
UNIVERSITY OF THESSALY

DIPLOMA THESIS

Visual Perception, State Estimation &
Automated Control for Self-Driving Cars

Author:
Eleftherios Panagiotis
LOUKAS

Supervisors:
Panagiota

TSOMPANOPOULOU

Nikolaos BELLAS

Georgios STAMOULIS

A thesis submitted in fulfillment of the requirements
for the degree of Diploma Thesis

in the

Volos, Greece, June 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Thessaly Institutional Repository

https://core.ac.uk/display/228081191?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.uth.gr/en/index.php
https:/github.com/eloukas
https:/github.com/eloukas
https://www.e-ce.uth.gr/department/faculty/yota/
https://www.e-ce.uth.gr/department/faculty/yota/
https://faculty.e-ce.uth.gr/nbellas/
https://www.e-ce.uth.gr/department/faculty/georges/

i

“If the game shakes me or breaks me, I hope it makes me a better man.”

Christopher G. Wallace

ii

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ

Περίληψη

Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Διπλωματική Εργασία

Οπτική Αντίληψη, Εκτίμηση Κατάστασης & Αυτόματος ΄Ελεγχος για
Αυτοκινούμενα Οχήματα

Ελευθέριος Παναγιώτης Λούκας

Η πολυεκατομμυριούχος βιομηχανία των αυτοκινούμενων οχημάτων πρόκειται να φτάσει

στις ζωές μας και η πρόκληση της αυτονομίας απαιτεί πολύχρονη έρευνα από κορυφαία

ιδρύματα και επιχειρήσεις. Η εργασία αυτή διερευνά και αναλύει τις σύγχρονες τεχνικές

που χρησιμοποιούνται στα εφαρμοσμένα συστήματα ελέγχου, την εκτίμηση της κατάστα-

σης και την οπτική αντίληψη για τα οχήματα χωρίς οδηγό. Το περιβάλλον προσομοίωσης

CARLA χρησιμοποιείται για γνήσια δημιουργία δεδομένων. Αρχικά, παρουσιάζουμε τον
τρόπο με τον οποίο οι αυτόματοι ελεγκτές PID και Stanley μπορούν να αυτοματοποιήσουν
την κίνηση και το σύστημα πορείας. ΄Επειτα, συγχωνεύουμε διάφορους αισθητήρες, όπως

το IMU, το LIDAR και το GPS, εφαρμόζοντας το Extended Kalman Filter, προκειμένου
να εκτιμήσουμε αποτελεσματικά την κατάσταση και την τοποθεσία ενός έξυπνου αυτο-

κινήτου. Στη συνέχεια, επεκτείνουμε την έρευνα ανιχνεύοντας την κίνηση της κάμερας

μεταξύ διαδοχικών εικόνων, επιτυγχάνοντας οπτική οδομετρία. Τέλος, χρησιμοποιούμε

το βαθύ νευρωνικό δίκτυο κατάτμησης του CARLA και το συνδυάζουμε με κλασσικές
τεχνικές όρασης υπολογιστών προκειμένου να κατανοήσουμε με ακρίβεια την οδική σκη-

νή για διάφορα σενάρια όπως την εξίσωση επιπέδου του δρόμου, την εκτίμηση λωρίδων

και υλοποιούμε ένα σύστημα σύγκρουσης. Τα ευρήματα αυτής της μελέτης παρέχουν μια

δομημένη προσέγγιση για την επίλυση τέτοιων προβλημάτων και μπορεί να υποδεικνύουν

μεγάλη σημασία για μηχανικούς έξυπνων συστημάτων.

Λέξεις-Κλειδιά: αυτοκινούμενα οχήματα, όραση υπολογιστών, CARLA, τεχνητή νοημο-
σύνη, βαθιά μάθηση, μηχανική μάθηση, αυτόνομα αμάξια, συστήματα αυτομάτου ελέγχου·

HTTP://WWW.UTH.GR/
https://www.e-ce.uth.gr/

iii

iv

UNIVERSITY OF THESSALY

Abstract

Department of Electrical and Computer Engineering

Diploma Thesis

Visual Perception, State Estimation & Automated Control for
Self-Driving Cars

by Eleftherios Panagiotis LOUKAS

The multi-billion dollar industry of self-driving cars has arrived, and the challenge
of autonomy requires a vast amount of research from top institutions and enter-
prises. This thesis explores and analyzes the state-of-the-art engineering practices
used in applied control systems, state estimation, and visual perception for driver-
less vehicles. The CARLA Simulation Environment is exploited for genuine data
generation. At first, we investigate how PID and Stanley controllers can automate
the driving task of throttling, braking, and steering. Then, we fuse various sensors
such as IMU, LIDAR, and GPS by applying the Extended Kalman Filter in order to
estimate a smart car’s state and location efficiently. Next, the investigation is ex-
tended by tracking the camera motion between frames, achieving visual odometry.
Finally, we leverage CARLA’s deep segmentation neural network and combine it
with classical computer vision techniques in order to accomplish accurate road scene
understanding for different scenarios: ground plane fitting, lane estimation and an
example collision system. The findings of this study provide a structured approach
to the solution of such problems and may indicate importance to intelligent systems
engineers.

Keywords: self-driving cars, computer vision, CARLA, artificial intelligence, deep learn-
ing, machine learning, autonomous vehicles, automated control systems;

HTTP://WWW.UTH.GR/EN/INDEX.PHP
https://www.e-ce.uth.gr/?lang=en
https:/github.com/eloukas

v

Acknowledgements
First and foremost, I would like to show appreciation to my supervisor Prof. Yota
Tsompanopoulou for giving me the chance to work on this thesis, which is a project
that I wanted to work since a long time. Her availability, friendliness and guidance
had a prominent role to the development of this thesis and not only. She trusted me
and helped me grow in many scenarios during my university years and I would like
to render my warmest thanks to her. I would also wish to express my gratitude to
my advisors Prof. Nikolaos Bellas, for his assistance and all the discussions we had
in his office, and Prof. Georgios Stamoulis, for his cordiality and kindness in all of
these years.

In addition, I would like to thank Prof. Emeritus Elias N. Houstis for his invaluable
support during these years and the motivation that he helped me have in order to
study the inspiring field of data science and machine learning.

Furthermore, I am always grateful to my family for their continuous and uncondi-
tional support. They helped me become a strong independent person, always with
the will to discuss, travel and explore.

Last but not least, I would like to wish the best to all my ’old’ friends from my
hometown Larissa, the ’international’ ones that I made in Lisbon and especially all
my ’new’ buddies in Volos. Each one of them was there to help me in my worst and
best moods during these five years and they hold a significant place in my heart. I
truly hope that we will stay connected no matter what happens and that everyone
will chase and win their dreams.

Especially, I thank Valina, for all her love and support all this time.

vi

Contents

Περίληψη ii

Abstract iv

Acknowledgements v

1 Introduction 2
1.1 Motivation . 2
1.2 Thesis Statement and Contributions . 3
1.3 Thesis Structure . 4

2 CARLA: An Open Simulator for Autonomous Driving Research 6
2.1 About . 6
2.2 Datasets . 7
2.3 Built-in Semantic Segmentation Neural Network 8

3 An Automated Control System 10
3.1 Longitudinal Vehicle Control: PID Controller 10

3.1.1 Proportional Response . 11
3.1.2 Integral Response . 11
3.1.3 Derivative Response . 11
3.1.4 Tuning . 11

3.2 Lateral Vehicle Control: Stanley Controller 12
3.2.1 Heading error . 12
3.2.2 Cross-track error . 13
3.2.3 Stanley Control Law . 13

3.3 Experiment #1: Automating a vehicle 14
3.3.1 Longitudinal Control with a PID Controller 14
3.3.2 Lateral Control with the Stanley Controller 15
3.3.3 Implementation & Evaluation . 16

4 State Estimation & Localization 20
4.1 Sensors . 20

4.1.1 Camera . 20
4.1.2 LIDAR . 21

vii

4.1.3 Global Navigation Satellite Systems and Inertial Measurement
Units . 21

4.2 Linear Kalman Filter . 22
4.3 Extended Kalman Filter . 23
4.4 Experiment #2: Sensor Fusion and Localization 24

5 Visual Perception 28
5.1 3D Computer Vision . 28

5.1.1 Reference Frames . 29
5.1.2 Stereo Cameras and Depth Perception 30
5.1.3 Transformations . 31

5.2 Image Features, Detectors & Descriptors 32
5.2.1 Scale Invariant Feature Transform (SIFT) descriptors 33
5.2.2 Feature Matching with FLANN 34
5.2.3 Experiment #3: Visual Odometry 34
5.2.4 Canny Edge Detector . 40
5.2.5 Hough Line Transform . 41

5.3 Artificial Neural Networks . 43
5.3.1 Convolutional Neural Networks 44

5.4 Object Detection . 45
5.5 Semantic Segmentation . 47
5.6 Experiment #4: Road Scene Understanding with the use of a Neural

Network . 48
5.6.1 Experiment #4.1: 3D Drivable Surface Estimation with RANSAC 48
5.6.2 Experiment #4.2: Semantic Lane Estimation 53
5.6.3 Experiment #4.3: Computing Minimum Distance to Impact: A

Collision System . 55

6 Conclusion 60
6.1 Summary . 60
6.2 Future work . 60

Bibliography 62

viii

List of Figures

2.1 CARLA’s simulation environment [3] 6
2.2 CARLA’s environment and Client-Server Example [3] 7
2.3 CARLA Simulation Environment along with Semantic Segmentation

and depth cameras [3] . 8

3.1 Overview of a PID Controller, where the process variable is denoted
as u . 10

3.2 PID Tuning effects [6]. 12
3.3 The cross-track’s error relationship to the reference path, the heading

error, and the current pose [27]. The heading error is noted by ψ. 13
3.4 Flowchart of a PID controller for a self-driving car [27] 14
3.5 Generated trajectory . 18
3.6 The Y-axis determines the controlled forward speed in m/s while CARLA’s

timestamps compose the X-axis . 19

4.1 LIDAR [13] . 21
4.2 Satellites are the components used for GNSS localization. [13] 21
4.3 Flow chart of the Iterative process [22] 23
4.4 Overview of the Extended Kalman Filter Process as stated in Research-

