
 
 

Using Geographic Relevance (GR) to 
contextualize structured and unstructured 

spatial data 
 

 

by 
 
 

Majuratan Sadagopan 
 
 
 
 

A thesis 

presented to the University of Waterloo 

in fulfilment of the 

thesis requirement for the degree of 

Masters of Science 

in  

Geography 

 
 
 
 
 

Waterloo, Ontario, Canada, 2019 

© Majuratan Sadagopan 2019  



i 
 

Author’s Declaration 

 I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis including 

any required final revisions, as accepted by my examiners. 

I understand that my thesis may be made electronically available to the public. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ii 
 

Abstract 

Geographic relevance is a concept that has been used to improve spatial information retrieval on 

mobile devices, but the idea of geographic relevance has several potential applications outside of mobile 

computing.  Geographic relevance is used measure how related two spatial entities are using a set of 

criteria such as distance between features, the semantic similarity of feature names or clustering 

pattern of features. This thesis examines the use of geographic relevance to organize and filter web 

based spatial data such as framework data from open data portals and unstructured volunteer 

geographic information generated from social media or map-based surveys. There are many new users 

and producers of geographic information and it is unclear to new users which data sets they should use 

to solve a given problem. Governments and organizations also have access to a growing volume of 

volunteer geographic information but current models for matching citizen generated information to 

locations of concern to support filtering and reporting are inadequate. For both problems, there is an 

opportunity to develop semi-automated solutions using geographic relevance metrics such as topicality, 

spatial proximity, cluster and co-location. In this thesis, two geographic relevance models were 

developed using Python and PostgreSQL to measure relevance and identify relationships between 

structured framework data and unstructured VGI in order to support data organization, retrieval and 

filtering. This idea was explored through two related case studies and prototype applications. The first 

study developed a prototype application to retrieve spatial data from open data portals using four 

geographic relevance criteria which included topicality, proximity, co-location and cluster co-location. 

The second study developed a prototype application that matches VGI data to authoritative framework 

data to dynamically summarize and organize unstructured VGI data. This thesis demonstrates two 

possible approaches for using GR metrics to evaluate spatial relevance between large data sets and 

individual features. This thesis evaluates the effectiveness of GR metrics for performing spatial relevance 

analysis and it demonstrates two potential use cases for GR. 
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1 Introduction 

 The rate at which data is generated and collected is growing at an exponential rate. In 2017, IBM 

released a report stating that 90 percent of the data in the world had been created in the last two years 

(IBM Marketing Cloud, 2017). Research by Cisco projects that data storage capacity will quadruple 

between 2016 and 2021 (Cisco, 2018). Data generated by mobile phones, IoT devices, governments, 

private corporations, and individual citizens are contributing to the growing data trend (Centre for 

International Governance Innovation, 2018; Cisco, 2018). Big data has emerged as an area of study 

because our ability to collect, and sense data is outpacing our ability to process, store and manage 

collected data (Cisco, 2018). Furthermore, data from all dimensions of society are increasingly being 

linked to geographic locations; this includes public census databases, private customer databases, and 

community built open source databases (Purves, Clough, Jones, Hall, & Murdock, 2018). Large volumes 

of big data are spatial data (Burns & Thatcher, 2015) and researchers are increasingly finding that 

location data is an important and effective way to filter, categorize and organize data (Ivanova, Morales, 

de By, Beshe, & Gebresilassie, 2013; Purves et al., 2018; Spinsanti & Ostermann, 2013). As noted by 

Burns and Thatcher (2015), the ability to rapidly collect and analyze massive volumes of data has led to 

an increased focus on relationships between data and knowledge creation. There is a need to develop 

processes to manage and analyze web based spatial data in order to enable data driven decision making. 

 The literature indicates that growth in the web continues to drive growth in the creation and 

use of VGI data, but challenges associated with maintaining the integrity of VGI data remains an 

impediment to the use of VGI (Neis & Zielstra, 2014). Growth of web-based data such as VGI and open 

data has also driven research interest in the fitness of use problem due to the challenge of retrieving 

and organizing web-based spatial data (Neis & Zielstra, 2014; Wentz & Shimizu, 2018). Spatial data 

quality literature has discussed the use of contextual analysis to assure VGI data quality (Comber et al., 

2016; Goodchild & Li, 2012). Researchers in geographic information retrieval and geographic relevance 

have developed sophisticated models for understanding the spatial context (Purves et al., 2018; 

Reichenbacher, De Sabbata, Purves, & Fabrikant, 2016). Geographic relevance researchers developed a 

multi-criteria model for evaluating spatial context that includes relevance measures such as topicality, 

proximity, directionality, and co-location (Reichenbacher et al., 2016). The metrics developed in GR have 

been primarily developed for mobile search, but the concepts developed in GR have similarities with 

concepts developed in the literature on fitness for use, assurance of VGI data quality and conflation 

(Goodchild & Li, 2012; McKenzie, Janowicz, & Adams, 2014; Wentz & Shimizu, 2018). There is an 
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opportunity to use GR metrics to evaluate spatial context and address challenges in spatial data quality 

literature, geographic information retrieval and VGI analysis. This thesis looks at using GR metrics to 

evaluate spatial relevance of open data in Chapter 3 and using GR metrics to match VGI data to 

framework data to support data analysis in Chapter 4. 

Raper first introduced the idea of geographic relevance as a concept that links spatial data to a 

location-based query, Raper defines geographic relevance as follows. 

‘Geographic relevance (GR) of this kind can, therefore, be defined as “a relation between a 

geographic information need and “the spatio-temporal expression of the geographic information 

objects needed to satisfy it” in order to take some action’(Raper, 2007, p. 846)  

De Sabbata and Reichenbacher (2012) expand upon Raper’s (2007) concept and define geographic 

relevance as a concept that improves spatial data retrieval by evaluating relationships of entities in the 

real world. As noted below, GR improves spatial data retrieval in databases by evaluating spatial 

relationships of geographic entities. 

“GR refers to the relevance of a geographic entity, given a specific context of usage. That is, GR 

does not refer to the relevance of a geo-referenced document or a document reporting geographic 

information, it refers to the relevance of the real world entity or event by itself… GR is intended to 

assess the relevance of an object, that is a representation of a geographic entity within a computer 

system or database.” (De Sabbata & Reichenbacher, 2012, p. 1496)  

The value of geographic relevance can be compared to the value of the PageRank algorithm 

powering the Google search engine. The PageRank algorithm made it possible for computers to 

understand which web sites are important to a user based upon a query (Page, Brin, Motwani, & 

Winograd, 1999). Research in geographic relevance can potentially make it possible for computers to 

understand what spatial data are relevant to a user. Google significantly improved public accessibility to 

the web using relevance metrics and research in geographic relevance has the potential to significantly 

improve public accessibility to location-based information.  

Research interest in geographic relevance has been primarily driven by the growing importance of 

mobile phones, and the importance of spatial context in mobile search (Raper, 2007). The field of 

geographic relevance has borrowed extensively from research in geographic information retrieval which 

focused on location-based data retrieval on the web (Acheson, Wartmann, & Purves, 2018). The fields of 

GR and GIR placed a significant amount of effort into understanding spatial context and handling 
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ambiguity (Bordogna, Ghisalberti, & Psaila, 2012; Reichenbacher et al., 2016). GIS researchers studying 

diverse topics such as geotagged social media or spatial data quality have increasingly recognized the 

value of contextual analysis for analyzing geographic information from web-based data sources 

(Goodchild & Li, 2012; McKenzie et al., 2014; Spinsanti & Ostermann, 2013). Past research on spatial 

relevance and spatial data has tended to focus on two main characteristics of spatial data which include 

semantic attributes and spatial attributes; some studies have also analyzed topology (Adams, Li, Raubal, 

& Goodchild, 2007; McKenzie et al., 2014; Spinsanti & Ostermann, 2013). GR literature builds on existing 

metrics and proposes the use of new spatial relevance metrics that consider unique characteristics of 

spatial data sets, such as the distribution of features as well as the spatial context of the user (De 

Sabbata & Reichenbacher, 2012). GR researchers use mobile sensor information such as the direction of 

travel or velocity of travel to better understand the context of a user (Reichenbacher et al., 2016). There 

is an opportunity to expand the use of GR to address challenges such as spatial data quality in 

crowdsourced data or data retrieval in spatial databases. 

This thesis explores the use of GR metrics to identify links between spatial data sets to filter, 

organize, and retrieve structured and unstructured spatial data such as framework data or VGI data. The 

research on GR metrics is intended to address two broad problems in GIS today. The first problem is 

improving accessibility to the growing volume of open spatial data on the web. Governments are 

increasingly making spatial data available to the public via open data portals. As a result, more non-

expert users are using spatial data to address a diverse set of problems. However, retrieving and 

aggregating spatial data can be challenging for experts and non-experts alike (Ivanova et al., 2013). 

Several studies have attempted to develop models to evaluate context and relevance to improve spatial 

data retrieval (Ivanova et al., 2013; Jonietz, Zipf, Jonietz, & Zipf, 2016; Wentz & Shimizu, 2018). 

The second problem is improving governments capability to use citizen-generated spatial data 

collected via the web. Due to the growing number of map-based web applications, citizens can author 

spatial data that pinpoints and describes locations of concern. The VGI data created by citizens are rich 

in information, but it is unstructured and difficult to analyze without manual interpretation. Several 

studies have explored the use of contextual analysis to summarize or enrich VGI data (Goodchild & Li, 

2012; Spinsanti & Ostermann, 2013). Both of these research problems call for new models to be 

developed to better evaluate spatial relevance based upon context. This thesis explores the use of GR 

metrics to address these problems through two case studies.  
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1.1 Research Objectives 

The concept of geographic relevance can be used improve fundamental data management tasks 

in GIS such as geographic information retrieval and spatial filtering of data. These basic tasks have 

become increasingly complex as GIS has moved to web and mobile environments. Modern GIS need to 

handle a wide array of spatial data sets that are generated at different scales and velocities by different 

users and organization with different perspectives (Neis & Zielstra, 2014; Noskov & Zipf, 2019; Rabari & 

Storper, 2015). The central research question of this thesis is to determine whether a generic set of 

geographic relevance criteria can be used to measure relevance between structured and unstructured 

spatial data sets and features. This research question is explored over three chapters which address the 

following research objectives.  

1. Review literature on geographic relevance and identify relevant methods of relevance analysis 

in light of widespread authoring and use of spatial data by non-specialists  

2. Identify a set of GR metrics that can be used to generate spatial relevance scores between large 

spatial data sets in an enterprise database for the purpose of helping inexperienced users find 

and access spatial data to support research and analysis  

3. Use the identified GR metrics from the second objective to generate spatial relevance scores 

between unstructured VGI features and structured framework features.  

4. Develop prototype software applications to evaluate the effectiveness of the proposed GR 

metrics and evaluate if GR can be defined using a generic set of criteria. 

These objectives will address the central research question by developing two different GR 

models for two different case studies using a common set of GR criteria. This thesis will discuss how well 

the identified GR criteria translate to different study context and scales. The objective results should 

indicate if it is possible to identify a constant set of GR criteria that are applicable to general spatial 

relevance analysis. 

1.2 Organization of Thesis 

This thesis is compromised of 5 chapters. Chapter 1 is the introduction, Chapter 2 will review 

literature that is pertinent to the first research objective, Chapter 3 presents a case study on evaluating 

spatial relevance between framework data, Chapter 4 presents a case study on measuring geographic 

relevance between VGI features and spatial enterprise data, and Chapter 5 provides future direction for 

further research on this topic. This thesis will conduct a broad literature review on VGI, Open Data, GIR, 
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GR, and several related fields of study in Chapter 2. The literature review informs the development of 

two studies on the use of GR to address spatial data quality challenges associated with open data and 

VGI. The literature review has three objectives which are to; define characteristics of VGI, identify gaps 

in VGI data quality literature, and develop an understanding of geographic relevance. Review of VGI 

literature offers insight about the nature and characteristics of spatial data that is created on the web by 

amateur geographers. Review of Spatial Data Quality literature presents insights into the data quality 

challenges associated with web-based data such as VGI. It provides examples of studies that have used 

contextual spatial analysis to improve VGI data quality. Review of GR literature provides an overview of 

the tools and methodologies that researchers have used to automatically evaluate context and 

determine relevance between spatial data. Chapter 2 provides direction for the development of the case 

studies presented in Chapter 3 and 4.   

Chapter 3 looks at the use of geographic relevance to measure relevance between framework 

data to retrieve spatial data that is relevant to a domain and location of study. The solution developed in 

this Chapter is directed at the fitness for use problem in SDQ literature, and it aims to improve data 

accessibility on open data portals. The Chapter is compromised of a literature review, a methodology, 

and a results section. Chapter 3 identifies and defines GR metrics and presents an evaluation model to 

create GR scores between spatial data. The Chapter also presents a prototype data processing 

application named UrbanData that was used to analyze relevance between data sets from a regional 

open data portal. The Chapter presents a set of analysis results that evaluate the effectiveness of GR 

metrics for evaluating the relevance of spatial data for a given domain and study context.  

 Chapter 4 looks at the use of geographic relevance to spatially contextualize volunteered 

geographic information. The methods developed in this Chapter are intended to contribute to VGI data 

quality literature and GR literature. This Chapter identifies GR metrics and presents an evaluation model 

to identify many to one relationship between unstructured VGI data and structured framework data. A 

prototype data processing application named UrbanContext and a data visualization application named 

UrbanContext Viz are also presented in this Chapter to demonstrate how GR metrics can be 

implemented in software. A case study is presented in this Chapter that demonstrates how the 

prototype GR application can be used to analyze citizen feedback in the planning process. The analysis 

results of this Chapter present insights into the effectiveness of the identified GR metrics. Chapter 5 

discusses the results of the two case studies and summarizes the progress made on the thesis research 

objectives. This Chapter also identifies study limitations and provides future direction for research. 
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2 Literature Review and Research Framework 

 This thesis is motivated by spatial data quality challenges in volunteered geographic information 

(VGI) which is an emerging source of spatial data generated by web-based communities. In a 2012 

paper, Goodchild and Li discussed the need for a context-based approach for data validation of 

volunteered geographic information (Goodchild & Li, 2012). Research on geographic relevance has 

significant potential to address this issue, but no studies exist on the application of GR on VGI data. The 

spatial data quality of VGI data is of increasing importance because the use of volunteered geographic 

information is increasing. Companies such as MapBox and Apple are selling navigation technologies on 

top of VGI databases like OpenStreetMap and researchers are exploring approaches for using geotagged 

social media to detect forest fires (Spinsanti & Ostermann, 2013). This literature review explores the 

idea of VGI contextualization in three sections that discuss Volunteered Geographic Information, Spatial 

Data Quality, and Geographic Relevance. Volunteered geographic information (VGI) is a spatial data 

trend that has been facilitated by the web. This section of the literature review looks at the concept of 

VGI and the nature of the data produced on the web. The second topic covered in the literature review 

is spatial data quality which includes a large corpus of work on how to compare spatial features and 

identify spatial relationships between VGI data. The last section of the literature review looks at 

geographic relevance which is a new field of research that has emerged from work in geographic 

information retrieval. This section explores new models for analyzing relevance and context.  

The three topics of research discussed in this literature review provide a broad perspective of 

emerging trends in GIS such as the growing volume of spatial data on the web, the growing challenge of 

ensuring spatial data quality and the innovations that have been made to address these challenges. The 

three topics covered in this literature have significant differences. Volunteered Geographic Information 

is a social and technological phenomenon that has attracted interest from researchers in social sciences, 

urban planning, and GIS (Goodchild & Li, 2012; Seeger, 2008). Research in spatial data quality is 

primarily technical, with an emphasis on the development of methodologies to compare and validate 

spatial data. Research in geographic relevance is primarily focused on understanding user information 

needs and retrieving spatial data to meet user information needs (Raper, 2007; Reichenbacher et al., 

2016). The three topics in this literature review are related because all three research fields explore 

challenges associated with handling heterogeneous spatial data and ambiguity. VGI literature looks at 

the production of heterogeneous spatial data on the web. Literature on VGI data quality looks at 

approaches to reduce the heterogeneity of VGI data through standards, validation models, and 
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conflation systems. Geographic relevance literature looks at approaches to retrieve spatial data that fits 

users’ needs based upon ambiguous criteria. 

The subsequent sections of the literature are organized as follows. The section on volunteered 

geographic information reviews the literature on VGI and related concepts such as Neogeography, 

PPGIS, and VGI. The section on spatial data quality discusses research on validating VGI data using 

methods like spatial data matching, conflation, and contextualization. The section on geographic 

relevance will review research on geographic information retrieval, geographic relevance and related 

methodologies that are used to measure relevance. This literature review discusses the concepts and 

methodologies that motivate this thesis and inform the methodologies developed in the case studies 

discussed in subsequent chapters. 

2.1 Volunteered geographic information 

Volunteer Geographic Information is a research concept that was developed as a result of 

advances in web technologies, the development of Web 2.0 made it possible to create and consume 

content on the web at a scale that was not possible before (Jonietz, Antonio, See, & Zipf, 2017). The 

concept of volunteer geographic information (VGI) was coined by Goodchild to describe the growing 

body of amateur geographers that are generating spatial data online using platforms such as 

OpenStreetMap (Goodchild, 2007a). VGI is important because it provides the GIS community with an 

alternative or supplement to the use of traditional authoritative data, which is significantly more 

expensive to acquire (Jonietz et al., 2017). Platforms such as OpenStreetMap makes it possible to access 

spatial data sets with global coverage at no cost. In contrast, comparable data sets from providers such 

as TomTom, ESRI, or Here maps are prohibitively expensive. In addition to making valuable spatial data 

available at a low cost, VGI has unique characteristics that make it effective for tasks like disaster 

response. Unlike traditional authoritative data that is released in quarterly cycles, VGI can be responsive, 

time-sensitive, and geosocial (Rob Feick & Roche, 2013). The field of VGI has evolved over time as 

researchers have strived to define VGI, improve the quality of VGI data, and apply VGI data to unique 

research problems.  

The concept of VGI is related to other web 2.0 concepts such as Neogeography, crowdsourcing, 

citizen-science, and user-generated content (See et al., 2016). Several studies use these terms 

interchangeably (Kalvelage et al., 2018; Lin, 2018), others have written on the distinction between VGI 

and related terms (Goodchild, 2009; See et al., 2016). Review of the literature indicates several terms 

associated with VGI are distinct concepts that reflect differences in data collection methods, data 
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structure and data volume (Goodchild, 2007a; See et al., 2016; Seeger, 2008). These differences have 

significant implications on how data can be analyzed and used. Literature that discusses the definition of 

VGI tends to touch upon two main topics which include the characteristics of the people or sensors 

generating VGI data and the characteristics of the VGI data itself (Goodchild, 2009; Kalvelage et al., 

2018; See et al., 2016).  The social dimension of VGI includes research on Neogeography, collective 

intelligence, and public engagement.  Discussions on VGI characteristics center on the typology and 

characteristics of VGI data as well as spatial data quality. The following sections review the literature on 

the social and technological trends related to VGI before reviewing the literature on the characteristics 

of VGI. 

2.1.1 Neogeography, Geoweb and Public Engagement 

Neogeography is a concept that was originally developed by Turner to describe trends in 

technology that make GIS and cartography tools accessible to users outside of the GIS industry (Turner, 

2006). Goodchild described Neogeography as the proliferation of amateur geographers in the field of 

geography (Goodchild, 2009). For Neogeography describes the ability for the public to create and share 

location information using commonly accessible tools and applications such as Google Maps or mobile 

phones (Haklay, 2013; Turner, 2006). The concept of Neogeography is tightly linked to the concept of 

Web Mapping 2.0 because web 2.0 technologies made it possible for the public to access and create 

spatial data at little to no cost (Batty, Hudson-Smith, Milton, & Crooks, 2010; Haklay, Singleton, & 

Parker, 2008). Concepts such as crowdsourcing and citizen science are sometimes interchanged with 

Neogeography. These concepts overlap in the sense that they all rely on web technologies to collect or 

aggregate data using the concept of collective intelligence (Doan, Ramakrishnan, & Halevy, 2011) but 

Neogeography is unique because it focuses on the societal and technological trends related to the 

generation of open spatial data on the web (Connors, Lei, & Kelly, 2012). Neogeography has contributed 

to the emergence of VGI (Goodchild, 2009; Jonietz et al., 2017), the democratization of GIS (Haklay, 

2013) and the growing use of citizen data in scientific research (Connors et al., 2012). Neogeography 

describes the set of web technologies and societal trends that enable the production of VGI; thus the 

concept of Neogeography is often presented alongside the concept of VGI in the literature (See et al., 

2016). The web and mobile technologies that enabled the concept of Neogeography and drove growth 

in VGI have continued to evolve since the inception of the concept. Similarly, societal trends influencing 

Neogeography and VGI continue to evolve. Over time, advances in technology enable new forms of 

social interaction that drive new societal trends.  
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One of the biggest technology or software platforms that influenced web mapping, 

Neogeography and VGI was the development of Google Maps. The software application made it easy for 

anyone to share location data using maps with pushpins and it spurred the creation of numerous map 

mashup applications (Elwood, Goodchild, & Sui, 2012; Haklay et al., 2008). The development of Google 

Maps was followed by the development of other important mapping applications such as 

OpenStreetMap and Wikimapia which used web 2.0 technologies to build interactive web mapping 

applications driven by volunteers that created VGI (Goodchild, 2007a). Social media applications such as 

Flickr also played a role in the growth of VGI and Neogeography because they allowed users to store 

photos with location data (S. Gao, Li, Li, Janowicz, & Zhang, 2017; Haklay et al., 2008). The group of web 

mapping applications that were developed on top of web 2.0 technologies has been broadly referred to 

by researchers as the geoweb (Haklay et al., 2008; Jankowski, Czepkiewicz, Młodkowski, Zwoliński, & 

Wójcicki, 2019; Verplanke, McCall, Uberhuaga, Rambaldi, & Haklay, 2016). Over the years, the number 

of web-based and mobile location-based application has continued to grow and dimensions of the 

geoweb have changed. Google reduced support for some of its free web mapping services by shutting 

down Google Maps Engine. However, solutions such as ESRI’s ArcGIS Online, CartoDB, and MapBox have 

developed solutions that fill the gap left by Google and provide numerous new mapping capabilities for 

developers. OpenStreetMap continues to remain a powerful platform for VGI data, but the platform is 

also increasingly supported by governments and corporations (OpenStreetMap, 2018) that donate data 

to the platform (DigitalGlobe, 2018) and fund the development of software tools for the platform 

(MapBox, 2019). Growth in social media has led to the development of several new location-based 

social media apps such as Snap and Instagram, while older platforms such as Twitter continue to make 

location data a part of the platform. Several companies such as ESRI and PingStreet are also building 

geoweb solutions for governments that allow staff to collect spatial data from citizens. Overall the 

number of geoweb applications is growing, and there are a broad set of VGI applications on the web 

that cover diverse topics such as ecology, public safety, feature mapping, gazetteers, hiking, search data 

and more (See et al., 2016). The number of location applications on the web continues to grow. As 

spatial data becomes more ubiquitous, questions arise about what motivates people to contribute 

spatial data and how the geoweb helps society.  

 The democratization of spatial data and GIS is a prime benefit of VGI and Neogeography that has 

been discussed in the literature (Haklay, 2013; Kleinhans, Ham, & Evans-Cowley, 2015). Neogeography 

tools and geoweb applications have made a large amount of diverse spatial data openly available on the 

web (Jonietz et al., 2017). VGI platforms such as OpenStreetMap rely on active communities to 
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contribute data (Goodchild, 2007a; Jonietz et al., 2017), and validate data (Goodchild & Li, 2012). In 

general, effective VGI platforms are developed to support social causes that attract participants 

interested in contributing to the greater good (See et al., 2016).  However, some researchers have 

criticized VGI as a tool that is primarily used by the technological elite, and there are concerns that VGI is 

not a representative or equitable (Cinnamon & Schuurman, 2013; Haklay, 2013). It is difficult to 

determine if VGI platforms have a biased user base because many VGI platforms don’t collect user or 

contributor data (See et al., 2016). As the web becomes more ubiquitous and digital literacy improves 

some of the concerns raised by Haklay (2013) will likely diminish. Literature shows that VGI tools have 

been successfully developed to address a diverse set of issues that include environmental monitoring, 

natural hazard analysis, land cover mapping, and more (Connors et al., 2012; Jankowski et al., 2019; 

Jonietz et al., 2017). In contrast, the potential of VGI has primarily been underwhelming when 

considering public engagement and the use of VGI in governance (Brown, 2012; Haklay, 2013).  

 The concept of public engagement has been of interest to the GIS community for a long time 

(Brown, 2012; Seeger, 2008; Tulloch, 2008), and the growth of the geoweb increased research interest 

in using GIS tools such as Neogeography and VGI to solve challenges around public engagement and 

shared governance (Brown & Raymond, 2014; Kalvelage et al., 2018).  The term public engagement is 

often interchanged with the concept of public participation (Newfoundland Labrador Office of Public 

Engagement, 2013; Ross, Baldwin, & Carter, 2016). There is no clear consensus on how the two terms 

should be used, but the International Association of Public Participation uses the terms public 

engagement and public participation to refer to the process of engaging the public in government 

decision making (International Association of Public Participation, 2019). This thesis uses the definition 

of public participation that is used by IAP2. The concept of participation is rooted in the belief that 

people who are affected by a decision should be involved in the decision-making process (Planning 

Institute Australia, 2011). The process of public participation includes four key tasks that include 

informing the public about an issue, consulting the public for opinions, deliberating on possible solutions 

and co-creating a solution that reflects the values and needs of the community (Newfoundland Labrador 

Office of Public Engagement, 2013). Participation can vary from being a power-sharing process between 

governments and citizens to a less representative process of simply informing citizens on decisions 

(Schlossberg & Shuford, 2005). The field of public participation GIS (PPGIS) is a branch of GIS research 

that focuses on how the public can use geospatial technologies to share information with governments 

and participate in the decision-making process (Verplanke et al., 2016). Participatory GIS (PGIS) is 

another related term that describes the use of GIS tools to support participation, this thesis follows the 
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recommendation by Tulloch and considers PPGIS and PGIS as the same concept (Tulloch, 2008; 

Verplanke et al., 2016). The advance of the web provided researchers with new tools to address known 

challenges in PPGIS, such as collecting representative data and connecting with underrepresented 

communities (Cinderby, 2010; Johnson & Sieber, 2012). VGI has often been discussed in conjunction 

with PPGIS because it describes the process of capturing non-expert spatial information using the web 

(Brown & Kyttä, 2014). VGI and related concepts such as the geoweb reduce the cost of engaging and 

connecting with citizens, and it makes it possible to scale public participation programs (Jankowski et al., 

2019). The geoweb can be used to facilitate bi-directional engagement between citizens and 

governments, and it provides an opportunity for governments to create a dialogue with citizens 

(Johnson & Sieber, 2012). Several researchers have specifically focused on the use of VGI to support 

participation in the planning process. Facilitated VGI (f-VGI) is a concept that has been defined to 

describe VGI data that is collected in a controlled environment to gather data on specific topics of study 

such as a new planning project (Kalvelage et al., 2018; Seeger, 2008). According to Kalvelage et al. 

