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A review of vertical ground heat exchanger sizing tools including an 
inter-model comparison 
 

Abstract  

This paper attemps to fill a gap in the literature on ground heat exchanger sizing tools which are routinely used but have 

not been recently compared against each other. First, a comprehensive review of the governing equations of these tools 

is presented. The tools are then classified  into five levels (𝐿𝐿0 to 𝐿𝐿4) according to their level of complexity from tools 

based on rules-of-thumb (𝐿𝐿0) to those using annual hourly simulations (𝐿𝐿4). Then this study presents a methodology for 

comparing vertical ground heat exchanger sizing tools. After a review of available tests, four test cases are proposed to 

cover the full spectrum of conditions from single boreholes to large bore fields with various annual ground thermal 

imbalances. This is followed by an inter-model comparison of twelve sizing tools including some commercially-

available software programs and various forms of the ASHRAE sizing equation. In one of the tests on a single borehole 

subjected to a one-hour peak load duration, it is shown that the minimum and maximum lengths obtained by the various 

tools are 39.1 m and 59.7 m. Tools that include short-term effects tend to calculate smaller lengths while longer lengths 

are predicted by tools that evaluate effective ground thermal resistances using the cylindrical heat source solution. In 

another test involving a large annual ground imbalance on a 5×5 borehole field, it is shown that results vary from 93.0 

m to 128.9 m among the twelve tools. A group of seven tools, including 𝐿𝐿2, 𝐿𝐿3, and 𝐿𝐿4 tools are in good agreement 

with a minimum of 121.0 m and a maximum of 128.9 m. Two tools have determined lengths that are much lower than 

the rest of the tools (103.9 and 93.0 m). Clearly, these two tools cannot properly account for borehole thermal interaction 

caused by large annual imbalanced loads.  

 

 

Keywords: geothermal energy, sizing tools, vertical ground heat exchangers, inter-model comparison, test cases.  
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1. Introduction 

Ground heat exchanger sizing tools use different calculation procedures to obtain the required bore field length for a 

given set of ground loads. The last serious attempt to compare these design tools is about two decades old. Since then, 

tools have been improved and new ones have been introduced. The goal of this paper is to provide an updated inter-

model comparison of twelve tools. Aside from this end result, this study classifies the various calculation procedures 

into five levels based on their complexity. It also provides a rigorous methodology to compare the various tools and 

proposes test cases for a range of conditions.   

A ground source heat pump (GSHP) system equipped with vertical ground heat exchangers (GHE) is depicted in Figure 

1. This system is composed of a series of boreholes and heat pumps which provide heating and cooling to a building. 

The bore field consists of a number of boreholes, 𝑁𝑁𝑏𝑏, with length 𝐻𝐻, spaced apart by a distance 𝐵𝐵 and buried at a depth 

𝐷𝐷. The overall length of the bore field, 𝐿𝐿, is thus equal to 𝑁𝑁𝑏𝑏× 𝐻𝐻. Boreholes have a radius 𝑟𝑟𝑏𝑏 and typically contain one 

or two U-tubes with a thermal conductivity, 𝑘𝑘𝑝𝑝. In the case of Figure 1, two pipes (one U-tube) with internal and external 

diameters, 𝑟𝑟𝑝𝑝,𝑖𝑖 and 𝑟𝑟𝑝𝑝,𝑜𝑜 , are used. They are separated by a distance 2𝑑𝑑𝑝𝑝. The borehole is usually filled with grout with a 

thermal conductivity, 𝑘𝑘𝑔𝑔𝑟𝑟 , and a thermal capacity, 𝑀𝑀𝑀𝑀𝑝𝑝𝑔𝑔𝑔𝑔. The ground is characterized by its thermal conductivity, 𝑘𝑘𝑔𝑔, 

thermal diffusivity, 𝛼𝛼𝑔𝑔, and undisturbed temperature, 𝑇𝑇𝑔𝑔.  

 

Figure 1: Schematic representation of a ground-source heat pump system (left) and a borehole cross-section with one 

U-tube (right) 

Boreholes are typically connected in parallel. The fluid inlet temperatures and flow rates are usually assumed to be 

identical for all boreholes. Assuming negligible heat gains/losses in the piping between the boreholes and the heat 
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pumps, the bore field outlet temperature is equal to the heat pump inlet temperature, 𝑇𝑇𝑖𝑖𝑛𝑛,ℎ𝑝𝑝, and the heat pump outlet 

temperature, 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜,ℎ𝑝𝑝, is equal to the bore field inlet temperature. The flow rate in each borehole is equal to �̇�𝑚𝑓𝑓/𝑁𝑁𝑏𝑏, where 

�̇�𝑚𝑓𝑓 is the total bore field flow rate. For commercially available heat pumps, 𝑇𝑇𝑖𝑖𝑛𝑛,ℎ𝑝𝑝 can be as low as −7℃ in heating and 

as high as 45℃ in cooling. However, designers most often plan their system so that 𝑇𝑇𝑖𝑖𝑛𝑛,ℎ𝑝𝑝 ≥ 0℃ in heating and 𝑇𝑇𝑖𝑖𝑛𝑛,ℎ𝑝𝑝 ≤

35℃ in cooling. These two limiting temperatures will be referred to 𝑇𝑇𝐿𝐿 and 𝑇𝑇𝐻𝐻, respectively. Unlike HVAC equipment 

which are typically sized only for peak load conditions, bore field sizing has to account for the thermal history of heat 

injection/collection into the ground and the period of the year when the system starts to operate [1]. 

A number of input parameters, listed in Table 1, need to be determined prior to using sizing tools. Building or ground 

loads are generally determined using separate tools. Inaccurate loads will have an impact on the accuracy of 𝐿𝐿. For 

instance, Bernier [2] has shown, for a particular case, that an uncertainty of ± 10% on the peak, monthly and annual 

ground loads (𝑞𝑞ℎ, 𝑞𝑞𝑚𝑚, 𝑞𝑞𝑦𝑦 in equation 4 – to be described later) translates into a cumulative uncertainty of ± 8.9% on 𝐿𝐿. 

The duration of peak loads has also an influence on 𝐿𝐿: typical values range from 4 to 6 hours. The next required input 

parameters are the target heat pump inlet temperature limits, 𝑇𝑇𝐻𝐻 and 𝑇𝑇𝐿𝐿, that should not be exceeded during the expected 

lifetime of the system. The user has also to decide on the bore field geometry which is often dictated by the available 

land area. Cimmino and Bernier [3] have shown that borehole placement within a given rectangular land area is not 

crucial in terms of total borehole length. An accurate value of the ground thermal conductivity is important to properly 

size a bore field while the ground thermal diffusivity is less important. Bernier [2] has shown that a ± 10% uncertainty 

on 𝑘𝑘𝑔𝑔 and 𝛼𝛼𝑔𝑔 lead, respectively, to uncertainties of ± 7.1%, and ± 1.0% on the bore field length for a particular case. An 

accurate value for the ground temperature is also important and when it’s value is close to 𝑇𝑇𝐻𝐻 or 𝑇𝑇𝐿𝐿, longer boreholes 

are required. The borehole characteristics need to be carefully selected to optimize the borehole thermal resistance and 

the overall length. Some sizing tools account for borehole thermal capacity and in these cases, the thermal capacities of 

the pipes, the fluid and the grout are required. If building loads are used as inputs in sizing tools, heat pump coefficient 

of performances (𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶) in heating and cooling are required to calculate ground loads. The simpler methods will only 

require 𝑀𝑀𝐶𝐶𝐶𝐶𝐻𝐻 and 𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶 at 𝑇𝑇𝐿𝐿 and 𝑇𝑇𝐻𝐻 while more elaborate tools will evaluate 𝑀𝑀𝐶𝐶𝐶𝐶𝐻𝐻 and 𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶 as a function of 𝑇𝑇𝑖𝑖𝑛𝑛,ℎ𝑝𝑝. 

The selection of a flow rate has an influence on borehole heat transfer and on the ∆𝑇𝑇 across the borehole. A high flow 

rate reduces the borehole thermal resistance and the ∆𝑇𝑇 but increases pumping power. Low flow rates may lead to 
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laminar flows in the borehole pipes which should be avoided at peak ground load conditions. For sizing purposes, the 

flow rate is typically around 0.05-1.0 L/s per kW of peak load. The required borehole length is not necessarily obtained 

at the end of the design period (typically 10 to 20 years). Indeed, Monzó et al. [1] have shown that the maximum length 

might be required during the first year of operation depending on the starting month of operation. 

 

Table 1: Required input parameters for most sizing tools 

Building or ground loads and peak load duration 
Target temperature limits for heat pumps (𝑇𝑇𝐿𝐿 and 𝑇𝑇𝐻𝐻) 
Bore field geometry (number of boreholes and location) 
Ground thermal properties (𝑘𝑘𝑔𝑔 𝛼𝛼𝑔𝑔 and 𝑇𝑇𝑔𝑔) 
Borehole characteristics (geometry, thermal properties) 
Heat pump characteristics (𝑀𝑀𝐶𝐶𝐶𝐶𝐻𝐻 and 𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶) 
Flow rate  
Design period 
Starting month of operation 

 

Sizing tools take different paths to obtain 𝐿𝐿 with various levels of complexity and accuracy. Spitler and Bernier [4] have 

identified five such levels (𝐿𝐿0 to 𝐿𝐿4). Figure 2 presents typical calculation sequences associated with tools in the 𝐿𝐿1 to 

𝐿𝐿4 categories. These levels are described in the next section including a presentation of some available sizing tools 

within each level. This is followed by a literature review on comparisons of bore field sizing tools. Then, a series of test 

cases are proposed. Finally, these test cases are used in an inter-model comparison of several existing tools.  
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Figure 2: Typical steps required to size a bore field for a) 𝐿𝐿1 and 𝐿𝐿2 methods, b) 𝐿𝐿3 and 𝐿𝐿4 methods with building 
loads as input, and c) 𝐿𝐿3 and 𝐿𝐿4 methods with ground loads as inputs.  
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2. Categories of sizing tools 
2.1. 𝐿𝐿0 – Rules-of-thumb 

Level 𝐿𝐿0 tools are simple rules-of-thumb. They typically relate the borehole length to the building peak heating or 

cooling loads or installed capacity, typically expressed as W/m or ft/ton. Spitler and Bernier [4] mention that 𝐿𝐿0 tools 

are mostly used for small systems in heating only applications. They are bound to give erroneous results in large systems 

where borehole-to-borehole thermal interaction, caused by ground thermal imbalance and/or small borehole spacing, is 

large. Also, they do not consider the borehole thermal resistance. They should only be used as a reality check for more 

advanced sizing tools. 

Excluding 𝐿𝐿0 tools, most sizing methods are derived from Equation 1: 

𝐿𝐿 =  
∑ 𝑞𝑞𝑖𝑖𝑅𝑅𝑖𝑖𝑁𝑁
𝑖𝑖=1 + 𝑞𝑞ℎ𝑅𝑅𝑏𝑏
𝑇𝑇𝑚𝑚 − (𝑇𝑇𝑔𝑔 + 𝑇𝑇𝑝𝑝)

 (1) 

where 𝑞𝑞𝑖𝑖 is a ground thermal pulse associated with a certain time period, 𝑅𝑅𝑖𝑖 is the corresponding ground thermal response 

which takes the form of an effective ground thermal resistance, 𝑞𝑞ℎ is the peak ground thermal pulse, 𝑅𝑅𝑏𝑏 is the borehole 

thermal resistance, 𝑇𝑇𝑚𝑚 is the mean borehole fluid temperature (=(𝑇𝑇𝑖𝑖𝑛𝑛𝐻𝐻𝐶𝐶 + 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝐻𝐻𝐶𝐶)/2)), and 𝑇𝑇𝑝𝑝 is a temperature penalty 

to account for borehole-to-borehole thermal interaction. In some methods, this thermal interaction is included in 

𝑅𝑅𝑖𝑖 values and for such methods, 𝑇𝑇𝑝𝑝 = 0. Equation 1 can be used for heating or cooling applications with appropriate 

signs for ground loads (negative when heat is extracted from the ground). 

2.2. L1 – Two pulses –peak heating and cooling loads 

𝐿𝐿1 methods use two heat pulses which are either the maximum heating and cooling heat pump capacities or the building 

peak heating and cooling loads. They are somewhat outdated but it is interesting to present them from an historical 

perspective. 𝐿𝐿1 methods have been described by Bose et al. [5], OSU [6], and Kavanaugh [7]. With reference to Figure 

2a, a 𝐿𝐿1 tool would typically go through the six step process starting with the peak building loads or in some cases with 

the installed heat pump capacity. In step 2, values of 𝑀𝑀𝐶𝐶𝐶𝐶𝐻𝐻 and 𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶  are determined based on values of 𝑇𝑇𝐿𝐿 and 𝑇𝑇𝐻𝐻 and 

used in the determination of the ground loads in step 3. Heat pump compressor power is either added or subtracted from 

the building to obtain ground loads. Thus, the heat pump 𝑀𝑀𝐶𝐶𝐶𝐶, which is the ratio of the capacity (heating or cooling) 

over compressor power, has an impact on bore field sizing. For example, the overall length of a bore field will decrease 

with an increase of heat pump 𝑀𝑀𝐶𝐶𝐶𝐶 when a bore field is sized in cooling. Conversely, when a bore field is sized for 
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heating conditions, an increase in the 𝑀𝑀𝐶𝐶𝐶𝐶 value will lead to an increase in the bore field length. Rudimentary values, 

by today’s standards, of the borehole thermal resistance and ground thermal response factors are typically evaluated in 

steps 4 and 6. Finally, 𝐿𝐿 is obtained directly in step 7 and iterations on 𝐿𝐿 are generaly not required. 𝐿𝐿1 tools are perhaps 

best explained by examining the so-called IGSHPA method which is thoroughly described by Bose et al. [5]. This 

method follows the sequence presented in Figure 2a except that building loads are replaced by heat pump capacities in 

step 1. In this method, the lengths in heating (𝐿𝐿𝐻𝐻) and cooling (𝐿𝐿𝑀𝑀) are determined using Equation 2 with the longest of 

the two giving the total required borehole length, 𝐿𝐿. As shown in Equation 2, the heat pump capacities in heating and 

cooling, 𝑀𝑀𝐶𝐶𝑝𝑝𝐻𝐻 and 𝑀𝑀𝐶𝐶𝑝𝑝𝐶𝐶, are multiplied by a factor involving 𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶 in heating and cooling (𝑀𝑀𝐶𝐶𝐶𝐶𝐻𝐻 and 𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶) to obtain 

peak ground loads in heating and cooling, respectively. These loads are then multiplied by the sum of the pipe (borehole) 

resistance, 𝑅𝑅𝑝𝑝, and of the ground thermal response (ground thermal resistance), 𝑅𝑅𝐶𝐶. This last value is multiplied by the 

runtime fraction, (𝑅𝑅𝑜𝑜𝑛𝑛𝑓𝑓,𝐻𝐻 or 𝑅𝑅𝑜𝑜𝑛𝑛𝑓𝑓,𝑀𝑀). The denominator of Equation 2.c is the difference between 𝑇𝑇𝑔𝑔 and 𝑇𝑇𝐿𝐿 in heating 

or between 𝑇𝑇𝐻𝐻 and 𝑇𝑇𝑔𝑔 in cooling.  

𝐿𝐿𝐻𝐻 =
𝑀𝑀𝐶𝐶𝑝𝑝𝐻𝐻

(𝑀𝑀𝐶𝐶𝐶𝐶𝐻𝐻 − 1)
𝑀𝑀𝐶𝐶𝐶𝐶𝐻𝐻

�𝑅𝑅𝑝𝑝 + 𝑅𝑅𝐶𝐶𝑅𝑅𝑜𝑜𝑛𝑛𝑓𝑓,𝐻𝐻�

�𝑇𝑇𝑔𝑔 − 𝑇𝑇𝐿𝐿�
 (2.a) 

𝐿𝐿𝑀𝑀 =
𝑀𝑀𝐶𝐶𝑝𝑝𝑀𝑀

(𝑀𝑀𝐶𝐶𝐶𝐶𝑀𝑀 + 1)
𝑀𝑀𝐶𝐶𝐶𝐶𝑀𝑀

�𝑅𝑅𝑝𝑝 + 𝑅𝑅𝐶𝐶𝑅𝑅𝑜𝑜𝑛𝑛𝑓𝑓,𝑀𝑀�

𝑀𝑀𝐶𝐶𝐶𝐶𝑀𝑀�𝑇𝑇𝐻𝐻 − 𝑇𝑇𝑔𝑔�
 

(2.b) 

𝐿𝐿 = max(𝐿𝐿𝐻𝐻, 𝐿𝐿𝐶𝐶) (2.c) 

The ground thermal resistance, 𝑅𝑅𝐶𝐶, is determined using the infinite line source solution. Its value depends on the time 

period over which the ground load is applied. Also, spatial superposition can be used to account for borehole thermal 

interaction as discussed by Bose et al. [5]. The pipe resistance, 𝑅𝑅𝑝𝑝,  is the ancestor of the modern borehole thermal 

resistance. For a U-tube geometry, it is approximated using an equivalent diameter. 

