝜋𝑗⟩ ⟨𝜋𝑗|                                                        (3) 

The state of the decision maker is depicted by the non-negative operator 𝜌 acting on the space of mind and 

normalized, Tr�̂� = 1, with the trace taken over the mind space. The decision-maker’s state is not defined by a simple 

wave function but by a statistical operator to allow influences by their environment. The probabilities of realizing any 

prospect are computed, representing the probability a given decision maker will choose this prospect given their 

strategic state of mind. These predicted probabilities are in general different for different subjects and for the same 

subject in different times. The prospect probabilities, playing the role of observable quantities are the averages of the 

prospect operators: 

𝑝(𝜋𝑗) ≡ Tr �̂��̂�(𝜋𝑗)                                              (4) 

Writing down the explicit expression and separating diagonal and off-diagonal terms, the prospect probability in QDT is 

written in the following form: 

𝑝(𝜋𝑗) = 𝑓(𝜋𝑗) + 𝑞(𝜋𝑗)                                           (5) 

The first term represents the diagonal terms, called utility factor. Corresponding to a classical probability, it is an 

objective quantity reflecting the given properties of the prospect and its usefulness for the decision maker. The second 

term representing the off-diagonal terms, is the prospect’s quantum interference term, called attraction factor and 

describing the prospect’s attraction to the decision maker.  

It is shown in (Yukalov and Sornette 2015) that the utility factor as a normalized function of prospect expected utility 

is: 

𝑓(𝜋𝑗) =  
𝑈(𝜋𝑗)

∑ 𝑈(𝜋𝑗)exp [𝛽𝑈(𝜋𝑗)]𝑗

 exp [𝛽𝑈(𝜋𝑗)] (6) 

The term 𝑈(𝜋𝑗) is the classical utility term of the prospect 𝜋𝑗 and 𝛽 is a confidence or certainty parameter. If no 

confidence is assumed then 𝛽 = 0, and the expression is reduced to: 

𝑓(𝜋𝑗) =  
𝑈(𝜋𝑗)

∑ 𝑈(𝜋𝑗)𝑗
                               (7) 

The attraction factor, playing the role of hidden variables, incorporates subjective biases, emotions and feelings of the 

decision makers. Based on theorem 4.1 of (Yukalov and Sornette 2015), if the prospects and the decision makers’ state 

�̂� are entangled, then the attraction factors are non-zero. In QDT, the attraction factors have the following properties:  

 The sum of all attraction factors is zero: ∑ 𝑞(𝜋𝑗) = 0𝑁
𝑗=1 . 

 They lie in the interval [-1, 1], with negative and positive values representing repulsive and attractive prospects, 

respectively.  

It is shown in (Yukalov and Sornette 2011), that over many decision makers the attraction factor satisfies the quarter 

law: 
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1

𝐿
∑|𝑞(𝜋𝑗)| =  

1

4

𝐿

𝑗=1

                 (8) 

Additionally, for decision makers exchanging information as members of society, the attraction factor diminishes in a 

decoherence process, (Yukalov and Sornette 2015). 

Using the quarter law, the attraction factor for each prospect is assigned an average absolute value of 1/4. Concerning 

the sign assignment of the attraction factor: 

 Based on the well-documented assumption that most humans hesitate to act under uncertainty for decision making 

between acting or not acting under uncertainty, the non-acting prospect is always assumed more attractive and assigned 

a positive attraction factor of 1/4, while the less attractive acting prospect is assigned a negative attraction factor of 

−1/4. 

 For decision making under uncertainty between two different alternative prospects, the prospect providing a more 

certain gain (or more uncertain loss) is assumed more attractive than another prospect with less certain gain (less 

uncertain loss). In (Yukalov and Sornette 2014) the attractiveness of a prospect is characterized by how much the gain 

prevails over risk. Thus, for each prospect the ratio of maximal gain over the probability of minimal gain: 
𝑥𝑚𝑎𝑥

𝑝(𝑥𝑚𝑖𝑛)
 is 

used to compare the prospects in terms of their attractiveness. 

Based on the QDT analysis, a prospect with a higher utility factor than another is considered more useful, with a higher 

attraction factor than another, more attractive, and with a higher prospect probability than another, more preferable. 

Thus, the optimal alternative prospect is the one with maximum probability among all prospects: 

𝑝(𝜋∗) = 𝑚𝑎𝑥𝑗  𝑝(𝜋𝑗),   (𝜋𝑗  ∈ 𝑃𝑟𝑜𝑠𝑝𝑒𝑐𝑡 𝑆𝑒𝑡 ℒ) (9) 

The application of QDT within a decision making framework does not require the knowledge of quantum theory apart 

from some basic knowledge of Hilbert space analysis, since only the final expressions (5) – (9) are employed in the 

evaluation of the quantum prospect probabilities. 

3. Decision Making Model in a 2-Players Non-cooperative Social Game 

Game Theory studies any social interplay between N (>1) individuals considered as stakeholders with different 

interests/stakes, who are all influenced by and influence the interests of all players. In this social game, each player 

seeks to better promote their own interests, through the maximization of their corresponding utility function 𝑈𝑖 , 𝑖 =
1, … , 𝑁. The social game is assumed a game of complete information, with the players knowing each other’s utility 

functions. The basic assumptions of Game Theory for these stakeholders as players of the game (Hargreaves Heap and 

Varoufakis 2004), are the following: 

 The players are instrumentally rational, i.e. they act only according to their preferences as modelled by their 

objective functions. 

 They share Common Knowledge of Rationality (CKR); an endless chain of beliefs, concerning their 

rationality, is created: each player is rational (0𝑡ℎ  order of rationality), each player knows that each player is 

rational (1𝑠𝑡 order of rationality), each player knows that each player knows that each player is rational (2nd 

order) and so on. 

 They have Common Priors or Consistently Aligned Beliefs (CAB), i.e. given the same information the 

rational players should draw the same conclusions. 

