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Abstract
Droughts are natural but temporary imbalances of wa-

ter availability, consisting of a persistent lower-than-aver-
age precipitation, of uncertain frequency, duration and 
severity, of unpredictable or difficult to predict occur-
rence, resulting in diminished water resources availability 
and impacts on natural and man-made ecosystems. 

To successfully cope with drought there is a need to 
understand the characteristics and consequences of re-
lated phenomena; however, differences in the percep-
tion of drought lead to difficulties in adopting risk man-
agement.

The effectiveness of drought risk management de-
pends upon drought monitoring, drought prediction and 
warning capabilities, and means to provide information 
to users, as well as on related awareness of populations.

For drought monitoring and warning, drought indices 
are useful. The SPI has been extensively used in Portugal 
and stochastic methods have been developed for pre-
diction of drought class transitions to be used for early 
warning. For agricultural purposes, the PDSI was modi-
fied and successfully referred to the rainfed olive crop, 
thus originating the MedPDSI. Its evaluation against the 
SPI and PDSI shows the appropriateness of this index.

Relative to information systems, a variety of approach-
es were used to support deficit irrigation. However, its 
economic feasibility is questionable and more studies 
are required to assess ways to improve irrigation under 
drought.
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Introduction
Droughts are natural but temporary imbalances 

of water availability, consisting of a persistent lower-
than-average precipitation, of uncertain frequency, 
duration and severity, of unpredictable or difficult 
to predict occurrence, resulting in diminished water 
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resources availability, and reduced carrying capacity 
of the ecosystems (Pereira et al., 2009). Many other 
definitions of drought exist; generally, these defini-
tions clearly state that drought is mainly due to the 
break down of the rainfall regime, which causes a 
series of consequences, including agricultural and 
hydrological hazards which result from the severity 
and duration of droughts. It is important to recog-
nise the less predictable characteristics of droughts, 
mainly their initiation and termination, as well as 
their severity. 

Drought impacts in agriculture need to be ap-
proached through managing the risk associated 
with the occurrence of droughts and with the re-
spective impacts. Drought impacts are higher when 
the demand is close to, or even higher than the 
long term average availability of water. Drought ef-
fects are especially severe when the water resource 
development is limited and there is not sufficient 
water storage capacity to have stored water from 
high flow periods to supplement the low flows dur-
ing drought. Drought impacts are also greater when 
pollution and poor water management negatively 
impact the access to water sources. In other words, 
drought impacts are higher when associated with 
natural aridity of the climate and with man induced 
water scarcity (Pereira et al., 2009).

It is important to recognise the less predictable 
characteristics of droughts, with respect to their initi-
ation and termination, as well as their severity. These 
characteristics make drought both a hazard and a 
disaster. Drought is a hazard because it is an accident 
of unpredictable occurrence, part of the naturally 
variable climate system and that it occurs with some 
known or recognised frequency. Drought can be a 
disaster because it corresponds to the failure of the 
precipitation regime, causing the disruption of the 
water supply to the natural and agricultural ecosys-
tems as well as to other human activities. 
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Water scarcity due to drought needs appropri-
ate approaches. To successfully cope with drought 
there is a need to understand the characteristics 
and consequences of those phenomena which 
make water scarcity due to drought very different 
from that caused by aridity. Dealing with water 
scarcity situations resulting from aridity usually re-
quires the establishment of engineering and man-
agement measures that produce conservation and 
perhaps the seasonal augmentation of the available 
resource. On the other hand, droughts require the 
development and implementation of preparedness 
and emergency measures, in other words, risk man-

agement strategies. Differences in the perception of 
drought (Figure 1) lead to difficulties in adopting 
those strategies. 

