-

View metadata, citation and similar papers at core.ac.uk brought to you byfz CORE

provided by University of Thessaly Institutional Repository

ITANEIIIXTHMIO OEXXAAIAXY
[IOAYTEXNIKH XXOAH

TMHMA HAEKTPOAOT'QN MHXANIKQN KAT MHXANIKQN
YTIOAOT'IETON

Melétn kon e@apuoyn akyopiOumv yio tn oyediaon
splines ka1 kapumvAwv Bezier

Study and implementation of algorithms for
drawing splines and Bezier curves

METAIITY XIAKH AIATPIBH

Tng

Zopnoxike Kiconatrpog

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 22:45:46 EEST - 137.108.70.13

https://core.ac.uk/display/228081163?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Boiog, lovviog 2019

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 22:45:46 EEST - 137.108.70.13

[TANEITIXTHMIO OEZXAAIAX
INOAYTEXNIKH ZXOAH

TMHMA HAEKTPOAOI'ON MHXANIKQN KAI MHXANIKQN
YIIOAOTTETQN

Melétn kon e@apuoyn akyoplOumv yio tn oyediaon
splines kot kopumvAwv Bezier

Study and implementation of algorithms for
drawing splines and Bezier curves

METAIITYXIAKH AIATPIBH

Tne

Zopnoxkike Kiconatrpog

Empiémovreg :
Toopmavomovrov Iavayidta

Avaminpotpia Kadnynrpuo I1.6.

Baocihakomoviog Myani
Avaminpomc Kabnynmcg I1.0O.

Evpopeomoviog Néotop
Enikovpoc Kabnyntic I1.0.

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 22:45:46 EEST - 137.108.70.13

Eykpinke amd v tpipuein e€etaoTikn EmTpony TV

Toopnavorodrov Iavayidta
Avominpotpio Kadnyntpo I1.0.

Bootlakoémovriog Muyomi
Avaminpotig Kabnynmg I1.6.

Evpopeomovrog Néotmp
Enikovpog Kabdnynmc I1.09.

Bolog, lovviog 2019

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 22:45:46 EEST - 137.108.70.13

Kieomarpo Zapmoxkiko

Aumhopatikn Epyacta yla v anoktmon Metantuytokod Autdoupatog Ewikevong otnv
«Emotun ko Texyvoroyia Yroloyiotdv, Tniemikovovidv kot Aiktoovy, ota [Thaicio
tov [Ipoypappatog Metomtuytakdv Xmrovodv tov Tunuatoc Hiextpoddywv
Mnyoavikov kot Mnyovikov Yroloyiotov tov [avemotnpiov Osccaiiog

© 2019 — All rights reserved

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 22:45:46 EEST - 137.108.70.13

Declaration of Authorship

I, Kleopatra Zampakika, confirm that this thesis is my own work. All direct or in-direct sources
used are acknowledged as references. This thesis was not previously presented to another

examination board and has not been published.

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 22:45:46 EEST - 137.108.70.13

Dedicated to my family and my friends. . .

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 22:45:46 EEST - 137.108.70.13

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 22:45:46 EEST - 137.108.70.13

Abstract

Computer Graphics is one of the most exciting and rapidly growing fields. In order
to create realistic-looking images we have to accurately compute the outer surface of
objects. To achieve this goal we first start with an understanding of curves, and once we
have an algorithm to calculate and visualize them, we can extend it to a surface.

The purpose of this thesis is to study and design flexible curves and implement their
generation algorithms in a Java application. Specifically, interactive software was
developed for calculation and visualization of Bezier curves and surfaces.

The interface and content of this application were designed with an educational
nature, providing straight forward and easy to understand examples of all the basic
concepts. Through a series of stand-alone tasks students will come across a detailed
demonstration of Bezier curve and surface creation, witness their value for practical
applications like vector drawing or 3D computer graphics and compare them with the
corresponding piecewise splines.

The core algorithms on the field were implemented and even more are left as future
extensions, with the ambition to create a practical educational tool for Bezier curve

studying.

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 22:45:46 EEST - 137.108.70.13

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 22:45:46 EEST - 137.108.70.13

[TepiAnym

To ypoapikd vmoAoylot®V &givor omd TOVE 7O EVOLNPEPOVTEG Kol poydoic
avartuocopevoug Topeic. Ilpokepévou va dnpovpynBovv eikdéveg mov va TAnctalovy v
TPOYUATIKOTNTO TPEMEL Vo LRTOAOYIOTEL pe akpifeld 1 e@TEPIK EMPAVED TOV
aviikeévov. Ta va emrevybel avtdg o otdyog apyikd Ba mpénet va katovonbovv ot
KOUTOAEG Ko LOAMG LAOTTOMOEL £vog aAyOpIOLLOG Yo aVTEG, UTOPEL VO YIVEL ETEKTOOT OTIG
EMPAVELES.

YKOMOG OVTNG NG OMAMUOTIKNG &ivar va pedetnfoldv kot vo oYedaoTobV Ot
E0KOUTTES KAUTVAEG KOOADS Kol Vo VAOTOMOBoVV ot adlyOp1Bol KOTAGKEVTG TOVG GE o
epapuoyn Java. Zvykekpéva avomtoxOnke €vo oo OpacTIKO AOYIGHIKO Yo TOV
VTOAOYIGUO KOl TNV OTEIKOVICT] TOV KOUTLAMVY Kot ETpovel®V Bezier ko splines.

H epgdvion xor to mepeydpuevo g eeopuoyns okoiovbodv éva potifo
exkmadevuTikng epappoync. [apéyet EekdBapn kot 0KoAN KoTavonon OA®V TOV PaciKOV
evwoldv emi Tov Bépatog pe mopadelypato. Me pio oelpd omd avTtOVORN TUNUOTO Ol
YPNOTEC LITOPOVV VO, TAPUKOAOVOGOVV pior AeTTOUEPT| EMIOEIEN ONUOVPYING KOUTLADY
Bezier, va emBefoatdoovy v ypnoidTTa TOUG Yo T OVUCUOTIKY oyediaon oe 3D
YPUPIKA Kol VO TIG GLYKPIVOLV e avTioTOYo TUNLOTIKA splines.

YAomomOnkav ot kup1dtepol arkydpifuol v oTov ToUEd Kot VITAPYOVY OPKETOL
OV UTOPOVV VO TPOSTEOOVV GOV HEALOVTIKEG EMEKTACES, ME TN @uAodoiio va
onpovpynbel éva TPOKTIKO EKTOUOEVTIKO €PYAAEID YioL TNV EKUAONON TOV KOUTLADV

Bezier kot splines.

vi

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 22:45:46 EEST - 137.108.70.13

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 22:45:46 EEST - 137.108.70.13

For the fulfillment of this Thesis, I would like to thank my professor Panagiota
Tsompanopoulou for her advice and guidance and my colleague Parnassos loannis for his

support, collaboration and ideas.