 They share common knowledge of the game rules, i.e. they know all possible alternatives/acts of the game 

and the utility functions of all players. It is therefore, a game of perfect/complete information. 

In the pursuit of values articulated by the stakeholders’ objectives in the 2-players non-cooperative social game, each of 

them is forced to select particular strategies and make decisions, influencing the delivery of value to all others. Each 

stakeholder’s objectives are modelled by the corresponding objective/utility function and the decisions made are 

considered as strategies, promoting these interests through the maximization of this objective function. 

3.1 Classical Decision Making Model in a 2-Players Non-cooperative Social Game 

The strategic choices of the stakeholders define the non-cooperative social game to be played, based on all possible 

combinations between the strategic decisions made by them. For a 2-players non-cooperative social game, the selection 
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of the specific strategic choice for any of the two stakeholders depends not only on the value of their payoff /utility 

function but also on the expectations the player has concerning the other player’s most likely strategy.  

In Table 1, the general 2-players non-cooperative social game is presented with the payoff values shown for all 

combinations of strategies. In each cell of the table, the values of the players’ utility/payoff functions are introduced. 

The + and – signs represent the best move for each player in response to each move of the other player. For example, 

the + sign next to the value of 0.5 of the Player 1’s payoff function means that Strategy 2 is the best choice (as opposed 

to 0.4), if Player 2 selects Strategy 1. In a similar manner, the - sign next to the value of 0.7 of Player 2’s payoff 

function means that Strategy 1 is the best response of Player 2 (as opposed to 0.5), if Player 1 selects Strategy 1. The 

cell that includes both + and – signs constitutes a Nash equilibrium and a potential solution of the game, since it 

represents the optimal strategic choice of both players. This selection does not maximize the objective function of each 

individual player (user and manufacturer), but represents the optimal strategic choice in response to the other player’s 

strategic choice. In this case, through successive elimination of the strictly dominated strategies and based on the 

achieved values of payoff functions, Player 2 will always choose Strategy 1 from Strategy 2 as a strictly dominating 

strategy, irrespectively of what the other player does. Hence, Player 1 knowing this fact will select Strategy 2. 

Table 1. General 2-Player Non-cooperative Game 

Players’ Strategies   Player 2 Strategy 1   Player 2 Strategy 2 

Player 1 
  

Player1 Payoff: 0.4 
-   + 

Player 1 Payoff: 0.5 
    

Strategy 1 Player 2 Payoff: 0.7 Player 2 Payoff: 0.5 

Player1 
+ 

Player 1 Payoff: 0.5 
- 

Nash 

Equilibrium 
  

Player 1 Payoff: 0.4 
    

Strategy 2 Player 2 Payoff: 0.8 Player 2 Payoff: 0.6 

If indeterminacy arises and multiple Nash equilibria are obtained in the game, Nash’s product of the payoff/utility 

functions, proposed by Harsanyi (1995), can be utilised as the sole criterion for the selection of the specific Nash 

equilibrium solution of the non-cooperative game. Alternatively, the players are allowed to play randomly using the 

Mixed Strategy Nash Equilibrium (MSNE). The indifference of the players between their strategic choices is used  as 

the basis for the computation of the corresponding strategies’ probabilities, (Hargreaves Heap and Varoufakis 2004). In 

this case, the pure strategy 1 of player 2 strictly dominates strategy 2 and the MSNE are expressed as both probabilities 

of player 2 selecting strategy 1 and player 1 selecting strategy 2 equal to one. 

3.2 Quantum-based Decision Making Model in a 2-Players Non-cooperative Social Game 

As already discussed, the basic assumptions of Game Theory concerning the players of the game are, that they are 

instrumentally rational, they share Common Knowledge of Rationality (CKR), they have Common Priors or 

Consistently Aligned Beliefs (CAB) and they share common knowledge of the game rules (Hargreaves Heap and 

Varoufakis 2004). However, experiments as those performed by Tversky and Kahneman (1981), (1986) have 

demonstrated the violation of rationality, employed by the classical Game Theory in the selection of the optimal choice. 

Several empirical studies, commonly known as decision making paradoxes and fallacies, have manifested this deviation 

from utility and expected utility theory, (Fishburn 1970) and (Keeney and Raiffa 1976), respectively.  

In the formulation of the classical decision making model, Game Theory successfully employs the expected utility 

theory as the only acceptable exemplar of rational behaviour; and it is used in this context to address the preferences of 

more than one stakeholder. The proposed quantum based decision making model allows capturing the complexity of 

human decision making related with risk attitude in the presence of ambiguity and uncertainty by incorporating apart 

from rationality, the decision makers’ different biases, emotions and subjective feelings. Based on QDT, this model 

takes into account the dual nature, i.e. conscious and subconscious, of human decision making, and exhibits a stochastic 

behaviour through the assessment of quantum strategic probabilities. 

Following the development of QDT presented by Yukalov and Sornette (2011), in the 2-players game two strategic 

choices/intentions one for each player are considered, each consisted of two strategies/representations. The first player’s 

intention has the strategies / representations |𝑆1⟩ and |𝑆2⟩ and the second player’s intention, the representations |𝑆1′⟩ 
and |𝑆2′⟩. Then, the two intention states for the first player are the following (and similarly for the second player), with 

coefficients defining the weights corresponding to the intended strategies, among which the choice is to be made: 

|𝜋𝑆1
⟩ =  𝑎1|𝑆1𝑆1′⟩ + 𝑎2|𝑆1𝑆2′⟩   |𝜋𝑆2

⟩ =  𝑏1|𝑆2𝑆1′⟩ + 𝑏2|𝑆2𝑆2′⟩ (10) 
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The general prospect state is the following: 

|𝜋⟩ = 𝑐11|𝑆1𝑆1′⟩ + 𝑐12|𝑆1𝑆2′⟩ + 𝑐21|𝑆2𝑆1′⟩ + 𝑐22|𝑆2𝑆2′⟩ (11) 

The decision making process based on the above general prospect state is entangled, taking also into account the 

preferences of the decision makers. Hence, these decisions, involving composite prospects, introduce interference 

terms. 