(2018), the distinction between VGI and f-VGI is in the specificity of the collected data where VGI data is 

randomly generated at the discretion of participants while f-VGI data is created in response to questions 

raised by the researcher. The f-VGI concept is not widely used but researchers have discussed the 

relationship between PPGIS, PGIS and VGI (Verplanke et al., 2016). PPGIS processes tend to struggle with 

maintaining active user bases because integrating participant feedback into decision making remains a 

challenge (Brown, 2012; Brown & Kyttä, 2014). Furthermore, research is needed to understand how the 

broad public can be incentivized to contribute data to VGI platforms to support PPGIS processes 

(Verplanke et al., 2016). Overall, Neogeography, the geoweb, and public participation are important 

societal and technological trends that influence research in VGI and the development of VGI 

applications. These dimensions of VGI influence the characteristics of VGI and their potential 

application. 

2.1.2 VGI Characteristics 

Volunteers generate VGI using geoweb platforms such as OpenStreetMap or iNaturalist to 

collect spatial data on diverse topics such as land cover or ecology (Jonietz et al., 2017). The number of 

VGI projects and applications has grown as mobile sensors become cheaper, and web technologies 

become more ubiquitous (Elwood et al., 2012). Growth in the geoweb has resulted in the development 

of an increasingly diverse set of spatial applications that generate diverse sets of spatial data, VGI is 

often used as an umbrella term to describe diverse types of spatial data, but there are important 

functional differences between different data sources (See et al., 2016). The concept of the geoweb and 
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VGI often encompass purpose built VGI applications such as OpenStreetMap and general location-based 

applications such as Twitter (Hahmann, Purves, & Burghardt, 2014). VGI data can range from passively 

contributed geotagged photos to quasi-scientific spatial data (Rob Feick & Roche, 2013). Numerous 

terms have been used describe different types of citizen derived geographic information, these terms 

include crowdsourcing, citizen science, PPGIS, collaborative mapping and more (See et al., 2016). 

Discussion of all these terms is beyond the scope of this thesis but Figure 2.1 and the sections below 

provide a brief summary of relevant concepts. 

 

Figure 2.1: A diagram categorizing terms related to citizen derived spatial information (See et al., 2016). 

As illustrated by See et al. (2016) in Figure 2.1, VGI can be broadly categorized as active VGI and 

passive VGI where active VGI involves conscious contributions to platforms such as OpenStreetMap, and 

passive VGI data is data that is generated as a by-product of digital activity such as Tweeting or 

contributing to Foursquare (See et al., 2016). Passive VGI has also been referred to as Ambient 

Geographic Information (AGI), and it refers to geographic information that is automatically collected 

when a user contributes spatially tagged data to a platform (Stefanidis, Crooks, & Radzikowski, 2013). 

AGI most commonly contains point data, and it is far less structured than VGI data collected from active 

VGI sources such as OpenStreetMap or Wikimapia (McKenzie et al., 2014; Spinsanti & Ostermann, 

2013). Passive VGI is an incredibly rich source of data as platforms such as Twitter, Foursquare, Yelp, and 

others create millions of data points per day. Analyzing ambient information requires the analyst to 

handle challenges associated with unstructured data, big data and natural language processing but the 
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outcome of such analysis can provide invaluable insight into human trends (Roche, Propeck-

Zimmermann, & Mericskay, 2013; Stefanidis et al., 2013). Active VGI refers to the form of VGI that is 

often associated with concepts such as collective intelligence, crowdsourcing, and citizen science 

(Connors et al., 2012; Jonietz et al., 2017; Kalvelage et al., 2018; See et al., 2016), participants of active 

VGI projects deliberately collect data on a topic of interest and attempt to follow community guidelines 

on data collection to ensure data quality (Connors et al., 2012; Goodchild & Li, 2012; Kalvelage et al., 

2018). As shown in Figure 2.1, concepts such as the geoweb, Neogeography, public participation GIS 

(PPGIS), map hacking and others describe processes or applications that are used to generate active VGI 

data  (See et al., 2016). The purpose of active VGI platforms is to generate spatial data that can be used 

directly in GIS applications or studies using known tools such as ETL software and mapping applications. 

When discussing active and passive VGI, it is useful to categorize the type of knowledge that is captured. 

Structured VGI, such as land cover data and environmental data, has been described as scientific 

knowledge, this data includes complex geometry data with a set of structured attributes (Connors et al., 

2012). Platforms that collect scientific knowledge are also described using terms such as citizen science 

or geographic citizen science (Connors et al., 2012; See et al., 2016). Unstructured VGI data primarily 

collects the opinions of participants or local knowledge using custom applications or social media 

applications (Hall, Chipeniuk, Feick, Leahy, & Deparday, 2010; Tulloch, 2008). PPGIS and PGIS 

approaches tend to produce unstructured VGI that contains local knowledge about a specific location or 

topic of interest (See et al., 2016; Verplanke et al., 2016). Passive VGI from platforms such as Twitter can 

also be used to collect local knowledge (Spinsanti & Ostermann, 2013), but active VGI collected from 

PPGIS processes tend to contain less noise and more relevant information for a given topic of interest 

(See et al., 2016; Verplanke et al., 2016).  

 Another defining characteristic of VGI is the responsiveness of the medium. VGI platforms can 

be used to rapidly collect vital updated local data in response to disaster situations (Camponovo & 

Freundschuh, 2014). In some cases, VGI platforms have been more responsive and effective at collecting 

data than news organizations in disaster situations (Poser & Dransch, 2015). The large community of 

contributors on OpenStreetMap allows the platform to be responsive to major events. However, due to 

the volunteer-based nature of VGI it is rarely temporally responsive at all times (Rob Feick & Roche, 

2013). In disaster situations, OpenStreetMap allows volunteers to update infrastructure data such as 

roads or buildings that may or may not be damaged or flooded. Passive VGI platforms such as Twitter 

make it possible to collect local knowledge about the location of people in affected areas or details 

about the nature of the disaster (Camponovo & Freundschuh, 2014; Spinsanti & Ostermann, 2013). The 
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temporal nature is a key differentiator between VGI and authoritative data sources such as TomTom or 

Google Maps. However, as passive sensors become more sophisticated, companies such as Google, 

MapBox, and Mapillary are increasingly developing time sensitive spatial data without the use of VGI. 

For the time being, VGI remains a key tool for disaster response and research interest in this field 

continues to grow (Jonietz et al., 2017). 

 The previous sections have introduced the concept of VGI and discussed several related terms 

such as Neogeography, the geoweb, and public participation. This section has discussed the 

characteristics of VGI and the various classifications that are used to describe different types of VGI 

data. Review of the literature has shown that VGI can be collected using active and passive platforms 

and that VGI data can be described as scientific knowledge or local knowledge (Connors et al., 2012; Hall 

et al., 2010; See et al., 2016). Differences in structure and format of the various VGI data have also been 

explained. The spatial-temporal nature of VGI has also been reviewed as it is a key characteristic of VGI. 

The following sections discuss the concept of spatial data quality in VGI and the solutions researchers 

have developed to address the challenge of data quality.   

2.2 Spatial Data Quality  

Spatial data quality has been a major focus of GIS research for several decades, and it continues 

to be a significant dimension of GIS research today (Devillers et al., 2010; Goodchild & Li, 2012; D. Li, 

Zhang, & Wu, 2012). Spatial data quality is defined as the measure of the difference between spatial 

data and the real-world spatial entity the data represents. High data quality indicates data closely 

resembles reality, and low data quality indicates a divergence between data and real-world entities 

(Devillers & Jeansoulin, 2006; Devillers et al., 2010; Vandecasteele & Devillers, 2013). Accuracy and 

quality of information are vital in GIS due to the role maps and spatial data play in the decision-making 

process (Camponovo & Freundschuh, 2014). There are inherent challenges to ensuring the quality of 

spatial data because generalization and simplification are required to conceptualize real-world spatial 

entities within a spatial database (Devillers et al., 2010). The issue of spatial data quality has become 

more important because larger groups of untrained users have access to geospatial data and map 

applications over the web (Devillers, Bédard, & Jeansoulin, 2013). With trends like VGI and 

Neogeography, amateurs are increasingly creating and consuming spatial data over the web with little 

organizational oversight or assurance of data quality (Ali & Schmid, 2014; Goodchild & Li, 2012). VGI 

applications are already being used to support vital operations such as monitoring environmental trends 

(Connors et al., 2012) and responding to natural disasters (Camponovo & Freundschuh, 2014; Spinsanti 
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& Ostermann, 2013). A growing body of research has focused on developing tools and frameworks to 

validate VGI data and improve VGI data quality to support the use of VGI in critical situations such as 

disaster response. Research in VGI data quality is important because in some cases, VGI is the only 

source of data that is available to support decision making (Stefanidis et al., 2013). 

At times, VGI platforms such as OpenStreetMap can produce data that is comparable to spatial 

data produced by authoritative data sources such as the Ordnance Survey (Haklay, 2010). However, this 

observation is not the norm because OpenStreetMap generally lacks consistent structure due to 

inconsistencies in quality, standards, and perceptions between contributors (Ali & Schmid, 2014; 

Devillers et al., 2013). Overall contributors to VGI platforms lack the tools, training, and organizational 

oversight that authoritative data agencies have (Ali & Schmid, 2014). Therefore, ensuring VGI data 

quality requires the development of innovative social models, standards, and methodologies that are 

oriented towards ensuring quality on a distributed platform like OpenStreetMap (Goodchild & Li, 2012). 

The following sections review the progress made in spatial data quality (SDQ) literature before reviewing 

the literature on VGI data quality. 

There is a large body of work in SDQ that has contributed to the development of international 

spatial data quality standards which are maintained by the International Organization for 

Standardization (ISO) (Devillers et al., 2010). Geographic data is regulated under ISO/TC 211 which is a 

specifications that aims to define standards for spatial data management, acquisition, processing, 

analysis, and more (Swedish Standards Institute, 2019). The specific standards that the ISO has 

published to monitor spatial data quality and reliability are defined by ISO 19157:2013 (Swedish 

Standards Institute, 2019). The ISO standards and the SDQ literature identify several metrics that 

evaluate different dimensions of spatial data quality. The literature commonly identifies five key metrics 

of quality which include completeness, logical consistency, positional accuracy, temporal accuracy and 

attribute accuracy (Devillers et al., 2010; Esmaeili & Karimipour, 2015; Goodchild & Li, 2012). The 

description of each data quality metric is as follows. 

• Completeness: Measure of omissions of features, attributes, and relationships. Omission errors 

occur when spatial data is incomplete (Esmaeili & Karimipour, 2015).  

• Logical consistency: A measure of how well spatial data conforms to relationships in the data 

structure, this measure can involve topological relationships (Esmaeili & Karimipour, 2015). 

• Positional accuracy: The measure of how well the coordinate values match the real-world 

coordinates of the represented entity (Esmaeili & Karimipour, 2015).  

https://www.iso.org/standard/32575.html?browse=tc
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• Temporal Accuracy: How a temporal attribute of GIS data matches the true presence of an 

entity at a given time (D. Li et al., 2012).  

• Attribute Accuracy: How well attribute records match records considered to be true. (D. Li et al., 

2012) 

• Lineage: Description of the source material and methodologies used to produce spatial data. (D. 

Li et al., 2012) 

• Fitness of Use: An external measure of quality that determines how well spatial data meets the 

information needs of the user. (Devillers et al., 2013, 2010; Devillers & Jeansoulin, 2006).  

In practice, implementing the metrics described above is very complex and entire fields of research 

have been developed around topics such as positional error analysis, classification accuracy, conflation, 

spatial matching and error propagation (Adams et al., 2007; Koukoletsos, Haklay, & Ellul, 2012; D. Li et 

al., 2012). This thesis categorizes data quality research in three broad topics which include assuring data 

quality procedurally (Devillers et al., 2010; Goodchild & Li, 2012), measuring data quality (Koukoletsos et 

al., 2012; D. Li et al., 2012) and improving data quality through enrichment (Adams et al., 2007; 

McKenzie et al., 2014). The following sections review literature related to VGI data qualities from the 

three categories described above. The discussion in the following sections depicts the progress made in 

the field of VGI data quality and opportunities for future work. 

2.2.1 Assuring Spatial Data Quality 

Data quality is important to many VGI communities and various platforms have developed social 

and automated approaches to ensure data quality from a systematic perspective. Differences in the size 

and purpose of VGI platforms tend to dictate the approach used to ensure quality. Large platforms that 

track general knowledge can rely on crowds to validate data (Goodchild & Li, 2012) while smaller 

domain-specific VGI projects may rely on contributions of experts to validate data (Connors et al., 2012). 

Goodchild and Li categorized VGI data quality approaches into three major topics that are termed the 

crowdsourced approach, the social approach, and the geographic approach (Goodchild & Li, 2012). The 

crowdsourced approach relies on large groups of contributors to validate data collectively to arrive at a 

single source of truth. This approach is also referred to as the “Linus Law” approach based upon the 

approach used to maintain code quality on the Linux project (Goodchild & Li, 2012). This approach uses 

the idea of collective intelligence to validate data, but it is dependant on the perspective and expertise 

of users. The concept of collective intelligence assumes that groups generate more reliable information 

than individuals (Goodchild & Li, 2012). The crowd-sourced approach to data quality is not unique to VGI 
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because it is also used in platforms like Wikipedia to ensure the validity of entries (Wilkinson & 

Huberman, 2007). The challenge of this approach revolves around the diversity of contributors within 

VGI systems, as the expertise and background of VGI contributors vary, the perception of quality and 

accuracy also varies (Grira, Bédard, & Roche, 2010). The collective intelligence approach to data quality 

also suffers from a lack of centralized control where disagreements between contributors can result in 

constant changes in data as different contributors attempt to assert their views (Goodchild & Li, 2012). 

In contrast, the social approach to data quality relies on hierarchy and proven experience of contributors 

to ensure data quality. This system ranks contributors to determine user reliability and provides 

moderator privileges to contributors who are deemed to trustworthy (Goodchild & Li, 2012). The social 

approach to data quality assumes that the trustworthiness of a contributor is a proxy for the quality of 

contributed data (Fogliaroni, D’Antonio, & Clementini, 2018). At times the social approach to data 

validation can be quasi-professional where volunteers contribute data, but professionals act as the 

gatekeepers of the data, this approach to data validation has been demonstrated in several VGI and 

citizen science projects (Connors et al., 2012; Kalvelage et al., 2018). The geographic approach to data 

quality is a proposed concept where purported geographic data is compared to a known geographic 

area for validation (Goodchild & Li, 2012). The geographic approach proposed by Goodchild and Li is 

comparable to the use of topological rules to ensure spatial data quality in framework data (Ali & 

Schmid, 2014) and the use of metadata to standardize a common understanding of spatial entities and 

their relationships (Devillers et al., 2010). Ali and Schmid built on this concept and developed 

methodologies for evaluating the quality of data classification on OSM using hierarchical consistency 

analysis and classification plausibility analysis (Ali & Schmid, 2014). Hierarchical consistency analysis 

evaluates the hierarchy of boundaries in OSM and identifies inconsistent data classification based upon 

identified hierarchical rules of regional and state boundaries (Ali & Schmid, 2014). Classification 

plausibility determines the likelihood of classification being correct in a given location. This approach 

uses machine learning techniques to teach a program how data should be classified based on geometry 

and attributes, then the program is used to evaluate the validity of existing OSM tags (Ali & Schmid, 

2014). Another study attempted to address semantic heterogeneity of VGI data by developing an OSM 

editor plugin that recommends feature tags based upon tags of nearby features (Vandecasteele & 

Devillers, 2015). The OSM semantic plugin in the study analyses the semantic properties of 

neighbourhood features by measuring the semantic similarity between pairs of tags (Vandecasteele & 

Devillers, 2015). When a contributor uses OSM semantic plugin and adds a point to OSM in a shopping 

district, the plugin automatically suggests resteraunts or shop tags to be associated with the point 
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(Vandecasteele & Devillers, 2015). There are numerous dimensions to spatial data control on VGI 

platforms, and a significant amount of research has been conducted on improving these processes. 

Social constructs are still a significant dimension of data quality control on VGI platforms, but there are a 

growing number of studies that are attempting to use geographic context to ensure data quality. 

2.2.2 Measuring Spatial Data Quality 

Measuring spatial data quality is a particularly challenging task because there are numerous 

dimension of spatial data quality and there are numerous approaches for measuring different 

dimensions of spatial data quality (Devillers et al., 2013, 2010; D. Li et al., 2012). Most approaches for 

quality measurement require comparisons between purported data and true value data (Koukoletsos et 

al., 2012). Studies on VGI data quality often involve comparisons of VGI such as OpenStreetMap (OSM) 

to authoritative framework data maintained by mapping agencies such as the Ordnance Survey (Girres & 

Touya, 2010; Haklay, 2010; Koukoletsos et al., 2012). Comparisons of VGI data to authoritative data 

often involves some process of data matching. Spatial matching refers to techniques that compare the 

geometric and semantic properties of spatial elements to identify elements that correspond to the same 

place in the physical world (McKenzie et al., 2014). Once spatial features from the VGI data set are 

matched to spatial features from an authoritative data set, discrepancies between the purported data 

and the authoritative data are identified. Data quality studies on VGI platforms such as OpenStreetMap 

have evaluated data quality metrics such as positional accuracy, completeness, logical consistency, 

lineage, attribute accuracy, semantic accuracy, and usage (Girres & Touya, 2010; Haklay, 2010). Some 

metrics such as logical consistency are internal measures of data quality where quality is assessed based 

on how often similar features are represented using dissimilar geometries or attributes (Grira et al., 

2010). Other metrics of spatial data quality such as positional accuracy, attribute accuracy and semantic 

accuracy require direct comparisons between individual VGI features and their matching counterpart 

within an authoritative dataset (Girres & Touya, 2010; Haklay, 2010). When matching linear and 

polygonal geometries, properties such size, orientation, and shape can be used as unique identifiers of 

geometries (Doytsher, Filin, & Ezra, 2001; Koukoletsos et al., 2012), but matching point geometries 

largely relies on distance and attribute-based data matching. Haklay evaluated the quality of linear OSM 

street network data by buffering OSM street center lines and intersecting the buffered geometry with 

Ordnance Survey street segments to determine consistency in coverage and position between OSM and 

Ordnance Survey data (Haklay, 2010). Grira and Touya evaluated positional accuracy of line segments by 

measuring the average distance between matching line segments as well as the Hausdorff distance 

between two matching line segments (Grira et al., 2010). Koukoletsos et al. (2012) also conducted a 
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study on VGI data quality with a specific focus on linear data matching to determine data completeness, 

they developed a seven-step process for linear data matching. The seven-step process divides linear 

data into tiles and compares VGI data to reference data at a segment level using geometric and attribute 

properties before matching individual features from both data sets using geometric and attribute 

properties (Koukoletsos et al., 2012). Overall, these studies show that OSM VGI can reach high positional 

accuracies in some locations, but the studies also show that OSM tends to have a high degree of 

heterogeneity in positional accuracy, completeness, and semantics (Girres & Touya, 2010; 

Vandecasteele & Devillers, 2015). The OSM platform has been the focus of many VGI data quality 

studies due to the size of the platform and the availability of authoritative reference data such as the 

Ordnance Survey (Haklay, 2010). Data quality research for other sources of VGI data such as Flickr and 

Twitter have tended to focus on improving data quality rather than measuring quality. The following 

section describes select studies that have developed methodologies to improve the quality and 

functionality of VGI data through processes of data matching and conflation. 

2.2.3 Improving Spatial Data Quality 

Spatial data quality of VGI data can be improved by combining VGI data with authoritative VGI 

data or combining VGI data with other VGI data sets (Leibovici et al., 2015; McKenzie et al., 2014). 

Conflation is the process of combining spatial data from different sources to create a new data set that 

is of higher data quality or richer in information than its constituents (Abdollahi & Riyahi Bakhtiari, 2017; 

Touya, Coupé, Jollec, Dorie, & Fuchs, 2013). The literature on conflation generally focuses on the 

integration of spatial data, but there are studies on improving the quality of VGI data by integrating 

semantic data with spatial data (Ballatore & Bertolotto, 2018), this process is referred to as enrichment. 

The conflation of VGI data has been explored in the context of OSM data (Hacar & Gökgöz, 2019), citizen 

science (Connors et al., 2012; Leibovici et al., 2015) and mining of social media data (McKenzie et al., 

2014; Spinsanti & Ostermann, 2013). Conflation can be necessary when working with point based VGI 

data due to the heterogeneity of data and the inconsistent data quality (Leibovici et al., 2015).  There 

are two core processes associated with conflation, the first process involves spatial data matching to 

identify common features and the second step requires combining matching features to form an 

aggregate feature (Hacar & Gökgöz, 2019; McKenzie et al., 2014). Spatial data matching is handled 

through the development of similarity measures between spatial features (Adams et al., 2007; McKenzie 

et al., 2014). The spatial data matching process attempts to establish the identity between two features 

by comparing their positional, geometric and semantic characteristics (McKenzie et al., 2014). A 

significant number of studies focus on the linear matching of road network data due to the importance 
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of data quality for navigation, these studies tend to focus on comparing the geometric and positional 

attributes of spatial data in order to match and conflate data (Hacar & Gökgöz, 2019; Koukoletsos et al., 

2012). Other studies have looked at the conflation of point and POI data of VGI data (McKenzie et al., 

2014). The conflation of point data tends to require comparisons of semantic and attribute traits rather 

than spatial traits to establish identity between features (McKenzie et al., 2014; Ramos, Vandecasteele, 

& Devillers, 2014; Yu, West, Arnold, McMeekin, & Moncrieff, 2016). Another study used semantic 

matching approaches to enrich OpenStreetMap data with non-spatial DBpedia data (Ballatore & 

Bertolotto, 2018). This thesis used an intermediate service to match non-spatial DBpedia data to point 

coordinates before conflating the generated DBpedia point data with OpenStreetMap data.  In general, 

approaches to conflation vary significantly based upon the characteristics of the data being conflated. 

However, researchers have attempted to identify some basic concepts that are common to the process 

of conflation and spatial data matching (Adams et al., 2007; McKenzie et al., 2014). 

Most conflation and spatial matching methodologies have some consideration of geometry, 

proximity, feature type and attributes (Adams et al., 2007; Hacar & Gökgöz, 2019; McKenzie et al., 2014; 

Yu et al., 2016). Geometry dictates the methodology used to conflate spatial data. The linear road 

network has geometric and topological properties that make it possible to match features based solely 

on geometric and spatial characteristics (Koukoletsos et al., 2012). Linear spatial data has properties 

such as orientation, sinuosity, mean perpendicular distance, mean length of triangle edges and modified 

degree of connectivity that can be used measure similarity between features (Hacar & Gökgöz, 2019). 

Polygon geometries have a comparable set of properties that can be used to determine feature 

similarity (Hacar & Gökgöz, 2019). In contrast, point geometries do not have a set of defining 

characteristics that can be used to match features (McKenzie et al., 2014). Spatial proximity of features 

is a fundamental filtering mechanism that is used to identify feature matches regardless of geometry 

type (Hacar & Gökgöz, 2019; McKenzie et al., 2014). Semantic matching is the process of evaluating the 

similarity between features based upon attribute information such as road names, road category, or 

dataset name (Yu et al., 2016). Studies that discuss semantic matching processes tend to rely on 

ontologies to determine the semantic similarity between feature attributes or tags (Ramos et al., 2014). 

The process of conflation involves generating normalized similarity scores between features using the 

different characteristics of the input data sets, the normalized scores are then aggregated to a single 

similarity score using a score weighting system (Hacar & Gökgöz, 2019; McKenzie et al., 2014). The 

aggregate similarity score is used to determine if two features match and informs subsequent conflation 

processes (Hacar & Gökgöz, 2019). Once two features are matched, the data needs to integrate or 
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conflated. Data integration requires combining the geometry of two features and integrating the 

attributes of two features (Touya et al., 2013). Geometry data is integrated using algorithms that 

prioritize the preservation of different data characteristics such as topology and shape (Touya et al., 

2013). Attribute data can be integrated using weighting algorithms that fill gaps in attribute data, 

conflicts of attribute data require one data source to be prioritized over another (McKenzie et al., 2014). 

When conflating VGI data with known data, researchers tend to prioritize the preservation of known 

data in the conflation process (Leibovici et al., 2015). Overall, numerous studies have attempted to 

improve the quality and value of VGI data through conflation or enrichment (Hacar & Gökgöz, 2019; 

McKenzie et al., 2014; Ramos et al., 2014). Studies on conflation have developed numerous 

methodologies to match data using multi-attribute similarity metrics that combine geometric criteria 

and semantic criteria. The heterogeneity of VGI data has driven increased interest in the development of 

semantic matching criteria (Ballatore & Bertolotto, 2018; Yu et al., 2016). Conflating VGI requires an 

improved understanding of spatial context and semantics. Researchers continue to look at models and 

metrics that can address these challenges. 

2.3 Geographic Relevance  

The concept of geographic relevance (GR) was developed to improve geographic information retrieval 

(GIR) systems. It is an area of research that codifies the metrics needed to understand the spatial 

context (Purves et al., 2018). Geographic relevance is defined as a measure of how well a given piece of 

spatial information meets the spatial information needs of a user, and it is often measured through 

analysis of spatial context (Raper, 2007; Reichenbacher et al., 2016). As noted in section 2.2, the 

geographic context is also explored in spatial data quality literature and several topics in SDQ literature 

share similarities with GR literature (Goodchild & Li, 2012; Spinsanti & Ostermann, 2013). Research in 

GR is closely linked to research in GIR and information retrieval (IR), and the concept of relevance is 

central to both fields of research. Research in Information Retrieval (IR) pioneered the concept of 

relevance used in GIR and GR, relevance in IR is a measure of similarity between query text and a set of 

documents (M. Li, Sun, & Fan, 2015). Information Retrieval (IR) is the field of research concerned with 

retrieving data from a database based upon relevance to a users’ query (Dominich, 2008; M. Li et al., 

2015). The difference between conventional SQL queries and IR systems is the ambiguity of user queries 

and the presence of probabilistic relevance rankings that estimate relevance between content and the 

query (Kunz, 2009). Information retrieval is probabilistic, and data retrieval is deterministic. Data 

retrieval returns exact matches of structured data in a random order. In contrast, information retrieval 
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systems only return relevant unstructured data in order of relevance (Merrouni, Frikh, & Ouhbi, 2019). 

The idea of relevance is a concept in IR that codifies the metrics needed to understand a user’s 

information needs and retrieve relevant data (De Sabbata & Reichenbacher, 2012). Quantifying a user’s 

information needs is a non-trivial task that is handled through the development of complex information 

retrieval models that evaluate context and user information (Hjørland, 2010; Merrouni et al., 2019). 

Location data in information retrieval have become more important as mobile phones and mobile 

search has grown (M. Li et al., 2015; Merrouni et al., 2019). The need to understand the spatial context 

in information retrieval has driven research interest in geographic information retrieval.  

2.3.1 Geographic Information Retrieval Systems 

GIR is predominantly concerned with identifying fuzzy or vague location references and 

understanding the spatial relationship between the user, the query and documents in the database 

(Kunz, 2009; Mata-Rivera, Torres-Ruiz, Guzmán, Moreno-Ibarra, & Quintero, 2015). Geographic 

Information Retrieval (GIR) systems are information retrieval systems that are designed to handle spatial 

data (Purves et al., 2018). In order to handle spatial data, GIR systems have to recognize spatial 

relationships and account for different representations of spatial entities (Mata-Rivera et al., 2015). 