Equation 2 is applied for winter and summer design periods. 𝑀𝑀𝐶𝐶𝑝𝑝𝐻𝐻 and 𝑀𝑀𝐶𝐶𝐶𝐶𝐻𝐻  are evaluated at 𝑇𝑇𝐿𝐿 while 𝑀𝑀𝐶𝐶𝑝𝑝𝐶𝐶 and 𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶 

are evaluated at 𝑇𝑇𝐻𝐻. Accurate values of 𝐿𝐿 are largely dependent on the selection of the design period duration, which 

influences 𝑅𝑅𝐶𝐶, and on the estimation of the run time fraction for the heat pumps during that period, (𝑅𝑅𝑜𝑜𝑛𝑛𝑓𝑓,𝐻𝐻 or 𝑅𝑅𝑜𝑜𝑛𝑛𝑓𝑓,𝑀𝑀). 

Typically, the extent of the design period is of the order of one to three months. 



9 
 

The ground thermal resistances evaluated by this approach are not precise for long-term estimations since the one-

dimensional (radial) infinite line source solution does not account for increased heat transfer at the borehole extremities 

which can be important after several months of operation. These simplifications, as explained by Cane and Forgas [8] 

and Caneta [9] lead to borehole oversizing. 

2.3. L2 – Three pulse methods 

𝐿𝐿2 methods use temporal superposition of three successive load pulses to size bore fields. These pulses are: i) peak 

ground load; ii) average monthly ground load during the month in which the peak load occurs; and iii) the yearly average 

ground load. With reference to Equation 1, the summation term would then involve three terms. Each of these pulses is 

applied over a certain time period which typically corresponds to: 4 to 6 hours for the peak load; 30 days for the monthly 

load; and 10 years for the yearly load. Thus, the lengths 𝐿𝐿 determined with 𝐿𝐿2 methods are the lengths required to reach 

the temperature limits (𝑇𝑇𝐿𝐿 or 𝑇𝑇𝐻𝐻) when the bore field is subjected to 10 years of the yearly average ground load followed 

by 30 days of the average monthly ground load and finally 4 o 6 hours of the peak ground load.  

With reference to Figure 2a, 𝐿𝐿2 methods start either at step 1 or 3. Step 1 involves the determination of three building 

loads associated with the three thermal pulses, i.e. the peak building loads in heating and cooling and their duration, the 

monthly averaged building loads in heating and cooling during the peak month and the total annual heating/cooling 

loads. Then, peak ground loads are obtained in step 3 using the 𝑀𝑀𝐶𝐶𝐶𝐶𝐻𝐻 and 𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶 values determined in step 2. Monthly 

ground loads are evaluated as a fraction (often called the Part-Load Factor – 𝐶𝐶𝐿𝐿𝑃𝑃) of the peak loads and the annual 

average ground load can be calculated using the concept of equivalent full load hours using the peak loads and 𝑀𝑀𝐶𝐶𝐶𝐶𝐻𝐻 

and 𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶 determined in step 2. Then, three ground thermal response factors (or ground thermal resistances) and 𝑇𝑇𝑝𝑝 are 

evaluated in step 6. As shown below in the description of some 𝐿𝐿2 tools, these values are determined using either the 

infinite cylindrical heat source analytical solution or g-functions. If the ground thermal resistances (and 𝑇𝑇𝑝𝑝) depend on 

the borehole length then an iterative process is required and ground thermal response factors are re-evaluated until 

convergence as indicated in Figure 2a. In some methods, the borehole thermal resistance depends also on 𝐿𝐿, in which 

case the calculations are reinitiated in step 4 as indicated by the dotted line in Figure 2a. Three 𝐿𝐿2 methods (and their 

variations) will now be reviewed.  
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ASHRAE sizing equation 

Equation 3 will be referred here as the ASHRAE sizing equation. This equation first appeared in the 1995 ASHRAE 

Handbook-Applications [10] and in a paper by Kavanaugh [11] and is still used in the latest version [12] of the ASHRAE 

Handbook-Applications. Earlier versions of these equations were presented by Kavanaugh [7, 13]. Equation 3 can either 

be used for heating or cooling applications: 𝑇𝑇𝑖𝑖𝑛𝑛,ℎ𝑝𝑝 is replaced by 𝑇𝑇𝐿𝐿 or 𝑇𝑇𝐻𝐻, the design temperature limits in heating and 

cooling, respectively, and 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜,ℎ𝑝𝑝 is determined from an energy balance on the bore field. 

𝐿𝐿 =
𝑞𝑞𝑦𝑦𝑅𝑅𝑦𝑦 + (𝑞𝑞ℎ −𝑊𝑊)(𝑅𝑅𝑏𝑏 + 𝐶𝐶𝐿𝐿𝑃𝑃𝑚𝑚𝑅𝑅𝑚𝑚 + 𝑅𝑅ℎ𝑃𝑃𝑠𝑠𝑠𝑠)

𝑇𝑇𝑔𝑔 −
�𝑇𝑇𝑖𝑖𝑖𝑖,ℎ𝑝𝑝 + 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜,ℎ𝑝𝑝�

2 − 𝑇𝑇𝑝𝑝

 (3) 

In Equation 3, the annual, monthly and peak load pulses are given by: i) 𝑞𝑞𝑦𝑦, the net annual average heat transfer to the 

ground, ii) �𝑞𝑞ℎ − 𝑊𝑊�𝐶𝐶𝐿𝐿𝑃𝑃𝑚𝑚 , the monthly average heat transfer to the ground, and iii) �𝑞𝑞ℎ − 𝑊𝑊�, the peak heat transfer 

rate to the ground. Note that 𝑞𝑞𝑦𝑦 is a ground load and that 𝑞𝑞ℎ is a building load which is converted into a ground load by 

subtracting the compressor power at peak load, 𝑊𝑊. 𝐶𝐶𝐿𝐿𝑃𝑃𝑚𝑚 is the part load factor during the design month and finally 𝑃𝑃𝐶𝐶𝑠𝑠 

is the short circuit heat loss factor in the borehole. This last value, which is typically very close to 1, is tabulated in the 

ASHRAE handbook [12]. 𝑅𝑅𝑦𝑦, 𝑅𝑅𝑚𝑚 and 𝑅𝑅ℎ are the yearly, monthly and hourly effective ground thermal resistances which 

are evaluated using the infinite cylindrical source (ICS) analytical solution. With the use of the ICS, the ASHRAE 

equation is relatively simple to calculate as the ground thermal resistances do not depend on the heat exchanger length 

and so the result can be determined directly without iterations. However, the use of the ICS implies that borehole-to-

borehole thermal interaction is not accounted for. The equation thus needs a correction factor, referred to as a temperature 

penalty, 𝑇𝑇𝑝𝑝. 

Values of 𝑇𝑇𝑝𝑝 are tabulated in the ASHRAE Handbook [12] for a limited number of bore field configurations and annual 

ground thermal imbalances (𝑞𝑞𝑦𝑦). These values are based on a calculation procedure developed by Kavanaugh and 

Rafferty [14] which was recently slightly modified [15] to account for heat transfer from the bottom of the bore field. 

This last method of calculating 𝑇𝑇𝑝𝑝will be used later in the inter-model comparison. With this method, 𝑇𝑇𝑝𝑝 can be regarded 

as the increase/decrease of the temperature in the ground volume occupied by the boreholes caused by the annual ground 
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thermal imbalance. This method of calculating 𝑇𝑇𝑝𝑝 has been criticized by a number of authors (e.g. Bernier et al. [16], 

Fossa [17]) and has been shown to underestimate 𝑇𝑇𝑝𝑝.  

As for the determination of the borehole thermal resistance, 𝑅𝑅𝑏𝑏, the ASHRAE handbook proposes a table of 𝑅𝑅𝑏𝑏 values 

for two (one U-tube) and four pipes (two U-tubes) for three grout conductivities, three fluid flow regimes (laminar, 

transition, and fully turbulent), three U-tubes sizes, and three bore diameters. Various pipe locations within the borehole 

are also considered. Reported values are calculated using a publicly-available spreadsheet program [18]. The ASHRAE 

equation has been implemented in a tool called GCHPcalc [11].  

Modified and modified+ ASHRAE sizing equation 

Bernier [19] suggested to rewrite the ASHRAE sizing equation as follows: 

𝐿𝐿 =
𝑞𝑞𝑦𝑦𝑅𝑅𝑦𝑦 + 𝑞𝑞𝑚𝑚𝑅𝑅𝑚𝑚 + 𝑞𝑞ℎ𝑅𝑅ℎ + 𝑞𝑞ℎ𝑅𝑅𝑏𝑏

𝑇𝑇𝑚𝑚 − �𝑇𝑇𝑔𝑔 + 𝑇𝑇𝑝𝑝�
 (4) 

This will be referred to as the modified ASHRAE sizing equations. In Equation 4,  𝑇𝑇𝑚𝑚= (𝑇𝑇𝑖𝑖𝑛𝑛,ℎ𝑝𝑝+𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜,ℎ𝑝𝑝)/2, 𝑞𝑞𝑚𝑚 is the 

monthly average heat transfer to the ground, and 𝑞𝑞ℎ is the peak ground load, in contrast with 𝑞𝑞ℎ in Equation 3 which is 

the peak building load. There are three other differences between Equations 3 and 4: the 𝑃𝑃𝐶𝐶𝑠𝑠 term has been dropped, the 

borehole thermal resistance is calculated based on the zeroth order expression of the multipole method [20], and 𝑇𝑇𝑝𝑝 is 

obtained using a correlation based on g-functions [16] which accounts for the three dimensional nature of heat transfer 

in a bore field. This value of 𝑇𝑇𝑝𝑝 corrects the borehole temperature obtain with the ICS to account for borehole-to-

borehole thermal interactions. Since g-functions depend on borehole length, an iterative procedure is required as 

discussed earlier in conjunction with Figure 2a.  

Philippe et al. [21] developed a user-friendly spreadsheet for sizing bore fields based on Equation 4 for three fixed pulses 

of 10 years, 30 days, and 6 hours. The spreadsheet can perform up to five iterations which is usually sufficient to obtain 

a converged solution for 𝐿𝐿. However, there are some limitations associated with this tool. First, the correlated equation 

for 𝑇𝑇𝑝𝑝 is limited to rectangular bore fields of less than 144 equally-spaced boreholes. Secondly, it is not possible to 

change the duration of the three heat pulses. Monzó et al. [1] overcame this limitation by implementing a marching 

solution where Equation 4 is applied month after month with the value of 𝑞𝑞𝑦𝑦 replaced by the ground load averages of 
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the proceeding months. Finally, the value of 𝑅𝑅𝑏𝑏 does not account for the possible thermal short-circuit between the 

upward and downward legs in the borehole. An improved version of the original spreadsheet of Philipe et al. [21], refered 

to as the modified+ ASHRAE sizing equation, has been developed. First, the duration of the three pulses are now user-

defined. Secondly, values of 𝑇𝑇𝑝𝑝 are not restricted to rectangular geometries and equally-spaced boreholes. They can be 

evaluated using either the method of Bernier et al. [16] or Fossa’s approach [17] which are summrarized in Equations 5 

and 6.  

 𝑇𝑇𝑝𝑝 =
𝑞𝑞𝑦𝑦

2𝜋𝜋𝑘𝑘𝑔𝑔𝐿𝐿
�𝑔𝑔𝑁𝑁(𝑜𝑜) − 𝑔𝑔1(𝑜𝑜)� (5) 

 𝑇𝑇𝑝𝑝 =
𝑞𝑞𝑦𝑦
𝑘𝑘𝑔𝑔𝐿𝐿

�
𝑔𝑔𝑁𝑁(𝑜𝑜)

2𝜋𝜋
− 𝐺𝐺(𝑜𝑜)� (6) 

 

where 𝑔𝑔𝑁𝑁 and 𝑔𝑔1 are the g-functions for the entire bore field (composed of 𝑁𝑁 boreholes) and for a single borehole, 

respectively; 𝐺𝐺 is the ICS solution for one borehole. Finally, the time 𝑜𝑜 at which 𝑇𝑇𝑝𝑝 is evaluated is not restricted to 10 

years.  

The third improvement included in the modified+ ASHRAE sizing equation is related to the borehole thermal resistance, 

𝑅𝑅𝑏𝑏, which is calculated using the first-order expression of the multipole equation (equation 13 in ref. [20]). Furthermore, 

these 𝑅𝑅𝑏𝑏 values are corrected to account for possible thermal short-circuiting in the borehole. The corrected values are 

usually referred to as an effective borehole thermal resistance, 𝑅𝑅𝑏𝑏∗  which can either be based on a constant heat flux or 

constant temperature boundary condition at the borehole wall (equations 3.67 and 3.68 in ref. [22]). Typically, the 

average of the two 𝑅𝑅𝑏𝑏∗  values is used and this will be the case in the tools used in the inter-model comparison reported 

below. 

ASHRAE’s Alternative method 

Ahmadfard and Bernier [23, 24] suggested a further improvement to the modified ASHRAE sizing equation to eliminate 

the need to evaluate the temperature penalty. The resulting alternative equation is: 

𝐿𝐿 =
𝑞𝑞𝑦𝑦𝑅𝑅𝑔𝑔𝑦𝑦 + 𝑞𝑞𝑚𝑚𝑅𝑅𝑔𝑔𝑚𝑚 + 𝑞𝑞ℎ𝑅𝑅𝑔𝑔ℎ + 𝑞𝑞ℎ𝑅𝑅𝑏𝑏

𝑇𝑇𝑚𝑚 − 𝑇𝑇𝑔𝑔
 (7) 
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This 𝐿𝐿2 method uses g-functions to calculate the three effective ground thermal resistances corresponding to the three 

ground loads. As g-functions account for borehole thermal interactions, the temperature penalty is no longer needed. 

However, an iterative calculation procedure is required as g-functions depend on the borehole length. The method can 

be applied to any bore field configuration as it calculates g-functions dynamically as the solution evolves. Since only 

three g-function values corresponding to the three heat load periods are required the whole g-functions curve does not 

need to be evaluated [23, 24]. Recently, Ahmadfard and Bernier [24] introduced the concept of short-term g-function 

into this equation to account for borehole thermal capacity (fluid, pipe and grout). With this technique, 𝑅𝑅𝑔𝑔ℎ and 𝑅𝑅𝑔𝑔𝑚𝑚 are 

based on short-term g-functions. These values are obtained in a way similar to the one used by GLHEPro with the use 

of an equivalent diameter.  

GHX Design Toolbox (in 𝐿𝐿2 mode)   

In his book, Chiasson [25] provides access to a spreadsheet-based design tool which can size vertical GHE with either 

𝐿𝐿2 or 𝐿𝐿3 approaches. For 𝐿𝐿2 (Figure 2a), hourly peak building loads in heating and cooling as well as their duration are 

provided by the user along with monthly and yearly load factors and a constant borehole thermal resistance. These values 

are then used along with constant values of 𝑀𝑀𝐶𝐶𝐶𝐶𝐻𝐻 and 𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶 to calculate various ground loads: peak loads in heating 

and cooling, average monthly heating and cooling loads during the peak months, and annual load. Then, a g-function 

based approach similar to the one proposed by Ahmadfard and Bernier [23], i.e. Equation 7, is used to obtain 𝐿𝐿. An 

iterative procedure on 𝐿𝐿 is required. It takes the form of a single variable optimization, using the golden section search 

method. The g-functions are calculated using the analytical g-functions obtained by Claesson and Eskilson [26] as the 

base and the Incomplete Bessel Function (i.e. the Leaky Well Function) for evaluating the borehole-to-borehole thermal 

interactions. The borehole locations are user-defined and are not limited to rectangular configurations.   

2.4. L3 -Monthly and peak pulses 

Some of the most popular software tools use 𝐿𝐿3 methods which rely on monthly averaged loads and monthly peak loads. 