The probabilities of strategies 𝑆1 and 𝑆2 are the following, as in QDT (Yukalov and Sornette 2011): 

𝑝(𝑆1) = |𝑎1
∗𝑐11 + 𝑎2

∗𝑐12|2   𝑝(𝑆2) = |𝑏1
∗𝑐21 + 𝑏2

∗𝑐22|2 (12) 

With * denoting the transpose conjugate. The partial probabilities (probabilities of the intersection of two 

representations) and interference terms are introduced: 

𝑝(𝑆1𝑆1′) ≡ |𝑎1𝑐11|2, 𝑝(𝑆1𝑆2′) ≡ |𝑎2𝑐12|2, 𝑝(𝑆2𝑆1′) ≡ |𝑏1𝑐21|2,

𝑝(𝑆2𝑆2′) ≡ |𝑏2𝑐22|2 

(13) 

𝑞(𝑆1) ≡ 2Re(𝑎1
∗𝑐11𝑎2𝑐12

∗ ), 𝑞(𝑆2) ≡ 2Re(𝑏1
∗𝑐21𝑏2𝑐22

∗ ) (14) 

The uncertainty factors are defined as: 

𝜑(𝑆1) ≡ cos[arg(𝑎1
∗𝑐11𝑎2𝑐12

∗ )] , 𝜑(𝑆2) ≡ 𝑐𝑜𝑠[arg(𝑏1
∗𝑐21𝑏2𝑐22

∗ )] (15) 

Then, the interference terms can be rewritten as: 

𝑞(𝑆1) = 2𝜑(𝑆1)√𝑝(𝑆1𝑆1′)𝑝(𝑆1𝑆2′), 𝑞(𝑆2) = 2𝜑(𝑆2)√𝑝(𝑆2𝑆1′)𝑝(𝑆2𝑆2′) (16) 

Hence, carrying out from equations (12) and after substituting the above terms (equations (13), (16)), the probabilities 

of strategies 𝑆1 and 𝑆2 are the following [equations (34) of (Yukalov and Sornette 2011)]: 

𝑝(𝑆1) = 𝑝(𝑆1𝑆1′) + 𝑝(𝑆1𝑆2′) + 𝑞(𝑆1), 𝑝(𝑆2) = 𝑝(𝑆2𝑆1′) + 𝑝(𝑆2𝑆2′) + 𝑞(𝑆2) (17) 

The first two terms in the above equations are replaced by the utility factors of QDT, written in terms of the classical 

utility terms according to equation (7) as: 

𝑓(𝑆1) =  
𝑈(𝑆1)

𝑈(𝑆1) + 𝑈(𝑆2)
, 𝑓(𝑆2) =  

𝑈(𝑆2)

𝑈(𝑆1) + 𝑈(𝑆2)
 (18) 

After computing the expected utility of each strategy for each player, the utility factors are obtained based on the above 

equations. Thus, following the assessment of the interference terms 𝑞(𝑆)  presented in the next section, the 

probabilities of strategies 𝑆1and 𝑆2 are computed as (and similarly for strategies 𝑆1′ and 𝑆2′): 

𝑝(𝑆1) = 𝑓(𝑆1) + 𝑞(𝑆1), 𝑝(𝑆2) = 𝑓(𝑆2) + 𝑞(𝑆2) (19) 

Attraction Criterion 

As already discussed, in QDT the sign assignment of the attraction factor is based on two attraction criteria: when 

deciding between acting and not acting under uncertainty, and when selecting under uncertainty between two different 

alternative prospects. The following can be argued concerning the attraction factor’s sign assignment: 

 The well-documented first criterion assumes that the non-acting prospect is more attractive to most humans 

when deciding under uncertainty. This is not applicable within a general decision making framework, with the 

decision maker selecting between alternative strategies. 

 Concerning the second criterion which is applicable in a general decision making framework, when comparing 

the attractiveness of two prospects (Yukalov and Sornette 2014), the following could be argued: This criterion 

is based on the assumption that the prospect providing a more certain gain is more attractive to humans than 
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another prospect with less certain gain. The ratio of maximal gain over the probability of minimal gain: 
𝑥𝑚𝑎𝑥

𝑝(𝑥𝑚𝑖𝑛)
 

for each alternative prospect was used in equation (51) of (Yukalov and Sornette 2014) to compare two 

prospects in terms of attractiveness. The bias captured with this criterion is the human attraction towards 

achieving maximal gain while at the same time minimizing the risk of having minimal gain. However, it fails 

to capture other human feelings such as reciprocity, mutual trust and altruism. The ratio of maximal gain over 

the probability of minimal gain for each alternative prospect could simply be considered as another 

mathematical expression, based on the individual’s instrumental rationality when deciding under uncertainty, 

similar to the expected utility form of utility theory: 𝑈 = 𝑝(𝑥𝑚𝑎𝑥) ∙ 𝑥𝑚𝑎𝑥 + 𝑝(𝑥𝑚𝑖𝑛) ∙ 𝑥𝑚𝑖𝑛.  

 Another similar criterion could be introduced to model the human risk aversion and attraction to the prospect 

that provides the largest certain (guaranteed) gain. The prospect that provides a higher value of the lowest 

possible gain 𝑥𝑚𝑖𝑛 is considered more attractive than another with a lower value of  𝑥𝑚𝑖𝑛. Based on the 

Maximin solution proposed by Von Neumann and Morgenstern (1953) to identify the best strategy in zero-sum 

games, the player is attracted to the prospect with the highest value of the worst gain among all possible gains 

of this prospect. This Maximin criterion ascertains that the player will always be warranted for the largest 

lowest gain. 

