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Abstract 

Recovery from exercise-induced fatigue is crucial for subsequent performance. Self-myofascial release (SMR) using a 

foam roller is an alternative to active recovery (AR). This study aims to compare the effects of passive recovery (PR), 

AR, and SMR on blood lactate [La-] removal and total quality of recovery (TQR). Twenty-two well trained male 

athletes (age: 22.6±2.9 years) underwent three testing sessions conducted 72 hours apart but at the same time of each 

day in a randomized order. After determining resting [La-] and heart rate (HR), the subjects completed a Wingate 

anaerobic test (WAnT), triggering muscular fatigue. HR and [La-] were measured three minutes after the WAnT, 

following which the subjects underwent one of the three different recovery interventions over 15 minutes: PR (lying 

supine), AR (cycling at 40% of the estimated maximum HR of the respective subject), and SMR (using foam roller on 

lower extremity muscles). After each recovery intervention, [La-], HR, and TQR were measured. There was no 

statistically significant difference in [La-] and HR values obtained before the WAnT test (p=0.368, p=0.691, respectively) 

and right after the WAnT test (0.264, p=0.629) Both AR and SMR were more effective than PR for [La-] removal and 

obtaining a higher TQR (p<0.001). However, SMR and AR were not superior to one another for blood [La-] removal 

(p>0.05). In contrast, a significantly higher TQR was observed with SMR than AR and PR (p<0.001). Athletes can 

apply AR or SMR to recover from strenuous exercise. SMR can be an alternative to PR and AR as a recovery tool. 

Keywords: active recovery, passive recovery, self-myofascial release, blood lactate, total quality of recovery 

1. Introduction 

Exercise-induced muscle fatigue is defined as the decreased ability to generate appropriate amounts of muscle force or 

power during on-going contractile activity (Finsterer, 2012). However, the basic mechanism underlying muscle fatigue 

has not been firmly established (Potvin and Fuglevand, 2017). Muscle fatigue is generally attributable to peripheral and 

central factors (Wan et al., 2017; Allen et al., 2008). Peripheral fatigue is produced by changes at or distal to the 

neuromuscular junction (depletion of creatine phosphate or accumulation of inorganic phosphate) (Allen et al., 2008). 

Central fatigue originates at the central nervous system, which decreases the neural drive to the muscle (Wan et al., 

2017). Exercise-induced alterations in muscle homeostasis, including hydrogen ion (H+) accumulation, potassium loss, 

depletion of high-energy phosphates (ATP and creatine phosphate) and glycogen, loss of calcium homeostasis, or local 

ischemia, may be some of the causative factors associated with disruption of the muscle excitation-contraction cycle 

during intense exercise and in post-exercise muscle fatigue (Mika et al, 2007; Steele et al., 2003). It has been known 

that high-intensity exercise results in increased levels of both intramuscular and circulating levels of lactate [La-] 

(Connolly et al., 2003). This increase in [La-], reflecting H+ concentration, has been shown to inhibit contractile 

performance and cause premature fatigue (Connolly et al., 2003; Corder et al., 2000). 

Blood [La-] concentration is the most widely used marker of muscular fatigue (Barnett, 2006) occurring during exercise 

and sports. Fast muscle recovery is necessary for better muscle performance in sports with short inter-bout rest periods 

(Mika et al., 2007; Hinzpeter et al., 2010). Recovery is defined as the normalization of the pH within muscle (Lattier et 

al., 2004). Researchers reported that examples of active and passive recovery (PR) methods used for recovery are 
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massage, active recovery (AR), cryotherapy, contrast temperature water immersion therapy, hyperbaric oxygen therapy, 

nonsteroidal anti-inflammatory drugs, compression garments, stretching, electromyostimulation, and combination 

modalities (Barnett, 2006). Numerous studies have reported that AR is more effective than PR in removal of [La-] 

(Connolly et al., 2003; Corder et al., 2000; White and Wells 2015; Menzies et al., 2010; Heyman et al., 2009; Baldari et 

al., 2005; Spierer et al., 2004). 

