Network Training Techniques Based on
Topology Sparsification

Teyvinéc Exmaidevong Nevpwvixwy Auxtdowy pe
Apoaromoinon tng TomoAoyioc Tou

Fragkou Evangelia

Supervisor: Assoc. Prof. Antonopoulos Christos
274 committee member: Assov. Prof. Korakis Athanasios

37 committee member: Tousidou Eleni

A thesis submitted in fulfillment of the requirements
for the degree of Diploma Thesis
in the
Department of Electrical and Computer Engineering
University of Thessaly

Volos, June 2019

Teyvirég Exmalidsvorng Nevpwvixwy Auxtowy pe
Aporomoinon tnc TomoAoyiog Tov

IIepiAndm

2T0Y0G NG TAPOVONS OLTAWUOTIXNG €pyoolag elvor v Taydtepn exmoalidcvon eviog
VELPWYLXOV OLXTOOL, WE TNV TEYVLXN TNG OCEOLOTOLMOMG TNg TomoAoyiog Tov. Ot
TPONYOVUEVEG LAOTIOLMOELS EQPAPUOCOY OLTY] TNV TEYULXN O €va TUXOLo YEAPNULO
(Erdos-Renyi model), pe oxomd T dnpovpyio pLog o Sounuévng TOTOAOYIOG XorTd T
OLEPXELOL TNG EXTTOLGEVONG TOL JLXTVOL OWTOV. XZTNY TOPOVoO. EQPYUTio, LEASTNONXE 7
amtd300Y] €vOG YELPWYLXOV dLXTOOL, TOL OTOLOL 7 TOTOAOYL axoAovLBEl ToLG VOUOLG TTLO
SOUNUEVWY OXTOWY EEXPYNG XOL ETELTO, XATA TN OLAPXELX TNG EXTOLIELOYS TOUL,
oVOXOTOOXEVALETOL o €éva cEloouv Oounuévo dixtvo, Omwg To scale-free xou
small-world. ITpdxettor yiow 300 ONUAVTIXEG TEXVIXES YLOL TNV OYOTITUEY XL TN OYESLOOT
OXTOWY, TOCO OTO YWEO TNG TEXVOAOYLOG, 000 %o OTOV TEOYROTIXO xbécuo. [io
OLeEayw YN TWY TELPUUATWY Lag, yenotpomoubnxe évar vevpwwixd dixtvo timov MLP
(Multi-Layer Perceptron), pe évo emimedo eLo6d0v, éva €EGSov xot Tplow xpuUUEv
emtimedor Twy YALWY VELPWYWY. AnpLovEYROnxay 5 vAomolioelg (scale free to set, scale
free to scale free, scale free to small world xot small world to small world), ot omoieg
OLoPEPOVY PETOED TOUC OTNY oEYLXN XOL TEALXY] OLOOPEWOY TNG TOTOAOYLOG TOL
dxTOoL %O YPMoLtpoTolo¥y Tov ohydptbuo back propagation yia ™V ovadtopopQwon
TOY TWOY Towv Popoy. Xtovg oAyoplbpovg ovtodg d60nxe Papdtnto T600 OTNY
oxpifeta 600 %o GTO YPOVO TTOL ATALTELTOL, DOTE TO VEVPWILXO GIXTLO VO EXTTALOEVTEL
ue Bdost tor dedopgévor ov Tov dlvovton xdbe @opa. Extiundnxe mwg ov xoAdTepeg
neptntoelg (1660 o xp6vo 600 xoL oc axpifeia) aAyopiBuwy ToPoLOLAoTNIHAY OTLC
scale-free vAomoMoELg, ®Td TG OTolEg, M OVVdEON TWY XOUPwWY TOL dtxTVOoL deV elvor
Toyaion oAAG oxoAovbel TETOLL xOTOVOWY), OTE oL ONUOPLAETTEQPOL xOpBol vo
euvoovvtar (oxpifetor éwg xow 92% oe 15 Aemtd). Qotdoo, OTLG TEPLTTWOOELS HTTOL
EQOPEUOOTNXE 7N TEYVLXY] Twy small-world ypapnudtwy, Twy omolwy 1 douyn slvor Lo
Toyola, eiyope younAy oxpiferor (6t Thvw amd 70%) xow TEPEOTLO XPOVO eXTEAEGYG
(Ewc xor 12 peg). Téhog, To TELREUOTE RO Eyvoy Yiow 4 SLopopeTixd opyeia
0cd0ouEVwY, T OTTolal TTEPLEYOLY [LOAOYLXA JESOUEVA XaL E(VOL XWOLXOTTOLNUEVOL UE TNV
one-hot xwdtxomoinon.

Network Training Techniques Based on Topology
Sparsification

Abstract

The purpose of this project is to speed up the training of a neural network by using
topology sparsification technique. The previous implementations applied this technique
to a random graph (Erdos-Renyi model), with the aim of creating a more structured
topology during the training of this network. In the present thesis, we studied the
performance of a neural network, whose topology follows the laws of more structured
networks from the beginning, and it is reconstructed to a similarly-structured one,
during the training phase, such as scale-free and small-world. It’s about two important
techniques for the development and design of networks, both in technology and in the
real world. In order to conduct our experiments, a MLP (Multi-Layer Perceptron)
network was used, with an input layer, an output layer and three hidden layers of
thousands of neurons. So, we have created 5 variants of our concept (scale free to set,
scale free to scale free, scale free to small world %ot small world to small world), which
differ from each other in the initial and final configuration of the network topology and
back propagation algorithm is used in order for the weight values to be adjusted. These
algorithms focus on both the accuracy and the time required for the neural network to
be trained, regarding the data given to them, each time. It was estimated that the best
cases (both time and accuracy) of algorithms are presented in scale-free
implementations, in which the connection of the nodes of the network is not random
but follows such distribution so that the most popular nodes are favored (up to 92% in
15 minutes). However, when the technique of small-world graphs is applied, whose
structure is more random, we have low accuracy (not over 70%) and enormous
execution time (up to 12 hours regarding large datasets). Finally, our experiments were
done, using 4 different datasets, which contain biological data, being encoded with
one-hot encoding.

Copyright © 2019 by Fragkou Evangelia.

“The copyright of this thesis rests with the authors. No quotations from it should be
published without the authors’ prior written consent and information derived from it
should be acknowledged”.

Acknowledgments

First and foremost, I would like to express my sincere thanks to my supervisor
Dimitrio Katsaro for his valuable support. It was his significant guidance during the
whole study that contributed to the completion of my diploma thesis.

I am also deeply grateful to Prof. Antonopoulos Christos, Korakis Athanasios and
Tousidou Eleni. I do appreciate their valuable advice and their insistence on this thesis.

Furthermore, I would like to thank my fellow student and friend Koultouki
Marianna for our excellent collaboration to the fulfilment of this project.

Special thanks to my colleagues and friends for all the fascinating and
unforgettable moments we have experienced together over the past five years.

Finally, I wish to thank my family for standing by me throughout the years, for
their unconditional love and understanding.

Contents

TTEOUATIDY) ettt e e e e et ee ettt ee s 3
ADSITACE ..ot L
AcKNOWIEAGIMENLSoeiiiiiiiiiiiiiiiiit et ee et e e e et e e e e e 6
L0101 o L o TP PO POPPPPPPPPPR 15
INtrodUCHION ..oivvviiiiiiiiiiii e 15

1.1 Machine Learning and Deep Learningcccccoeeeeiiviiiiiiiiiiiiinniiniiiinnnnnnnn. 15

1.2 Applications of Deep learning in last yearsccccceeeviiiiiiiiiiniiiiiiiininienininn. 15

1.3 Background on Neural NetWoOrkscccccoveviiiiiiiiiiiiiiiiiiiiiii i, 17

1.4 Introduction to Multi-Layer Perceptron neural network (MLP) 23

1.5 Technical backgroundcccccoeeiiiiiiiiiiiiiiiiii 25

1.6 Motivation and contribUtiONScceeviviiiiiiiiiiiiiiiiiii e, 28
CRapter 2 ...ttt e e e e e e ee et eae 31
Related WOTKcooiiiiiiiiiiiiiiiiiii e 31
CRAPLET 3 ...ttt ettt et e ettt e e e e e e ettt e e e e e e ee e e e e e 35
INEtWOTK SCIENICE ...uuiiiiiiiiiiiiiiiiiii it 35
3.1 Techniques of Network CONStructionccccceeveviiiiiiniiiiiiiiiiinniiniiieeennees 35

3.1.1 Regular LattiCescccuviiiiiiiiiiiiiiiiiiiiiiiiniiriii e 35

3.1.2 Random Networkcccoiiiiiiiiiiiiiiiiiiiiiii s 37

3.1.3 Small World Networkcccouiiiiiiiiiiiiiiiiiiiiiiiiii s 39

3.1.4 Scale Free NetWoOrKc.cooovvuiiiiiiiiiiiiiiiiiiiiii e 42

CRAPLET 4 ...ttt et e et e e e e e e e e e e e e aeeeaeeas 45
The Proposed TechniqUesccouuuiiiiiiiiiiiiiiiiiiiii i 45
4.1 Sparse Evolutionary Training (SET) algorithmcccccovviieeiriniiceennnnneens 45

4.2 Data formattingccoooiviuiiiiiiiiiiiiiiiiiiii 46

4.3 The Proposed Techniquesc.uceeiiiiiiiiiiiiiiiiiiiiiii s 46

4.3.1 Scale Free to SETcccoiiiiiimiiiiiiiiiiiiiiiiiiii 47

4.3.2 Scale Free to Scale Freecccccoovvviiiiiiiiiiiiiiiiiiiiiiiiiiiis 49

4.3.3 Scale Free to Scale Free (5 strongest N0des)ccceevveeenieeenuieennnnens 50

4.3.4 Scale Free to Small Worldccooiiiiiiiiiiiiiiiiiiiiii 51

4.3.5 Small World to Small Worldccoooiiiiiiiiiiiiiiiiiiiiiiii 53

CRAPLET 5 ...ttt et e e e e e e e e e ettt aeeees 55
Experimental evaluationcccoeeeiiiiiiiiiiiiiiiiiiiii e 55
5.1 Evaluation Settingsccooviiiiiiiiiiiiiiiiiiiiiii e 55

5.1.1 Dataset informationccccceeeiiiiiiiiiiiniiiiiii i 55

5.1.2 Specific variable values and software environmentccceevuunnreen 56

5.2 Experimental resultsccccoooiiiiiiiiiiiiiiiiiiiiiii 57

I) D AU PRI 57

5.2.2 Scale Free t0 SET ..o e ea e r e a e e 62

5.2.3 Scale Free to Scale FTEE ...c.couiiiiiiiiiiiiie et ea s 69

5.2.4 Scale Free to Scale Free (5 strongest NOAES)c.cecveeeueeereeesveenveennnes 75

5.2.5 Scale Free to Small Worldccouiiiiiiiiiii e 82

5.2.6 Small World to Small Worldccouiiiiiiiiiiiiieec e 85

5.3 ReSUILS = DISCUSSION. ..uuvuiiiiieiieiieiiit ettt et eeteenerterterseeaeereseeererererneens 88
CRAPLET B ...ttt ettt et e e e e e e e e e e e e e e ettt eeeeeeeas N
(0701 el 15 153 10) o TS PR N
REFERENCES ..ottt et e e et e e e ee e e et e e et e e saaeeesenaeaees 92

List of Figures

1.1
1.2

1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10
1.11
2.1
2.2
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
4.1
5.1

5.2

5.3

Step fUNCION O/1.c..uiiiiiiiiiiiiiiii et e 18
A simple neural network model........ccccoveiiiiiiiiiiiiiiiiiii 19
Linear (A) vs. Non-Linear (B) problems........cc.cciirrviieeenniiiieeinniiieeeeeiieee e 20
main process of CNN.....oooiiiiiiiiiiiiiiiiiiiiii e 21
Restricted Boltzmann Machine...........cccooevviiiiiiiiiiiniiiiiiini i 22
A simple RNN. oottt ettt e e 22
Categorization of neural algorithms........cc.ceeviiiiiiiiiiiiiiiiiiin e, 23
Three layer NetWOTrK......ciciuiiiiiiiiiiiiiiiiiii et 24
ReLU activation function............eeeviiiiiiiiiiiiiiiiiiii s 27
FReLU activation function........cccoveiiiuiniiiiiiiiimiiniiiiii i, 28
Differences between ReLU (a) and FReLU (D)......cceeeriiiierieiieieeiniieiee e, 28
Dropout Neural Net Model.......ccccoeiiiiiiiiiiiiiiiiiiiiiiiiiiiii e 33
An illustration of meProp method.........cccoiviiiimiiiiiiiiiiiiiiiiiiiii e 33
A regular 1attiCe.......cuuuviiiiiiiiiiiiii i 36
A non-regular 1attiCe.......ooiivuuiiiiiiiiiiiiiiiiiiiii 36
[lustration of a regular lattice...........ccovviiiiiiiiiiiiiiiiiiiiiii 37
Classical Erdos-Renyi model.........cccouuiiiiiiiiiiiiiiiiiiiiieii et 38
Bell Curve Distribution of Node Linkages.....cc...ccouueiiiiiiiiiiiiiiiiiiiiiiiiinnniiininnnenen 38
Small-world network algorithmo.........c.cccuiuiiiiiiiiiiiiiiiniiiiii i, 39
Increasing randOmMNESS.cvviiiiuuuiiiiiiiiiiiiiieeeiii et et e aaaas 40
Watts and Strogatz’s small-world model with p=0.01102...............iiiinnnnnnn. 41
Watts and Strogatz’s small-world model with p=0.02009............cccccovvvinniiiinnnnnn. 41
Watts and Strogatz’s small-world model with p=0.06669.............ccccceeevrirrnnnnnn. 42
Poisson Distribution vs. Power-Law Distribution for k nodes..........cccccooeeeennee. 43
Scale-Free network algorithm.........ccccooooiiiiiiii 44
SET PS@UAOCOAE. ...uuuuiiiiiiiiiiiiiiiiiiiiiiiiiriiti ettt et e e e e e eaeanes 46