 The irrational behaviour of the disjunction effect observed in the classical prisoner’s dilemma games 

(Hargreaves Heap and Varoufakis 2004) and the public good game (Ledyard 1995) is undoubtedly related with 

biases, emotions and feelings, such as learning, reciprocity, mutual trust and altruism. QDT captures the effect 

of learning in a decoherence process by diminishing the attraction factor through information exchange 

(Yukalov and Sornette 2015). However, by using the above ratio of maximal gain over the probability of 

minimal gain: 
𝑥𝑚𝑎𝑥

𝑝(𝑥𝑚𝑖𝑛)
  for each alternative prospect, it fails to address reciprocity, mutual trust and altruism. 

 To capture the tendency towards reciprocal or conditional cooperation between the players of a 

non-cooperative game, an alternative criterion, used in cooperative games to obtain the Nash Bargaining 

solution, is introduced. The cooperation of the players reaching a binding agreement is promoted by achieving 

a Pareto optimal solution through the maximization of the product of utilities’ distances from their 

disagreement points. Hence, in the 2-player non-cooperative game, a strategy is deemed more attractive than 

another, if it better promotes cooperation between the players against the rationality of non-cooperation. This 

attractiveness is assessed through a cooperation criterion, measured with the product of utility values of the 

players for all combinations of strategies. This criterion capturing mutual trust and reciprocity between the 

players is in accordance with the assumption of Yukalov and Sornette (2014) who assume that cooperation is 

more attractive than defection in the prisoner’s dilemma games. 

Summarizing, the sign of the attraction factor for each strategy is defined based on the following three criteria: 

1) The (Yukalov and Sornette 2014) proposed attraction ratio criterion, using the ratio of maximum utility value 

over the probability of minimum utility value: 
𝑈𝑚𝑎𝑥

𝑝(𝑈𝑚𝑖𝑛)
  for each alternative strategy. 

2) The Maximin criterion, using the lowest utility value among all possible utilities of each strategy to describe 

attraction towards the largest guaranteed gain strategy. 

3) The cooperation criterion, measured with the product of values of utilities of the two players for all 

combinations of strategies to address attraction to reciprocity and mutual trust. 

In the proposed quantum based decision-making model, any combination of these attractions can be selected to 

superimpose multiple biases, emotions and feelings of the players, enforcing or cancelling out their individual effect. It 

is also possible to select different criteria for each player, i.e. for one player attracted to reciprocity and mutual trust use 

the cooperation criterion, while for the other risk averse player select the maximin criterion. As in Table 2, depending 

on the players’ feelings, emotions and biases and the corresponding criteria, each player’s strategy is assigned a +1 or -1 

(i.e. attractive or repulsive), used in the computation of the corresponding values of the attraction factor for each 

player’s strategy (initially set to ±1/4), presented in the next section. 
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Table 2. Attraction Factor Sign Assignment 

Multiple Criteria for sign 

definition of Attraction 

Factor 

Maximin 

Criterion 

Cooperation 

Criterion 

Attraction 

Ratio Criterion 

Overall 

Criterion 

Initial Values of 

Attraction Factor 

Player 1 

Criteria 
Yes Yes Yes 

  

Player 2 

Criteria 
Yes Yes Yes   

Player 1 

Strategy 1 
1 -1 -1 -1 -0.25 

Player 1 

Strategy 2 
-1 1 1 1 0.25 

Player 2 Strategy 1 1 1 1 1 0.25 

Player 2 Strategy 2 -1 -1 -1 -1 -0.25 

Quantum Strategic Probabilities Assessment 

Concerning the interference term of equations (16), Yukalov and Sornette (2011) assume no other prior information and 

use the uniform distribution of the absolute values of the uncertainty factors in the interval [0,1] to assign them an 

average absolute value of 1/2. They also assume the non-informative prior for all probabilities in the square roots of 

equation (16) and their expected values all being 1/2. Substituting these values, the quarter law for the attraction factor 

is derived: 

|𝑞(𝜋𝐴)| = |𝑞(𝜋𝐵)| =
1

4
                               (20) 

In the proposed quantum-based decision making model, the probabilities of the players selecting strategies (𝑆1, 𝑆2, 𝑆1′ 
and 𝑆2′) are initially set to ½, as in QDT, and all attraction factors are initially assigned an absolute magnitude of ¼, 

following the quarter law. However, the quantum strategic probabilities and the attraction factors are computed 

according to the following process, also presented in Figure 1: 

 Identify the players’ biases, feelings and emotions and employ appropriate attraction criteria, as discussed in 

the previous section. 

 Since no prior information is given, the expected values of the probabilities of the strategies (𝑆1, 𝑆2, 𝑆1′ and 𝑆2′) 
of the players are initially set to ½, as in QDT. The initial values of the attraction factors are set to ¼, 

according to the quarter law. 

 Next, the values of the expected utility functions of the players’ strategies are computed: 𝑈(𝑆𝑖) = 𝑝(𝑆1′) ∙
𝑈(𝑆𝑖1) + +𝑝(𝑆2′) ∙ 𝑈(𝑆𝑖2), with 𝑃(𝑆1

′) and 𝑃(𝑆2
′ ) the probabilities that the other player will select strategies 

𝑆1′, 𝑆2′ (initially set to ½) and 𝑈(𝑆𝑖1), 𝑈(𝑆𝑖2) the values of the utility functions of the player for strategy 𝑆𝑖 

when the other player selects strategies 𝑆1′and 𝑆2′respectively.  

 The utility factors are obtained from the expected utilities of the two strategies of each player, according to 

equations (18), i.e.: 𝑓(𝑆1) =  
𝑈(𝑆1)

𝑈(𝑆1)+𝑈(𝑆2)
, 𝑓(𝑆2) =  

𝑈(𝑆2)

𝑈(𝑆1)+𝑈(𝑆2)
.  

 The strategic probabilities of equations (19) are computed by adding the computed utility factors and the 

current values of the attraction factors: 𝑝(𝑆𝑖) = 𝑓(𝑆𝑖) + 𝑞(𝑆𝑖).  