The objective of 𝐿𝐿3 methods is to obtain 𝑇𝑇𝑚𝑚 (or 𝑇𝑇𝑖𝑖𝑛𝑛𝐻𝐻𝐶𝐶) for a given bore field length (Equation 8). Since the ground 

thermal response (values of 𝑅𝑅𝑖𝑖) vary with borehole length, an iterative process is required as shown in Figure 2b. 

𝑇𝑇𝑚𝑚 =
𝑇𝑇𝑖𝑖𝑛𝑛𝐻𝐻𝐶𝐶 + 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝐻𝐻𝐶𝐶

2
=  
∑ 𝑞𝑞𝑖𝑖𝑅𝑅𝑖𝑖
𝑁𝑁
𝑖𝑖=1 + 𝑞𝑞ℎ𝑅𝑅𝑏𝑏

𝐿𝐿
+ 𝑇𝑇𝑔𝑔 (8) 
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Typically, Equation 8 would be evaluated month by month for the entire design period. For example, Equation 9 would 

be used to obtain 𝑇𝑇𝑚𝑚,2 after the second month of operation: 

𝑇𝑇𝑚𝑚,2 =
𝑇𝑇𝑖𝑖𝑛𝑛𝐻𝐻𝐶𝐶,2 + 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝐻𝐻𝐶𝐶,2

2
=  

𝑞𝑞𝑚𝑚,1𝑅𝑅𝑚𝑚,1 + 𝑞𝑞𝑚𝑚,2𝑅𝑅𝑚𝑚,2 + 𝑞𝑞ℎ,2𝑅𝑅ℎ,2 + 𝑞𝑞ℎ,2𝑅𝑅𝑏𝑏
𝐿𝐿

+ 𝑇𝑇𝑔𝑔 (9) 

where 𝑞𝑞𝑚𝑚,1 and 𝑞𝑞𝑚𝑚,2 are the average ground loads for the first two months, 𝑞𝑞ℎ,2 is the peak ground load of the second 

month (typically applied at the end of the month), 𝑅𝑅𝑚𝑚,1, 𝑅𝑅𝑚𝑚,2, and 𝑅𝑅ℎ,2 are the ground thermal responses corresponding 

to the duration of 𝑞𝑞𝑚𝑚,1, 𝑞𝑞𝑚𝑚,2, and 𝑞𝑞ℎ,2, respectively.  

In theory, 𝐿𝐿3 methods should be more accurate than level 𝐿𝐿2 methods as they follow more closely the time evolution of 

the loads. The calculation sequence for a typical 𝐿𝐿3 method can be explained using Figures 2b and 2c. Two approaches 

are typically used: one which starts with building loads and the other with ground loads. In the first approach (Figure 

2b), the user typically inputs 48 building loads, i.e. 12 monthly averaged building loads and 12 monthly peak loads for 

both heating and cooling conditions. These values are assumed to repeat each year for the design period of the system. 

It is important for the user to carefully select the duration of the peak loads as this has a relatively important influence 

on the results. The reader is referred to the work of Cullin and Spitler [27] who have formulated a method to determine 

peak loads and their duration using hourly building load profile.  

It should be noted that the calculation process described in this paragraph applies to 𝐿𝐿3 and 𝐿𝐿4 (to be described shortly) 

methods. Calculations start in step 2 with a first estimate of the borehole length. Then, the borehole thermal resistance 

(which in some tools depend on 𝐿𝐿) is evaluated in step 3. Then, 𝑀𝑀𝐶𝐶𝐶𝐶𝐻𝐻 and 𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶 are typically evaluated each month 

(each hour in 𝐿𝐿4 methods) based on values of 𝑇𝑇𝑖𝑖𝑛𝑛𝐻𝐻𝐶𝐶 prevailing at peak conditions during that month (or during the given 

hour in 𝐿𝐿4 methods). With known values of 𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶, ground loads can be evaluated in step 5 followed by the calculation 

of the ground thermal response factors in step 6. Then, Equation 8 (Equation 1 for 𝐿𝐿4 methods) is applied sequentially 

from month to month (hour to hour in 𝐿𝐿4 methods) for the expected lifetime of the system to determine 𝑇𝑇𝑖𝑖𝑛𝑛𝐻𝐻𝐶𝐶 in step 7. 

If calculated values of 𝑇𝑇𝑖𝑖𝑛𝑛𝐻𝐻𝐶𝐶 have not converged then the process goes back to step 4 for an update on the 𝑀𝑀𝐶𝐶𝐶𝐶 values. 

If 𝑇𝑇𝑖𝑖𝑛𝑛𝐻𝐻𝐶𝐶 has converged then a check is made to verify if the temperature limits (𝑇𝑇𝐿𝐿 or 𝑇𝑇𝐻𝐻) have been reached. If not, then 

the value of 𝐿𝐿 is updated and calculations proceed back to step 3. When the method starts with the ground loads (Figure 

2c), the calculation sequence is simpler. The tool sets a guess value for 𝐿𝐿 then evaluates the borehole thermal resistance 
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for this value of 𝐿𝐿. Ground thermal response factors are calculated in step 4 and Equation 8 (equation 1 for 𝐿𝐿4 methods) 

is used to evaluate 𝑇𝑇𝑖𝑖𝑛𝑛𝐻𝐻𝐶𝐶 in step 5. As shown in step 6, if either 𝑇𝑇𝐿𝐿 or 𝑇𝑇𝐻𝐻 has been reached then a converged value of 𝐿𝐿 

is obtained, if not, 𝐿𝐿 is updated and the sequence goes back to step 3. Note that if the tools assume that the borehole 

thermal resistance is independent of 𝐿𝐿, then iterations go back to step 4 instead of step 3 in both paths (Figures 2b and 

2c). If 𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶 are dependent on the fluid temperature, the ground loads are evaluated iteratively at each time step. The 

iterative procedure uses an initial guess value for the 𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶 and iterates until convergence as shown in Figure 2b. Four 

𝐿𝐿3 methods will now be described. 

NWWA method 

The National Water Well Association (NWWA) method is a 𝐿𝐿3 method where ground loads are used directly. It has 

been described by Hart and Couvillion [28]. The NWWA method applies Kelvin’s line source model to evaluate ground 

heat transfer. It takes into account the effects of cyclic on-off operation as well as thermal interferences of adjacent 

boreholes. As reported by Cane and Forgas [8] the entering heat pump fluid temperature at month 𝑘𝑘 (𝑇𝑇𝑓𝑓𝑘𝑘) obtained by 

the NWWA method is evaluated using the following equation: 

𝑇𝑇𝑓𝑓𝑘𝑘 = �

⎝

⎜
⎛

⎝

⎜
⎛ 𝑞𝑞

∑ �
𝐿𝐿𝑗𝑗

(𝐿𝐿𝑀𝑀 𝐿𝐿𝐶𝐶⁄ )𝑗𝑗𝑅𝑅𝐶𝐶𝑗𝑗 + 𝑅𝑅𝑝𝑝
�𝑙𝑙𝐶𝐶𝑦𝑦𝑙𝑙𝑟𝑟𝐶𝐶

𝑗𝑗=1
⎠

⎟
⎞

𝑖𝑖

∆𝑅𝑅𝑇𝑇𝑅𝑅𝑖𝑖

⎠

⎟
⎞

𝑖𝑖=𝑘𝑘

𝑖𝑖=0

+
𝑞𝑞 𝑅𝑅𝑇𝑇𝑅𝑅

2 �𝑚𝑚 ̇ 𝑆𝑆𝐺𝐺 𝑀𝑀𝑝𝑝𝑓𝑓�
+ ∆𝑇𝑇𝑔𝑔𝑘𝑘 + 𝑇𝑇𝑔𝑔𝑘𝑘 (10) 

The term 𝑞𝑞 ∑ �𝐿𝐿𝑗𝑗 �(𝐿𝐿𝑀𝑀 𝐿𝐿𝐶𝐶⁄ )𝑗𝑗𝑅𝑅𝐶𝐶𝑗𝑗 + 𝑅𝑅𝑝𝑝�� �𝑙𝑙𝐶𝐶𝑦𝑦𝑙𝑙𝑟𝑟𝐶𝐶
𝑗𝑗=1⁄  represents the heat transfer between the heat exchanger fluid and the 

ground, 𝑞𝑞 is the heat exchanged with the ground, 𝐿𝐿𝐶𝐶 is the length of single-pipe heat exchanger and 𝐿𝐿𝑀𝑀 is the length of 

multiple heat exchangers, 𝐿𝐿𝑗𝑗 is the length of pipe in the 𝑗𝑗th ground layer, (𝐿𝐿𝑠𝑠/𝐿𝐿𝑀𝑀)𝑗𝑗 is the length multiplier for a multiple 

system in the 𝑗𝑗th layer of the ground, 𝑅𝑅𝐶𝐶𝑗𝑗is the ground thermal resistance in the 𝑗𝑗th ground layer surrounding the borehole, 

𝑅𝑅𝑝𝑝 is the pipe thermal resistance, 𝑖𝑖 is any month from the beginning of the period up to month 𝑘𝑘, 𝑅𝑅𝑇𝑇𝑅𝑅𝑖𝑖 represents the 

ratio of run time to the cycle time of month 𝑖𝑖, ∆𝑅𝑅𝑇𝑇𝑅𝑅𝑖𝑖 is the change in run time ratio from one month to the next, 𝑚𝑚 ̇ is 

the fluid flow rate in the pipe, 𝑆𝑆𝐺𝐺 and 𝑀𝑀𝑝𝑝𝑓𝑓  are the specific gravity and specific heat of the fluid, respectively, 𝑇𝑇𝑔𝑔𝑘𝑘 

represents the average far field temperature in month 𝑘𝑘, ∆𝑇𝑇𝑔𝑔𝑘𝑘 is the average seasonal variation of the far field temperature 

in month 𝑘𝑘. The obtained fluid temperatures are compared to the user specified lowest and highest entering fluid 
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temperatures. If the difference satisfies the specified convergence criterion, the iterative procedure stops, otherwise, a 

new heat exchanger length is selected and the procedure is repeated until convergence. The NWWA has been shown to 

be more precise than the IGSHPA method [9]. However, it does not reach the accuracy that can be achieved with modern 

techniques. 

Quasi-three pulse method with running average 

Monzó et al. [1] have proposed a methodology which accounts for monthly loads but that still uses the three-pulse 

approach of 𝐿𝐿2 methods. The resulting sizing method is shown in Equation 11. In their approach, the length is determined 

for each month i over the design period. The yearly load and corresponding value of the effective ground thermal 

resistances (product 𝑞𝑞𝑦𝑦 𝑅𝑅𝑦𝑦 in Equation 4) is replaced by a running average of the loads of the previous months multiplied 

by the corresponding effective ground thermal resistance (𝑞𝑞�𝑝𝑝𝑚𝑚,𝑖𝑖𝑅𝑅𝑝𝑝𝑚𝑚,𝑖𝑖). The monthly pulse term in Equation 4 (𝑞𝑞𝑚𝑚 𝑅𝑅𝑚𝑚) is 

replaced with the monthly pulse and the corresponding effective ground thermal resistance of the current month 

(𝑞𝑞𝑠𝑠𝑚𝑚,𝑖𝑖𝑅𝑅𝑠𝑠𝑚𝑚). The temperature penalty (𝑇𝑇𝑝𝑝,𝑖𝑖) is evaluated iteratively for each month using the technique described in 

Equation 5.  

𝐿𝐿𝑖𝑖 =
𝑞𝑞�𝑝𝑝𝑚𝑚,𝑖𝑖𝑅𝑅𝑝𝑝𝑚𝑚,𝑖𝑖 + 𝑞𝑞𝑠𝑠𝑚𝑚,𝑖𝑖𝑅𝑅𝑠𝑠𝑚𝑚 + 𝑞𝑞ℎ,𝑖𝑖𝑅𝑅ℎ + 𝑞𝑞ℎ,𝑖𝑖𝑅𝑅𝑏𝑏

𝑇𝑇𝑚𝑚 − �𝑇𝑇𝑔𝑔 + 𝑇𝑇𝑝𝑝,𝑖𝑖�
 

(11) 

Even though this method uses the three pulse approach of 𝐿𝐿2 methods it is considered here as a quasi 𝐿𝐿3 method because 

monthly loads are considered.  

It is also possible to extend the 𝐿𝐿2 alternative method described earlier to a quasi 𝐿𝐿3 method using the approach proposed 

by Monzó et al. [1] but using g-functions instead of 𝑇𝑇𝑝𝑝. The resulting equation is given in Equation 12,:  

𝐿𝐿 =
𝑞𝑞�𝑝𝑝𝑚𝑚,𝑖𝑖𝑅𝑅𝑔𝑔,𝑝𝑝𝑚𝑚,𝑖𝑖 + 𝑞𝑞𝑠𝑠𝑚𝑚,𝑖𝑖𝑅𝑅𝑔𝑔,𝑠𝑠𝑚𝑚 + 𝑞𝑞ℎ,𝑖𝑖𝑅𝑅𝑔𝑔ℎ + 𝑞𝑞ℎ,𝑖𝑖𝑅𝑅𝑏𝑏

𝑇𝑇𝑚𝑚 − 𝑇𝑇𝑔𝑔
 (12) 

where the index g has been added to the effective ground thermal resistance to indicate that they are based on g-functions. 

Finally, much like for the alternative method described earlier, it is possible to account for borehole thermal capacity by 

evaluating 𝑅𝑅𝑔𝑔ℎ and 𝑅𝑅𝑔𝑔,𝑠𝑠𝑚𝑚 with short-term g-functions.  
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GHX Design Toolbox (in 𝐿𝐿3 mode) 

In addition to the 𝐿𝐿2 approach described earlier, Chiasson’s [25] spreadsheet has 𝐿𝐿3 capabilities. The user can either 

specify 48 monthly values (average building loads and peak loads for heating and cooling) directly or enter the hourly 

building load values which are then pre-processed to obtain the 48 monthly building loads. The building loads are then 

converted to ground loads based on the user defined 𝑀𝑀𝐶𝐶𝐶𝐶 values as a function of 𝑇𝑇𝑖𝑖𝑛𝑛,𝐻𝐻𝐶𝐶. The peak load durations in 

heating and cooling are also specified by the user. Once these values are entered, the calculation proceeds as shown in 

Figure 2b. More specifically, Equations 13.a to 13.d are solved for both heating and cooling conditions to obtain 𝐿𝐿. 

𝑇𝑇𝑓𝑓,𝐶𝐶𝑎𝑎𝑔𝑔 = 𝑇𝑇𝑔𝑔 + �
�𝑞𝑞𝑖𝑖

′ − 𝑞𝑞𝑖𝑖−1
′ �

2𝜋𝜋𝑘𝑘𝑔𝑔
𝑔𝑔 �

𝑜𝑜𝑛𝑛 − 𝑜𝑜𝑖𝑖−1

𝑜𝑜𝐶𝐶
,
𝑟𝑟𝑏𝑏
𝐻𝐻

,
𝐵𝐵
𝐻𝐻
�

𝑛𝑛

𝑖𝑖=1
+ 𝑞𝑞𝑛𝑛

′ 𝑅𝑅𝑏𝑏 
(13.a) 

𝑇𝑇𝑓𝑓,𝑝𝑝𝑙𝑙𝐶𝐶𝑘𝑘 = 𝑇𝑇𝑓𝑓,𝐶𝐶𝑎𝑎𝑔𝑔 +
𝑞𝑞𝑟𝑟𝑙𝑙𝑗𝑗,𝑝𝑝𝑙𝑙𝐶𝐶𝑘𝑘
𝐻𝐻.𝑁𝑁𝑏𝑏

𝑅𝑅𝑞𝑞 
(13.b) 

𝑅𝑅𝑞𝑞 =
𝑙𝑙𝑛𝑛�4𝛼𝛼𝑜𝑜𝑝𝑝 𝑟𝑟𝑏𝑏2⁄ � − 0.5772

4𝜋𝜋𝑘𝑘𝑔𝑔
 

(13.c) 

𝑇𝑇𝑖𝑖𝑛𝑛,ℎ𝑝𝑝,𝑝𝑝𝑙𝑙𝐶𝐶𝑘𝑘 = 𝑇𝑇𝑓𝑓,𝑝𝑝𝑙𝑙𝐶𝐶𝑘𝑘 +
𝑞𝑞𝑟𝑟𝑙𝑙𝑗𝑗,𝑝𝑝𝑙𝑙𝐶𝐶𝑘𝑘
2�̇�𝑚𝑀𝑀𝑝𝑝

 
(13.d) 

where 𝑇𝑇𝑓𝑓,𝐶𝐶𝑎𝑎𝑔𝑔 and 𝑇𝑇𝑓𝑓,𝑝𝑝𝑙𝑙𝐶𝐶𝑘𝑘 are the average and the peak mean fluid temperature in the boreholes and 𝑇𝑇𝑖𝑖𝑛𝑛,ℎ𝑝𝑝,𝑝𝑝𝑙𝑙𝐶𝐶𝑘𝑘 is the peak 

inlet fluid temperature to the heat pumps determined for the 𝑛𝑛th month of operation, 𝑞𝑞𝑖𝑖
′  is the net average ground load 

per unit borehole length for the 𝑖𝑖th month, 𝑔𝑔 is the ground thermal response factor (g-function), which is a function 𝑜𝑜/𝑜𝑜𝑠𝑠, 

𝑟𝑟𝑏𝑏/𝐻𝐻, and 𝐵𝐵/𝐻𝐻, and 𝑜𝑜𝐶𝐶 is the borehole time scale, and 𝑞𝑞𝑟𝑟𝑙𝑙𝑗𝑗,𝑝𝑝𝑙𝑙𝐶𝐶𝑘𝑘 is the net peak ground load. It is obtained by subtracting 

the average cooling or heating loads from the cooling or heating peak loads. 𝑅𝑅𝑞𝑞 is estimated by an approximation of the 

infinite line source solution (ILS) and is dependent on the peak load duration. Equations 13.b to 13.d are calculated each 

month over the expected life time of the system. Then, as shown in Figure 2b, 𝐿𝐿 is updated if convergence has not been 

reached. It is updated using the golden section search optimization method where the objective function is defined as 

the square of the error of the calculated and target values of 𝑇𝑇𝐿𝐿 and 𝑇𝑇𝐻𝐻.  