SET accuracy, using ReLLU activation function and lung.mat

SET accuracy, using ReLLU activation function and lung_discrete.mat

0.4

5.5

5.6

5.7

0.8

5.9

5.10

5.11

5.12

5.13

5.14

5.15

5.16

5.17

5.18

5.19

Scale Free to Scale Free accuracy, using ReLLU activation function and

lung_discrete.mat file.......ccouvviiiimiiiiiiiiiiiiiiiiiii 71

10

5.20

5.21

5.22

5.23

5.24

5.25

5.26

5.27

5.28

5.29

5.30

5.31

5.32

5.33

5.34

5.35

5.36

Scale Free to Scale Free accuracy, using FReLLU activation function and
lung_discrete.mat file........ooeiiuuiiiiiiiiiiiiiiiiiiiiiii 71
Scale Free to Scale Free accuracy, using ReLLU activation function and
TOX_171.mat file...c.oiuuiiiiiiiiiiiiiiiiiiii 72
Scale Free to Scale Free accuracy, using FReLLU activation function and
TOX_171.mat file...ocuiviiiiiiiiiiiiiiiiii s 73
Scale Free to Scale Free accuracy, using ReLU activation function and
CLL_SUB_111.mat file.....cccooiiiiiiiiiiiiii s 74
Scale Free to Scale Free accuracy, using FReLU activation function and
CLL_SUB_111.mat file.....cccoiiiiiiiiiiiiiiiiiiiiiniieiiiiiii e 74
Scale Free to Scale Free (5 strongest nodes) accuracy, using ReLLU activation
function and lung.mat file..........cceviiiiiiiiiiiiiiiiiii 75
Scale Free to Scale Free (5 strongest nodes) accuracy, using FReLU activation
function and lung.mat file.........coeviiiiiiiiiiiiiiiiii 76
Scale Free to Scale Free (5 strongest nodes) accuracy, using ReLU activation
function and lung_discrete.mat file.........cc.eveiiiiiiiiiiiiiiiiiiiiii 77
Scale Free to Scale Free (5 strongest nodes) accuracy, using FReLU activation
function and lung_discrete.mat file........ccouuuviiiiiiiiiiiiiiiiiiiiiiiiii 77
Scale Free to Scale Free (5 strongest nodes) accuracy, using ReLU activation
function and TOX_171.mat file.....ccoeoeiviiiiiiiiiiiiiiiiiii e 78
Scale Free to Scale Free (5 strongest nodes) accuracy, using FReLU activation
function and TOX_171.mat file......coooiiiiiiiiiiiiiiiiiiniiiiiiiri s 79
Scale Free to Scale Free (5 strongest nodes) accuracy, using ReLU activation
function and CLL_SUB_111.mat file.........ccccoiiiiimmiiiiiiniiiiie 80
Scale Free to Scale Free (5 strongest nodes) accuracy, using FReLU activation
function and CLL_SUB_111.mat file.......cccccooiiiiiiiiiiiiiiiiiiinniiiiiii i, 80
Scale Free to Small World accuracy, using ReLLU activation function, lung.mat

file and P=0.02.......ceiiiiiiiiiiiiiiiii e 82
Scale Free to Small World accuracy, using FReLU activation function, lung.mat
file and P=0.02......cuuiriiiiiiiiiiiiii 82
Scale Free to Small World accuracy, using ReLLU activation function, lung.mat

file and P=0.075......ceiiiiiiiiiiiiiiiiiii e 83

Scale Free to Small World accuracy, using FReLU activation function, lung.mat

11

5.37

5.38

5.39

5.40

5.41

5.42

file and P=0.075..cccuuuiiiiiiiiiiiiiiiiiii e 84
Small World to Small World accuracy, using ReLLU activation function, lung.mat
file and P=0.02......ccoiiiiiiiiiiiiiiiiiiii e 85
Small World to Small World accuracy, using FReLU activation function, lung.mat
file and P=0.02.......oeiiiiiiimiiiiiiiiii e 85
Small World to Small World accuracy, using ReLU activation function, lung.mat
file and p=0.075......ccoiiiiiiiiiiiiiiiii 86
Small World to Small World accuracy, using FReLU activation function, lung.mat
file and P=0.075......coeiiiiiiiiiiiiiiiiiii 87
Accuracy evaluation of five algorithms, including SET code, using

four different datasets..........ccovviiiiiiiiiiiiiiiiiiii 89
Time evaluation of five algorithms, including SET code, using

(0] DRl e N i (SIn s LA e P R = 1o r PN 90

12

List of Tables

5.1

5.2

5.3

0.4

5.5

5.6

5.7

5.8

5.9

5.10

5.11

5.12

5.13

5.14

5.15

5.16

5.17

5.18

Datasets characteristiCs.........uuuuuuiiviiiiiiiiiiiiiiiiiiiiiiiiiii s 55
Statistics of SET algorithm using lung.mat file..........cccevviuiiiiiiiiiiiiiiiiiiinnnnnnn.. 58
Statistics of SET algorithm using lung_discrete.mat file..........ccoeeviiriiiiiinnniininnin. 59
Statistics of SET algorithm using TOX_171.mat file........cccccoeeiiiiiinniiiniiiiniiiinininn, 60
Statistics of SET algorithm using CLL_SUB_111.mat file.........ccccoveveviiririnnnnnens. 62

Statistics of Scale Free to Set algorithm, using lung.mat

Statistics of Scale Free to Scale Free (5 strongest nodes) algorithm,

using lung.mat file.........coeviiiiiiiiiiiiiiiiiii 76
Statistics of Scale Free to Scale Free (5 strongest nodes) algorithm, using

lung discrete.mat file......ccoovvviiminiiiiiiiiiiiiiiiiiiii 78
Statistics of Scale Free to Scale Free (5 strongest nodes) algorithm, using
TOX_A71.mat file...cooooiiiiiiiiiiiiiiii 79
Statistics of Scale Free to Scale Free (5 strongest nodes) algorithm, using
CLL_SUB_111.mat file......ccoooiiiiiiiiiiiiiiiiniiiiiiitiiiiiii e 81

Statistics of Scale Free to Small World algorithm, using lung.mat file and

13

5.19

5.20

5.21

14

Chapter 1
Introduction

1.1 Machine Learning and Deep Learning

The expectations in Artificial Intelligence have never been as high as they are today.
Taking into consideration that artificial intelligence (AI) is a function that imitates the
working of the human brain in processing data and in creating patterns for use in
decision making, we understand that it is an emerging industry that promises
revolutionary technological development [46]. Particularly speaking, machine learning is
a subset of Al. It provides a method of data analysis and refers to any type of computer
program that can learn by itself without having to be explicitly programmed by a
human. Machine learning has been widely used in recent years in big data analytics and
data mining. There are two types of learning; supervised machine learning and
unsupervised machine learning. The main difference between them is that in supervised
learning, the user trains the program to generate an answer based on a known and
labeled data set, while in unsupervised learning the algorithms generate answers on
unknown and unlabeled data. Also, supervised learning uses classification and
regression algorithms, including decision trees and support vector machines (SVM),
whereas unsupervised machine learning uses clustering algorithms such as K-means
[36]. In this project, we emphasizing on deep learning, which is a machine learning
technique process that teaches computers to learn by example. It consists of networks,
capable of learning unsupervised from data, which are unstructured or unlabeled. It is
quite a lot beneficial in certain types of difficult computer problems, mostly in the
computer vision and natural language processing fields, by accelerating their solution.
The “deep” in deep learning comes from the many layers that are built into the deep
learning models, which are referred to as neural networks [36]. The success of deep
learning in many areas has made neural networks among the most successful artificial
intelligence methods.

1.2 Applications of Deep learning in last years

Deep learning made rapid progress in all over the last years. It was evolved in sectors
like computer vision, natural language processing, automatic speech recognition,
reinforcement learning, statistical modeling, disease diagnosing, whereas it has also great
impact on astrophysic or biology [28]. Machines try, through this science, to become
capable of making their own decisions about how they probably react in many

15

situations, something that is going to be a revolutionary evolution in technological fields.
It’s predicted that many deep learning applications will affect our life in the near future,
and particularly, within the next five to ten years, deep learning development tools,
libraries, and languages will become standard components of every software
development toolkit. Building cars that drive themselves (as well as full-blown
self-driving cars like Google’s) or constructing smart reply systems are some examples of
this evolution. In order for the companies to build these types of driver-assistance
services, they have to start out by training algorithms, using a large amount of data. So,
by this way they can teach a computer how to take over key parts (or all) of driving
using digital sensor systems instead of a human’s senses. These new services could
provide unexpected business models for companies and it is rumored to be on the
market from 2018 and beyond. Also, Al is completely reshaping life sciences, medicine,
and healthcare as an industry. Innovations in Al are enhancing the future of precision
medicine and population health management in unbelievable ways [84]. One useful
application is the alarm processing in emergencies. In cases of emergency, immediate
evaluation and optimal corrective action are necessary. This is very difficult because the
available time is not enough for the number of real-time messages (alarms) that received
on the VDUs. These neural networks, used for this process, have been trained to obtain
the ability of fast response [32][84]. Another popular usage areas of deep learning is
voice search & voice-activated intelligent assistants (Virtual Assistants). Significant
investments are already made in this area, so, voice-activated assistants can be found on
nearly every smartphone. Apple’s Siri is on the market since October 2011. A year after
Siri, the voice-activated assistant for Android was launched by google and now the
newest voice-activated intelligent assistant is Microsoft Cortana. They learn to
understand your commands by evaluating natural human language to execute them.
Another capability virtual assistants are endowed with is to translate your speech to text,
make notes for you, and book appointments [86]. We continue analyzing neural
network applications by mentioning the ones which automatically add sounds so silent
Movies. Specifically, in this task, the system must synthesize sounds to match a silent
video, so it is trained using 1000 examples of video with sound of a drumstick striking
different surfaces and creating different sounds. A deep learning model (which
combines both convolutional neural networks and Long short-term memory (LSTM)
recurrent neural networks (RNN)) associates the video frames with a database of
pre-recorded sounds so as to select a sound to play that best matches what is happening
in the scene. Then, the system was evaluated using a turing-test where humans
recognize if the sounds in the video are real or fake. Automatic machine translation has,
also, been around for a long time; It is a task that translates words, phrase or sentence
from one language, automatically into another one. By incorporating deep learning in
this task we achieve better results in automatic translation of both text and images. This
means that text translation can be performed without any pre-processing of the
sequence, allowing the algorithm to learn the dependencies between words and their
mapping to a new language. Also, automatic text generation (in which a corpus of text
is learned and then new text is generated) and automatic handwriting generation
(which, given a corpus of handwriting examples, generates new handwriting for a given

16

word or phrase) are very popular deep learning applications. Also, artificial intelligence
applications are made in order to process images. For example, the automatic image
captioning is a task where, given an image, the system must generate a caption that
describes the contents of the image [88]. A lot of deep learning algorithms were created
in 2014, so that they achieve very impressive results on this problem, exploiting the
potential of very good models for object classification and object detection in
photographs. Advertising is also evolved by neural networks usage. For instance, deep
learning helps industries make it possible for ad networks and publishers to leverage
their content in order to create data-driven predictive advertising, real-time bidding
(RTB) for their ads, precisely targeted display advertising and more [84]. Moreover, the
News Aggregation and Fraud News Detection are created so as to help the “prospective
customers” filter out all the bad and ugly news from their news feed. Deep Learning
neural networks are trained and validated in order to help develop classifiers that can
detect fake or biased news and remove it from your feed and warn you of possible
privacy breaches. This is a very hard process, bearing in mind that the data is plagued
with opinions and there is difficulty in recognizing which news are neutral or biased.
Last but not least, visual recognition is a very useful application. Think for a while that
you want to find an image in a huge library (for example google’s library). It is very
time consuming process, while using the classic searching methods. So, large-scale image
Visual recognition [87] through deep neural networks is boosting growth in this
segment of digital media management by using convolutional neural networks,
Tensorflow, and Python extensively. Furthermore, deep learning is revolutionizing the
filmmaking process as cameras learn to study human body language to imbibe in virtual
characters. For instance, VEVO, Netflix, Film Making, Sports Highlights use Deep
Learning. combined with face and pattern recognition, in content editing and
auto-content creation, which are now a reality [86]. In conclusion, in this section we
mentioned some of the extraordinary applications that has already a great impact on
human lives and science evolution. So, we all understand that deep learning is changing
the way we look at technologies. There is a lot of excitement around artificial
intelligence, machine learning and deep learning [84]. Furthermore, it is an amazing
opportunity to create a powerful innovative technology. However, rapid development in
artificial intelligence, automation and robotics raise serious questions about potential
adverse human rights impacts and the future of working environment and rights of
workers [85]. This is a critical and moral issue and scientists have to take always into
consideration that all this technological evolution is made in order to enhance and not
to worsen the quality of human lives.

1.3 Background on Neural Networks

The primary interest in research and study of neural networks came from enthusiasm
for the functioning and structure of the human brain. Scientists have been excited about
the way neurons operate, how neural cells coexist and effectively create a dense
communication network. For this reason, they rushed to mathematical modeling.

17

Therefore, it would be considered a great technological revolution to discover a new
computational model, based on a web-like structure similar to that of the brain. This
new model, later known as the Connectionist Model, is more suited to the creation of
intelligent algorithms and of course other intelligence-related programming processes
such as learning-training, memory, generalization, grouping of standards. Of course, in
practice, artificial neural networks are closely related to biological neurons, as in the
technological field, the very basic features of biological neurons have been simulated.
However, it is a useful discovery since Artificial Neural Networks meet two conditions:
a) they have parameters that can be modified, thus facilitating the learning process and
b) the network is composed of many neurons, in order to achieve parallelism between
the processing of data and the distribution of information. However, this model of
artificial neural networks has a significant disadvantage: it is often difficult to train
neural networks properly as well as to withdraw information from these ones so that
they can be useful tools in development of intelligent processes [13].

First Neural Network

The first neural models appeared in the 1940s and 1950s, with an original neuron
model, by the scientists McCulloch and Pitts, who described a simple model of neuron
activity. The result of the neuron is either 0, indicating that the neuron is inactive or 1
suggesting that the neuron is at the maximum frequency. The neuron receives its
entrances, multiplies each with its weight, and then adds the products.

UZZWiXi ,1<i<mn

Then compare the result with a certain threshold represented by a real number, just like
the weights of the neural and passes this result from the step function,

: 10, av u=<(
J)=-
1, avu>0

Figure 1.1: Step function 0/1 [13]

18

Inputs Weights
Wi

I

Threshold T

In

Figure 1.2: A simple neural network model [13]

Frank Rosenblatt’s Perceptron Artificial Network was, also, based on the same logic. The
only difference between Perceptron’s and McCulloch’s model was that the output of the
first one would be a binary number, either in his classical form, ie (1/0), or in the
bipolar form, ie (1 /-1) [13].

Moreover, through this model, Rosenblatt introduced the first training rule for a neural
network, which has, also, been known as the fixed increment rule. What is required in
this rule is to find a way to learn the system’s parameters so that the goal of the neural
network is achieved: a good prediction. The appropriate values of the parameters that
contribute to the correct network prediction are not known, but we know the correct
output of the network for each input, so that we can check if the network prediction is
correct. Therefore, the network is trained with supervision, and taking into account all
the information given, updates the weight values, repetitively. Specifically, the input
vector is repetitively displayed on the network. A full appearance defines an epoch. This
rule modifies the weights for each component of the input vector, only if the output of
the network is not the expected one (sort error).

y(0 = FWk-DDXP)
where f is the activation function, W is the synaptic weights, k is the current epoch, X is
the input vector and p is each component, y is the output in k epoch. When the
prediction of neural network isn’t compatible with the right result ,already, given, this
algorithm modifies the weights by adding or subtracting a percentage of the given input,

W(K) = W(k-1) + a(dP- y)X?

where, W(k) the corrected weights after the k iteration and a the learning rate, which

19

determines in what way weights will be corrected and it is a small positive number.
However, in 1969 Minsky and Papert proved that this model had limited potential. It
has been shown that the Perceptrons (one level) artificial networks so far are only
capable of learning linearly separable data and therefore could not identify many
categories of data. This has been a serious disadvantage for this network, since most
problems of the outside world are non-linearly separable [13].

Figure 1.3: Linear (A) vs. Non-Linear (B) problems [82]

A simple example is shown in the Figure 1.3. It is obvious that no straight lines can
divide the two different types of shapes, in (b), into two classes, so perceptron is not
suitable to solve this problem. Research on the neural network sector has been halted
for several years. In 1980, two major network models were launched and they are going
to be useful in this industry: the Hopfield model and the Multi-layer-perceptron (MLP)
model [13].

As passing through the years, many new kinds of neural networks made also their
appearance, like CNN (Convolutional neural network), RBM (Restricted Boltzmann
machine), RNN (Recurrent neural network), etc.

CNN is known as a feed-forward neural network and it was proposed by Hubel and
Wiesel in 1960. It is about an efficient recognition algorithm which is used in pattern
recognition and image processing which became a hot topic in voice analysis and image
recognition. CNN neural network includes two layers, one is feature extraction layer and
the other is feature map layer. CNN is a multilayer network that has the special design
for identification of two-dimensional image information but it has more layers (input,
convolution, sample and output layer). This network implements the convolution and
sampling processes. In the first process a trainable filter, deconvolution of the input
image, is used in which a bias is added. After that, in sampling stage, n pixels of each
neighborhood through pooling steps, become a pixel, and then by scalar weighting Wx
+ 1 weighted, bias bx + 1 is added, and then it passes through a transfer function
producing a narrow n times feature map Sx + 1 [39].