Typically, 15–25 minutes of resting is thought to be the optimal time for returning pH levels to normal after performing 

moderate intensity exercise (Bond et al., 1991). PR is simple resting, often in the form of sitting, lying down, or 

stretching (Warren et al., 2015). AR, wherein athletes participate in low to moderate intensity active movement 

(exercise intensity of 30–60% of the estimated maximum HR [HRmax] of the person who is exercising), is often 

cardiovascular in nature in an effort to increase vasodilatation, increase oxygen-rich blood flow to the muscle, and 

remove blood [La-] (Corder et al., 2000; Monedero and Donne 2000). AR has been shown to enhance [La-] clearance 

from type II skeletal muscle fibers through facilitating its oxidation by adjacent type I fibers (Baldari et al., 2005). 

The aim of this study was to compare AR, PR , and SMR with a foam roller on [La-] removal and total quality of 

recovery (TQR). We hypothesized that 1) AR and SMR are more effective than PR in removal of [La-]; 2) SMR is 

superior to AR in removal of [La-] and obtaining a higher TQR score. 

2. Method 

Twenty-two well trained male athletes from team sports (basketball, soccer, etc.) volunteered to participate in this study. 

Descriptive data of the subjects are presented in Table 1. The inclusion criteria were: a) aged ≥18 years, b) having an 

active team sports license c) had no pre-existing injury or muscular soreness. Subjects who were using an ergogenic aid 

and had an active lower extremity injury or muscle soreness were excluded from the study. Each subject was instructed 

to refrain from strenuous physical activity for 24 hours prior to testing. They were also informed to abstain from 

caffeine or alcohol consumption for 12 hours and otherwise continue their regular dietary habits. All subjects were 

verbally informed of the procedures, the potential risk and benefits of the study, and if willing to participate, were 

required to provide their written informed consent prior to their enrollment in the study. This study was approved by the 

ethics committee of the Eskisehir Osmangazi University (protocol number: 80558721/53) in accordance with the 

Declaration of Helsinki. 

Table 1. Descriptive statistics of participants 

 Participants (n=22) 

Mean ± SD 

Age (y) 22.6 ± 2.9 

Height (cm) 182.0 ± 9.5 

Mass (kg) 78.9 ± 12.4 

General training age (m) 139.6 ± 20.1 

Training frequency (h/w) 9.6 ± 0.6 

SD: standard deviation; w: week; m: month; y: year. 

2.1 Data Collection Procedure  

The detailed experimental design flowchart is shown in Figure 1. Each recovery session started with the subject lying in 

the supine position for 15 minutes. During this period, resting heart rate (HR) was followed and at the end of this period, 

resting blood [La-] was measured and right after this, the subject warmed up (5 minute warming up with light cycling 

resistance and 5 second of sprint cycling at the end of every consecutive minute). After two minutes resting, subjects 

completed a standardized WAnT and average mean power (R-AP). Right after the WAnT, the rating of perceived 

exertion (RPE) score was recorded and after 3 minutes of the WAnT, HR, and [La-] were recorded. After this, the 

subject began one of the recovery interventions (passive, active, or SMR). One minute after the recovery, HR, [La-] and 

TQR points (TQR) were recorded. In this study, there were three testing sessions, with each session performed at the 

same time of the day with a 72-hour interval. 
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Figure 1. Flowchart of experimental design 

PR: passive recovery; AR: active recovery; SMR: self-myofascial release; R-AP: relative average power; W: watt; [La-]: 

blood lactate; HR: heart rate; TQR: total quality recovery; RPE: rating of perceived exertion. 

2.2 Body Mass and Height 

Body mass and height of the subjects were measured with a digital device (SECA,769-Turkey). 

Heart rate and blood lactate. HR and blood [La-] were measured three times in the study, prior to the WAnT, at the 3rd 

minute after the WAnT, and the 1st minute after the recovery protocol. During the study, the HR of the subject was 

followed with a telemetric HR monitor (Polar S810i-Finland). [La-] was determined from fingerstick blood samples 

(EKF Lactate Scout Analyzer-USA). Blood samples were taken from the ring finger of the subject. 

2.3 The Wingate Anaerobic Test 

The WAnT test was used to trigger muscular fatigue and stimulate [La-] production. None of our subjects were 

accustomed to competing in high-intensity activities which continued for 30 seconds (non-intermittent). Therefore, we 

hypothesized that the WAnT might trigger muscular fatigue. The WAnT began with a 5-minute warm-up period with 

light cycling resistance and 5 seconds of sprint cycling at the end of every consecutive minute (Atanasov et al., 2015). 