Most GIR research focuses upon document-based queries from the web in order to match a single 

location reference to single physical location. GIR systems evaluate queries using semantic analysis, 

spatial analysis, and relevance analysis (Clough, Joho, & Purves, 2006; Purves et al., 2018).  

Spatial references on the web are often incomplete and fuzzy. Therefore, semantic analysis is 

required to match vague location references to known locations (Mata-Rivera et al., 2015; Silva, 

Martins, Chaves, Afonso, & Cardoso, 2006). GIR expands IR by providing a means for IR systems to 

process toponyms, identify geographic footprints, and evaluate geographic relevance (Kunz, 2009). 

Bordogna et al. (2012) describe GIR as follows.  

“Geographic information retrieval (GIR) is nowadays a hot research issue that involves the 

management of uncertainty and imprecision and the modeling of user preferences and context. 

Indexing the geographic content of documents implies dealing with the ambiguity, synonymy, 

and homonymy of geographic names in texts.” (Bordogna et al., 2012, p. 105) 

GIR research aims to build models to understand place names, understand location references, 

and identify spatial relationships (Overell, 2009; Purves et al., 2007). GIR systems have to manage 

ambiguity and handle fuzzy location references such as “close”, “near”, “trail” or “Mid-Europe” 
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(Bordogna et al., 2012). GIR systems also have to handle multiple location reference in a single query so 

there is a need to maintain many to one relationships when evaluating relevance between features 

(Bordogna et al., 2012). Researchers in GIR have attempted to address these challenges using a variety 

of methodologies that handle semantic analysis, spatial analysis and data management (Acheson et al., 

2018; Bordogna et al., 2012; Purves et al., 2018). Several GIR systems have been developed over the 

years both by academic and commercial groups. Some academic examples of GIR systems include the 

Geo-Finder application by Bordogna et al. (Bordogna et al., 2012) and the SPIRIT application developed 

by Purves et al. (Purves et al., 2007, 2018). Google and Bing are two major examples of commercial 

platforms that have GIR capabilities (Overell, 2009). The geo-finder system is modeled after a typical 

information retrieval system with an indexing module and a retrieval module, but the indexing module 

of the Geo-Finder system is customized to support the identification of location references (Bordogna et 

al., 2012). 

 

Figure 2.2: Geo-Finder Architecture (Bordogna et al., 2012) 

Geo-finder was implemented using Postgres with the PostGIS extension. The geo-finder system was 

composed of several sub-modules that perform spatial query analysis and spatial query indexing. Geo-

finder included a reference database which includes an English gazetteer populated with place names 

from open libraries such as Geonames and OpenStreetMap. The gazetteer also includes a list of distinct 

location-based markup terms such as city, mountain and others. A set of parameterized rules that 

disambiguate location references are also stored in the gazetteer. The geo-index module parses each 

document and identifies the fuzzy footprint of each document by applying the parametric rules defined 

in the knowledge base. The results of the geo-indexing module are then stored in a dual data structure 

which is composed of a direct index and a 2-D R-tree. (Bordogna et al., 2012) 
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 The SPIRIT platform, developed by Purves et al. (2007), is another GIR system which attempts to 

model and calculate spatial relevance. The platform was developed to support several key features, 

which include; spatial query expansion, place name disambiguation, ambiguous location search, spatial 

concept recognition, spatial relevance ranking, and query visualization. The SPIRIT platform enabled 

search through spatial indexing of web documents and spatial disambiguation of queries. Documents in 

the SPIRIT platform are assigned a spatial footprint using geoparsing and geocoding. A list of known 

locations contained within the SPIRIT geo-ontology are used to identify candidate location terms within 

the web document. The SPIRIT platform used a gazetteer lookup methodology to compare terms in the 

document to known location names contained within the SPIRIT geo-ontology. The SPIRIT platform 

combined the gazetteer lookup methodology with several disambiguation heuristics to address 

ambiguous location references. A text index is also contained in the SPIRIT architecture to support 

relevance ranking based on topicality. The SPIRIT engine evaluated concepts using both the spatial index 

and the text index and used three different approaches to generate relevance scores. (Purves et al., 

2007, 2018) 

2.3.2 Geographic Relevance Metrics 

Geographic relevance research is  closely tied to GIR but the focus of GR research in mobile 

computing while GIR has focused on the web. Mobile phones have multiple spatial sensors that make it 

possible to collect important contextual needed to measure GR. As a result, several models for 

measuring GR have been based upon cell phone sensors. One of the earliest papers on GR was 

published by Raper (2007), he defined a measure of the geographical relevance that considered four 

core metrics that include geometry, time, spatial perception, locality, and manifestation. De Sabbata 

and Reichenbacher (2012) expanded on Rapers’ work and offered an alternative measure of geographic 

relevance that includes hierarchy, cluster, co-location, and association rule.  

• Hierarchy: Hierarchy in geographic relevance research is defined as the distance between the 

user and the location of a given entity within a geographic hierarchy.  

• Cluster: Custer refers to the degree of membership between an entity and a spatial cluster of 

related or unrelated entities.  

• Co-location: This GR metric evaluates the extent to which the target object follows a desired 

spatial pattern such as a theater close to resteraunts.  

• Association Rule: This GR metric evaluates the extent to which two spatial entities are 

correlated, such as high hotel prices within a downtown core.  
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Another set of criteria to measure geographic relevance was developed by Reichenbacher et al. 

(2016) in a subsequent paper. The new set of criteria included seven metrics of relevance that are 

summarized to five scores. This model of GR relied significantly on mobile sensors to gather information 

about the directionality of the user’s movement and the spatial-temporal proximity between users and 

locations of interest. 

 

Figure 2.3: Computational GR model that incorporates mobility sensors (Reichenbacher et al., 2016)  

The computational model in Figure 2.3 evaluates each GR criterion between a user query and a 

geographic entity (Reichenbacher et al., 2016), the individual criterion are defined as follows. 

• Topicality: The semantic similarity between a user query and the entity type or category. 

• Spatio-Temporal Proximity: A proximity measure that accounts for distance and travel time 

between the user and the geographic entity. 

• Directionality: The angle between a user’s direction of travel and the geographic entity. 

• Cluster: The size of the cluster containing the geographic entity. Entities contained within a 

cluster are assumed to be more relevant to the user. 

• Co-location: The extent to which the geographic entity satisfies a co-location pattern with 

entities that have been referenced in the query. 

Researchers have started to explore the idea of using geographic relevance outside of mobile search to 

apply it to challenges like VGI contextualization (M. Li et al., 2015), and the field will likely continue to 

evolve beyond simple information retrieval. 
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3 Using Geographic Relevance to Retrieve Domain-Specific Spatial Data 

3.1 Introduction 

Location data is becoming more accesible to businesses, citizens, and government bodies. 

Increased use of personal computing (computers, mobile phones) and applications that allow citizens to 

use and create spatial data are contributing to a growing public awareness of spatial information. 

Furthermore, open data programs are publishing authoritative government data on the web at no cost. 

The growing availability of authoritative spatial data on the web is an important opportunity for 

organizations to leverage spatial data to support research and operations. The volume of freely 

accessible spatial data and the range of data sets that are made available vary significantly across levels 

of government and within departments but governments are increasingly adopting open data 

mandates. However, the heterogeneity of spatial data on the web makes it challenging to use open data 

at scale. Most GIS professionals know that the data needed to create a map is rarely limited to a single 

topic or provider. An urban planner that is studying the impacts of a new transit station in a city would 

need to access diverse sets of data from multiple organizations and levels of government. The planner 

would need road network data from the local municipality, transit data from the regional transit 

authority, environmental data from the regional conservation authority, demographic data from the 

national census and planning policy data from the regional planning authority. Finding and assembling 

data sets from such varied data sources is a tedious process that takes staff time and resources. 

Furthermore, in many cases researchers are not aware of all the data that is available on open data 

platforms (Corti, Lewis, & Kralidis, 2018)  and the diversity of open data makes it difficult for an 

inexperienced researcher to find all the data they need across multiple data portals (Guidoin, Marczak, 

Pane, & McKinney, 2014; Ivanova et al., 2013). Researchers have described this challenge as the fitness 

of use problem (Devillers et al., 2010; See et al., 2016). Fitness of use has been described in spatial data 

quality literature as an evaluation of how well data fits the user needs; the criterion prevents misuse of 

spatial data by connecting users to the data they need (Devillers et al., 2010).  

The challenge of retrieving and organizing spatial data is a consistent problem that has been 

noted in a variety of GIS literature, particularly in studies that focus on contextual analysis (Bordogna & 

Psaila, 2008; Spinsanti & Ostermann, 2013). Analysis tools such as gazetteers or spatial ontologies also 

often rely on the availability of large open data sets (Codescu, Horsinka, Kutz, Mossakowski, & Rau, 

2011; Ramos et al., 2014). Accessibility to spatial data is a challenge that several researchers have tried 

to address through the development of spatial data registries, search engines (Corti et al., 2018; 
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Florance, McGee, Barnett, & McDonald, 2015), and fitness for use criteria(Jonietz et al., 2016; Wentz & 

Shimizu, 2018). As spatial data becomes freely available on the web, there is an opportunity to 

automate the task of assembling spatial data for research projects and address aspects of the fitness of 

use problem of spatial data on the web (Ivanova et al., 2013).  

This thesis looks at developing a process for assembling spatial data using geographic relevance 

metrics. This Chapter aims to use geographic relevance metrics to assemble domain and location 

specific spatial data to support research. This Chapter presents a prototype spatial search platform that 

can dynamically generate a domain-specific spatial database. Geographic relevance metrics are used in 

this to determine spatial relevance between layers to identify data sets that are relevant to a topic of 

study. This subject is explored over five sections. Section 3.2 reviews literature related to open data, 

geographic information retrieval, and geographic relevance. Section 3.3 describes a methodology to 

measure geographic relevance between spatial data sets to identify spatial data that is relevant to a 

topic of study. Section 3.3 also describes UrbanData, a prototype application that implements the 

conceptual models developed in this thesis into a software system. Section 3.4 and 3.5 describe a case 

study for data acquired from the City of Kitchener and the subsequent results from the case study. 

Section 3.6 discusses future directions for research.  

3.2 Background and Related Research 

3.2.1 Open Data 

 Open Data is a growing trend among governments across the world. Leaders and analysts 

believe that open access to government data can improve citizen engagement, business growth and 

government operations (Gruen, Houghton, & Tooth, 2014). Open Governance is a term that describes an 

organizational commitment by governments to foster openness and accountability to increase citizen 

engagement, drive innovation, create economic opportunities and create a more efficient government 

(The Open Government Partnership, 2016). Open Governance is an idea that has garnered a lot of 

attention and commitment from local and national governments; many have committed to the 

international open government partnership which requires participating countries to develop and 

implement action plans on open government (The Open Government Partnership, 2016). A significant 

dimension of Canada’s Open Governance Action Plan is to broaden access to data and information 

produced by governments, as a result, open data is often a key dimension of open governance initiatives 

(Government of Canada, 2014). Open data, within governments, refers to a set of initiatives focused on 

making government data, public sector information and data generated by government-funded research 
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accessible to the public at no cost (Gruen et al., 2014). Researchers have defined open data as non-

private and non-confidential data generated using public funds and distributed with no restriction on 

usage (Janssen, Charalabidis, & Zuiderwijk, 2012). 

Both open data and open governance are relatively new phenomena that have grown rapidly 

over the decade. The UK may have been one of the earliest governments to explore the idea of open 

governance and open data with its Power of Information initiatives in the mid-2000s, the US soon 

followed suit with the creation of open data mandates in 2009 (Gruen et al., 2014). Numerous 

governments across the world have followed suit, which has led to the creation of international 

committees for open data and the development of an open data charter (The World Wide Web 

Foundation, 2017). Western countries such as Canada, UK, USA, and France have been first movers on 

open data and open governance. However, Open Data is a global trend as shown by the Web 

Foundations open data rankings which lists Korea in the top 10, the Philippines in the top 25 and Saudi 

Arabia in the top 75 (The World Wide Web Foundation, 2017).  

Reports estimate that open data will have a significant impact on driving innovation in the tech 

sector and improving government operations (City of Toronto, 2018; Gruen et al., 2014; Guidoin et al., 

2014). Open data is valuable because governments are some of the largest and most reliable generators 

of authoritative information (Janssen et al., 2012). Making expensive and authoritative data open to the 

public can spur research and innovation that would not be possible otherwise (Gruen et al., 2014). 

Governments see open data as an avenue to promote and foster innovation and economic growth (City 

of Toronto, 2018). Many open governance action plans note that open data has little intrinsic value on 

its own; value is only created when people start to use open data (Janssen et al., 2012). As a result, 

accessibility and usability are two major mandates that are outlined in the International Open Data 

Charter (Calderon, Carfi, & De Luca, 2015). Implementing these mandates is a significant challenge for 

governments. 

Open Data is often generated as a by-product of government activities such as budgeting, 

maintaining land registries, or tracking endangered species (Specht, 2015). In many cases, different 

levels of government are generating data that are not designed to be published or used by external 

organizations or applications. Some publicly generated data sets such as transit data have widely 

recognized standards such as the GTFS data format. Other data sets such as zoning by-laws do not have 

a widely adopted standard which leads to a significant amount of variance between data sets generated 

by different municipalities. There are opportunities to increase standardization of data content, 
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structure, and format, but there are cases where governments can not adopt external standards due to 

organizational needs. Data standardization is often a major internal challenge to governments 

implementing open data plan as noted in Toronto’s open data master plan. 

“The City of Toronto needs to focus on establishing an automated data release …Decreasing the 

manual effort required to publish and update open datasets is essential for modernizing and 

scaling up the City’s Open Data program.” (City of Toronto, 2018) 

 This results in cases where similar data between two different government agencies differ in 

structure and content (Hacar & Gökgöz, 2019). As a result, the use of open data often requires domain 

knowledge or extensive research on the structure or content of data. This character of open data is a 

significant barrier to large scale use of open data, especially to researchers who don’t have the staff 

resources needed to preprocess open data. In response to this issue, government staff and research 

groups have started to develop frameworks to better define and structure open data to promote 

interoperability across organizations and government sectors (Guidoin et al., 2014). Open data 

encompasses all data types; this includes financial data, records, permits, and licenses. A significant 

amount of spatial data has been released under open data programs which have instigated research 

interest around tracking and studying open spatial data. Researchers have noted that the number of 

open spatial data sets continues to grow and public and academic institutions continue to develop 

platforms and infrastructure to support the open data movement (Corti et al., 2018).  

There are important parallels between the growth of Open Data and the growth of the web. 

Researchers and companies alike have recognized the opportunites presented by Open Data to enrich 

and augment research and data analysis. Companies and research groups such as ThinkDataWorks and 

Harvard Hypermap have developed open data search engines with a significant focus on spatial data 

(Corti et al., 2018). Large amounts of data are being created and released as open data, but the 

challenge of information overload and lack of standards across organizations is a major barrier to 

adoption and use of open data (Guidoin et al., 2014). Much like the early web, open data needs search 

and indexing technologies to make data accessible. 

3.2.2 Open Data Search Engines  

Thousands of spatial web services using open standards are being made available to the public 

through open data programs; but finding, accessing and using these data sets remains a significant 

challenge of open data (W. Li, Yanga, & Yang, 2010). According to ESRI, a global leader in GIS technology, 
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there are over 115 000 open spatial data sets available on the ArcGIS platform with over 6000 

organizations sharing and maintaining this data (ESRI Inc, 2019). Harvard Hypermap, an open data 

search engine developed at Harvard, has over 200 000 data set within its open data registry (Corti et al., 

2018). Researchers have identified the need to develop spatial data search engines or web crawlers that 

can find and retrieve spatial data (W. Li et al., 2010).  Platforms such as the Harvard Hypermap (Corti et 

al., 2018) and Open Geoportal (Florance et al., 2015) have been developed by researchers to explore the 

challenge of making open data accessible. Comparable commercial projects have also been launched 

with products like ArcGIS Hub by ESRI and Namara.io by ThinkDataWorks. These search engines use web 

crawlers to collect metadata about layer extents, tags, taxonomies, and service links to find and retrieve 

spatial data that is available on the web. 

Harvard Hypermap is an index of open spatial data endpoints; the experimental platform aims 

to make spatial data more accessible to the public by aggregating a list of open data endpoints across 

the web and tracking their health (Corti et al., 2018). The Hypermap platform is built on top of Django, 

Apache Solr, Memcached, Postgres, and PostGIS (Corti et al., 2018). The platform leverages the 

technologies above to develop a service that allows users to search for data using a keyword, source, 

layer type, map extent and date range (Corti et al., 2018). The Hypermap platform primarily relies on the 

semantic search capabilities of ElasticSearch coupled with an extent-based spatial query to retrieve 

spatial data sets that are of interest to the user. Open Geoportal is another spatial data search platform 

that was developed to improve search and retrieval of spatial data sets harvested by the Open 

Geoportal Federation research group (Florance et al., 2015). The Open Geoportal platform acts as a 

federated database for spatial data services provided by Harvard, MIT, Tufts, and Berkley. The platform 

also features sophisticated location-based search, particularly extent-based filtering and layer scoring 

based on the layer’s similarity to the map (Florance et al., 2015). The Open Geoportal research team 

developed an extent-based approach to determine the spatial relevance of data layers. Open Geoportal 

uses three metrics to determine the relevance of spatial data. The metrics evaluate similar extent area, 

similar centroid location and extent intersection (Florance et al., 2015). OpenGeoportal also allows users 

to search open data on key metrics such as date, keywords, data type, and institution (Florance et al., 

2015). Like the Hypermap project, the Open Geoportal project was motivated by the need to make open 

spatial data accessible. 
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3.2.3 Fitness for Use 

The problem of finding and retrieving relevant data for a project or a study is not limited to open 

data, experts and non-experts working with spatial data often have to triage spatial data portals and 

metadata to find and acquire needed spatial data (Ivanova et al., 2013). The challenge of retrieving 

spatial data along with the growing volume and variety of spatial data has driven interest in evaluating 

fitness for use of spatial data (Ivanova et al., 2013; Jonietz et al., 2017, 2016; Wentz & Shimizu, 2018). 

Fitness for use is a measure of the suitability of spatial data for a set of application needs or 

requirements (Jonietz et al., 2016). Evaluating fitness for use of spatial data remains an open problem 

but several studies have attempted to develop frameworks to evaluate fitness for use of different spatial 

data sets in different contexts. Ivanova et al. (2013) have identified two major challenges associated 

with fitness for use that are described as communicating quality requirements and evaluating quality. 

Communicating quality requirements is a challenge because users may not know how to express data 

needs or understand a provider’s data quality parameters (Ivanova et al., 2013). Evaluating fitness for 

use is a challenge because quality parameters and standards differ between vendors. Therefore users 

tend to determine fitness for use of data through comparisons between data within their possession 

and vendor data (Ivanova et al., 2013). Furthermore, evaluating fitness for use of VGI data is 

complicated by the fact that metadata for VGI data is often incomplete or inconsistent (Jonietz et al., 

2016). Ivonova et al. (2013) developed a sample application named GUESS to evaluate fitness for use of 

spatial data found in a spatial data catalogue. The system accepts text queries from users and returns 

relevant data based upon a set of criteria that considers user needs as well as user characteristics. User 

profile information is stored in the application to determine user needs, the GUESS profile tracks user 

history such as previously used data resources and domains of interest (Ivanova et al., 2013).  Candidate 

spatial data sets are retrieved based upon the domain of interest, the user profile and characteristics of 

other users with similar information needs (Ivanova et al., 2013). In contrast, Jonietz et al. (2016) 

developed an approach to evaluate fitness for use of VGI POI data by comparing VGI data to 

authoritative reference data. The study defined fitness for use as a measure of how well a POI data set 

met user-defined quality criteria such as positional accuracy or attribute accuracy (Jonietz et al., 2016). 

Wentz and Shimizu (2018) proposed a method to measure fitness for use of data using a multi-criteria 

decision-making model named DaFFU. The DaFFU model allows users to prioritize several measures of 

spatial data quality such as positional accuracy, completeness, logical consistency, credibility and more, 

the DaFFU model measures data quality scores for data sets using a weighting schema that is based 

upon user priorities (Wentz & Shimizu, 2018). In general, the literature indicates that multiple criteria 
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are needed to evaluate fitness for use of spatial data. Some studies focus on user information needs 

such as user preferences and domains of interest while others evaluate the internal quality 

characteristics of data such as logical consistency. Currently, there are no clear set of criteria that are 

used to evaluate fitness for use. 

3.2.4 Geographic Information Retrieval and Geographic Relevance 

The growth of location data across the web and mobile devices motivated research in 

geographic information retrieval systems (GIR). Understanding spatial relevance is a key research 

problem in GIR literature that has been approached in many different ways in the literature (Bordogna 

et al., 2012; Purves et al., 2007). Spatial relevance is a concept that is often broken down into a semantic 

and spatial dimension when measured within software systems. Semantic relevance in GIR refers to the 

presence of location references within a document.  Spatial relevance in GIR is a measure of proximity 

between the query and location references within a document. 

Research on geographic information retrieval (GIR) systems has led to the development of 

several search platforms that enable web document searches that rank results based upon spatial 

relevance. Development of search engines has also led to the development of algorithms and heuristics 

for measuring and evaluating spatial relevance. Purves et al. (2018) determined that the geographic 

relevance of web documents for a given query is best determined using a combination of spatial and 

topical analysis. Purves et al. (2018) measured topical relevance using three heuristics, which are 

defined as follows. 

• Document Frequency: Terms that occur in a few documents are important than terms that 

occur in a few documents. 

• Term Frequency: Terms that appear more frequently in a given document are more important 

to the given document. 

• Document Length: Higher ratios of term frequency to document word count indicate higher 

levels of importance. 

Gao et al. (2016) developed a geographic information retrieval system that developed a new model for 

model spatial footprints of documents and queries. This research approached the task of measuring 

geographical relevance through spatial and semantic similarity measurements using point-set based 

spatial footprints (Y. Gao, Jiang, Zhong, & Yu, 2016). Gao et al. (2016) determined spatial similarity 

scores between query footprints through the use of topological and distance-based tests. Bordogna et 
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al. (2012) developed a heuristic based methodology for measuring the relevance of web documents in 

the Geo-Finder platform. Bordogna et al. (2012) measured geographic relevance within the Geo-Finder 

using a series of heuristics that identified the spatial footprints of queries and web documents using a 

gazetteer. The system used a gazetteer to parse documents and identify the fuzzy footprints of 

documents and queries; the fuzzy footprints are used to determine spatial relevance scores which are 

combined with topological relevance scores to generate an aggregate relevance score (Bordogna et al., 

2012; Bordogna & Psaila, 2008). The relatively simple spatial relevance evaluation model used in GIR has 

been expanded in geographic relevance (GR) literature to evaluate contextual spatial data when 

evaluating spatial relevance. Measures of geographic relevance are defined using a varying set of 

metrics in the literature; many of the metrics defined in GR literature are comparable to relevance 

metrics found in GIR literature. Reichenbacher et al. (2016) argue that GR is a measure of five associated 

measures, which include topicality, spatiotemporal proximity, directionality, cluster, and co-location. 

This model of evaluating spatial context and geographic relevance evaluates several spatial 

characteristics and properties that are not found in GIR or spatial data quality literature. The model 

developed by Reichenbacher et al. (2016) may be applicable to spatial relevance analysis in other GIS 

contexts and it may be more effective than current models. 

3.3 Methodology 

This section presents UrbanData, a prototype application that dynamically generates domain-

specific spatial databases in response to user information needs. UrbanData is a data processing 

application that analyzes and compares spatial data sets within a database and assigns spatial relevance 

scores between data sets. The UrbanData application generates rankings that attempt to measure the 

fitness of use of spatial data sets based on a user-defined topic of study. This application is oriented 

towards addressing the challenges associated with retrieving and organizing spatial data when 

conducting a location-based study. The app is developed around the premise that a user is interested in 

exploring a known data set and is interested in finding relevant data sets that can add context and 

reference content to the data set of interest. Potential users of the UrbanData application include GIS 

analysts, urban planners, environmental researchers, health researchers, engaged citizens and 

neogeographers. With the exception of the GIS analyst, people from these backgrounds may not be 

familiar with spatial databases, GIS systems or spatial data standards. However, they often have a need 

to work with spatial data from multiple sources in order to support research. For example, a planner 

may need to use spatial data sourced from the provincial government, a local conservation authority 
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and a neighboring municipality in order to review a development application. Another example may 

have an environmental researcher attempting to use provincial soil maps and regional watershed maps 

to study the relationship between soil characteristics and watersheds. Currently open data portals and 

open data search engines rely on a combination of manually defined metadata and dynamically 

generated spatial indexes or layer extents to support search functions. Metadata can be incomplete at 

times which can make these search systems ineffective. Furthermore, using spatial indexes for search 

does not account for the spatial distribution of features within layers. UrbanData builds on these 

relatively basic topic and spatial linkages between data sets to include criteria that consider the 

distribution of spatial features. It demonstrates how data producers can provide finer-grain associations 

between data sets that are pertinent to specific areas or topics.  These linkages make data retrieval 

easier for end-users 

This study uses a simplified use case in order to develop a prototype model to address this 

challenge. When a user selects the data set of interest within the application, UrbanData dynamically 

retrieves and ranks a set of spatial data sets from the framework database that are relevant to the topic 

and location of study. It is envisioned that a production implementation of the UrbanData application 

would be deployed by a system administrator on an open data portal or geoportal and that users would 

interact with the application as a data search engine. In order to deploy the UrbanData software 

application a systems administrator would need to load a set of framework data sets into the UrbanData 

framework database. The systems administrator would also need to provide three threshold distance 

values in order to calibrate the relevance ranking system. The details of the relevance ranking system 

are explained in the following sections. Users can interact with UrbanData to retrieve domain specific 

spatial data. It is envisioned that a user would select a single domain data set that is of interest from a 

list or search interface much like current open data portals. Once the user selects a domain data set that 

is of interest the UrbanData application will compare the domain data to all the other data sets in the 

framework database and retrieve a set of data sets that are topically and spatialy relevant to the domain 

data set. The UrbanData application may present the set of domain specific spatial data sets as a list, a 

map or a downloadable package of layers that can be used for future analysis. Behind the scenes, 

UrbanData uses the methodology described in the following sections to retrieve and rank spatial data 

sets using geographic relevance criteria. 
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The UrbanData methodology builds on metrics defined in GR literature to determine relevance 

between spatial data sets. This methodology will expand on metrics defined by Reichenbacher and De 

Sabbata (2012), particularly the metrics of topicality, spatial proximity, cluster and co-location. The four 

geographic relevance metrics used in this thesis have been developed based on research in GIR (Jones & 

Purves, 2008), conflation (McKenzie et al., 2014) and geographic relevance (Reichenbacher et al., 2016). 