20

https://en.wikipedia.org/wiki/Restricted_Boltzmann_machine
https://en.wikipedia.org/wiki/Restricted_Boltzmann_machine
https://en.wikipedia.org/wiki/Recurrent_neural_network

Figure 1.4: main process of CNN [39]

Instead of CNN, RBM is a neural network which has two layers with links only between
these two layers of neurons. These connections going both ways (forward and
backward) that have a probabilistic / energy interpretation. The lower layer is called
visible and the higher is called hidden. RBM is considered an energy-based model. The
global energy function of an RBM network, is given by the following equation:

Energy(u,h) = —bu—ch—h'Wu

where wuare the values of visible neurons, 4 are the values of hidden neurons, 4 and c
are biases vectors and W is the matrix of weights connections. The neurons in RBM are
binary and stochastic, meaning that each neuron outputs values 0 or 1 with certain
probability whose type is the following:

P(h; = 1u) = 1 = logsig(c; + X u;wy)

1+exp(*cjfz uwy;)
1

The Contrastive Divergence (CD) algorithm, which proposed by Hinton in 2002 is used
for RBM’ s training. This algorithm has the positive and the negative phase. First of all,
the values of the hidden units are sampled in the first positive phase: h; ~P(hlu;). From
these values £, the reconstruction of values of the visible units is sampled: u, ~P (ulh;),
and so on for #,, etc. Next step is the weights update which is implemented using the
following type:

wi(new) = wy(old) + auy;hy; — uyP (hy = 1{u,))

where a is learing rate [40].

21

Figure 1.5: Restricted Boltzmann Machine with three visible units and two hidden units (and
biases) [41]

However, CNN and RBM cannot used in prediction problems that involve sequential
data. For this kind of problems Recurrent neural networks are created. RNN is the first
algorithm that remembers its input due to internal memory which is very important in
machine learning science. It is about a type of neural network witch has recurrent
connection and is capable of modelling sequential data for sequence recognition and
prediction. It has three layers which are input, recurrent (hidden/state) and output

layers [43].

Figure 1.6: A simple RNN [44]

A simple recurrent network has activation feedback which embodies short-term

22

memory. A hidden layer is updated not only with the external input of the network but
also with activation from the previous forward propagation as shown in Figure 1.6. The
feedback is modified by a set of weights as to enable automatic adaptation through
learning. Backpropagation algorithm is usually used in RNNs training [44].

Figure 1.7: Categorization of neural algorithms [13]

So, in this present work, we will be working on a MLP (Multilayer Perceptron)
feed-forward network, which has a lot of processing power and it is a suitable type of
neural network, for solving classification prediction problems.

1.4 Introduction to Multi-Layer Perceptron neural network (MLP)

Different neural network structures can be constructed by using different processing

23

elements regarding the reason what they are created for. A variety of neural network
structures have been developed for signal processing, pattern recognition, control, and so
on. In this project a multi-layer perceptron neural network (MLP) is used, in order to
work on biological data and make predictions about future health problems, by learning
and comparing these data. So, in this section, we describe the structure of a MLP neural
network, which is a basic model, used in a variety of modeling and optimization
problems [30]. As referenced in section 1.1, neural networks with one layer perceptron
cannot solve problems in which classes are not linearly separable.The use of additional
layers makes the perceptron able to solve nonlinear classification problems [31]. Hence
MLP structured networks are in use of. Actually, the multilayer perceptron is a
feed-forward layered network of artificial neurons, where the data circulates in one way,
from the input layer to the output layer. It is composed of three layers, which are the
input layer, the output layer and the hidden layer. Several algorithms are used for the
learning step of MLP. The common supervised learning technique is called back
propagation. It is an efficient technique that is combined with stochastic gradient
descent (SGD) optimization algorithm to adjust the weight of neurons by calculating the
gradient of the loss function. SGD is one of many optimization methods, namely first
order optimizer, meaning, that it is based on analysis of the gradient of the objective.
Back propagation algorithm consists of four stages: initializing weights, feed forward,
back propagation of errors and weight update [31]. It is necessary to initialize the
weights before training starts. The weights are initialized either to random or zero
values. In our project, we initialize weights by using random values. In feed forward
stage, the output of neural network is calculated. The nodes in input and output layers
have linear activation functions, while nodes in hidden layers have nonlinear transfer
function. Neurons in input layer represent the input in neural network and they don’t
receive any information because there is no previous layer. The input value in each
neuron of hidden or output layers is calculated by a specific procedure. Specifically,
each neuron receives as input the sum of the products of the weights and outputs of
neurons from the previous layer. Then the threshold (which is the tolerance value to
error) is added in the sum and the result is passed through the activation function.
Figure 1.8 shows this procedure for a three layer neural network [29].

Figure 1.8: Three layer network [29]

24

https://en.wikipedia.org/wiki/Gradient_descent
https://en.wikipedia.org/wiki/Gradient_descent
https://en.wikipedia.org/wiki/Gradient
https://en.wikipedia.org/wiki/Loss_function

The last stage of training, is the most time-consuming procedure of all stages in back
propagation algorithm. First of all, we have to calculate the error between the predicted
output which has calculated in feed forward stage, and the correct output of neural
network. The type which calculates the error in the last layer L is ditferent from the
type for the remaining layers 1 = 1....,L-1. The error in each layer of each neuron i is
calculated by the following mathematical type:

e Layer L (last layer):
81 = 1 @) -3

where k is the current epoch, d; is the correct output value of i neuron, y; is the
predicted output value of i neuron,u;is the output of neuron i before passed through
the transfer function and /" is the derivative of the activation function.

e Layers]=1,..,L-1:
N(I+1)

50 () =fuPD) X w I+ 1D3,(I+1)
p=1

where k is the current epoch, N is the number of neurons, WW-(I + 1) is the weight

ofthe link between i neuron in / layer and u neuron in /*1 layer, 6,([+1) is the
error of /+1 layer of pu neuron,u;is the output of neuron i before passed through the
transfer function and /" is the derivative of the activation function.

After the calculation of errors, the weights must be updated. For this purpose we use
the following equation to find the new value of the weight between nodes i and j in
each layer/ :

wl-j(l,k-i- 1) = Wy, (Lk) + [385") (l)aj(k)(l— 1)
J=0,1.,ND,I=1,.,L

where k is the current epoch, w; (/,k) is the weight of link between nodes i and j in

layer !, B is the learning rate, SEk) () is the error in layer ! of i neuron and

aj(k)(l — 1) is the output of j neuron in layer /=1 [13].

1.5 Technical background

In order to make our project statistics, we use the MSE (Mean Square Error) method to
find the accuracy of each epoch. Particularly, we find how many values our neural
network predicts correctly. Then, by using the MSE, we calculate the mean Euclidean

25

distance between the estimator and the true value [24]. Mathematically, it is given by
the following type:

MSE = (%)-._f1 Y, Y,)2

A~

where n is the number of data, Y, is the target (correct) value and Y ;is the predicted
value. So, using MSE we calculate the error between the target value and the value that
the neural network predicts [24].

Furthermore, there are many techniques that contributes to network training. Neural
networks are trained using either batch or an on-line method. Batch normalization is a
method, which is used in back propagation algorithm and is useful and quite effective
in the training of neural networks. In batch training, the weight update is calculated
regarding some inputs and then it is applied to the weights, after specific number of
iterations [20]. Also, momentum is a term which is used in several methods of neural
network training. It is still an important factor, due to its good influence in the weight
update, in cases where the gradient value is small [22]. It has the ability of improving
the speed of convergence for most eigen components in the system by bringing them
closer to critical damping [23].

A central problem in machine learning is supervised learning that is, learning from
labeled training data. For example, a learning system for medical diagnosis might be
trained with examples of patients, whose case records (medical tests, clinical
observations) and diagnoses were known. Learning algorithms essentially operate by
searching some space of functions for a function that fits the given data [17]. In order to
minimize error on the training data (prevent overfitting), we use regularization
techniques, which is obviously an important factor that controls network accuracy.
There are many methods, used to regularize data. In this project, the training set size is
large relative to the dimension of the input, so, some special mechanism has to be used
so as to encourage the fitted parameters to be small and prevent overfitting (which is a
phenomenon, typically characterized by high variance and low bias estimators referred
to network performance [83]). Therefore, we end up using two standard regularization
methods L1 and L2 (special for this amount of data), whose basic difference is the
penalty term, added in the loss function form during the procedure of updating the
parameters [21].

The L1 regularization uses a penalty term which encourages the sum of the absolute
values of the parameters to be small. Especially, L1 shrinks the less important feature
coefficient to zero thus, removing some feature altogether. Consequently, this makes it a
very useful method in feature selection settings, where it is known that many features
should be ignored. For example, linear least squares regression with L1 regularization is
called the Lasso algorithm (Tibshirani, 1996), which is known to generally give sparse
feature vectors [21].

26

On the other hand, L2 is quite different, while it adds a square sum of a coefficient as
penalty term to the loss function. The L2 regularizer, being an upward-facing convex
function, can unflatten the flat regions and curve up some stationary points without
severely changing the minimum locations. Briefly, L2 encourages the sum of the squares
of the parameters to be small [21].

The last but most significant parameter is the activation function, selected to calculate
the output of each neuron. The weighted sum of input and biases, computed by these
functions, produce the total result. Activation functions, referred to as transfer functions,
too, vary according to the network. Below, we define transfer functions which are used
in our algorithms [27].

Here, we analyze ReLU and FReLU functions, which are used in output calculation in
hidden layers and sigmoid function that is used to calculate the last output of the
network.

e Sigmoid

This activation function is often referred to as the logistic function or squashing
function. It is a non-linear function which is used mostly in feedforward neural
networks. Moreover, it is a bounded differentiable real function, defined for real
input values, with positive derivatives everywhere and some degree of
smoothness. The sigmoid function used in the output layers and it is suitable in
neural networks which solves binary classification problems [27]. It is given by
this mathematical type:

— 1
f () = 1+(exp)

e ReLU
The rectified linear unit (ReLU) activation function was proposed by Nair and
Hinton and it is the most widely used activation function for training neural
networks. It is considered as a fast and, most sucessfuly, used transfer function.
Comparing ReLU and sigmoid we conclude that the first one offers better
performance and generalization in deep learning [27]. We use this one to produce
the output in every layer. ReLU is a linear function and it is given by:

Figure 1.9: ReLlU activation function [27]

e FReLLU
We see that ReLU provides sparsity by simply restraining the negative value to

27

hard-zero. However, it results negative missing. Hence Suo Qiu, Xiangmin Xu
and Bolun Cai proposed the Flexible rectified linear unit (FReLU) activation
function in their paper [4]. FReLU adjusts the ReLU by a rectified point to
capture negative information and provide zero-like property. Because of that, it
offers fast convergence and higher performance, low computation cost without
exponential operation, compatibility with batch normalization, etc [4], things that
make it more efficient that ReLU, in some cases.

Figure 1.10: FReLU activation function [4]

Figure 1.11: Differences between ReLU (a) and FReLU (b) [4]

1.6 Motivation and contributions

Topology sparsification is a very promising technique for speeding up neural networks
training. This method supports that not all the connections between the nodes are
effective for the network. Some links weights have values close to zero which means that
they are not give any information in the network. So these links could be removed,
without influence neural network accuracy. There are some methods that use
sparsification decisions after the training part, in order to speed up the training phase.

In this project we work on topology sparsification of neural networks, using tools from
network science. The only prior work that investigated such an approach, is reported in
[1]. They start from a randomly constructed network according to the Erdos-Renyi
model and through the SET algorithm, described in chapter 4, they create a similar to

28

scale-free structured network. Our motivation results by the fact that real world
networks such as genetic networks or the World Wide Web are complex and
heterogeneous networks [51] and need more complex techniques in order to be
described well. More specifically we aim at producing a structure topology, based on
scale-free or small-world techniques, starting from another or same structure topology
(scale-free or small-world topology). This might end up being not efficient at all,
because the initial network might be too dense (and almost fully connected) or too
sparse. In that context, in this project we propose five algorithms which use and
combine scale-free and small-world methods. All algorithms construct structured neural
topologies starting from other structured neural topologies, all being different from fully
connected bipartite ones in order to speed up the training time. Also, we evaluate the
performance of all implemented algorithms and confirm their rationale.

The rest of the work is structured as follows: section 2 presents the related work, and
section 3 briefly gives some necessary concepts from network science. Section 4 describes
and proposes neural topology evolution algorithms, and in section 5 we evaluate the
neural network’s classification accuracy and training time. Finally, section 6 concludes
this work.

29

30

The literature on speeding up neural network training has a long history and it dates
back to the late ‘80 — early ‘90. We will present the related work categorized into
families of techniques; our listing is by no means extensive, but we strive to give the
most representative and/or more recent members of each family.

One of the first families of acceleration methods includes members that meant to replace
the traditional gradient (steepest) descent optimization method. Steepest descent is based
on a first order Taylor series approximation of the performance function (mean square
error) and it is very slow. Therefore, methods based on second order Taylor series were
investigated, such as Newton’s method and particular adaptations of it, e.g., the
Levenberg-Marquardt algorithm [62] which is much faster. Other algorithms that
departed from the first order gradient concept, are those based on conjugate gradient
[63], and the similar in spirit quasi-Newton method of
Broyden-Fletcher-Goldfarb-Shanno (BFGS), along with its variations, e.g., L-BFGS [64].
Recently, fast optimizers have been proposed such as Adam, Adadelta, Nadam [65].
Adadelta method dynamically adapts over time using only first order information. This
method has a lot of benefits such as minimal computational over gradient descent, no
manual setting of a learning rate, separate dynamic learning rate per-dimension [58].
Few years later, Adam optimizer was invented by Kingma and Ba. It is just Adadelta
optimization plus momentum. Adam is a method for efficient stochastic optimization
that only requires first-order gradients with little memory requirement. Adam algorithm
is straightforward to implement and is used widely in deep learning because of many
advantages. It is computationally efficient and it has little memory requirements. Also,
that method can achieves good results fast. This optimizer converges much faster for
multi-layer neural networks or convolutional neural networks, than any other optimizer
[56, 57]. Nesterov-accelerated Adaptive Moment Estimation (Nadam) incorporates
Nesterov momentum, which is more effective than vanilla momentum which is used in
Adam algorithm.

Another family for accelerating neural training is that based on adopting variable
learning rates. For instance, the Delta-Bar-Delta (DBD) method [66] assigns to each
network parameter its own learning rate that varies at each iteration. The DBD
algorithm is a heuristic approach to improve the convergence speed of the weights in
artificial neural networks (ANNs) [68]. The Delta-Bar-Delta paradigm uses a learning
method where each weight has its own self-adapting coetficient. It also does not use the
momentum factor of the back propagation networks. The remaining operations of the
network, such as feedforward recall, are same to the normal back-propagation networks.
Delta-Bar-Delta is a heuristic approach in training neural networks, because the past
error values can be used to infer future calculated error values. This learning algorithm

31

implements four heuristics regarding gradient descent; Every weight should have its
own individual learning rate and every individual learning rate should adjust over time.
Moreover, if the error derivative has the same sign for several consecutive steps, then
increase the learning rate, whereas when the sign changes alternatively over a number
of steps, then decrease the learning rate. Finally, the weights are updated, using the
same formula as in Backpropagation method, except that, in this case, momentum is not
used, and each weight has its own time-dependent learning rate [69]. Also, extended
Delta-Bar-Delta (EDBD) and directed random search (DRS) belong to this kind of
learning algorithms.

Similar in spirit is the SuperSAB method, which is an adaptive acceleration strategy for
error back propagation learning. The main difference between them is that SuperSAB
increases the learning rate exponentially instead of linearly, as in Delta-Bar-Delta
method. This is done to take the wide range of temporarily suitable learning rates into
account [71]. It can converge orders of magnitude faster than the original back
propagation algorithm and it is only slightly unstable. In addition, the algorithm is very
insensitive to the choice of parameter values, and has excellent scaling properties [67].

The recently introduced technique of dropout [72] constitutes the founding member of a
new family, which accelerates training by randomly dropping units during training.
Several adaptations of it have been proposed for various applications and various neural
architectures, e.g. [73].