EED 

EED (v3.2) is a 𝐿𝐿3 sizing tool which sizes the ground heat exchangers based on either the building or the ground loads 

[29]. It should be noted that the newest version of EED (v4) can also operate as a 𝐿𝐿4 tool. With EED in 𝐿𝐿3 mode, the 
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sequences presented in Figure 2b or 2c are used. When building loads are specified, constant 𝑀𝑀𝐶𝐶𝐶𝐶 values are used to 

obtain the ground loads. Thus, the inner iteration loop on 𝑇𝑇𝑖𝑖𝑛𝑛𝐻𝐻𝐶𝐶 shown in Figure 2b is not used. The duration of peak 

loads can be set to different values for each month. When ground loads are specified (Figure 2c), heat pump 

characteristics are not required. The borehole thermal resistance can be entered directly by the user or it can be evaluated 

within the sizing sequence. The user can choose if borehole short circuiting effects should be accounted or not. EED 

calculates effective borehole resistances and so iterations go back to step 3 (Figures 2.b and2.c). Ground thermal 

response factors are derived using pre-calculated g-functions stored in an extensive database with various bore field 

geometries including boreholes positioned in various configurations (in-line, L- and U-shape, open rectangular or 

rectangular). EED v4 can approximate irregular borehole patterns with regular ones. The data base of g-functions are 

for specific values of 𝑟𝑟𝑏𝑏/𝐻𝐻, 𝐵𝐵/𝐻𝐻. During the course of a calculation, if values of 𝑟𝑟𝑏𝑏/𝐻𝐻 and 𝐵𝐵/𝐻𝐻 do not match these 

values, then a correction factor [30] is applied to account for different values of 𝑟𝑟𝑏𝑏/𝐻𝐻 and the tool interpolates between 

g-function values for different 𝐵𝐵/𝐻𝐻 by keeping the borehole distance spacing constant and changing boreholes depth. 

The tool evaluates the average and the peak monthly mean fluid temperatures over the design period of the system and 

determines the minimum required bore field length which satisfies the heat pump temperature limits as shown in Figures 

2b and 2c.  

GLHEPro 

GLHEPro [31, 32] is a 𝐿𝐿3 sizing tool which uses average and peak monthly heat loads. Note that GLHEPro V.5 can also 

perform hourly simulations (𝐿𝐿4 level) for a given bore field length. Much like EED, two paths are possible either with 

the building loads or directly using ground loads. The heat pump 𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶 can either be defined as constant or dependent 

on the inlet fluid temperatures. In this later case, an inner iteration is required, as shown by the dash line in Figure 2b. 

The calculation methodology for GLHEPro is similar to the one presented in Equations 13.a to 13.d. However, as noted 

by Cullin and Spitler [27] the evaluation of 𝑇𝑇𝑓𝑓,𝑝𝑝𝑙𝑙𝐶𝐶𝑘𝑘 uses 𝑅𝑅𝑏𝑏 in addition to 𝑅𝑅𝑞𝑞. 

𝑇𝑇𝑓𝑓,𝑝𝑝𝑙𝑙𝐶𝐶𝑘𝑘 = 𝑇𝑇𝑓𝑓,𝐶𝐶𝑎𝑎𝑔𝑔 +
𝑞𝑞𝑟𝑟𝑙𝑙𝑗𝑗,𝑝𝑝𝑙𝑙𝐶𝐶𝑘𝑘
𝐻𝐻.𝑁𝑁𝑏𝑏

(𝑅𝑅𝑞𝑞 + 𝑅𝑅𝑏𝑏) 
(14) 

where 𝑅𝑅𝑞𝑞 = 𝑔𝑔�𝑜𝑜 𝑜𝑜𝐶𝐶, 𝑟𝑟𝑏𝑏/𝐻𝐻⁄ � �2𝜋𝜋𝑘𝑘𝑔𝑔��  which is the effective ground thermal resistance for the peak load duration. 𝑅𝑅𝑞𝑞 is 

evaluated based on short-term g-functions determined by a technique elaborated by Xu and Spitler [33]. This technique 
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is based on an earlier methodology developed by Yavuzturk et al. [34] and Yavuzturk and Spitler [35]. In effect, this 

method accounts for thermal capacity (fluid, pipe and grout) inside the borehole. 

The method finds the maximum and minimum heat pump inlet fluid temperatures for each month by superimposing the 

temperature response of the peak loads on the obtained average fluid temperature (Equation 13.d). Then, these maximum 

and minimum values are compared to the specified temperature limits until convergence. The tool uses 307 pre-

calculated g-functions [31] that are stored in a database for various types of bore field. GLHEPro evaluates the effective 

borehole thermal resistance using 10th order multipole [20]. 

2.5. L4 –Hourly loads 

Hourly building or ground loads are used as the starting point in 𝐿𝐿4 methods. Typically, the same hourly loads are used 

from year to year for the design period. With reference to the general sizing equation (Equation 1), 𝐿𝐿4 methods involve 

8760 terms in the summation for each year of calculation. This makes the calculations computationally intensive and 

most often loads are aggregated to reduce the number of terms in the summation. Aside from the different time scale of 

the loads, the calculation sequence of 𝐿𝐿4 methods is identical to 𝐿𝐿3 methods and follows the sequence presented earlier 

depending on whether building (Figure 2b) or ground loads (Figure 2c) are provided.  

As indicated above, the newest versions of EED has an option to perform 𝐿𝐿4 calculations. A number of tools can be 

considered to be quasi 𝐿𝐿4 tools. For instance, GLHEPro V5.0, Energy Plus, eQuest all provide hourly simulations but 

for a fixed bore field length. It is possible to update “manually” this length until 𝑇𝑇𝐿𝐿 and 𝑇𝑇𝐻𝐻 are reached to get the design 

length. The Duct ground heat STorage (DST) model, which is part of the TRNSYS package, is not considered to be a 

ground heat exchanger sizing tool. However, it can predict the hourly fluid temperature evolutions over the expected 

life of the system. Recently, Ahmadfard et al. [36] have combined the DST model with GenOpt to automate this iterative 

procedure to make it a 𝐿𝐿4 method. It will now be briefly described. 

DST model used a sizing tool In TRNSYS 

The Duct ground heat STorage (DST) model has been developed originally by Hellström [37] to simulate seasonal 

thermal storage of densely packed boreholes configured in an axisymmetric pattern. It is part of the TESS library [38] 

of TRNSYS [39] and is known as Type 557. The ground thermal response is calculated using a one dimensional 
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analytical model to solve for the ground temperature in the local region and a two-dimensional explicit finite difference 

model to simulate the ground temperature in the global region.  

With the approach suggested by Ahmadfard et al. [36], GenOpt starts the iteration with a guess value for the length. It 

then calls the DST model and runs a simulation for the expected design period of the system. Next, it analyzes the results 

and updates the guessed length and runs a new iteration. This iterative procedure continues until the minimum borehole 

length that satisfies the maximum and minimum fluid temperature limits is obtained. The model can handle both constant 

and variable 𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶. In the latter case, the tool has an inner hourly iteration loop (steps 7 to 3 in Figure 2.b). There are 

two major drawbacks when using the DST model. First, it is only strictly applicable to axisymmetric configurations. 

Secondly, borehole thermal capacity is not considered and the borehole thermal resistance remains constant throughout 

a simulation. 

3. Literature review of inter-model comparisons 

Caneta [9] performed one of the earliest comparative studies where the IGSHPA and NWWA methods were compared 

to a rule-of-thumb. A real installation composed of three boreholes with an actual total borehole length of 274.3 m is 

used. The evaluations are based on monthly loads including eight heating months and four cooling months. The resulting 

borehole lengths obtained from the sizing tools were: 271.7, 330 and 365.8 m for the NWWA, IGSHPA, and rule-of-

thumb methods, respectively. This represents differences of 0.94, 20.3, and 33.35 % when compared to the real 

installation. 

Thornton et al. [40] are at the origin of the first serious efforts to compare modern vertical GHE sizing tools. They used 

one year of site-collected data from a single-family residence at Fort Polk, Louisiana to first calibrate the inputs to the 

DST model to obtain “best-fit” thermal properties. These inputs are then used to compare one-year design lengths 

obtained with five commercially-available sizing tools for eight values of 𝑇𝑇𝐻𝐻 and two ground temperatures. The most 

important spread in the results is obtained when 𝑇𝑇𝐻𝐻 = 29.5°C, where differences of about 83 and 88 % are observed for 

ground temperature of 16.7°C and 20.6°C, respectively. 

Shonder et al. [41] repeated the comparison exercises for residential applications with updated version of the five sizing 

tools used by Thornton et al. [40] and one new tool. Two sites, in cooling- and heating-dominated applications are 

examined. The DST model is used as the benchmark and it is first calibrated with site collected data. For the cooling-
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dominated application, four values of 𝑇𝑇𝐻𝐻 are considered and the GHE length is determined for 1 and 10 years of 

operation. Results show a much better agreement compared with the previous results of Thornton et al. [40]. For 𝑇𝑇𝐻𝐻 = 

35°C, the six sizing tools determined the borehole length within 7% for a one-year operation. However, all six programs 

seem to undersize the GHE to some extent when compared to the DST model. The ten-year design lengths obtained by 

four programs vary by about 17% for 𝑇𝑇𝐻𝐻 = 35°C. For the heating-dominated case and for 𝑇𝑇𝐿𝐿 = -1.1°C, the one-year and 

ten-year design lengths vary by about ±16% and ±15%, respectively. 

Shonder et al. [42] compared four GHE sizing tools for a relatively large bore field (12×10) in an elementary school in 

Lincoln, Nebraska. The authors first used the DST model in TRNSYS as a benchmark and calibrated its inputs with one 

year of site-collected data. Since this is a heating-dominated application, the four design tools were compared for values 

of 𝑇𝑇𝐿𝐿 equal to -1.1°C, 1.7°C, and 4.4°C for one and ten year design periods. On average, there is a ±16% difference 

between the four sizing tools and the DST model. Overall, the GHE lengths differ by an average of ±12% from the 

TRNSYS benchmark, somewhat less than the ±16% difference for the one-year lengths. The ten-year GHE design 

lengths are on average, about 7% higher than the one-year lengths, indicating only modest multi-year effects. Indeed the 

annual ground thermal imbalance is 1.76 kW (in heating mode) which leads to a relatively small temperature penalty, 

𝑇𝑇𝑝𝑝 = 0.35 °C. It should also be noted that the DST model is designed to simulate boreholes in an axisymmetric pattern 

not a rectangular 12×10 geometry. The resulting error from this approximation has not been documented by the authors. 

Spitler et al. [43] performed an inter-model comparison of six different simulation tools including the DST model, three 

g-function based models implemented in EnergyPlus, eQuest, and HVACsim+, and two proprietary models. Two set of 

data were used: The first set comes from a three-borehole ground heat exchanger at Oklahoma State University, with 15 

months of hourly-averaged experimental data. The second set is composed of one-year of hourly ground load data 

obtained by simulating an office building in Tulsa. A 196 borehole configuration is used in this second case. Results for 

the first set of data indicate that all models show higher oscillation amplitudes than the experiment, probably indicating 

that the dampening effect associated with borehole thermal capacity is not properly accounted for in the models. In 

addition, the authors indicate that the use of hourly time steps that do not correspond to the heat pump on/off cycles, 

may have causes these differences. The authors cite model assumptions that may not have been encountered in the 

experiments: uniform undisturbed ground temperature, no ground water flow, no moisture transport in the upper, 

unsaturated region of the ground, and uniform heat transfer along the borehole length.  
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For the second test with the 196 borehole configuration, substantial differences in the evaluation of the long-term 

temperature rise and monthly fluid temperature changes at the heat pump inlet are observed after 20 years of simulated 

operation. It is speculated that the assumptions used for superposition of individual boreholes, boundary conditions and 

heat transfer variations along the borehole are the likely causes of discrepancies. Finally, the authors note that user input 

and post-processing errors should not be ruled out in such a comparison. 

Bertagnolio et al. [44] presented test cases for comparing the time evolution of borehole wall temperatures obtained 

using three analytical solutions (infinite line source (ILS), infinite cylindrical heat source (ICS), and finite line source 

(FLS), two numerical models (g-functions and DST) and a hybrid model (ICS/Tp/MLAA) based on a combination of 

the infinite cylindrical heat source, and improved calculation of 𝑇𝑇𝑝𝑝 and a so-called multiple load aggregation algorithm 

(MLAA). The authors defined two series of test cases for single and multiple boreholes. Synthetic load profiles are used 

in all cases. They are generated using a relatively simple mathematical function which enables reproducible profiles. 

The same approach will be used later in the paper for some test cases. For single boreholes, constant heat rejection load, 

symmetric cyclic heat load, asymmetric heat load (cooling dominated for 20-year) and non-continuous (heating only) 

heat load are considered. The results show that analytical one-dimensional radial models (ILS, ICS) are in good 

agreement with three dimensional models for relatively short-simulation periods. However, for longer time periods the 

results are not as accurate since the axial effects become more significant and only the FLS, g-functions and DST models 

have good accuracies. Cyclic heat load tests proved to be useful in evaluating the accuracy and the computational 

performance of different load aggregation algorithms. Results obtained with the asymmetric load revealed that ICS-

based models predict borehole wall temperatures within ±1ºC of the DST model. 

For multiple boreholes, constant heat rejection and asymmetric loads (cooling dominated for 20-year) are considered. 

Constant load tests illustrated significant differences among the two numerical and hybrid models. These differences are 

due to two factors. First, the ICS/Tp/MLAA model cannot account for axial effects and these effects become important 

over the long term. Secondly, the DST model arranges the boreholes in an axisymmetric configurations which resulted 

in some error for in-line configurations.  

Kurevija et al. [45] compared the ASHRAE sizing equation (Equation 3 – 𝐿𝐿2 method) with 𝐿𝐿3 sizing methods based on 

g-functions. Two borehole arrangements, 6×7 and 21×2, are considered for a Croatian building. Borehole spacing is 

varied from 4 to 9 m giving a total of 12 comparisons. Peak and monthly building loads are given as well as the estimated 
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peak duration and the equivalent full load operating hours (to obtain the annual ground loads). The bore field is sized 

for a 30-year operation. The lengths obtained with the g-function based methods are 8.8% to 10.7% (for the 21×2 

configuration) and 10.7 to 19.3% (for the 7×6 configuration) greater than the ones obtained with the ASHRAE sizing 

equation with the largest differences occurring for small borehole spacing. The authors explain that these discrepancies 

are due to the fact that the ASHRAE sizing equation uses a simplistic borehole interaction model for predicting the heat 

buildup in the ground over time. 