 The probabilities of joint strategies: 𝑝(𝑆1𝑆1′), 𝑝(𝑆1𝑆2′), 𝑝(𝑆2𝑆1′), 𝑝(𝑆2𝑆2′)  are calculated as: 𝑝(𝑆𝑖𝑆𝑗′) =

𝑝(𝑆𝑖|𝑆𝑗
′) ∙ 𝑝(𝑆𝑗

′). The probability 𝑝(𝑆𝑖|𝑆𝑗
′) is computed, using the values of the utility function 𝑈(𝑆𝑖𝑗′) and 

𝑈(𝑆𝑘𝑗′) for strategies 𝑆𝑖  and 𝑆𝑘 of player 1 when strategy 𝑆𝑗
′ is selected by player 2,  as: 𝑝(𝑆𝑖|𝑆𝑗

′) =

𝑈(𝑆𝑖𝑗′)

𝑈(𝑆𝑖𝑗′)+𝑈(𝑆𝑘𝑗′)
+ 𝑞(𝑆𝑖) and 𝑞(𝑆𝑖) the current value of the attraction factor of strategy 𝑆𝑖. Also, 𝑝(𝑆𝑗

′) is the 

current value of the probability of player 2 selecting strategy  𝑆𝑗
′ (and similarly for player 2). 
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 The attraction factors are calculated using equation (16) based on the values of joint strategies’ probabilities, 

computed in the previous step. As in QDT, for a binary strategy set without any other information available, 

the uncertainty factor 𝜑(𝑆1) of equation (16), related to the existence of uncertainty in decision-making, is set 

to 0.5. Then, the property of interference alteration: ∑ 𝑞(𝜋𝑗) = 0𝑁
𝑗=1  (i.e. equal in magnitude for binary 

strategy set) is used to assess the other uncertainty factor 𝜑(𝑆2). 

 The above computed values of quantum strategic probabilities and attraction factors replace the previous 

values, and they are used to update the strategies’ expected utilities, utility factors etc. The iteration process 

carries on until convergence is achieved between the previous values and the computed values of quantum 

strategic probabilities and attraction factors of strategies (𝑆1, 𝑆2, 𝑆1′ and 𝑆2′). 

Thus, during this iteration, the values of quantum strategic probabilities and attraction factors of the players are updated 

and the final converged values reflect their most accurate assessment. 

QUANTUM-BASED DECISION 
MAKING PROCESS

GENERATE QUANTUM 
STRATEGIC PROBABILITIES /
SELECT MOST PREFERABLE 

STRATEGIES

IDENTIFY STAKEHOLDERS’ 
BIASES/FEELINGS/EMOTIONS

EMPLOY/SUPERIMPOSE 
APPROPRIATE ATTRACTION 

CRITERIA

STRATEGIC PROBABILITIES 
INITIALLY SET TO 1/2

EXPECTED UTILITIES OF 
STAKEHOLDERS’STRATEGIES 

COMPUTED

UTILITY FACTORS OF 
STAKEHOLDERS’STRATEGIES 

COMPUTED

QUANTUM STRATEGIC 
PROBABILITIES COMPUTED

CONVERGENCE ERROR  
COMPUTED

ERROR 
MINIMIZED?

Yes

No

ATTRACTION FACTORS INITIALLY 
SET TO 1/4

JOINT STRATEGIES 
PROBABILITIES COMPUTED

PLAYERS’ STRATEGIES 
ATTRACTION FACTORS 

COMPUTED

 

Figure 1. Quantum-based Strategic Probabilities and Attraction Factors Assessment 

4. Quantum-based Decision Making in Engineering Design 

To identify the value-enhancing design(s) in engineering design, the optimization process should explore the widest 

possible design space and address all economic and non-economic needs of stakeholders involved. Hence, the goodness 
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of all proposed system solutions needs to be assessed through the use of multiple criteria decision analysis approach and 

Game Theory needs to be applied in a social game between all stakeholders involved as players. In (Papageorgiou, Eres 

and Scanlan 2015) value driven design philosophy was applied in the conceptual design of a small Unmanned Air 

System (UAS) utilised in defence applications to locate the best design depending on the user’s needs/requirements. 

Furthermore, rational behaviour was assumed as the basis of a classical Game Theory application incorporating beyond 

the user’s, the manufacturer’s preferences also in this design in (Papageorgiou, Eres and Scanlan 2016). A hybrid 

cooperative/non-cooperative, non-zero sum game between the user and the manufacturer was developed to identify both 

the optimal UAS design and their optimal strategic choices through the simultaneous employment of Nash bargaining 

solution and Nash equilibrium. 

Concerning the user’s and manufacturer’s available strategic choices, modelled in the 2-players, non-zero sum, 

non-cooperative game, the list includes different performance requirements such as cruise speed, improvement of 

technology, different quality control processes, and so on, assumed constant in the design space exploration. For 

demonstration purposes, in this 2-players game the UAS manufacturer has the option of selecting between two different 

levels of reliability of UAS components, one lower level of cheaper and less reliable components and one higher level 

of more reliable and more expensive components. The user selects between two different maintenance policies, one 

policy of replacing UAS components at scheduled time intervals (measured in flight hours) depending on their 

reliability, and one policy of simply replacing the whole UAS at scheduled times. Both strategic choices of the 

stakeholders have obviously a significant impact on aircraft acquisition cost, scheduled maintenance cost, total lifecycle 

cost and UAS losses during operations. In Table 3, this game is presented with the corresponding values of the two 

stakeholders’ utility functions. These values of the stakeholders’ multi-attribute utility functions reflect their personal 

preferences in a series of different objectives, from operational surveillance time, maximum endurance, maximum range 

to total lifecycle cost and defence related survivability and detectability of the UAS. 