Dropout is a technique that addresses both these issues which are preventing overfitting
and providing a way of approximately combining exponentially many different neural
network architectures efficiently. The term “dropout” refers to dropping out units
(hidden and visible) in a neural network. By dropping a unit out, we mean temporarily
removing it from the network, along with all its incoming and outgoing connections, as
shown in Figure 2.1 Units are dropped randomly. In the simplest case, each unit is
retained with a fixed probability p independent of other units, where p can be chosen
using a validation set or can simply be set at 0.5, which seems to be close to optimal for
a wide range of networks and tasks. For the input units, however, the optimal
probability of retention is usually closer to 1 than to 0.5 [19]. To sum up, dropout can
be considered as a method based on neural topology sparsification (as the one related
mostly to our present work), in the sense that removing a neuron is equivalent to
removing all its connections.

32

*

X
Y
XX
\' t:_ .‘ .
20
W/
PN

o
%
XS
Y
EU
X
O

.-I.A
B
T3¢/
»
{)

\/

<7
!i}-
%’5;’
0
X
AR
)

X
s

(NN
1%‘ A
Y

=

a) Standard Neural Net (b) After applying dropout.

Figure 2.1: Dropout Neural Net Model. (a) A standard neural net with 2 hidden layers
and (b) An example of a thinned net produced by applying dropout to the network on
the left. Crossed units have been dropped [19]

Similar in spirit, are the methods that compute only a subset of gradients during back
propagation [74][75]. For example, meProp is a simple yet effective technique for neural
network learning.The forward propagation is computed as usual. During back
propagation, only a small subset of the full gradient is computed to update the model
parameters. Subsequently, the original back propagation uses the full gradient of the
output vectors to compute the gradient of the parameters, while meProp uses only top-k
values of the gradient of output vector and back propagates the loss through the
corresponding subset of the total model parameters [76]. Figure 2.2 shows the method
meProp for a single computation unit of neural models.

Figure 2.2: An illustration of meProp method [76]
On background, despite the popularity and success of neural networks in research, the

number of resulting commercial or industrial applications have been limited. A primary
cause of this lack of adoption is due to the fact that neural networks are usually

33

implemented as software running on general-purpose processors. As a result, training
large networks for real-world applications, often takes a lot of time (weeks) [47]. It
should be noted that neural networks are composed of an interconnected network of
independent processing elements, and therefore, are intrinsically parallel. Hence, one of
the first families of acceleration methods includes hardware implementations.
Architectures such as FPGAs [77], multicore CPUs [78], TPUs [79] are increasingly used
for neural training and inference.

Field Programmable Gate Arrays (FPGAs) plays an increasingly important role in data
sampling and processing industries because of its highly parallel architecture, low power
consumption, and flexibility in classic algorithms. Especially, in the artificial intelligence
field, high energy efficiency hardware and massively parallel computing capacity are
demanded, concerning networks training and implementation [80].

Furthermore, a GPU implementation can achieve superior performance by taking
advantage of this parallelism. Depending on the network topology (which is the
arrangement of the elements, such as links and nodes of a communication network [8]),
training and classification on the GPU performs faster than on the CPU. Furthermore,
the GPU version scales much better than the CPU implementation with respect to the
network size [48]. For instance, due to the parallel nature of neural networks, CUDA
programming is a very attractive method for performance gain [47]. However, CUDA
combined with different kinds of networks produces different results. For example,
Researchers from Soongsil University in Korea [47] tried to implement a combination of
CUDA and OpenMP in their attempt to speed up their feedforward neural network.
They claimed that CUDA can indicate better performance while neural network is used
for image processing. In cases of sophisticated processing problems, CUDA may not be
ideal for [47]. Thus, probably, the biggest drawback of CUDA is its limitation to the
NVIDIA hardware, but future languages like OpenCL [49] or DirectX 11 Compute
Shader [50] will solve this problem. Until then, this technique for network accelerating,
is not suitable for all network types, bearing in mind, for example, that there aren’t any
similar efforts for CNNs implementation, in contrast to other classifiers like Support
Vector Machines (SVMs) [48].

Moreover, starting as early as 2006, Google considered deploying GPUs, FPGAs, or
custom application-specific integrated circuits (ASICs) in its data centers [79][81]. The
existence of few applications that could run on special hardware, could be done
virtually for free using the excess capacity of Google large data centers, something that
was difficult to improve on free [81]. Hence, google creates Tensor Processor Unit
(TPU), which is designed as a matrix processor specialized for neural network work
loads in order to improve cost-performance by 10X over GPUs. Given this mandate, the
TPU was designed, verified, built, and deployed in datacenters in just 15 months [81].
Software, running on TPUs is compatible to GPUs and CPUs. Therefore,it is an
interesting innovation that plays an important role in deep learning theory evolution.

Overall, the methods developed, in this work can be used in conjunction with any

member of any family described above to accelerate training. This fact establishes a
research avenue for the future. We take here a first step in walking this avenue.

34

Before we start with the actual implementations of our algorithms which model
networks in Python, based on graphs theory, we want to devote ourselves to the origins
of this theory.

Background on Network Science Concepts, Network science is the discipline that
analyzes the properties and function of complex networks, such as technological, social,
biological, and physical and so on. Complex network analysis consists of algorithms and
methodologies for studying and developing: centralities [52], communities [53],
diffusion processes [54], network growth and the respective models [55], etc.
Well-studied network models comprise random networks, regular lattices, small-world
networks, and scale-free networks.

In order to define what a regular lattice is, it is important to recall some basic notions
on posets and lattices. It is necessary to use mathematical types for its better

understanding. So, given a poset (L, <) and S, T € L., we have S< T for S<T and S #
T . We write S<T if S < T and there is no U € L with S< U < T . In this case we say
that T covers S. we recall moreover that a meet of S, T € L is a maximal lower bound

for both S and T. Similarly, a join of S, T € L is a minimal upper bound for both S and
T [59].

Therefore, a lattice is a poset (L, <) where every S, T € L have a unique meet and a
unique join, denoted by SA T and S v T , respectively.

Also, the meet and join of a lattice £ = (L, <, A, v) define two binary, commutative and
associative operations A, v : L x L = L. Specifically, for any non-empty finite subset M
C L, the lattice elements {S:S € M} and {S:S € M} are well defined. When £ is
finite (i.e., L is finite), we set O£ := {S:S € L} and 1£ := {S:S € L}. A finite lattice
£ is graded of rank r if all maximal chains (with respect to <) in L have the same length
r. We denote the rank of a graded lattice £ by rk(£). Thus, there exists a unique
function p£ : L. — {0.....,r}, called the rank function of £, with p(0£) = 0 and p£(T) =

35

0£(S) + 1 whenever S< T. The function p£ is monotonic, i.e., p£(S) < p£(T) whenever
S < T . Moreover, p£(L) = {0,...,r}, and O£ and 1£ are the only elements of rank 0 and
r, respectively.

So, finally we are able to give a definition of what a regular lattice is. It is about a finite
graded lattice £ = (L, < A, v) of rank r, which depends on the two following conditions

[59]:

(a) For all T € L and for all integers 0 <s <,
e the number of S € L with p£(S) = s and S < T only depends on s and pZ(T),
* the number of S € L with p£(S) = s and T < S only depends on s and p#(T).

(b) For all S, T € L with S < T, the Mdbius function p£(S, T) only depends on pZ(S)
and p£(T) [59].

Figure 3.1: A regular lattice [59]

Figure 3.2: A non-regular lattice [59]

In Figures 3.1 and 3.2, the difference between a regular and non-regular lattice is
depicted.

36

More specifically, in the field of networks, a regular lattice is a network that consists of
n

nodes, where each node has the same number and the same pattern of connections with
every other node in the network. The degree distribution (in other words, the way
nodes are connected to each other) of a regular lattice is uniform (constant).

Regular

Figure 3.3: Illustration of a regular lattice [11]

Several models of networks have been proposed. A very simple and world-wide
implementation in networks is based on the theory of two mathematicians, Erdos and
Renyi (ER) who suggested, that the network is modeled by connecting its nodes with
randomly placed links. An important prediction of random network theory is that,
despite its random construction, the resulting system will be deeply democratic [9]. In
other words, most nodes will have approximately the same number of links. Since links
are distributed in an uncorrelated way, degree distribution is Poissonian, which means
the nodes follow a Poisson distribution,often known as the distribution of rare events,
with a bell shape, as follows:

plk) =e -

where P(k) is the frequency of nodes with k links and A is the average degree, A =< k >,
of the entire graph [14]. For this reason, random networks are also called exponential,
because the probability that a node is connected to k other sites decreases exponentially
for large k [9] and as a result, a homogeneous network is generated (low clustering)
[3]. In conclusion, this means that it is extremely rare to find nodes that have
significantly more or fewer links than the average [9].

37

C‘\:g\o

Figure 3.4: Classic Erdos-Renyi model [14]

Figure 3.5: Bell Curve Distribution of Node Linkages [9]

However, this network has some serious shortcomings, taking in mind that this existing
model fails to take into account important attributes of most real networks [16]. The
most serious of all is its degree distribution. These models assume uniform probabilities
when creating new edges ,something that is not realistic [3]. As we understand, this
kind of networks are pretty simple and unfortunately, this simplicity is a drawback as
far as applications go. Furthermore, as we can see, real networks are open and they are
dynamically formed by continuous addition of new nodes to the network [3]. A very
important example of a real network is the internet. The WWW is continually sprouting
new webpages and the research literature constantly grows since newspapers are
continuously being published [3]. Therefore, this problem makes the random graph a
poor approximation to the real-world networks [16]. So, it is important to find a more
efficient degree distribution so that we can describe and solve problems of real networks

[3].

38

It is known that both regular and random graphs are two exactly different types of
networks. The first one is a network which has the lowest heterogeneity (meaning that
the number of connections each node has is approximately the same) and lowest
randomness, concerning the links between the nodes. In other words, in regular graphs,
nodes tend to be densely connected in groups (long average path and high clustering).
On the contrary, in random ER (Erdos-Renyi) graphs, most nodes have the same
number of connections (low heterogeneity), but the degree distribution is a Gaussian
bell-shaped curve, as it is described in paragraph, referred to as Random Network, in
this section. So, Random graphs (constructed by ER method) have short average path
and low clustering [34]. However, taking into consideration the needs of the
“real-world” networks, (as neuronal networks, food webs, social networks,
scientific-collaboration networks, computer networks and so on) neither random
networks, nor regular lattices seem to be an adequate framework within which scientists
can study more complex networks [35]. In 1998, in order to describe the transition from
a regular lattice to a random graph, Watts and Strogatz (WS) introduced the concept of
small-world network [3].

Figure 3.6: Small-world network algorithm [12]

It is a model, where the connections between the nodes in a regular graph are rewired
with a certain probability, following the Poisson degree distribution. Specifically, the
typical distance between two randomly chosen nodes grows proportionally to the
logarithm of the number of nodes in the network. Watts and Strogatz proposed a model
which has a higher clustering and almost the same average path than the random
networks with the same number of nodes and edges [34]. More specifically, a

39

small-world graph is created, based on a regular lattice and each node in the network
is connected to K nearest nodes. To construct a small world network, it is necessary to
use a rewiring probability p with 0 <= p <= 1. For every link of each node in the graph,
we generate a random number r with 0<r<1. In case of number r is smaller than
probability p, a node m is selected randomly and the current link is rewired to the node
m. By controlling the rewiring probability p, the network will interpolate between a
regular lattice (p = 0) to a random network (p = 1) [7] [12]. In Figure 3.6, we see the
small-world algorithm in a pseudocode format.

Regular Small-world Random

Figure 3.7: Increasing randomness [11]

Furthermore, Figure 3.7 shows how it is possible, by increasing the rewiring probability,
to remodel a regular net to small-world one by rewiring the links. Comparing the
connections in graphs, we conclude that small-world networks has random connections
but not as many as random graphs. Mathematically, the first property of small world
networks (high clustering coefficient) is given by the following type:

_ 2
C = k(kfl)

where e is edges between the neighbors of a node, k is the degree of the node, so k(k-1)
is the total number of possible edges between neighbors. High clustering coefficient
shows that nodes with high degree easily share informations with other nodes. The
second property (small average path length) is the distance between nodes in the graph
and it is given by this mathematical type:

L= Yd, un
N(N-1
ifn,i#j / (V=D
where d ;is the e shortest geodesic distance between nodes i and j. So path length is

calculated as the average of the shortests paths between all possible node pairs. If the
parameter L takes small values, then information can easily be distributed across the

40

network.
Specifically, in Figures 3.8, 3.9 and 3.10, we see how the growing rewiring probability
affects the network.

Figure 3.8: Network construction, using Watts and Strogatz’s small-world model with
p=0.01102 [60]

Figure 3.9: Network construction, using Watts and Strogatz’s small-world model with
p=0.02009 [60]

41

Figure 3.10: Network construction ,using Watts and Strogatz’s small-world model with
p=0.06669 [60]

Figures 3.8, 3.9 and 3.10 shows that in small world model, path length decreases
abruptly while clustering decreases smoothly. Blue line represents high clustering and
red line represents the short path length. The rewiring probability p has values in range
0 to 1 and while p increases, the network become denser and tends to get attributes that
belong to random graphs. In cases of p, having small values,ithe network has high
clustering and small path length [10].

As mentioned above, small-world is about a model which has clustering close to that of
a lattice and path lengths similar to those of random networks. Although small-world
networks are an improved method of describing complex networks, the “real-world”
networks are not homogeneous (each node has about the same number of link
connections [3]) ones, meaning that we are in need of a more strictly constructed graph,
which can describe these phenomena,too.

Over the past two decades, networks of complex topology (which is the) have been
described with the random graph theory of Erdds and Rényi (ER) [70]. As mentioned
above, the Erdos-Renyi network is a random graph obtained by randomly distributing
M links between N nodes, being a statistical ensemble with equal probability for any
generated configuration [14].

In the past few years, due to the absence of data on large networks, the predictions of

the ER theory were rarely tested in the real world [70]. Later, many empirical results
showed that for most large-scale real networks the degree distribution deviates

42

significantly from the Poisson distribution. Specifically, for a large number of networks,
the degree distribution can be better described by a power law, whose form is

p(k) ~ck ", where ¢ is a corresponding positive constant for predetermined N and vy is

N
some exponent which satisfying Y P(k)=1 [26]. This power-law distribution falls off
k=1

more gradually than an exponential one and allows a few nodes of very large degree to
exist. In addition, we want to make a model of a large network for which we know the
degree distribution but nothing else [16], so as this network can be dynamically evolved.
To explain the origin of power-law degree distribution, Barabési and Albert (BA)
proposed another network model, known as scale-free network [3].

Figure 3.11: Poisson Distribution vs. Power-Law Distribution for k nodes [3]

A scale-free network is a network ,whose degree distribution follows a power law [25].
This network was grown under the preferential attachment rule. The network starts the
evolution process with a small number of nodes [12]. Then, at each iteration a new
node is added to the network and connected to m already existing nodes with a
probability of linking to a certain node proportional to the actual degree (number of
links) of that node [14]. In other words,nodes are added to the network with a
preferential bias toward attachment to nodes which already have a high degree [26].

Examples of complex networks, whose vertex connectivities follow a scale-free
power-law are systems such as genetic networks or the World Wide Web [70].

In Figure 3.12, we can see a pseudocode format, which modelizes this type of network.

43

Figure 3.12: Scale-Free network algorithm [12]

44

Thus, inspired by the Network Science theory, in this work, we describe five new
algorithms, based on SET (described in the SET algorithm paragraph, in this section) in
which we implement scale-free and small-world techniques, in order to see whether
topology plays a significant role in training process acceleration and how this idea is
going to affect the network accuracy. Our goal is to speed up the training time, without
sacrificing the accuracy.