Also I would like to thank my family for their support and patience...

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 22:45:46 EEST - 137.108.70.13

Contents

B U 1o o [ot o oY I PP PP PRSPPI 17
2. CUIVES .ttt ettt et s e e et e e s b et e s e et aa e e e s raeeeas 19
2.1. CUIVE REPIESENTATION ...ccoeeeeeeeeeee et bsaaababababebsbabsbnsesnennnne 19
2.2 Y 2] L= SRR 20
2.2.1. INEErPOIALION DEFINIEIONvveeeee ettt e et e e e e e et e e e e e e s e abb e e e e e s esastaseeeeseanansaaeaaaean 20
2.2.2. SPIINE INTEIPOIATIONeeeeeeeeeiieeee ettt e e e e e e e e e e e e st e e e e e e e e seabtaaeeaeeeesnbaaeeaeseesnanrenes 21
2.3. BEZIEI CUIVES ...ttt e 23
2.3.1. De CASteljau QIGOITEAMuuveeei et e ettt e e e e e e et e e e e e e e tbb e e e e e e eesnbbaeeaeeeessastaaneaaeas 24
2.3.2. Bernstein POIYNOMUQISuuuveeeiieecieeeee ettt e e e ettt e e e e ettt e e e e e e s bbaaaeaeeeesnbasaeeeeeesanssraneaaeas 27
2.4. Properties Of BEZIEI CUIVEScccuueeeecuieeeeeieeeeceeeescteeesiteeesssaeessstaeessestseessseesesstesesssssesassteseanssesesnnsnes 29
2.5. BOZICI SUITUCES ..ottt e e ettt e e e e e et e e e e e e ettt a e e e e e seesastaeaeaeeaaasstaeeseesassssseaaesesanssseneaesasanses 31
2.5.1. Bezier surface equAtion & ProPertiesuuuiiivueeeeeeeeeiiiiieeeeeeeeiiteeeeeeeeestreeeeaesestrteeseaaesenanareeeeas 32
K e T LT TP U OSSO P O PUSPRPR 35
3.1. Programming LANGUOGE-JAVA ...ttt e e e e se e e e e seeeeesesnseens 35
3.2.1. Lo}V] o o =T o T ol) TSR UUPRRRt 36
3.3. LeTe] T K=t B I o e) =Lt sSSP 38
N 1T (=T 1= 1 1o L1 [¢ ISR 39
4.1. PriMQAry SEAGE = IMENUcceeeeeeeeeeeeieieeeeeee ettt e e e e e e e e e s e e e e e s e s e sese s e eeaas 39
4.2. SCENE ONE — BEZIEI CUIVES ...ttt st e e s sabe e e s sabe e e s eanns 40
4.2.1. DESCIIDTION ccooeeeeeieiiie ettt et et et bbb ba bt tatebabetatarereeareree 40
4.2.2. (DAY =] L) o1 £ 1=1 4 TS UU PR 41
4.3. S5CENE TWO — CUDIC SPIINES ..ottt e e ettt e e e e e e ettt e e e e e e s e bbte e e e e e e seabaaeeaeeeeenbaaeeaaeas 42
4.3.1. DESCIIDTION ccooeeeeeieeiiee ettt et et bbbt e bt teaebaratatarareerrereee 43
4.3.2. F0 V=1 o) o £ T-2 £ S PSR PRP 44
4.4. 5CENE THIEE — INVEISE BEZIENeeeueeiiiiieiieieeee ettt ettt sttt ettt ettt s sare e bt e sbeeennee e 46
4.4.1. DESCIIDTION cccoeeeeeieeiieee ettt s et et ettt abe bt tetebatatataraaaeareren 46
4.4.2. F0 V=1 o) o £ T-2 £ S PSR PRPS 47
4.5. RYol = T oYVl 2= =T G YV I o ol =X O SRR PR 48
4.5.1. [=X Yol 4 o1 [¢ RO PPN 48
4.5.2. F0 V=1 o) o £ 1= 11 SRS 49
4.6. 5CENE FIVE = BEZIEI PALCREScoouieeeiiiiiieee ettt sttt ettt sttt st e sbeesbee s nee e 50
4.6.1. [=X Yol g o1 [¢ OO PPN 50
4.6.2. F0 =1 o) o .1 1= 11 S PSSP 51
B CONCIUSION ...ttt et b e e bt et b e et s bt e e bt e e h bt e e bt e bt e e bbeenbe e e beeeree s 53
L 21 0) (oo [o o] 1} U UPPR 55

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 22:45:46 EEST - 137.108.70.13

Table of Figures

Figure 1:
Figure 2:
Figure 4 :
Figure 3 :
Figure 5 :
Figure 6 :
Figure 7 :
Figure 8:
Figure 9 :
Figure 10

Figure 11:
Figure 13:
Figure 14
Figure 15:
Figure 17:
Figure 18:
Figure 19:

Figure 20
Figure 21
Figure 22

Institutional Repository

Example of interpolated curve passing through given points
Comparing data interpolation of 1st and 2Nd deGIreecccccuveeeeciiei i
L] o VYo T O P P T U P TN
=] o T 0 o T TN
] T o T o =TT SRR PR
Y L] o T o TU | TN
FINAT CUNVE 1ttt ettt ettt s bt et e s be e et esh b e e sa b e e s bt e e sbeesabaesnbeesabeesabeesateesaneenateen
polygonal path
Bezier curve and convex hull
: Bezier Surfaceccoocevvevvenvennnn.

BeZIEr SUMACE PAraMELEIS . iicuiiiiiieiie ettt estee et e et e st se e e st e s e e s te e e sbeesbeesbeesabeesseeesseeessaeenseesseennseens
Teapot made from Bezier PAtCNES.. ... et e e e s e are e e e e e eeannees
NELYET D G- [o] o] Tor1d o] o JE] d Vo1 11] o < U SPPRRROt
Yol (ol = = o] o ISP PPN
SCENE 1 - BOZIEI CUMVES ...ttt e e et e e e s e e e e s s ann e e e e e e e e nnreneeeeesennn
SCENE 2 - CUDIC SPINES evveieiieeetiee ettt s e et e e et e e e e eateeeeateeeeensaeeeenseeeesnsaeesanntaeesnnees
CcoNtinUity DEtWEEN DEZIET PIECES...cc.viiii et e et e e e ere e e sra e e e esreeeeanes
15CENE 4 - INVEISE BOZIEK ...t s ettt e e e e e ettt e e e e e e e raabeeeeeeeeeaas
1SCENE 4 - BEZIET SUMACES ..ttt et e et e e st e e st e e e s e bt e sate e e sabeeessbeeesaraeas
1SCENE 5 - BOZIET PAtCRNES ittt st sttt e e e na e e st ae e saraeas

- Library & Information Centre - University of Thessaly

04/06/2020 22:45:46 EEST - 137.108.70.13

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 22:45:46 EEST - 137.108.70.13

1. Introduction

This thesis was made with a training purpose to create a user-friendly tool for
students. The use of the tool by the students themselves can help in the smoother
introduction of mathematical concepts in the classroom, the recognition of mathematical
properties and structures and improve their mathematical intuition. The tool gives
students the ability to create their own designs with the help of Bezier curves and adjust
what they make based on their attributes. This process and the fact that visually realizing
the use of curves helps to understand mathematical concepts. The creation of the tool was
done in such a way that students gradually understand the meaning of the curves and make
applications on them and later to see how to make a whole surface based on the Bezier

curves. Then they can see differences with the splines and do their own tests.