As shown in Figure 1, precipitation deficits are 
first detected and cause meteorological droughts. 
Next detected are soil water deficits due to lack of 
rainfall to refill the soil water storage, thus produc-
ing the so-called agricultural droughts. When pre-
cipitation deficits continue the river flow regimes 
are affected and hydrological droughts occur. Con-
tinuing this situation, surface water storage is af-
fected causing a water supply drought. Last to be 
perceived are the ground-water deficits usually as-
sociated with long periods of below average pre-
cipitation. The time to perceive those deficits relates 
to the hydrologic processes involved, which require 
different time durations, less to deplete soil water 
storage, much more to impact storage in large aqui-
fer systems. A farmer quickly perceives the onset of 
a drought while an urban citizen may not perceive 
it until water is not available at home. 

The peculiar characteristics of droughts require 
use of specific measures (Figure 2). The complex-
ity and hazardousness of droughts make their 
management particularly difficult and challeng-
ing. Adopting risk management is a must, together 
with clearly defined preparedness measures. Since 
droughts have pervasive long term effects and their 
severity may be very high, they also require appro-
priate evaluation of impacts.
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Fig. 1. Differences in perception of drought that lead to different 
concepts and definitions of drought and to differences in the 
adoption of risk management strategies
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Fig. 2. General measures to cope with droughts
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Drought Risk Management 
The effectiveness of drought risk management 

depends upon the drought monitoring facilities, 
drought prediction capabilities, and means to pro-
vide information to users, as well as on the aware-
ness of populations of drought water scarcity. This 
is exemplified in Figure 3 for agriculture.

Drought monitoring and Drought Watch Systems 
are often discussed but action is rarely taken. At-
tempts have been made in several places but sus-
taining interest between droughts has proved dif-
ficult. Monitoring means keeping an ongoing watch 
and attempting to alert interested parties when a 
drought appears to be developing. Maintaining a 
historical record is part of drought monitoring.

For drought monitoring and warning, meteor-
ologists and hydrologists have developed drought 
indices, which depend on hydro-meteorological 
parameters or rely on probabilities of drought oc-
currence. Adopting different indices at the regional 
level with support of mapping probably has the 
best potential.

Drought monitoring may use: a variety of vari-
ables relative to weather, surface hydrology, reser-

voirs, groundwater, water quality, soil moisture and 
vegetation, diverse observation tools land or satel-
lite based; modelling tools for computing drought 
indices, exploring teleconnections, developing pre-
dictions, produce public information and desirably 
information management tools to support best 
users practices to cope with drought, e.g., Figure 3 
relative to agriculture. 

The controversy over perceptions of drought 
(Figure 1), and the consequent difficulties in defin-
ing them and their characteristics, does not help 
decision and policy makers to plan for droughts. 
Lack of clearly agreed definitions makes it difficult 
to implement preparedness measures, to apply 
timely mitigation measures when a drought occurs, 
or to adequately evaluate drought impacts. There-
fore, despite the logic behind monitoring and warn-
ing, these are often not applied even when drought 
variables are observed and indices are computed. 

Drought indices have been one of most useful 
tools for understanding and deal with droughts be-
cause enabling analyses of their temporal and spatial 
variability and supporting drought monitoring and 
information. Drought indices categorize the sever-
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Fig. 3. Drought monitoring, prediction, and information, warning system and information technologies in the framework of drought risk 
management in agriculture
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ity of droughts and help to follow-up their variability 
in time and space. However, the complexity of the 
drought phenomenon, involving several physical 
factors, e.g., meteorological, hydrological and hydro-
geological, as well as a wide variety of environmen-
tal and socio-economic impacts, makes it impossible 
to develop indices that relate with all these issues. 
Therefore, drought indices have been developed to 
respond to specific perspectives such as meteorolog-
ical, agricultural, hydrological, and managerial. Per-
haps the most known is the Palmer Drought Severity 
Index (PDSI), developed by Palmer (1965), that takes 
into consideration precipitation, evapotranspiration 
and soil moisture conditions, thus it is of interest 
for meteorological, agricultural, hydrological, and 
managerial purposes. At present, the most popular is 
probably the Standard Precipitation Index (SPI) that 
uses only precipitation and may be computed with 
various time scales (McKee et al. 1993). To consider 
both the effects of precipitation and evapotranspira-
tion related to known vegetation, we developed the 
MedPDSI that refers to the olive crop and may be 
useful for agricultural purposes (Pereira et al., 2007). 