So, in SET code, a MLP (Multi-Layer Perceptron) neural network is used and trained,
given some biological data as input, in order for the neural network to make future
predictions about whether a person is sick or will get sick. It is introduced a procedure
which takes into consideration data distributions and creates sparse bipartite layers
suitable to replace the fully-connected bipartite layers in any type of networks [1]. Its
construction is based on attributes of random graphs. Its nodes are linked randomly. Set
algorithm aims to accelerate the training of this neural network by sparsing its topology,
using a sparse table to represent the links between the nodes. In fact, it starts by
creating a random graph and training it, using back propagation method as it is
described in section 3.1.2. During the training, set algorithm implements a method
which sparses the topology of the existing random graph, in each epoch except the last
one. The sparsity of the network is achieved by removing the weights with values close
to zero in each epoch, as these links don’t affect the network. Then, in order to maintain
the balance on the network, we need to introduce as many links to the system as we
have removed, giving them random weights. In this particular algorithm this process is
done randomly. In conclusion, it starts from an Erdds—Rényi random graph topology
and throughout training process, network ends up with a more structured connectivity,
like scale-free topology [1].

In Figure 4.1, we make a short introduce to the Set algorithm.

45

Figure 4.1: (Decebal Constantin Mocanu etc, 2018) SET pseudocode [1]

In order for the neural network to train.,a learning algorithm is trained on a set of data,
and then the model is applied to make predictions on new data points. The goal is to
maximize its predictive accuracy on the new data points. Specifically, we have to
represent the data in a specific form, so as for the model to avoid fitting the noise in the
data by memorizing various peculiarities of the training data rather, than finding a
general predictive rule. In other words, we want to avoid the phenomenon of overfitting
[17]. The existence of this phenomenon leads the model to have a low accuracy. In
order to prevent this case from happening, we need to regularize the data.
Regularization is a form of regression, that regularizes or shrinks the coefficient
estimates towards zero. So, this technique discourages learning a more complex or
flexible model, so as to avoid the risk of overfitting. In this project, the datasets we use ,
contains biological data, which are data of life sciences information, collected from
scientific experiments, published literature, high-throughput experiment technology, and
computational analysis, so that the neural network can make predictions about whether
a patient will become sick, concerning its symptoms. The method used for regularization
is one-hot encoding, which creates new (binary) columns, indicating the presence of
each possible value from the original data.

In this project we implemented five algorithms in python which tend to speed up the
training of neural network by sparsing the topology. These algorithms implementation

46

are based on a MLP neural networks and ,during the training time, back propagation is
used for weights update. In all cases, we start with a specific type of network (scale-free
or small-world) and through the training procedure, we sparse this network by
removing and reconnecting links, using the techniques of scale-free and small-world
graphs,in each epoch except the last one. So, in the end we have a new neural network
which is sparsed. The training procedure is described in section 4.1. In the sections of
this chapter that follow, we describe our detailed experimental work.

In this algorithm, we start by implementing an exact scale-free network [9] and we end
up by creating a sparsed network, similar to scale-free one, based on the SET code.
Firstly, we create a scale-free graph by creating a sparse table, representing the
connections between the nodes in each layer. Then, we remove the weights close to zero
(sparsity) and add as many links as we removed to the most powerful node, using the
scale-free method. If a link, having to be reconnected, already exists, then changes don’t
happen. In order to find the most powerful node, we calculate the probability of each
node, which is defined as the quotient of the incoming connections of this node
regarding all of the graph connections. Every link is reconnected to the node, which
probability is bigger, and the new weight of the link is random. By this procedure, we
create a scale-free network which is trained using back propagation method as it is
described in section 3.1.4. We end up in a sparsed graph similar to scale-free, using the
SET algorithm, which during the training, removes the links close to zero and adds as
many links as removed, in a random way, after each epoch except the last one. So .the
difference between scale-free and set algorithm is in the part where links are
reconnected. In first one, links are reconnected to the node with the maximum degree
probability, following power law distribution, while in the second one, links are
reconnected randomly.

Pseudocode format of Scale Free to SET is given in Algorithm 1.
Scale Free to Set

1. initialize a sparse table randomly.
2. remove links ,whose weights are close to zero.

3.

4 each node i of every layer:

5. calculate the maximum degree probability as follows:
6 pPi=) incoming links (i) /) links in network

7.

8.reconnect the nodes,whose link was removed, with the node that has the maximum p.
9. the weight of the new connection is given, randomly.

10.

11. this link exists:

47

12. nothing is done.

13.

14.

15. each epoch:

16. remove links, whose weights are close to zero.

17. reconnect the nodes, whose link was removed, randomly.
18. the weight of the new connection is given, randomly.

19.

For this algorithm, complexity is calculated in detail, in respect with the code. For the
rest of the proposed algorithms, computational complexity is produced, bearing in mind
only the repetitive code instructions (for, while), due to the fact that the running time of
the algorithm is proportional to the number of loops. The running time of a simple
statement is constant (O(1)). Furthermore, the initialization cost is the same for all the
variants, proposed in this project and is equal to: 13 variables initialization + 4 loop
instructions for every layer (L) + 10 variables initialization (including table
initializations) for every layer (L) = 13 + (4+10)*L =13 + 14* L = O(L). Specifically,
the ‘remove’, the ‘Scale Free’ and the ‘SET’ parts of the code are analyzed, here.

Remove connections complexity:

16 instructions (including value assignments and calculations) + (5 + 10) loop
instructions (including value assignments, function calls and comparisons between
variable values) instructions for every layer (L) + 2*3 instructions (value assignments) +
(3 + 4*2 + 4+ 7 + 2 +3) instructions for every layer (L) + 4 instructions for every
node (N) * 3 instructions for every connection (C) in every node () * 6 instruction for
every connection (0=
16+15«L+6+27xL+T72xN+«C*xL+22+42+«L+T72x«N+«C*xL*xC=*L

= ON=*Lx*C),

Scale Free part complexity:
3 instructions (2 calculations + 1 comparison) + (2 loop instructions + 16 other

instructions) for every layer (L) * (2 loop instructions + 11 other instructions) for every
node (N) = 3 + (13*N + 18)*L. = ON * L),

The ‘Scale Free’ part is executed one time when the code starts. On the contrary, the
‘remove’ part is repeated after each epoch, combined with the formula that reconstructs
the initial network, giving it same or different attributes.

In Scale Free to SET algorithm, the reconstructed network follows SET method.

SET complexity:

(2 loop instructions + 63 other instruction) for every layer (L) * (1 instruction per loop
iteration + 23 other instructions) for every connection that is removed (R) + 8 other

48

instructions = (2 + 63+ (23 + 1D * R * L + 8 = OL*R),

According to these results, we conclude that the most time-expensive part is the one that
sparsifies the network.

As mentioned in section 4.1 SET method uses an network, which starts from a random
sparse topology (Erdés—Rényi random), evolving through a random process during the
training phase towards a scale-free topology. Remarkably, this process does not have to
incorporate any constraints to force the scale-free topology. In other words, evolutionary
algorithm is not arbitrary, which means it follows a phenomenon that takes place in
real-world complex networks (such as biological neural networks and protein interaction
networks) [1]. On the contrary, in our algorithm we implement an exact scale-free
topology, which means that links are reconnected to the nodes, following power low
distribution. We start by creating an exact scale-free network, using the scale-free
method as it is described in section 3 In the part of the code, where network is sparsed,
we remove the weights close to zero and add as many links as we removed to the most
powerful node, using again the scale-free method as it is described in section 3.1.4.

Scale Free to Scale Free

. initialize a sparse table randomly.
. remove links ,whose weights are close to zero.

each node i of every layer:

Ov s oo o=

calculate the maximum degree
probability as follows:

pi= Z incoming links (i) /% links in network

© N o

. reconnect the nodes, whose link was removed,
with the node that has the maximum p

©

. the weight of the new connection is given,
randomly.

10.

11. this link exists:

12. nothing is done.

13.

14.

15. each epoch:

16. each layer:

17. do steps 2 to 13.
18.

49

19.

Concerning the computational complexity, this algorithm starts with a scale free network
(O(N*L)) and via randomization (O(N*L*()), ends up in a same-attributed network
(O(N*L)), as analyzed in section 4.3.1.

In this particular algorithm we start with a scale-free implementation, and we end up in
a similar type of network, using an alternative version of scale-free technique.
Particularly, in every epoch, except last one, we remove the links with weight close to
zero and add as many links as we removed (sparsity) to the most powerful node (node
with the greatest probability). In original method, if a link, from one node,in a layer, to
another, which has to be reconnected, already exists, then changes don’t happen. So in
this version, if the link we want to add to the most powerful node already exists then
we try to add a connection to the second most powerful node and so on till the fifth
strongest node. Both in the original version and in our alternative one, the weights are
randomly given. We make this variant of scale-free to scale-free algorithm in order to
add as many links as we can. If a link we try to reconnect already exists, we try to
reconnect it to the successive (regarding the degree probability) node and so on, trying
to maintain the balance between the removed links and the ones that have to be
reconnected, in the network.

Scale Free to Scale Free (5)

1. initialize a sparse table randomly.

2. remove links ,whose weights are close to zero.

3.

each node i of every layer:

calculate the maximum degree probability as follows:

pi= z incoming links (i) /) links in network

. reconnect the nodes, whose link was removed, with the node that has the maximum

A
)
6
7.
8
P
9. the weight of the new connection is given, randomly.
10.

11. this link exists:
12. nothing is done.
13.

14.

15. each epoch:

16. each layer:

50

17. each node:

18. do steps 4 to 7.

19. reconnect all links removed.as follows:
20. j in 5 strongest nodes of next layer:
21. the link in j node doesn’t exist:
22. connect node to j

23.

24.

25.

26.

27.

28.

This algorithm starts from a scale free structured network, whose complexity is O(L*N)
and ends up through randomization (O(L*N*C)) (analyzed in section 4.3.1) in a
same-attributed network which differs only, in the part of dominant nodes (in this case
we have 5 popular nodes instead of one). Here, the number of iterations that find the 5
strongest nodes is considered as stable regardless the dataset and also it is a very small
number proportionately to the N and L. Thus, the complexity of the final net is 5*L*N =

O(L*N).

Here, we start implementing a scale-free network and after the procedure of training, we
construct a small-world type of network. In the first place, after removing connections
with no important impact, we calculate the degree probability of every node and then
reconnect these nodes (in every layer), whose link was deleted,to the most powerful
node of the next layer. In section 3.1.4 there are more details about scale-free technique.
After the training part of the algorithm we proposed, a small-world network is created.
Specifically, a rewiring probability is defined. In order to construct the network, we
chose small values of this probability (p = 0.02 and p = 0.075), because the smaller the
probability is, the less density the network has (sparsity). For each node in every layer,
we find its links, whose weight is non-zero and give them a random probability. After
that, links whose probability is smaller than rewiring probability, are disconnected and,
then, we try to rewire them in a random node, giving them a random weight value
(only if the connection to this randomly chosen node, doesn’t exist, else we try to find
another random node to connect to). In this experiment, we want to see how much the
performance (not only the accuracy, but also the training time) of the network is
affected when we start from a strictly structured network and through the process of
training, we create a network with a more arbitrary structure.

51

Scale Free to Small World

1. initialize a sparse table randomly.

2. remove links ,whose weights are close to zero.

3.

each node i of every layer:

calculate the maximum degree probability as follows:

pi= Z incoming links (i) / % links in network .

. reconnect the nodes, whose link was removed, with the node that has the maximum

4
5
6
7.
8
P
9. the weight of the new connection is given, randomly.
10.

11. this link exists:

12. nothing is done.

13.

14.

15. each epoch:
16. define a probability.

17. each layer:

18. each node n in this layer:

19. find links, whose weight is non-zero.

20. give those links a random probability P, ,.

21. find N of those links, so as: P, <P.

22. each N:

23. select a node m in next layer randomly, so that there is no
24. connection between node m and current node n.
25. rewire current node n to node m.

26.

27.

28.

29.

Firstly, the initial network complexity is O(L*N) as mentioned in 4.3.1. The final
network this algorithm creates is more complicated. Especially, the removing part takes
place during the reconstruction of network instead of the beginning of the network as it
is in scale free implementations. Specifically, the complexity of small world algorithm is:
For every link (P) in every node (N) of each layer (L), we find random nodes in next
layer (N) in order to rewire a link in P, whose probability is smaller than the rewiring
one. So, complexity is O(L*N*P*N").

52

In the last algorithm, we implement a network, based on small-world technique and
through the process of training, a same type of network is constructed. It is interesting
to see how the transition, being from a less randomly constructed network (small-world)
to another, affects the network performance. These small-world networks are created in
the same way as it is described in section 3.1.3. We introduce a detailed pseudocode
format in algorithm 5.

Small World to Small World

1. define a probability.

2 each layer:

3 each node in this layer:

4 find links, whose weight is non-zero.

5. give those links a random probability P_,..
6 find numbers N of nodes , so as: P, < P.
7 each N:

8 select a node m in next layer randomly ,so that its link weight
9. is zero.

10.

11. rewire current node to node m.

12.

13.

14.

15.

16. each epoch:

17. do steps 2 to 14.
18.

19.

The computational complexity of small world algorithm is the same with the one
analyzed in section 4.3.4. In this case, the initial and the final net are of the same type,
except for the initialization part in the initial net which has complexity O(L). Therefore,
the final net complexity is O(L*N*P*N’).

53

54

This section presents details about the dataset used and about the size of the neural
network we experiment with; then it gives the results of the experimental evaluation of
the developed algorithms.

In order to test the algorithms, we used datasets which have hundred instances and few
thousands features, as described in Table 5.1, in this section.

By the word instances, we define the number of input vectors, which are composed of
as many components as features are, given to the neural network in order to be trained
and then, evaluated. Every dataset has, also, different number of classes, which are the
groups in which data are separated.

lung 203 3312 5
lung_discrete 73 325 7
TOX_171 171 5748 A
CLL_SUB_111 111 11340 3

Table 5.1: Datasets characteristics.
lung - Iung discrete

This data was used by Hong and Young to illustrate the power of the optimal
discriminant plane even in ill-posed settings. Applying the KNN method in the resulting
plane gave 77% accuracy. However, these results are strongly biased.The data described
3 types of pathological lung cancers. The Authors give no information on the individual
variables nor on where the data was originally used [42].

55

TOX-171

This database is an example of the use of toxicology to integrate diverse biological data,
such as clinical chemistry, expression, and other types of data. The database contains
the profiles resulting from the three toxicants: alpha-naphthyl-isothiocyanate,
dimethylnitrosamine, and N-methylformamide administered to rats. The classification
task is to identify whether the samples are toxic, non toxic or control. Sample is toxic if
alpha-naphthylisothiocyanate, or dimethylnitrosamine or n-methylformamide is
administered, non-toxic if caerulein or dinitrophenol or rosiglitazone is administered
and control if untreated [33].

CLL-SUB-111

The database has gene expressions from high density oligonucleotide arrays containing
genetically and clinically distinct subgroups of B-cell chronic lymphocytic leukemia
(B-CLL). The dataset is formed of 11340 attributes and 111 instances, as referred in
Table 5.1 [33].

As we mentioned in section 3.2, the datasets are encoded with one-hot encoding.
Furthermore, every dataset is split in two parts, the training and the testing set. The %
of the total size of dataset is used in order for the neural network to be trained and the
% , remaining, is used for testing its ability to learn the training set.

All the datasets were applied to all our proposed neural topology evolution algorithms
except the variants Scale Free to Small World and Small World to Small World, in
which the neural network takes enormous (much more than expected) time in order to
be trained, in cases of using the large datasets (large number of features). Also, the
accuracy is not satisfying. So, these two algorithms were trained and tested only with
lung.mat file.

In all cases, a MLP (Multi-layer perceptron) neural network model is used. More
specifically, it is about a neural network with an input level, three hidden layers and
one output level. Each hidden layer has 1000 neurons and the number of neurons at
the input and output levels depends on the dataset features and dataset classes,
respectively. In each neural, we used activation function to produce output from each
level which is given as input to the next layer. In our project, we chose the ReLU or
FReLU functions for the hidden levels and the sigmoid function for the final level. In
addition, the parameters epsilon with value 20 and zeta with value 0.3 were used. All
algorithms functioned repetitively for 500 epochs, and the error at each time was
calculated according to the mean squares error method. For the learning rate and batch

56

size parameters, values of 0.01 and 2 were used respectively. In some experiments we
use the momentum parameter with a value of 0.9. Finally, in cases where we implement
regularization techniques, the weight decay parameter was set to 0.0002 for L2
regularization and 0.0000001 for L1 regularization method. In cases, we don’t use
regularization techniques (NoL), the weight decay parameter isn’t taken into account.