Cullin et al. [46] used six years of experimentally measured data on a 3×2 ground heat exchanger, located in Valencia, 

Spain, to compare the sizing results of a simulation-based design tool (GLHEPro) and the classic ASHRAE sizing 

equation against the known borehole length (50 m). Results indicate that the simulation tool under predicts the required 

heat exchanger length by 4%, while the ASHRAE sizing equation over predicts it by 103%. A sensitivity study on the 

input uncertainties revealed that the simulation-based method could under predict the results by about 2 % and over 

predict them by as much as 12%. However, only 9% of the over prediction obtained with the ASHRAE sizing equation 

could be attributed to inputs inaccuracies. 

Cullin et al. [47] extended their study to compare the design results of a simulation-based tool (GLHEPro) with the 

ASHRAE equation using experimental data from four systems. In addition to the Valencia case, data from systems 

located in Stillwater (USA), Atlanta (USA) and Leicester (UK) are used. Results show that the simulation-based tool 

predicts the actual installed borehole length to within 6% in all cases. Use of the ASHRAE sizing equation results in 

predicted borehole lengths which are significantly different from the actual lengths. Differences of -21%, +26%, +60%, 

and +103% are observed (negative/positive values represent undersizing/oversizing, respectively). The authors 

explained that the load representation and, to a lesser extent, the calculation of the borehole thermal resistance explain 

much of the differences between the ASHRAE sizing equation and the simulation-based tool. The authors also point out 

to the inherent uncertainty in reading values from the G-factor chart provided by Kavanaugh and Rafferty [14] which is 

used to determine the effective ground thermal resistances. As indicated above, the ASHRAE sizing equation has been 

developed to calculate the required length based on three thermal pulses with durations of 10 years, 30 days, and 6 hours, 

respectively. The four cases represent measurement periods of six years or less. Therefore, the ground thermal resistance 

for the 10 year pulse in the ASHRAE sizing equation has to be adapted. 
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The present authors have also looked at the data for the Valencia case and determined the required borehole length based 

on their own interpretation of the data. Table 2 summarizes the results of these calculations and a comparison is made 

with the results provided by Cullin et al. [47]. As shown in Table 2, there are some significant differences in the 

evaluation of the parameters used in Equation 3. 

First, the value of 𝑞𝑞𝐶𝐶 is estimated to be -17.4 kW based on an analysis of the raw data. The 𝐶𝐶𝐿𝐿𝑃𝑃𝑚𝑚 value of 0.192 is 

obtained from 2405/(17.4×720), where the value of 2405 kWh is the total heat injected during the 6th month of the third 

year of operation [47] and 720 is the number of hours in the month of June. Values of 𝑅𝑅ℎ,𝑅𝑅𝑚𝑚,𝑅𝑅𝑦𝑦 are also different. In 

the present case, they are obtained using calculated values of the G-factor based on the solution of the ICS solution 

provided by Cooper [48] with a borehole radius of 75 mm, a thermal conductivity of 1.6 W/m-K [47], and a ground 

volumetric heat capacity of 2250 kJ/m3-K [46]. The values of 𝑇𝑇𝑖𝑖𝑛𝑛ℎ𝑝𝑝/𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜ℎ𝑝𝑝 (30/35.5°C) are taken from the raw data at 

the peak conditions. The calculated value of -0.27°C for 𝑇𝑇𝑝𝑝 is obtained using the original concentric ring technique 

proposed by Kavanaugh and Rafferty [14] with a borehole separation distance of 3 m, a period of 3 years, and a borehole 

length of 61.1 m.  

Table 2: Two different set of inputs to be used with the ASHRAE sizing equation for the Valencia case 

Parameter Units Values used by 
Cullin et al. [47] 

Values used in the 
present study 

𝑞𝑞ℎ kW -17.0 -17.4 
𝑞𝑞ℎ × 𝐶𝐶𝐿𝐿𝑃𝑃𝑚𝑚 kW -17.0×0.27 -17.4×0.192 

𝑞𝑞𝑎𝑎 kW -0.469 -0.469 
𝑅𝑅ℎ/𝑅𝑅𝑚𝑚/𝑅𝑅𝑦𝑦 m.K.W-1 0.169/0.244/0.193 0.113/0.217/0.179 

𝑅𝑅𝑏𝑏 m.K.W-1 0.11 0.11 
𝑜𝑜ℎ/𝑜𝑜𝑚𝑚/𝑜𝑜𝑎𝑎 hours/days/years 6/30/3 6/30/3 

𝑇𝑇𝑖𝑖𝑖𝑖ℎ𝑝𝑝/𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜ℎ𝑝𝑝 °C 27.2/32.7 30/35.5 
𝑇𝑇𝑔𝑔 °C 19.5 19.5 
𝑃𝑃𝑆𝑆𝐶𝐶 - 1.04 1.04 
𝑇𝑇𝑝𝑝 °C -0.5 -0.27 
𝐿𝐿 m 101 61.1 

The final calculated length (61.1 m) obtained using the ASHRAE sizing equation with the current set of inputs is much 

closer to the actual length (50 m) than the results of calculations performed by Cullin et al. [47] using the same ASHRAE 

sizing equation (100 m) but with a different set of inputs. If the duration of the peak heat load is assumed equal to 3 

hours [49], the length obtained by the ASHRAE equation goes down to 56.8 m. These discrepancies show the importance 

of human interpretation of the raw data on the final results. This is one reason why all loads are pre-treated in the inter-

model comparison so that all tools have the same inputs. Li et al. [50] have also used the four cases introduced by Cullin 
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et al. [47] to validate their methodology which is based on a reformulation of the ASHRAE sizing equation. For the 

Valencia case presented in Table 2, they obtain a length of 77 m. Finally, as mentioned by Spitler [51], these four cases 

have reasonably balanced annual heat extraction and rejection loads with no significant long-term heat build-up or draw-

down. Therefore, these data sets are not necessarily suited to check long-term effects. 

4. Proposed test cases 

One of the goals of this work is to propose a set of test cases that could be used to compare vertical GHE sizing tools 

against each other. With reference to the BESTEST terminology [52, 53] for building simulation software tools, three 

types of sizing test cases can be defined for comparisons: 1- simple analytical test cases, 2- comparative test cases and 

3- real/experimental cases. Analytical test cases can only be applied for the simplest conditions (e.g. single borehole 

with constant load). Good long-term experimental data suitable for comparative testing could not be found in the 

literature. Therefore, only comparative test cases are examined in this work. 

Differences in the required bore field length calculated by sizing tools can be the result of input errors or modeling 

differences. Input errors may be the results of human errors (e.g. different users may enter different ground thermal 

conductivities) or differences of interpretation for the raw data (e.g. different user may select different peak load duration 

or may convert building loads to ground loads differently). In an effort to avoid input errors, all test cases reported here 

are performed using a common set of data entered in each software by the same user and checked by another. Differences 

in results are thus presumed to be mainly due to the use of different modeling approaches or coding errors.  

It should be noted that a spreadsheet containing all the loads and input data accompanies this paper so that other users 

can test other sizing tools with the same data. This spreadsheet also includes the test results of the inter-model 

comparison presented below. With reference to the general sizing equation (Equation 1), sizing tools will differ in the 

way they calculate the values of the ground thermal response, 𝑅𝑅𝑖𝑖, including in some cases the value of 𝑇𝑇𝑝𝑝, and the 

borehole thermal resistance, 𝑅𝑅𝑏𝑏. Also, software tools from the same level will handle the summation term (in Equation 

1) differently. In order to separate problems linked to the evaluation of 𝑅𝑅𝑏𝑏 from the rest of the calculation methodologies, 

most of the test cases are solved with imposed values of 𝑅𝑅𝑏𝑏. 

There are many data sets in the literature that could be used for inter-model comparative testing. A total of four data sets 

have been selected for the present study, each addressing a specific difficulty. A summary table of other data sets found 
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in the literature is provided in Appendix A. The four data sets include: i) a synthetic perfectly balanced hourly load 

profile; ii) the monthly and peak load data provided by Shonder et al. [42] for a school in Lincoln, Nebraska; iii) the set 

of monthly and peak load values presented by Monzó et al. [1]; iv) the hourly load profile used by Bernier [19] for a 

simulated building in Atlanta.  

4.1. Input parameters 

Table 3 shows the input parameters used for all test cases. Some tools need specific parameters that are not required by 

other tools. These parameters are listed at the bottom of Table 3. 

Table 3: Input parameters for the four test cases 

Parameter Test 1 
Synthetic balanced load 

Test 2 
Shonder et al. (2000)[42] 

Test 3 
Monzó et al. (2016)[1] 

Test 4 
Bernier (2006)[19] units 

𝑁𝑁𝑏𝑏 1 12×10 7×7 5×5 ------ 
𝐵𝐵 6 6 5 8 m 
𝐷𝐷 4 3 2.5 4 m 
𝑟𝑟𝑏𝑏 75 54 75 75 mm 

𝑟𝑟𝑝𝑝,𝑖𝑖, 𝑟𝑟𝑝𝑝,𝑜𝑜 16.7, 13.7 16.7, 13.7 16.7, 13 16.7, 13 mm 
2𝑑𝑑𝑝𝑝 75 47.1 75 83 mm 

�̇�𝑚𝑓𝑓 0.443 (ground load) 
0.559 (building load) 29 33.1 10.34 kg.s-1 

𝜌𝜌𝑓𝑓 1052 1026 1026 1026 kg.m-3 
𝑀𝑀𝑝𝑝𝑓𝑓 3795 4019 4019 4019 J.kg-1.K-1 
𝜇𝜇𝑓𝑓 0.0052 0.00337 0.00337 0.00337 kg.m-1.s-1 
𝑘𝑘𝑓𝑓 0.480 0.468 0.468 0.468 W.m-1.K-1 
𝑠𝑠𝑝𝑝,𝑔𝑔 2073.6 2877 2592 2052 kJ.m-3.K-1 
𝛼𝛼𝑔𝑔 0.075 0.068 0.075 0.08 m2.day-1 
𝑘𝑘𝑔𝑔 1.8 2.25 2.25 1.9 W.m-1.K-1 
𝑘𝑘𝑔𝑔𝑔𝑔 1.4 1.73 1.73 0.69 W.m-1.K-1 
𝑘𝑘𝑝𝑝 0.43 0.45 0.4 0.4 W.m-1.K-1 
𝑇𝑇𝑔𝑔 17.5 12.41 10 15 °C 
𝑇𝑇𝐿𝐿 0 4.4 0 0 °C 
𝑇𝑇𝐻𝐻 35 35 35 38 °C 
𝑅𝑅𝑏𝑏 0.13 0.113 0.1 0.2 m.K.W-1 
𝑜𝑜 10 10 10 20 years 

𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶  3.825 (building load) 3.643 ------ 3.86 ------ 
𝑀𝑀𝐶𝐶𝐶𝐶𝐻𝐻 3.49 (building load) 4.09 ------ 4.03 ------ 

When required by some tools, the following parameters are used: 
𝑃𝑃𝑠𝑠𝑠𝑠=1.04 
qg′′ = 0 W/m2 (geothermal heat flux) 
MCpgr = 3900 kJ.m-3.K-1 (grout volumetric heat capacity) 
𝑀𝑀𝑀𝑀𝑝𝑝𝑝𝑝 = 1540 kJ.m-3.K-1 (pipe volumetric heat capacity) 
𝑅𝑅𝑠𝑠 = 0 m.K.W-1 (contact resistance) 
ℎconv = 1000 W.m-2.K-1 (Internal convection coefficient in pipes) 

 

4.2. Test 1 -Synthetic balanced load – one borehole 

The first test case uses a synthetically generated balanced load profile either as a ground load or as a building load. For 

this test, it is assumed that the load is handled by just one borehole. The sizing tools are compared on their ability to 



27 
 

predict the length of a single borehole when the borehole-to-borehole thermal interference is inexistent. Thus, 𝑇𝑇𝑝𝑝= 0

since 𝑞𝑞𝑦𝑦 is zero (Equations 5 and 6).The balanced load is generated based on the methodology proposed by Bernier et 

al. [54] using the following parameters: A=2000, B=2190, C=80, D=2, E=0.01, F=0 and G=0.95. The resulting sine 

profile with daily and weekly variations is shown in Figure 3a (a positive value represent a heating load). Figure 3b 

represents the cumulative energy of this load over the year. It can be seen that the cumulative energy is zero at the end 

of the year. This means, for example, that when the load is used as a ground load, the cumulative annual amount of 

energy injected/retrieved from the ground is zero.

Figure 3: a) Hourly loads for the synthetic profile; b) Cumulative energy exchange resulting from the hourly loads. 

In the inter-model comparison of 𝐿𝐿4 methods, this hourly load profile is used either directly as a ground load (Test 1a) 

or as a building load (Test 1b). Monthly and peak values is extracted from hourly values for use with 𝐿𝐿3 methods (Table 

4). The three loads used for 𝐿𝐿2 methods have also been determined and are presented in Table 5. When the input load is 

a building load (Test 1b), it is converted to a ground load using Equations 15.a and 15.b where 𝑇𝑇𝑖𝑖𝑖𝑖,𝐻𝐻𝐻𝐻 is in ℃ [44]. When 

constant heating and cooling 𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶 are assumed, 𝑀𝑀𝐶𝐶𝐶𝐶𝐻𝐻 and 𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶 are evaluated at 𝑇𝑇𝐿𝐿 (0 ℃) and 𝑇𝑇𝐻𝐻 (35℃ ) giving 𝑀𝑀𝐶𝐶𝐶𝐶

values of 3.49 and 3.825 in heating and cooling, respectively. For 𝐿𝐿4 tools that use a variable 𝑀𝑀𝐶𝐶𝐶𝐶, Equations 15.a and 

15.b are used with the current value of 𝑇𝑇𝑖𝑖𝑖𝑖𝐻𝐻𝐻𝐻 during a given time step.

𝑀𝑀𝐶𝐶𝐶𝐶𝐻𝐻 = 3.49 + 0.061 × 𝑇𝑇𝑖𝑖𝑖𝑖𝐻𝐻𝐻𝐻 (15.a)

𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶 = 7.92 − 0.117 × 𝑇𝑇𝑖𝑖𝑖𝑖𝐻𝐻𝐻𝐻
(15.b)

The nominal flow rate is assumed to be 0.1 kg/s per kW of peak load to ensure turbulent flow. Since the peak ground 

loads in Tests 1a and 1b are 4.428 and 5.586 kW, respectively, the corresponding flow rates are 0.443 and 0.559 kg/s.

The borehole is sized for a 10-year design period.

kW a.