Gate. 24
4.5 High-level overview of the sensor fusion experiment [26] 25
4.6 Comparison of the estimated trajectory to the ground truth one 26
4.7 The effect of dropping out the measurement sensors and relying only

on the motion model. 27

5.1 The pinhole camera model. 28
5.2 The world, camera and image reference frames. 29
5.3 Transformation from the world frame to the camera frame. 29
5.4 An example stereo camera model [2] . 31
5.5 Example of calculating the disparity and the depth from two identical

cameras. 31
5.6 Example of an applied Harris Corner Detector in CITYSCAPES [24] . . 32
5.7 A feature descriptor applied in CITYSCAPES [24] 33
5.8 An overview of the SIFT Descriptor [19]. 33
5.9 CARLA Image frame 1 . 35

ix

5.10 CARLA Image frame 2 . 36
5.11 FLANN-based Matching Frame 1 (Unfiltered) 36
5.12 FLANN-based Matching Frame 1(Filtered) 37
5.13 FLANN-based Matching Frame 2 (Filtered) 37
5.14 Keypoints motion visualization in a frame. 38
5.15 Keypoints motion visualization in a second frame. 39
5.16 Camera motion estimation . 39
5.17 Canny Edge Detection Example [17] . 40
5.18 The lines intersection that is being exploited by the Hough transfor-

mation [18] . 42
5.19 A neural network example [20]. 43
5.20 A convolutional neural network [20]. 45
5.21 An object detection example for driverless vehicles [24]. 46
5.22 A ConvNet for object detection [24]. 46
5.23 A Semantic Segmentation example [24]. 47
5.24 CARLA’s Exported Image 1 . 48
5.25 CARLA’s Exported Image 2 . 49
5.26 CARLA’s Exported Image 2 . 49
5.27 A Segmentated Image by CARLA’s Neural Network [3] 49
5.28 Visualized inliers after the proposed RANSAC + SVD methodology. . 52
5.29 A 3D space representation of visualized inliers. 53
5.30 The Semantic Lane Estimation (Unfiltered) 54
5.31 The Semantic Lane Estimation (Filtered) 55
5.32 Unreliable results in object detection . 56
5.33 The result of filtering out object detection’s unreliable results with the

use of semantic segmentation . 57
5.34 A showcase of calculating the distance until impact with the use of 3D

image representation . 57

2

Chapter 1

Introduction

1.1 Motivation

The transportation system nowadays could be considered broken. More than one
million people die every year due to manual driving car accidents. Sometimes, peo-
ple are driving drunk or drugged. However, even while sober, the human’s eye
distraction is enough for a fatal car accident to occur. Traffic is also another big
contributing factor to this statement, a problem occurring almost in any big city.
The driving ecosystem is getting revolutionized by two types of companies: shared-
economy enterprises like Lyft or Uber, and autonomous car manufacturers like Tesla
or Waymo. Such companies have felt the need for eliminating car ownership and in-
creasing access to mobility while building the automated future of transportation,
which needs to be personalized, reliable, and money-saving. In conclusion, vehicles
should be fully autonomous, eliminating any risk of danger, in contrast to manual
driving, having a substantial impact on safety, equity, and environmental issues in
our society.

Many enterprises are working on large-scale deployments, such as Waymo’s robo-
taxis, Amazon’s driverless delivery, and Tesla’s Autopilot. The industry of driverless
cars has accomplished many milestones throughout these years, and more of it is
still expected. For sure, the era of machine and deep learning is one major contribut-
ing factor to this development. The amount of data produced is getting multiplied
every single day. In fact, 90% of the world’s data has been generated over the last
two years. Of course, this is due to the massive and mainstream applications of
the internet in our everyday lives. Services that are data-correlated include social
media, smart homes, cloud storages, and more. Internet-Of-Things (IoT) is rapidly
accelerating the growth of the data and information that is easily accessible, which
can be fed into machine learning algorithms in order to produce outputs. So, the
era of deep learning and its relation to the typical IoT applications have revolution-
ized the Artificial Intelligence field, and surely, it is one big player in the self-driving
car industry, where market researchers predict more than twenty million driverless
vehicles on the road by 2025.

Chapter 1. Introduction 3

However, such a future should not be considered ’utopian’. AI systems might some-
times fail under non-human interpretable controls. Also, they might be biased in
non-ethical social ways. For example, security and personal information should be
protected in every way. Engineers need to consider many aspects, both technical
and social or political ones, before developing a system like this.

The self-driving car industry promises a vast income generation for the societies,
consisting of many billions of dollars while reducing the number of fatal accidents
taking place. Besides, it is transforming the way people travel, making them no more
responsible for steering, throttling, braking or detecting possible danger, allowing
them to spend their free time in any way they desire during a car journey. This can
be achieved through selective processing of a smart car’s information, which gets
collected through its sensors, one of its key components.

1.2 Thesis Statement and Contributions

Researchers from leading organizations contribute solutions and findings for many
problems and questions that are related to the driverless vehicle ’idea’, every single
day.

There are many questions that this research-driven community tries to answer, like:

• Longitudinal Controlling: When to throttle? When to brake?

• Lateral Controlling: When to steer? How much to steer?

• State Estimation & Localization: Where am I?

• Computer Vision & Scene Understanding: Where can I drive? Where are
the lanes? Where is the sidewalk? Is the car in the opposite lane approaching
dangerously?

Inevitably, the most powerful answers to such questions are hidden under most en-
terprises’ intellectual property or top-notch conferences.

This thesis focuses on exploring solutions to the problems as mentioned earlier,
which are related to vehicle control automation, state estimation, and localization,
along with visual perception for road scene understanding.

In more detail, this current exploitation contributes to the following:

• We begin by generating samples from CARLA’s highly realistic environment.
Such patterns include geographic information from LIDAR and GPS sensors,
along with speed and orientation from the Inertial Measurement Unit of the
car. For the visual perception scenarios, screenshots from CARLA’s camera
are used, along with information from the depth and segmentation neural net-
work API that CARLA provides.

Chapter 1. Introduction 4

• In the automation scenario, we implement a PID controller for the throttling
and braking operations, having as measured process variable the velocity of
the car for each time frame. The Stanley controller is then introduced for the
steering action of the vehicle, which takes positions of the known map and
creates the ideal journey path for the car. We then compare it to the ground
truth trajectory.

• Next, having generated data through a test drive, we try to determine where
the car is in the world frame by localizing it, which is essential for automated
controlling. Explicitly, we define an accelerated motion model, using data from
the IMU, and fuse them with the position estimates from the GPS and LIDAR
sensors, by applying the Extended Kalman Filter technique. We also visualize
the effects of sensors dropping out to showcase the importance of sensor fusion
in the task of a vehicle’s localization.

• A remarkable part of this thesis is related to the visual perception of self-
driving cars. At first, we extend the aforementioned state estimation scenario
and explore how camera information can be used to localize in the vehicle
frame, accomplishing visual odometry with stereo cameras. In the latter part,
we leverage CARLA’s segmentation neural network and combine its informa-
tion to estimate lanes and drivable surfaces in 3D, using popular computer
vision algorithms. Last but not least, we exploit the 3D information from the
car’s camera and merge it with object detection, filtering out unreliable results
in order to showcase how collision safety can be attained.

1.3 Thesis Structure

The rest of this dissertation is organized as follows:

Chapter 2 provides a showcase of the CARLA environment, its segmentation deep
neural network, and the generation of the datasets.

Chapter 3 describes the methodology for the PID and Stanley controller in the task
of automating the vehicle’s motion, both longitudinally and laterally.

Chapter 4 explores Extended Kalman Filtering, an excellent technique for sensor
fusion. In our case, the data for the motion model is provided through CARLA’s
IMU while the measurement positions are given from its LIDAR and GPS sensors.

Chapter 5 focuses on processing camera data for various tasks. First, visual odom-
etry for localization is achieved by estimating the camera motion between frames.
Next, we present various computer vision approaches in combination with CARLA’s
segmentation neural network to emphasize road scene understanding for road and
lanes estimation, along with the development of a collision system in order to avoid
danger impact.

Chapter 1. Introduction 5

Chapter 6 summarizes the thesis and concludes it.

6

Chapter 2

CARLA: An Open Simulator for
Autonomous Driving Research

2.1 About

Research in autonomous urban driving is blocked by the costs of infrastructure and
many logistical difficulties in the real, physical world. Developing and maintaining
even one driverless robot car requires notable supplies and human resources. Be-
sides, a single vehicle is insufficient for collecting the required data that cover the
plenitude of corner cases that must be treated for development [3].

FIGURE 2.1: CARLA’s simulation environment [3]

.

CARLA (Car Learning to Act) is an open simulator for urban driving. CARLA is
developed to encourage development of self-governing civil driving systems. The
simulation platform supports flexible setup of sensor suites and provides data that
can be used to design and develop driving strategies, such as GPS coordinates,
speed, acceleration, and detailed information on infractions or collisions. Also,

https://carla.readthedocs.io/en/latest/cameras_and_sensors/

Chapter 2. CARLA: An Open Simulator for Autonomous Driving Research 7

a wide range of conditions about the environment can be specified, including time
of the day, weather, and more [3].

CARLA is written in C++ code and rendered in Unreal Engine, which outputs a
high-resolution, realistic simulation. It supports code scripts integration through its
Python Client-Server API, which we are going to use extensively for the experiments
of this thesis.

FIGURE 2.2: CARLA’s environment and Client-Server Example [3]

.

2.2 Datasets

CARLA can be exploited to generate the datasets for each experiment. CARLA
supports a recording script (recording.py) which logs all individual measurements,
and anyone could modify it to their needs to generate specific data types. Also, it
provides functions so we can output exclusive screenshots from the stereo cameras
through its API. The documentation to Connecting a Python client is outside the scope
of this thesis; although, it can be found on CARLA’s website [3].

For the automated control simulation, we have a dataset with 3 features. The first
two attributes display the ground truth X, Y position of a car driving in a racetrack
map, and they are generated through a ’test’ drive. The third cell is the reference
velocity of the vehicle. The map of the current world in CARLA’s simulation en-
vironment can be retrieved by map = world.get_map() while the waypoints can be
retrieved by waypoint = map.get_waypoint(vehicle.get_location()). The reference
velocity is arbitrarily edited.

∣∣∣∣∣∣∣∣∣∣
x1 y1 v f 1

x2 y2 v f 2

..
xN yN v f N

∣∣∣∣∣∣∣∣∣∣
(2.1)

https://carla.readthedocs.io/en/0.8.4/connecting_the_client/

Chapter 2. CARLA: An Open Simulator for Autonomous Driving Research 8

For the localization scenario, we use data from the Inertial Measurement Unit of
CARLA’s sensor which contains a StampedData object with the IMU specific force
and rotational velocity data in each time frame as long as data from the GNSS and
LIDAR sensors which contain the X, Y, Z position measurement for each time frame
it’s available. Once again, the Python API from CARLA is exploited to get the infor-
mation of the actor (vehicle). Example commands include actor.get_location() and
actor.get_acceleration().

For the visual perception scenarios, frames of CARLA’s camera sensor are exported.
For the visual odometry task, we use fifty-two subsequent screenshots. For the road
scene understanding, we use three image frames where other vehicles or pedestri-
ans are in sight. The objects are denoted as sensor.Image objects. It is noted that
each frame or screenshot is synchronized with its depth map from CARLA’s Camera
depth map output and CARLA’s Semantic Segmentation output by using CARLA’s
background.save() command.

For the record, other datasets are becoming available as time passes by, meaning that
they could be used and contribute to the literature, like the KITTI Vision Benchmark
Suite or comma.ai’s comma2k19 dataset which provides over 33 hours of commute
in California’s 280 highway.

2.3 Built-in Semantic Segmentation Neural Network

CARLA’s "Semantic Segmentation" camera classifies every object in the view by dis-
playing it in a different color according to the object class. For example, pedestrians
appear in a different color than vehicles or sidewalks. Actually, it is a convolutional
neural network that can do multiclass classification and provide its outputs through
the API, thus creating the semantic segmentation camera sensor which produces
carla.Image objects.