It is difficult for an educator to have the utmost attention of students and to
incorporate them into such mathematical concepts. However, when students get into the
process of creating something on their own or even collaborating, then learning becomes
more interesting. Such an app can offer students a slight dose of enthusiasm and keep
them focuses. The whole process can be done in the form of a game. Students can store
their designs, and everyone should try to explain to their classmates how this was created

based on the control point positions they chose.

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 22:45:46 EEST - 137.108.70.13

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 22:45:46 EEST - 137.108.70.13

2. Curves

A curve is a generalization of a line with not necessarily zero curvature. It consists
of an infinitely large set of points, each one having two neighbors, except for the two
endpoints. When those endpoints are the same the curve is closed. The definition may be
simple but their utilization expands not only in mathematical domains but also in

everyday practice.

2.1. Curve Representation

The mathematical representation of a curve can be classified into three categories,
implicit, explicit, and parametric.

Explicit curves have the form y = f(x). This type of curves cannot represent vertical
lines and is single-valued, since for each value of x the function calculate only one value
of y. As a result by using implicit functions it is impossible to model every curve in two
dimension space like for example every closed curve. Also there is no passage to 3D
graphics because every curve is confined to a single plane.

Implicit curve representation has the form f(x, y) = 0. In contrary to the explicit form
it can represent multivalued curves. A common example is the circle x>+ y* - R = 0. For
computer graphics this form is often unintuitive, more difficult to render and a impractical
for 3D curves, but useful for modeling and medical imaging.

The types of curves described above are axis dependent and can be used when the
function is known. For computer graphics we prefer a far less limiting approach, the
parametric curves. The form of this type is P (t) = (x (t); y (t)) where the parameter t takes
values in the range of [a, b], often normalized in [0, 1].

It is clear that parametric form is less comprehensible and analytical because we do
not have all the information to understand the shape of curve and geometry. On the other
hand the parametric representation is ideal for computer graphics since it is dimension
independent, unaffected by infinite slope problems, directly transformable and easy to

express in vector and matrix form.

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 22:45:46 EEST - 137.108.70.13

Chapter 2. Curves 20

2.2. Splines

In mechanics, spline is a flexible metal or plastic strip, which is curved in order to
pass through several predefined points. In computer graphics it refers to a curve that is
defined by two or more points or that connects a series of points. Another reference for
this term is the mathematical equation that defines such a curve, a special type of
piecewise polynomial. Every piece is defined by a polynomial function and at the
connection point between two pieces there is no discontinuity. Those points connecting

the pieces are called control points or knots.

2.2.1. Interpolation Definition

As mentioned before a curve consists of an infinitely large set of points. If only a
few of them are known a technique is needed to estimate the rest and fill the curve. This
process is called interpolation and is used to missing data filling, data smoothing,
prediction making, and several other applications.

Complicated curves can be approximated with polynomials. Polynomial
interpolation on a given dataset will find the polynomial of the lowest possible degree

that passes through all the points of the dataset.

Figure 1 : Example of interpolated curve passing through given points

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 22:45:46 EEST - 137.108.70.13

Chapter 2. Curves 21

2.2.2, Spline Interpolation

The polynomial provided with interpolation will have a degree that equals to the
number of known points minus one. In general, for n data points, there exists one
polynomial of degree up to n—1 going through every data point. By using polynomial
interpolation with polynomials of high degree we come across Runge's phenomenon, a
problem of oscillation at the edges. To avoid these undesirable oscillations we can use the
method of splines, introduced by 1. J. Schoenberg in 1946. Spline interpolation can
approximate the curve piece by piece with lower degree polynomials, thus avoiding this
issue.

The most famous type of splines is cubic. A cubic spline pass thought m control
points and is constructed by third degree piecewise polynomials. This method is used a
lot in every day practice. It also initiated the growth of modern CAD (computer aided

design)

Figure 2: Comparing data interpolation of 1st and 2nd degree

To construct smooth curves in computer graphics the most commonly used
polynomial is the cubic. In this type of splines the first and second derivatives at the points
matches for the neighboring pieces. At the endpoints the second derivative is commonly
set to zero since this provides a boundary condition that completes the system of
equations. This is the natural cubic spline which makes a symmetric tridiagonial system.

This system can be solved and gives the coefficients of the polynomials.

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 22:45:46 EEST - 137.108.70.13

Chapter 2. Curves

22

Consider n+1 points (po, pi, ..., Pn)

Where each point pi consists of the coordinate pair (Xi, yi).

The in piece of the spline will be represented by:

Si)=ai+bit+cit?+dit (1)
Where parameter ¢ € [0, 1] and =0,, n-1.

Then:
Si (0)=pi=ai (2)
Si(1)=pix1=ai +bi+ci+di (3)

Taking the derivative of S; (t) for each interval gives:

Si’ (0) =bi =X (4)
Si” (1) = bi + 2¢; + 3di = Xi+1 (5)

Solving (2) — (5) gives:

ai= pi (6)
bi= Xi (7)
ci=3(pi+1 - pi) - 2Xi - Xir1 (8)
di=2(pi- pi+1) + Xi + Xis1 9)

Equations for interior points:

Sii(1)=pi (10)
Si.i”’ (1)=Si’ (0) (11)
Si (0) = pi (12)
Si” (1) = Six1” (0) (13)

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 22:45:46 EEST - 137.108.70.13

Chapter 2. Curves

23

The endpoints already satisfy two more equations:

So(0) =1po (14)
Sn-l(l)zpn (15)

And the selected boundary condition complete the system:

So”> (0)=0 (16)
S’ (1)=0 (17)

Rearranging all these equations leads to the following symmetric tridiagonial system:

21 1 Xo 1 [3(P1—Dpo) T
141 X1 3 (p2 — Do)
141 X 3 (ps — p1)

141 X3 |=| 3 (Ps—p2)

141 Xn—l 3 (pn - pn—Z)
B 1211 Xn - -3(pn_pn—1)-

By solving this linear equation system and with (1), (6), (7), (8), (9), we can

recursively evaluate a;, bi ci, diand S; (t) Vi € [0, n-1].