After a 2-minute rest period, the subject pedaled as fast as possible on a cycle ergometer (Monark Ergometer, 874 

E-Sweden) set at a resistance of 0.075 kp.kg-1 body mass (BM) (Finsterer, 2012; Ramírez et al., 2016). Strong verbal 

encouragements were provided equally to all subjects during each WAnT. At the end of the WAnT, MP and R-AP were 

recorded by the computer software of the Monark Ergometer. 

2.4 Rating of Perceived Exertion (RPE) 

The RPE from the WAnT was assessed by the Borg scale (scale ranging from “no exertion at all” (6 points) to “maximal 

effort” (20 points) (Borg et al., 1985). 

2.5 Passive Recovery (PR) 

Subjects quietly laid in a supine position for 15 minutes for the PR (Pinar et al., 2012). 

2.6 Active Recovery (AR) 

Subjects cycled for 15 minutes at an intensity of 40% of their own estimated HRmax (Warren et al., 2015). The target HR 

for AR was determined by the Karvonen formula (Hansen et al., 2012). During cycling, the subject was verbally 

encouraged to keep his/her own target HR and HR was followed on a telemetric HR monitor. 

2.7 Self-Myofascial Release Exercise With Foam Roller (SMR) 

The subject rolled a grid foam roller cylinder (height: 13 inches, diameter: 5.5 inches; Trigger Point-USA) from the top 

of the selected muscle to the bottom and then returned to the starting position (Healey et al., 204). Rolling cadence was 
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set as 50 beats per minute (bpm) with an online metronome (Pearcey et al., 2015). SMR exercises were applied to each 

side of the hamstrings, quadriceps, hip, iliotibial band, gastrocnemius, and tibialis anterior as 3 × 30 seconds with a 

10-second inter-set passive rest. The subject was allowed a 30-second rest between exercises. Because there is no 

consensus on how much pressure is needed during SMR, we encouraged our subjects to apply as much pressure as they 

could during SMR. 

2.8 Total Quality of Recovery 

After each recovery intervention, the subject evaluated the recovery quality of their own recovery by the TQR scale 

(scale ranging from “very poor recovery” (6 points) to “very good recovery” (20 points) (Pinar et al., 2012). 

3. Results 

3.1 Statistics and Data Analysis 

IBM® SPSS® Statistics for Windows version 23 software (IBM® Corp., 2016, Armonk, NY) was used for the data 

analysis. Normal distribution of residuals of related data was tested using the Shapiro-Wilk test. The effectiveness of 

each recovery intervention for 15 minutes was assessed using one-factor repeated measures analysis of variance with 

the post hoc Bonferroni method for pairwise comparisons for significant results. Mauchly’s Sphericity test was used to 

check for sphericity assumption. When the normality condition was not provided, the Friedman Test was used for 

variance analysis and the Wilcoxon signed-rank test was performed for paired comparisons. Since factorial ANOVA 

assumptions were met only for [La-] variable, 3 × 2 two way repeated measures ANOVA test was performed just on the 

[La-] variable to reveal possible interaction effect between factors (Intervention × Time). Therefore, differences in other 

variables between interventions were examined using Wilcoxon signed rank test after a significant Friedman test result. 

The statistical significance level was set at p<0.05 for all analyses. 

The results of the Friedman test showed that there was no statistically significant difference in [La-] and HR values 

obtained before the WAnT test (p=0.368, p=0.691, respectively) and rigth after the WAnT test (0.264, p=0.629) 

According to this result, it can be said that evaluated fatigue levels of participants were similar when they came to the 

laboratory and they were affected similarly by exhaustive effect generated up by WAnT test before the recovery 

intervention (see Table 2). R-AP values obtained from the WAnT tests performed in order to create muscular fatigue 

were not found to be statistically different from each other (see Table 2). In this case, it was concluded that the training 

loads made up of the WAnT tests were at similar levels. 