FIGURE 2.3: CARLA Simulation Environment along with Semantic
Segmentation and depth cameras [3]

.

https://carla.readthedocs.io/en/0.8.4/cameras_and_sensors/#camera-depth-map
https://carla.readthedocs.io/en/0.8.4/cameras_and_sensors/#camera-depth-map
https://carla.readthedocs.io/en/0.8.4/cameras_and_sensors/#camera-semantic-segmentation
http://www.cvlibs.net/datasets/kitti/
http://www.cvlibs.net/datasets/kitti/
https://github.com/commaai/comma2k19

Chapter 2. CARLA: An Open Simulator for Autonomous Driving Research 9

The perception stack of CARLA is built upon a semantic segmentation network
based on RefineNet [10]. The network is trained to classify each pixel in the image
into one of the following semantic categories:

C = road, sidewalk, lane marking, dynamic object, miscellaneous static [3]

CARLA’s highly citated paper states that their network is trained on 2,500 labeled
images produced in the training environment using CARLA. The output of their
segmentation network is used to compute an obstruction mask that aims to include
pedestrians, vehicles, and other hazards [3]. Also, CARLA’s semantic segmenta-
tion neural network can estimate the likelihood of being at an intersection by using
a binary scene classifier (intersection/no intersection) [7]. The neural network of
CARLA has been trained on 500 images for the two classes of intersection and no
intersection.

10

Chapter 3

An Automated Control System

3.1 Longitudinal Vehicle Control: PID Controller

A proportional–integral–derivative controller or, in short, PID controller, is a con-
trol loop feedback mechanism. These controllers are widely used in the industry
of control systems. A PID controller calculates an error value e(t) as the difference
between a desired variable (denoted setpoint SP) and a measured actual variable
(denoted process variable PV). Such PID controllers attempt to correct the actual
variable to its desired one based on its proportional, integral, and derivative terms
(denoted P, I, and D).

Practically, it is an automated way to correct a function in the control system respon-
sively. We are going to use such a PID controller later in our experiment in order
to automate the throttling and braking operations for the autonomous vehicle. The
cruise control on an everyday car could form an example. For example, ascending a
hill would lower speed if only the engine power applied was constant. In reality, this
does not happen due to the controller’s PID algorithm, which restores the measured
speed to the desired speed with almost minimal delay [29] .

FIGURE 3.1: Overview of a PID Controller, where the process variable
is denoted as u

Chapter 3. An Automated Control System 11

3.1.1 Proportional Response

The proportional component of the controller is the difference between the set point
variable (SP) and the process variable (PV). This difference can be defined as the er-
ror term. The proportional gain (Kp) determines the ratio of output response to the error
signal. In general, increasing the proportional gain will increase the speed of the control
mechanism response. Nonetheless, if the gain of the proportional component is re-
ally large, the process variable will start oscillating[15]. If Kp gets increased more
and more, the oscillations then will become even larger and the system’s signal will
become unstable and may even oscillate out of control.

Proportional Response = Kp ∗ e(t) (3.1)

3.1.2 Integral Response

The integral component I gives a correction proportional to the integral of the error
and its goal is to reduce the tracking error near to zero. The Integral Gain is denoted
as Ki [15].

Integral Response = Ki ∗
∫ t

0
e(t)dt (3.2)

3.1.3 Derivative Response

The derivative component causes the output to decrease if the PV is increasing quick
enough. The response of the derivative component is essentially proportional to the
rate of change of the actual variable. The gain to the derivative response is denoted
as Kd. Increasing the derivative time Td parameter will increase the control system
response speed. Most practical control systems in the industry use minimal deriva-
tive time (Td) because the Derivative Response is highly sensitive to noise in the process
variable signal. If the sensor feedback signal is noisy or if the control loop rate is too slow, the
derivative response could even make the control system unstable [29].

Derivative Response = Kd ∗
de(t)

dt
(3.3)

3.1.4 Tuning

The operation of setting the PID gains to optimal values for a control system is called
tuning. Most of the times, the gains can be defined by a trial and error method or

Chapter 3. An Automated Control System 12

others like the Zeigler-Nichols one, which heuristically sets the integral and deriva-
tive gains to zero to find the ultimate gain for Kp. Control System Designers may
sacrifice one characteristic of their control loop for another, according to their needs.

The following figure describes how tuning Kp, Ki, Kd affects the closed loop response
or else, the control system:

FIGURE 3.2: PID Tuning effects [6].

3.2 Lateral Vehicle Control: Stanley Controller

The problem of steering is equal to the one of having the car to follow the desired
path. Lateral Controllers are responsible for creating paths or estimating trajectories.
Generally, they define an error relative to the desired path, which they try to mini-
mize to zero while satisfying the input constraints. Also, they may have additional
dynamic considerations to balance forces that are applied from the environment to
the car.

In this section, we are going to introduce a full geometric controller, the Stanley
Controller. It is the path tracking approach that Stanford University’s team designed
for their automobile in the DARPA Grand Challenge [21].

3.2.1 Heading error

The term heading error defines the angle measurement by which the vehicle should
steer, and it is relative to the desired trajectory. To define the angle, a vehicle ref-
erence point is needed. Stanley uses the front axle’s center as the reference point
[21].

Chapter 3. An Automated Control System 13

The desired heading of a vehicle in physics is defined as δ(t), when the heading
relative to the trajectory is defined as ψ(t), where t is the time frame.

3.2.2 Cross-track error

Cross-track error, noted by e, is the distance from the vehicle reference frame to the
closest point on the reference path.

FIGURE 3.3: The cross-track’s error relationship to the reference path,
the heading error, and the current pose [27]. The heading error is

noted by ψ.

The rate of the cross-track error’s change is calculated as:

e(t) = v f (t) ∗ sin(ψ(t)− δ(t)) (3.4)

3.2.3 Stanley Control Law

Stanley’s approach to the heading control has three requirements combined. The
first requirement is to steer to align the vehicle heading with the desired heading,
which is proportional to the heading error.

δ(t) = ψ(t) (3.5)

Then, the goal is to steer in order to eliminate the cross-track error:

δ(t) = tan−1 k ∗ e(t)
v f (t)

(3.6)

Chapter 3. An Automated Control System 14

The gain k is determined experimentally. The formula is substantially proportional
to the error e(t) and inversely proportional to the speed of the vehicle v f (t). The use
of the inverse tangent is to limit the effect for significant errors, as their paper states
[21].

Of course, a vehicle has limitations on its steering angles. For example, it can not
steer by 180 degrees. That’s why Stanford’s team consider minimum and maximum
steering angles [δmin, δmax].

By combining the three above requirements, the Stanley Control Law finally formu-
lates as:

δ(t) = ψ(t) + tan−1 k ∗ e(t)
v f (t)

(3.7)

where

δ(t) ∈ [δmin, δmax]. (3.8)

3.3 Experiment #1: Automating a vehicle

So, for our experiment, we use a dataset containing an X, Y, position, and speed for
an UnrealEngine map in the simulator. These are generated through a test drive in
CARLA, as explained in Chapter 3. The map that is used is the RaceTrack map in
CARLA, which contains no third objects so the car can not collide with anything.

3.3.1 Longitudinal Control with a PID Controller

The control loop system that we designed for the CARLA’s vehicle contains a PID
controller, concerning the longitudinal control of. Its flowchart is presented below,
in Fig. 3.4.

FIGURE 3.4: Flowchart of a PID controller for a self-driving car [27]

.

In our demonstration the low-level controller is fully controlled by CARLA, mean-
ing that we only have to design the PID (high level) controller. CARLA handles
everything else.

Chapter 3. An Automated Control System 15

The parameters used contain the desired or reference speed vd, the vehicle actual
speed v and the acceleration input u.

The PID controller is equal to the following:

u = Kp ∗ (vd − v) + Ki ∗
∫ t

0
(vd − v)dt + Kd ∗

d(vd − v)
dt

(3.9)

The gain parameters for the PID Controller are the Kp, KI , and the KD variables.
After many iterations of trial-and-error experimentation, we set them equal to 1, 0.1,
and 0.1 accordingly.

The CARLA API has two variables that define the longitudinal control of the car, the
Throttle position Tp and the Brake position Bp.

If the acceleration input is equal or greater than zero, then we set the Brake Position
as 0 and the Throttle position as u.

While if it is negative, then we only want the car to brake, meaning that we set the
brake position equal to −u.

Algorithm 1: Connecting the PID controller to CARLA
Result: Returns estimated velocity based on the PID Controller results

1 for each time frame do
2 If u>= 0: Tp = u, Bp = 0
3 If u< 0: Tp = 0, Bp = −u

4 end

3.3.2 Lateral Control with the Stanley Controller

For the lateral control, we first calculate the difference between the pose of the ve-
hicle and the desired pose (in radians). The actual and the desired orientation or
angles of the vehicle can be calculated as θ = atan2(y, x) with the NumPy pack-
age [16]. The atan2(y, x) command calculates the element-wise arc tangent of y/x
choosing the quadrant correctly. It is used to define the heading error:

ψ(t) = path line angle− actual angle (3.10)

For the next step, the crosstrack error is calculated :

e(t) = min(dist(carxy, waypoints)2) (3.11)

Chapter 3. An Automated Control System 16

where dist is the Euclidean distance between the points. The car’s xy positions are
provided for each time frame by the CARLA simulation environment while the orig-
inal waypoints are already known from the start.

Having the cross-track error e, we can then calculate the cross track steering formula
explained above and provide the following steering input to CARLA:

δ(t) = ψ(t) + tan−1 k ∗ e(t)
v f (t)

(3.12)

keeping
δ(t) ∈ [−1.22, 1.22]

as CARLA API’s steering limits in radians and k equal to 0.1, as presented in the
original paper from Stanford’s team [21].

3.3.3 Implementation & Evaluation

The above techniques were implemented in Python, using the NumPy package in
a Jupyter Notebook environment and inputs extensively from the CARLA API. As
mentioned in Chapter 2, communication to the CARLA simulation environment was
implemented through the Client-Server API and this mechanism was exploited for
the whole dataset generation.

In the following snippet, we will showcase the main algorithm inside a CARLA
environment.

PID C o n t r o l l e r
dt = t − s e l f . vars . previous_time
e r r o r = np . abs (v_desired − v)

propor t iona l = s e l f . vars . kp * e r r o r
i n t e g r a l = s e l f . vars . k i * s e l f . vars . i n t e g r a l _ v a l u e * e r r o r * dt
d e r i v a t i v e = s e l f . vars . kd * (e r r o r − s e l f . vars . l a s t _ e r r o r / dt)

v e h i c l e _ v e l o c i t y = propor t iona l + i n t e g r a l + d e r i v a t i v e

i f v e h i c l e _ v e l o c i t y < 0 :
v e h i c l e _ v e l o c i t y = 0 . 0
brake_output = − v e h i c l e _ v e l o c i t y

e lse :
i f (v e h i c l e _ v e l o c i t y > 1) :
v e h i c l e _ v e l o c i t y = 1

brake_output = 0

t h r o t t l e _ o u t p u t = v e h i c l e _ v e l o c i t y

S t a n l e y C o n t r o l l e r

Chapter 3. An Automated Control System 17

1 . C a l c u l a t e h e a d i n g e r r o r p s i (t)
yaw_path = np . arc tan2 (waypoints [−1][1]−waypoints [0] [1] , waypoints [−1][0]−

waypoints [0] [0])
heading_error = yaw_path − yaw #

2 . C a l c u l a t e c r o s s t r a c k e r r o r and t h e d i f f e r e n c e o f r a t e a s in t h e o r y
current_xy = np . array ([x , y])
c r o s s t r a c k _ e r r o r = np . min (np . sum ((current_xy − np . array (waypoints) [: , : 2])

* * 2 , a x i s =1)) # E u c l i d e a n D i s t a n c e

c r o s s t r a c k _ e r r o r _ d i f f e r e n c e = np . arc tan (k_e * c r o s s t r a c k _ e r r o r / (k_v + v)
)

3 . Implement t h e f i n a l math t y p e
s t e e r _ e x p e c t = heading_error + c r o s s t r a c k _ e r r o r _ d i f f e r e n c e

s t e e r _ e x p e c t = min (1 . 2 2 , s t e e r _ e x p e c t) # CARLA l i m i t s t o [−1.22 , 1 . 2 2]
r a d i a n s

s t e e r _ e x p e c t = max(−1.22 , s t e e r _ e x p e c t)

The implementation of the PID and the Stanley Controller resulted in the following
trajectories that were printed with Python Code through with the matplotlib package.