Month

M
W

h

b.
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Table 4: Monthly average and peak ground loads to be used with 𝐿𝐿3 methods (all loads are in kW) 

Month Test 1 Test 2 Test 3 Test 4 1a-ground 1b-building 

 𝑞𝑞𝑚𝑚 𝑞𝑞ℎ 𝑞𝑞𝑚𝑚 𝑞𝑞ℎ 𝑞𝑞𝑚𝑚 𝑞𝑞ℎ Peak duration 
(h) 𝑞𝑞𝑚𝑚 𝑞𝑞ℎ 𝑞𝑞𝑚𝑚 𝑞𝑞ℎ 

1 0.604 4.401 0.431 0.000 100.003 395.127 11 105.374 238.670 7.938 -35.770 
2 0.492 3.707 0.351 0.000 77.624 375.484 5 91.741 214.170 3.784 -53.548 
3 0.202 2.208 0.144 0.000 37.794 374.729 2 55.245 181.170 -8.085 -83.086 
4 -0.168 -2.002 -0.212 -2.525 9.705 200.208 3 0.051 107.330 -21.107 -93.549 
5 -0.430 -3.605 -0.543 -4.548 -35.161 108.792 1 -65.165 80.420 -35.048 -120.782 
6 -0.685 -4.387 -0.864 -5.533 -81.056 50.619 1 -122.411 0.000 -43.666 -130.893 
7 -0.648 -4.428 -0.818 -5.586 -105.101 46.841 1 -150.538 0.000 -46.983 -139.731 
8 -0.478 -3.726 -0.603 -4.701 -108.986 33.998 1 -103.258 0.000 -44.389 -131.761 
9 -0.186 -2.137 -0.235 -2.695 -36.244 63.462 6 -51.053 57.080 -34.678 -111.780 
10 0.160 1.968 0.114 -0.009 -2.861 239.494 1 4.382 111.500 -18.686 -97.338 
11 0.478 3.746 0.341 0.000 59.615 243.271 2 50.366 150.670 -2.983 -52.843 
12 0.680 4.427 0.485 0.000 111.392 281.802 4 92.720 198.000 5.853 -34.284 

Table 5: Synthesis of the data for each Test used in 𝐿𝐿2 methods (negative values indicate that cooling conditions 
determine the required length) 

 
 Test 1 Test 2 Test 3 Test 4 1a-ground 1b-building 
 kW kW kW kW kW 
𝑞𝑞ℎ -4.428 -5.586 --- -139.731 --- 
𝑞𝑞𝑚𝑚 -0.648 -0.818 --- -46.983 --- 
𝑞𝑞𝑎𝑎 -0.001 -0.120 --- -19.968 --- 
𝑞𝑞ℎ 4.427 --- 395.127 --- 238.670 
𝑞𝑞𝑚𝑚 0.680 --- 100.003 --- 105.374 
𝑞𝑞𝑎𝑎 -0.001 --- 1.763 --- -7.712 

Data presented in Tables 4 and 5 need some further explanations. First, data are presented sequentially starting with 

January as month #1 which is also the starting month of operation. The monthly loads are the average of all hourly loads 

including the peak load during a given month. The monthly peak load is found by searching for the maximum monthly 

load. Thus, taking the first month of the synthetic load as an example, the average monthly load is 0.604 kW and the 

peak load is 4.401 kW. The duration of the peak loads is assumed to be 6 hours in 𝐿𝐿2 and 𝐿𝐿3 methods. It is not necessary 

to assume peak load duration in 𝐿𝐿4 methods as the calculation methods follow the hourly loads. In some test cases, the 

peak load durations are reduced to 1 hour or, in the case of Test 2, the actual peak durations are used (see Table 4). Some 

tools require the monthly loads to be entered as cumulative energy values. In this example, the monthly energy load for 

January would then be 0.604×31×24 = 449.376 kWh. In 𝐿𝐿3 methods, the monthly peak is typically superimposed at the 

end of the month. Again, using the synthetic load profile as an example, and referring back to Equation 9, 𝑇𝑇𝑚𝑚,2 (mean 

fluid temperature in the borehole at the end of February) is calculated using 𝑞𝑞𝑚𝑚,1= 0.604 kW, 𝑞𝑞𝑚𝑚,2=0.492 kW, and 

𝑞𝑞ℎ,2=3.707 kW with corresponding durations of 31 days, 28 days minus 6 hours (in some models 28 days), and 6 hours. 



29 
 

It should be noted that only the dominant loads that lead to longer lengths are reported in Table 5 which explains why 

either heating or cooling loads are presented.

4.3. Test 2 – Shonder’s test – 120 boreholes 

Shonder et al. [42] used the data from an elementary school located in Lincoln, Nebraska to perform an inter-model 

comparison. Since this comparison is almost two decades old, it was felt that it needed to be revisited with the current 

state of sizing tools. This test case concerns an installation with a 12×10 borehole field. Boreholes are 73 m deep and 

are spaced 6 m apart. Table 4 presents the loads obtained from the data reported by Shonder et al. [42]. In their article, 

Shonder et al. [42] provide peak building loads but not peak ground loads. They do provide a table of 𝑀𝑀𝐶𝐶𝐶𝐶 values as a 

function of 𝑇𝑇𝑖𝑖𝑖𝑖𝐻𝐻𝐻𝐻 which was used here to convert building loads to ground loads. Heating and cooling 𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶 of 4.09 and 

3.643, for 𝑇𝑇𝐿𝐿 = 4.44 °C and 𝑇𝑇𝐻𝐻 = 35 °C are assumed here but other 𝑀𝑀𝐶𝐶𝐶𝐶 values may have been used by Shonder et al. 

[42]. The monthly peak load durations are assumed equal to the measured values reported by these authors (see Table 

4). Peak load durations of 6 hours are also considered in the comparison. In addition, the shank spacing and pipe thermal 

conductivity are assumed to be 47.1 mm and 0.45 W.m-1.K-1, respectively. The properties of the heat transfer fluid 

(propylene glycol, 22%) are evaluated at 10 °C. As was done by Shonder et al. [42], the bore field is sized for the heating 

case. Test 2 is not particularly severe in terms of borehole-to-borehole thermal interference since there is a relatively 

small annual ground thermal imbalance (1.76 kW). The monthly and peak loads reported in Table 4 are used to generate 

hourly loads as shown in Figure 4 with a 6 hour peak duration.

Figure 4: Hourly ground loads generated from monthly and peak loads for 𝐿𝐿4 methods used in Test 2

4.4. Test 3 – Required length during the first year 

Monzó et al. [1] proposed a methodology, presented earlier (Equation 13), which accounts for monthly loads but that 

still uses the three-pulse approach of 𝐿𝐿2 methods. Their methodology was tested using an hourly, cooling dominated,

ground load profile which will be used as a test case in the present study. The profile, shown in Figure 5, was analysed 
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to obtain monthly averaged and monthly peak values (Table 4) and the three load pulses (Table 5). This profile is 

interesting in that the required length occurs in the first year of operation. Thus, as will be shown in the results section, 

methods that do not calculate the required length in the first year, will lead to inaccurate results. The monthly peak heat 

loads are defined as the maximum heating and cooling loads of each month and their durations are assumed to be 6

hours. In order to simplify calculations, Monzó et al. [1] assumed that every month had an equal duration of 30.42 days. 

However, in this work the monthly ground loads are evaluated based on the exact number of days for each month.

Figure 5: Hourly ground load profile for Test 3

4.5. Test 4 – High annual ground load imbalance 

Test 4 has a relatively high annual ground load imbalance. Building loads for this case are generated using TRNSYS 

based on a building that is part of the TESS library [55]. Figure 6 shows the hourly building load profile. The building 

has an area of 1486 m2 and is assumed to be located in Atlanta. Bernier [19] has shown that this profile has an annual 

ground load imbalance which leads to relatively high values of 𝑇𝑇𝑝𝑝 of the order of +7.0 °C after a 20 year period. Thus, 

this profile should provide a good test to evaluate the long-term borehole thermal interference effects of the various 

tools. Using constant 𝑀𝑀𝐶𝐶𝐶𝐶 values of 4.03 and 3.86 in heating and cooling, respectively, monthly average ground loads 

and monthly peak ground loads are evaluated (Table 4). Finally, the monthly pulses required for 𝐿𝐿3 methods and the 

three pulses required for 𝐿𝐿2 methods are presented in Tables 4 and 5. 

Figure 6: Hourly building loads considered for Test 4
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4.6. Results of the inter-model comparison 

The four test cases are used in an inter-model comparison of twelve different sizing tools covering the range from 𝐿𝐿2 to 

𝐿𝐿4 methods. These sizing tools are listed in Table 6 with their main characteristics. The results of the four test cases are 

presented graphically in Figure 7 while exact lengths are presented in appendix B. It should be noted that some tools 

can not be used for particular tests. Tool B could not be used for Test 1a (with a one hour peak duration), Test 2 and 

Test 4, because it has fixed pulse durations. Also, tool L with an hourly varying 𝑀𝑀𝐶𝐶𝐶𝐶 is only used for Test 1b. 

Table 6: Sizing tools used in the inter-model comparison 
Identifying letter Tool Main characteristics Level 

A Classic ASHRAE sizing 
equation 

- Based on Equation 3 
- Ground thermal resistance evaluated using the ICS 
- 𝑇𝑇𝑝𝑝 evaluated using the modified concentric ring technique [15] 
- First-order multipole for the effective borehole thermal resistance  

𝐿𝐿2 

B Modified ASHRAE sizing 
equation 

- EXCEL tool of Philippe et al. [21] is used (Equation 4) 
- Ground thermal resistance evaluated using the ICS 
- Rectangular geometries 
- Fixed pulse durations 
- Zeroth order multipole for borehole thermal resistance  

𝐿𝐿2 

C Modified + ASHRAE sizing 
equation-B 

- Based on Equation 4 
- Ground thermal resistance evaluated using the ICS 
- 𝑇𝑇𝑝𝑝 evaluated with Equation 5 (Bernier’s approach) 
- User defined pulse durations 
- Not restricted to rectangular geometries 
- First-order multipole for the effective borehole thermal resistance 

𝐿𝐿2 

D Modified + ASHRAE sizing 
equation-F 

- Same as C expect that 𝑇𝑇𝑝𝑝 is evaluated with Equation 6 (Fossa’s approach) 𝐿𝐿2 

E 
(Est) 

Alternative method 

- Based on Equation 7 
- Ground thermal resistance evaluated using g-functions 
- User defined pulse durations 
- Not restricted to rectangular geometries 
- First-order multipole for the effective borehole thermal resistance 
- A modified version, (Est), accounts for short-term effects  

𝐿𝐿2 

F GHX design tool box 

- Based on Equation 7 
- Ground thermal resistance evaluated using g-functions 
- User defined pulse durations 
- Not restricted to rectangular geometries 
- First-order multipole for the effective borehole thermal resistance 

𝐿𝐿2 

G Quasi 𝐿𝐿3 method – Equation 
13 

- Based on Equation 11 
- Effective ground thermal resistances are calculated using the ICS 
- User defined pulse durations 
- Not restricted to rectangular geometries 
- First-order multipole for the effective borehole thermal resistance 

𝐿𝐿3 

H  
(Hst) 

Quasi 𝐿𝐿3 method - Equation 
14 

- Based on Equation 12 
- Effective ground thermal resistances are calculated using g-functions 
- User defined pulse durations 
- Not restricted to rectangular geometries 
- First-order multipole for the effective borehole thermal resistance 
- A modified version, (Hst), accounts for short-term effects 

𝐿𝐿3 

I EED – monthly (v.4.17)  
- g-function based method 
- Pre-defined geometries are used 
- Effective borehole thermal resistance based on 10 multipoles 

𝐿𝐿3 

J GLHEpro (v 5.0)  

- g-function based method 
- Pre-defined geometries 
- Effective borehole thermal resistance based on 10 multipoles 
- Accounts for short-term effects using short-term g-functions 

𝐿𝐿3 

K EED – hourly (v.4.17) 
- g-function based method 
- Pre-defined geometries  
- Effective borehole thermal resistance based on 10 multipoles 

𝐿𝐿4 

L DST 
- Numerical/Analytical model 
- Strictly valid for axisymmetric geometries 
- First-order multipole for the effective borehole thermal resistance 

𝐿𝐿4 
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Test 1a. Synthetic balanced ground load – one borehole  

As shown in Figure 7, three variations of Test 1a are reported. In the first two sets, the peak load durations are assumed 

equal to 6 hours and the borehole thermal resistance is evaluated either internally by the tool or is entered as a constant 

value (=0.13 m.K.W-1) in all tools. In the third set, the peak load duration is assumed to be one hour and the results are 

evaluated with the same borehole thermal resistance (=0.13 m.K.W-1) for all sizing tools.  

 

Figure 7: Inter-model comparison of twelve sizing tools for four test cases. 

An analysis of the first two sets in Test 1a reveals that the results obtained by the various sizing tools are in a relatively 

good agreement. The minimum and maximum lengths in the first set are 54.8 and 62.1 m, respectively. These lengths 

are 6.6% below and 5.9% above the mean value. Tools Est (𝐿𝐿2), Hst (𝐿𝐿3), J (𝐿𝐿3), K (𝐿𝐿4) and L (𝐿𝐿4) give results that are 

lower than the mean. This is most likely due to the fact that Est, Hst and J account for short-term effects (i.e. borehole 

thermal capacity) and that 𝐿𝐿4 tools use hourly values, not a 6-hour peak duration. For 𝐿𝐿2 methods, tool B has a higher 

predicted length because the value of 𝑅𝑅𝑏𝑏 calculated by the tool is higher than other 𝐿𝐿2 tools. The borehole thermal 

resistances evaluated by the tools vary from 0.120 to 0.127 m.K.W-1, a 5.8% difference, as reported in Table B-1. When 

the same value of 𝑅𝑅𝑏𝑏 (=0.13 m.K.W-1) is used for all tools (second set of cases for Test 1a), the minimum and maximum 

lengths are 56.5 m (5.8% below the average) and 63.7 m (6.2% above the average), respectively. It can be seen that 

using an identical borehole thermal resistance for all tools reduces the differences marginally by about 0.5 %. The 

differences among sizing tools in the evaluation of 𝑅𝑅𝑏𝑏 experienced for Test 1a is typical of what was encountered for all 

test cases. In other words, no apparent flaw was detected among tools in the evaluation of 𝑅𝑅𝑏𝑏. Therefore, the remainder 
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of the inter-model comparison will be performed for identical values of 𝑅𝑅𝑏𝑏 for every sizing tool. The reader is referred 

to the spreadsheet which contains the values of 𝑅𝑅𝑏𝑏 obtained by the various tools for every test case. Aside from short 

term effects and the differences in the value of 𝑅𝑅𝑏𝑏, it is difficult to pinpoint other reasons that could explain the 

differences for this second set for Test 1a. One modeling difference that might have an impact is the use of the ICS for 

the evaluation of the ground thermal resistance in some of the tools (A, B, C, D, and G) which implies that axial heat 

transfer effects are not accounted. 

The third block of results for Test 1a is obtained using a peak duration of one hour. As shown in Figure 7, the required 

length decreases and the relative difference among results increases. The minimum and maximum lengths are 39.1 m 

(19.1% below the mean) and 59.7 m (23.5% above the mean). The main reason for these significant differences is related 

to the short term effects (borehole thermal capacity). This was already observed above for the 6 hour peak duration. 

However, the impact is much greater when the peak duration is only one hour as shown with results obtained with tools 

Est (𝐿𝐿2), Hst (𝐿𝐿3) and J (𝐿𝐿3) which have the smallest lengths. If tools E and Est, which are identical except for the 

inclusion of short term effects in Est, are compared, they show a difference of about 14.7%. The magnitude of this 

difference depends on the magnitude of 𝑞𝑞ℎ. For example, if the value of 𝑞𝑞ℎ is doubled and halved (everything else 

remaining the same) the differences in required lengths between tools E and Est increases to 18% and decreases to 9.9%, 

respectively. 

Test 1b. Synthetic balanced building load – one borehole  

The synthetic load is used as a building load in Test 1b. This test is mainly used to detect if 𝐿𝐿3 tools are using heating 

and cooling 𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶 correctly to evaluate ground loads and to test the impact of an hourly varying 𝑀𝑀𝐶𝐶𝐶𝐶 on the results of 

𝐿𝐿4 tools. The calculated lengths are also higher than the ones evaluated for Test 1a because of larger ground loads. Test 

1b is solved by considering one borehole, a six hour peak duration, 𝑅𝑅𝑏𝑏 =0.13 m.K.W-1 and a 10-year design period. As 

shown in Figure 7, the length varies from 71.3 m to 81.3 m, 6.5% below and 6.6% above the average, respectively. 

Similar to Test 1a, tools Est, Hst and J have determined the smallest lengths as they account for the short term effects. 

Tools K and L have also determined small lengths; however, this is mainly due to the fact that they use hourly-based 

loads. The lengths determined by tool L with constant or variable 𝑀𝑀𝐶𝐶𝐶𝐶s have about a 0.8 % difference. So it appears 

from this test that the use of constant 𝑀𝑀𝐶𝐶𝐶𝐶 values evaluated at 𝑇𝑇𝐿𝐿 and 𝑇𝑇𝐻𝐻 is more than adequate to predict the required 

length.  
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Test 2. Elementary school in Lincoln, Nebraska – 120 boreholes 

Test 2 examines the differences among the various tools for a large bore field (12 ×10). It is based on the original 

comparison of Shonder et al. [42]. Sizing is performed for heating for a 10 year design period with identical borehole 

thermal resistances (= 0.113 m.K.W-1) first by assuming a peak load duration equal to six hours and then by using the 

original peak load durations provided by Shonder et al. [42] which are presented in Table 4. 