However, the RPE values obtained right after the WAnT tests were statistically significantly different between SMR and 

other recovery interventions and the maximum statistical difference was observed in between the RPE values after the 

WAnT test which was performed before the SMR and PR interventions (p<0.001). Therefore, it was determined that the 

WAnT tests performed in this study were perceived at different exertional levels by the participants. Mean percentage 

change and pairwise comparison values related to the test are shown in Table 3. It was determined that the three 

different 15-minute recovery methods have a statistically significant effect on perceived recovery related to the TQR 

score; the biggest statistically significant effect in pairwise comparison was found between the SMR and PR methods 

(p<0.01) (Table 3). 

Table 2. Statistical values of R-AP, baseline of La and HR, TQR and RPE related to different intervention days 

 Recovery Intervention Day    

 PR AR SMR F or χ2 p ηp² 

R-AP (W∙kg−1) 7.06 ± 0.69 7.14 ± 0.73 6.96 ± 0.48 1.59 (F) 0.215 0.071 

Baseline [La-] (mM/L) 1.45 [0.98–1.70] 1.40 [1.20–1.85] 1.50 [1.40–1.85] 2.00 (χ2) 0.368 - 

Baseline HR (bpm) 68.5 [59.5–82.5] 73.0 [67.3–80.3] 69.0 [62.8–76.5] 0.74 (χ2) 0.691 - 

[La-] right after WAnT (mM/L) 10.5 ± 2.3 11.3 ± 2.5 10.5 ± 2.5 1.37 (F) 0.264 0.061 

HR right after WAnT (bpm) 109 [80–128] 110 [77–136] 110 [73–124 ] 0.93 (χ2) 0.629 - 

TQR 10.0 [9.0–12.0] 13.0 [13.0–14.0] 15.0 [15.0–17.0] 21.2 (χ2) <0.001* - 

RPE 13.0 [14.0–15.0] 13.8 [15.0–15.5] 15.0 [17.0–18.0] 32.0 (χ2) <0.001* - 

Descriptive statistics are reported as either mean ± standard deviation or median [25 percentile – 75 percentile]; PR: 

passive recovery; AR: active recovery; SMR: self-myofascial release; F: F value in ANOVA; χ2: chi-square, ηp²: partial 

eta square, R-AP: relative average power; W: watt; [La-]: blood lactate; HR: heart rate; bpm: beat per minute; TQR: 

total quality recovery; RPE: rating of perceived exertion. 

*p < 0.05  
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Table 3. Comparison of TQR and RPE scores 

 
Pairwise 

Comparison 
∆ p Z ES 

RPE 

 

PR−AR – 1.00 [– 2.00 - – 0.25] 0.033* −2.13 0.32 

PR−SMR – 3.00 [– 4.00 - – 1.75] <0.001* −3.94 0.59 

AR−SMR – 2.00 [– 3.00 - – 1.75] <0.001* −3.96 0.60 

TQR 

PR−AR – 3.00 [– 4.00 - – 1.00] <0.001* −3.77 0.57 

PR−SMR – 6.00 [– 7.00 - – 3.00] <0.001* −3.83 0.58 

AR−SMR – 3.00 [– 4.00 - – 1.75] <0.001* −3.74 0.56 

Descriptive statistics are reported as median [25 percentile – 75 percentile]; PR: passive recovery; AR: active recovery; 

SMR: self-myofascial release; RPE: rating of perceived exertion; TQR: total quality of recovery; Δ: difference; ES: 

effect size for Wilcoxon signed rank test (r; 0.1 = small, 0.3 = medium, 0.5 = large effect size); Z: Z value in Wilcoxon 

signed rank test 

*p < 0.05 

Two way repeated measures ANOVA results revealed that there was a significant interaction (F[2, 42] = 13.3, p < 0.001, 

ηp² = 0.387) between RI and Time indicating that change patterns in [La-] over 15 minutes were different between RIs. 

Also significant main effects were found for both RI (F[2, 42] = 6.43, p = 0.004, ηp² = 0.234) and Time (F[1, 21] = 

263.2, p < 0.001, ηp² = 0.926). Lactate reductions (∆) were significantly greater after AR (p < 0.001) and SMR (p < 

0.001) interventions when compared to PR (Table 4). However, no significant difference were found in lactate 

reductions between AR and SMR (p = 1.00). According to this result, it was found that SMR and AR are more effective 

than PR to cope with fatigue related to [La-] caused by the WAnT but SMR and AR were not superior to one another. 