2.3. Bezier Curves

Bezier curve is a useful tool in creation of vector graphics. They are widely used in

computer graphics to model smooth curves. They were first described by Paul de

Casteljau in 1959 but they became known in 1970’s when Pierre Bezier introduced an

industrial application of Bezier curves and surfaces for designing automobile bodies.

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 22:45:46 EEST - 137.108.70.13

Chapter 2. Curves 24

A Bezier parametric curve is defined by n control points Py, Pi,... , Pn, n>1.
Quadratic (parabolic) and cubic Bezier curves are the most common, although Bezier
curves can be defined for any degree n. For n=2 we get a straight line. The edges of the
curve are the first and the final point respectively. The curve passes only from the edges,
while the other points between them are called control points and help in the curve’s
creation. By moving the control points the curve is changingin a way that can be

intuitively obvious. If all the control points are collinear the curve is a straight line.

There are two ways of drawing a Bezier curve. One is an analytical expression and
the other a geometric algorithm. They are different ways to reach an identical result. The
first by computation through Berstein polynomial, a linear combination of Berstein basis
polynomials. The second way is to evaluate the curve with de Casteljau’s algorithm, a
recursive and numerically stable method. Through the algorithm it is possible to
understand the concepts of Bezier curves. For this reason also we will start directly with

the second method that also has an educational aspect.

2.3.1. De Casteljau algorithm

Named after Paul de Casteljau, this algorithm is a geometric approach in drawing
Bezier curves, without using any complicated calculus. With this algorithm it is possible
to construct a Bezier curve or just find a particular points on it for specific parametric
values. It can also be used to split a single Bezier curve into two at a random parameter
value. In terms of computing speed when compared to the direct approach the algorithm

is usually slower but is more numerically stable.

To construct a Bezier curve we must find several points through which the curve
will pass. These points depend on a parameter t in [0, 1]. After we have calculated enough
points drawing the Bezier curve is as easy as connecting those dots. It is obvious that the
more points we have, the better is the approximation of the Bezier curve. For example, if

the algorithm is used to draw by hand we could first look for the center of the curve and

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 22:45:46 EEST - 137.108.70.13

Chapter 2. Curves 25

afterwards look for the quarter points on the curve and then connect the five points we

have, including the end points.

A cubic Bezier curve example is the following. We have two end points PO, P3 and
two control points P1, P2, as seen in figure 3. We first look for the center (t=1/2) of the
curve. For each segment the points corresponding to t=0.5 are calculated and consecutive
ones are connected to each other. The newly created segments, serve as assisting control

lines, a temporary but necessary step in the process and can be seen in figure 4.

0 1/2 1

Figure 4 : Step One Figure 3 : Step Two

In the next step the middle point of these new segments have to be determined. That step
is repeated as many times as the degree of the Bezier curve is. For a cubic Bezier curve
the degree is 3 so that step is executed three times.

The second execution will create the yellow segment as shown in figure 5 and one
last execution of the same step for our example’s cubic curve, in order to find the middle
point of the last segment as shown in figure 6. The final output is the center of the Bezier

curve (t=0,5).

Figure 5 : Step Three Figure 6 : Step Four

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 22:45:46 EEST - 137.108.70.13

Chapter 2. Curves 26

If this algorithm is repeated for many values of't, for example t from 0 to 1 with step
0.01 the middle point of the last segment will be drawing the actual Bezier curve (figure

7).

Figure 7 : Final Curve

Evaluating the equation of the curve for every values of tin [0, 1] is like walking along
the curve. The result is a position in 2D or 3D space. So, if we want to visualize a
parametric curve the process begins by evaluating the equation for several values of't.
Afterwards by connecting the resulting generated points in space we create a polygonal

path as illustrated in next figure.

Figure 8: polygonal path

Even with four segments we begin to see what the final shape of the curve may look like.
For smooth result we need to run this algorithm for a large number of segments. This is,
how we can calculate and draw Bézier curves. With sampling in regular intervals and by

connecting the points to create several sequential connected line segments.

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 22:45:46 EEST - 137.108.70.13

Chapter 2. Curves 27

The pseudocode implementation for a bicubic Bezier curves is the following:
dot de casteljau(point Al, point A2, point A3, point A4, float t) {
// compute first 3 points and segments A1A2, A2A3 and A3A4

dot A12 = (1 - t) * Al + (t * A2);
dot A23 = (1 - t) * A2 + (t * A3);
dot A34 = (1 - t) * A3 + (t * A4d);

// new segments A1A2A2A3 and A2A3A3A4
dot A1223 = (1 - t) * Al2 + (t * A23);
dot A2334 = (1 - t) * A23 + (t * A34);

// finally compute last point on A1A2A2A3A2A3A3A4
return (1 - t) * Al223 + (t * A2334);

The De Casteljau method is computationally more expensive than the calculating the
analytical expression (evaluating the Bernstein polynomials directly)) but is numerically

more stable.

2.3.2. Bernstein Polynomials

For a cubic Bezier curve with control points P, P2, P3 and P4 the final curve is a result
of combining the four control points weighted by some value.

For example:

Peurve(t) = Prxk +Poxko+P3xks+Psxky
Where ki, ko, ks, k4 are scalar coefficients with a weighted contribution on control points.

Intuitively we can realize that for t= 0, the first point matches with control point P; and

similarly for t = 1 the last point with Pa.

Pcurve(O):PI *] +P2*O+P3 *0+P4*O

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 22:45:46 EEST - 137.108.70.13

Pcurve(1):Pl *O+P2*O+P3*O+P4* 1
Chapter 2. Curves 28

For all other values of t the coefficients ki are computed with the following equations

k() = (1-t)’

ko(t) = 3(1-t)**t

ks(t) = 3(1—-t)«t?

kq(t) =t

In order to evaluate a point on the Bezier curve for a specific value of t we have to

replace t on the equations above. Computations will provide all coefficients ki which are

then multiplied with the corresponding control points. For example, in order to create a

Bezier curve as a polygon path with 5 then we must evaluate 6 points with t being

incremented by 1/5. The following pseudocode demonstrates how to compute these 6

points along the Bezier curve:

pieces

for (i
t
K1
K2
K3
K4
Pt

= 5

0; 1 <= pieces; ++i) {

i / pieces;

= (1l -t) * (1 -¢t) * (1 -1¢t);
3% (L =€) * (1 =€) * &g
=3 % (1 = &) * & * &

€ ¥ € ¥ &g

(P1 * K1) + (P2 * K2) + (P3 * K3) + (P4 * K4);

For any change on the control points the code must be executed again.