Chapter 3. An Automated Control System 18

FIGURE 3.5: Generated trajectory

We can observe the ground original X, Y positions in blue while the automated vehi-
cle followed the trajectory of the green line. It succeeded following the desired path
by 91.2% without any concerning bypass. Of course, there are minor differences vi-
sually apparent when the vehicle is needed to steer in a high angle, like at point [-90,
-450]; although, they do not look worrying as the estimated path (or signal) does not
oscillate and follows the desired one reliably.

Chapter 3. An Automated Control System 19

FIGURE 3.6: The Y-axis determines the controlled forward speed in
m/s while CARLA’s timestamps compose the X-axis

Last but not least, the longitudinal control that we applied with the simple PID con-
troller produces satisfying results when attempting to follow the desired speed. . In
the blue lines, we can see the ground truth reference speed, while the actual speed
that the control loop system calculates is in orange having a mean absolute error of
0.23m/s, showing the power of the PID Controller.

20

Chapter 4

State Estimation & Localization

In this chapter, we are going to introduce how different sensors can be combined and
fused with a technique called Kalman Filtering [28] in order to localize a self-driving
car successfully. Sensors arecan be times fuzzy, inaccurate or even damaged, thus,
we can not rely only on one sensor for essential tasks like localization, where safety
is a top requirement. Kalman Filtering is a popular technique for sensor fusion, and
it was even used in the Apollo program for the same purpose of state estimation and
localization. Its inventor is Rudolf E. Kálmán, who was also awarded the National
Medal Of Science in 2009.

4.1 Sensors

Sensors are the components that collect information, which we can process in order
to make a vehicle artificially intelligent. More formally, a sensor is a device that mea-
sures or detects a property of the environment or changes to a property. They are
categorized into two categories, the exteroceptive which is used for the surroundings,
and the proprioceptive, which is used for the internal parts of the vehicle [9]. In the fol-
lowing subsections, we explain briefly the sensors that are used in our experiments.
This can include events like trajectory estimation, localization, object detection, se-
mantic segmentation, object localization, and more.

4.1.1 Camera

A camera is essential for correctly perceiving the environment of a vehicle. Its key
components are the resolution, the field of view, and the dynamic range of it. Specif-
ically, stereo cameras are the ones that are most needed because they enable depth
estimation from image data, something essential for object localization tasks and not
only. Last but not least, cameras are inexpensive, and they can provide much infor-
mation about our surroundings. The camera and its parameters are explained in a
more detailed way in Chapter 5.

Chapter 4. State Estimation & Localization 21

4.1.2 LIDAR

LIDAR (Light Detection and Ranging) is the combination of light and radar. A LI-
DAR sensor can measure the distance to a target by illuminating it with laser light.
The pulses that get reflected then get measured, and they can be used in order to rep-
resent maps. Sometimes it is also called 3D laser scanning. Many parameters define
a LIDAR sensor like the number of beams, the points per second, the rotation rate,
and the field of view. LIDAR results are pretty accurate, but they are hard-to-process
sensors and most notably, pretty expensive [9].

FIGURE 4.1: LIDAR [13]

4.1.3 Global Navigation Satellite Systems and Inertial Measurement Units

GNSS and IMU provide a direct measure of "ego vehicle" states like:

• position, velocity (GNSS)

• angular rotation rate (IMU)

• acceleration (IMU)

• heading (IMU, GPS)

FIGURE 4.2: Satellites are the components used for GNSS localization.
[13]

Chapter 4. State Estimation & Localization 22

Note that Global Navigation Satellite Systems have different accuracies like RTK,
PPP, DGPS. We use CARLA’S Global Positioning System (GPS).

4.2 Linear Kalman Filter

Before explaining the Extended Kalman Filter [28] that we used for the localization
problem, a description of the simple Linear Kalman Filter is needed first. The (linear)
Kalman Filter is based on estimating the state or position of a system based on its
motion model (e.g., speed, gravity) and then correcting this estimation based on
a measurement model (e.g., GPS, visual odometry and more). It is modeled on a
Markov chain, and it covers errors that may include Gaussian Noise, thus making it
a probabilistic technique for sensor fusion.

The modeling of the Kalman Filter requires some modeling of the process. In order
to model the Kalman Filtering process, we specify the following matrices [28]:

• Fk, the state-transition model;

• Hk, the observation model;

• Qk, the covariance of the process noise;

• Rk, the covariance of the observation noise;

• and sometimes Bk for each time frame k, which is the control model for the
input, as following.

The Kalman filter considers a vehicle’s true state at time xk is derived from the state
at xk−1 according to:

xk = Fk(xk−1) + Bk(uk) + wk (4.1)

where

• Fk is the state transition model which is applied to the previous state xk−1;

• Bk is the control model for the the control vector uk;

• wk is the process noise which is assumed to be drawn from a zero mean multi-
variate normal distribution N , with covariance Qk : wk ∼ N (0, Qk)

At the time k an observation (or measurement) zk of the actual state xk is made ac-
cording to

zk = Hkxk + vk (4.2)

where

Chapter 4. State Estimation & Localization 23

• Hk is the observation model which is a correspondence between the true space
and the observed one

• vk is the observation noise which is assumed to be zero mean Gaussian white
noise with covariance Rk : wk ∼ N (0, Qk)

The algorithm could be visualized as:

FIGURE 4.3: Flow chart of the Iterative process [22]

4.3 Extended Kalman Filter

Inevitably, Kalman Filtering works only for linear models. The majority of real-life
models are not linear, which expresses the need for a non-linear Kalman Filter, the
Extended Kalman Filter (EKF)[28].

The EKF (Extended Kalman Filter) can use non-linear state transition and observa-
tion models. The functions that are used for these models are of a differentiable type.
[28]

xk = f (xk−1, uk) + wk

zk = h(xk) + vk
(4.3)

The function f uses the previous estimation to compute and predict a state. Also,
the function h uses the predicted state in order to calculate and predict a measure-
ment. However, the f and h matrices can not be utilized to the covariance directly; a
Jacobian matrix of partial derivatives is needed and therefore computed [28].

In each timeframe, the Jacobian matrix is evaluated with current predicted states.
This process substantially provides a linear estimation of the non-linear function
around a current point, by computing a linear approximation using a first-order
Taylor expansion on the operating point[28].

The complete algorithm could be visualized as:

Chapter 4. State Estimation & Localization 24

FIGURE 4.4: Overview of the Extended Kalman Filter Process as
stated in ResearchGate.

4.4 Experiment #2: Sensor Fusion and Localization

For the localization experiment, the Inertial Measurement Unit of the CARLA’s sim-
ulation environment smart car is leveraged for the motion model. Also, GNSS and
LIDAR measurements are exploited for the correction or measurement model. The
data has been recorded with CARLA’s API, as mentioned in Chapter 2.

The motion model input consists of specific force f and rotational rate ωk from our
IMU [3]:

uk =

[
fk

ωk

]
∈ R6 (4.4)

The measurement model input consists of the GNSS and LIDAR measurements that
have the following format [3]:

yk =

X
Y
Z

 ∈ R3 (4.5)

Of course, in order to formulate the XYZ position of a car, its position, orientation,
and its velocity for the motion model are needed. The accelerated motion of a vehicle
is defined as:

Chapter 4. State Estimation & Localization 25

Position: pk − pk−1 = vk−1∆t + a
∆t2

2
(4.6)

Velocity: vk − vk−1 = a∆t (4.7)

Orientation: qk = ωk−1 ∗ ∆t ∗ qk−1 (4.8)

where a = fk−1, the force rate from the CARLA’s inertial measurement unit.

Thus, the Jacobian Matrix Fk−1 is defined as:

Fk−1 =

I3 I3∆t 0
0 I3 − fk−1∆t
0 0 I3

 εR9x9 (4.9)

where I3 is the 3x3 identity matrix.

Also, the Hk vector is denoted as Hk =
[
1 0 0

]
since the measurement updates

refer only to the first component, the position of the vehicle and not to the velocity
or the orientation.

Of course, we suspect zero mean and covariance RGNSS, RLIDAR Gaussian noise sig-
nals, combined in a diagonal 2x2 matrix, for the measurement model update. The
same applies to the specific force and the rotational rate that come from CARLA’s
inertial measurement unit.

A high-level flowchart of the proposed methodology that exploits the Extended
Kalman Filter fusion is below, while the reader can get more comfortable in this
advanced methodology by reading the interactive book Kalman and Bayesian Filters
in Python [8], which provides starter codes and extensive explanations.

FIGURE 4.5: High-level overview of the sensor fusion experiment [26]

Chapter 4. State Estimation & Localization 26

Furthermore, after defining the above problem definitions in Python with a signal
processing library such as filterpy [8], the Extended Kalman Filter can return out-
puts of our positions estimates, for each time frame, which follow the Euler Angles
format:

pest =

X
Y
Z

 ∈ R3

We can then visualize with matplotlib each time frame and the three axes.

FIGURE 4.6: Comparison of the estimated trajectory to the ground
truth one

The localization estimation is a bit jaggy on the Z-axis but other than that, it is close
to the ground truth and does not suffer by any big misprediction, having a MAE of
0.32m.

In addition, it is interesting to observe what happens if we remove the GNSS and
the LIDAR data integration and plot only the position outputs from IMU.

Chapter 4. State Estimation & Localization 27

FIGURE 4.7: The effect of dropping out the measurement sensors and
relying only on the motion model.

The above plot shows and verifies that we can not only rely on one sensor for such
a task since even by defining models mathematically correctly; sensors some times
may be biased or incorrect and can not produce a correct result, especially when
concerning that in a significant time scale. Sensor fusion is needed, and it is used
widely in every localization application in the modern days.

28

Chapter 5

Visual Perception

In this Chapter, we are going to introduce how computer vision is implemented in
self-driving cars and contribute to the visual perception of the environment. Two
extensive examples will be demonstrated. First, we will show how the information
from a camera can be used in order to localize the car in the camera reference frame,
extending the previous chapter. In the latter part, we are going to process outputs
from CARLA’s segmentation neural network and combine them with classical com-
puter vision techniques in order to achieve successful results on plane fitting, lanes
estimation and avoiding collision on a life-like environment.

5.1 3D Computer Vision

Before digging into experiments, we need to define the basics of 3D Computer Vi-
sion. Computer vision tasks often exploit analyzing and processing information
from a camera. Most modern-day cameras follow the pinhole camera model [2]:

FIGURE 5.1: The pinhole camera model.