Friedman test results showed that there was no significant difference in HR changes between recovery interventions 

(p=0.185). But it can be said that the biggest value obtained from SMR intervention (see) Table 5). 

Table 4. Pairwise comparison of [la-] values between different recovery interventions 

  RM ANOVA for %∆  Pairwise Comparison 

RI Time 
[La-] (mM/L) 

Mean ± SD 

%∆  

Mean ± SD 
F p ηp²  p ES 

PR 
Post-WAnT 11.0 ± 2.5 

−27.7 ± 17.8 

28.3 <0.001 0.574 

∆PR−∆AR: <0.001 3.60 
Post-RI 7.9 ± 2.4 

AR 
Post-WAnT 11.3 ± 2.5 

−52.5 ± 14.9 ∆PR−∆SMR: <0.001 2.41 
Post-RI 5.3 ± 1.8 

SMR 
Post-WAnT 10.5 ± 2.0 

−51.1 ± 11.3 ∆AR−∆SMR: 1.00 0.20 
Post-RI 5.1 ± 1.6 

PR: passive recovery; AR: active recovery; SMR: self-myofascial release; RI: recovery intervention; WAnT: Wingate 

anaerobic test; [La-]: blood lactate; %Δ: percentage change; RM: Repeated Measures; F: F value in ANOVA; ηp²: partial 

eta square; ES: effect size (Cohen d; 0.2 = small, 0.5 = medium, 0.8 = large effect size) 

*p < 0.05 
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Table 5. HR changes between different recovery interventions 

  Friedman Test for %∆ 

RI Time HR (bpm) %∆ χ2 p 

PR 
Post-WAnT 108.5 [98.0 – 119.3] 

−9.0 [−14.9 - −3.9] 

3.38 0.185 

Post-RI 97.5 [84.0 – 105.3] 

AR 
Post-WAnT 109.5 [100.8 – 125.3] 

−12.5 [−17.0 - −4.3] 
Post-RI 99.0 [84.0 – 110.0] 

SMR 
Post-WAnT 110.0 [99.3 – 115.0] 

−17.8 [−20.6 - −10.8] 
Post-RI 90.5 [86.3 – 96.0] 

Descriptive statistics are reported as median [25 percentile – 75 percentile]; RI: recovery intervention; PR: passive 

recovery; AR: active recovery; SMR: self-myofascial release; HR: heart rate; bpm: beat per minute; %Δ: percentage 

change; χ2: chi-squared test 

*p < 0.05 

4. Discussion 

This study primarily aimed to investigate if SMR might be an alternative to AR for removal of blood [La-], which is an 

accepted physiological indicator for recovery, and getting a higher TQR score, which is an accepted psychological 

indicator of recovery. The results from the present study indicated that: a) both AR and SMR were more effective than 

PR in terms of removal of [La-] and obtaining a higher TQR score; b) however, SMR and AR were not superior to one 

another in terms of removal of [La-]; c) moreover, a higher TQR score was observed with SMR when compared to AR 

and PR. In view of these results, our first hypothesis was verified; however, the second hypothesis was only partially 

verified, since SMR was not superior to AR in removal of [La-]. 

Nédélec et al. (2013) reported that 81% of the French Professional soccer team performed AR immediately after the 

match and/or on the following days. Numerous researchers argued that AR is more effective than PR in removal of [La-] 

and decreased muscle soreness (Corder et al., 2000; Hinzpeter et al., 2014; Menzies et al., 2010; Mika et al., 2016; Ali et 

al., 2012; Dorado et al., 2004; Sairyo et al., 2003; Bogdanis et al., 1996;). The positive effects of AR associated with 

blood flow to recovering muscle are from phosphocreatine (PCr) resynthesis and pH recovery (Quistorff et al., 1993). It 

has been well known that adequate blood flow to the recovering muscle will increase oxygen delivery and, therefore, 

enhance PCr resynthesis (Sahlin et al., 1979), while at the same time [La-] and H+ will be removed faster due to the 

greater [La-] and H+ gradients between the muscle and blood (Bogdanis et al., 1996). An increased muscle [La-] and H+ 

removal has been shown to result in a faster recovery of muscle performance (Renaud, 1989). 