A general and formal way to represent this method is a sum:

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 22:45:46 EEST - 137.108.70.13

Chapter 2. Curves 29

The coefficients Bi are known as the Bernstein polynomials. They were first defined by
Sergei Bernstein, a Russian mathematician, in 1910. Polynomials are expressions of
finite length. They consist of variables, constants and non-negative integer exponents.

Also they only use operations of addition, subtraction and, multiplication.

Bernstein polynomials can be computed with the following formula:
Bin(H)=(7) t (1-)™,1=0,...,n.

where the terms (7:) are known as binomial coefficients and can be easily computed using

factorials:

n n!
(i) T iln=10)!

For n = 3, the binomial coefficients are 1, 3, 3, 1.

The sum of all n+1 Bernstein polynomials of degree n is one.

2.4. Properties of Bezier curves

A Bezier curve is surrounded by the convex hull of control points. This specific
property isused in computer graphics to optimize intersection tests. If convex hulls do not
intersect, then the corresponding Bezier curves wont either. Checking for the convex hulls
intersection first can give a faster result because they are rectangles or triangles and in

general much simpler figures than the curve.

Figure 9 : Bezier curve and convex hull

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 22:45:46 EEST - 137.108.70.13

Chapter 2. Curves 30

In Bezier curves there is no local control. Moving a control point requires
recalculation that affect the aspect of the entire curve. In addition high degree curves are
computationally expensive to evaluate. The way to overcome those limitations is similar
to splines mention above. By using a series of piecewise Bezier curves that are at least
continuous we can easily model complex shapes with low degree curves. The
computational cost to change shape is also drastically decreased due to recalculation of
only the modified piece and in some occasions its neighbors. The piecewise curve is
called composite Bezier curve, composite Bezier spline or polybezier. A closed path
composed of Bezier curves is called beziergon or bezigon. A well-known application of
composite Bezier curves is TrueType fonts, an outline font standard used by Apple and

Microsoft.

Bezier curves have one more interesting property. As mentioned the first and last
point of the curve are matching with the first and last control point. For the example of
the cubic Bezier curve with control points P1, P2, P3, P4 the lines P1-P2 and P3-P4 are
tangent to the first and last point on the curve. As a result, a transition between two Bézier
curves is invisible if the line P3-P4 of first curve and P1-P2 from the second are collinear.
This property can be used for splitting an existing Bezier curve in two or to concatenate

existing Bezier curves together in one unified smooth curve.

This property is very useful when we want to draw a complex smooth curve
consisting from several low degree piecewise Bezier curves. By ensuring that the
consequent tangent are collinear we secure Ist order continuity of the combined curve.
2nd order continuity is also possible but it is more complex to implement and requires

higher degree of piecewise curves.

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 22:45:46 EEST - 137.108.70.13

Chapter 2. Curves 31

2.5. Bezier surfaces

Figure 10 : Bezier Surface

Bezier surfaces are a type of mathematical spline widely used in computer
graphics. Their utility was developed by French engineer Pierre Bezier in 1962 while
working for Renault, for use in designing automobiles. Bezier surfaces don’t have any
degree limitation, but bicubic Bezier surfaces are simple, easy to compute and generally

enough for most applications.

As with the Bezier curve, a Bezier surface is defined by a set of control points.
Once we have a clear view on the principles of Bezier curve it is straightforward to extend
the same technique to Bezier surfaces. The most commonly used Bezier surfaces are
bicubic and similar to bicubic curves where we had four control points we will define the

surface with sixteen points as a grid of 4x4.

Just like Bezier curves the surface does not necessarily pass through the central
control points but is stretched toward them. They act as an attractive force and are visually

intuitive.

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 22:45:46 EEST - 137.108.70.13

Chapter 2. Curves 32

While describing curves we used one parameter t to move along the curve. In the
case of surfaces, we will need two. Actually there is one parameter u which draw the
curve and other one v which moves the curve on 3D space, both contained within the
range [0, 1]. In general a Bezier surface is a sum of many Bezier curves in parallel either

looking in the u or v direction.

2.5.1. Bezier surface equation & properties

Figure 11: Bezier surface parameters

A Bezier surface (or patch) is constructed as the tensor product of two Bezier curves. The
isoperimetrical curves foru=0,u=1and v=0, v =1 are called border curves of surface.

We can think the Bezier surface as the tensor product of two Bezier curves.

A Bézier surface with 2 dimensions is defined as a parametric surface. Position of

any point P(u,v) on the surface is:

T

pw) =33 Br(w) B (v) ki,

i=0 j=0

Where once more
B = (7) w1 -
7

' . . n n!
is a Bernstein polynomial, and (1) e —

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 22:45:46 EEST - 137.108.70.13

Chapter 1. Curves 33

ki(u, t) = ki(v, t) = (1-)°
ko(u, t) = ka(v, t) = 3(1—t)2#t
ks(u, t) = ks(v, t) = 3(1-t)*2

ka(u,) = ku(v, t) =

But again using this method to evaluate points on Bezier surface isn’t always robust and
can be slow. An easier solution is to treat each row on the control point grid as an
individual Bezier curve. This way is similar to De Casteljau algorithm and is actually its
adaptation for Bezier surfaces. First step is to create the n Bezier curves using only
parameter u. Then for every v in [0, 1] the corresponding points on the previously
generated curves will be used as control points to generate a new set of curves in v

direction.

The pseudo code for this algorithm is the following:

point Bezier Surface(P[1l6], u, V)

return Bezier Curve (D, v);

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 22:45:46 EEST - 137.108.70.13

Chapter 2. Curves 34

Properties of Bezier surfaces:

o All lines for constant u, v are Bezier curves.

o Bezier surface transforms just like its control points for all linear
transformations or translations.

e Bezier surfaces are inside the convex hull of control points.
e A Bezier surface pass only through the corner control points.

In computer graphics Bezier Surfaces are used in meshes of bicubic patches where
m =n = 3. They are superior to triangle meshes in representing smooth surfaces since

they are easier to manipulate and they require less control points thus less memory.

Figure 12: Teapot made from Bezier patches

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 22:45:46 EEST - 137.108.70.13

3. Tools

Third chapter enumerates the resources used for application development. The
programming language, toolkits, development platform and required libraries will be

described in order to provide a complete view of the technical details.

3.1 Programming Language-JAVA

Java is a concurrent computer programming language, object-oriented and allows
creation of reusable code and. Java is easy to learn, general purpose, modular and was
designed to be platform independent. It can run on any computer with no specific hardware
requirements or any software dependency. Despite being relatively slower and more
memory consuming than C++ the ease of use and the huge database of available libraries

make Java an efficient tool in the hands of beginner and professional programmers.

3.2. JavaFX

JavaFX is a toolkit for Java used to create Graphical User Interfaces. With it we can
create visually pleasing applications. It is very important in those applications to have a
good structure. With a proper structure it is easier to maintain and support the application,
ensure stability or add new features, very important factors in enterprise applications.
JavaFX has replaced Swing, the previously recommended Java GUI toolkit, as it is more
consistent and has more features. It is also more modern too and allows designing using

XML layout files and CSS styling, like web applications.