Research in GIR, conflation, and GIR have widely recognized the need for semantic and spatial metrics 

when evaluating relevance or context (Fu, Jones, & Abdelmoty, 2005a; Goodchild & Li, 2012; McKenzie 

et al., 2014; Spinsanti & Ostermann, 2013). In this methodology, the semantic relevance metric is 

defined as topicality and the spatial relevance metric is defined as spatial proximity. GR researchers have 

expanded the common understanding of relevance and context by identifying secondary metrics of 

spatial relevance which include directionality, cluster co-location and others (Raper, 2007; 

Reichenbacher et al., 2016). This thesis uses adapted versions of the cluster and co-location metric as 

described by Reichenbacher et al. The literature on GIR and GR have predominantly focused on 

evaluating relevance between a single location or entity of interest and its surrounding elements 

(Reichenbacher et al., 2016). This thesis evaluates relevance between spatial datasets which is 

computationally expensive and structurally complex. The following section will describe the novel 

approach used to adapt GR metrics intended for mobile phones to a spatial database. The assumptions 

made in the development of the GR metrics for UrbanData differ from assumptions made in GR 

literature and assumptions made in Chapter 4 of this thesis due to the scale and volume of the data 

being analyzed. The methodology begins with an overview of the modules and workflow used to analyze 

data and generate relevance metrics. Next, the architecture of the UrbanData platform and GR metrics 

are described at a high level. The subsequent sections provide a detailed description of the individual GR 

metrics used to measure relevance. The sections describing GR metrics will include code samples and 

sample data from the case study described in section 3.4. The sample data in the sections below are 

used to explain general concepts in the methodology. The code associated with the methods described 

in the following sections can be found in Appendix A. 

3.3.1 UrbanData Overview 

There are numerous approaches to measure geographic relevance (Raper, 2007; Reichenbacher 

et al., 2016). UrbanData uses four metrics developed by Reichenbacher et al. (2016) which includes 

topicality, spatial proximity, cluster, and co-location. The GR metrics defined by Reichenbacher et al. 

(2016) have been adjusted to detect characteristics of large spatial data sets and account for the 

characteristics of input data. The first adjustment is the use of the spatial proximity metric rather than 
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the spatial-temporal proximity metric because the spatial temporal metric is designed for moving mobile 

users. The second key change is to use a cluster-colocation metric rather than the cluster metric because 

the cluster metric is designed to evaluate the importance of points of interest. These changes are 

necessary to evaluate the general characteristics of spatial data. All four metrics are described in greater 

detail in subsequent sections. As shown in Figure 3.1, UrbanData measures geographic relevance 

between a single input layer and a set of framework layers. Layers can range from framework data sets 

such as roads, parks, trails and geo-tagged Tweets. Geographic relevance is analyzed by isolating and 

identifying traits within layers and between layers to determine relevance and association between 

layers. The diagram below illustrates how individual GR metrics are applied between input query layers 

and framework data sets. 

 

Figure 3.1: UrbanData computational model where domain data is compared to framework data. 

 Figure 3.1 illustrates how domain data is compared to framework data sets. The combination of 

the input dataset and a target framework dataset defines the query for the GR analysis. Topicality, 

proximity, cluster co-location, and co-location are measured between the input dataset and each 

framework data set and produces a normalized score between 0 and 1. The four relevance scores are 

then combined to generate a single GR score between the two query layers. This process is repeated 

between the input layer and every framework data set to generate a list of framework layers that are 

ranked by geographic relevance. The layers with the highest GR scores are then selected to form the 

domain-specific spatial database. The following section discusses how this workflow is implemented in 

the UrbanData software application. 

The UrbanData platform is a data processing application that ingests spatial data and outputs 

analysis results in the form of spatial and non-spatial database tables. The UrbanData analysis results 

can be visualized using desktop and web mapping application like QGIS, ArcGIS Pro, or ArcGIS Online. 
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The UrbanData application is built using PostgreSQL, PostGIS, and Python. It is composed of a set of 

PL/SQL functions, Python scripts, SQL views, and SQL materialized views. PostgreSQL is an open source 

feature-rich object-relational database that has been in active development for several decades. The 

PostGIS spatial plugin enables spatial functionality within PostgreSQL for storing and managing spatial 

data and conducting spatial operations such as distance, within, and cluster. All spatial data are stored in 

a PostGIS database, and all the spatial operations (e.g. proximity) are executed using PostGIS functions. 

Python is used in conjunction with PostgreSQL to download spatial framework data from open data 

portals via the Python ogr2ogr library. The Python NLTK library is also used to measure topicality 

between spatial data sets. The multi-step data analysis process outlined Figure 3.1 generates GR scores 

by comparing the input data set against each data set in the framework database using the topicality, 

spatial proximity, cluster co-location, and co-location modules. GR scores calculated for each framework 

data layer are used to rank and filter framework data layers. The five layers with the highest geographic 

relevance score are selected to generate the spatial domain database. The domain database is then 

mapped with the input layer to verify if the UrbanData platform correctly identifies data sets that 

provide context for the input data set and if the UrbanData results are ranked appropriately. The 

following sections describe how each of the four GR metrics in UrbanData are implemented. The 

description of each metric is accompanied by examples from the case study described in section 3.4. 

3.3.2 Topicality 

Topicality is a relevance metric that evaluates the conceptual similarity of one spatial data set to 

the conceptual similarity of another data set. The semantic definition of spatial data sets has been 

described in the literature as a combination of feature type, attribute information and topological 

characteristics (Adams et al., 2007; Hacar & Gökgöz, 2019; Yu et al., 2016). UrbanData defines the 

semantic definition of a spatial data set based solely on the feature type. Attribute information is not 

considered in this analysis because the analysis of attribute data across large data sets is 

computationally expensive. Topological characteristics are handled by other spatial metrics defined in 

this methodology. This thesis defines topicality as a measure of the similarity between the feature types 

of two layers. Measuring semantic similarity between two words or concepts often relies on the use of 

an ontology (Ballatore & Bertolotto, 2011, 2018; Codescu et al., 2011). This methodology makes use of 

the WordNet ontology that is included in the Python WordNet library. To measure topicality, the feature 

type of the input layer and the target layer are matched to terms within the WordNet ontology. This 

process often requires the use of mapping or generalization techniques (Ramos et al., 2014). Once the 

layer descriptors are mapped to the ontology, the similarity is measured between the two concepts by 
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measuring the distance between nodes in the ontology graph (Liu, Bao, & Xu, 2012; Pedersen, 

Patwardhan, & Michelizzi, 2004). Topicality is measured in the UrbanData platform using the Python 

NLTK WordNet package. This library was developed to measure the similarity or relatedness of words 

within the WordNet database (Liu et al., 2012; Pedersen et al., 2004) and continues to be used widely 

for semantic analysis (Nguyen, Richards, Chan, & Liszka, 2016; Zhu & Iglesias, 2017). The NLTK similarity 

measure accepts two words as input and returns a similarity score between 0 and 1.  

The NLTK similarity measure is limited to words within the WordNet library. The topicality 

metrics measure the semantic similarity of spatial data sets using layer names; however, layer names 

are retrieved from Open Data portals that often use names that are not found in the WordNet library. 

Therefore, every layer is manually assigned a layer name and a set of tags that describe the features 

within the layer; the use of multiple tags ensures that layers can be mapped to terms in the WordNet 

library. When comparing two layers, all the tags from the input layer are compared to all the tags in the 

target layer, and the highest NLTK relevance score is used. This approach to measuring similarity 

attempts to address gaps in data in the WordNet library and differences in the way terms are 

conceptualized in the WordNet library. 

3.3.3 Spatial Proximity 

The proximity metric (proximity) is the most well known and widely used relevance metric in 

GIS. This metric is based on the underlying assumption that “a purported fact should be consistent with 

its geographic context” (Goodchild & Li, 2012, p. 115). The proximity metric is also rooted in Tobler’s 

first law of geography, which broadly states that objects nearby are more related than objects that are 

distant (Tobler, 1970). Measuring proximity between two layers requires some form of generalization 

because spatial data sets are composed of numerous features that vary in concentration and 

distribution, while distance is measured between two points. Measuring distance between the nearest 

points or features of two layers ignores the distribution of features in both layers and is prone to false 

positives. For example, road networks from neighboring cities are likely to connect which would result in 

a distance measure of 0, but the layers would have very different spatial coverage. In contrast, a tree 

data set and a road data set in the same city may not have any features that touch which would result in 

a distance measure greater than 0 but the data sets have similar spatial coverage. The UrbanData spatial 

proximity metric is intended to represent a measure of distance that best represents proximity between 

two layers based on the distribution of features. Aggregate geometries such as layer extents and layer 

centroids represent the general distribution and concentration of spatial features in a data set.  Using 
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aggregate geometries to calculate proximity is an inexpensive approach to measure the distance 

between layers based on the spatial distribution of features within the layer. Proximity can be measured 

using the minimum cartesian distance between two layer extents, but this approach does not work well 

when layer extents intersect. For example, a bridge layer may have four individual features spread 

across a city, which gives the bridge layer a very large extent. In contrast, a trail layer may have a large 

number of features concentrated in the center of the city, thus creating a small extent that lies within 

the larger extent of the bridge layer. The closest distance between these two layers is 0 because one 

layer contains the other, but the individual features of the two layers may not be close to each other.  

 

Figure 3.2 Centroid-based proximity measures differentiate trails from soccer fields. 

 Figure 3.2 above illustrates the challenge of measuring the proximity between three layers with 

different extents. In a predefined study extent, it is possible for all layers being analyzed to have a 

separation distance of 0. To better differentiate proximity scores between layers, UrbanData makes use 

of the layer extent centroid to measure distance. Measuring proximity using the centroid of layers 

ensures that layers that are within another layer still have a meaningful proximity score. The centroid 

based approach to measuring the proximity between layers has been explored in the Geoportal 

platform using a similar center metric (Florance et al., 2015). The use of centroids does have 

disadvantages when comparing layers with substantial differences in coverages an extent. For example, 

a national dataset may have a lot of features that are near a provincial data set, but the proximity score 
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will be low because the distance between layer centroids is high. Despite this caveat, the centroid-based 

proximity metric does provide an ideal balance between small computational expense and 

representativeness of proximity. Furthermore, the co-location and cluster co-location described in 

section 3.3.4 and 3.3.5 define relevance metrics that are more representative of the relationship 

between individual layer features. Thus, the spatial proximity score in UrbanData is a normalized 

measure of the distance between the centroids of two-layer extents where a distance of 0 is scored as 

100% and distances beyond a user-defined threshold is scored as 0%. 

 The spatial proximity metric is not expected to generate false positive results in this case study 

because the study layers are municipal data sets that are reasonably comparable in size but vary in 

distribution. The proximity score is generated from distance measurements using an inverse distance 

function that relies on a threshold distance. This metric assumes that spatial objects beyond located 

beyond a given proximity are irrelevant. The threshold distance is determined by the user based on the 

study extent. The UrbanData application uses a threshold distance of 5 km because the study extent is 

the City of Kitchener which ranges between 10 km and 15 km; a proximity distance beyond 5 km likely 

indicates that the layer being analyzed is generated by a neighbouring municipality. These distance 

assumptions are rough approximations based primarily on the judgment of the author and an 

approximate measure of the study extent. The formula below is used to normalize the distance between 

two spatial data sets to a normalized score between 0 and 1. 

SPAB = (distmax – distAB) / distmax 

SPAB = Spatial Proximity score between layer A and B 

DistAB = Distance between layer A and B (meters) 

distmax = Threshold distance (meters) 

 The function above is a simplification of the distance decay function used in the GR literature 

(De Sabbata, 2013). The GR literature uses an exponential distance decay function to generate spatial 

proximity score; an exponential distance decay function assumes that relevance decreases exponentially 

as distance increases. The purpose of this thesis is to provide a proof of concept for using GR metrics in 

the context of determining relevance between spatial data sets; thus, a simple implementation of 

distance decay is sufficient for the scope of this thesis. The formula shown above is implemented in the 

UrbanData platform using a PostGIS PL/SQL function that generates a spatial envelope for each layer to 
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identify each layer centroid. The distance between layer centroids is then determined using the 

St_Distance function. 

//Generate layer centroids 

SELECT 

    st_envelope(st_union(st_transform(st_makevalid(geom),26917))) 

FROM %I.%I 

 

 

SELECT ST_Distance(input_layer.centroid, target_layer.centroid) 

The St_Envelope function is used in conjunction with the St_Centroid and St_Distance function 

to determine the distance between two layers. The normalization function takes the distance between 

two layer centroids and returns a score between 0 and 1. 

3.3.4 Co-location 

 Co-location is a measure of how often feature A can be found within a predefined distance of 

feature B (Reichenbacher et al., 2016). The same reasoning motivates the co-location metric as the 

spatial proximity metric where near objects are considered to be more relevant than distant objects. 

The co-location metric makes it possible to better understand how features within two different layers 

are positioned in relation to one another. The co-location metric also touches upon the semantic 

characteristics of a layer by detecting location patterns of a spatial data set that can be used to describe 

a spatial data set. For example, it can be said that features in the tree layer are commonly observed 

within parks features. 

  The literature defines co-location as a spatial pattern that may or may not have statistical 

significance. The co-location pattern identifies spatial features that are often located near one another 

(Barua & Sander, 2014; Yoo & Shekhar, 2006). Co-location is a rule that infers the presence of one 

category of features based on the presence of another category of features (Chen, Zhang, Deng, Nie, & 

Yi, 2017; Yoo & Shekhar, 2006). In the literature, co-location rules can be identified using data mining or 

statistical analysis (Barua & Sander, 2014; Huang, Shekhar, & Xiong, 2004). Co-location can infer 

correlation based on the methodology used to identify the co-location pattern. In UrbanData, co-

location is not identified using statistical methods, and co-location is not used to infer correlation. This 

methodology also does not generate co-location scores. Instead, this methodology makes scores based 

on observed co-location patterns. Co-location patterns are identified between pairs of layers in this 

methodology. Co-location patterns are detected through data mining and the use of a threshold 

distance. The threshold distance is a user-defined distance that makes it possible to identify co-location 
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patterns (Deng, He, Liu, Cai, & Tang, 2017). The threshold distance is determined based on the study 

context and how the user perceives near objects. For a mobile user who is walking, a visible distance of 

50 m would likely be considered near while a car driver would find 1 km near. In UrbanData, a threshold 

distance of 50 m is used to mine co-location patterns. This distance is assumed to be a small distance for 

most pedestrians, thus considered to be close. Co-location between two layers (A, B) is measured as the 

number of features in layer A that are within a threshold distance of layer B divided by the total number 

of features in A. 

CoAB = NAB(d)/NA 

CoAB = Co-location score between layer A and B 

NAB(d) number of features in layer A within d (distance) of layer B 

NA number of features in layer A 

The co-location metric is implemented in the UrbanData platform using a set of PL/SQL functions and 

views. In the formula above, co-location is mined on the domain layer with regard to a target layer 

within the framework database. The input layer is buffered using the PostGIS St_Buffer function with the 

threshold distance as input. The buffered input layer is then intersected with the target layer using the 

St_Intersects function to determine how many features from the input feature layer are within the 

threshold distance from features in the target layer. For example, if 2 out of 10 trail features are within 

50 m of a park, the co-location score is 0.2 (20%). 

st_buffer(input_layer.geom, %L) 

 

st_intersects(input_layer.geom, target_layer.geom) 

 

The co-location score is then calculated by dividing the number of input features within the threshold 

distance of the target layer by the total number of features in the input layer. The result of this analysis 

is a normalized score between 0 and 1. This score is then used to create the aggregate GR by combining 

it with other GR metrics. The following section describes the cluster co-location metric, which uses parts 

of the co-location metric to evaluate spatial relevance.  

3.3.5 Cluster Co-location 

The cluster co-location metric is a novel GR metric. The cluster co-location metric is based upon 

the cluster metric defined in the GR literature (Reichenbacher et al., 2016); but it adjusts the metric to 

enable comparisons between spatial data sets. The cluster metric is used to detect spatial location 
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patterns within a layer. The cluster metric in GR is developed on the idea that points of interest that are 

close to other points of interest are more important than isolated points of interest (Reichenbacher et 

al., 2016). For example, a restaurant in a mall that is located near other shops is more attractive to a 

shopper than an isolated restaurant. The cluster co-location metric proposed in this thesis evaluates the 

location of clusters in the input layer in relation to features in the target layer. This metric assumes that 

two layers are relevant to each other if features from the input layer tend to cluster around features in 

the target layer. Thus, the metric aims to measure how often clusters in the input layer are co-located 

with features in the target layer. For example, food stands may cluster around park entrances and 

baseball field; therefore, parks and food stands have a high cluster co-location score. Like the co-

location metric, the cluster co-location metric aims to detect patterns in spatial data sets to determine 

relevance between two data sets. 

The cluster co-location metric determines relevance by measuring the number of clusters in the 

input layer that are within a threshold distance of features in the target layer. The cluster co-location 

formula generates a normalized cluster co-location score by dividing the co-located clusters in the input 

layer by the total number of clusters in the input layer. 

ClCoAB = ClAB/ClA 

ClCoAB = Cluster Co-location Score between layer A and layer B 

ClAB = Clusters from layer A within distance d of features from layer B 

ClA = Total clusters from layer A 

Clusters are identified in the input layer using the DBSCAN algorithm, this approach has been 

used in GR and data contextualization studies (Reichenbacher et al., 2016; Spinsanti & Ostermann, 

2013). The DBSCAN algorithm is effective for this use case because the algorithm requires little domain 

knowledge, creates clusters of arbitrary size and is efficient on databases (Sander, Ester, Kriegel, & Xu, 

1998). Co-location between input layer clusters and target layer features is determined by generating an 

envelope with a one-meter buffer around clustered features. Input layer clusters that intersect target 

layer features are added to the list of co-located clusters; this number of co-located clusters is then 

divided by the total number of clusters in the data set. The UrbanData platform implements this metric 

by using the PostGIS st_clusterdbscan function to detect clusters in the input layer. The st_convexhull, 

st_collect and st_buffer function are then used to create geometries for clusters. The st_clusterdbscan 

function works on lines, points, and polygons to determine if a feature is part of a cluster. The st_buffer 
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function standardizes geometries to a polygon type, and the st_collect function aggregates geometries 

to a multipolygon. The st_convexhull generates a single polygon that envelopes all the geometries 

within the cluster. The st_intersects function is then used to detect clusters that are co-located with 

target layers features.  

st_clusterdbscan(input_table.geom, 50) 

 

st_convexhull(st_collect(st_buffer(ham.geom, (1)::double precision))) 

 

The result of the cluster co-location module is a normalized score that ranges from zero to one 

where a score of zero indicates no clusters are co-located with target features while a score of 1 

indicates that all input layer clusters are co-located with target layers. The following section describes 

how the metrics discussed in this section are aggregated to generate a GR score. 

3.3.6 Geographic Relevance Score 

The previous sections have discussed the relevance between an input domain layer and target 

framework layers. The topicality, spatial proximity, co-location, and cluster co-location metrics are used 

to measure dimensions of spatial and semantic relevance between a pair of data sets and produce a 

normalized score between 0 and 1. This section discusses the aggregation of these four metrics into a 

single GR score that represents the degree of relevance between the input layer and the target layer. 

Comparable studies in GR, conflation, and GIR have approached the challenge of combining 

relevance metrics with varying strategies. McKenzie et al. (McKenzie et al., 2014) developed multiple 

weighting models to combine semantic and spatial metrics to maximize model accuracy. Bordogna et al. 

(2012) built two aggregation models to combine semantic and spatial data; where one model favored 

semantic relevance while the other model weighed semantic and spatial relevance equally. 

Reichenbacher et al. (2016) used a conjunctive score model that considered some geographic relevance 

metrics as essential. Therefore, metrics such as spatial proximity had to be higher than 0 for the GR 

score to be valid. This thesis uses an equal weighting model to generate GR scores. The GR metrics 

described in the previous sections have produced normalized scores between 0 and 1; an equal 

weighting model is essentially the mean of the four GR metrics. Current GR literature has advocated 

against equal weighting models for score aggregation as some metrics are more important than others 

(Reichenbacher et al., 2016). UrbanData uses an equal weighting model because it is difficult to 

prioritize one metric over another, and there are no clear essential metrics.  
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Each metric described in this methodology only describes a small dimension of the entities being 

compared. The topicality metric considers layer names and tags; it does not consider the attributes of 

the layer or individual features. The spatial proximity measures proximity based on extent centroids, 

which may create false positives in some contexts. The co-location and cluster co-location metric 

measure similarity of feature distribution between two layers but the validity of these metrics is 

dependent on the effective selection of threshold distances. Due to the scale of the analysis and the 

gaps in the individual GR metrics; this thesis assumes that an equal-weighted GR score provides the 

most reliable approach to measuring GR. Thus, the GR metric is defined as follows. 

GRAB = (TAB + SPAB + CoAB + ClCoAB)/4 

GRAB = Aggregate geographic relevance score between layer A and B 

TAB = Topicality score between layer A and B 

SPAB = Spatial Proximity score between layer A and B 

CoAB = Co-location score between layer A and B 

ClCoAB = Cluster Co-location score between layer A and B 

In the UrbanData platform, the GR metric and the four underlying relevance component values 

are stored in a Postgres table that includes the input layer name and each target layer name.  

3.4 Case Study: City of Kitchener Open Data 

The UrbanData application was tested using open data from the City of Kitchener, a mid-sized city 

located in southern Ontario with a population of 220,000 and an emerging technology industry. The City 

of Kitchener maintains a joint open data portal that hosts data from the City of Kitchener, City of 

Waterloo, Cambridge and the Region of Waterloo (https://open-kitchenergis.opendata.arcgis.com). The 

Open Data portal is named the Kitchener GeoHub, and it contains approximately 300 open data sets 

with 267 spatial data sets as of May 29, 2019. The portal hosts data ranging over a wide array of topics 

which include the environment, infrastructure, municipal services, planning, points of interest, non-

spatial records, sports and recreation, and transportation. The Kitchener GeoHub leverages ESRI’s 

ArcGIS Online platform, particularly the ArcGIS Hub. The Kitchener GeoHub is unique from other open 

data portals such as the City of Toronto Open Data portal or the New York Open Data portal because 

three different municipal agencies are contributing to a single data portal. As a result, the Kitchener 

https://open-kitchenergis.opendata.arcgis.com/
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GeoHub contains seemingly redundant data sets that are maintained by different agencies. A user that 

searches for roads will be matched to four distinct yet similar road data sets which contain similar data 

but contain different attribute data and cover different extents. 

 The UrbanData application was tested using a sample of 13 data sets retrieved from the 

Kitchener Geohub and one VGI planning data set provided by the City of Kitchener. The analysis 

evaluates the effectiveness of UrbanData at retrieving domain data for a planning study conducted by 

the City of Kitchener on improving major trails in 2015. The VGI data set used in this thesis was collected 

by the City of Kitchener to support the planning study on major trails. The analysis is constrained to 5 

domain data sets related to the planning study because the GR metrics used by UrbanData are 

computationally expensive and time intensive; moreover, verifying the results of the study across a large 

number of data sets with a large number of outputs is not practical. The number of data sets used in this 

thesis is not entirely indicative of the computational complexity of this thesis as data sets with many 

features exponentially increase the complexity of analysis.  

The test uses 14 data sets that include boundaries, roads, trails, VGI data, bridges, and related 

features. The data selected from the Kitchener GeoHub include point, line and polygon geometries, and 

the data vary in distribution across Kitchener and Cambridge. The data was selected based upon the 

perceived relevance to the Kitchener trails, but a few data sets were also selected to create noise in the 

analysis.  The VGI data provided by the city are 505 georeferenced survey responses that were collected 

from residents using an interactive web mapping application that allowed users to make comments 

about specific locations across the city. The VGI data set contains points that are generally located near 

major trails in the core of the City of Kitchener. The data sets are shown in Table 3.1, the data steward is 

the organization that maintains and publishes the data. Data tags are used to describe each data set 

semantically. The data tags are used to conduct topicality analysis. The domain data column identifies 

layers that are used as domain data sets for the analysis. The feature count indicates the number of 

features in the layer. Larger layers are more expensive to analyze due to the number of features.  
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Table 3.1: Data sets from Kitchener Open Data Portal and City of Kitchener Planning department. 

ID Data Steward Data Set Data Tags Feature 
Count 

Domain Data 

1 City of Cambridge Business Improvement Areas business, downtown, 
uptown 

3 
 

2 City of Kitchener Heritage Districts heritage, district 4 
 

3 City of Kitchener Soccer Fields soccer, field 8 TRUE 

4 City of Kitchener Parking Public Lots parking, public parking, lot 50 
 

5 City of Kitchener Rivers Creeks Ponds and 
Lakes 

rivers, creeks, ponds, lakes 122 
 

6 City of Cambridge Sports Fields sports, field 134 
 

7 City of Kitchener Bridges bridges 135 
 

8 City of Kitchener Parking On Street street parking, parking 157 
 

9 City of Kitchener Railway Lines rail, railway 181 TRUE 

10 City of Kitchener Parks park 438 TRUE 

11 Kitchener Planning Trail Survey trail, survey 505 TRUE 

12 City of Kitchener Cycling Infrastructure cycling, bike, lane 1093 
 

13 City of Kitchener Trails trail 3530 TRUE 

14 City of Kitchener Roads roads 6057 
 

 

Despite the small number of data sets being used, a large number of features are analyzed. There 

are over 12,000 features in the study database; for each analysis, the system has to traverse and analyze 

all the features in the database. The domain data sets in Table 3.1 are compared to each data set in 

Table 3.1 using the GR metrics described in section 3.3. The domain data sets used in the analysis are 

listed below. 

• Soccer Fields 

• Railway Lines 

• Parks 

• Trail Survey 

• Trails 

The trail survey is the VGI data set provided by the Kitchener planning department. This data set is 

primarily concentrated in the core of Kitchener and contains several clusters of points. The parks and 

trail data sets have large extents that spread across the City of Kitchener and contain several thousand 

features together. The railway data set is a smaller data set that is relevant to the trail because there are 

several major intersections between the rail and trail and several records in the trail survey reference 
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rails. The Kitchener soccer fields data set is not directly related to major trails or the trail survey, it is 

primarily used as noise to confuse the UrbanData system and test the effectiveness of GR metrics.  

 

Figure 3.3 A map of all the layers in the framework database, layers are in Kitchener and Cambridge. 

Each analysis requires aggregate and feature level analysis between the input data and the other 

13 datasets in the database. The result of each analysis is a table with a ranked list of layers that include 

individual GR metric scores and aggregate metric scores. The output tables provide metadata that is 

used to rank the relevance of framework data with respect to domain data. In this test, the domain 

database is a set of the five layers with the highest GR ranks with respect to a domain data set. 

UrbanData is a data processing application that only outputs analysis tables into the Postgres database. 

Results can be visualized using mapping applications and framework such as QGIS and ArcGIS JS. This 

analysis uses QGIS to visualize GR rankings and domain databases to evaluate outputs. The following 

sections discuss the results of this analysis. 
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3.5 Results 

Analysis of each data set resulted in the creation of an output table that contains analysis results 

between the input (domain) layer and target framework data sets. Each analysis produces 13 sets of 

output records that contain a topicality score, a spatial proximity score, a co-location score, a cluster co-

location score, and an aggregate geographic relevance score. Section 3.5.1 will review individual analysis 

results for each domain data set. For each analysis, the output data scores will be presented in a table, 

and the five highest ranking datasets will be mapped as the domain database. The review will also 

discuss the distribution of GR scores. Review of individual analysis results is followed by a review of 

overall results and trends among the GR scores in section 3.5.2. 