On the other hand, a considerable number of researchers proposed that AR was not superior to PR for recovery or that 

PR is more effective than AR in recovery, depending on [La-] removal (Andersson et al., 2010; Dupont et al., 2007; 

Toubekis et al., 2006; Dupont et al., 2004; Fairchild et al., 2003). Choui et al. (1994) suggested that PR following intense 

exercise results in a greater amount of muscle glycogen resynthesis than AR over the same duration. Interestingly, 

Fairchild et al. (2003) reported that AR impairs glycogen repletion in skeletal muscle due to an unfavorable hormonal 

environment, such as higher plasma catecholamines and lower insulin levels. The positive effects of PR on performance 

were attributed to a slower decline in the oxyhemoglobin, suggesting that PR allows higher muscular reoxygenation 

than AR and, therefore a higher PCr resynthesis (Dupont et al., 2004). In the presence of equivocal results, the question 

arises as to which recovery is more effective in removal of [La-]. The study by Dupont et al. (2007) revealed that the 

effect of the recovery type on performance might be linked to the exercise intensity performance criteria, recovery 

duration, and intensity of the recovery. 

Regarding the effectiveness of SMR on recovery, several studies reported that SMR has an effect on recovery 

depending on decreased muscle soreness and increased pressure-pain threshold score following delayed-onset muscle 

soreness (Pearcey et al., 2015; Casanova et al., 2018). However, D’Amico and Gillis (2017) reported that SMR has no 

effect on the perception of muscle soreness score (by a Pain Test FPN 100 Algometer), but affects recovery of agility 

performance following exercise-induced muscle damage. 

SMR is believed to have effects similar to massage according to the American Massage Therapy Association. Although 

the main mechanism is not known for recovery from muscular fatigue after SMR, it is generally attributed to decreased 

edema, enhanced blood [La-] removal, and enhanced tissue healing, which are mainly due to the increase in muscular 

blood flow (Paolini, 2009). According to Pearcey et al. (2015) increased blood flow hinders the margination of 

neutrophils and reduces prostaglandin production, subsequently decreasing inflammation. 

We could not find any studies other than the studies by D’amico and Paolone (2017) and Cè et al. (2013) which 

compared the effects of SMR and other recovery methods on recovery via [La-] removal. In contrast to our study, 

D’amico and Paolone (2017) reported that SMR had no effect on the removal of [La-]; this study also argued that light 
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exercise was a means of AR for minimizing fatigue-induced decrements in performance during successive exercise 

bouts. Cè et al. (2013) also reported that neither massage (deep and superficial massage) nor passive stretching were 

effective alternatives to AR in accelerating [La-] kinetics after a fatiguing exercise. 

Okamoto et al. (2014) reported that SMR using a foam roller increases plasma nitric oxide concentration (NOC) and 

decreases arterial stiffness in healthy subjects aged 19.9 ± 0.3 years. We concluded that recovery from muscle fatigue 

may be attributed to increasing NOC, which is a known vasoactive substance. However, Casanova et al. (2018) argued 

that foam roller massage (target muscle gastrocnemius; 6 × 45 seconds with a 20-second rest) did not change the 

muscular oxygenation in young subjects’ responses 48 hours after exercise-induced muscle damage. 

Regarding TQR, previous studies have demonstrated strong inverse associations between TQR and biomarkers of 

muscle damage, such as creatine kinase (Osiecki et al., 2015). According to Osiecki et al. (2015) TQR may be a good 

predictor of the recovery state in team sports athletes. A study published by Rey et al. (2017) reported that post-training 

foam rolling exercises may help in restoring muscle soreness, players’ perception of TQR, and agility on the following 

day in professional soccer players.  

There were two main limitations in this study. First, the results of the study were limited to recovery from [La-] 

following a WAnT. We could not apply several consecutive WAnT with the worry of medical problem which to be 

occurred after high-intensity exercise. Second, our subjects had no experience with using a foam roller. For experienced 

players using a foam roller for recovery, results may differ. 

In conclusion, our study results show that using a foam roller for SMR seems to be as effective as AR as a recovery tool. 

Therefore, we suggest that SMR may be an alternative recovery tool after exercise-induced muscular fatigue. Due to 

contradictory results found in the literature for effects of SMR on recovery, further research is needed to explain this. 
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