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 22:45:46 EEST - 137.108.70.13

Chapter 3. Tools 36

JavaFX also includes built in graphics, audio, video, charts and embedded web
applications and can also reference APIs from any Java library. With JavaFX any kind of
application can be developed. They can be deployed across multiple platforms and display
information in a high performance and GUI interface that features graphics, audio, video

or even animation.

3.2.1. JavaFX Hierarchy

In this section we will see the various features in JavaFX. This step is essential in
order to understand how JavaFX is used in an efficient way.
A JavaFX application can have one or more stages Each stage is a separate window

and has a scene attached. Each scene can have attached to it, called the scene graph.

Figure 13: JavaFX application structure

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 22:45:46 EEST - 137.108.70.13

Chapter 3. Tools 37

o Stage

The outer frame and in general the application window. A multistage application means
that we can have several windows open at the same time. One of the stages is the primary
and first window to be opened. If additional windows are needed we can create

additional Stage objects.

e Scene

A stage needs a scene in order to display something. Only one scene can be shown in
the stage but different scenes can be exchanged and shown one at a time. To understand
why mane scenes are needed we can think of a simple computer game. First scene would
be the menu, another for the game screen and another for the high scores. Every scene is
represented by a Scene object. JavaFX applications must instantiate all Scene objects they

need.

Stage
Scene
Scene Graph

e Scene Graph
The collection of visible objects attached to a
scene is called scene Graph. It consists of several

nodes.

Figure 14: Scene graph

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 22:45:46 EEST - 137.108.70.13

Chapter 3. Tools 38

3.3. Tools used in project

This section will provide all necessary information to reproduce the implemented
project from scratch. The versions of the above tools that were used will be listed and the
already existing mathematical and 3D libraries will be provided.

The whole project is based on Java 8 with latest Java Development Kit verified the
JDK 8ul81. Further updates on Java 8 should function properly but for the exact same
project recreation the update 181 is recommended

The IDE used for development is Netbeans with last version used the 8.2. Using a
newer version will require an update on project files that could cause unknown
incompatibilities.

JavaFX is included in the JDK so ensuring the JDK version is right will also provide
the correct JavaFX bindings.

Apart from the core installation a mathematical library needs to be included since
linear algebra tools are required on almost every algorithm demonstrated. For the specific
case the common-math-2.2 was used and can be acquired from Apache commons
repository.

Third party JavaFx classes for handling 3D graphics are directly inserted in source

files and can be found in appendix or through project’s online repository.

If all the above tool versions are correct or compatible importing the existing project
or creating a new and copying the source files will lead to an exact regeneration of the

developed application.

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 22:45:46 EEST - 137.108.70.13

4. Implementation

This chapter presents the implemented JavaFX application. Every part of the design
and algorithms used for every scene will be described in depth. To provide a better
viewpoint on the hierarchical structure chapter four concludes with a class diagram tagged
by JavaFX element definition.

By navigating through the application users have the opportunity to witness the
basic concepts of Bezier curves and surfaces. By presenting a set of different approaches
it provides not only an understanding of the mechanics and algorithms, but also the
importance of their usage for vector graphics and animation. In the current version those

approaches are split into five independent subtasks.

4.1. Primary stage - Menu

As described in Section 2.2.1 every JavaFX application follows a hierarchy based
on stages and scenes. The application runs in a single window frame thus only one stage is
created. This primary stage is actually a combination of two elements, a tab selection menu
and an area where the actual scene is enclosed.

JavaFX provides easy access to some of the more frequently used menu structures
and the tab menu came in handy for organizing all the tasks in a single window frame.
Every tab contains a separate scene and a unique control bar which offers the ability to
parameterize the inputs, save the output or interact at runtime.

The standalone tasks are represented as different scenes with only one displayed at
a time. Despite the fact that only one scene is visible, all scenes are executed concurrently,

meaning that switching tasks retains all user activity by keeping them active in background.

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 22:45:46 EEST - 137.108.70.13

Chapter 4. Implementation 40

4.2. Scene One — Bezier Curves

First and also default tab contains the Bezier Curve sub-application. Primary
objective is to demonstrate a step by step creation of a Bezier curve. The number and
position of control points are defined by user and can be added, removed or modified at
runtime. Apart from curve visualization, every layer of inner control points and lines are
also generated and can be optionally displayed. The scene itself consists of a multilayer 2D

drawing canvas and a settings bar for user interaction.

Figure 15: Scene 1 - Bezier Curves

4.2.1. Description

The Bezier Curve scene starts with a blank 2D space. In order for any process to
start user must first select at least 2 points. Input is given with mouse in an interactive way
where points can be added removed or relocated. Selected points are displayed as
connected dots, with an extra bold stroke on first and last one to highlight the Bezier curve's
endings. An AnimationTimer, a JavaFX tool for real time animation, is used to provide a
smooth frame by frame display of the curve rendering. Each frame causes a slight increase
on the parametric variable t and de Casteljau algorithm calculates the next curve's point.

By default assisting lines and dots based on the geometric representation are

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 22:45:46 EEST - 137.108.70.13

Chapter 4. Implementation 41

visible, aiming for the better understanding of the curves creation. Also for the same cause
animation can be paused and its speed can be adjusted. Deleting control points will
instantly recalculate the curve's correct path, while dragging one will create the illusion of
a smooth curve movement following the control point.

An extended usage of action listeners, simplified by Java 8's lamda expressions
provided all the necessary user interaction. User input source is mainly mouse movement
and buttons, thus providing a compatible input method for touch screens and hoping for a

smooth future porting into android application.

4.2.2, Development

Development of the Bezier Curve Scene was split in three phases. General
appearance, algorithmic calculations and user interaction. This also separated the JavaFX
routines and objects used from the mathematical implementation of the de Casteljau
algorithm.

First phase begun with a static analysis of every possibly needed shape and data
structure. The selected data set and their format was the result of numerous approaches and
tryouts. Since the main purpose was not the optimal fastest implementation but a user
friendly smooth experience lot of attention was given in accurate visualization and css
styling. What is seen in this scene is actually a collection of JavaFX shapes, mainly circles
and lines, added in a Pane called desktop.

Shapes used where split into groups in order to properly separate visible layers.
This layer separation was not only a visual improvement, but also necessary for proper user
interactions, since objects selected by mouse are always the ones on top.