As shown in Figure 7 for the case in which the peak duration is assumed to be six hours, the results vary from 85.1 m to 

102.0 m which are, respectively, 4.5% below and 14.5% above the mean value. The results calculated using the original 

peak durations vary from 91.1 m to 108.0 m, i.e. 3.6% below and 14.3% above the mean. In both cases, tools Est and F 

have calculated the minimum and maximum lengths, respectively. The length calculated by tool F is about 12 meters 

higher than the next higher value. After examination of the results, it was found that the g-functions evaluated by this 

program are not sufficiently accurate. By ignoring the results of program F, the results vary from 85.1 m to 90.2 m when 

the peak load duration is considered to be six hours and they vary from 91.1 m to 94.9 m when the original peak load 

durations are assumed for each month. In their original paper, Shonder et al. [42] obtained lengths ranging from 65.6 m 

to 87.3 m. As mentioned earlier, it is not clear what values of 𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶 they used to convert building loads to ground loads 

which might explain the observed differences. Nonetheless, it appears that current tools are in closer agreement than in 

the original comparison of Shonder et al. [42]. However, the ground load imbalance is not severe so any deficiency in 

the borehole thermal interference calculation in a tool would not have a significant impact on the results. Test 4 will 

tackle the issue of a large ground load thermal imbalance. Results for tools C and D do not have a significant difference. 

Recall that these tools only differ in the way they calculate 𝑇𝑇𝑝𝑝 (Equations 5 or 6). This behavior can be seen in the other 

test cases for multiple boreholes. Overall, the difference observed between tools C and D is less than 1% for all test 

cases. 

Test 3. Length required in the first year– 49 boreholes 

Test 3 involves the sizing of a 49 borehole field over a 10 year period with a constant value of 𝑅𝑅𝑏𝑏 (= 0.1 m.K.W-1) and 

a six hour peak duration. Tthe design period is selected to be 10 years and the goal is to see if the sizing tools can adapt 

to the fact that the maximum required length occurs during the first year of operation.  

As shown in Figure 7, the required length varies from 85.9 m to 115 m for Test 3. These values are 13.9% below and 

15.3% above the mean. This test shows that 𝐿𝐿2 sizing tools underestimate the required length when the maximum length 
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is required in the first year. Tool A appears to give better results that other 𝐿𝐿2 tools, however the result is due to an 

underestimation of the temperature penalty (+1.18 °C, while the 𝑇𝑇𝑝𝑝 evaluated by other tools is about +2.24 °C). Thus, 

two effects (wrong 𝑇𝑇𝑝𝑝 and inability to size during the first year) tend to somewhat compensate each other for Tool A. 

The same can be said about tool F which appears to give good results but the inaccurate g-function determination 

mentioned earlier has a tendency to compensate for other factors. Surprisingly, tools I and K, which are 𝐿𝐿3 and 𝐿𝐿4 tools 

(thus not constrained by the 10 year period) calculate lengths below the average.  

Test 4. Large annual ground load imbalance– 25 boreholes 

Test 4 is based on the loads used by Bernier [19]. The required length is calculated for a 20 year design period for a 5×5 

borehole field and a borehole thermal resistance of 0.2 m.K.W-1. As mentioned earlier, the annual load is highly 

imbalanced and peak load conditions occur in cooling. As shown in Figure 7, results vary from 93.0 m to 128.9 m which 

represents values that are, respectively, 21.7% below and 8.5% above the mean. Three different group of results can be 

seen. First, results from tools C (𝐿𝐿2), D(𝐿𝐿2), E(𝐿𝐿2), G(𝐿𝐿3), H (𝐿𝐿3), I(𝐿𝐿3), K(𝐿𝐿4), L((𝐿𝐿4) are in good agreement with a 

minimum of 121.0 m and a maximum of 128.9 m, thus a maximum difference of 6%. This tends to indicate that even 

though 𝐿𝐿2 methods appear to be less sophisticated that 𝐿𝐿4 methods, they give similar results. The second group of tools 

account for short-term effects, i.e. tools Est (𝐿𝐿2), Hst (𝐿𝐿3), and J (𝐿𝐿3). The agreement among these tools is excellent 

with calculated lengths of 118.4 m, 117.0 m, and 118.5 m, respectively. Finally, tools A (𝐿𝐿2) and F (𝐿𝐿2) have determined 

lengths that are much lower than the rest of the tools (103.9 m and 93.0 m). These values are, respectively, 13 and 24 m 

lower than next lowest result (117 m). Clearly, these two tools cannot properly account for borehole thermal interaction 

caused by large annual imbalanced loads.  

4.7. Sensitivity analysis 

In this section, a sensitivity analysis is performed on Test 4 to check the variation of five parameters: peak load 

magnitude, 𝑞𝑞ℎ, thermal conductivity, 𝑘𝑘𝑔𝑔, borehole spacing, 𝐵𝐵, ground temperature, 𝑇𝑇𝑔𝑔, and the total number of boreholes, 

𝑁𝑁𝑏𝑏. In this analysis, parameters are varied one at a time, and the new lengths are compared with the original Test 4 

results for each tool. Results are shown in Figures 8.a to 8.e where relative differences from the original Test 4 results 

are shown. Each curve in these Figures is composed of three points including the pivot points representing results 

obtained for the original Test 4. It should be mentioned that results for tool B are not presented because it is unable to 
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calculate a 20-year design period. In addition, it is not possible to change the peak load magnitude for 𝐿𝐿4 tools (since 

the loads are hourly based) and, therefore, they are not included in the analysis of the peak load variation (Figure 8.a).  

 

Figure 8: Sensitivity analysis for five parameters compared to the original Test 4 results obtained by each tool.  

In Figure 8.a, the value of 𝑞𝑞ℎ has been varied by ± 10%. As shown, some tools are more sensitive to peak load variations. 

For example, tool F predicts variations of - 6.5% and +6.5%, while tools G or H show variations about half as important 

(- 3.3% and +4.8%). In Figure 8.b, the original thermal conductivity, 1.9 W.m-1.K-1 is varied upward and downward by 

± 0.4 W.m-1.K-1. Here again, the slopes are different and tools react differently to a change in thermal conductivity. 𝐿𝐿2 

tools are more sensitive to the thermal conductivity variation and they vary on average by +17.0% and -11.3%.Tools F 

and L predict lower variations. The results for tool F vary by +8.6% and -6.5 % and tool A vary by +14.2% and -9.5 % 

and the ones evaluated by tool L vary by +8.1% and -5.9 %. In Figure 8.c, the borehole spacing is varied by ± 2 m. All 

tools exhibit a similar trend except tools A, F, K. First, tool F shows no variations with borehole spacing which seems 

to indicate a problem with the tool. Tool A shows a higher relative difference than other tools when borehole spacing is 

reduced to 6 m but has approximately the same relative difference compared to the other tools when borehole spacing 

is 10 m. This tends to corroborate the fact that tool A cannot accurately predict borehole thermal interference which 

increases as borehole spacing decreases. Tool K behaves much like tool A when the borehole spacing is 6 m and shows 

a smaller relative difference than all the other tools when borehole spacing is 10 m. In Figure 8.d, the original ground 

temperature of 15 ºC is varied by ± 5 ºC. This has the effect of decreasing/increasing the denominator in Equation 1 and 

thereby increasing/decreasing the borehole length. There are also secondary effects occurring here. Indeed, a borehole 

length variation has an impact on the effective ground thermal resistances and also on the value of 𝑇𝑇𝑝𝑝 which are both 

length dependent. For the case where the ground temperature is reduced to 10 ºC (from 15 ºC), tools show about the 

same variations in length (-17.0 % to -18.2 % with an average of -17.9 %).With a ground temperature of 20 ºC (thus 
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reducing the magnitude of the denominator), tools show different variations, from 23.3% to 32.2% with an average of 

27.2%. Finally, the original 5×5 borehole field is changed to 3×3 and 7×7 configurations. All tools show approximately 

the same relative variations when the 7×7 configuration is examined. However, when borehole thermal interference 

becomes important for the 3×3 configuration, tools A (+177.0 %) and F (+177.4 %) show a marked difference when 

compared to the average of all tools (+145.5%).  

 

5. Conclusion 

The present study provides a general methodology for comparing vertical ground heat exchanger sizing tools. In the first 

part of the paper, sizing tools are categorized into five levels (𝐿𝐿0 to 𝐿𝐿4) with increasing complexities: rules-of-thumb 

(𝐿𝐿0), one-pulse (𝐿𝐿1), three-pulse (𝐿𝐿2), monthly-based (𝐿𝐿3), and finally hourly-based annual simulations tools (𝐿𝐿4). The 

calculation methodologies involved in 𝐿𝐿1 to 𝐿𝐿4 methods are presented in details and summarized schematically (see 

Figure 2). Descriptions of some of the available tools are given. Then, the literature on comparative testing of sizing 

tools is reviewed. The most important study to date remains the work of Shonder et al. [42] but it is almost two decades 

old and is revisited here with current sizing tools.  

The second part of the paper presents the four test cases selected for the inter-model comparison. Test 1 uses a 

synthetically-generated balanced ground/building load for a single borehole for a 10-year design period; Test 2 revisits 

the Shonder et al. [42] comparison which consists of a 12×10 borehole field for a heating dominated load; Test 3 involves 

a 7×7 geometry with a load profile which lead to a maximum required length in the first year of operation; Test 4 

involves sizing of a 5×5 configuration with a high annual ground load imbalance for a 20-year design period. A total of 

twelve different sizing tools (described in Table 6), some of them commercially-available, are then compared against 

each other. A summary of the comparison is presented in Figure 7. These tools cover the 𝐿𝐿2 to 𝐿𝐿4 range with three of 

them including short-term effects (i.e. borehole thermal capacity). A spreadsheet has been constructed to archive the 

various loads of each test and report the results obtained with the various tools. A link is provided at the end of the paper 

to get access to this spreadsheet.  

Test 1 is actually composed of four sub-tests. In the first sub-test, the borehole thermal resistance, 𝑅𝑅𝑏𝑏, is evaluated by 

each tool and the peak duration is set at six hours. Results indicate a difference of 5.8% in the evaluation of 𝑅𝑅𝑏𝑏 among 

all tools. This difference is typical for all the tests considered in this study and the reminders of the tests are performed 

assuming the same value of 𝑅𝑅𝑏𝑏 for all tools. When the same value of 𝑅𝑅𝑏𝑏 (=0.13 m.K.W-1) is used for all tools, the 
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minimum and maximum lengths are 56.5 m (5.8% below the average) and 63.7 m (6.2% above the average), 

respectively. Tools that include short-term effects tend to calculate smaller lengths while longer lengths are predicted 

by tools that evaluate effective ground thermal resistances using the cylindrical heat source solution which neglects axial 

heat transfer in boreholes. When the peak duration is reduced to one hour, short-term effects are much more important 

and results indicate that minimum and maximum lengths are 39.1 m (19.1% below the mean) and 59.7 m (23.5% above 

the mean). The fourth sub-test reveals that tools can correctly convert building loads to ground loads. Furthermore, it 

appears that using a constant value of 𝑀𝑀𝐶𝐶𝐶𝐶 evaluated at the design heat pump inlet temperature, 𝑇𝑇𝐿𝐿 and 𝑇𝑇𝐻𝐻 , to convert 

building loads to ground loads gives essentially the same results as the length obtained using a variable 𝑀𝑀𝐶𝐶𝐶𝐶.  

For Test 2, and using the peak durations provided by Shonder et al. [42], the results vary from 91.1 m to 108.0 m, i.e. 

3.6% below and 14.3% above the mean. The upper limit of 108.0 m is reduced to 94.9 m when the results of one of the 

tools are excluded. When compared to the original comparison of Shonder et al. [42], it appears that current tools are in 

closer agreement. However, this test is not severe with a relatively small annual ground load imbalance. 

For Test 3, the required length varies from 85.9 m to 115 m. These values are 13.9% below and 15.3% above the mean. 

It is shown that all of the 𝐿𝐿2 tools as well as one 𝐿𝐿3 and one 𝐿𝐿4 tool were unable to detect that the maximum required 

length is needed in the first year.  

In Test 4, the cooling dominated load used by Bernier [19] is applied to check if the sizing models can account accurately 

for the thermal interactions between the boreholes when the annual ground load is relatively highly imbalanced. The 

calculated lengths vary from 93.0 m to 128.9 m which represents values that are, respectively, 21.7% below and 8.5% 

above the mean. One group of tools, which includes 𝐿𝐿2, 𝐿𝐿3 and 𝐿𝐿4 tools, shows a relatively good agreement with 

minimum and maximum values of 121.0 and 128.9 m., a 6% difference. This tends to indicate that even though 𝐿𝐿2 

methods (three-pulse method) appear to be less sophisticated that 𝐿𝐿4 methods (hourly simulations), they give similar 

results if used with the correct set of inputs. A second group of tools that account for short-term effects show excellent 

agreement with calculated lengths of 118.4 m, 117.0 m, and 118.5 m, respectively. Finally, two tools have determined 

lengths that are much lower than the rest of the tools (103.9 m and 93.0 m). Clearly, these two tools cannot properly 

account for borehole thermal interaction caused by a large annual ground load imbalance.  

In the final part of the paper, a sensitivity analysis is performed on Test 4. The main conclusion of this sensitivity analysis 

is that tools vary differently to a change in parameters. For example, when the peak load magnitude is varied by ± 10%, 

some tools predict length variations of + 6.5% and -6.5%, while other tools predict variations about half as important.  



39 
 

This work provides a set of test cases that can be used to compare other software tools against the ones used in the 

present study with the ultimate goal of improving the reliability of design methods for sizing vertical ground heat 

exchangers. 
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6. Nomenclature and Acronyms 

Capital letters 

𝐵𝐵 = distance between the boreholes (m) 

𝑀𝑀𝑝𝑝𝑓𝑓 = specific heat capacity of the circulating fluid (kJ.kg-1K-1) 

𝑀𝑀𝑝𝑝𝑔𝑔𝑔𝑔= specific heat capacity of the backfilling material (kJ.kg-1K-1) 

𝑀𝑀𝑝𝑝𝑝𝑝= specific heat capacity of the pipe (kJ.kg-1K-1) 

𝑀𝑀𝐶𝐶𝑝𝑝𝐻𝐻, 𝑀𝑀𝐶𝐶𝑝𝑝𝐶𝐶= heat pump capacities in heating and cooling (kW) 

𝑀𝑀𝐶𝐶𝐶𝐶𝐻𝐻, 𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶= heat pump coefficient of performances in heating and cooling (---) 

𝐷𝐷 = distance between the ground surface and the top of boreholes (m) 

𝑃𝑃𝑠𝑠𝑠𝑠= short circuit heat loss factor in the borehole (---) 

𝐺𝐺= thermal response factors calculated by the infinite cylindrical source model (---) 

𝐻𝐻 = borehole depth (m) 

𝐿𝐿 = total overall length of boreholes (m) 

𝐿𝐿0, 𝐿𝐿1, 𝐿𝐿2, 𝐿𝐿3, 𝐿𝐿4  = classification of sizing models (---)_ 

𝐿𝐿𝑠𝑠, 𝐿𝐿𝑀𝑀, 𝐿𝐿𝑗𝑗= length of single and multiple heat exchangers and the length of pipe in the 𝑗𝑗th ground layer (m) 

M = mass (kg) 

𝑁𝑁𝑏𝑏 = total number of boreholes (---) 

𝑁𝑁𝑈𝑈 = number of U tubes in each borehole (---) 

𝐶𝐶𝐿𝐿𝑃𝑃𝑚𝑚= part load factor during the design month (---) 

𝑅𝑅𝑏𝑏 = thermal resistance of the boreholes without thermal short-circuiting (m.K.W-1) 

𝑅𝑅𝑏𝑏∗  = effective thermal resistance of the boreholes (m.K.W-1) 

𝑅𝑅𝑠𝑠 = contact thermal resistance (m.K.W-1) 

𝑅𝑅𝑝𝑝= pipe thermal resistance (m.K.W-1) 

𝑅𝑅𝑞𝑞 = ground thermal resistance caused by the peak load (m.K.W-1) 
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𝑅𝑅𝑠𝑠𝑗𝑗= ground thermal resistance related to the 𝑗𝑗th ground layer surrounding the borehole (m.K.W-1) 

𝑅𝑅𝑦𝑦, 𝑅𝑅𝑚𝑚, 𝑅𝑅ℎ= yearly, monthly and hourly peak load ground thermal responses (m.K.W-1) 

𝑅𝑅𝑇𝑇𝑅𝑅𝑖𝑖= ratio of run time to the cycle time of month 𝑖𝑖 (---) 

𝑅𝑅𝑜𝑜𝑛𝑛𝑓𝑓,𝐻𝐻, 𝑅𝑅𝑜𝑜𝑛𝑛𝑓𝑓,𝐶𝐶= heating and cooling runtime fractions (---) 

𝑆𝑆𝐺𝐺 = specific gravity of the fluid (---) 