As explained in Chapter 3, the camera sensor is a critical sensor due to the vast
amount of information it can capture, while its price is low nowadays.

Chapter 5. Visual Perception 29

5.1.1 Reference Frames

An image from a camera is 2D (u, v), while the world is expressed in 3D coordinates
(Xw, Yw, Zw). In order to translate the projective geometry of an image in 3D world
coordinates, we need to translate it to camera coordinate systems (Xc, Yc, Zc). In
total, this sums up to 3 different coordinate systems, the world system, the camera
system, and the image system.

FIGURE 5.2: The world, camera and image reference frames.

In order to project world coordinates to camera coordinates, a transformation multi-
plying with the camera’s extrinsic parameters is needed.

ocamera = [R|t]oworld (5.1)

oworld =

X
Y
Z

 ∈ R3 (5.2)

The rotation matrix R and the translation matrix t are covered in the following sub-
section.

FIGURE 5.3: Transformation from the world frame to the camera
frame.

Chapter 5. Visual Perception 30

In order to project camera coordinates to image coordinates, a different transforma-
tion is needed, which is based on the intrinsic parameters of the camera that we
defined above, the focal length and the center of the camera:

oimage = K ∗ ocamera =

 f 0 u0

0 f v0

0 0 1

 ocamera (5.3)

The K matrix is called the intrinsic matrix and may sometimes include a scale s also
for scaling operations.

So, finally, a projection from world coordinates to image coordinates would look like
this:

oimage = P ∗ oworld = K[R|t]oworld (5.4)

using homogeneous formats in the world frame

X
Y
Z
1

 for valid linear multiplications.

Last but not least, image coordinates can be transformed to pixel coordinates with a
simple multiplication:

u
v
1

 =
1
z

x
y
z

 (5.5)

5.1.2 Stereo Cameras and Depth Perception

Depth is one key element in order to perceive the environment, but inevitably, it is
hard to compute it with only one camera sensor. Instead, stereo cameras are used.
A stereoscopic sensor is constructed from two identical cameras which have parallel
optical axes.

Chapter 5. Visual Perception 31

FIGURE 5.4: An example stereo camera model [2]

Depth is calculated through the disparity of the differences xL and xR that are de-
picted in the following figure.

FIGURE 5.5: Example of calculating the disparity and the depth from
two identical cameras.

Luckily, CARLA has a depth sensor provided for us, which is essentially computing
all the fuzzy maths within two identical cameras, providing for us the depth metric
in an image between 0 and 1000 meters.

5.1.3 Transformations

Let’s consider a point with coordinates p1 in one camera coordinate system and the
same point with coordinates p2 in the second camera coordinate system.

The relation between them is:

p2 = Rp1 + t =

[
R t
0 1

]
p1 (5.6)

where R and t are the rotation and translation matrices. A rotation matrix rotates
points about an axis:

P′ = RP (5.7)

Chapter 5. Visual Perception 32

An example of a rotation matrix multiplication in 2D would be:

[
x′′

y′′

]
=

[
cos(θ) −sin(θ)
sin(θ) cos(θ)

] [
x′

y′

]
(5.8)

A translation matrix is a shift of the origin point to the new point in 3 dimensions:x′

y′

z′

 =

x
y
z

+

δx
δy
δz

 (5.9)

The same mindset applies in 3D matrices and requires more complex computations,
which can be computed easily with the use of the OpenCV package, an open-source
library for Computer Vision tasks [1].

5.2 Image Features, Detectors & Descriptors

Features in an image are the points of interest in the image. Such points of interest
should have the following characteristics: saliency, repeatability, locality, quantity,
efficiency.

Some pixels in an image may contain more information than others. Such are patches
with significant contrast changes (edges) or gradients in at two different orientation
(corners). Many algorithms can do the task of feature detection, such as the Harris
Corner Detection, Harris-Laplace, LOG, DOG detector, and more.

Here is an example of performing the Harris Corner Detector in a real-life car camera
screenshot.

FIGURE 5.6: Example of an applied Harris Corner Detector in
CITYSCAPES [24]

Empirical validation is always needed in order to choose the best extractor based on
the application that we perform it on.

Sometimes, image features may not be enough. Let us consider a data leakage error
where some pixels such as there points of interests get removed. Alternatively, a

Chapter 5. Visual Perception 33

transformation in the image could happen after some processing. In any way, there
is a need for a better description of an image, and that is where feature descriptors
are used. Instead of characterizing only the [u, v] position of an interesting pixel, they
also provide an N-dimensional vector with the summary of the image information
around the detected feature. Such feature descriptors must be robust and invariant
to the translation or rotation of the images and any other transformation like scaling
or illumination changes. Also, they must be distinctive in order not to mess them
up.

FIGURE 5.7: A feature descriptor applied in CITYSCAPES [24]

5.2.1 Scale Invariant Feature Transform (SIFT) descriptors

SIFT descriptors can be used in order to detect keypoints in images, even on different
scales. The Difference of Gaussian, called DoG, is calculated. This difference consists
of the Gaussian blurring difference of an image. ’DoG’ essentially is a detector for
blobs, considering various sizes due to the change in σ, the returning and scaling
parameter. A Gaussian kernel with low sigma gives high value for a small corner
while it returns a high sigma for a larger corner. The above means that we can find
the maximum local values in scale and space which gives us a list of (x, y, σ) values
which means there is a potential keypoint at (x, y) at σ scale. This process is done
for different octaves of the image in the Gaussian Pyramid [11].

Lastly, a keypoint descriptor is created, and a 16x16 neighborhood around the key
point is necessitated. It is separated into 16 sub-blocks of 4x4 size. For each sub-
block, an eight bin orientation histogram is created. So a total of 128 bin values are
available, each one represented as a vector to form a key point descriptor. In addi-
tion, several measures are taken to achieve robustness against illumination changes,
rotation [19].

FIGURE 5.8: An overview of the SIFT Descriptor [19].

Chapter 5. Visual Perception 34

This histogram is, finally, the SIFT descriptor.

5.2.2 Feature Matching with FLANN

In order to match features between two image frames, the FLANN algorithm is de-
fined below. This can be used in order to capture the motion of a camera during a
video, just like in the following example and demonstration of visual odometry.

Classical feature descriptors like SURF or ORB are usually distinguished and matched
using the Euclidean distance or L2-norm. Others use the Hamming distance. To fil-
ter the matches, David G. Lowe proposed to use a distance ratio test to try to elimi-
nate false matches. The distance ratio between a candidate keypoint’s two nearest
matches keypoint is computed and it is considered an acceptable match when this
metric is below a characteristic threshold. Indeed, this ratio allows for helping dis-
criminate between ambiguous matches and well-discriminated matches. FLANN
stands for Fast Library for Approximate Nearest Neighbors. It consists of a big
compilation of optimized and ready algorithms for fast nearest neighbor search, as
mentioned above, in large datasets and for high dimensional features, which work
better in most cases than a simple Brute Force Matcher.

It is developed by the UBC Department of Computer Science in Vancouver, Canada.
The interested reader could consult the [14] for an analytical review.

5.2.3 Experiment #3: Visual Odometry

Visual Odometry (VO) implies the means of incrementally estimating the pose of the
vehicle by examining the changes that motion induces on the images of its onboard
cameras. Some of VO’s advantages are that it is not affected by adverse conditions
like wheel slip in uneven terrains or rainy weathers. This produces more accurate
trajectory estimates compared to wheel odometry. Its disadvantages include that in
real life, we need an external sensor to estimate the absolute scale. Also, cameras
may be cheap, but they are passive, which means that they might not be very robust
when considering illumination changes and not only.

Chapter 5. Visual Perception 35

The formulation of the methodology, inspired by [24] is as below:

Algorithm 2: The Camera Motion Estimation Algorithm
Result: R, t for each frame

1 for each subsequent frame Ik−1 and Ik do
2 Apply SIFT feature descriptor for key points
3 Use FLANN Feature Matcher to match features fk−1 and fk

4 Filter by distance if too many
5 Find and decompose Essential Matrix (cv.findEssentialMat)
6 Find rotation and translation matrices (cv.RecoverPose)
7 Stack results to the inverse transformation matrix

8 end
9 Visualize the camera trajectory

Starting, we apply the SIFT descriptor in every image frame that we exported from
CARLA, as mentioned in Chapter 2.

FIGURE 5.9: CARLA Image frame 1

Chapter 5. Visual Perception 36

FIGURE 5.10: CARLA Image frame 2

Then, for each subsequent frame, we apply the FLANN Feature matcher.

FIGURE 5.11: FLANN-based Matching Frame 1 (Unfiltered)

The matches are too many and confusing, so filtering is applied with distance as a
metric between the best matches. In more detail, we apply a 0.6 distance threshold
and choose to visualize only 25 matches, thus producing the following:

Chapter 5. Visual Perception 37

FIGURE 5.12: FLANN-based Matching Frame 1(Filtered)

FIGURE 5.13: FLANN-based Matching Frame 2 (Filtered)

Then, for each pair of subsequent image frames, we try to estimate the camera mo-
tion. This is done by providing the first image points, the second image points and
the camera calibration matrix k to OpenCV’s findEssentialMat function [1], which re-
turns the Essential Matrix E that was used between these two frames. Under the
hood, this function provides an estimation of the essential matrix using a five-point
algorithm. Followingly, we can provide the Essential Matrix E to OpenCV’s recov-
erPose function [1], which determines the rotation and translation matrix for these
two frames. In short, this is done by performing an SVD of the Essential matrix and
verifying the solutions.

The main algorithm is shown in Python code below.

V i s u a l Odometry

for image in images :
s i f t = cv . x features2d . S IFT_crea te () # Apply SIFT
kp , des = s i f t . detectAndCompute (image , None)

k p _ l i s t . append (kp)
d e s _ l i s t . append (des)

V i s u a l i z e images with OpenCV
display = cv . drawKeypoints (image , kp , None)
p l t . imshow (display)

Chapter 5. Visual Perception 38

for each subsequent image : # Find matches in image1 and image2

For t h e s a k e o f c l a r i t y ,
t h e r e i s no f i l t e r i n g a p p l i e d w h i l e t h e match ing t e c h n i q u e a r e

s i m p l i f i e d .

C on f i g as s t a t e d in OpenCV
index_params = d i c t (algorithm = FLANN_INDEX_KDTREE, t r e e s = 15)
search_params = d i c t (checks =50) # or p a s s empty d i c t i o n a r y

f lann = cv . FlannBasedMatcher (index_params , search_params)
image1_points , image2_points = f lann . knnMatch (des1 , des2 , k=2)

E , _ = cv . f indEssent ia lMat (np . array (image1_points) , np . array (
image2_points) , datase t_handler . k , method = cv2 .RANSAC)

_ , R , t , _ = cv . recoverPose (E , np . array (image1_points) , np . array (
image2_points) , datase t_handler . k)

A demonstration, using CARLA’s data inside a Jupyter Notebook environment, is
shown below so we can validate if the results are correct by visualizing the motion
between the two frames.

FIGURE 5.14: Keypoints motion visualization in a frame.

Chapter 5. Visual Perception 39

FIGURE 5.15: Keypoints motion visualization in a second frame.

The red circles define the key points location in the first frames and the green circles
their location in the second frame.