Table 3. User - Manufacturer Non-Cooperative Game 

Manufacturer's / 

User's Strategies  

Component Replacement Maintenance 

Policy  
UAS Replacement Policy 

Original Reliability + 0.418 0.699 - 
Nash 

Equilibrium 
+ 0.524 0.495 

  

Improved 

Reliability  
0.416 0.725 - 

Nash 

Bargaining 

Solution  
0.384 0.643 

  

In (Papageorgiou, Eres and Scanlan 2016), the selection of these alternative strategies was captured  as a process of 

strategic interactions between the players of a non-cooperative game. The combination of the players’ strategies that 

does not maximize the objective function of each individual player but represents the optimal strategic choice in 

response to the other player’s strategic choice constitutes the Nash equilibrium, as indicated in Table 3. This Nash 

equilibrium defines the solution of the 2-players, pure non-cooperative, non-zero sum social game, justified through 

successive elimination of the strictly dominated strategies, (Nash 1950). Alternatively, this engineering design was also 

modelled as a fully cooperative, non-zero sum game, solved as a pure bargaining problem (Nash 1950); and the optimal 

solution was based solely on the criterion of the maximization of the product of their payoff functions, also indicated in 

Table 3. 

The quantum-based decision making model, presented in section 0, is employed in this engineering design with the two 

stakeholders as players of a 2-players social game. In this decision making model beyond rational behaviour, biases, 

emotions and intuitive feelings of the two stakeholders are modelled to assess the quantum strategic probabilities. Each 

of the two stakeholders has to make a decision between two alternative strategies based not only on the values of their 

personal utility functions, modelling their preferences, but also based on their own personal intuitive feelings and 

behavioural biases. 

Quantum-based Engineering Design Methodology 

The methodology of the proposed decision making process in the engineering design is the following, also presented in 

Figure 2:  

 The stakeholders and their strategic choices are first identified and the quantum-based game is formed. 

 The values of the stakeholders’ utility functions for the different strategies are assessed, as in Table 3. 

 The stakeholders’ biases, emotions and feelings are identified and appropriate attraction criteria are employed 

and superimposed to obtain the overall attraction criterion, used in the sign definition of the attraction factor, as 

in Table 2. 
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 The expected values of the probabilities of the stakeholders’ strategies are initially set to ½, as in QDT. The 

initial values of the attraction factors are set to 
1

4
 or −

1

4
, based on the quarter law and the sign defined in the 

previous step. 

 The expected utilities of each strategy/prospect for both stakeholders are obtained as:  𝑈(𝑆𝑖) = 𝑝(𝑆1
′) ∙

𝑈(𝑆𝑖1) + 𝑝(𝑆2
′ ) ∙ 𝑈(𝑆𝑖2) , with 𝑝(𝑆1

′)  and 𝑝(𝑆2
′ )  the probabilities that the other stakeholder will select 

strategies 𝑆1′, 𝑆2′ and 𝑈(𝑆𝑖1), 𝑈(𝑆𝑖2) the values of the utility functions of the stakeholder for strategy 𝑆𝑖 

when the other stakeholder selects strategies 𝑆1′and 𝑆2′respectively (from Table 3).  

 The utility factors for each of the two stakeholders are computed from the expected utilities of the two 

strategies of each stakeholder, according to equations (18), i.e.: 𝑓(𝑆1) =  
𝑈(𝑆1)

𝑈(𝑆1)+𝑈(𝑆2)
, 𝑓(𝑆2) =  

𝑈(𝑆2)

𝑈(𝑆1)+𝑈(𝑆2)
.  

 The quantum strategic probabilities of the strategies of the stakeholders are obtained, equation (19): 𝑝(𝑆𝑖) =
𝑓(𝑆𝑖) + 𝑞(𝑆𝑖).  

 The probabilities of joint strategies: 𝑝(𝑆1𝑆1′), 𝑝(𝑆1𝑆2′), 𝑝(𝑆2𝑆1′), 𝑝(𝑆2𝑆2′)  are calculated as: 𝑝(𝑆𝑖𝑆𝑗′) =
𝑝(𝑆𝑖|𝑆𝑗

′) ∙ 𝑝(𝑆𝑗
′), with 𝑝(𝑆𝑖|𝑆𝑗

′) the probability of one stakeholder selecting strategy 𝑆𝑖 when the other selects 

strategy 𝑆𝑗
′, and 𝑝(𝑆𝑗

′) the probability of the other stakeholder selecting strategy 𝑆𝑗
′ and computed as 

described in 0. 

 The attraction factors are calculated using equation (16). 

 The convergence error is computed as the difference between the computed quantum strategic probabilities and 

attraction factors and their previous values.  

 If the error is not less than the desired accuracy, the computed values of the quantum strategic probabilities and 

attraction factors are used to update the strategies’ probabilities and expected utilities and the iteration process 

carries on until convergence is achieved. 

 The final converged values of the quantum strategic probabilities are obtained for all strategies. 

 The stakeholders’ optimal strategies are identified as those strategies maximizing the values of quantum 

strategic probabilities. 
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Figure 2. Engineering Design Quantum-based Decision Making Process 

For the UAS conceptual design, the final converged values of the quantum strategic probabilities are presented in Table 

4. The attractiveness of the strategies was defined based on the attraction ratio criterion, the maximin criterion and the 

cooperation criterion. Only the values of the attraction factors of the original reliability and UAS component 

replacement policy strategies are presented, since the other strategies’ attraction factors take the opposite value. With 

the maximin criterion capturing the attraction to the prospect that provides the largest guaranteed gain, the strategy that 

had larger lower utility than the other strategy was considered more attractive. Using the attraction ratio criterion, the 

ratio of maximum value of utility (between 𝑈(𝑆𝑖1) and 𝑈(𝑆𝑖2)) over the corresponding probability of minimum value 

of utility, 
𝑈𝑚𝑎𝑥

𝑝(𝑈𝑚𝑖𝑛)
 was used compare the two alternative strategies in terms of attractiveness. To capture the tendency 
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towards reciprocal cooperation between the stakeholders, the strategies’ attractiveness was assessed with the 

cooperation criterion and was measured with the product of utility values of the players for all combinations of 

strategies. In the fourth column, the cooperation and maximin criteria were selected to superimpose the stakeholders’ 

attractions towards reciprocity, mutual trust and risk aversion, and finally all criteria were superimposed in the fifth 

column. 