𝑇𝑇𝐻𝐻 = maximum inlet fluid temperature to the heat pump (°C) 

𝑇𝑇𝐿𝐿 = minimum inlet fluid temperature to the heat pump (°C) 

𝑇𝑇𝑓𝑓,𝑎𝑎𝑎𝑎𝑔𝑔, 𝑇𝑇𝑚𝑚 = mean fluid temperature in the borehole (°C) 

𝑇𝑇𝑓𝑓,𝑝𝑝𝑝𝑝𝑎𝑎𝑘𝑘 = peak fluid temperature in the borehole (°C) 

𝑇𝑇𝑔𝑔, 𝑇𝑇𝑔𝑔𝑘𝑘= initial temperature of the ground and the average ground temperature in month 𝑘𝑘 (°C) 

 𝑇𝑇𝑖𝑖𝑖𝑖,ℎ𝑝𝑝 = inlet fluid temperature of the heat pump (°C) 

𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜,ℎ𝑝𝑝 = outlet fluid temperature of the heat pump (°C) 

𝑇𝑇𝐻𝐻 = Temperature penalty (°C) 

𝑊𝑊= compressor power at peak load condition (kW) 

 

Small letters 

𝑑𝑑𝑝𝑝 = half of the center-to-center spacing between the legs of a U-tube (mm) 

𝑔𝑔𝑁𝑁,𝑔𝑔1= thermal response factors evaluated for N and 1 boreholes by the finite line source method (---) 

ℎ𝑠𝑠𝑜𝑜𝑖𝑖𝑎𝑎= internal convection coefficient in pipes (W.m-2K-1) 

𝑘𝑘𝑓𝑓 = fluid thermal conductivity (W.m-1K-1) 

𝑘𝑘𝑔𝑔 = soil thermal conductivity (W.m-1K-1) 

 𝑘𝑘𝑔𝑔𝑔𝑔 = thermal conductivity of the backfilling material (W.m-1K-1) 

𝑘𝑘𝑝𝑝 = pipe thermal conductivity (W.m-1K-1) 

�̇�𝑚𝑓𝑓 = flow rate of the circulating fluid (kg.s-1) 
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𝑞𝑞𝑔𝑔′′ = geothermal heat flux (W.m-2) 

𝑞𝑞𝑦𝑦 (𝑞𝑞𝑎𝑎), 𝑞𝑞𝑚𝑚, 𝑞𝑞ℎ= yearly, monthly and hourly building or ground loads (kW) 

𝑞𝑞𝑔𝑔𝑝𝑝𝑗𝑗,𝑝𝑝𝑝𝑝𝑎𝑎𝑘𝑘= net peak ground load (kW) 

𝑟𝑟𝑏𝑏 = borehole radius (mm) 

𝑟𝑟𝑝𝑝,𝑖𝑖 = inner radius of U-pipe legs (mm) 

𝑟𝑟𝑝𝑝,𝑜𝑜 = outer radius of U-pipe legs (mm) 

𝑜𝑜𝑦𝑦, 𝑜𝑜𝑚𝑚, 𝑜𝑜ℎ = duration of yearly, monthly and hourly peak load pulses (h) 

 

Greek letters 

𝛼𝛼𝑔𝑔 = soil thermal diffusivity (m2.day-1) 

𝜌𝜌𝑓𝑓 = density of the heat carrier fluid (kg.m-3) 

𝜇𝜇f = viscosity of the heat carrier fluid (Kg.m-1s-1) 

 

Acronyms 

ASHRAE = American Society of Heating, Refrigerating and Air-Conditioning Engineers 

DST = Duct ground heat STorage  

FLS = Finite Line heat Source 

GSHP = ground source heat pump systems 

GHE or GHX = ground heat exchangers 

HVAC  = Heating, ventilation, and air conditioning 

ICS = Infinite Cylindrical heat Source 

IGSHPA = International Ground Source Heat Pump Association 

ILS = Infinite Line heat Source  

MLAA = Multiple Load Aggregation Algorithm  

NWA = National Water Well Association 
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Appendix A 

Table A-1 presents test cases found in the literature and used for validation of different sizing tools.  

Table A-1: Sizing test cases found in the literature 

Level Reference Main caracteristic Bore field Solved by 

L1 Sanaye, and Niroomand 
[56] Synthetic problem Single borehole Modified version of IGSHPA 

method 
The model is modified to account for the thermal short-circuit and the convection effects. The method is applied to a synthetic example and then 
the results are compared with the ones evaluated by the IGSHPA and ASHRAE methods and the recommendations presented by Kavanaugh and 
Calvert [57]. The results had respectively 1.01, 3.9 % and 7.51 % difference. 

L2 Kavanaugh [11] An office building in 
Birmingham 5×6 GchpCalc, developed based 

on Eq. 3 
Designed for 10 years. Load pulses are calculated using a design day in cooling and the annual equivalent full load hours of each zone. Constant 
COPs are applied. The equivalent diameter concept is used to calculate the borehole thermal resistance. Solved with and without ground water 
movements. Some design alternatives for minimizing costs are also examined. 

L2 Italian standard UNI 
11466 [58] 

A residential and an office 
buidlings 3 and 15 boreholes ASHRAE equation (Eq. 3) 

Designed for 10 years. Uses monthly average building loads, annual heating and cooling equivalent full hours, part load factors, constant COPs. 
The maximum heating and cooling power of the system are used as peak loads. 

L2 and 
L3 Staiti and Adriana [59] A residential and an office 

buidlings 

Single borehole and various 
rectangular patterns from 1×5 to 

4×5 

ASHRAE classical equation 
and GLHEpro 

Designed for 10 years, The authors applied two sizing models to the two sizing problems introduced in Italian standard and checked the effects of 
various design alternatives such as the two temperature limits of the heat pumps, borehole spacing and the thermal conductivity of the ground. 
Compared to GLHEPRO, the results show that the ASHRAE sizing equation over estimates the boreholes length up by up to 27%. 

L2 Bernier [60] Building loads evaluated by a 
synthetic equation ----- Modified ASHRAE equation 

Designed for 10 years. Building loads are converted to ground loads using a constant COP. It is suggested to calculate ground loads using hourly 
simulations instead of a design day load. It is also suggested to use the real borehole diameter instead of the equivalent U-tube diameter. In the 
modified ASHRAE equation, the part load factor (PLF) is eliminated, the bore field configuration or borehole spacing is not specified and a value 
is just assumed for the temperature penalty. 

L2 Lamarche [61] Cooling dominated building Single borehole Alternative method (Eq. 7) 
It is showed that the effect of short time g-functions appears both in 𝑅𝑅𝑔𝑔𝑚𝑚 and 𝑅𝑅𝑔𝑔ℎ. For the term 𝑞𝑞ℎ(𝑅𝑅𝑔𝑔ℎ + 𝑅𝑅𝑏𝑏) in numerator of Eq. 7, three 
alternatives are suggested and by each one the problem is solved and the final results are compared. 
Designed for 10 years. The problem is introduced to show the impact of short-term effects on the overall length. The sizing problem introduced 
by Philippe [21] is used with some modifications. It is showed that by neglecting the thermal capacity of the boreholes the length is oversized. 

L2 Li et al. [50] Four cases introduced by Cullin 
et al. [47] 1×3, 2×3, 2×6 and 7×8 

An iterative alternative model 
based on the ASHRAE 

equation 
Level 3, Designed for various numbers of years, It is shown that results evaluated by the proposed method are shorter (Due to using short time 
effects) and in three cases closer to the actual lengths compared to the values determined by Cullin et al. [47] by using ASHRAE equation. 

L2 Fossa and Rolando [62,63 
64], Fossa [65] Cooling and heating cases Various arrangements 

Modified ASHRAE equation 
(Eq. 4) with correlated 
temperature penalties 

In these papers, a series of correlated equations are developed and modified for evaluation of the temperature penalty required in ASHRAE 
equation.  
 

L3 Bank [66] Synthetic problem 3×5  EED 
The test case is not solved as a sizing problem. It is introduced to show the effects of various design parameters as the average and peak heat 
loads, balanced or unbalanced loads, boreholes configuration and boreholes spacing. It is first solved based on the heating loads and next based 
on both heating and cooling loads. The system is sized for one and twenty five years and as the system has a small net annual ground load the 
results do not vary significantly. 

L3 
Hellstrom and Sanner [67], 

Hellström et al. [68] and 
Sanner [69] 

Various synthetic problems ----- EED 

These papers introduce the functionality of different versions of the EED. 

L3 Spitler [32] A two floor office in Ottawa 
divided into seven zones 5×9 GLHEPRO 

Designed for 12 years. Building loads are converted to ground loads using a correlation for the COP which depends on the inlet temperature. 
Ground loads are relatively balanced. The relatively small difference between Tg and TL caused the boreholes length to be sensitive to TL. 

L3 Sutton et al. [70] An elementary school located in 
Lincoln, Nebraska 12×10 Multilayer bore field design 

algorithm (MLBDA) 
The model is based on Hellström’s duct storage model [71] but can be applied to a series of geological layers. 
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Level 3. Designed for 10 years. Problem based on the work of Shonder et al. [42] except that two heating and cooling scenarios are defined for the 
building, Ground loads are applied, The peak heat loads are assumed to occur on the 21st of each month and their duration is assumed to be 8 
hours. For the heating dominated case, the model is compared against five sizing tools including the DST model but for the cooling case only the 
DST model is used for comparisons. 

L3 Ping et al. [72] Commercial building in the city 
of Shandong in China ----- GEOSTAR 

The sizing program uses the finite line source and a quasi-three dimensional models for the heat transfer inside and outside of the boreholes, the 
quasi-3d model accounts for the fluid temperature variation along the boreholes depth and the thermal interaction between the boreholes legs. 
The sizing problem is related to a real GSHP installation. Two values are reported for the cooling and heating peak loads but the peak durations 
are not reported. Borehole configuration is not mentioned. The system is sized for 20 years and the effects of certain parameters as the ground and 
grout thermal conductivities, borehole spacing, shank distance and annual load imbalance load are examined. More details about the GEOSTAR 
program are provided by Cui et al. [73]. 

L4 Lamarche et al. [74] Residential building in 
Montreal 2×2 Hourly load simulation design 

model (HLSD) 
The HLSD model simulates the thermal response of the hourly loads with the use of inverse Laplace transform of the g-functions instead of using 
load aggregation. The method can take into account the short time effects and can accept variable COPs and determine iteratively the ground loads 
at each hourly step. 
Designed for 10 years using building loads. The problem is also solved using DST, EED and GS2000. GS2000 is a level three sizing model which 
uses cylindrical and line source models. For HLSD and DST models hourly loads and for EED and GS2000 monthly average and peak heat loads 
are used. The ground heat loads are evaluated iteratively based on the COP values provided by TRNSYS and HLSD models. For EED and GS2000, 
they are evaluated based on the average COP values. The borehole thermal resistance evaluated by the DST was used in EED and HLSD 
simulations. For GS2000, it is not possible to enter the borehole thermal resistance as an input. Some parameters are also missing: i.e. 𝐵𝐵, 𝑀𝑀𝑝𝑝,𝑔𝑔, 𝑅𝑅𝑏𝑏 
, �̇�𝑚 and peak durations. 

L4 Capozza et al. [75, 76] 
Heating dominated office in 

Padova and a cooling 
dominated office near Milan 

16 boreholes in a semi L-shape 
pattern, 51 boreholes in a semi 

rectangular pattern 

CARM model and ASHRAE 
equation (Eq. 3) 

CARM is a thermal capacity and resistances model; it is not a sizing model. However, it determines the entering fluid temperature of the heat 
pumps on hourly basis. The authors used their CARM method to model two real cases and also check the effects of possible modifications such 
as increasing the number of boreholes or the use of hybrid systems. The ASHRAE equation is used to size the boreholes and then the obtained 
lengths are compared with real boreholes lengths. 
Designed for 10 years. Building loads are used with constant COPs. In both problems the peak loads and their durations are not reported. For the 
51 borehole case, only the monthly average loads were available. The temperature penalty required in ASHRAE sizing equation is obtained by 
the model suggested by Capozza et al. [77]. For the 16 borehole case, the ASHRAE equation underestimated the result by 4% while for the other 
case it oversized the boreholes by 41.5%. The authors explain this difference due to inaccuracy of the ground loads. 
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Appendix B 

Table B-1: Results presented in Figure 7 in addition to the mean and individual differences from the mean 

Scenario: Sizing 
model A B C D E Est F G H Hst I J K L 

COPc 
L 

COPv mean 

Level  L2 L2 L2 L2 L2 L2 L2 L3 L3 L3 L3 L3 L4 L4 L4  
Test 1-a, 6 hr peak 
-𝑅𝑅𝑏𝑏 calculated by 

tool 

L (m) 61.7 62.1 60.7 60.7 57.8 54.8 58.0 60.7 57.8 54.8 59.8 56.7 56.8 58.7 ---- 58.6 
Dif. % 5.2 5.9 3.5 3.5 -1.4 -6.6 -1.1 3.5 -1.4 -6.6 2.0 -3.4 -3.1 0.1 ----  

Rb (m-K/W) 0.122 0.127 0.122 0.122 0.122 0.122 0.126 0.12 0.12 0.12 0.127 0.127 0.127 0.125 ---- 0.123 
Test 1-a, 6 hr peak 
-𝑅𝑅𝑏𝑏=0.13 (m-K/W) 

L (m) 63.7 62.7 62.7 62.7 59.8 56.6 59.0 62.6 59.7 56.5 60.0 57.3 57.0 59.7 ---- 60.0 
Dif. % 6.2 4.5 4.5 4.5 -0.3 -5.7 -1.7 4.3 -0.5 -5.8 0.0 -4.5 -5.0 -0.5 ----  

Test 1-a, 1 hr peak 
-𝑅𝑅𝑏𝑏=0.13 (m-K/W) 

L (m) 53.4 ---- 52.8 52.8 46.9 40.0 43.0 52.7 46.8 39.9 44.1 39.1 57.0 59.7 ---- 48.3 
Dif. % 10.5 ---- 9.3 9.3 -2.9 -17.2 -11.0 9.1 -3.2 -17.4 -8.7 -19.1 18.0 23.5 ----  

Test 1-b, 6 hr peak 
-𝑅𝑅𝑏𝑏=0.13 (m-K/W) 

L (m) 81.3 80.0 80.0 79.9 76.2 72.1 76.2 75.9 80.0 71.3 76.7 72.6 72.6 74.8 74.2 76.3 
Dif. % 6.6 4.9 4.9 4.8 -0.1 -5.5 -0.1 -0.5 4.9 -6.5 0.6 -4.7 -4.8 -1.9 -2.7  

Test 2, 6 hr peak 
-𝑅𝑅𝑏𝑏=0.113 (m-K/W) 

L (m) 89.7 89.1 90.2 90.2 86.9 85.5 102.0 90.1 86.7 85.1 88.0 87.2 87.3 88.9 ---- 89.1 
Dif. % 0.7 0.0 1.3 1.3 -2.4 -4.0 14.5 1.2 -2.7 -4.5 -1.2 -2.1 -2.0 -0.2 ----  

Test 2, various peak 
-𝑅𝑅𝑏𝑏=0.113 (m-K/W) 

L (m) 94.6 ---- 94.9 94.8 92.2 91.4 108.0 94.7 92.1 91.1 93.6 93.2 93.2 94.5 ---- 94.5 
Dif. % 0.1 ---- 0.4 0.3 -2.4 -3.3 14.3 0.2 -2.5 -3.6 -0.9 -1.3 -1.4 0 ----  

Test 3, 6 hr peak 
-𝑅𝑅𝑏𝑏=0.1 (m-K/W) 

L (m) 101.9 87.9 92.4 92.6 87.2 85.9 115.0 114.2 111.1 109.0 87.8 109.6 87.2 114.4 ---- 99.7 
Dif. % 2.2 -11.9 -7.3 -7.1 -12.6 -13.9 15.3 14.5 11.4 9.3 -12.0 9.9 -12.6 14.7 ----  

Test 4, 6 hr peak 
-𝑅𝑅𝑏𝑏=0.2 (m-K/W) 

L (m) 103.9 ---- 125.8 125.1 122.5 118.4 93.0 125.1 121.7 117.0 123.0 118.5 121.0 128.9 ---- 118.8 
Dif. % -12.5 ---- 5.9 5.3 3.1 -0.3 -21.7 5.3 2.5 -1.5 3.6 -0.2 1.9 8.5 ----  
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