Having the rotation and translation matrices for each consequent frame, we can then
compute the camera transformation matrix which will provide us the camera motion
in XYZ positions:

[
R t
0 1

]−1

=

[
R−1 −R−1t

0 1

]
(5.10)

Visualizing in a 3D figure, the camera motion estimated will be:

FIGURE 5.16: Camera motion estimation

Chapter 5. Visual Perception 40

The above figure seems to represent the motion of the original frame in an accurate
and smooth figure, validating the original CARLA camera frames successfully. In-
evitably, the X, Y, Z axes refer to the local space and not the global one, so we can
only have an empirical sense of the result instead of comparing it to the original
positions with metrics just like in the previous chapters.

5.2.4 Canny Edge Detector

The Canny edge detector is an operator that uses an algorithm of many stages to
detect edges in images. It was developed in 1986 by John Canny.

The Canny edge detection algorithm consists of the following stages:

1. Noise reduction;

2. Gradient calculation;

3. Non-maximum suppression;

4. Edge Tracking by Hysteresis Thresholding

FIGURE 5.17: Canny Edge Detection Example [17]

Noise Reduction

The noise in an image affects the edges of it. Due to that, the first step is to remove
the noise in the image with a Gaussian kernel, having a height and a depth of five.
The filter size depends on the expected effect. The smallest the kernel, the less visible
is the blur.

Gradient calculation

The processed image, which looks smoother, is then filtered with a Sobel filter in
both horizontal and vertical direction to get accordingly the derivatives (Gx) and
(Gy).

Chapter 5. Visual Perception 41

Edge_Gradient (G) =
√

G2
x + G2

y Angle (θ) = tan−1
(

Gy

Gx

)
(5.11)

Non-maximum suppression

Then, a full scan of the image pixels is done to remove any pixels that do not con-
tribute to the form of an edge. This happens with the process of non-maximum
suppression, where, every pixel needs to be local maximum in its defined neighbor-
hood. The result is the same image with better and thinner edges. [17]

Edge Tracking by Hysteresis Thresholding

This stage is the one that decides which of the edges are edges and which are not.
Two threshold values are needed, a minimum and a maximum one. The edges with a
gradient higher than the max one are considered edges. Similarly, edges with a lower
gradient than the min one are considered no edges. The edge with a min < gradient
< max value is considered one of the two classes according to their neighborhood
pixels.

Finally, the returned result is the sharp edges in the image. An open-source imple-
mentation of the Canny Edge Detector is provided through OpenCV [1], which we
will use later in Experiment #4.2.

5.2.5 Hough Line Transform

The Hough transform is a feature extractor used in computer vision and digital im-
age processing. The purpose of the Hough transform is to find imperfect instances
of objects within a particular class of shapes. This is done with the help of voting.
An edge detection technique, like the Canny Edge Detector, should be applied first
as a pre-processing step [18].

A line can be expressed with two variables. For example, in the famous Cartesian
coordinate system that would be (m, b). For Hough Transform, we will express lines
in the Polar system. Henceforth, an equation for a line can be composed as:

y = (− cosθ

sinθ
x +

r
sinθ

) (5.12)

Arranging the terms: r = xcosθ + ysinθ general for each point (x0, y0), we can char-
acterize the group of lines that experiences that point as:

rθ = x0cosθ + y0sinθ (5.13)

Meaning that each pair rθ , θ) represents each line that passes by (x0, y0)

Chapter 5. Visual Perception 42

If for a given (x0, y0) we plot the family of lines that goes through it, we get a sine
wave.

We can do a similar activity as above for every one of the point in a picture. If the
curves of two distinct points oscillate in the plane θ − r, that means that both points
belong to the same line [18] .

FIGURE 5.18: The lines intersection that is being exploited by the
Hough transformation [18]

This means that in general, a line can be detected by finding the number of inter-
sections between curves. Having more curves intersecting means that the line repre-
sented by that intersection have more points. In general, we can define a threshold as
the base number of convergences/intersections expected to distinguish a line. [18]

So, the Hough Lines Estimator monitors the convergence between bends of each
point in the picture. If the quantity of crossing points is above some defined thresh-
old, then it’s states as a line with the parameters (θ, rθ) of the intersection point. [18]

The OpenCV package [18] provides two implementations of the Hough Line Trans-
forms.

1. The Standard Hough Transform, returning (θ, rθ)

2. The Probabilistic Hough Line Transform, returning the indices of the detected
lines (x0,y0,x1,y1)

Chapter 5. Visual Perception 43

5.3 Artificial Neural Networks

A Feedforward Neural Network defines a mapping from input x to output y as:

y = f (x; θ)

An N layer FNN is represented as the function composition:

f (x; θ) = f N(f N−1(... f 2(f 1x))) (5.14)

FIGURE 5.19: A neural network example [20].

An example of a deep neural network is designated above, where x is called the
input layer, the functions f 1 to f N−1 are the hidden layers, and f N is the output
layer.

As a neural network is a machine learning methodology, its outputs are of two kinds:
regression or classification. In a higher level, deep neural networks can be used
for many tasks in the self-driving cars industry like object classification (image to
a label), object detection (image to label and location), depth estimation (image to
depth for every pixel) and semantic segmentation (image to label for every pixel).

Training

In order to train a neural network, examples of f (x) are needed to be provided for
a wide variation of the input x. Training can be done via presenting data in once
(batch), in pieces (mini-batches) or even one by one.

Activation Function

A function f that defines the output of a single processing unit or neuron is called
the activation function. Many different functions have been suggested over all these
years (e.g., sigmoid, tanh), yet the most popular of all is the Rectified Linear Unit
(ReLU), which expertly tackles the vanishing gradients problems.

Chapter 5. Visual Perception 44

f (x) =

{
0 if x < 0

x otherwise
(5.15)

Loss Function

In optimization analysis, the function that is used to evaluate a possible solution is
referred to as the objective or loss function. We may seek to maximize or minimize
that loss function, implying that we are searching for a candidate solution that has
the lowest or the biggest score among others. There are many types of loss functions
which depend on the type of problem (regression, classification). Some of them
include the Mean Squared Error, Mean Absolute Error, Categorical Cross-Entropy
[20].

Optimization method

In order to find the minimum loss, different numerical analysis optimizers are being
used. As stated above, their goal is to reduce the difference between the predicted
output and the actual output. Such optimizers include Gradient Descent, Adagrad,
and more. Also, the Adam optimization algorithm is a variant of the stochastic gra-
dient descent method, famous and widely used in modern deep neural networks
[20].

5.3.1 Convolutional Neural Networks

In a typical ANN, the final output would be

hn = g(WThn−1 + b) (5.16)

where b is the bias, hn−1 the outputs of the last layer, which are multiplied by the last
weight vector W and then the activation function g is applied to it.

Convolutional Neural Networks have a different approach and exploit the use of
convolutions between weights and hidden layers. CNNs contain some typical, fully
connected layers at the end of each neural network model. They also still have a loss
function on the last Fully-Connected layer. The main difference is that rather than
learning unstructured weights, CNN architectures apply filters using convolution
where the intrinsic values of the filters are the weights to be learned.

hn = g(WT ∗ hn−1 + b) (5.17)

where b is the bias, hn−1 the outputs of the last layer, which are convoluted with the
last weight vector W and then the activation function g is applied to it.

Chapter 5. Visual Perception 45

Convolutions are computed per block of pixels. Their purpose is to show the cross-
correlation of the original image with the filter that it is being convoluted with. Each
filter is convolved over the height and the width of the image input, computing the
inner product between the filter and the input and producing a 2D activation map.
The neural network, as a result, learns filters that activate when it detects a specific
feature type at some dimensional position of the image input. These operations are
being calculated for each channel or depth of the original image. For example, RGB
images contain three channels when greyscale images may contain only one channel.

FIGURE 5.20: A convolutional neural network [20].

Pooling

Pooling is a form of a non-linear downsampler. Max-pooling is one widely used
downsampling technique. It divides an image into a set of rectangles and, for each
such region, it keeps the maximum and suppresses all the others.

A feature’s location might be considered valuable when it is relative to other such
features or keypoints, in contrast to its precise location. This is also the idea behind
the vast use of pooling in CNNs. The pooling layer serves to diminish the size of
the image representation progressively, to reduce the number of parameters that are
being used in a vast neural network, like a convolutional one.

All the remaining properties of a typical artificial neural network remain the same,
like optimization, loss function, regularization, and more. CNNs are used for object
detection, semantic segmentation, and generally any machine learning task (regres-
sion or classification). They show their most significant potential when working
with image datasets.

5.4 Object Detection

There have been many algorithms used throughout these years that could detect ob-
jects in a 2D image with a large success rate. Such efforts include the Viola Jones Ob-
ject Detection Framework, the Histogram of Oriented Gradients but the big change
in the scene came with a convolutional neural network, called AlexNet, in 2012.

Chapter 5. Visual Perception 46

CNNs and the era of deep learning changed this sector of applications in a wide
manner. Object Detection in the area of driverless vehicles could look like this:

FIGURE 5.21: An object detection example for driverless vehicles [24].

We want the neural network’s output to draw a bounding box in the screen, defining
the x, y positions of the possible object. The category of objects is determined by the
training data that is provided. If images with labeled data of K classes are provided,
then, the desired output would look like:

f (x; θ) = [xmin, ymin, xmax, ymax, Sclass1, ..., SclassK] (5.18)

ConvNets can be used in order to map a 2D image into the desired output:

FIGURE 5.22: A ConvNet for object detection [24].

Many problems occur in the task of object detection. For example, the extent of ob-
jects is not entirely observed many times due to occlusion or truncation. Besides,
illumination changes can also happen, making the image too bright or too dark.
Lastly, a challenging task is object detection in large and high-resolution data. Con-
volutions are a quite expensive operation, thus, making this research area a lot chal-
lenging in order to achieve low-cost efficiency.

Famous modern-day algorithms that perform the task of 2D Object Detection suc-
cessfully include the "You Only Look Once" (YOLO) Algorithm and the R-CNN,
which may be a bit expensive computationally.

Chapter 5. Visual Perception 47

5.5 Semantic Segmentation

Semantic segmentation is the task of recognizing and understanding what in an
image in pixel level. It is a very challenging area of machine learning, and many
methodologies are introduced every day [24].

It is used for robot vision and understanding, and it is especially useful in au-
tonomous driving. Mathematically, it looks similar to object detection

f (x; θ) = [Sclass1, ..., SclassK] (5.19)

where S denotes the probability for each class. Such classes may contain cars, traffic
light, and signs, sidewalk.

FIGURE 5.23: A Semantic Segmentation example [24].

Just like object detection, semantic segmentation is not trivial. Occlusion, truncation,
scale, and illumination changes can happen. Another level of difficulty, if we think
at a low level, is that smooth boundaries are needed. This means that semantic
segmentation needs highly accurate results. Convolutional Neural Networks, once
again, show an outstanding benchmark performance on this kind of tasks.

Mathematically, the task of semantic segmentation is equal to a multiclass classifi-
cation for every pixel. It consists of providing a class label for every pixel in a 2D
image. Many methods exist in order to achieve better performance, such as evalu-
ation using class Intersection-over-Union. Popular neural networks for this task is
the DeepLab Net, the SegNet.