Confident forecasts of drought are still only a 
hope, primarily among researchers, but short time 
drought predictions are important for warning 
farmers about the probable initiation or establish-
ment of a drought, about its continuation or its 
probable termination in a few months. This infor-

mation may help them to make decisions to cope 
with that predicted situation. Short time drought 
predictions may also be used to alert water manag-
ers and decision or policy makers about the need to 
enforce appropriate preparedness measures before 
a drought is effectively installed, or to prepare for a 
post-drought period. To support early warning, an al-
ternative is to predict the drought classes transitions 
with one up to three months lead time.

To cope with droughts requires preparatory 
measures, contingency plans that support the time-
ly implementation of mitigation measures and that 
forecast impacts which are likely to be experienced 
once the drought becomes established and evolves. 
Associating agricultural vulnerability to drought 
(Popova et al., 2011) with an early warning system 
may lead to improve monitoring and information to 
agricultural users and, mainly, to the adequate and 
timely implementation of mitigation measures and 
to control drought impacts This implies risk-based 
drought policies and effective monitoring and early 
warning systems. However this is only possible for 
a society that has strong institutions and where 
public participation forces policy-makers to adopt 
drought risk policies and make the society resilient 
to drought (Wilhite and Buchanan-Smith 2005). 
When technological and political capabilities are 
lacking and public participation is poor, the society 
is vulnerable to the full effects of drought (Figure 4). 
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Fig. 4. Drought risk management in a drought vulnerable or a drought resilient society
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Challenges to cope with drought are evidently not 
only of technological nature but refer to the society, 
the policies and the politics. A democratic society is 
then more able to cope with drought than a society 
where public participation is poor or non existing. 

Recognition that drought is inevitable and that 
its frequency of occurrence and even its intensity 
can be known provides opportunity to prepare for 
most of its effects. Drought is not an unexpected 
catastrophic occurrence. Careful study of available 
weather data allows understanding the normal vari-
ability of climate, particularly very wet and very dry 
periods (droughts). Education programs are needed 
to make sure no-one is surprised when the next 
drought occurs.

Drought Indices and Predicting
Drought Class Transitions
Considering the objectives of drought indices, 

these must provide appropriate information on 
the characteristics of drought and wetness peri-
ods at any location, i.e., must be able to represent 
the respective climate anomalies. When the objec-
tive is meteorological or relative to water supply it 
is enough to consider the precipitation anomalies 
such as with the SPI. When impacts on vegetation 
and crops are considered, then it is appropriate to 
identify the anomalies with help of the respective 
soil water balance. This is the approach with the 
PDSI, often considered an appropriate agricultural 
drought index (Szép et al., 2005). However, not the 

potential evapotranspiration (ETp) but the actual ET 
(ETa) as influenced by drought must be considered. 
This is the approach with the MedPDSI (Figure 5).

ETa for the MedPDSI is computed as the actual 
evapotranspiration of a rainfed olive crop while with 
PDSI is computed from the Thornthwaite equation 
and an old fashion soil water balance (Alley, 1984). 
The soil water balance with MedPDSI is performed 
with the ISAREG model (Pereira et al., 2003) when 
knowing the soil depth and water holding charac-
teristics and crop parameters, mainly the crop co-
efficient, Kc. The dual Kc approach is applied. The 
basal Kcb is monthly dependent and the evapora-
tion coefficient Ke is both depending on the month 
rainfall and the previous rain (Pereira and Rosa, 
2010). ETo with MedPDSI is computed with the PM 
equation with temperature only (see Popova et al., 
2006) ETa with the MedPDSI is larger than with PDSI 
in winter, spring and late autumn and is smaller in 
summer and early autumn when rainfall is lower. ETa 
peaks are detected first with MedPDSI as correspond-
ing with the Spring season while peaks for PDSI oc-
cur later, however when actually there is no soil water 
that could justify such behaviour. This is a reason for 
adopting MedPDSI. 