Our software was tested on Intel(R) Core(TM) i7-6500U CPU @ 2.50GHz, installing
operating system Ubuntu 16.04.1, with Python 3.5.2, Numpy 1.15.3, SciPy 1.1.0 and
(optionally) Cython 0.29.

Taking into consideration the parameters, analyzed in paragraph 5.1.2, we run
algorithms, described in paragraph 4.3, using four datasets with different number of
samples and features, as mentioned in paragraph 5.1.1. By using these parameters, in
this chapter we evaluate the performance of our algorithms.

In this section, we give the statistics (accuracy and training time) of the prior work that
investigated a network sparsification approach [1], in order for our results to be
compared with.

Figure 5.1: SET accuracy, using ReLU activation function and lung.mat file.

57

Figure 5.2: SET accuracy, using FReLU activation function and lung.mat file.

ReLLU

ReLLU

ReLLU

FReLLU

FReLLU

FReLLU

NoL 92.02
L2 92.71
L1 90.53
NoL 93.02
L2 92.38
L1 95.04

Table 5.2: Statistics of SET algorithm using lung.mat file.

35

38

47

45

49

53

mins

mins

mins

mins

mins

mins

58

Figure 5.3: SET accuracy, using ReLU activation function and lung_discrete.mat file.

Figure 5.4: SET accuracy, using FReLU activation function and lung_discrete.mat file.

ReLLU NoL 82.59 11 mins
ReLLU L2 82.1 11 mins
ReLLU L1 80.9 13 mins

59

FReLLU NoL 65.5 13 mins
FReLLU L2 82.11 11 mins

FReLLU L1 79.62 12 mins

Table 5.3: Statistics of SET algorithm using lung_discrete.mat file.

Figure 5.5: SET accuracy, using ReLU activation function and TOX_171.mat file.

Figure 5.6: SET accuracy, using FReLU activation function and TOX_171.mat file.

ReLLU NoL 63.49 23 mins

60

ReLLU L2 83.69 27 mins

ReLLU L1 86.51 35 mins
FReLLU NoL 88.43 32 mins
FReLLU L2 80.9 33 mins
FReLLU L1 65.74 36 mins

Table 5.4: Statistics of SET algorithm using TOX_171.mat file.

Figure 5.7: SET accuracy, using ReLU activation function and CLL_SUB_111.mat file.

Figure 5.8: SET accuracy, using FReLU activation function and CLL_SUB_111.mat file.

ReLLU NoL 23.98 45 mins

ReLLlU L2 63.84 45 mins
RelLU L1 29.78 55 mins
FReLLU NoL 58.15 56 mins
FReLLU L2 63.54 57 mins
FReLLU L1 21.75 58 mins

Table 5.5: Statistics of SET algorithm using CLL_SUB_111.mat file.

Figure 5.9: Scale Free Set accuracy, using ReLU activation function and lung.mat file.

Figure 5.10: Scale Free Set accuracy, using FReLU activation function and lung.mat file.

Figures 5.9 and 5.10 display the accuracy that the Scale free to Set algorithm achieves,
regarding the epochs. In Figure 5.9, we see the results that ReLLU activation produces
for lung.mat dataset. It seems that the accuracy varies from 70% to 99% and we
conclude that the algorithm has a better performance, when L2 regularization is used.
This happens because L2 regularization makes the loss function smooth, which means it
is easier to find the optimum solution of this function (where the derivative of loss
function is equal to zero), which means more successful weight update. So, it seems that
L2 manages to decrease the noise in the training data and so as the estimated
coefficients (weights) can generalize well to the future data. According to the time, as we
can see in table 1, the results are very satisfying. This algorithm achieves high accuracy
very quickly. Specifically, using ReLLU activation function, the training time, without any
regularization technique, is 10 minutes and its accuracy reaches approximately the 92%.
Similarly, the according time, using L2 is 1 minutes bigger and so as the accuracy,
which reaches approximately 93%. Applying L1 parameter, the network achieves
approximately 90% accuracy in about 15 minutes. It is obvious that the training time in
cases where no regularization is used, is smaller due to the fact that algorithm makes
less calculations (loss function doesn’t have any penalty factor), regarding L1 or L2.
Also, L1 regularization doesn’t have as good performance as L2 and NoL do, because
L1-regularized loss function is non-smooth. In other words, it’s not differentiable at zero
and as the optimization theory says, the optimum solution is difficult to find, in this
way. In a similar way, applying FReLU transfer function, the algorithm reaches
approximately 92% accuracy in about 15 minutes, using NoL and L2 parameters,
whereas applying L1 regularization, algorithm’s performance is quite the same but the
training time is about 5 minutes greater than ReLU, due to computational complexity in
FReLU code.

In particular, Table 5.6 shows the exact results, briefly.

63

ReLLU NoL 91.8 10 mins

ReLlU L2 92.3 11 mins
RelLU L1 89.6 15 mins
FReLLU NoL 921 13 mins
FReLLU L2 92.9 16 mins
FReLLU L1 92.4 21 mins

Table 5.6: Statistics of Scale Free to Set algorithm using lung.mat file.

In conclusion, we can see that algorithm’s performance, for this amount of data (for this
number of inputs, encoded in the way, mentioned in paragraph 5.1.1) is good.
Algorithm succeeds high accuracy, which means, the error between the target (correct
output) and the predicted value is decreased, during the epochs. In the sections that
follow, this performance is tested, using different datasets.

The experiment is continued, by using a smaller dataset with fewer samples and

features, in order to estimate algorithm’ s performance.

Figure 5.11: Scale Free Set accuracy, using ReL.U activation function and
lung_discrete.mat file.

64

Figure 5.12: Scale Free Set accuracy, using FReLU activation function and
lung_discrete.mat file.

In Figures 5.11 and 5.12, we notice that the accuracy, in this dataset, for both ReLU and
FReLU activation functions and the parameters, used, is about 80% and the training
time, needed is about 6 minutes (as Table 5.7 shows). It is obvious that the algorithm’s
performance is decreased, which means that neural network isn’t able to learn from a
small amount of data, correctly. Although the fact that the accuracy is decreased, still,
remains a good one, especially,regarding the training time, needed. We conclude that L1
regularization, combined with FReLU activation, achieves better accuracy.

ReLLU NoL 80 6 mins
ReLLU L2 77.6 7 mins
RelLU L1 82.4 8 mins
FReLLU NoL 80.3 6 mins
FReLLU L2 80.3 6 mins
FReLU L1 82.5 7 mins

Table 5.7: Statistics of Scale Free to Set algorithm using lung_discrete.mat file.

65

Figure 5.13: Scale Free Set accuracy, using ReLU activation function and TOX_171.mat file.

Figure 5.14: Scale Free Set accuracy, using FReLU activation function and TOX_171.mat file.

Figures 5.13 and 5.14, illustrate the accuracy of Scale to SET algorithm, using a bit
larger dataset than lung (concerning the features). In all cases, the accuracy is about
82%., as it is shown in Table 5.8. We notice that ReLU with NoL combination has
higher accuracy than both L2 and L1, which occurs probably due to the fact that in this
type of well-structured network in correlation with ReLU, information is
efficiently-distributed. Moreover, ReLU implementation takes less training time than
FReLU, due to its better computational complexity. On the contrary, concerning FReLU,
the accuracy, as depicted in Figure 5.14, is higher when L1 or L2 regularization
technique is used.

66

RelLLU NoL 82.5 10 mins

ReLLU L2 81.6 12 mins
ReLLU L1 81.4 18 mins
FReLU NoL 82.3 16 mins
FReLU L2 83.3 14 mins
FReLLU L1 83.3 22 mins

Table 5.8: Statistics of Scale Free to Set algorithm, using TOX_171.mat file.

In this case, we test our algorithm with the biggest dataset we have (concerning the
features).

Figure 5.15: Scale Free Set accuracy, using ReLU activation function and CLL_SUB_111.mat file

67

Figure 5.16: Scale Free Set accuracy, using FReLU activation function and CLL_SUB_111.mat
file.

Although the dataset has a great amount of features, it classifies its data, only, into three
classes, which means, it takes less time to correlate the predicted value to one of the
classes. According to the accuracy, the results are not satisfying, because of the fact that
the big number of features (much more than the neurons in every hidden layer) makes
a more complex-structured network and the information, saved in every node may not
be efficiently distributed to the system. However, in case of L1 in correlation with
FReLU, the results are disappointing. In particular, as depicted in Figure 5.16, the L1
regularized curve seems to falls off, abruptly because of a code warning (appears NaN
values). Probably, the cause of this problem is the large amount of data, given for
processing.

Table 5.9 shows detailed information about Scale Free to SET performance, using
CLL_SUB_111.mat file.

ReLU NoL 58.9 15 mins
ReLLU L2 60 14 mins
ReLLU L1 62.4 19 mins
FReLLU NoL 55.4 18 mins
FReLLU L2 58.2 15 mins

68

FReLLU L1 27.6 17 mins

Table 5.9: Statistics of Scale Free to SET algorithm, using CLL_SUB_111.mat file.

Figure 5.17: Scale Free to Scale Free accuracy, using ReLU activation function and
lung.mat file.

Figure 5.18: Scale Free to Scale Free accuracy, using FReLU activation function and
lung.mat file.

In this algorithm, we train the network by starting form an exact scale-free network and

69

through the procedure of training, using back propagation, we end up constructing a
same one. This means that network is strictly constructed following power law and
hence the randomness is decreased, which means better communication between the
nodes is achieved. According to the charts, this variant of the algorithm, has 95,6%
accuracy, using FReLU transfer function and without any regularization. So, taking into
consideration that FReLU has faster convergence than ReLU [4], concerning, also, the
network topology, we conclude that the less random a network structure is, the higher
performance the network gets, without any regularization technique. In addition,
algorithm takes 29 minutes (with 92% accuracy) to train the network, using ReL.U (this
function is computational efficient by just outputting zero for negative inputs [4]) and
35 minutes while implementing the FReLU function, which is still better in both time
and accuracy than the SET code. The Table 5.10 shows analytically the results,
concerning different parameters in the algorithm.

ReLLU NoL 85.2 29 mins
ReLLlU L2 92.8 30 mins
ReLLU L1 91.5 32 mins
FReLU NoL 95.6 35 mins
FReLLU L2 94.1 39 mins
FReLLU L1 94.9 41 mins

Table 5.10: Statistics of Scale Free to Scale Free algorithm, using lung.mat file.

70

Figure 5.19: Scale Free to Scale Free accuracy, using ReLU activation function and
lung_discrete.mat file.

Figure 5.20: Scale Free to Scale Free accuracy, using FReLU activation function and
lung_discrete.mat file.

Comparing to lung.mat statistics, the results of this file is not enough encouraging. We
have lower performance in, approximately, similar time. Although the number of
features is smaller, the time, needed, isn’t as less enough as we expected to be. This
happens owing to the fact that there are more classes, which algorithm has to compare
the predicted value with. According to the accuracy, ReLU implementation has better
results, as Figure 5.19 illustrates. It’s worth observing that in ReLU graph, the accuracy

71

start from very small values (about 20%) and manages to reach accuracy of up to 80%,
after the training procedure. In FReLU, accuracy, also, increases according to the epochs,
but in this case the accuracy starts from about 35% (a bit higher than ReLU).

RelLU NoL 80 15 mins
ReLLU L2 81.4 15 mins
ReLLU L1 81.4 18 mins
FReLLU NoL 75.9 18 mins
FReLLU L2 76 18 mins
FReLLU L1 76.3 20 mins

Table 5.11: Statistics of Scale Free to Scale Free algorithm, using lung_discrete.mat file.

Figure 5.21: Scale Free to Scale Free accuracy, using ReLU activation function and
TOX_171.mat file.

72

Figure 5.22: Scale Free to Scale Free accuracy, using FReLU activation function and
TOX_171.mat file.

In this case, we also, notice that the values regarding accuracy, are small at the
beginning and get higher after the first 25 epochs. This means that algorithm fits the
TOX_171.mat file data efficiently, during the training process (we see that L2 combined
with FReLU reaches 95% accuracy in the last epoch). Due to the large amount of
features (5748 features), algorithm takes more time to train the network, than in cases of
lung.mat (3312 features) and lung discrete.mat (325 features) files. Specifically,
algorithm reaches approximately 90% accuracy, in about 40 minutes (ReLU-L1 and
FReLU-L2), which means that this variant of our concept, can be efficient enough in
respect to bigger datasets.

ReLLU NoL 84.8 34 mins
ReLLU L2 86.8 37 mins
ReLLU L1 87.5 39 mins
FReLLU NoL 80.4 38 mins
FReLLU L2 88.3 42 mins
FReLLU L1 83.5 1 h 19 mins

Table 5.12: Statistics of Scale Free to Scale Free algorithm, using TOX_171.mat file.

73

Figure 5.23: Scale Free to Scale Free accuracy, using ReLLU activation function and
CLL_SUB_111.mat file.

Figure 5.24: Scale Free to Scale Free accuracy, using FReLU activation function and
CLL_SUB_111.mat file.

Taking into consideration the results of Scale Free to SET algorithm, using
CLL_SUB_111.mat file, we see that in this algorithm, this file responds better to the
network, with respect to the accuracy in every epoch. However, the training time is
much larger, owing to the fact that algorithm has to process a large number of data. At
the same time, in this variant, we construct, during the training part, an absolute
scale-free network, which means it takes more time to process the corresponding data

74

than Scale Free to SET algorithm, in which SET is a type of scale free, not a
strictly-constructed one. According to the statistics, the algorithm tends to generalize

well from its training data to unseen data when no regularization method is used, as
both Figures 5.23, 5.24 and Table 5.13 show.

ReLLU

RelLU

ReLU

FReLLU

FReLLU

FReLLU

NoL

L2

L1

NoL

L2

L1

65.5

64.5

60.4

63.3

62.6

62.4

1h

1 h 5 mins

1 h 7 mins

1h

1 h 12 mins

1 h 5 mins

Table 5.13: Statistics of Scale Free to Scale Free algorithm, using CLL_SUB_111.mat file.

Figure 5.25: Scale Free to Scale Free (5 strongest nodes) accuracy, using ReL.U activation

function and lung.mat file.

75

Figure 5.26: Scale Free to Scale Free (5 strongest nodes) accuracy, using FReLU activation
function and lung.mat file.

Figures 5.25 and 5.26 show the accuracy of a variant of Scale Free to Scale Free
algorithm, described in section 1.3. Algorithm achieves approximately 93% accuracy,
while implementing FReLU activation function and no regularization techniques, due to
the faster convergence of this function. Furthermore, both ReLU and FReLU activations
affect positively the network performance, except the case where L1 regularization,
combined with FReLU is used. We have approximately 79% accuracy. We conclude that
L1 regularization technique makes the graph curve falls off abruptly, because of a code
warning in weight update (appears NaN values). Concerning the time, algorithm takes
approximately the same time to train the network as scale free to scale free version does.

ReLU NoL 92 28 mins
ReLLU L2 89.8 30 mins
ReLLlU L1 90.6 37 mins
FReLLU NoL 92.8 35 mins
FReLLU L2 91.2 37 mins
FReLLU L1 79 37 mins

Table 5.14: Statistics of Scale Free to Scale Free (5 strongest nodes) algorithm, using lung.mat
file.

76

Figure 5.27: Scale Free to Scale Free (5 strongest nodes) accuracy, using ReLU activation
function and lung_discrete.mat file.

Figure 5.28: Scale Free to Scale Free (5 strongest nodes) accuracy, using FReL.U activation
function and lung_discrete.mat file.