Next development phase focused on the mathematical calculations beneath curve
generation. JavaFX can automatically create Bezier curves of three or four control points
but in our case this was insufficient. In order to support any number of control points the
de Casteljau algorithm was implemented. As mentioned above a JavaFX AnimationTimer
gives the pace for the animation's frame rate, and for every frame a point on the curve is
rendered. There is no upper limit for the number of points since all data is stored in

ArrayLists, Java's dynamically allocated arrays. In total three sets of two dimension

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 22:45:46 EEST - 137.108.70.13

Chapter 4. Implementation 42

arraylists are allocated. First one and also most important is dedicated to the control points,
including all the secondary assisting points that emerge while executing de Casteljau
algorithm. Those correspond to the center of the previous level of control points and are
relocated at run time. All the computations are just moving those assisting control points.
The other two arraylists have a similar structure and are used for the optional visualization
of dots and lines. They contain their position and are also relocated for each value of t
according to the current positions of assisting control points.

Finally, apart from control point handling, user can via a set of buttons administer
the visual layers, clear screen, halt the animation and adjust drawing speed. Users can also

save the current collection of control points on computers’ file system.

4.3. Scene Two — Cubic Splines

The second scene generates at the same time a piecewise Bezier curve and cubic
splines as reference. Through this process users can demonstrate the impact control points

have in curve’s continuity and its application in vector graphics.

Figure 16: Scene 2 - Cubic Splines

Furthermore we come across an extra benefit of using Bezier curves while control points
are not constant. With spline interpolation any change on control points would require a
complete curve recalculation from end to end. On the other hand he corresponding

piecewise Bezier curve has to redraw only the neighbor pieces of the affected control point.

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 22:45:46 EEST - 137.108.70.13

Chapter 4. Implementation 43

4.3.1. Description

Once more the scene begins with a blank 2D canvas. Mouse interaction is needed
to assign the locations of control points. The points selected will be drawn as orange dots.
Between every selection two additional equidistant points will be automatically drawn as
smaller blue dots. Three buttons are available for users and can be used with any amount

of control points.

Splines: Runs a cubic spline parametric algorithm to generate a curve passing

through all the orange control points.

Bezier: Draws a piecewise curve consisting of several cubic Bezier curves. The
final curve is smooth and will be passing from all orange control points. Blue points
will be relocated automatically so that all pieces fit in the equivalent part of cubic

spline.
Clear: Resets the canvas, clears allocated space and awaits new user input.

Even after the curves are drawn new points can be added. Control points can be
relocated with mouse and new curves can be redrawn based on the updated information.
The generated Bezier curve will always be the best match of the reference cubic spline. By
moving any control points users can modify the curve and demonstrate how it changes
according to their position. Moving the blue control points trigger a smoothing function

that ensures continuity.

Within this scene Bezier curves show their advantages in comparison to spline
interpolation.

1. Splines are calculated according to the points the pass through without any way

for local adjustments on the final curve. On the other hand Bezier pieces have

the internal assisting control points as blue dots that only serve as corrections

without affecting the curve base route.

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 22:45:46 EEST - 137.108.70.13

Chapter 4. Implementation 44

2. Moving a control point require a complete recalculation of the whole curve with
spline interpolation where piecewise Bezier pieces only redraw the 2 pieces that
are directly affected by the change.

3. Scalability not an issue for Bezier curves where the increase in control points
creates a linear increase in computation cost.

4. Piecewise Bezier offers a designer friendly way to modify the curve, with the
option to either retain a smooth path by ensuring continuity, or create local

edges on demand.

4.3.2. Development

Unlike the previous scene where the focus was on a geometrical representation and
real time movement this time we focus in mathematic algorithm adaptation.

For cubic splines a library for linear algebra is used to perform LU decomposition.
The algorithm for parametric spline interpolation is described in Section 1.2.2. Separately
for coordinates x and y the tridiagonial system is populated and solved. The generated
cubic spline is drawn as a bold red curve. Both user input and generated data are stored in
arrays till reset with the clear button. The storage this time is not dynamic and theoretically
infinite as in the first scene with Arraylists. But on the other hand the calculations are faster
and high precision arithmetic can be used.

Piecewise Bezier follows a more complex approach. The process makes use of data
generated from spline interpolation. For every piece inverse Bezier algorithm is run to
generate a local fit on reference curve. The inverse algorithm is also the main focus of the
next scene so it will be described on next section. The final curve illustrated as a yellow
line passes from all user given control points.

The output of Bezier fitting algorithm creates the complete path as with every piece
being a cubic Bezier that perfectly matches the reference spline part but there is a missing
and very important step. By only doing this we cannot guarantee 1% degree continuity at
the connecting points of two consecutive pieces. In order to fix continuity but preserve a

good fit an extra algorithm was necessary.

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 22:45:46 EEST - 137.108.70.13

Chapter 4. Implementation 45

As known from theory the imaginary straight line connecting the end point of
Bezier curve and the previous control point is also the tangent at that endpoint. So in order
to have 1*' degree continuity between two consecutive Bezier pieces the connecting point,

previous and next control point must be all on the same imaginary straight line.

Figure 17: continuity between bezier pieces

In case that the three points are not aligned the blue control points have to be
relocated. To achieve minimum impact on the curve the relocation is split evenly for the
two blue dots. It would be as if both are rotating with same angular speed with orange point
as center and on opposite direction till they are aligned. They also adjust their radius on
their average. After this algorithm is run on all user defined control points the final
piecewise Bezier curve is ready, smooth and a close match to the cubic splines used as
reference.

This extra algorithm is executed for all points as a last step after piecewise Bezier
initial creation. After that any modification on control points require a re-execution only
on the affected point. The computation cost is very low and again linear to the affected
points.

To demonstrate both the ability to retain 1% degree continuity but also the creation
of local edges on demand the trigger of the smoothing function described above is not
always enabled. By default it is executed on initial Bezier creation for all points, and upon

relocation of control points it is only triggered by the first blue point per cubic Bezier piece.

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 22:45:46 EEST - 137.108.70.13

Chapter 4. Implementation 46

4.4. Scene Three — Inverse Bezier

In the first scene we witnessed how given any number of control point we can
generate a Bezier curve. But what if we need the exact opposite. Suppose we have a known
curve path, and we want to calculate which control points could create a Bezier curve as
close to the given one as possible. This task is demonstrated in the third scene, where users
are called to provide the curve path dynamically and the curve’s control points are

automatically calculated.

4.4.1. Description

Following the same approach with previous scenes we start again with a blank 2D
canvas. A dynamic path can be drawn with mouse interaction by clicking and dragging
inside the drawing area. Upon mouse button release the calculation process begins, in order
to create a Bezier curve in the specified path.

The path drawn by user is a bold green line. End points and two extra assisting
points on path are also highlighted. On top of the original path the generated Bezier curve
will be drawn with purple color and two extra red dots as the estimated control points.

Upon new mouse click everything is reset and a new path can be redrawn instantly.