The procedures for computing the Z anomaly, 
including for parameters calibration, as well as for 
computing the index from the anomaly with MedP-
DSI are not changed relative to the original Palmer 
index. It results a similar behaviour of indices (Fig-
ure 6).
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However, it is apparent that MedPDSI tends to 
detect droughts before than using the original ín-
dex, which is beneficial in monitoring and for early 
warning. In addition, the MedPDSI relates well with 
the SPI computed for a time scale of 9 or 12 months 
(Rosa et al., 2010). For the period 1941-2006 and 
the entire country, it was observed that the MedP-
DSI identified more times, earlier and more severe 
droughts than SPI or PDSI (Paulo et al., 2010).

Moreira et al. (2008) developed a methodology 
for SPI-based drought category prediction using 
loglinear models. Paulo and Pereira (2008) used 
the Markov chains for the stochastic prediction of 
drought class transitions. Both approaches allow 
a lead time of 2 to 3 months for early warning of 
droughts in Southern Portugal. More recently, the 
Markovian approach was extended to the full coun-
try and adopted for both the SPI and MedPDSI 
(Paulo and Pereira, 2008). A Markovian approach 
was also developed to the processes governing at-
mospheric regime transitions between positive and 
negative phases of the North Atlantic Oscillation or 
Arctic Oscillation, which were associated with de-
terministic forecasts of the monthly-SPI at 1, 2 and 3 
months of forecast lag. Further research along these 
lines is continuing.

Irrigation to Cope with Droughts.
Economic Impacts of Water Deficits
When a drought occurs, the demand for water 

increases despite water availability is then limited. 
Therefore, deficit irrigation is often adopted. To 
build appropriate irrigation schedules under deficit 
irrigation it is required to understand well, through 
experimentation, the relationships between water 
use and crop yields. Good examples are the studies 
developed in Bulgaria, which could be recently ana-
lysed through modelling and used to build-up ap-
propriate irrigation schedules (Popova et al., 2006b; 
Popova and Pereira, 2011). However, the economic 
results of deficit irrigation may be very different. 

Studies for cereals in southern Portugal (Rod-
rigues and Pereira, 2009; Rodrigues et al., 2010) 
show that deficit irrigation results depend upon: 
a) soil fertility associated with farmer husbandry; 
b) climate demand and crop water requirements; 
c) irrigation technology and performance; d) water 
price; e) irrigation production costs; f ) yield value. 
As shown in Figure 7, deficit irrigation may not be 
a profitable solution but just the way farmers may 
find to loose less in drought years.

The example in Figure 7 shows that profitability 
with deficit irrigation may not be achieved. It also 

Fig. 6. Time series of MedPDSI (——) and original PDSI (.........) for Beja
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shows that the ratio YPCR decreases when water 
costs increase, decreases when the demand for 
water increases (particularly for the drought years), 
and decreases when the irrigation performance is 
lower. In reality, with current maize prices, it is dif-
ficult with fully irrigated crops: farmers need to at-
tain a land productivity threshold of 12 ton per ha. 
With drought farmers have to valour all sub-prod-
ucts, e.g., for animal feeding. Under drought water 
is insufficient for fully irrigate the cropped area and 
the option may be to adopt a reduced deficit in as 
much as possible of the area. Water managers often 
refer the need to increase then the water produc-
tivity instead of maximizing land productivity. But 
this is only possible with a limited deficit. There is 
a strong need to understand better the economic 
relations of irrigation, including those on costs and 
benefits of adopting a better performing irrigation 
system and relative to irrigation water costs.
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