In this dataset, although the number of classes are bigger than lung file (we have 7
classes), the training procedure is faster due to the fact that we, also have a small
amount of input vectors. According to these inputs, using ReLU the algorithm has a
better performance than FReLU. Specifically, the combination of ReLu activation and L2
regularization reaches up to 90% accuracy, as shown in Figure 5.27. On the contrary,
FReLU-L2 implementation has a negative impact on the total network system, while we

77

can observe that after the 170 epoch, the accuracy falls off abruptly and stabilizes in
about 10% (because of a code warning - this combination seems to appear NaN values).
In general, this variant of our concept, for this input dataset, achieves approximately
77% accuracy in about 14 minutes in better case (ReLU-L2), which makes it a moderate
choice for modeling these data.

ReLlU NoL 62.4 13 mins
ReLU L2 76.7 14 mins
ReLLU L1 55.7 13 mins
FReLU NoL 66.1 13 mins
FReLLU L2 29.5 11 mins
FReLLU L1 74.3 14 mins

Table 5.15: Statistics of Scale Free to Scale Free (5 strongest nodes) algorithm, using
lung_discrete.mat file.

Figure 5.29: Scale Free to Scale Free (5 strongest nodes) accuracy, using ReLLU activation
function and TOX_171.mat file.

78

Figure 5.30: Scale Free to Scale Free (5 strongest nodes) accuracy, using FReLU activation
function and TOX_171.mat file.

We continue testing Scale Free to Scale Free (5) algorithm, now with a dataset,
composed of many instances and features. Observing the Figures 5.29 and 5.30, we can
see that when ReLU transfer function is used, there aren’t intense fluctuations,
concerning accuracy, whereas in cases of implementing FReLU, we have disappointing
results, while passing through the 50 epoch with L1-L2 regularization and through the
150 epoch without regularization (while dataset doesn’t react well with this type of
activation function-causes code warning). According to the time, we see that in cases
where the code warning appears, the training phase is completed faster due to the less
computations that algorithm has to make (appears no weight values for update
processing). Concerning the accuracy, algorithm achieves better performance when a
synthesis of ReLu with any kind of regularization is used (accuracy up to 77% in about
50 minutes). Thus, we conclude that the dataset characteristics play an important role in
neural network learning process and therefore in network’s performance.

ReLlU NoL 74 40 mins
ReLLU L2 77.2 43 mins
ReLlU L1 77.2 50 mins
FReLLU NoL b4 39 mins
FReLLU L2 36.4 33 mins

79

FReLLU L1 34.4 34 mins

Table 5.16: Statistics of Scale Free to Scale Free (5 strongest nodes) algorithm, using
TOX_171.mat file.

Figure 5.31: Scale Free to Scale Free (5 strongest nodes) accuracy, using ReLU activation
function and CLL_SUB_111.mat file.

Figure 5.32: Scale Free to Scale Free (5 strongest nodes) accuracy, using FReLU activation
function and CLL_SUB_111.mat file.

Regarding the Figures 5.31 and 5.32, we observe that the results for CLL_SUB_111 file

80

has adequate accuracy (about 66%), in some cases (ReLU). This model of network
cannot generalize the data with so many features (11320) to the fullest. Furthermore,
the time, needed, is reasonable in respect to the calculations the algorithm does (about
one hour). Similar accuracy and expected training time are observed in Figure 5.32, in
FReLU_L1 combination. Completely disappointing is the fact that not only the
FReLU-L2 but also the FReLU-NoL parameters leads the network to have very low
success rate, which means it isn’t able to make correct enough predictions (about 10%
accuracy). As we can see in Table 5.17, the network is trained faster in cases we have
inefficient results, perhaps due to the fact that the specific combination of parameters
works inhibitly for the network.

ReLlU NoL 66 1 h 15 mins
ReLLU L2 64 1 h 13 mins
ReLLU L1 67.4 1 h 20 mins
FReLLU NoL 6.4 55 mins
FReLLU L2 9.8 57 mins
FReLLU L1 66 1 h 26 mins

Table 5.17: Statistics of Scale Free to Scale Free (5 strongest nodes) algorithm, using
CLL_SUB_111.mat file.

81

Figure 5.33: Scale Free to Small World accuracy, using ReLLU activation function, lung.mat file
and p=0.02.

Figure 5.34: Scale Free to Small World accuracy, using FReLU activation function, lung.mat file
and p=0.02.

In this case, we create another algorithm, combining scale-free and small-world
techniques. Our estimation is that the accuracy is decreased when a network, following a

82

power law degree distribution, transits to a more randomly linked topology. Specifically,
both in ReLU and FReLU implementation, NoL and L1 regularized curves are
overlapped (same accuracy) and they differ only in execution time. We see that L1
parameter contributes more efficiently to the network when combined with FReLU
function (regarding accuracy). This approach has, also, much larger execution time than
the others, owing to its great computational complexity.

ReLLU NoL T4.7 4 h 13 mins
ReLLU L2 72.6 4 h 14 mins
ReLLU L1 74.8 4 h 17 mins
FReLLU NoL 75.3 4 h 20 mins
FReLLU L2 73.8 4 h 19 mins
FReLU L1 75.4 4 h 17 mins

Table 5.18: Statistics of Scale Free to Small World algorithm, using lung.mat file and p=0.02.

Figure 5.35: Scale Free to Small World accuracy, using ReLLU activation function, lung.mat file
and p=0.075.

83

Figure 5.36: Scale Free to Small World accuracy, using FReLU activation function, lung.mat file
and p=0.075.

We run the same algorithm, with a larger probability. While the probability becomes
larger, the average length becomes smaller, which means more connections between the
nodes (density). Hence this algorithm needs more time to make all these computations
between the nodes (enormous execution time). In this case, the network, constructed
after the training procedure, tends to be more like an exact random graph than the one
in Figure 5.33, 5.34. Particularly speaking, it is possible for a node to be connected to a
less powerful node, so, in the next epoch, the information, saved in this node, maybe, is
not going to be transferred to the next layer, because the links reconnected randomly,

and so on.
ReLLU NoL 64.7 6 h 3 mins
ReLLU L2 64.7 6 h 15 mins
ReLLU L1 64.7 6 h 20 mins
FReLU NoL 64.7 6 h 52 mins
FReLLU L2 64.7 6 h 54 mins
FReLLU L1 64.7 6 h 20 mins

84

Table 5.19: Statistics of Scale Free to Small World algorithm, using lung.mat file and p=0.075.

Figure 5.37: Small World to Small World accuracy, using ReLLU activation function, lung.mat
file and p=0.02.

Figure 5.38: Small World to Small World accuracy, using FReLU activation function, lung.mat
file and p=0.02.

85

In this last case, we study the performance of the neural network system in terms of
using only the small world method. Using FReLU activation, algorithm achieves better
accuracy (81%) but the problem is that algorithm takes enough time to train the neural
network (enormous execution time - because of computational complexity). Also, the
rewiring probability is p = 0.02 (small enough) which means the reconstructed network
is not random enough. Hence the accuracy is stabilized in high levels of values.
Therefore, our estimation, again, is that the less a topology is random, the more efficient
the network becomes, in learning and generalizing the data.

ReLlU NoL 78 4 h 9 mins
ReLLU L2 74 4 h 8 mins
ReLLlU L1 78 4 h 12 mins
FReLLU NoL 81 4 h 13 mins
FReLLU L2 75 4 h 15 mins
FReLLU L1 81 5h

Table 5.20: Statistics of Small World to Small World algorithm, using lung.mat file and p=0.02.

Figure 5.39: Small World to Small World accuracy, using ReLLU activation function, lung.mat file
and p=0.075.

86

Figure 5.40: Small World to Small World accuracy, using FReLU activation function, lung.mat
tile and p=0.075.

In contrast to the results in Figure 5.37 and 5.38, in this case we use a much larger
probability (smaller clustering coefficient), which makes the graph denser. Not only for
its density, but also for its computational complexity, this variant tends to need more
training time. Due to its randomness, information is distributed in every possible node
(not in the popular ones), meaning that the information is not retained while passing
through the epochs. This affects the network and so as the accuracy which is slow
enough (65%). We see, in Figure 5.40 that L1 and NoL regularized curves have a lot of
fluctuations while FReLU function is used. Maybe, this is owing to the fact that FReLU
provides more capacity than ReLU, which leads the model not to generalize well from
its training data to unseen data, regarding the trainable dataset.

ReLLU NoL 64.8 6 h 3 mins
ReLLU L2 64.7 6 h 6 mins
ReLLU L1 64.8 6 h 55 mins
FReLLU NoL 65 6 h 5 mins
FReLU L2 65 6 h 11 mins
FReLLU L1 65 5 h 50 mins

Table 5.21: Statistics of Small World to Small World algorithm, using lung.mat file and p=0.075.

87

In this chapter, we analyze the network behavior, including all the techniques we
proposed and all the datasets, mentioned in the Evaluation Settings section. Our concept
is based on SET algorithm (described in chapter 4), which starts from a
randomly-structured topology and via a randomization procedure, sparsifies the current
network and produces a kind of Scale-Free attributed structured topology. The results
are satistying and the time needed is about 40 minutes in the best case. It is a good
technique which emphasizes in links, between the nodes, that have weights which can
really reinforce the important information. However, the network randomness doesn’t
help the network distribute the information suitably (due to zero-clustering).
Maintaining the same method for network sparsification (remove links close to zero)
and in order to improve the network structure for better information distribution, we
propose, in the first place, the Scale Free to SET algorithm. An advantage of our
algorithm is that the training procedure takes half time than the corresponding one in
SET, due to the fact that we start from strictly constructed network and end up
producing a same one, proving that the more structured a network is, the better the
information is managed. Furthermore, the accuracy that algorithm achieves is similar to
the SET one, as Figures 5.41 show for different files, which makes this variant an
improvement regarding competitor’s code (SET). It is interesting how the structured
topology affects the network performance. Hence, our second variant of concept is the
Scale Free to Scale Free algorithm, which differs from Scale to SET one, only in the
produced network, which follows exactly a power-low degree distribution. Observing
the graphs illustration in 5.1 section, we can see that the accuracy is much higher than
the accuracy from both SET and Scale to SET, owing to the better network construction
(presence of hubs - high clustering). As it is obvious, its training time is larger than the
corresponding one in Scale to SET (due to more calculations in produced net) but is
smaller than SET (in which starting from a complete random topology, it might take too
much time to reach a structured, scale-free or small-world, topology). Bearing in mind
that a strictly structured network is beneficial for both accuracy and time and being
simultaneously, inspired by network science theory, we find interesting to explore the
performance of small-world networks. So, we implement Scale Free to Small World
algorithm. The performance of this variant isn’t as good as we expected to be. The
accuracy decreases in respect with the previous algorithms, especially, in cases where
rewiring probability of small-world method isn’t small enough. Maybe, this occurs
because of its more random reconstruction after training phase. Regarding the time, the
learning part takes more time, because of not only for its density (smaller clustering
coefficient), but also for its computational complexity. Finally, our last proposal is the
one which includes a transition, being from a less randomly constructed network to
another similar one. Not only for the accuracy, but also for its training time, this
implementation is disappointing. It takes approximately the same time as the previous
implementation, for the network to be trained and the accuracy is very low (as rewiring
probability increases - network tends to be more random). In conclusion, we can say

88

that in cases where high clustering exists (more strictly structured net like Scale-Free
ones), then we have more efficient results. The results of every algorithm we
constructed, are depicted in Figure 5.41 and the time needed for the training phase to
be accomplished is depicted in Figure 5.42.

Figure 5.41: Accuracy evaluation of five algorithms, including SET code, using four different
datasets

89

Figure 5.42: Time evaluation (in minutes) of five algorithms, including SET code, using four
different datasets

90

The tremendous success of deep learning has brought neural networks at the forefront
of machine learning research and development. Due to the large size of a neural
network — in number of neurons and in number of hidden layers — training the
network in relative short time is a challenge. Various families of methods have been
developed for accelerating neural training during the past thirty years. We focus here in
the family of methods that are based on linkage sparsification, i.e., instead of having
fully connected bipartite neural topologies, we reduce the number of connections in an
algorithmic (or in a random) way. In particular, we employ concepts developed in the
realm of network science, in order to sparsify the neural network and thus reduce
drastically the number of trainable variables and achieve training acceleration. We base
our motivation on observations in real neural networks whose actual topology is
scale-free or small-world. We designed algorithms that start from a particular
structured, but not fully connected bipartite topology, and end up with another
structured topology. Here, in this first investigation we experimented with scale-free and
small-world topologies either as starting or final topologies. We evaluated the algorithms
performance on a moderate size neural network in a publicly available dataset, and
examined their classification accuracy and training time. We concluded that the
proposed techniques are able to reap performance gains, achieving high accuracy with
short training time. The “champion” algorithm was the one that produced scale-free
topologies starting from scale-free topologies. Intuitively this is expected, since only a
handful of connections carry most of the weight even in fully connected topologies. Our
results are consistent with recent but different types of approach [37][38] to the problem
of neural training acceleration.

91

[1] Decebal Constantin Mocanu, Elena Mocanu, Peter Stone, Phuong H. Nguyen,
Madeleine Gibescu, Antonio Liotta. 2018. “Scalable training of artificial neural networks
with adaptive sparse connectivity inspired by network science”. NATURE
COMMUNICATIONS (June 19, 2018).

[2] Zhongzhi Zhang, Shuigeng Zhou , Lichao Chen. 2007. “Evolving pseudofractal
networks” (september 2007).

[3] Xiao Fan Wang, Guanrong Chen. 2003. “Complex Networks: Small-World,
Scale-Free and Beyond”, IEEE circuits and systems magazine (2003).

[4] Suo Qiu, Xiangmin Xu, Bolun Cai. 2018. “FReLU: Flexible Rectified Linear Units for
Improving Convolutional Neural Networks”. (january 2018).

[5] Xiaojie Jin, Chunyan Xu, Jiashi Feng, Yunchao Wei, Junjun Xiong, Shuicheng Yan.

b

2015. “Deep Learning with S-shaped Rectified Linear Activation Units ”. (December

2015).

[6] D. Volchenkov, Ph. Blanchard. 2018. “AN ALGORITHM GENERATING SCALE
FREE GRAPHS”. (October 23, 2018).

[7] Insoo Sohn. 2017. “Small-World and Scale-Free Network Models for [oT Systems”.
Hindawi, Mobile Information Systems (January 30, 2017).

[8] Groth, David; Toby Skandier (2005). Network+ Study Guide, Fourth Edition. Sybex,
Inc. ISBN 0-7821-4406-3.

[9] Albert Barabasi, Eric Bonabeau,2003. “Scale-Free Networks”. SCIENTIFIC
AMERICAN (May, 2003).

[10] Qawi K. Telesford, Karen E. Joyce, Satoru Hayasaka, Jonathan H. Burdette, Paul J.
Laurienti, 2011. “The Ubiquity of Small-World Networks”. (2011).

[11] Theoden I. Netoff, Robert Clewley, Scott Arno, Tara Keck, John A. White. 2004.
“Epilepsy in Small-World Networks”. The Journal of Neuroscience (September 15,
2004).

[12] Ye Hoon Lee, Insoo Sohn. 2017. “Reconstructing Damaged Complex Networks
Based on Neural Networks”. Symmetry 2017, 9, 310 (December 9, 2017).

92

https://www.nature.com/articles/s41467-018-04316-3?fbclid=IwAR2Q-t4B23NCAjiM8y1ehyAV5cgP_NPMG6zo-8YDLR9OLQMu1TzW_AyIyvQ#ref-CR67

[13] Konstantinos Diamantaras. “Texnita Neurwnika Diktua”. Klidarithmos, 2007.

[14] S. Havlin, N. A. M. Araujo, S. V. Buldyrev, C. S. Dias, R. Parshani, G. Paul, H. E.
Stanley, 2010. “Catastrophic Cascade of Failures in Interdependent Networks”.
(December, 2010).

[15] Nicholas Jarman, Erik Steur, Chris Trengove, Ivan Y. Tyukin & Cees van Leeuwen.
2017. “Self-organisation of small-world networks by adaptive rewiring in response to
graph diffusion”. (October 13, 2017)

[16] M. E. J. Newman, D.]J. Watts, S. H. Strogatz, 2002. “Random graph models of
social networks”.Newman et al, PNAS ,vol. 99 suppl. 1 (February 19, 2002).