Figure 18: Scene 4 - Inverse Bezier

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 22:45:46 EEST - 137.108.70.13

Chapter 4. Implementation 47

Default number of control points is set to be four (cubic Bezier curve) thus the
generated curve can have up to one turning point. More complex curves could be calculated
with either higher number of control points, or by dividing the path into smaller simpler

curves.

4.4.2. Development

When user is called to draw a curve every point is stored but only four will be used
for the actual calculations. Those four are the ones highlighted with dark blue color. Using
the parametric equation to calculate Bezier curves we know that the first point is the result

for t = 0, second for t=0.33, third for t=0.66 and the last for t=1.

With the four equations we form a matrix and solve for the coordinates of the red control
points. Again java libraries for linear algebra are used for LU decomposition.

Now that we have all four points an algorithm similar to first scene’s generates the
cubic Bezier curve on top of the given path. When a new path is redrawn all previous data

are cleared.

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 22:45:46 EEST - 137.108.70.13

Chapter 4. Implementation 48

4.5. Scene Four — Bezier Surfaces

The forth Scene is a demonstration of the most commonly used Bezier surface,
bicubic patch, in 3D space. It is defined by sixteen control points and can be freely modified
and regenerated in real time. Users can freely rotate, zoom, and manipulate the surface

making full use of JavaFX 3D capabilities.

Figure 19: Scene 4 - Bezier Surfaces

4.5.1. Description

Starting in a 3D space with predefined control points a surface is built with adjustable
density. Users have freedom over camera angle and distance and can freely modify the
surface by moving the control points. Every change triggers a total redraw of the surface
thus giving the feeling of surface following the control points at real time. The density is

not only for visual interpretation but also defines the steps of parameter t while executing.

De Casteljau algorithm in both directions u and v. Increasing density will actually fill the
surface but could be slow on a weak machine. The control points appear in space as light

blue spheres, and the surface also consists of many smaller pink spheres.

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 22:45:46 EEST - 137.108.70.13

Chapter 4. Implementation 49

4.5.2. Development

For representation in 3D space JavaFX’s camera and 3D libraries are used. As
described in chapter 2.2.2 camera perspective was added in order to replicate a 3D world.
Afterwards the sixteen control points where added in predefined coordinates and were
drawn as blues spheres in the scene. The next step follows is to calculate the actual surface
with the surface version of de Casteljau algorithm as described in Section 1.4.1. The
algorithm is running for two parametric values u and v. The first pass creates the pseudo
control points that are illustrated as spheres with light brown color. Based on those control
points the second pass will create the actual surface consisting of many small pink spheres.
The Density is adjustable but greatly affect computation speed.

Apart from control points that are stored in a dedicated array all other object are
dynamically created and drawn when instantiated in the 3D canvas. The grid of 4x4 control
points has predefined values but any point can be moved with mouse interaction. Mouse
over a point highlights and enlarge it in order to assist users. While dragging a control point

real time calculations will redesign the surface.

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 22:45:46 EEST - 137.108.70.13

Chapter 4. Implementation 50

4.6. Scene Five — Bezier Patches

Following the same pattern of previous section this final scene demonstrates an
actual application of Bezier surfaces in computer graphics. Several bicubic surfaces (4x4)
are combined together to form a bigger surface. This Scene demonstrates both the
manipulation of 3D surface and application of an algorithm to maintain continuity between
neighboring patches. Any change on the internal control points will automatically relocate
the internal control points of neighboring patches. This technique can be used in tool for
designing smooth 3D objects where small local changes will not break the overall polished

surface.

Figure 20: Scene 5 - Bezier Patches

4.6.1. Description

Starting in 3D space a Bezier surface is predefined as combination of four smaller
bicubic (4x4) surfaces. From control perspective everything is almost same as in previous
scene. All light blue spheres are the control points and can be moved with mouse. The
different bicubic surfaces are illustrated with different colors.

Control points are split in two categories. The outer ten points on the edges of a
patch, which are directly shared with neighbor patches, and the four internal ones. On all
those sixteen control points apart from their job to generate the Bezier patch also a simple

algorithm applied in order to maintain 1*' degree continuity between neighbors.

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 22:45:46 EEST - 137.108.70.13

Chapter 4. Implementation 51

4.6.2. Development

The mechanism behind this scene is very similar to Surface scene. This time
all calculations are run for each 4x4 grid separately. A subtask that ensures 1% degree

continuity on consecutive surfaces will force their connecting edge to be smooth.

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 22:45:46 EEST - 137.108.70.13

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 22:45:46 EEST - 137.108.70.13

5. Conclusion

In the present thesis an educational tool for the learning of the Bezier and splines
curves was developed. By means of this tool it can be achieved the full understanding of
the curves based on their characteristics and their properties. The user, even knows the
meaning of the curves, or tries to understand them by using this application, has the
possibility to create his own examples. The interactive way which is used in this application
can make the learning and the understanding of the mathematical concepts more pleasant.
The Bezier curves, splines and the surfaces form an important factor in the design and
display of graphics.

The basic concepts of Bezier curves and surfaces with focus on their geometrical
representation could be accessed through a series of stand-alone tasks. The interactive
nature of the application creates a gamified version of an educational tool. It offers
knowledge through fun and hides complicated algorithms in easy to understand animations.
A first step for a useful and practical educational tool for Bezier curve studying.

The tool is important because it offers the possibility to the user to interfere in the
curve that has created and change it even by transferring the control points or adding and
eliminating other control points. With this feature the user understands instantly the way
that curves are created and designed.

In the future this tool could be enriched with other functionalities based on the
existing curves or even to exist the possibility to design more formats of curves and
surfaces. Furthermore, they could be added some tabs where the user can test if has
understood correctly the properties of the curves. Meaning to recognize what type of curve
is the one that he created or even to press a button to design a random curve and find its

type that was used for the design.

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 22:45:46 EEST - 137.108.70.13

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 22:45:46 EEST - 137.108.70.13

6. Bibliography

1. https://en.wikipedia.org/wiki/B%C3%A9zier_curve

https://en.wikipedia.org/wiki/B%C3%A9zier surface

http://www.e-artouche.ch

https://pomax.github.io/bezierinfo/

http://mathworld.wolfram.com/CubicSpline.html

http://fourier.eng.hmc.edu/el76/lectures/ch7/node6.html
Computer-Aided Design Volume 21, Issue 4, May 1989. Pages 194-200

A L o

GCl1 continuity conditions between adjacent rectangular and triangular Bézier surface

patches
&. Curves and Surfaces for Computer-Aided Geometric Design A Practical Guide Book 3rd

Edition 1993 . Gerald Farin
9. Graphical Models and Image Processing Volume 58, Issue 3., May 1996. Pages 223-232

Regular Article : Curve Fitting with Bézier Cubics

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 22:45:46 EEST - 137.108.70.13

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 22:45:46 EEST - 137.108.70.13

Appendix

UML

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 22:45:46 EEST - 137.108.70.13