3.5.1 Domain Data Analysis 

3.5.1.1 Parks 

The UrbanData analysis of Kitchener Parks resulted in the selection of roads, trails, rivers, cycle 

routes, and bridges in the domain database. Figure 3.4 shows that features in the layer are often located 

near other features in the domain database, all the domain data sets have similar coverage and 

represent features that are relevant to each other such as creeks and parks or cycle routes and parks.  

 

Figure 3.4 The domain database for parks includes trails, bridges, roads, rivers, and cycle routes. 

The layers in the domain database consistently intersect the parks layer, layers such as rivers, bridges, 

and trails are often contained within park features, and the roads and cycle network layers connect 
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parks. The results in Table 3.2 show that the highest GR score is 0.71, and the lowest domain database 

score is 0.45, while the lowest overall score is -0.35. The two most relevant data sets, roads, and trails 

are large data sets that have high co-location and cluster co-location scores with parks which is 

reasonable because trails are often located within parks while parks are often connected to roads. The 

proximity, co-location, and cluster co-location scores generally have a high degree of variance between 

the most relevant layers and the least relevant layers, and they are good indicators of geographic 

relevance. 

Table 3.2 UrbanData analysis for the parks layer against 13 framework data sets. 

Rank Domain 
Table 
(Input) 

Framework Table 
(Target) 

GR Score Proximity Co-location Co-location 
Cluster 

Topicality 

1 Parks Roads 0.71 0.77 0.97 0.94 0.14 

2 Parks Trails 0.70 0.99 0.76 0.94 0.13 

3 Parks Rivers Creeks Ponds 
and Lakes 

0.55 0.92 0.41 0.78 0.10 

4 Parks Cycling 
Infrastructure 0.52 0.94 0.31 0.72 0.10 

5 Parks Bridges 0.45 0.83 0.22 0.61 0.13 

6 Parks Trail Survey 0.43 0.60 0.26 0.72 0.13 

7 Parks Railway Lines 0.38 0.95 0.11 0.39 0.08 

8 Parks Soccer Fields 0.31 0.86 0.00 0.06 0.33 

9 Parks Heritage Districts 0.25 0.51 0.08 0.22 0.20 

10 Parks Parking Public Lots 0.24 0.79 0.04 0.06 0.08 

11 Parks Parking On Street 0.20 0.65 0.02 0.06 0.08 

12 Parks Sports Fields -0.31 -1.57 0.00 0.00 0.33 

13 Parks Business 
Improvement Areas 

-0.33 -1.47 0.00 0.00 0.14 

 

The relevance rankings of roads and trails are based on a marginal difference in GR scores, and it can be 

argued that the topicality score between parks and trails should be higher than the topicality score 

between parks and roads. The topicality score generally shows little useful variation between layers, and 

it is difficult to explain how the NLTK WordNet module assigns a score. The lower ranked data sets in the 

domain database have lower co-location scores, but proximity and topicality scores are comparable to 

the roads and trails layer. The analysis correctly considered cycling infrastructure and bridges more 

relevant to parks than on-street parking or public parking lots. The proximity score is particularly 

effective at reducing the relevance score of distant layers located in the City of Cambridge such as 

Cambridge Sports Fields and Business Improvement Areas. The proximity score is also very useful for 
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differentiating the relevance of layers when co-location and cluster co-location scores are 0 for multiple 

layers. Overall, the topicality score showed little discernible variance across the analysis while the 

proximity, co-location, and cluster co-location where effective tools to determine the relevance of 

layers. The rankings and scores of the layers in the analysis are reasonable. 

3.5.1.2 Railway Lines 

Relevance analysis of railway lines shows that parks, trails, cycling infrastructure, rivers, and 

roads are the most geographically relevant layers to Kitchener Railway lines. The railway data set is a 

smaller data set than parks and features are mainly located in key corridors in the core of the City of 

Kitchener. Figure 3.5 shows that layers in the domain data set intersect railways, and there are 

occasions where segments of the rail coincide with parks or roads. As shown in Figure 3.5, railway 

features are located along key corridors through the center of Kitchener so they don’t touch or intersect 

framework layers as often as larger data sets like parks. 

 

Figure 3.5 The domain database for rails includes parks, rivers, trails, roads, and cycle lanes. 

The GR scores shown in Table 3.3 reflect the visual trends shown in Figure 3.5, the GR scores 

between the railway dataset and framework layers are generally lower than the GR scores between 

parks and framework data sets. The highest GR score from the analysis is 0.54, and the lowest domain 

database score is 0.51, the difference in relevance scores of the top five layers is marginal. The 



52 
 

UrbanData scores in Table 3.3 appear to be poor indicators of relevance. The low co-location scores 

shown in Table 3.3 reflects the concentration of railway features along central corridors within 

Kitchener. The co-location cluster score is 1 for all framework data sets in Kitchener. This likely occurred 

because UrbanData identified one large cluster in the railway dataset that happened to intersect all the 

framework layers from the City of Kitchener. The lack of variance in the co-location cluster scores makes 

it an ineffective relevance metric for the evaluation of this dataset. The topicality score also shows little 

variance across the analysis with 10 out of 13 layers receiving scores of 0.08 or 0.09. Thus, topicality is 

an ineffective relevance measure once again. Proximity is the only GR metric that shows notable 

variance across the data, the highest proximity score is 0.95, and the lowest proximity score for 

Kitchener data sets is 0.48. 

Table 3.3 The UrbanData relevance scores for Kitchener railway lines. 

Rank Domain 
Table 
(Input) 

Framework Table 
(Target) 

GR Score Proximity Co-location Co-location 
Cluster 

Topicality 

1 Railway 
Lines 

Parks 
0.59 0.95 0.32 1.00 0.08 

2 Railway 
Lines 

Trails 
0.58 0.73 0.52 1.00 0.08 

3 Railway 
Lines 

Cycling 
Infrastructure 0.57 0.93 0.24 1.00 0.09 

4 Railway 
Lines 

Rivers Creeks 
Ponds and Lakes 

0.56 0.89 0.20 1.00 0.14 

5 Railway 
Lines 

Roads 
0.53 0.90 0.15 1.00 0.09 

6 Railway 
Lines 

Soccer Fields 
0.49 0.79 0.10 1.00 0.08 

7 Railway 
Lines 

Parking Public Lots 
0.49 0.87 0.00 1.00 0.08 

8 Railway 
Lines 

Bridges 
0.49 0.84 0.04 1.00 0.08 

9 Railway 
Lines 

Trail Survey 
0.48 0.62 0.22 1.00 0.09 

10 Railway 
Lines 

Parking on Street 
0.45 0.67 0.03 1.00 0.08 

11 Railway 
Lines 

Heritage Districts 
0.40 0.48 0.03 1.00 0.10 

12 Railway 
Lines 

Business 
Improvement 
Areas -0.31 -1.47 0.00 0.00 0.25 

13 Railway 
Lines 

Sports Fields 
-0.37 -1.57 0.00 0.00 0.08 

 

The GR rankings of layers in relation to railways appear reasonable in some cases, but several 

layers are ranked incorrectly. The road data set should be considered the most relevant data set to 
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railways because railway features are often located near roads. The roads layer has the highest co-

location score with rails and roads likely has the strongest topical relevance to layers due to their 

function as transportation networks. Layers such as bridges or parking lots should have higher relevance 

ranks than soccer fields. Railways intersect bridges while parking lots are often located near rail stations. 

In general, UrbanData was not effective at determining relevance between railways and framework 

layers. 

3.5.1.3 Soccer Fields 

Like the railway layer, the soccer fields layer does not touch or intersect features in the 

framework database very often. Figure 3.6 shows that the soccer field layer only contains a few features 

located near the center of Kitchener. The soccer fields seem to be related to the parks layer as several 

soccer fields are located within parks. Figure 3.6 shows that many of the layers selected in previous 

domain databases have been selected for this map. The roads layer is a notable omission in Figure 3.6 

since roads likely connect to soccer fields. 

 

Figure 3.6 The domain database for soccer fields includes rivers, trails, rails, parks, and cycle lanes. 
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The relevance scores in Table 3.4 contain the lowest relevance scores generated by UrbanData. The 

highest GR score is 0.30, the lowest domain database score is 0.22, and the lowest Kitchener data score 

is 0.14. The co-location and cluster co-location scores are 0 across the analysis. Proximity and topicality 

are the primary metrics used to determine relevance. The topicality score shows greater variance than 

previous results, and it helps UrbanData prioritize parks and bike routes over railway lines and rivers. 

The overall GR scores are low in this analysis, but the relevance metrics work as desired. Cluster and 

cluster co-location are not influential in this analysis, but that is reasonable considering the spatial 

relationship between soccer fields and other layers. The proximity and topicality metrics work well to 

prioritize relevant layers such as Kitchener Parks and filter out layers that are topically relevant but 

spatially irrelevant such as Cambridge Sports Fields. 

Table 3.4 The UrbanData relevance scores between soccer fields and framework data. 

Rank Domain 
Table 
(Input) 

Framework Table 
(Target) 

GR Score Proximity Co-location Co-location 
Cluster 

Topicality 

1 Soccer 
Fields 

Parks 
0.42 0.86 0.50 0.00 0.33 

2 Soccer 
Fields 

Cycling 
Infrastructure 0.35 0.64 0.63 0.00 0.14 

3 Soccer 
Fields 

Trails 
0.25 0.81 0.00 0.00 0.20 

4 Soccer 
Fields 

Railway Lines 
0.24 0.85 0.00 0.00 0.13 

5 Soccer 
Fields 

Rivers Creeks 
Ponds and Lakes 

0.24 0.87 0.00 0.00 0.08 

6 Soccer 
Fields 

Parking On Street 
0.22 0.78 0.00 0.00 0.10 

7 Soccer 
Fields 

Parking Public Lots 
0.21 0.78 0.00 0.00 0.08 

8 Soccer 
Fields 

Roads 
0.21 0.76 0.00 0.00 0.08 

9 Soccer 
Fields 

Bridges 
0.19 0.70 0.00 0.00 0.08 

10 Soccer 
Fields 

Trail Survey 
0.16 0.50 0.00 0.00 0.13 

11 Soccer 
Fields 

Heritage Districts 
0.14 0.37 0.00 0.00 0.20 

12 Soccer 
Fields 

Sports Fields 
-0.17 -1.70 0.00 0.00 1.00 

13 Soccer 
Fields 

Business 
Improvement 
Areas -0.36 -1.60 0.00 0.00 0.14 
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3.5.1.4 Trail Survey 

The trail survey data set is a VGI data set collected by the Kitchener planning department. The 

trail survey data set does not represent any spatial features or objects. Instead, it represents geotagged 

survey responses from citizens of the City of Kitchener. The survey was collected to gather feedback on 

trails, and many of the responses are located along major trails in the center of Kitchener, but a large 

number of responses are located around smaller trails, parks, and water bodies across Kitchener. 

Several responses are also located along roads and cycling networks because many of the survey 

respondents were interested in improving the connectivity of trails across the city. Figure 3.7 shows the 

domain database for the trail survey data set. The map shows that the trail survey features are often 

located within a park, near waterbodies or linearly grouped along roads, trails or bicycle networks. 

 

Figure 3.7 Trail survey is most relevant to trails, parks, roads, bikes, and rivers. 

The relevance scores in Table 3.5 show more variance than previous results with the highest GR score 

being 0.79, and the lowest domain database score being 0.30. The lowest score for Kitchener data is 

0.11. The variance in proximity scores is low in this analysis with 8 of 13 layers receiving a proximity 

score between 0.60 and 0.70; the proximity score also decreases as the GR score increases. The inverse 

relationship between proximity and GR is reasonable because topicality, co-location, and cluster co-
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location scores can be high regardless of the distance between layers. The co-location cluster metric 

shows a high degree of variance, and they indicate that trail survey points are primarily located near 

parks and trails, but points can also be found near roads, rivers, and cycle lanes. The topicality score has 

little variance in this analysis except for the trail data set, which has a score of 1 because the trail survey 

and trail data set share a common tag. The topicality metric allowed UrbanData to prioritize trails, but it 

did little to determine the relevance of other layers. Overall, the co-location and the cluster co-location 

where the most important metrics for differentiating relevance of data set. The topicality metric was 

useful to a limited extent, and the proximity metric was useful for filtering out very distant data sets 

from the City of Cambridge, but it did not help with ranking domain database layers. 

Table 3.5 UrbanData relevance scores for the Kitchener Trail Survey 

Rank Domain 
Table 
(Input) 

Framework Table 
(Target) 

GR Score Proximity Co-location Co-location 
Cluster 

Topicality 

1 Trail Survey Trails 0.76 0.60 0.64 0.82 1.00 

2 Trail Survey Parks 0.57 0.60 0.69 0.86 0.13 

3 Trail Survey Roads 0.49 0.61 0.54 0.68 0.13 

4 Trail Survey Rivers Creeks 
Ponds and Lakes 

0.35 0.66 0.26 0.36 0.11 

5 Trail Survey Cycling 
Infrastructure 0.29 0.61 0.17 0.27 0.13 

6 Trail Survey Railway Lines 0.27 0.62 0.13 0.23 0.09 

7 Trail Survey Bridges 0.25 0.62 0.09 0.18 0.09 

8 Trail Survey Heritage Districts 0.23 0.53 0.10 0.14 0.17 

9 Trail Survey Parking Public Lots 0.20 0.70 0.01 0.00 0.08 

10 Trail Survey Soccer Fields 0.16 0.50 0.00 0.00 0.13 

11 Trail Survey Parking On Street 0.11 0.35 0.01 0.00 0.08 

12 Trail Survey Business 
Improvement 
Areas -0.25 -1.12 0.00 0.00 0.13 

13 Trail Survey Sports Fields -0.27 -1.22 0.00 0.00 0.14 

 

3.5.1.5 Trails 

The domain database for the trail and trail survey data are identical, the domain database map 

for trails is shown in Figure 3.7. The trail data set is a large data set like parks that cover the extent of 

the City of Kitchener. Figure 3.7 shows that trail features are distributed throughout the City along 

waterbodies or roads and within parks, trails often connect to cycle routes and trail survey features tend 

to cluster around trail features. Table 3.6 shows that GR scores between trails and framework data sets 
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are high for domain data sets, and there is a high degree of variance across the analysis. The three 

highest relevance scores are marginally different because scores range from 0.74 to 0.71. The lowest 

relevance score in the domain database is 0.58. The proximity scores generally increase as relevance 

increases, but there are several cases where layers with low GR scores such as railways have high 

proximity scores while layers with high GR scores like the trail survey have low proximity scores. This is 

not unreasonable because other relevance metrics may be more influential in this UrbanData analysis. 

The co-location metric indicates that six framework layers have perfect co-location scores with the trail’s 

layers, this has not been observed in other analysis, and it does not seem reasonable. It is possible that 

trail geometries are stored as large continuous multi-polygon features that may skew the co-location 

metric. This is the first analysis where the co-location cluster metric does not follow the same score 

patter as the co-location metrics. The co-location cluster metrics has a high degree of variance and it 

helps UrbanData marginally prioritize roads over the trail survey data. The topicality once again shows 

little variance with the exception of the trail survey score and it appears to be an ineffective measure of 

relevance.  

Table 3.6 The UrbanData relevance results for Kitchener trails. 

Rank Domain 
Table 
(Input) 

Framework Table 
(Target) 

GR Score Proximity Co-location Co-location 
Cluster 

Topicality 

1 Trails Parks 0.70 0.99 0.81 0.87 0.13 

2 Trails Roads 0.65 0.79 0.70 0.98 0.13 

3 Trails Trail Survey 0.50 0.60 0.15 0.26 1.00 

4 Trails Cycling 
Infrastructure 0.42 0.95 0.20 0.40 0.11 

5 Trails Rivers Creeks 
Ponds and Lakes 

0.39 0.93 0.24 0.28 0.11 

6 Trails Bridges 0.32 0.84 0.12 0.21 0.09 

7 Trails Railway Lines 0.29 0.93 0.05 0.10 0.09 

8 Trails Heritage Districts 0.25 0.85 0.00 0.02 0.13 

9 Trails Parking Public Lots 0.23 0.78 0.01 0.06 0.08 

10 Trails Soccer Fields 0.20 0.52 0.06 0.05 0.17 

11 Trails Parking On Street 0.18 0.63 0.01 0.02 0.08 

12 Trails Business 
Improvement 
Areas -0.34 -1.47 0.00 0.00 0.13 

13 Trails Sports Fields -0.36 -1.56 0.00 0.00 0.13 
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UrbanData effectively prioritized parks and roads in relation to trails over parking lots and bridges. The 

high relevance score of the trail survey data set appears to be appropriate but the cycle infrastructure 

layer should likely receive a higher relevance score based on proximity, co-location, and cluster co-

location scores. The GR metrics were generally effective for prioritizing the five most spatially relevant 

layers to the trail data set and the GR metrics have been consistently effective at assigning low 

relevance ranks to layer 

3.5.2 Summary 

Section 3.5.1 looked at how UrbanData analyzed 5 domain data sets against 13 other framework 

databases to generate a domain database of 5 layers for each domain dataset. The analysis showed how 

individual GR metrics such as topicality, co-location, cluster co-location, and proximity vary when 

comparing data sets. The analysis shows that the distribution GR metric can have a small variance 

between scores or a large variance between score depending on the study context and spatial data 

characteristics. When a GR metric shows a small range of scores such as a score of 1 for all 13 

framework layers, the GR metric is not effective because it cannot be used to identify differences 

between data an evaluate relevance. When the GR metric has a large range of evenly distributed 

relevance scores it is possible to differentiate layers and evaluate relevance because the most relevant 

framework data set will have a score that is significantly higher than the least relevant data set.  

The review of data showed that every single GR metric used in UrbanData was important for 

differentiating layers in at least one of the five analyses. The topicality metric was most important for 

measuring relevance when evaluating the Kitchener Soccer Field layer. This result supports the 

assumption that the topicality metric is important for measuring GR and it indicates that the 

implementation of the topicality metric can be improved to better represent relevance. When 

UrbanData analyzed the Kitchener Soccer Field data the cluster and co-location score were close to zero 

for all framework layers and showed little variation between layers. The proximity metric was the most 

reliable relevance metric in this analysis as it had a consistent variance that could be used to 

differentiate spatial data. The co-location and cluster co-location metric were very effective for 

determining relevance for the analysis of parks, trail survey data, and trails but these metrics showed 

little variation for railways and soccer fields. It also appeared that co-location and co-location cluster 

may be redundant metrics because both metrics tended to show similar scores in the parks, soccer 

fields, trail survey and trail analysis. The cluster co-location metric and the co-location metric only had 

dissimilar score distributions for the railway analysis. In the rail survey analysis, the cluster co-location 
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score was 1 for all framework data sets and the co-location score ranged between 0 and 0.3 across the 

analysis. The similarity in scores between co-location and cluster co-location are reasonable because 

they measure similar data distribution characteristics of spatial data. But, the redundancy of these 

metrics and the equally weighted aggregation of scores might skew GR scores towards unreasonably 

prioritizing the distribution of spatial data over other relevance metrics such as proximity and topicality. 

Table 3.7 and Table 3.8 show summary statistics for the scores generated in the UrbanData analysis of 

five domain data sets. 

Table 3.7 The summary statistics of GR metrics for 65 pairs of layers. 
 

GR Score Proximity Co-location Cluster  
Co-location  

Topicality 

Mean 0.28 0.40 0.22 0.36 0.17 

St Dev 0.31 0.82 0.33 0.41 0.19 

Min -0.37 -1.70 0.00 0.00 0.08 

Max 0.79 0.99 1.00 1.00 1.00 

Median 0.30 0.70 0.04 0.14 0.13 

Mode 0.16 0.99 0.00 0.00 0.13 

 

 Table 3.7 above shows average scores of each metric along with summary statistics that 

describe the range and distribution of relevance metrics. The mean score show the average score for 

each metric while standard deviation, min and max illustrate distribution of scores. High standard 

deviation figures indicate that the metric has a large distribution of scores that can be used to 

differentiate layers. Table 3.7 shows that the proximity metric had the highest average score and the 

largest standard deviation while topicality had the lowest mean and standard deviation. The cluster and 

cluster co-location metric have comparable mean and standard deviation values but these values don’t 

indicate that the two metrics are redundant. The overall GR score shows an average score and a 

standard deviation that is most similar to the co-location metric and the cluster co-location metric; this 

indicates that the co-location and cluster co-location metrics are overweighed. However, as illustrated in 

Table 3.8, the co-location and cluster co-location metrics are not always identical so there is no 

conclusive evidence that these metrics are redundant. Future analysis would benefit from conducting 

analysis between GR metrics to attain a better understanding of the relationship between different GR 

metrics.  
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Table 3.8 Average GR metric scores for each domain layer in UrbanData 
 

GR Score Proximity Co-location Co-location 
Cluster 

Topicality 

Parks 0.32 0.44 0.25 0.42 0.15 

Railway Lines 0.36 0.43 0.06 0.85 0.10 

Soccer Fields 0.14 0.36 0.00 0.00 0.21 

Trail Survey 0.25 0.31 0.23 0.27 0.18 

Trails 0.35 0.45 0.54 0.25 0.18 

 

Table 3.8 shows the average score for GR metrics for each domain database analysis. The results 

show that the co-location and cluster co-location metric are important indicators of relevance when 

comparing large data sets such as trails or parks to other data sets that have a similar size and extent. 

The topicality metric scores tended to show little variation when evaluating semantic relevance between 

layers but it was an important for measuring relevance for soccer fields. The effectiveness of the 

topicality metric in the soccer fields analysis supports the assumption that topicality is an important GR 

metric. It also indicates that topicality can be a very good indicator of relevance if implemented well. 

The proximity metric was the most consistent indicator of relevance and it was very important for 

identifying and filtering out irrelevant data sets. Using layer centroids to measure proximity between 

layers allowed UrbanData to evaluate proximity between layers that intersected or contained the other 

layer. The centroid based proximity measure also contributed to generating negative scores for 

framework layers that were beyond the threshold distance from the study extent. Measuring proximity 

using distance between layer extents or layer features would have resulted in less variance among 

proximity scores because most layers had intersecting extents. Therefore, most proximity scores would 

be zero or close to zero.  The results show the identified GR metrics help quantify different dimensions 

of geographic relevance to create relevance scores that account for differences in spatial data 

characteristics and the study extent. Proximity accounts for the distance between data sets, topicality 

accounts for conceptual similarity of data, co-location and cluster co-location account for distribution of 

spatial features. Each GR metric used in UrbanData is a good indicator of geographic relevance but there 

are opportunities to improve implementation of these metrics and the UrbanData model. 
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3.6 Discussion and Conclusion 

The growing availability of open data is presenting new needs for methods that find and retrieve 

spatial data based on spatial criteria. The literature has shown that spatial data retrieval is an important 

issue, but current platforms do not have sophisticated approaches for determining spatial relevance. 

Researchers in spatial data quality have referred to this problem as the fitness of use criterion (Wentz & 

Shimizu, 2018). This Chapter argues that research on geographic relevance is applicable to the problem 

of spatial data retrieval on open data portals. This research problem has been formalized in this Chapter 

as generating a domain-specific spatial database using geographic relevance. This thesis adapted 

measures of geographic relevance which include topicality, spatial proximity, and cluster from 

Reichenbacher et al. (2016). Cluster co-location is a novel metric of geographic relevance that has been 

developed in this thesis to compare the spatial properties of large data sets.  

The UrbanData platform has demonstrated an approach to retrieve and rank domain specific 

spatial data using geographic relevance scores. The UrbanData model and the GR metrics worked 

reasonably well at ranking different types of spatial data but review of the results indicate that there are 

opportunities to improve the GR model used in UrbanData. The results from this chapter provide some 

insights about how individual GR metrics behave in different scenarios but larger tests are needed to 

better understand how metrics like proximity, co-location and cluster co-location handle other edge 

cases. A better understanding of individual GR metrics can also inform the development of a better GR 

aggregation model. UrbanData used an equal weighted aggregation model where each GR metric was 

assigned an equal weight when generating the aggregate GR score. However, results seem to indicate 

that co-location and cluster co-location may be redundant therefore the co-location and cluster co-

location metrics are being double counted in the final GR score. Reichenbacher et al. (2016) developed a 

GR model that aggregated the cluster and co-location metrics into a single score referred to as the 

Geographic Environment. The final GR score is generated by combining the Topicality, Proximity and 

Geographic Environment scores using an equally weighted average (Reichenbacher et al., 2016). The 

UrbanData model did not adopt this approach based on the assumption that co-location and cluster co-

location are unique but results indicate that future models may need to aggregate these metrics to 

avoid overweighting these metrics and skewing results.  

The UrbanData analysis also showed that the effectiveness of GR metrics varies across different 

study contexts and there may be opportunities to eliminate unnecessary GR metrics based upon the 

study context. A possible approach to improving the UrbanData model would be the use of step-by-step 



62 
 

analysis model where the UrbanData analysis is conducted with all four GR metrics and criterion are 

progressively removed from the GR aggregation model to maximize variance in GR scores and optimize 

explanatory power. The sequence of the analysis can also be reversed so that metrics are iteratively 

added to the GR score aggregation model. This model would require the UrbanData model to evaluate 

the distribution of scores for each GR metric in each analysis and to determine whether the distribution 

of scores meets threshold criteria such as a defined threshold range or standard deviation. This 

approach to GR score aggregation may contribute to GR scores that have a higher mean score and larger 

variance of scores which would improve relevance rankings. However, the UrbanData results showed 

that the identified GR metrics rarely provide false positives and all GR metrics appeared to be somewhat 

relevant in most of the test cases. A model that dynamically eliminates different GR metrics in the 

analysis may be prone to erroneously removing important GR criteria. Nonetheless, it is a model that is 

worth exploring. Another model that may be an effective improvement of the UrbanData model would 

be the dynamic calibration of individual GR metrics based upon characteristics of the domain data. As 

noted in earlier sections, GR metrics such as proximity, co-location and cluster co-location rely on 

predefined threshold values which are often selected by the application administrator based upon their 

understanding of the framework database and study extent. Dynamic calibration of threshold values 

could evaluate the extent of the domain data set and the distribution of features within the domain 

database to determine threshold distance for proximity, cluster and co-location. This approach would 

reduce the need for manual calibration of the UrbanData model and it is assumed it would create GR 

scores that are more representative of spatial relevance. 
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4 Using Geographic Relevance to Contextualize Unstructured VGI 

4.1 Introduction 

Public engagement, a term that is often used interchangeably with public participation (Ross et 

al., 2016), is an important dimension of urban planning that can be resource intensive and expensive. 

Nonetheless, it is an essential process for ensuring equitable and fair decision making (Abelson et al., 

2003; Planning Institute Australia, 2011). Recent advances in internet technologies and changing trends 

in technology adoption are creating new opportunities to use technology to improve public 

engagement, governance, and urban planning (Kalvelage et al., 2018; Seeger, 2008). 

Public participation within the planning process has three major goals which include informing 

the public about proposed development(s), gathering local information and knowledge from citizens 

regarding sites of interest and incorporating the opinions and desires of citizens into the decision-

making process for the planned developments (Planning Institute Australia, 2011). Ensuring that public 

participation is representative of the diverse views of the community is a significant challenge(Abelson 

et al., 2003; Cinderby, 2010). Public engagement hearings and surveys are effective ways to 

communicate with residents and communities, but marginalized and less affluent parts of society tend 

to be underrepresented at these sessions (Cinderby, 2010). Practical challenges such as language 

barriers, time constraints, and lack of transportation can impede citizens from participating in a public 

engagement session. There is a need to create a model of engagement that is inclusive, accessible, and 

fosters collaboration (Innes & Booher, 2004).  Research shows that geoweb tools can be effectively used 

to scale public participation efforts to reach a large set of participants that can be more representative 

of the views of the community (Jankowski et al., 2019).  