[17] Tom Dietterich, 1995. “Overtting and Undercomputing in Machine Learning”.ACM
Computing Surveys (CSUR),Volume 27 Issue 3 (September, 1995).

[18] Vanessa Isabell Jurtz, Alexander Rosenberg Johansen, Morten Nielsen, Jose Juan
Almagro Armenteros, Henrik Nielsen, Casper Kaae Senderby, Ole Winther, Seren Kaae
Senderby. 2017. “An introduction to deep learning on biological sequence data:
examples and solutions” (August 23, 2017).

[19] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, Ruslan
Salakhutdinov,2014.“Dropout: A Simple Way to Prevent Neural Networks from

Overfitting”. Journal of Machine Learning Research 15 (2014) 1929-1958 (June, 2014).

[20] D. Randall Wilsona, Tony R. Martinez. 2003. “The general inefficiency of batch
training for gradient descent learning” (April 8, 2003).

[21] Andrew Y. Ng, 2004. “Feature selection, L1 vs. L2 regularization, and rotational
invariance”. 21st International Conference on Machine Learning, Banff, Canada (2004).

[22] M Moreira and E Fiesl. 1995. “Neural Networks with Adaptive Learning Rate and
Momentum Terms” (October, 1995).

[23] Ning Qian. “On the Momentum Term in Gradient Descent Learning Algorithms”.
Neural Networks archive, Volume 12 Issue 1 (January, 1999).

[24] Yonina C. Eldar. 2006. “Mean-Squared Error Sampling and Reconstruction in the
Presence of Noise” (December 12, 2006).

[25] Albert-Lazlo Barabasi, “NETWORK SCIENCE: THE SCALE-FREE PROPERTY”.

[26] Michael Small, Xiaoke Xu, Jin Zhou, Jie Zhang, Junfeng Sun, Jun-an Lu, 2008.

93

“Scale-free networks which are highly assortative but not small world”. The American
Physical Society, PHYSICAL REVIEW E 77, 066112 (June 20, 2008).

[27] Chigozie Enyinna Nwankpa, Winifred Ijomah, Anthony Gachagan, and Stephen
Marshall. 2018. “Activation Functions: Comparison of Trends in Practice and Research
for Deep Learning”. (November 8, 2018)

[28] Aston Zhang, Zack C. Lipton, Mu Li, Alex J. Smola. 2019. “Dive into Deep
Learning”. (May 19, 2019).

[29] Jamal M. Nazzal, Ibrahim M. El-Emary and Salam A. Najim. 2008. “Multilayer
Perceptron Neural Network (MLPs) For Analyzing the Properties of Jordan Oil Shale”.
World Applied Sciences Journal 5 (5): 546-552, 2008, ISSN 1818-4952.

[30] Franco Scarselli Ah Chung Tso0i,1998. “Universal Approximation Using
Feedforward Neural Networks: A Survey of Some Existing Methods, and Some New
Results”. Neural Networks, Vol. 11, No. 1, pp. 15-37, 1998.

[31] Syrine Ben Driss, M Soua, Rostom Kachouri, Mohamed Akil, 2017. “A comparison
study between MLP and Convolutional Neural Network models for -character
recognition”, SPIE Conference on Real-Time Image and Video Processing, Apr 2017,
Anaheim, CA, United States. {£10.1117/12.2262589ff. ffhal-01525504f.

[32] Nitin Malik. 2005. “Artificial Neural Networks and their Applications”. (June,
2005).

[33] Alex Pappachen James,Sima Dimitrijev, 2012.“Feature selection using nearest
attributes”.(January 28, 2012)

[34] Ricard V. Sole, Sergi Valverde, 2004. “Information Theory of Complex Networks:
on evolution and architectural constraints”, Lecture Notes in Physics 207:189-207, (2004,

August 19).

[35] L. A. N. Amaral, A. Scala, M. Barthelemy, H. E. Stanley,2000. “Classes of
small-world networks”, Proc Natl Acad Sci U S A, (2000, October 10).

[36] Hans-Dieter Wehle. 2017. “Machine Learning, Deep Learning, and Al: What’s the
Difference?”. (July, 2017).

[37] J. Frankle, M. Carbin, “The lottery ticket hypothesis: Finding sparse, trainable
neural networks”, Proceedings of the Inernational Conference on Learning

Representations (ICLR), 2019.

[38] X. Sun, X. Ren, S. Ma, B. Wei, W. Li, J. Xu, H. Wang, Y. Zhang, “Training

94

simplification and model simplification for deep learning: A minimal effort back
propagation method”, IEEE Transactions on Kowledge and Data Engineering, to
appear, 2019.

[39] Tianyi Liu, Shuangsang Fang, Yuehui Zhao, Peng Wang, Jun Zhan.
“Implementation of Training Convolutional Neural Networks”, arXiv:1506.01195 June
2015.

[40] M. Kukacka. “Overview of Deep Neural Networks”, Neural Networks, Vol 61, pp
85-117, 2012.

[41] Patrick Glauner. “Comparison of Training Methods for Deep Neural Networks”,
Neural Networks, Vol 7, No. 1, pp. 1-11, 1994.

[42] lung.mat dataset information. Available [Online]:
https://archive.ics.uci.edu/ml/datasets/lung+cancer , accessed May 31,2019.

[43] Hojjat Salehinejad, Sharan Sankar, Joseph Barfett, Errol Colak, and Shahrokh
Valaee. “Recent Advances in Recurrent Neural Networks”, arXiv:1801.01078, February
2018.

[44] Mikael Boden. “A guide to recurrent neural networks and backpropagation”,
School of Information Science, Computer and Electrical Engineering Halmstad
University, December 2001.

[46] Robert Kowalski, “Artificial Intelligence and Human Thinking”, Proceedings of the
Twenty-Second International Joint Conference on Artificial Intelligence, June 8, 2011.

[47] Daniel L. Ly, Volodymyr Paprotski, Danny Yen,“Neural Networks on GPUs:
Restricted Boltzmann Machines”. University of Toronto, 2009.

[48] Daniel Strigl, Klaus Kofler and Stefan Podlipnig, “Performance and Scalability of
GPU-based Convolutional Neural Networks”, Proceedings of the 18th Euromicro
Conference on Parallel, Distributed and Network-based Processing, PDP 2010, Pisa, Italy,
(February 17-19, 2010).

[49] The Khronos Group, “OpenCL Overview”. Available [Online]:
http://www.khronos.org/opencl , (August 2009), accessed May,2019.

[50] C. Boyd, “DirectX 11 Compute Shader,” in The 35th Int. Conference on Computer
Graphics and Interactive Techniques (SIGGRAPH 2008). Available [Online]:
http://s08.idav.ucdavis.edu/boyd-dx11-compute-shader.pdf ,accessed May, 2019.

[51] E. Bullmore, O. Sporns, “Complex brain networks: Graph theoretical analysis of

95

https://arxiv.org/abs/1506.01195
https://archive.ics.uci.edu/ml/datasets/lung+cancer
http://www.khronos.org/opencl
http://s08.idav.ucdavis.edu/boyd-dx11-compute-shader.pdf

structural and functional systems”, Nature Reviews on Neuroscience, vol. 10, pp.
186-198, 2009.

[52] D. Katsaros, N. Dimokas, L. Tassiulas, “Social network analysis concepts in the
design of wireless ad hoc network protocols”, IEEE Network magazine, vol. 24, no. 6,
2010.

[53] D. Katsaros, G. Pallis, K. Stamos, A. Vakali, A. Sidiropoulos, Y. Manolopoulos,
“CDNs content outsourcing via generalized communities", IEEE Transactions on
Knowledge and Data Engineering, vol. 21, no. 1, pp. 137-151, 2009.

[54] P. Basaras, D. Katsaros, L. Tassiulas, “Detecting influential spreaders in complex,
dynamic networks”, IEEE Computer magazine, vol. 46, no. 4, pp. 26-31, 2013.

[55] A.L.Barabasi, Network Science, Cambridge University Press, 2016.

[56] Diederik P. Kingma, Jimmy Lei Ba. “ADAM: A METHOD FOR STOCHASTIC
OPTIMIZATION”, arXiv:1412.6980, 3rd International Conference for Learning
Representations, San Diego, 2015.

[57] Sebastian Bock, Josef Goppold, Martin Weifs. “An improvement of the convergence
proof of the ADAM-Optimizer”, Ostbayerische Technische Hochschule (OTH)
Regensburg, Germany, arXiv:1804.10587, 2018.

[58] Matthew D. Zeiler. “ADADELTA: AN ADAPTIVE LEARNING RATE METHOD”,
Google Inc., USA New York University, USA, arXiv:1212.5701v1, 2012.

[59] Ravagnani Alberto, (2017). “Duality of codes supported on regular lattices, with an
application to enumerative combinatorics”. Designs, Codes and Cryptography, 86(9),

2035-2063. doi:10.1007/s10623-017-0436-3

[60] Math Insight, Small world networks. Available [Online]:
https://mathinsight.org/small_world_network ,accessed May, 2019.

[61] Numpy Routines. Available [Online]:
https://docs.scipy.org/doc/numpy/reference/routines.html ,accessed May, 2019.

[62] M.T. Hagan, M. Menhaj, “Training feedforward networks with the Marquardt
algorithm,” IEEE Transactions on Neural Networks, vol. 5, no. 6, 1994.

[63] C. Charalambous, “Conjugate gradient algorithm for efficient training of artificial
neural networks”, IEE Proceedings, vol. 139, no. 3, pp. 301-310, 1992.

[64] A. Mokhtari, A. Ribeiro, "Global convergence of online limited memory BFGS",

96

https://mathinsight.org/small_world_network
https://docs.scipy.org/doc/numpy/reference/routines.html

Journal of Machine Learning Research, vol. 16, pp. 3151-3181, 2015.

[65] S.J. Reddi, S. Kale, S. Kumar, “On the convergence of Adam and beyond”,
Proceedings of the Inernational Conference on Learning Representations (ICLR), 2018.

[66] R. A. Jacobs, “Increased rates of convergence through learning rate adaptation,”
Neural Networks, vol. 1, no. 4, pp. 295-308, 1988.

[67] T. Tollenaere, “SuperSAB: Fast adaptive back propagation with good scaling
properties”, Neural Networks, vol. 3, no. 5, pp. 561-573, 1990.

[68] Iman Sadeghkhani, Abbas Ketabi , and Rene Feuillet, 2013, “Delta-Bar-Delta and
Directed Random Search Algorithms Application to Reduce Transformer Switching

2

Overvoltages ”, International Journal on Electrical Engineering and Informatics -
Volume 5, Number 1, (March 2013).

[69] Mohammed A. Otair and Walid A. Salameh, 2005. “AN ENHANCED VERSION OF
DELTA-BAR-DELTA ALGORITHM®, The International Conference on Information
Technology, (July 2005).

[70] Albert-Lédszl6 Barabdsi, Réka Albert, 1999.“Emergence of Scaling in Random
Networks”, SCIENCE VOL 286 (OCTOBER 15, 1999).

[71] Z. Zainuddin, N. Mahat, and Y. Abu Hassan. “Improving the Convergence of the
Backpropagation Algorithm Using Local Adaptive Techniques”, World Academy of
Science, Engineering and Technology International Journal of Computer and
Information Engineering Vol:1, No:1, 2007.

[72] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, “Dropout:
A simple way to prevent neural networks from overfitting”, Journal of Machine
Learning Research, vol. 15, no. 1 pp. 1929-1958, 2014.

[73] S. Cai, J. Gao, M. Zhang, W. Wang, G. Chen, B.C. Ooi, “Effective and efficient
dropout for deep convolutional neural networks”, arxiv.org 1904.03392, 2019.

[74] X. Sun, X. Ren, S. Ma, H. Wang, “meProp: Sparsified back propagation for
accelerted deep learning with reduced overfitting”, Proceedings of the International
Conference on Machine Learning (PMLR), 2017.

[75] X. Sun, X. Ren, S. Ma, B. Wei, W. Li, J. Xu, H. Wang, Y. Zhang, “Training
simplification and model simplification for deep learning: A minimal effort back
propagation method”, IEEE Transactions on Kowledge and Dta Engineering, to appear,
2019.

97

[76] Xu Sun, Xuancheng Ren, Shuming Ma, Houfeng Wang, 2019. “meProp: Sparsified
Back Propagation for Accelerated Deep Learning with Reduced Overfitting”, 34th
International Conference on Machine Learning (ICML 2017), (Mar 11,2019).

[77] S. Dey, D. Chen, Z. Li, S. Kundu, K.-W. Huang, K.M. Chugg, P.A. Beerel, “A
highly parallel FPGA implementation of sparse neural network training”, arxiv.org
1806.01087, 2018.

[78] A. Zlateski, K. Lee, H.S. Seung, “Scalable training of 3D convolutional networks on
multi- and many-cores”, Journal of Parallel and Distributed Computing, vol. 106, 2017.

[79] N.P. Jouppi, C. Young, N. Patil, D. Patterson, “Domain specific architecture for deep
neural networks”, Communications of the ACM, vol. 61, no. 9, pp. 50-59, 2018.

[80] Yufeng Hao. “A General Neural Network Hardware Architecture on FPGA”,
Computer Vision and Pattern Recognition, arXiv:1711.05860, 2017.

[81] Norman P. Jouppi, Cliff Young, Nishant Patil, etc., 2017. “In-Datacenter
Performance Analysis of a Tensor Processing Unit”, 44th International Symposium on
Computer Architecture (ISCA), Toronto, Canada (June 26, 2017).

[82] “RBF Kernel Principal Component Analysis”. Available [Online]:
http://rasbt.github.io/mlxtend/user_guide/feature_extraction/RBFKernelPCA/,accessed
June 2019.

[83] Haider Khalaf Allamy, “METHODS TO AVOID OVERFITTING AND
UNDER-FITTING IN SUPERVISED MACHINE LEARNING (COMPARATIVE STUDY)”,
Computer Science, Communication and Instrumentation Devices , Kochi, India
(December 27, 2014).

[84] “Top 15 Deep Learning applications that will rule the world in 2018 and beyond”.
Available [Online]:
https://medium.com/@vratulmittal/top-15-deep-learning-applications-that-will-rule-the-w
orld-in-2018-and-beyond-7c¢6130c43b01, accessed June 2019.

[85] “Technology and human rights”, OpenGlobalRights ,Series co-sponsored with
Business & Human Rights Resource Centre and University of Washington Rule of Law
Initiative. Available [Online]: https://www.openglobalrights.org/technology/ ,accessed
June 2019.

[86] “Top 10 Applications of Deep Learning”. Available [Online]:
https://www.greatlearning.in/blog/top-10-applications-of-deep-learning/ ,accessed June
2019.

98

http://rasbt.github.io/mlxtend/user_guide/feature_extraction/RBFKernelPCA/
https://medium.com/@vratulmittal/top-15-deep-learning-applications-that-will-rule-the-world-in-2018-and-beyond-7c6130c43b01
https://medium.com/@vratulmittal/top-15-deep-learning-applications-that-will-rule-the-world-in-2018-and-beyond-7c6130c43b01
https://www.openglobalrights.org/technology/
https://www.greatlearning.in/blog/top-10-applications-of-deep-learning/

[87] Jeff Donahue, Lisa Anne Hendricks, Marcus Rohrbach, Subhashini Venugopalan,
Sergio Guadarrama, Kate Saenko, Trevor Darrell, 2017. “Long-term Recurrent
Convolutional Networks for Visual Recognition and Description”, IEEE Transactions on
Pattern Analysis and Machine Intelligence archive, Volume 39 Issue 4, Page 677-691,
(April, 2017).

[88] Andrej Karpathy, Li Fei-Fei, 2017. “Deep Visual-Semantic Alignments for

Generating Image Descriptions”, IEEE Transactions on Pattern Analysis and Machine
Intelligence archive, Volume 39 Issue 4, Page 664-676, (April, 2017).

99