Table 4. Quantum-based Decision Making Engineering Design 

Quantum-based Decision 

Making Engineering 

Design 

Maximin 

Criterion 

Cooperation 

Criterion 

Attraction 

Ratio 

Criterion 

Cooperation - 

Maximin 

Criteria 

Superimposed 

All Criteria 

Superimposed 

Players' 

Quantum 

Probabilities 

Original 

Reliability 
0.668 0.356 0.356 0.525 0.356 

Improved 

Reliability 
0.332 0.644 0.644 0.475 0.644 

Component 

Replacement 

Maintenance 

Policy 

0.707 0.691 0.691 0.704 0.691 

UAS 

Replacement 

Policy 

0.293 0.309 0.309 0.296 0.309 

Utility 

Factors 

Original 

Reliability 
0.525 0.526 0.526 0.525 0.526 

Improved 

Reliability 
0.475 0.474 0.474 0.475 0.474 

Component 

Replacement 

Maintenance 

Policy 

0.565 0.548 0.548 0.557 0.548 

UAS 

Replacement 

Policy 

0.435 0.452 0.452 0.443 0.452 

Attraction 

Factors 

Original 

Reliability 
0.144 -0.169 -0.169 0 -0.169 

Component 

Replacement 

Maintenance 

Policy 

0.141 0.143 0.143 0.147 0.143 

From the results of Table 4, the following are observed: The strategy of original reliability dominates the strategy of 

improved reliability in terms of usefulness. However, its attraction factor varies from -0.169 to 0 and 0.144, depending 

on which attractiveness criterion is used. This strategy is the most attractive for the manufacturer, using the maximin 

criterion, since it provides a higher lowest utility value than the improved reliability strategy (0.418 vs. 0.384); and 

consequently it is the most preferable. However, when using either the cooperation attractiveness criterion or the 

attraction ratio criterion or superimposing all criteria, the improved reliability strategy appears as the most preferable 

choice, since it is the most attractive for the manufacturer. With the fourth option of selecting both the cooperation and 

maximin criteria, none of the two levels of reliability is attractive to the manufacturer and only usefulness (i.e. 

rationality) is employed to identify the strategy of original reliability as the most preferable. Due to the obtained values 

of the user’s utility function, the strategy of UAS component replacement maintenance policy is strictly dominating the 

UAS replacement policy, irrespective what the manufacturer selects; and as expected, it is found more useful. However, 

it is always more preferable because it is more attractive than the UAS replacement policy using all different 

attractiveness criteria or combinations of them. 
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Table 5. UAS Design Stakeholders' Optimal Strategies 

UAS Conceptual Design User’s Optimal Strategy Manufacturer’s Optimal Strategy 

Classical Non-Cooperative 

Game 

UAS Component Replacement 

Maintenance Policy 

Original Reliability UAS 

Components 

Classical Cooperative Game 
UAS Components Replacement 

Maintenance Policy 

Improved Reliability UAS 

Components 

Quantum-based Engineering 

Design 

(all criteria superimposed) 

UAS Components Replacement 

Maintenance Policy 

Improved Reliability UAS 

Components 

Quantum-based Engineering 

Design 

(Maximin Criterion) 

UAS Components Replacement 

Maintenance Policy 

Original Reliability UAS 

Components 

Quantum-based Engineering 

Design 

(Cooperation Criterion) 

UAS Components Replacement 

Maintenance Policy 

Improved Reliability UAS 

Components 

Quantum-based Engineering 

Design 

(Attraction Ratio Criterion) 

UAS Components Replacement 

Maintenance Policy 

Improved Reliability UAS 

Components 

Quantum-based Engineering 

Design 

(Cooperation - Maximin 

Criteria Superimposed) 

UAS Components Replacement 

Maintenance Policy 

Original Reliability UAS 

Components 

Summarizing, as presented also in Table 5, the non-cooperative game identified the manufacturer’s strategy of original 

level of reliability for UAS components and the user’s strategy of UAS component replacement maintenance policy as 

Nash equilibrium. The cooperative game, solved as a pure bargaining problem, defined as optimal solution the 

manufacturer’s strategy of improved level of reliability for UAS components and user’s strategy of UAS component 

replacement maintenance policy. Using the quantum based decision making model, the user’s strategy of UAS 

component replacement maintenance policy is the most preferable; but the manufacturer’s most preferable strategy 

depends on the biases, feelings captured with the criteria selected for determining attraction factor, as discussed above. 

Thus, it is shown in practice that these biases and feelings are indeed crucial in determining the optimal strategy for the 

stakeholder. 

5. Discussion and Conclusions 

The main objective of this research is to develop a decision making model employed in engineering design and any 

other social interplay between individuals, considered as stakeholders with different interests/stakes, capturing the 

complexity of human decision making under uncertainty. The decision makers’ biases, emotions and subjective feelings 

apart from rational behaviour are incorporated in the proposed quantum-based decision making model. 

Classical decision theory cannot explain human decision making because humans often violate the hypotheses of 

expected utility theory and make irrational choices. Quantum Decision theory is based on the similarity between mental 

processes and quantum mechanical phenomena with human decision making following the probabilistic behaviour of 

quantum mechanics. With the application of the quantum theory mathematics in decision making, the decision maker’s 

mind is modelled as a quantum system of all superpositioned distinguished prospects/states. In QDT, human brain is 

assumed to have a dual nature and brain processes are divided into conscious and subconscious constituent parts. In the 

quantum-based decision making engineering design model, quantum techniques address entangled decision making by 

assessing intention interference. Hence, given a priori the preferences of the decision makers, this model can be utilised 

as an operational tool for decision making under uncertainty in the presence of entanglement assessing the quantum 

probabilities of the players’ strategies in engineering design. 