The public is increasingly adopting digital forms of communication and they are willing and 

capable of using digital solutions to communicate and interact with the government (Zook, Graham, & 

Boulton, 2015). Digital solutions currently augment existing public participation forums such as town 

halls and seminars and they will continue to play a larger role in the engagement process as 

governments engage younger tech-savvy citizens. Planners need to be aware of this trend and they need 

to ensure that online engagement translates to offline relationships and actions (Kleinhans et al., 2015). 

Social media is widely recognized tool for public engagement that is used by governments to gather 

feedback on initiatives (Evans-Cowley & Griffin, 2012; Schweitzer, 2014), but social media is not geared 
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towards supporting engagement on complex location-based projects and it is biased towards younger 

segments of the population. As a result, several companies have developed geoweb solutions to address 

the challenge of public participation using location-based web applications. Platforms such as IdeaScale, 

CommunityRemarks, BangTheTable, and Neighbourly allow cities to post information about planning 

initiatives and solicit citizen feedback online with support for publishing documents and facilitating 

surveys. These platforms are great at facilitating discussion but they also generate complex unstructured 

location data that is difficult to analyze without manual review. In contrast, map-based reporting 

applications such as Community Remarks, ArcGIS Survey123, and SeeClickFix allow citizens to identify 

specific locations of concern by interacting with web maps or reporting information from their phone. 

These group of applications allows organizations to control the structure and content of the data being 

collected online and they are primarily focused on supporting reporting systems such as 311.  

The location-based comment data that can be collected using the applications described above 

is a form of data that is described as facilitated volunteer geographic data (FVGI) (Seeger, 2008). This 

form of data is often rich in spatial and semantic information, but it is also unstructured and contains 

folksonomies and local knowledge that are difficult to process (Kalvelage et al., 2018). As a result, the 

use of web-based data for decision making is still a challenge in urban planning. Planners are collecting 

more georeferenced input from citizens using social media and VGI applications but interpreting the 

data into information is still a significant challenge. There are few consistent processes for integrating 

digital feedback into decision making (Brown, 2012).  Furthermore, the cost of processing unstructured 

data collected from citizens can be prohibitive to the use of web tools in urban planning (McKenzie et 

al., 2014) . GIS researchers have recognized the need for automated processing of unstructured spatial 

data generated by volunteers, particularly through contextual analysis (Goodchild & Li, 2012). 

Researchers in geographic relevance have developed probabilistic methodologies to understand the 

spatial context in mobile information retrieval where information searches made on the phone retrieves 

data based on the user’s location, velocity, and direction of travel and other criteria (M. Li et al., 2015; 

Reichenbacher et al., 2016). Some studies have used basic contextual analysis to mine data on Twitter to 

detect events such as wildfire (Spinsanti & Ostermann, 2013), these methods often rely on a 

combination of keyword search techniques coupled with proximity analysis to detect locations of 

interest. This thesis argues that there is an opportunity to use the metrics developed in geographic 

relevance to automate contextualization and analysis of VGI data. This thesis develops a prototype 

application named UrbanContext that uses metrics developed in geographic relevance research to 

contextualize unstructured VGI data by matching data to relevant framework data. The following 
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sections explore the literature used to motivate and inform this thesis before discussing the design, 

implementation, and application of the UrbanContext application. 

4.2 Literature 

4.2.1 Planning, VGI and Public Participation GIS 

It is widely accepted that the best approach for planning a community is through consultation 

and stakeholder engagement (Hodge & Gordon, 2008). Community consultation is essential in modern 

planning because the issues addressed by planners are generally “wicked” problems. These problems 

are defined as problems with high complexity and multiple competing points of view that make it 

difficult to identify a single correct solution (Charalabidis, Gionis, Ferro, & Loukis, 2010). Therefore 

collaboration is needed to develop solutions that are representative of the community and equitable. 

 Traditionally, planning has been a top-down decision-making process were officials in power 

directed large scale development projects with little regard for local communities, this has historically 

been a problem in inner cities and neighbourhoods that were occupied by poor or marginalized 

communities (Hodge & Gordon, 2008). Over time planners started to acknowledge that a top-down 

approach to urban planning tended to hurt and disenfranchise small communities (Jacobs, 1992). The 

backlash against conventional planning theory resulted in major changes in the profession; over time 

the role of the planner has evolved from a decision maker to a facilitator who encourages 

communication and collaboration, and the law has adjusted to reflect this trend. 

In Canada, public participation is now mandated by law in the planning process (Government of 

Ontario, 2019). In Ontario, provincial policy dictates the need to consult the community during the 

planning process. At every stage of the planning process, the city and developers must try to engage the 

local community and provide them with an opportunity to share their concerns. As part of the planning 

process municipalities and developers must notify residents within a given distance of a proposed plan 

of the proposed changes via mail and newspaper notifications. A public hearing must be scheduled as 

part of this process and any member of the public has an opportunity to voice concerns or provide a 

written comment at the public hearing to influence any decisions on the plan. Participation in the public 

hearing gives the participant a legal right to appeal any decision made on the proposed planning issue 

within the provided appeal period. Authorities must consider, and address comments and concerns 

raised through the appeal or public engagement process. (Government of Ontario, 2019) 
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Good public participation is defined as citizen engagement where citizens have the power to 

influence decisions, can access and interact with the process (Brown & Kyttä, 2014; Webler, Seth Tuler, 

1999), despite legal mandates, researchers have widely recognized that public participation can be 

improved significantly (Kleinhans et al., 2015; Shipley & Utz, 2012). Planners and researchers recognize 

the challenges and flaws associated with the current public engagement process and each successive 

generation of urban planners have attempted to improve the process (Brown & Kyttä, 2014; Brown & 

Raymond, 2014; Kleinhans et al., 2015). Web and mobile technologies are a major point of focus among 

modern planning and GIS researchers; many have identified the web as a significant opportunity to 

improve public engagement and urban planning (Brown, 2012; Seltzer & Mahmoudi, 2012). Despite the 

consensus among researchers that the web has immense potential to improve urban planning, it has 

also been noted that the rate of adoption and the effectiveness of web technologies have been 

underwhelming (Brown, 2012; Kleinhans et al., 2015). There are numerous reasons behind the lack of 

technology adaption in this sector; two major barriers to adoption, as identified in the literature, are 

access to quality data and the ability to derive information from the data (Brown, 2012; Kleinhans et al., 

2015). Planners also need a better understanding of emerging technologies, particularly technologies 

such as social media and volunteered geographic information which has the potential to empower small 

communities.  

Public Participation GIS (PPGIS), is defined as a field of Geographic Information Science (GIS) that 

concerns itself with engaging the public using GIS platforms (Tulloch, 2008). Participation GIS (PGIS), a 

dimension of PPGIS that focuses on the collection of local knowledge using GIS platforms(Verplanke et 

al., 2016). PPGIS is defined by two dominant terms:  a) public which refers to the community at large or 

a subset of the community at large, and b) participation which broadly refers to interaction with the 

public (Cinderby, 2010). PPGIS is a field of research that evaluates the use of GIS and web solutions to 

improve public participation processes in government. Though research in PPGIS is extensive; 

researchers have criticized the concept as impractical due to organizational, societal, and technological 

constraints. As noted by Brown, the field of PPGIS has failed to be an effective tool for democratization 

due to institutional (Brown, 2012). PPGIS and planners, in general, have struggled to ensure that 

participants in the planning and decision-making process are representative of the public (Cinderby, 

2010). In recent years, the concept of PPGIS has been complemented by volunteered geographic 

information (VGI) a field of research that looks at the growing community of amateur geographers who 

generate large databases of spatial data using web 2.0 tools and applications (Verplanke et al., 2016).  
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Volunteered geographic information (VGI) is a web 2.0 trend that is characterized by a growing 

body of amateur geographers who actively contribute their spatial knowledge and observations to 

create spatial data  (Basiouka & Potsiou, 2012; Goodchild, 2007b). VGI data is a unique source of GIS 

data because some it can be geosocial, heterogeneous, time-sensitive and responsive (Rob Feick & 

Roche, 2013); the responsive nature of VGI data has made it an invaluable tool for disaster response 

(Spinsanti & Ostermann, 2013) and the application of VGI data continue to grow. Many researchers have 

compared VGI, PPGIS, and PGI data, the three forms of data share similar characteristics. According to 

the literature, VGI is primarily concerned with collection and maintenance of data for broad 

consumption while PPGIS and PGIS are topics of research concerned with empowering communities by 

allowing them to collect local knowledge and have more influence on political decisions(Verplanke et al., 

2016).  

VGI is a significant opportunity for planners and cities to tap into local knowledge and collective 

intelligence to improve decision making. There is an increased focus on leveraging data in government, 

and there is a significant desire to make policy more data-centric. VGI can play a significant role in 

enabling such initiatives, but the planning profession has been slow to adopt such solutions. As a result, 

researchers have generally spearheaded the use of VGI within the planning sector through projects such 

as GeoActon, MapChat, and AdaptNS (Beaudreau, Johnson, & Sieber, 2012; Hall et al., 2010; Minano, 

Johnson, & Wandel, 2018). The research on web 2.0 and planning based VGI tool demonstrate clear 

value as planners have the opportunity to collect data they would not have access to otherwise, 

whether it’s feedback or local knowledge (Hall et al., 2010). Studies on the use of the GeoWeb and VGI 

for use in planning make it apparent that gaps in expertise are major impediments to adoption. In 

general, planners don’t have the technical skill set or time needed to set up and deploy custom 

community engagement applications; they also don’t have the time to maintain and evaluate the data 

collected from such an application unless it is part of the project requirements (Beaudreau et al., 2012; 

Hall et al., 2010).  

Despite the growing presence of technology and internet tools in our personal lives, barriers to 

adoption of web-based tools are still abundant. Many government staff are unaware of the latest web 

tools and even fewer are aware of geoweb tools (Johnson & Sieber, 2012). Furthermore, governments 

are extremely sensitive to information management and dissemination; governments want to control 

the content that is published through their platforms and VGI inherently forces governments to 

relinquish that control (Johnson & Sieber, 2012). Governments are trusted sources of information and 
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citizens rely on these institutions to provide them with reliable information. In contrast, VGI in the 

planning context can be highly unreliable; VGI researchers have identified this as spatial uncertainty 

(Grira et al., 2010).  

 VGI data collected by cities and urban planners differ significantly from the data collected 

through popular VGI platforms such as OpenStreetMap or iNaturalist. The concept of volunteered 

geographic information has many attributes that overlap and coincide with concepts such as public 

participatory GIS (PPGIS) but there are key differences in how data is collected and used that 

differentiates participatory GIS from VGI (See et al., 2016; Tulloch, 2008). Participatory approaches with 

a GIS term have generally fallen under several umbrella terms which include public participatory GIS 

(PPGIS), participatory GIS (PGIS), geo-questionnaire and neogeographic mapping (See et al., 2016; 

Verplanke et al., 2016). PPGIS, VGI all share the idea of Neogeography and the use of local knowledge 

from non-experts to generate spatial data (Goodchild, 2007b; Tulloch, 2008; Verplanke et al., 2016).  

Facilitated VGI (f-VGI) is a term that has been used to describe a class of VGI data that is collected in 

controlled settings by study facilitators (Kalvelage et al., 2018). Seeger initially defined the concept of f-

VGI within the context of landscape planning as unstructured VGI that is provided in response to a set of 

predefined criteria (Seeger, 2008, p. 200). According to Kalvelage et al. (2018), f-VGI tends to be used in 

planning scenarios to collect unstructured citizen feedback in a controlled setting or system. However, 

the concept of f-VGI is not widely used in the research community and PPGIS is more commonly 

associated with the process of collecting VGI data from citizens to support urban planning or 

government decision making (See et al., 2016; Verplanke et al., 2016). The term f-VGI may not be 

necessary to describe VGI data gathered through PPGIS processes but it is useful to recognize 

differences in data characteristics between VGI collected on platforms such as OSM in contrast to data 

collected in PPGIS processes. Data created in community-based VGI platforms such as OpenStreetMap 

can grow rapidly to include thousands of entries and tend to stay active over numerous years with a 

living community of contributors (Goodchild & Li, 2012). Data created in PPGIS projects tend to be 

unstructured and VGI applications tend to be used as disposable tools that only exist for the lifespan of a 

government project (Beaudreau et al., 2012). VGI data collected in PPGIS processes is commonly 

characterized by spatial data in the form of a geo-referenced point, line or polygon that is coupled with 

a large unstructured body of text (Hall et al., 2010; Kalvelage et al., 2018; Seeger, 2008). Unlike 

geotagged social media or large scale VGI platforms, VGI data collected in PPGIS applications is 

constrained to an area of study and topic of interest (Kalvelage et al., 2018; Seeger, 2008). The study 

constraints inherent to PPGIS ensure that data contains less noise than other comparable data sources 
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such as geotagged social media which is characterized as geographically uneven and thematically 

dispersed (McKenzie et al., 2014; Spinsanti & Ostermann, 2013). In Chapter 4, references to VGI are 

directed at VGI data collected from PPGIS applications where data is defined by a geographic point that 

is associated with a body of texts that represents feedback and local knowledge provided by citizens. 

The processes discussed in this Chapter are also relevant to ambient VGI data collected from social 

media and other comparable sources of local knowledge. However, due to limited resources this 

Chapter looks at a constrained and focused use case for analyzing unstructured VGI using geographic 

relevance. 

4.2.2 Geographic Relevance and Contextualization 

Spatial context is an idea that has been formalized in Tobler’s First Law of Geography (Tobler, 

1970). Goodchild and Li expand on Tobler’s first law by arguing that Tobler’s first law insinuates that a 

proposed fact about a location should be consistent with what is already known about the vicinity of a 

location (Goodchild & Li, 2012). Contextual analysis of VGI data is the process of linking VGI data to 

authoritative data to enrich VGI data and support filtering and verification (Spinsanti & Ostermann, 

2013). The challenge that researchers continue to face is understanding spatial context when working 

with data that are abstractions of the real world (Hahmann et al., 2014). Linking points and polygons 

that are intended to represent trees and parks is a non-trivial task that requires complex data models. 

This issue is further complicated when working with VGI data where data is conceptualized by untrained 

individuals rather than professional organizations. Variances in data make it difficult to develop a 

consistent data processing methodology due to a large number of edge cases. Geographic relevance is 

an emerging concept in the literature that attempts to formalize these ideas and theories around 

measuring spatial relevance and automating spatial contextualization.  

Reichenbacher et al. (2016) developed a broad definition of geographic relevance that introduces the 

idea of implicit and explicit information need. It was argued that geographic relevance is a measure of 

how well spatial information matches a users’ information needs (Reichenbacher et al., 2016). The idea 

of user information need is central to the concept of geographic relevance and spatial context. In the 

real world, a person or an object is surrounded by millions of objects, whether it’s grass, trees, ponds, 

street lights, sidewalks or buildings. To a tourist the street lights, sidewalks, and buildings are likely 

objects of interest. To an ecologist the grass, trees and ponds are likely objects of interest. Spatial 

context is defined by the user and the spatial objects in an area of interest. Geographic relevance uses 

the concept of user information need or geographic information needs (GINs) (Raper, 2007) in order to 
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filter and prioritize probable objects of interest from a large list of possible objects of interest. Explicit 

user information needs refer to queries for spatial information made from a website or a mobile device. 

Herein, information need can be identified by parsing a query and identifying the location of the user 

(Reichenbacher et al., 2016). Implicit user information need refers to the identification of information 

need based on who the user is or the context in which the data was collected (Raper, 2007). GR models 

developed by Reichenbacher et al. (2016) account for these information needs through a set of metrics 

that generate a topical score, a geographic environment score, and a mobility score (Reichenbacher et 

al., 2016). Each of these relevance scores are generated by evaluating a variety of semantic and spatial 

criteria that represent relevance. 

4.2.3 Semantic Relevance 

 Semantic relevance or topicality is a measure of similarity between a body of text (document) 

and a query (Reichenbacher et al., 2016), . Semantics refers to the study of meaning; it delves into 

relations between signifiers like words, phrases, signs, and symbols and what they stand for (W. Li, 

Goodchild, & Raskin, 2014). Semantic relatedness describes the strength of association between two 

concepts, which encompasses hypernymy, hyponymy, meronymy, antonymy, synonymy, and other 

nonclassical relationships (Zhang, Gentile, & Ciravegna, 2013). The semantic relatedness of two concepts 

is commonly measured using semantic distance which is an inverse measure of the distance between 

two lexical concepts, but the process of identifying and extracting lexical concept is a non-trivial 

challenge that has been addressed in multiple research papers (Zhang et al., 2013).  Spatial semantics 

encompasses all the information related to a spatial object that describes what a given geographic 

element (Ramos et al., 2014). Semantic relevance looks at how lexically defined location references in 

documents or queries can be matched to the lexical representation of spatial entities stored in a GIS 

system (Bordogna et al., 2012; Purves et al., 2018). The following section reviews the methodologies and 

tools used to break down user queries and identify semantically relevant entities with respect to user 

queries. 

The semantic representation of GIS data is defined by elements, attributes, and topological 

relationships. For example, a polygon element with a name attribute of “Toronto” is used to represent 

the City of Toronto. The City of Toronto polygon element is located within the province of Ontario, thus 

the city of Toronto is semantically related to the province of Ontario. In semantic analysis, It is important 

to recognize that location references for the same locations can vary between organizations and people 

due to differences in how location data is conceptualized. This is a phenomenon known as semantic 
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heterogeneity and it significantly increases the complexity of evaluating semantic similarity between 

features (Laurini, 2014; Ramos et al., 2014). For example, the City of Toronto has many local nicknames 

and aliases such as “TO” or “the six” that are place names derived from popular media rather than 

authoritative data. Measuring semantic relevance requires the development of systems that can match 

location references to spatial entities while accounting for semantic discrepancies (Ballatore, Bertolotto, 

& Wilson, 2013). Gazetteers and spatial ontologies are two of the most well-documented approaches to 

matching location references in the text to spatial entities in GIS systems. 

Gazetteers precede computer technology (Graham & De Sabbata, 2015). For the purpose of this 

paper, gazetteers will refer to digital gazetteers which are stored and maintained on computers (S. Gao 

et al., 2017). Digital gazetteers are indexed databases that contain structured information about named 

places, where the place is defined as a geographic location that has been referenced and identified using 

a socially accepted name (Graham & De Sabbata, 2015). It is important to distinguish places from 

features in the context of gazetteers because it has implications on how data is stored and referenced in 

databases. All places can be features but not all features can be places; features refer to distinct physical 

elements with distinct boundaries such as parks, mountains, buildings and administrative boundaries 

(Goodchild & Hill, 2008; Graham & De Sabbata, 2015). From a GIS perspective, a feature is a spatial 

record in a database that can be referenced directly using an ID. Places can be distinct features like 

administrative boundaries or points of interest but they also encompass vague or generic location 

references such as “Southern Ontario”, “downtown” or “along Queen Street"(Derungs, Wartmann, 

Purves, & Mark, 2013). From a GIS perspective, places are not distinct database records and they can 

not be referenced using an ID unless they are linked to a feature. Gazetteers are indexed databases that 

hold information about a subset of places that have been assigned a proper name by society, 

organization or government. Records must contain a name, a spatial footprint or reference point and a 

category (S. Gao et al., 2017; Goodchild & Hill, 2008). Gazetteers lookups are relatively simple database 

operations that are effective at matching place names to locations (McKenzie et al., 2014). They are not 

effective at handling edge cases which may include ambiguous location references or the use of loca(S. 

Gao et al., 2017). Spatial ontologies are often used in GIR and GR systems to match location references 

that can not be matched by gazetteers (Purves et al., 2007; Reichenbacher et al., 2016). 

Spatial ontologies make it possible to deal with ambiguous location references found in the 

document. Ambiguity is difficult to handle because many edge cases need to be handled. The most 

common types of ambiguity found in spatial data can be categorized into three dominant categories 
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which are termed multiple references, variant name, and geoname (Neuhaus, 2018). Multiple 

references refer to instances where multiple locations share the same name, the variant name refers to 

the use of multiple names for a given location, and geoname refers to place names with multiple 

meanings (Neuhaus, 2018).  

Ontologies are defined as a representation of domain-specific knowledge that allows machines 

to work with the semantic content of an entity and handle ambiguity (Neuhaus, 2018) (Machado, de 

Alencar, Campos, & Davis, 2011). Ontologies are graph databases that are composed of classes and 

relations where classes define objects or concepts, and relations identify linkages between classes (N. Li, 

Raskin, Goodchild, & Janowicz, 2012). Classes are used to define and represent entities such as 

buildings, people or locations while relations are used to define relationships between classes to 

indicate whether objects represent the same object, similar object or the inverse object (N. Li et al., 

2012). Spatial ontologies are customized ontologies that are developed to handle unique GI challenges 

such as place name disambiguation and tracking spatial relationships such as spatial containment or 

adjacency (Fu, Jones, & Abdelmoty, 2005b).  

GIR and GR researchers use gazetteers and geographic ontologies to preprocess queries and 

documents to identify candidate place names; this process is termed as spatial query expansion in the 

literature (Bordogna et al., 2012; Fu et al., 2005b). Query expansion is an approach to running queries 

on large bodies of text where parts of the text can be used to form a query while other parts of the 

corpus simply produce noise (Krishnan, Deepak, Ranu, & Mehta, 2018). Spatial query expansion is the 

process of using a gazetteer or geographic ontology to extract location references within the text and 

identify a set of candidate locations that are relevant to the query (Fu et al., 2005b). Each candidate 

location is defined as a place footprint (p-footprint), which delineates a location reference, the set of 

candidate locations in a query defines a query footprint (q-footprint) which defines the spatial search 

extent of the query (Fu et al., 2005b). Spatial query footprints is a concept that has been used 

extensively in GIR (Acheson et al., 2018; Bordogna et al., 2012), but it has not been discussed to a great 

extent in GR literature despite its relevance to the GR problem. 

4.2.4 Spatial Relevance 

Spatial relevance is a measure of the strength of the relationship between two entities based on 

spatial and topological relationships between the two objects. Spatial relevance is a central idea of GI 

literature (Tobler, 1970) and it is a topic that has been widely explored in conflation (Haklay, 2010), 

spatial contextualization (Spinsanti & Ostermann, 2013), geographic information retrieval (Bordogna et 
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al., 2012; Purves et al., 2007) and geographic relevance (Reichenbacher et al., 2016). Reichenbacher et 

al. (2016) define spatial relevance as an aggregate measure of four metrics, which are spatiotemporal 

proximity, directionality, cluster, and co-location. The use of directionality, cluster and co-location 

measures for spatial relevance analysis are novel to the field of geographic relevance and the metrics 

were first proposed by  Reichenbacher et al. (2016). 

Spatio-temporal proximity is defined as a measure of Euclidian (spatial) distance or the network 

(spatiotemporal) distance between two spatial entities. Spatial proximity is a common measure of 

spatial relevance that has been used for the automated conflation of VGI data (Spinsanti & Ostermann, 

2013), VGI data matching (McKenzie et al., 2014) and GIR research (Bordogna et al., 2012). Directionality 

is a concept that is specific to mobile computing, and it is closely related to spatiotemporal proximity. 

The directionality metric infers that a mobile user is more interested in locations that are in the user’s 

current direction of movement (Reichenbacher et al., 2016). Directionality is a metric of geographic 

relevance that is specific to navigation using mobile devices and Reichenbacher et al. (2016) describe the 

directionality metric as a desirable measure of relevance rather than an essential measure of relevance. 

The cluster metric assumes that spatial objects found in a large cluster of related entities are more 

relevant to the user than objects found in a small cluster (Reichenbacher et al., 2016). This metric 

assumes that the size of the spatial cluster indicates spatial importance, and an important entity is more 

likely to be relevant to user information needs. Spinsanti and Ostermann describe this concept as the 

social confirmation heuristic, which is a pertinent idea when validating VGI data collected using social 

media (Spinsanti & Ostermann, 2013). Clusters can be detected using several well-established 

algorithms such as k-means clustering (Kanungo et al., 2002) or GDBSCAN (Sander et al., 1998). The co-

location metric assumes that given an entity belonging to a given category, it is probable to find an 

entity belonging to the second category within a defined distance of the first category (Reichenbacher et 

al., 2016). This rule is comparable to the cluster rule, where entities that are co-located with known 

objects of interest are considered to be more relevant to the user’s information needs. Several 

algorithms exist to measure co-location of spatial entities which include cluster based rules and 

classification based rules (Huang et al., 2004). 
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4.2.5 Score Aggregation 

 There is a broad set of literature that evaluates the process of semantic and spatial score 

aggregation, but there is little consensus among the literature  (Bordogna et al., 2012; Koukoletsos et al., 

2012; Purves et al., 2007; Reichenbacher et al., 2016; Spinsanti & Ostermann, 2013). GIR platforms such 

as SPIRIT and Geo-Finder generate isolated semantic and spatial scores which are aggregated using a 

weighting scheme (Bordogna et al., 2012; Purves et al., 2018), Spinsanti and Osterman also developed 

semantic and spatial score aggregation module in order to automate contextualization of VGI data 

(Spinsanti & Ostermann, 2013). The geo-retrieval module in GeoFinder parses user queries into two 

subsections; one is the content base which consists of content keywords and the other is the spatial 

content which includes a list of spatial keywords. The Geo-Retrieval module returns two scores which 

are the content retrieval score and the spatial retrieval score. These two scores are combined using 

asymmetric or symmetric aggregation schemas. The asymmetric aggregation model runs the content 

condition evaluation and the spatial condition evaluation in sequence. Documents are evaluated to 

verify if the document matches the content conditions of the query, only documents that meet the 

content conditions of the query are selected for spatial evaluation. This can create a result set where 

thematically irrelevant and spatially relevant documents are eliminated. In contrast, symmetric 

aggregation evaluates content conditions and spatial conditions in parallel and then creates an average 

score of the two to retrieve relevant documents. This means that spatially relevant documents may be 

retrieved even if the document content is not relevant to the query. (Bordogna & Psaila, 2008) 

The SPIRIT search engine handles queries by generating a document spatial similarity score 

which is a composite score of textual and spatial document scores. This is handled by comparing four 

key metrics. A footprint similarity score is produced to compare each document footprint to the query 

footprint. A document spatial similarity score is produced based on the footprint similarity score of all 

footprints in a document. Document spatial similarity scores are combined with the textual similarity 

score to provide the general geographic relevance score. The footprint similarity score is calculated 

using multiple metrics which include inside analysis, near analysis and direction analysis. (Purves et al., 

2018) 

• Inside: (Binary) Evaluates if the query footprint is inside the document footprint.  

• Near: (Distance Decay Function) Calculates a score based upon the distance between 

the centroids of the two footprints.  
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• North-of, South-of, East-of, West-of: An evaluation of the direction or angle between 

the centroids of query footprints. 