Chapter 5. Visual Perception 48

5.6 Experiment #4: Road Scene Understanding with the use
of a Neural Network

The CARLA Simulation environment has a built-in segmentation neural network.
As explained in Chapter 3, it can do multiclass classification in pixel level and pro-
vide its outputs in an API. This information will be used in order to be fused with
some computer vision techniques to showcase how road scene understanding can
be done for an autonomous vehicle.

5.6.1 Experiment #4.1: 3D Drivable Surface Estimation with RANSAC

In this experiment, we are going to estimate the drivable surface for a smart car using
the output from CARLA’s semantic segmentation neural network. As our dataset,
we have 3 Image objects from CARLA’s simulation environment, as explained in
Chapter 2, which are depicted below. All of them will be used in order to fine tune
the arbitrary thresholds.

FIGURE 5.24: CARLA’s Exported Image 1

Chapter 5. Visual Perception 49

FIGURE 5.25: CARLA’s Exported Image 2

FIGURE 5.26: CARLA’s Exported Image 2

An example of how CARLA’s segmentation looks like is illustrated below.

FIGURE 5.27: A Segmentated Image by CARLA’s Neural Network [3]

Chapter 5. Visual Perception 50

In order to express the picture in a 3D frame (the camera’s reference frame), we
will exploit the transformation used in previous subsections as long as the CARLA’s
depth sensor.

z = depth (5.20)

x =
(u− cu) ∗ z

f
(5.21)

y =
(v− cv) ∗ z

f
(5.22)

where cu, cv are the camera’s centers, and u, v the pixel positions. The camera’s focal
length is denoted by f . All of them are called the camera’s intrinsic parameters.

Having the frame expressed in 3D XYZ format, we can implement the RANSAC
algorithm for plane estimation.

RANSAC - Random Sample Consensus

Random sample consensus (RANSAC) is an iterative approach for estimating a math-
ematical model and its goal is to reject outliers from a dataset. The RANSAC ap-
proach works by determining the dataset’s outliers set and estimating the desired
model using inlier data [12].

RANSAC can be implemented with the following steps:

1. Select a random subgroup from the dataset

2. Fit a model to the selected subgroup

3. Determine the number of outliers

4. Repeat previous steps for a determined number of iterations

Chapter 5. Visual Perception 51

The proposed methodology for the drivable surface estimation, which makes use of
the RANSAC algorithm, is defined as:

Algorithm 3: RANSAC for Ground Plane Fitting
Result: Returns a plane model

1 for iterations (N=100) or minimum inliers (M=10000) do
2 Mask image with CARLA’s ground class
3 Choose a minimum N (N=15) of 3 points from xyzground at random.
4 Compute the ground plane model ax + by + cz + d = 0 using SVD with the

chosen random points
5 Calculate the distance from the ground plane model to every point in xyzground

(ax + by + cz + d)/
√

a2 + b2 + c2

6 Compute the number of inliers based on a distance threshold (0.3m)
7 Keep the inlier set with the most significant number of points.

8 end
9 Recompute and return a plane model using all inliers in the final inlier set

For the solution of the linear system for the plane, we used the NumPy [16] pack-
age and specifically the Singular-Value Decomposition (SVD) [5] function. Other
numerical analysis methods could be exploited.

RANSAC For Plane F i t t i n g
max_in l i e r s_cnt = 0
m a x _ i n l i e r s _ s e t _ i d x = None

S e t t h r e s h o l d s :
num_itr = 1000 # RANSAC maximum number o f i t e r a t i o n s
min_num_inliers = 10000 # RANSAC minimum number o f i n l i e r s
d i s t a n c e _ t h r e s h o l d = 0 . 3 # Maximum d i s t a n c e from p o i n t t o p l a n e f o r p o i n t

t o be c o n s i d e r e d i n l i e r

for i in range (num_itr) :
St ep 1 : Choose a minimum o f 3 p o i n t s from x y z _ d a t a a t random .

idx = np . random . choice (range (xyz_data . shape [1]) , 15 , r e p l a c e=Fa l se) #
Choose 15 random p o i n t s

St ep 2 : Compute p l a n e model
plane_param = compute_SVD_for_plane (xyz_data [: , idx])

St ep 3 : Find number o f i n l i e r s
d i s t a n c e s = d i s t _ t o _ p l a n e (plane_param . T , xyz_data [0 , :] . T , xyz_data [1 ,

:] . T , xyz_data [2 , :] . T)

St ep 4 : Check i f t h e c u r r e n t number o f i n l i e r s i s g r e a t e r than a l l
p r e v i o u s i t e r a t i o n s and k e e p t h e i n l i e r s e t wi th t h e l a r g e s t number o f
p o i n t s .
i n l i e r s _ c n t = np . sum(d i s t a n c e s < d i s t a n c e _ t h r e s h o l d)

i f i n l i e r s _ c n t > max_ in l i e r s_cnt :

Chapter 5. Visual Perception 52

max_in l i e r s_cnt = i n l i e r s _ c n t
m a x _ i n l i e r s _ s e t _ i d x = np . where (d i s t a n c e s < d i s t a n c e _ t h r e s h o l d) [0]

St ep 5 : Check i f s t o p p i n g c r i t e r i o n i s s a t i s f i e d and b r e a k .
i f i n l i e r s _ c n t > 10000 or i > num_itr :

break

St ep 6 : Recompute t h e model p a r a m e t e r s us ing l a r g e s t i n l i e r s e t .
f i n a l _ d a t a = xyz_data [: , m a x _ i n l i e r s _ s e t _ i d x]
output_plane = compute_plane (f i n a l _ d a t a)

The final estimated plane model is visualized below:

FIGURE 5.28: Visualized inliers after the proposed RANSAC + SVD
methodology.

A 3D representation of the above model is also provided:

Chapter 5. Visual Perception 53

FIGURE 5.29: A 3D space representation of visualized inliers.

Notice that the black pixels here belong to areas not belonging to the estimated
ground class. Also, The black pixels on the left represent the incoming vehicle.

The estimated drivable surface looks good for most of the image. Notice that there
are some outliers on the right instead of the sidewalk. Other than that, the RANSAC
algorithm is pretty satisfying and can show to a self-driving car the ground that it
can drive on. However, a car needs to follow its lane and not invade other lanes.
That is why the location of its lanes is needed to be known.

5.6.2 Experiment #4.2: Semantic Lane Estimation

In order for a driverless vehicle to track its lane, we are going to use once again
the outputs from CARLA’s Semantic Segmentation neural network. Specifically, the
methodology is explained below:

Algorithm 4: Semantic Lane Estimation
Result: Return road lanes of a car

1 Mask image with CARLA’s road lanes and sidewalks class
2 Extract edges using the Canny Edge Detector
3 Perform the Hough Lines Estimator
4 Filter unnecessary lanes (e.g. outliers or horizontal lanes)

The main Python code is shown below in order to be reproduced.

Lane E s t i m a t i o n
St ep 1 : Mask t h e p i x e l s o f t h e image t h a t b e l o n g t o l a n e boundary

c a t e g o r i e s from t h e o u t put o f s e m a n t i c s e g m e n t a t i o n

lane_mask = (segmentation ==6) | (segmentation ==8)

Chapter 5. Visual Perception 54

St ep 2 : Per form Edge D e t e c t i o n us ing cv . Canny ()
mask_canny = cv . Canny (lane_mask * 255 , 50 , 100)

St ep 3 : Per form Line e s t i m a t i o n us ing cv . HoughLinesP ()
l i n e s = cv . HoughLinesP (mask_canny , rho =10 , t h e t a =np . pi /180*1 , threshold

=100 , minLineLength =200 , maxLineGap=100)

After applying masking, edge detection, and lines estimation, we get the following
visual results:

FIGURE 5.30: The Semantic Lane Estimation (Unfiltered)

Few outliers can be seen, such as the far top left line and the park side lane. A slope
threshold can filter these. The slope for each line can be estimated geometrically. In
mathematical language the slope m of the line is

m =
y2 − y1

x2 − x1
(5.23)

We apply an arbitrary minimum slope threshold of 0.3, thus resulting in the follow-
ing:

Chapter 5. Visual Perception 55

FIGURE 5.31: The Semantic Lane Estimation (Filtered)

The estimation now looks correct. This can be provided to a Robotics Controller or a
motion planning algorithm and inform the car on how to follow the lane (e.g., how
much speed, drift).

5.6.3 Experiment #4.3: Computing Minimum Distance to Impact: A Col-
lision System

A driverless vehicle has safety as the number one priority. It cannot trust a single
semantic segmentation network for its classification, neither an object detection al-
gorithm, when concerning human lives. Sometimes, even unique algorithms like
YOLOv3 or R-CNN may show high recall and low precision on their classification.
When it comes to detecting danger (e.g., other cars, motorcycles or pedestrians in-
coming to impact), different systems’ results are used and fused to final output. Just
like in the case of localization where we could not trust only one sensor, here, we will
exploit the fusion of two outputs, one output that comes from semantic segmenta-
tion, and another one that may come from a faulty object detection algorithm.

In the next frame, one car is shown in the scene. No pedestrians, bikes, or motorcy-
cles are in the image. However, an object detection algorithm could showcase three
possible anchor boxes for vehicles. Visually, we can understand that this is faulty
and that the two examples are False Positives from our algorithm.

Chapter 5. Visual Perception 56

FIGURE 5.32: Unreliable results in object detection

First, there is the task of eliminating the False Positives and then computing the
Euclidean of the foreign object to CARLA’s car.

Our proposed methodology for the False Positives elimination includes the fusion
from the segmentation neural network and the object detection algorithm outputs.
Of course, a square box or anchor box is defined by its four edges, xmin, ymin, xmax, ymax

Specifically:

Algorithm 5: Filter out Unreliable Detections
Result: True object detection

1 for each possible detection do
2 Compute how many pixels in the bounding box belong to the category

predicted by CARLA’s neural network
3 Divide the computed number of pixels by the area of the bounding box (total

number of pixels)
4 if ratio > threshold (0.3) then
5 keep the detection;
6 else
7 remove the detection;
8 end

9 end

After implementing the algorithm in Python, we have the following output:

Chapter 5. Visual Perception 57

FIGURE 5.33: The result of filtering out object detection’s unreliable
results with the use of semantic segmentation

After keeping only the true positives of the fusion from the two systems, we are
interested in calculating the minimum distance to it.

This can be easily calculated by calculating the Euclidean distance (
√

x2 + y2 + z2)
for each pixel of the true bounding box since the image is already expressed in the
3D Camera reference frame. Then, we can scan and keep only the minimum distance
(since different parts of the object have a different depth, hence, different distance
from the camera).

The resulting image is below:

FIGURE 5.34: A showcase of calculating the distance until impact
with the use of 3D image representation

Chapter 5. Visual Perception 58

This could help, e.g., as a danger notification to the motion planning algorithm that
the vehicle uses. For example, if the distance to collision is lower than 1m, steer to the
other side. These types of input signals are provided to motion planning algorithms
and robotic operating systems. A great operating system is ROS, available at ros.org.
CARLA provides a bridge library for connecting CARLA with ROS, but it is still in
early development. As it is outside of the scope of this thesis, it would be considered
attractive as future work.