In the general application of QDT no prior information is assumed concerning the actions chosen by the players, 

(Yukalov and Sornette 2014), (Yukalov and Sornette 2014). Therefore, the expected values of the probabilities of the 

players’ strategies are set to ½ (non-informative prior) to compute the prospects’ expected utilities, the utility factors 

and quantum probabilities. In the quantum-based decision making model these probabilities are initially set to ½ as in 

QDT, however the engineering designer uses the computed values of the quantum strategic probabilities as available 



Studies in Engineering and Technology                                                            Vol. 4, No. 1; 2017 

50 

information to update the expected values of all probabilities of the players selecting their strategies. Hence, in the 

iteration formed, the values of the strategies’ expected utility functions, the utility factors of equations (18) and the 

strategic probabilities of equations (19) are recalculated, until convergence is achieved between the values of strategies’ 

probabilities and the quantum strategic probabilities of the players. The final converged values reflect the most accurate 

assessment of the quantum strategic probabilities. 

As discussed in Section 0, three different attraction criteria were introduced to capture the biases, feelings and emotions 

of the stakeholders. The player’s risk aversion and the associated attraction to the strategy offering the largest possible 

guaranteed gain is captured with the maximin criterion. The tendency towards reciprocal or conditional cooperation 

captures the feelings of mutual trust and reciprocity, and the strategies’ attractiveness is assessed with the cooperation 

criterion, measured with the product of utility values of the players for all combinations of strategies. The players’ 

attraction towards the strategy that offers maximal gain while at the same time minimizing the risk of minimal gain is 

captured with the attraction ratio criterion. 

It is also possible to model players subconsciously governed by multiple biases, feelings and emotions. The appropriate 

aforementioned criteria will superimpose those feelings, emotions and biases, enforcing or cancelling out their 

individual effect. For example, as presented in Table 2, all three criteria were selected for a player driven by all 

corresponding feelings and emotions, to obtain an overall criterion used in the sign assignment of the attraction factor. 

In this case, for the engineering design game of Table 3, the original reliability strategy is less attractive to the 

manufacturer than the improved reliability strategy and the UAS component replacement strategy is more attractive to 

the user than the UAS replacement strategy. Alternatively, the cooperation and maximin criteria were selected to 

superimpose the player’s attractions towards reciprocity, mutual trust and risk aversion. Another option is to select 

different criteria for each player, i.e. for one player attracted to reciprocity and mutual trust use the cooperation 

criterion, while for the other risk averse player select the maximin criterion. For the specific engineering design game, 

the UAS component replacement policy was found more attractive with all possible combinations of attraction criteria. 

Other feelings, emotions and biases of the stakeholders could be included in the sign assignment of the attraction factors 

by adding appropriate attraction criteria. For instance, a manufacturer could be biased towards a specific reliability level 

strategy, because of previously supplied components that would have to be replaced by new ones in a change of strategy; 

an additional attraction criterion could model this bias. 

Concerning the interference/attraction factors used in equations (19), Yukalov and Sornette (2011) assume no prior 

information and assign a value of ½ to the uncertainty factors and the expected values of the probabilities in the square 

roots of equation (16) to derive the quarter law for the attraction factor. In general, the attraction factors are subjective 

quantities, which are not only different for different decision makers, but they are also different for the same decision 

maker for different prospects/strategies and even different for the same decision maker and prospects at different times. 

They are always obtained from equations (16) and based on Theorem 1 of (Yukalov and Sornette 2011) they have the 

property of interference alteration (i.e. their sum is zero): ∑ 𝑞(𝜋𝑗) = 0𝑁
𝑗=1 . To get a better than the quarter law estimate 

of the interference term of the players’ strategies in the proposed quantum-based decision making model, the values of 

joint probabilities 𝑝(𝑆1𝑆1′), 𝑝(𝑆1𝑆2′), 𝑝(𝑆2𝑆1′) and 𝑝(𝑆2𝑆2′) were computed from the conditional probabilities since: 

𝑝(𝑆𝑖𝑆𝑗′) = 𝑝(𝑆𝑖|𝑆𝑗′) 𝑝(𝑆𝑗). They were then employed in equation (16) to get more accurate estimates of the attraction 

factors: 

𝑞(𝑆1) = 2𝜑(𝑆1)√𝑝(𝑆1𝑆1′)𝑝(𝑆1𝑆2′), 𝑞(𝑆2) = 2𝜑(𝑆2)√𝑝(𝑆2𝑆1′)𝑝(𝑆2𝑆2′)               (25) 

The key findings/contributions of the proposed method can be summarized as follows: 

 The quantum-based engineering design model is an operational tool for decision making under 

uncertainty, assessing the quantum probabilities of the strategies in engineering design based on both 

the rationality and the biases, feelings and emotions of the stakeholders involved. 

 Attraction criteria are introduced to capture different biases, feelings and emotions. Moreover, 

multiple biases, feelings and emotions can be superimposed, cancelling or enforcing their individual 

effect, by selecting more than one criterion. 

 The attraction factors are not assigned a constant value of 1/4, but instead the values of the quantum 

strategic probabilities and attraction factors of the players are updated and more accurately assessed, 

following the process of Figure 2. 
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The conditional probabilities can also be assessed based on data from experimental realization with the actual subjects 

choosing from the specific prospects at certain times, given that they know their opponents’ selection, as in (Tversky 

and Shafir 1992). Hence, further similar experiments can be done to assess these conditional probabilities and obtain 

more accurate estimates of the interference terms 𝑞(𝜋)  for the specific subjects and chosen strategies. These 

experiments are required to not only validate the estimates of the attraction factors but also validate the proposed model 

based on the selections of decision makers involved in the engineering design used in the assessment of the 

aforementioned probabilities. Nevertheless, if no other information is available, this model provides a first estimate of 

the probabilities of the players’ strategies. 
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