This system uses the best match approach to determine a document’s spatial relevance, the footprint 

within the document with the highest similarity score is used as the document’s similarity score. Both 

the textual relevance score and the spatial relevance score are first normalized to a 0 to 1 score before 

being combined. (Purves et al., 2007, 2018) 

4.3 Methodology 

Herein we describe UrbanContext, a prototype application that automatically contextualizes VGI 

data. UrbanContext is a data processing application that detects patterns within the VGI data set to 

compare and match VGI features to features in the framework database. The first section of this 

methodology will describe the algorithm used to process VGI data. The second section will describe the 

software and database architecture developed to support the UrbanContext algorithm. The third section 

discusses a case study of the application using a sample data set from the City of Kitchener. The 

UrbanContext application is a data processing application that accepts VGI data and framework data as 

inputs and produces a set of foreign ID tables as output. The GR models that are developed in this thesis 

are expected to be generally relevant for GIS analysis of unstructured data. However, the use case for 

the UrbanContext application is primarily envisioned for GIS analysts who support Urban Planning 

applications. The UrbanContext application can also be connected to web applications that allow non-

technical users such as policy planners and councillors to interact with the UrbanContext application and 

visualize results. A sample web application named UrbanContext Viz is demonstrated alongside the 

UrbanContext application in order to visualize results and review outputs. Currently, technology savvy 

planners and GIS analysts collect, transcribe, analyze, map and summarize citizen feedback in a report 

using an ad-hoc combination of software and manual processes. This process could include the use of 

Excel for classification, the use of ArcGIS for mapping and the use of Google Earth or web maps for 

background research. Policy planners and councillors tend to interact with summary reports about 

community feedback rather than the community data directly. The UrbanContext application is intended 

to assist planners and GIS analyst with exploring and summarizing content but it can also be used to 

create applications and visualizations that could potentially be used by policy makers and councillors 

directly to better understand complex planning issues. It is expected that more people will use and 

review data if it is easier to explore and summarize information. 
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The applications demonstrated in this chapter need to be manually implemented by a GIS analyst, but 

the design of these applications provide a blueprint for the development of a publicly accessible 

application. UrbanContext can be deployed by a GIS analyst by loading framework data sets and 

unstructured VGI data into the UrbanContext application. The GIS analyst also has to provide the 

UrbanContext application with three threshold distance values in order to calibrate the system. The 

threshold distance values are described in greater detail in sections 4.3.4, 4.3.5 and 4.3.7. The general 

assumption is that the GIS analyst is familiar with the study extent and input data and identifies 

parameter values based on their understanding of the study context. Once the input data is loaded into 

UrbanContext and threshold values are defined, UrbanContext creates a gazetteer using framework 

data. The application uses the gazetteer and the UrbanContext geographic relevance model to match 

VGI data points to framework features. The outputs of this analysis are provided as a foreign ID table 

that contains the ID of VGI features and IDs of framework features and their associated relevance 

scores. A GIS analyst can use the foreign ID table and the associated relevance scores to generate 

summary statistics, maps and figures about the VGI data set and their associated framework features. 

The UrbanContext Viz application is a web application built on ESRI’s ArcGIS JS 4 API and it makes is 

possible for non-technical users to interact with the UrbanContext analysis results. It is preconfigured to 

support specific visualizations that are pertinent to a case study where VGI data consists of geotagged 

comments that can have multiple location references. The UrbanContext application matches each VGI 

data point to multiple features in the framework database using the GR analysis model. The 

UrbanContext Viz application allows users to interactively click on each VGI data point and visualize all 

the framework features and locations that are discussed in the selected VGI comment. This application 

allows analysts and data reviewers to quickly visualize and review the locations and objects that are 

important to each citizen that contributed feedback. It also makes it possible to review individual 

relevance and match scores generated by the UrbanContext analysis. 

The methodology for UrbanContext builds on metrics defined in GR literature, particularly 

measures of topicality, spatial proximity, cluster, and co-location (Reichenbacher et al., 2016). This 

methodology expands on existent approaches and proposes the novel use of query footprints (q-

footprints) as defined by Purves et al. (Acheson et al., 2018; Purves et al., 2007) to evaluate geographic 

relevance between unstructured and ambiguous VGI data and framework data. The use of query 

footprints has been proven to be an effective construct for disambiguating vague spatial references in 

web documents (Fu et al., 2005b; Purves et al., 2007, 2018). This methodology describes an approach 

for using q-footprints with GR metrics to match VGI data to framework data using many to one 
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relationships. The following sections describe the methodology using sample data from the case study 

discussed in section 4.4. These samples serve as examples to explain general concepts about the 

methodology. The specific functions and code used to implement the methodologies discussed in the 

following sections can be found in Appendix A. 

4.3.1 UrbanContext 

The UrbanContext application is a back-end data processing application that links VGI data to 

framework data using GR metrics. The UrbanContext application is solely focused on data processing but 

it is possible to integrate the UrbanContext modules into web applications to further automate data 

processing and to allow data visualization. This implementation of UrbanContext does not have an 

integrated data visualization module so output data must be visualized and verified using mapping 

visualization applications such as QGIS, ArcGIS Pro or ArcGIS JS. This implementation also relies heavily 

on VGI data and framework data from the City of Kitchener but the UrbanContext application can be 

used in other study contexts. 

The UrbanContext application is built using Postgres with the PostGIS extension and Python with 

the NLTK extension and the ogr2ogr extension. Postgres is a feature-rich open-source relational 

database system that adheres to SQL standards, PostGIS is a spatial extension for Postgres that makes it 

possible to manage, manipulate, and analyze spatial data using SQL. The UrbanContext platform uses 

Postgres to store framework data and VGI data and to store output datasets. The application uses 

PostGIS for all spatial analysis function such as distance measurements or cluster creation.  

The NLTK library, also known as the natural language toolkit, is a Python library that makes it 

possible for programs to work with human language data. It bundles lexical resources such as WordNet 

and supports language processing functions such as parsing, tokenization, tagging, and more. The 

UrbanContext application uses the NLTK WordNet interface to generate the topicality score by 

measuring semantic similarity scores between spatial concepts. The ogr2ogr library is also used in the 

UrbanContext platform to automate the management of spatial data such as downloading spatial data 

into Postgres from Open Data Portals. 

 The specific implementation of the UrbanContext application includes 16 PL/SQL functions to 

handle custom spatial calculation, two python functions to handle NLTK functions and data 

management, one materialized view for the gazetteer and a set of materialized views to handle data 

processing over multiple stages of the GR analysis process. Currently, the UrbanContext application is 
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not a fully automated system because full automation would require the development of numerous 

additional modules focused solely on data management. Development of these modules is ancillary to 

the purpose of this thesis. The exact implementation and functions used in these modules are discussed 

in the following sections of this methodology. Discussing the assumptions made for various metrics will 

clarify the implementations of different UrbanContext functions. Code samples can be found in 

Appendix A and table outputs can found in Appendix B for further reference.  

The UrbanContext platform relies on two main categories of data which include VGI or VGI data 

and reference data. The VGI data is the data set being analyzed by the UrbanContext platform it is 

considered to be the input data for the UrbanContext platform. The VGI or VGI data must consist of a 

geometry which can be a point, line or feature and a body of text that makes references to locations in 

the vicinity of the geometry. This thesis focuses on the analysis of VGI data which has a defined study 

context and topic of study but comparable sources such as geotagged Twitter or Flickr data can also be 

used. Reference data is authoritative spatial data which represents key mapping features such as roads, 

forests, water bodies and more. Reference data is the data that the input data (VGI) is being compared 

to, the reference data is often referred to as the target data in this methodology. The reference data is 

selected based on the topic of study and generally contain data that could provide context for the study. 

For example, a study on municipal trails could include data sets such as trails, roads, bike lanes and 

intersections while a study on deforestation may contain layers such as forests, habitats, and 

waterbodies. The subject matter expertise primarily drives the selection of the reference data, 

The UrbanContext application takes the VGI data as input data set and analyzes the data by 

comparing each VGI feature to framework (reference) data. The UrbanContext application looks for 

location references in the VGI data, and then it looks for features in the framework database that match 

the criteria of the location references. The output of the UrbanContext analysis is a foreign key table 

that links VGI data points to individual features in the framework database using many to one 

relationships. The foreign key table can then be used to organize and filter the VGI data based upon links 

to the framework data. The output foreign key table can then be used to identify key locations of 

concerns in the framework database based on comments in the VGI data.  

4.3.2 Architecture 

The UrbanContext application relies on five main metrics to analyze the input VGI data and links 

the data to the reference framework data. The five metrics are query footprints (q-footprints), topicality, 

spatial proximity, cluster, and co-location. The details of these metrics are described in subsequent 
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sections. The UrbanContext application is composed of four main sections that connect. The first section 

is the storage tier that contains reference framework data and input VGI data. The second section is the 

analysis metadata section, this includes generated data that is needed for the analysis such as a 

gazetteer and VGI cluster detection. The third section is the analysis section which includes modules to 

create q-footprints from the input VGI and to measure geographic relevance using co-location, 

topicality, proximity, and cluster. The last tier is the output tier which generates foreign id tables linking 

each VGI data points to a set of unique features in the framework database. The foreign id tables are 

referred to as footprints, footprints are foreign key tables that link a single input data point to multiple 

location references. Each record in the foreign key table represents a place reference and is referred to 

as a p-footprint. The entire output foreign key table is referred to as a GR footprint because it 

represents a set of geographic relevant place references for each VGI data point. Figure 4.1 below 

represents the UrbanContext architecture, as described above, the application starts using a database 

with VGI data and framework data and moves through the geographic relevance modules to produce a 

final GR footprint which can then be visualized in QGIS or ArcGIS JS. The analysis process produces 

several footprint tables that link each VGI data point to a set of location references.  

 

Figure 4.1: UrbanContext architecture depicts how VGI data is processed using GR metrics. 

This assessment model uses q-footprints to pre-process unstructured data into manageable 

chunks of information that can be processed using geographic relevance criteria. The geographic 

relevance criteria used in this thesis are topicality, spatial proximity, cluster, and co-location. The inputs 
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to this assessment model include a framework database and an VGI data set and the output of this data 

set is a list of geographically relevant features which is referred to in this thesis as a GR-footprint. A 

place footprint (p-footprint) is a term that specifies the geographic location of a location reference (Fu 

et al., 2005b). A  footprint (q-footprint) is a term that describes the geographic extent of a given query 

as defined by multiple location references, the q-footprint can be composed of multiple p-footprints (Fu 

et al., 2005b). This thesis uses two additional concepts of fuzzy footprints and GR footprints to describe 

concepts that are used in the GR assessment model. A fuzzy footprint is described in this methodology 

as a set of p-footprints that have been matched to spatial framework features without being validated 

using GR metrics. The GR footprint is a set of p-footprints that have been matched spatial framework 

features using GR metrics; the GR-footprint is a set of p-footprints that are geographically relevant to 

the input feature. As shown in the UrbanConext architecture diagram, creation of GR-footprints is a 

multi-step process. Framework data is used to generate a gazetteer. Each VGI data point in the input 

data set is put through a disambiguation process where location references within the VGI comment are 

identified using the gazetteer. Location references identified by the gazetteer are recorded as p-

footprints generate a single q-footprint for the VGI data point. The location references identified in the 

p-footprint are matched to the proximity analysis module. This module finds features in the framework 

data that match the description of the p-footprint and filters out features based on spatial proximity to 

the input VGI point. The ranking process generates a set of candidate features for each p-footprint. The 

cluster analysis module calculates the cluster score of framework features. The proximity score and 

cluster score of candidate features are combined to create an aggregate score that is used to identify a 

single candidate feature that best matches a p-footprint based on spatial relevance and cluster 

relevance. This analysis is repeated for every footprint in the q-footprint to generate a fuzzy footprint 

for the VGI point. Topicality and Co-location are calculated between layers. The co-location module 

generates a co-location relevance score for each framework data set based upon co-location patterns 

between the VGI data and the framework data. The topicality score is generated between the VGI data 

layer and framework layers using an ontology that evaluates the similarity of semantic descriptions of 

VGI data and framework data. The co-location and topicality scores are attached to p-footprints in the 

fuzzy footprint to create aggregate GR scores for each p-footprint. Any p-footprints with negative GR 

scores are then filtered out, and the remaining p-footprints are ranked to create the GR-footprint for 

each VGI data point. A GR-footprint is generated for each point in the VGI data set. The resultant data 

set is a table that links VGI data to framework data based on geographic relevance.  
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The result can then be used to filter, categorize, and summarize the VGI data set based on 

relationships with the framework data. The following sections describe the specific implementation of q-

footprints, topicality, spatial proximity, cluster, co-location, and GR scores. UrbanContext, the data 

processing application presented in this thesis, is also discussed in this section. The UrbanContext 

application is an example of how the metrics in this thesis can be implemented in a software system, but 

the metrics discussed in this thesis can be used in other software systems using different 

implementations. For explanation purposes, this thesis has coupled the discussion of GR metrics with 

the software implementation of UrbanContext to better illustrate results and methodologies. It is 

important to note that this methodology is only concerned with discussing approaches for measuring GR 

and generating GR-footprints. The visualization and interpretation of the results are up to the user, but 

section 4.5 will show examples of how to visualize and interpret the data using tools like Excel, QGIS or 

ArcGIS JS. 

This thesis made use of the ArcGIS JS 4 API and ArcGIS Online to visualize results. Every layer in 

the framework database was loaded into ArcGIS Online using the shapefile importer. ArcGIS Online was 

also used to style and visualize layers. Layers were styled based on feature types such as parks or trails. 

The VGI data set was joined to the GR footprint foreign key table so that every VGI data point had an 

attribute that contained a set of foreign keys that linked to the reference data. The joined VGI table was 

then uploaded to ArcGIS Online. ArcGIS JS 4 was used to load the ArcGIS Online layers into a web map 

that allows users to click on VGI data points and see the associated GR-Footprint. The interactive 

analysis is supported by a click event listener that listens to click events, pulls the list of foreign keys 

from the VGI data and filters the reference data to only show geometries that are related to the VGI 

point. The ArcGIS JS web application is hosted using Glitch, a free JavaScript sandbox that is available 

online. 
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Figure 4.2 The UrbanContext Viz web application, found at https://urban-context.glitch.me/ 

 

  

Figure 4.3: Users can click on VGI data points in UrbanContext Viz to display relevant locations. 

  Figure 4.2 and Figure 4.3 illustrate how users can interact with the web based UrbanContext Viz 

application to visualize individual VGI points their associated locations. Different features such as 

streets, parks and bike lanes are highlighted as users interactively select VGI data points that discuss 

different features and locations. Users can click on individual framework features to see a popup with 

the GR score assigned for the active VGI point and the selected framework feature. Planners or GIS 

analysts can use this application to review individual comments while the application highlights valuable 

contextual information about the locations that are being referenced in a comment. This visualization is 

particularly helpful if the Planner or GIS analyst is not familiar with the location that is being studied in 

the VGI dataset.  

https://urban-context.glitch.me/
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4.3.3 Query Footprints 

Query expansion is a data processing methodology that extracts location references from an 

unstructured corpus of text (Krishnan et al., 2018) to generate a set of candidate location references 

that are referred to as place footprints (p-footprints) (Fu et al., 2005b). Location references are 

extracted from a body of text using a gazetteer or ontology (Fu et al., 2005b). Creating an ontology is 

beyond the scope of this thesis; therefore, a gazetteer was generated using framework data to support 

query disambiguation.  Traditional gazetteers are simple data structures that are composed of three key 

elements; a place name, a place type, and a footprint (Machado et al., 2011). This methodology 

attempts to identify relationships with individual framework features. Therefore, the gazetteer built in 

this thesis has a data structure that makes it possible to trace p-footprints back to a source feature or 

layer. The custom gazetteer is generated using materialized views that aggregate place names from the 

framework data and it includes; a place name, the source table, the source column, the feature ID and 

the place name category. The gazetteer place names can be layer names, attribute categories or 

individual feature names from any framework data set in the framework database, the exact SQL query 

can be found in Appendix A. 

Table 4.1: A sample of the gazetteer table that makes it possible to trace source features 

id table column place name feature id category 

1949 parks 
 

Parks 
 

Layer 

986 parks park PAIGE PARK NATURAL 

AREA (FLOOD PLAIN) 

1868 Feature 

1947 parks park DUKE PARK 1873 Feature 

1705 roads street_nam HICKORY HOLLOW 
 

Attribute 

1704 roads street_nam BLACKHORNE 
 

Attribute 

 

The VGI data points are disambiguated using a join operation with the gazetteer that generates 

a set of p-footprints for each VGI data point. Once p-footprints are identified, GR metrics are used to 

match the VGI point to individual layer features with unique Ids.  Each p-footprint is classified in one of 

three categories which delineate the granularity of the place reference. The three classifications are a 

layer, attribute, and feature, and they match the classification of gazetteer entries. The layer 

classification is used for p-footprints that reference spatial layers by name or category. This can include 

references such as “trails”, “parks” or “Starbucks Locations”. Attribute refers to p-footprints that 
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reference a category value within a layer such as “highways” in the streets layer or “banks” in the points 

of interest layer. Feature refers to p-footprints that reference distinct spatial objects that have a distinct 

geometry and can be uniquely identified, feature p-footprints can be directly referenced to spatial 

database records with a unique ID. The classification of each p-footprint identifies the level of ambiguity 

associated with each p-footprint, where layers are the most ambiguous footprint, and features are the 

least ambiguous. As shown in Table 4.2, as the granularity of the matched p-footprint increases, the 

number of spatial features that can be matched to p-footprints decrease. In some cases, GR metrics are 

not needed to match location references in VGI data to individual features. The GR metrics used to 

process p-footprints are also used to validate p-footprints as spatial relevance metrics can detect 

location reference anomalies based on spatial criteria rather than semantic criteria. The q-footprint acts 

as a filter to reduce noise, but measures of relevance are generated by the GR metrics described in the 

following sections. 

Table 4.2: Hierarchy of feature matches 

Category Ambiguity Example Candidate Features 

Layer 3 Streets Any feature within the Streets layer 

Attribute 2 Highways Any feature within the Streets layer 
classified as a highway 

Feature 1 CN Tower Single Feature -> CN Tower, Toronto, 
ON, CA 

 

The figures below illustrate how a sample comment from the VGI data set is disambiguated 

using the gazetteer described above. The comment in Figure 4.4 references multiple streets and 

features. Query disambiguation extracts seven location references from the comment text and creates a 

table of seven p-footprints, as shown in Table 4.3. 
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Figure 4.4: Example VGI data point provided by the City of Kitchener 

Location references identified within the comment by the gazetteer are highlighted in yellow in the 

comment below.  

“The entrance to the trail just east of Belmont on Gage is very narrow, making a right turn onto 

the trail from Glasgow dangerous. Glasgow has a slight slope at that point so braking is 

required, and there is often traffic, making it unsafe to perform” 

Table 4.3 illustrates how the highlighted location references below are stored and classified by the 

UrbanContext system. For every identified location reference, the UrbanContext system stores the 

source table, the source column and the type of location reference of the gazetteer place name. 

Table 4.3: A sample p-footprint that has been generated for the comment in Figure 4.3 

Source table Source column place name Source category 

roads street_nam BELMONT Attribute 

roads street_nam EAST Attribute 

roads street_nam GAGE Attribute 

roads street_nam GLASGOW Attribute 

trails 
 

trails Layer 

trails 
 

trail Layer 
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The subsequent GR metrics described below use the data from Table 4.3 to create GR metric 

scores for proximity, cluster, topicality, and co-location. Metrics such as proximity and cluster are 

evaluated between the VGI point and candidate features while metrics such as topicality and co-location 

measure relationships between the VGI data layer and source layers of place names. The process of 

disambiguating comments and generating GR scores is repeated for every point in the VGI data set. 

4.3.4 Spatial Proximity 

Spatial proximity is an essential measure of relevance where an entity that is beyond a given 

threshold distance from the location of interest is considered irrelevant (De Sabbata & Reichenbacher, 

2012). The threshold distance that is used to determine if a feature is relevant is a fuzzy concept that 

varies based on a user’s perspective and the study extent (Bordogna et al., 2012). In this methodology, 

the spatial proximity score is measured using an inverse distance function, and it is used to identify 

candidate features based on p-footprints. The assumptions used to score spatial proximity are; spatial 

proximity is highest when the distance between two objects is 0, relevance decreases as distance 

increases (Reichenbacher et al., 2016). The spatial proximity score is 1 when the distance is 0, and the 

spatial proximity score is 0 if distance is greater than the threshold. The formula below is a measure of 

spatial proximity that generates a normalized score between 0 and 1. Given two spatial entities C and D, 

the spatial proximity score is as follows. 

SPCD = (distmax – distCD )/ distmax 

SPCD = Spatial proximity score between feature C from layer A and feature D from layer B 

DistCD = Distance (meters) between feature C from layer A and feature D from layer B 

distMAX = The threshold distance (meters)  

 This function assumes that spatial relevance follows a linear distance decay pattern, this 

assumption follows the pattern of contextualization and spatial matching literature (McKenzie et al., 

2014), but spatial relevance may follow an exponential distance decay function as well (De Sabbata, 

2013). The threshold distance can be set as a parameter for each layer based on the density of features 

and distance between them. This approach for threshold distance creation is based on the assumption 

that some spatial features occur less often than other spatial features (Bordogna et al., 2012). This 

methodology makes use of a single threshold distance that is set based on the study context and the 

topic of interest in the VGI data set. The data set is analyzed in this thesis is an VGI survey on trail use; 
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this thesis assumes that a reasonable threshold distance for the given data set is 1000 meters which are 

commonly described as the ten-minute walking distance for most pedestrians.  

 The functions needed to measure spatial proximity for individual p-footprints varies based upon 

the type of p-footprint being analyzed. As noted in section 4.3.2, p-footprints can be categorized as a 

layer, attribute, or feature. If the p-footprint is a layer the spatial proximity function is run against every 

feature in the source table, and the closest feature is assigned the highest proximity score. If the p-

footprint is an attribute, the spatial proximity function is run against feature in the source table that is of 

that category and the closest feature with the provided attribute is assigned the highest spatial 

proximity score. If the p-footprint is a feature, spatial proximity does not need to be evaluated.  

SELECT (1000 - st_distance(geom,geom)/1000 as distance 
FROM  table_schema.table 
WHERE column=attribute 
 

The query above is an example of how the spatial proximity score is generated for each p-footprint; this 

methodology relies on the st_distance function provided by PostGIS to calculate the distance between 

entities. Features with high proximity scores are identified as candidate entities; candidate entities are 

stored and passed on to subsequent functions for further GR analysis. Each p-footprint can be matched 

to multiple candidate entities. In this methodology, three entities with the highest proximity scores are 

selected for each p-footprint. The three candidate entities are filtered down to a single candidate entity 

by combining the proximity score with the cluster score described in the following section. 

4.3.5 Cluster 

Cluster is described by De Sabbata and Reichenbacher (2012) as an area of importance that 

increases the importance of features contained within; the size or density of the cluster can be 

considered when assigning importance to clusters. The cluster metric is a spatial data metric that assigns 

importance to spatial groupings of features. As noted by Spinsanti and Ostermann “The Clusterer 

emulates the social confirmation heuristic and searches for patterns and confirmation in the VGI” 

(Spinsanti & Ostermann, 2013, p. 40). In this thesis, the cluster metric evaluates how many features in 

the target layer exist within clusters of the input layer with the assumption that features within clusters 

of the input layer are more relevant to features in the input layer. The cluster score is assigned to 

individual features based on their presence within a cluster and the size (by feature count) of the cluster 

that contains the feature. The importance of the cluster can also be measured by feature density rather 

than the pure count of features. The cluster score (Cl) is measured by generating a set of clusters from 
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an input layer using the PostGIS DBSCAN algorithm. Each cluster is assigned a normalized score based on 

the size of the cluster in comparison to other clusters in the layer where the largest cluster in the layer is 

given a score of 1 and every other cluster in the layer is assigned a relative score between 0 and 1. 

Cluster scores are assigned to target layer features by checking which cluster contains the target layer 

feature using the PostGIS st_intersects function. If a target feature intersects multiple clusters, the 

largest cluster score is assigned to the target feature. 

ClDA = ClDA-intersect/ClA-max 

ClRDA = Cluster score for feature D from layer B for clusters in layer A 

ClDA-intersect = Size of the largest cluster in layer A that touches feature D from layer B 

ClA-max = Size of Largest Cluster in layer A 

The formula above shows how normalized cluster scores are generated for clusters in the input layer. 

The calculated cluster score is then assigned to the target layer features that intersect the given cluster. 

This methodology leverages the DBSCAN (density-based clustering of applications with noise) algorithm 

to identify clusters within VGI data. The DBSCAN algorithm is used in GR and VGI literature to perform 

relevance analysis (De Sabbata, 2013; Spinsanti & Ostermann, 2013), and it is widely implemented in 

spatial analysis packages like PostGIS. DBSCAN is particularly effective for this use case because it 

requires minimal domain knowledge of the data; it can discover clusters of arbitrary shape, and it is 

efficient on large databases (Sander et al., 1998).  

The cluster score is assigned to candidate features that are identified using the spatial proximity 

function. The spatial proximity function identifies three candidate features for every p-footprint, the 

cluster metric is assigned to each candidate feature, and an aggregate score of spatial proximity and 

cluster is generated in order to select most geographically relevant feature for a given p-footprint. Once 

a feature is matched for a given p-footprint, co-location and topicality scores are evaluated for the p-

footprint to determine the overall geographic relevance of the matched feature.  

4.3.6 Topicality 

Topicality is an essential measure of relevance that determines if a given entity is relevant or 

irrelevant in a given context (De Sabbata & Reichenbacher, 2012). In this methodology, topicality is a 

measure of semantic relevance between layer type. As noted by De Sabbata “topicality is defined as the 

extent to which a piece of information …concerns the topic the user is interested in”(De Sabbata & 
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Reichenbacher, 2012, p. 1497). Thus, a measure of topicality is generated between two entities, a topic 

of interest and a targeted piece of information. The topicality metric is an inverse measure of semantic 

distance, which is measured using ontologies such as WordNet. Ontologies are graph data structures 

that track relationships between words (Machado et al., 2011). Semantic distance is measured by 

counting the number of nodes needed to traverse from an input word node to a target word node. This 

methodology leverages the semantic similarity function provided in the NLTK WordNet library (Liu et al., 

2012; Pedersen et al., 2004). The semantic similarity function accepts two words as inputs and returns a 

score between 0 and 1, where 1 indicates that the two words are the same and a score of 0 indicates 

that the two words are unrelated. An example of the python functions used to generate topicality scores 

is shown below. 

from nltk.corpus import wordnet as wn 

park = wn.synset(‘park.n.01’) 

trail = wn.synset(‘trail.n.01’) 

Park.path_similarity(trail) 

In this methodology, topicality scores are calculated for framework layers and then scores are 

joined to individual p-footprints. The table of topicality scores between the VGI data layer and the 

framework layers are shown in Table 4.4. Tags, created by the study author, are used to ensure that the 

NLTK library matches the layer with an appropriate concept in the WordNet library. When multiple tags 

are available for a layer, the best performing tag is used to measure topicality.  