Chapter 5. Visual Perception 59

60

Chapter 6

Conclusion

6.1 Summary

We have presented many ways to approach the topics of vehicle automation, state
estimation, and various tasks of visual perception under the context of self-driving
cars. In more detail, in Chapter 3, we proposed the PID and the Stanley controller
for longitudinal and lateral control with successful results. Next, in Chapter 4, we
investigated the use of the Extended Kalman Filter for sensor fusion with satisfying
results in the task of a vehicle’s localization. Chapter 5 shows how visual odometry
can be achieved in order to extend localization while it also presents how segmenta-
tion neural networks can be combined with different computer vision algorithms to
accomplish accurate road scene understanding, achieving acceptable results.

6.2 Future work

First of all, the study on CARLA’s datasets could be completed by experimenting
with motion planning algorithms. There are also many individuals that try to com-
bine all of the above with Deep Reinforcement Learning techniques.
I would also suggest to any interested persons that would like to dive in the Self-
Driving Cars business to explore Udacity’s related Nanodegree [23] or the courses
from University of Toronto [25], which inspired me in many ways to modify and
create the path for this thesis.

More specifically, different controllers could be implemented and compared in Chap-
ter 3 such as the Pure Pursuit Controller or the Model-Predictive Controller (MPC).
Furthermore, more Bayesian approaches could be exploited in Chapter 4 such as the
Unscented Kalman Filter, the Indirect Kalman Filter or Particle Filtering. Besides, it
would be considered useful to perform the proposed approaches of Chapter 5 to
real datasets, like KITTI [4] or commaai’s (commaai.com) where there are worn out
lanes and sidewalks, something that is not yet implemented in the CARLA Simula-
tion environment The interested reader or researcher could also integrate the above

Chapter 6. Conclusion 61

into a Robot Operating Systems (ROS) and evaluate these practices in a real robot.
The writer welcomes any attempts for contribution and is available for any assis-
tance through their GitHub account, where the code is uploaded.

62

Bibliography

[1] G. Bradski. “The OpenCV Library”. In: Dr. Dobb’s Journal of Software Tools (2000).
[2] Computer Science & Engineering, Washington. EE/CSE 575: Computer Vision.

2018. URL: https://courses.cs.washington.edu/courses/cse576/18sp/
notes/index.html.

[3] Alexey Dosovitskiy et al. “CARLA: An open urban driving simulator”. In:
arXiv preprint arXiv:1711.03938 (2017).

[4] Andreas Geiger et al. “Vision meets robotics: The KITTI dataset”. In: The Inter-
national Journal of Robotics Research 32.11 (2013), pp. 1231–1237.

[5] Gene H Golub and Christian Reinsch. “Singular value decomposition and
least squares solutions”. In: Linear Algebra. Springer, 1971, pp. 134–151.

[6] Instrumentationforum. Instrumentationforum website. [Online; accessed 20-May-
2019]. 2018. URL: https://instrumentationforum.com/t/pid-controller-
manual-tuning/4043.

[7] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet classifica-
tion with deep convolutional neural networks”. In: Advances in neural informa-
tion processing systems. 2012, pp. 1097–1105.

[8] Roger Labbe. “Kalman and bayesian filters in python”. In: (2015).
[9] Levelfivesupplies. Levelfivesupplies website. 2019. URL: https://levelfivesupplies.

com/sensors-used-in-autonomous-vehicles/.
[10] Guosheng Lin et al. “Refinenet: Multi-path refinement networks for high-resolution

semantic segmentation”. In: Proceedings of the IEEE conference on computer vision
and pattern recognition. 2017, pp. 1925–1934.

[11] David G Lowe. “Distinctive image features from scale-invariant keypoints”.
In: International journal of computer vision 60.2 (2004), pp. 91–110.

[12] MathWorks. Using RANSAC for estimating geometric transforms in computer vi-
sion. URL: https://www.mathworks.com/discovery/ransac.html.

[13] MIT. MIT 6.S094: Deep Learning for Self-Driving Cars. 2019. URL: https : / /
selfdrivingcars.mit.edu.

[14] Marius Muja and David Lowe. “Flann-fast library for approximate nearest
neighbors user manual”. In: Computer Science Department, University of British
Columbia, Vancouver, BC, Canada (2009).

[15] National Instruments (ni.com). PID Theory Explained. 2019. URL: http://www.
ni.com/en-my/innovations/white-papers/06/pid-theory-explained.

html.

https://courses.cs.washington.edu/courses/cse576/18sp/notes/index.html
https://courses.cs.washington.edu/courses/cse576/18sp/notes/index.html
https://instrumentationforum.com/t/pid-controller-manual-tuning/4043
https://instrumentationforum.com/t/pid-controller-manual-tuning/4043
https://levelfivesupplies.com/sensors-used-in-autonomous-vehicles/
https://levelfivesupplies.com/sensors-used-in-autonomous-vehicles/
https://www.mathworks.com/discovery/ransac.html
https://selfdrivingcars.mit.edu
https://selfdrivingcars.mit.edu
http://www.ni.com/en-my/innovations/white-papers/06/pid-theory-explained.html
http://www.ni.com/en-my/innovations/white-papers/06/pid-theory-explained.html
http://www.ni.com/en-my/innovations/white-papers/06/pid-theory-explained.html

BIBLIOGRAPHY 63

[16] Travis Oliphant. NumPy: A guide to NumPy. USA: Trelgol Publishing. [Online;
accessed <today>]. 2006–. URL: http://www.numpy.org/.

[17] OpenCV. Canny Edge Detection. URL: https://docs.opencv.org/master/da/
d22/tutorial_py_canny.html.

[18] OpenCV. Hough Line Transform. URL: https://docs.opencv.org/3.4/da/
df5/tutorial_py_sift_intro.html.

[19] OpenCV. Introduction to SIFT (Scale-Invariant Feature Transform). URL: https:
//docs.opencv.org/3.4/da/df5/tutorial_py_sift_intro.html.

[20] Stanford University. CS230 Deep Learning. 2019. URL: https://cs230.stanford.
edu/.

[21] Sebastian Thrun et al. “Stanley: The robot that won the DARPA Grand Chal-
lenge”. In: Journal of field Robotics 23.9 (2006), pp. 661–692.

[22] Towards Data Science. An intro to Kalman Filters for Autonomous Vehicles. 2019.
URL: https://towardsdatascience.com/an-intro-to-kalman-filters-
for-autonomous-vehicles-f43dd2e2004b.

[23] Udacity. Self-Driving Car Nanodegree. 2019. URL: https://www.udacity.com/
course/self-driving-car-engineer-nanodegree--nd013.

[24] University Of Toronto. CSC2541: Visual Perception for Autonomous Driving. 2016.
URL: http://www.cs.toronto.edu/~urtasun/courses/CSC2541/CSC2541_
Winter16.html.

[25] University Of Toronto. Self-Driving Car Specialization. 2019. URL: https://www.
coursera.org/specializations/self-driving-cars.

[26] University Of Toronto. Self-Driving Cars. 2019. URL: https://www.coursera.
org/lecture/state-estimation-localization-self-driving-cars/why-

sensor-fusion-HCP35.
[27] WaveLab. Autonomous Vehicles Laboratory, University of Waterloo. URL: http:

//wavelab.uwaterloo.ca/.
[28] Wikipedia contributors. Kalman filter — Wikipedia, The Free Encyclopedia. [On-

line; accessed 20-May-2019]. 2019. URL: https : / / en . wikipedia . org / w /
index.php?title=Kalman_filter&oldid=897230289.

[29] Wikipedia contributors. PID controller — Wikipedia, The Free Encyclopedia. [On-
line; accessed 18-May-2019]. 2019. URL: https : / / en . wikipedia . org / w /
index.php?title=PID_controller&oldid=897360228.

http://www.numpy.org/
https://docs.opencv.org/master/da/d22/tutorial_py_canny.html
https://docs.opencv.org/master/da/d22/tutorial_py_canny.html
https://docs.opencv.org/3.4/da/df5/tutorial_py_sift_intro.html
https://docs.opencv.org/3.4/da/df5/tutorial_py_sift_intro.html
https://docs.opencv.org/3.4/da/df5/tutorial_py_sift_intro.html
https://docs.opencv.org/3.4/da/df5/tutorial_py_sift_intro.html
https://cs230.stanford.edu/
https://cs230.stanford.edu/
https://towardsdatascience.com/an-intro-to-kalman-filters-for-autonomous-vehicles-f43dd2e2004b
https://towardsdatascience.com/an-intro-to-kalman-filters-for-autonomous-vehicles-f43dd2e2004b
https://www.udacity.com/course/self-driving-car-engineer-nanodegree--nd013
https://www.udacity.com/course/self-driving-car-engineer-nanodegree--nd013
http://www.cs.toronto.edu/~urtasun/courses/CSC2541/CSC2541_Winter16.html
http://www.cs.toronto.edu/~urtasun/courses/CSC2541/CSC2541_Winter16.html
https://www.coursera.org/specializations/self-driving-cars
https://www.coursera.org/specializations/self-driving-cars
https://www.coursera.org/lecture/state-estimation-localization-self-driving-cars/why-sensor-fusion-HCP35
https://www.coursera.org/lecture/state-estimation-localization-self-driving-cars/why-sensor-fusion-HCP35
https://www.coursera.org/lecture/state-estimation-localization-self-driving-cars/why-sensor-fusion-HCP35
http://wavelab.uwaterloo.ca/
http://wavelab.uwaterloo.ca/
https://en.wikipedia.org/w/index.php?title=Kalman_filter&oldid=897230289
https://en.wikipedia.org/w/index.php?title=Kalman_filter&oldid=897230289
https://en.wikipedia.org/w/index.php?title=PID_controller&oldid=897360228
https://en.wikipedia.org/w/index.php?title=PID_controller&oldid=897360228

	Περιληψη
	Abstract
	Acknowledgements
	Introduction
	Motivation
	Thesis Statement and Contributions
	Thesis Structure

	CARLA: An Open Simulator for Autonomous Driving Research
	About
	Datasets
	Built-in Semantic Segmentation Neural Network

	An Automated Control System
	Longitudinal Vehicle Control: PID Controller
	Proportional Response
	Integral Response
	Derivative Response
	Tuning

	Lateral Vehicle Control: Stanley Controller
	Heading error
	Cross-track error
	Stanley Control Law

	Experiment #1: Automating a vehicle
	Longitudinal Control with a PID Controller
	Lateral Control with the Stanley Controller
	Implementation & Evaluation

	State Estimation & Localization
	Sensors
	Camera
	LIDAR
	Global Navigation Satellite Systems and Inertial Measurement Units

	Linear Kalman Filter
	Extended Kalman Filter
	Experiment #2: Sensor Fusion and Localization

	Visual Perception
	3D Computer Vision
	Reference Frames
	Stereo Cameras and Depth Perception
	Transformations

	Image Features, Detectors & Descriptors
	Scale Invariant Feature Transform (SIFT) descriptors
	Feature Matching with FLANN
	Experiment #3: Visual Odometry
	Canny Edge Detector
	Hough Line Transform

	Artificial Neural Networks
	Convolutional Neural Networks

	Object Detection
	Semantic Segmentation
	Experiment #4: Road Scene Understanding with the use of a Neural Network
	Experiment #4.1: 3D Drivable Surface Estimation with RANSAC
	Experiment #4.2: Semantic Lane Estimation
	Experiment #4.3: Computing Minimum Distance to Impact: A Collision System

	Conclusion
	Summary
	Future work

	Bibliography