Table 4.4 The set of pre-processed topicality scores used for GR ranking 

Input Table Input Tags Target Table  Target Tags Topicality Score 

trail_survey trail trails trail 1 

trail_survey trail parks park 0.083 

trail_survey trail roads road 0.125 

trail_survey trail bridge bridge 0.111 

trail_survey trail railway_lines railway 0.062 

trail_survey trail cycling_infrastructure cycle, bike 0.076 
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 The scores above are attached to p-footprints from the Q-footprint analysis using a layer join 

that matches the target table of the topicality analysis to the source table of each p-footprint. The NLTK 

library supporting topicality analysis is an external library that can not be calibrated. For example, 

according to the NLTK library, bridges are more strongly related to trails than parks. Due to the 

complexity of the English language, it is not feasible to adjust for all the semantic nuances that can be 

identified in an unstructured body of the text. As a result, some anomalies should be expected in the GR 

analysis result due to inconsistencies in the implementation of the topicality metric.  

4.3.7 Co-location 

The co-location pattern is defined as a set of spatial features that are often located in close 

geographic proximity (Deng et al., 2017; Huang et al., 2004). Co-location rules infer the presence of one 

feature based on the presence of another feature; co-location rules are generated by mining spatial data 

to detect patterns (Barua & Sander, 2014; Huang et al., 2004). Co-location looks at patterns such as 

resteraunts being located near movie theaters or parks being located near rivers. Co-location assumes 

that given an entity in the first category, it is probable to find an entity belonging in the second category 

within a defined distance (Reichenbacher et al., 2016). Co-location rules do not necessarily infer the 

correlation between two observed entities; rather, they are formalizations of patterns that are observed 

in the data. Co-location rules can be detected using statistical approaches or data mining approaches 

(Barua & Sander, 2014; Huang et al., 2004). This methodology uses a distance-based data mining 

approach to identify co-location patterns. Distance-based data mining approaches for identifying co-

location have been discussed in several studies (Deng et al., 2017; Huang et al., 2004); many proposed 

approaches rely on the use of a user-defined threshold distance (Deng et al., 2017). This thesis 

implements a simple data mining heuristic to identify co-location rules between an input layer and a 

target layer using a user-defined threshold distance. Co-location between two layers (A,B) is measured 

as the number of features in A that are within a predefined distance of any feature in B divided by the 

total number of features in A. The input data set used in this methodology is the City of Kitchener VGI 

data set and the target layers are the framework data. The co-location mining heuristic is evaluated 

between the VGI data set and every framework layer. This methodology measures the percentage of 

features in the VGI data set (A) occurs within a distance (d) of a given framework layer (B). The co-

location score is a percentage score that ranges between 0 and 1. Like topicality scores, co-location is 

measured between layers rather than individual features.  
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CoAB = NAB(d)/NA 

CoAB = Co-location score between layer A and B 

NAB(d) number of features in layer A within d (distance) of layer B 

NA number of features in layer A 

The formula above is used to generate a ratio that is representative of co-location patterns 

between two layers, high co-location pattern (1) indicates that features from one layer can often be 

found near features from another layer. The co-location scores for different tables are assigned to p-

footprint records using a join on the p-footprint source table and the co-location target table. 

 

Table 4.5 Co-location scores between the survey data and framework data 

Input Layer Target Layer Co-location 

trail_survey trails 0.584158 

trail_survey parks 0.659406 

trail_survey roads 0.435644 

trail_survey bridge 0.069307 

trail_survey railway_lines 0.089109 

trail_survey cycling_infrastructure 0.138614 

 

This co-location mining heuristic is a simplification of the methods proposed by other research 

groups such as Huang et al. or Deng et al. The focus of this thesis is to evaluate the validity of co-location 

as a GR metric. Therefore a simplified and less accurate co-location mining heuristic is reasonable for 

this use case. The following section discusses the approach used to combine the GR metrics described in 

the previous sections in order to generate a GR footprint. 

4.3.8 Geographic Relevance Scores 

The previous sections have discussed the assessment model used to generate GR footprints. The 

previous sections have discussed how Q-footprints are generated for VGI data and how GR metrics are 

applied to p-footprints. The previous sections have discussed the reasoning behind the four GR metrics 

which are topicality, spatial proximity, cluster, and co-location. This section discusses the process of 
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combining the normalized scores generated by the four GR metrics. The previous sections have already 

discussed a significant part of how GR scores and GR footprints are generated; this section briefly 

discusses the logic and literature behind the approach taken in this methodology and it presents a 

formula for GR score generation that can be implemented in other systems. 

The main problem discussed in this section is the aggregation of GR metric scores; several 

studies show that different weighting schemas can significantly affect the accuracy of relevance ranking 

systems (Bordogna et al., 2012; Koukoletsos et al., 2012). For this methodology, a general geographic 

relevance score can be generated by calculating the mean of all four scores as implemented in the 

GeoFinder system (Bordogna et al., 2012). However, an equal weighting of scores may overemphasize 

the importance of spatial relevance metrics such as proximity, cluster, and co-location (De Sabbata & 

Reichenbacher, 2012). A simple combination of metrics would also ignore the distinction between 

metrics that are mandatory for determining geographic relevance and metrics that are desirable for 

determining geographic relevance (De Sabbata & Reichenbacher, 2012). In this thesis, key relevance 

metrics are the Q-footprint, topicality, and spatial proximity. The q-footprint is the most important 

metric for determining relevance; it determines if two features have any semantic relevance, and it 

extracts important location from unstructured bodies of text. Topicality is another key semantic 

relevance metric that must be positive for two features to be relevant to each other. A topicality score 

of 0 indicative of significant differences between the data sets being compared. Spatial proximity is 

another important metric for determining relevance, particularly geographic relevance. Features that 

exist beyond a threshold distance of a feature are likely not relevant to the study (De Sabbata & 

Reichenbacher, 2012; Deng et al., 2017).  In contrast, metrics such as cluster and co-location are 

indicative of geographic relevance, but they are not a prerequisite (De Sabbata & Reichenbacher, 2012). 

Given these assumptions and the differences in the importance of different GR metrics, this 

methodology implements a GR formula that is a conditional average of the four GR metrics discussed 

above. Different GR metrics are prioritized in this methodology using the continuous preference logic 

model that was developed by Dujmovic (Dujmović, 2007) and implemented by De Sabbata and 

Reichenbacher (2012) for the GR analysis. 

The Continuous Preference Logic Model (CPL) is used in this methodology to combine 

geographic relevance metrics using conjunctive partial absorption (CPA) and disjunctive partial 

absorption operators (DPA) (Dujmović, 2007). The CPA operator allows the combination of “mandatory” 

inputs with “desired” inputs using the “and” operator where the mandatory input must be greater than 
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zero for the score to be greater than zero (De Sabbata, 2013). The DPA operator allows a combination of 

“sufficient” and “desired” inputs using an “or” operator where the score will be one if the sufficient 

input is one (De Sabbata, 2013).  

The formula used to calculate GR scores does not incorporate q-footprints because they are 

considered a preprocessing step to evaluating geographic relevance. As discussed in the assessment 

model section, GR scores are only generated for features within the p-footprint. The GR formula for this 

methodology assumes that topicality and spatial proximity are essential metrics. If either of these 

metrics are 0 the entire GR score should be 0. 

 

GR = Tweight* SPweight*((TAB + SPGH + ClAH + CoB)/4) 

TAB = Topicality Score between layer A and layer B 

TWeight = TWeight = TAB > 0 ? 1  : 0. 

SPCD = Spatial Proximity Score between feature C from layer A and feature D from layer B 

SPWeight = SPGH > 0 ? 1: 0 

ClAD = Cluster Score for feature H from layer B based on clusters in layer A 

CoAB = Co-location Score between layer A and layer B 

A = Input layer A 

B = Target layer B 

C = Input feature C from input layer A 

D = Target feature D from target layer B 

 The formula above calculates GR scores for p-footprints within the GR footprint, the core metric 

is a mean average of topicality, spatial proximity, cluster, and co-location. In the formula, a conjunctive 

partial absorption score is created for topicality and spatial proximity. The formula ensures that if 

topicality or spatial proximity is 0 or negative, then the conjunctive partial absorption score is negative, 

if both scores are positive then the CPA score is 1. Both the CPA scores are then multiplied against the 

core GR score, thus the GR score is only altered by the CPA values if topicality or spatial proximity is 0. 
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 Calculation of the aggregate GR score is the last step in the GR assessment model described in 

this methodology. An aggregate GR score is generated for each p-footprint within the fuzzy footprint; 

the aggregate GR score is then used to filter out p-footprints that are not geographically relevant to the 

input VGI data point. In the UrbanContext platform, the aggregate GR score is generated using the 

following PL/SQL query. 

(greatest(0,topicality)/greatest((1*10^(-9)),topicality))* 

(greatest(0,spatial_rel_score)/greatest((1*10^(-9)),spatial_rel_score))* 

((spatial_rel_score+cluster_score+topicality+colocation_score)/4) as gr_score 

 

 

 The result of this calculation is a GR footprint that corresponds to an VGI data point. The GR 

footprint is composed of a set of p-footprints that have reference information to a feature in the 

framework database and a corresponding GR score.  

Table 4.6: Sample GR-Footprint with aggregate GR scores 

FVGI GID P-Footprint ID GR Score 

371 5796 0.00 

371 3071 0.39 

371 2867 0.71 

371 2867 0.71 

371 2609 0.00 

371 2120 0.39 

 

 Table 4.6 above is a sample GR footprint that has been generated for a single VGI data point, p-

footprints with a score of 0 have not been filtered out in this example. This result set is generated for 

every VGI data point; the resultant data set can be used to filter and visualize the data based on key 

associations in the data set. The following sections describe how the methodology described in this 

section can be used to address data processing challenges associated with urban planning. The following 

section will describe a case study from an urban planning project in the City of Kitchener. 

4.4 Case Study: City of Kitchener 

  In the summer of 2015, the City of Kitchener launched a study to improve a major multi-use trail 

known as the Iron Horse Trail. As part of this project, the City of Kitchener citizen feedback was gathered 

through a variety of methods. City staff decided to adopt a digital solution including survey, emails, 

direct conversation at public meetings, and a map-based online survey. The map-based online survey 

was hosted on the commercial Community Remarks platform and resulted in over 200 geotagged online 

responses.  



95 
 

These data were processed in UrbanContext to identify key locations and features that were most 

relevant to citizen comments within the study context. The following sections describe the Kitchener 

Iron Horse Trail Study use of UrbanContext and sample result of the UrbanContext analysis. The full set 

of analysis results are discussed in section 4.5 of the results. 

4.4.1 Kitchener Iron Horse Trail Improvement Strategy 

The City of Kitchener is a municipality of 255,00 people located in southeastern Ontario, Canada. 

The region is branded as Canada’s technology hub with companies like Google and Square located in 

Kitchener while the neighbouring City of Waterloo is home to companies such as OpenText and 

Blackberry. The Iron Horse Trail is a 4.5 km trail that runs through the heart of Kitchener and Waterloo 

and is a key pedestrian transportation corridor that is used over 250,000 times per year (City of 

Kitchener, 2015). The Iron Horse Trail is a former railway line that has been repurposed into a trail, thus 

it intersects numerous streets across its 4.5 km span and the City of Kitchener and Waterloo have grown 

around the former railway line.  

In 2015, the City of Kitchener conducted a study to inform future development of the Iron Horse 

Trail; the goal was to identify key locations of concern and identify opportunities to improve the trail. A 

major dimension of the Iron Horse Trail study was citizen engagement and feedback gathering. The City 

asked its citizens which improvements they wanted to see and what their key concerns where along or 

near the Kitchener Iron Horse Trail. The goal of the survey was to collect local knowledge about the 

Kitchener Iron Horse trail and to identify issues with the trail the City was not aware of (City of 

Kitchener, 2015). The City of Kitchener promoted the Iron Horse Trail consultation process using the 

municipal website, social media, signage and an interactive map based survey (City of Kitchener, 2015). 

Feedback was collected from citizen using trail feedback stations, public workshops, public meetings, e-

mail correspondence, social media and an interactive online survey (City of Kitchener, 2015). The trail 

feedback stations, public workshops and public meetings allowed citizens to talk to City staff directly to 

raise concerns and citizens were also encouraged to leave written comments to review. Citizen feedback 

was collected by City staff using forms that allowed citizens to categorize the nature of the feedback and 

to submit unstructured comments about concerns or ideas related to the Kitchener Iron Horse trail. City 

staff and volunteers manually transcribed the comments into a central excel spreadsheet that included 

columns to organize and categorize collected data. The excel spreadsheet included an ID field, a 

Comment Source Field, a Comment field and several other columns to categorize the data based on 

categories such as lighting, trail surface, maintenance, signage, amenities and more.  
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The interactive online survey was a map-based application built on top of the Community 

Remarks platform. The Community Remarks platform is a web based public engagement and surveying 

tool that is used to support planning projects and processes in over fifty government organizations 

(PlaceVision Inc., 2019). As shown in Figure 4.5, citizens can see proposed projects on an interactive map 

and then click on different locations on the map to submit specific comments about locations of concern 

or interest within the proposed project. Citizens can submit categorized comments, respond to 

comments or vote on comments within the application. Government staff can use the application to 

identify where issues exist and broadly identify topics of concern such as safety or wayfinding. 

 

 

Figure 4.5: Screenchot of the City of Kitchener Survey, built using Community Remarks. 

The City of Kitchener created an interactive map based survey using Community Remarks and 

made the survey available to the public on the City website. As shown in Figure 4.5 and 4.6, the 

application allowed users to find an area of interest on Google Maps, drop pins on the map and identify 

pre-identified topics of concern such as signage, safety and more.  
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Figure 4.6: Sample comment from the Kitchener Community Remarks app that references multiple locations 

As shown in Figure 4.6, the interactive survey allowed citizens to provide detailed feedback 

about locations and features of concern. Many comments from the app referenced multiple locations 

near the comment and responses often covered multiple topics such as discussing how citizens currently 

use the trail to identifying safety issues. The number of topics and locations discussed in a comment 

varied between users which contributed to heterogeneity of data. The comments from the interactive 

survey were manually reviewed by City staff by downloading the comment data from the Community 

Remarks application as a CSV and using Excel to manually review and categorize individual comments.  

Table 4.7: Summary table of feedback received over various engagement channels (Josh Joseph, 2015). 

 

The City received 884 remarks related to the Iron Horse Trail Improvement Strategy from all the 

engagement channels (Josh Joseph, 2015). Of the 884 community remarks, 243 geotagged remarks were 

collected using the Community Remarks platform (Josh Joseph, 2015). However, City staff provided 505 

geotagged comments for this research project, it is assumed that the City only used a subset of the data 

collected on Community Remarks for the official staff report.  



98 
 

 

Figure 4.7: Geotagged comments (VGI data) collected by the City of Kitchener 

Figure 4.7 illustrates some of the challenges associated with the survey data collected by the 

City. In Figure 4.7, the Iron Horse Trail is delineated by the black line in the center of the map and citizen 

responses are delineated by red pins which are distributed across the City of Kitchener. Many comments 

are spread across the City of Kitchener and many of these comments are not always focused on the Iron 

Horse trail. As shown in Figure 4.8, the Community Remarks application attempts to guide users to 

provide relevant information by centering the map application on the Kitchener Iron Horse trail and 

offering categorized comment pins so that users can focus on specific topics that are relevant to the 

survey. However, the Community Remarks application does not force users to conform to response 

standard. Therefore, the survey response data set contains a lot of information about locations, facilities 

and services across the City in addition to feedback on the Iron Horse Trail. 

 

Figure 4.8: Screenshot of CommunityRemarks application used to collect citizen feedback 
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 Figure 4.8 demonstrates how comments are not necessarily focused on the survey topic, this 

comment discusses a green space near the trail in addition to policing on the trail. City staff reviewing 

this comment would need to be aware of the amenities near this particular location to understand the 

concerns discussed in this comment. If staff are not familiar with the locale, reference maps have to be 

reviewed to understand the comment. Reviewing each comment using reference maps for over 800 

comments is a time intensive task that is prone to errors. City staff reviewed the comments received 

over multiple engagement channels and created summary maps and figures that identified key areas 

along the trail and general topics of concern. Figure 4.9 shows a sample of the survey comments that 

were classified by the City, the comments with the green arrow icon refer to trail improvement 

opportunities while the purple exclamation mark indicates safety concerns.  

 

Figure 4.9: Sample of map-based survey results from the City (City of Kitchener, 2015) 

The city identified four major categories to organize the data which include physical aspects of 

the trail, safety, and accessibility, improvement opportunities, and network connectivity. Some 

categories are references to spatial objects such as trail-road crossings or the LRT, while other 

comments are topical such as safety concerns. The results of this summary are included in a City of 

Kitchener staff report which was submitted to the council in 2015. City staff summarized feedback 

around three major portions of the trail and recommended that the City prioritize the central section of 

the Iron Horse Trail based on citizen feedback. 
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Figure 4.10 Summary figure of responses from the Kitchener Staff report (Josh Joseph, 2015) 

 

Figure 4.11 Summary map of manually classified citizen responses (City of Kitchener, 2015). 

 Figure 4.11 shows a more detailed map of categorized citizen comments generated by City staff. 

The official report used these maps to identify key topics of concerns and opportunities in order to 

present City council with a strategy that recomends where to allocate resources and how to allocate 

reources. The following sections discuss how UrbanContext was used to automate the process of finding 

key locations of concern using citizen response data provided by the City of Kitchener. The purpose of 
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this case study is not to propose a method to automate the process of reviewing citizen comments. The 

purpose of UrbanContext is to aid planners and City staff to organize and filter content as they review 

comments. The intent is to reduce the time needed to review comments and increase the accuracy of 

summary reports to better reflect the sentiments of the community.  

4.4.2 UrbanContext Case Study 

In this case study, the UrbanContext application processes the VGI data that was collected by 

the City of Kitchener for the Iron Horse Trail improvement strategy study. During the public engagement 

period of the study, the City of Kitchener collected over 500 geotagged comments which were provided 

to this thesis for analysis. Due to the compute-intensive nature of the GR analysis, only a subset of the 

VGI data centered around the Iron Horse Trail was used in this analysis. The analysis data set was 

selected by creating a 3km buffer around the Iron Horse Trail and selecting the survey responses that 

are contained by the buffer. The resultant analysis data set contains 200 VGI data points. Figure 4.12 

below illustrates the distribution of the filtered data. 

 

Figure 4.12: The filtered Iron Horse Trail Survey responses. 

 The filtered VGI data set makes data analysis more manageable and it also reduces the need for 

the use of large data sets that cover the entire extent of the survey. The filtered data creates a more 
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manageable study scenario, but it does not eliminate the complexity of the unstructured data or reduce 

the amount of noise and error in the data. This thesis analyzes 209 VGI data points by comparing the VGI 

data to six framework data sets acquired from the Kitchener Open Data portal. Each VGI data point has 

three attributes which include id, an unstructured body of text and geometry data, a sample of data 

records is shown in Table 4.8. 

Table 4.8 A sample of three data points from the analyzed VGI data set 

gid comment point 

2 A better crossing at West and Victoria.  Not many bikers are 

going to go to the lights at such a busy corner. 

(540206.29,4810166.85) 

4 a connection to the Laurel trail would be great (538733.53,4812033.55) 

5 Add an automated, diagonal (scramble) crossing here 

(Stirling/Courtland). 

(541728.70,4809959.78) 

 

The case study uses VGI data provided by the City of Kitchener and reference data acquired 

from the City of Kitchener’s open data portal. The reference database used in this thesis contains the 

data sets (layers) described in Table 4.9. The reference data sets shown in the table below were selected 

due to their perceived relevance to trails in the City of Kitchener and references to these features within 

the VGI data set. Manual review of VGI comments showed that trails, parks, roads, railway lines, and 

bridges were often directly or indirectly referenced in the geotagged comments created by City 

residents. The data sets in the table include features that contain the Iron Horse Trail (parks) or intersect 

the Iron Horse Trail (roads, railways, etc.).  

Table 4.9: Reference datasets from the City of Kitchener. 

Name Description Record Count 

parks Parks data maintained by Kitchener GIS 438 

railway_lines Railway data maintained by Kitchener GIS 181 

cycling_infrastructure Cycling infrastructure data maintained by Kitchener GIS 1093 

trails Kitchener trail network data maintained by Kitchener GIS 3530 

bridge Bridge (point) location data maintained by Kitchener GIS 135 

roads Kitchener road network data maintained by Kitchener GIS 6057 
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This case study analyzed 209 VGI data points to generate 209 GR-footprints which are composed of 682 

p-footprints. The GR-footprints are then used to create maps that identify which framework features 

and location are referenced in the VGI data set and which locations are most important in the 

framework data set. The following sections describe the results of the analysis as well as discuss the 

approaches used to review and validate the data. 

4.5 Results 

This section explores the results of the UrbanContext analysis through two main sections. The 

first section discusses the process used to validate the UrbanContext output and explores individual GR 

footprints to get a better understanding of findings. The second section discusses the results and the 

summary findings of the analysis. This includes a mapping the most important locations identified by the 

UrbanContext and graphing the composition of fuzzy footprints and GR footprints. This section will also 

provide a summary description of the observed accuracy of results generated by the UrbanContext 

platform. The tables and figures in the following sections depict fuzzy footprints. Therefore tables will 

contain negative proximity and GR scores. References to GR-footprints only apply to records that have 

positive GR scores. Verifying and summarizing the outputs of the UrbanContext is a non-trivial challenge, 

even with a small concentrated dataset there are a significant number of records that can only be 

verified through manual review. Reichenbacher et al. (2016) approached the challenge of reviewing data 

by enlisting volunteers, while Marzouki et al.(2018)  reviewed analysis results using a qualitative review 

that involved selecting random samples of data and manually reviewing information using a proposed 

conceptual model. Spinsanti and Osterman evaluated the GeoCANVI system by comparing reports of fire 

incidents detected in social media against official reports of fire incidents (Spinsanti & Ostermann, 

2013). Review of UrbanContext draws from approaches outlined by Marzouki and Spinsanti (Marzouki, 

Mellouli, & Daniel, 2018; Spinsanti & Ostermann, 2013). First, a random sample of 50 VGI data points 

and associated GR-footprints across the study site are reviewed for spatial and semantic accuracy. 

Section 4.5.2 will compare the aggregate results of the GR analysis to results reported by the City of 

Kitchener. This will compare the key locations identified by the UrbanContext application to key 

locations identified by the City of Kitchener to determine result coverage. 

4.5.1 GR-Footprint Accuracy 

The semantic and spatial accuracy of GR footprints were reviewed by selecting a sample of VGI 

data points and their associated GR-footprints. In this review, each VGI point is mapped with contextual 

data, and the comment is manually reviewed to identify location references within the text and to 
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match it to real features on the map. Then each GR-footprint is visualized using the UrbanContext web 

application to inspect the number of correct p-footprint matches, the number of missed p-footprints 

and the number of false p-footprints. A correct p-footprint is a p-footprint that is generated by a 

legitimate location reference found in the VGI comment such as “Victoria Park” rather than “my friend 

Victoria” which is also matched to the correct framework feature such as the Victoria Park polygon 

within the Kitchener parks data layer. As noted by Goodchild and Li (2012), spatial data validation is very 

subjective due to variances in perspective. This review focuses on validating p-footprints based on the 

GR concept of information need; where a p-footprint is considered correct if the spatial data feature is 

considered to be relevant to the VGI feature. The number of missed p-footprints is determined by 

identifying discrepancies between p-footprints that were manually identified and are missed by 

UrbanContext. False p-footprints are p-footprints that were generated using false location references, or 

they are p-footprints that failed to meet spatial relevance criteria. These are p-footprints that were not 

identified as relevant in the manual review but selected as relevant by the UrbanContext system.  

To illustrate the review process, a detailed description of how three sample VGI points and their 

associated GR footprints were validated is provided in the following paragraphs. Accuracy of results vary 

across different data points, and the samples described below are not representative of all results but 

they provide some insight on results produced by UrbanContext. The paragraphs below will present the 

location of the VGI point on a map, the VGI comment text, and the GR-footprint table. The VGI point 

context map will also visualize GR-footprint features as well as the VGI clusters layer for context. A 

discussion will accompany each VGI point on observations regarding the footprint accuracy. The data 

review samples will be followed by a summary of all the data review results from the sample of 15 VGI 

points and their associated GR-footprint. 

Figure 4.13 shows VGI data point 193 (gid), this VGI data point is located at the bottom edge of 

the study extent, and it discusses the connection between cycling routes along Nyberg Street and the 

Kitchener Iron Horse Trail. This VGI data point is part of a larger cluster of VGI data points that focus on 

issues regarding the connection between the Kitchener Iron Horse Trail and the bike trail on Nyberg 

Street. 
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Figure 4.13: Comment (193) local bike trails and the Iron Horse Trail. (https://urban-context.glitch.me/) 

The text associated with the VGI data point is shown below, the highlights indicate location 

references that were identified by manual review. The comment is generally vague and does not make 

direct references to any particular feature; the trail and bike trails are generally relevant to the 

comment. The location and feature references used to generate p-footprints for this comment are 

highlighted in yellow below. 

“I use the trail often to get to and from work on my bicycle in the warm months.  It is a great way 

to get to work while staying ‘in the woods’ and away from traffic and to wind down at the end of 

the day.  The number of people using the …” 

UrbanContext matched the VGI point in Figure 4.13 above to two features. One feature is a trail 

segment that belongs to the Iron Horse Trail, this feature matches the “trail” entity reference in the 

comment above. The matched trail is shown in Figure 4.13 as a red line segment south of the 

highlighted comment point. The other match is a segment of the cycling network which is depicted as a 

green line segment in Figure 4.13, the bike network segment is matched due to the bicycle reference in 

the comment above. The trail and bike features are shown in Figure 4.13 were selected using the 

methodology described in section 4.3. The gazetteer scanned the comment and identified the “trail” and 

“bicycle” terms as part of the q-footprint. As shown in Table 4.10 the “trail” and “bicycle” term was 

matched to the trail and cycling infrastructure layers and then features from the layers were selected 

using GR criteria such as proximity co-location, cluster, and topicality. The scores for the two matches 

are shown in Table 4.10. 

https://urban-context.glitch.me/
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Table 4.10: GR Analysis scores for VGI comment 193 

gID Table Column Search 

Term 

Search 

Category 

Proximity Co-location Cluster Topicality Geographic 

Relevance 

193 trails 
 

trail Layer 0.49 0.58 0 1.00 0.69 

193 cycling 

infrastructure 

 
bicycle Layer 0.50 0.14 0 0.08 0.24 

 

The scores above show that the trail segment in Figure 4.14 is more relevant than the cycling 

infrastructure segment based on a score of 0.69 and 0.24 respectively. The QC process identified two 

valid location references in the comment. UrbanContext found both location references and matched 

the p-footprint to the most reasonable trail and bike features within the vicinity of the VGI point. 

Therefore, this result has 2 correct matches, 0 false matches, and 0 missed matches. The GR result table 

indicates the cluster score is 0 for both p-footprints; this is reasonable because neither feature 

intersects an VGI cluster. Thus proximity, co-location, and topicality are the most important metrics in 

this analysis. 

The second sample VGI comment is a more complex comment located at the north edge of the 

Iron Horse Trail. The comment contains multiple location references that are within proximity of the VGI 

data point and location references are well defined in the comment.  

 

Figure 4.14 The GR-footprint for VGI data point 371, 3 valid p-footprints were matched 
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UrbanContext matched the comment above to three GR-footprint features as shown in Figure 4.14 

despite initially identifying 5 p-footprint candidates as shown in Table 4.11. The location references 

identified by the gazetteer are highlighted in yellow in the comment below and listed in Table 4.11. The 

rows that are highlighted red indicate records that were initially matched but later filtered out using GR 

metrics. 

“This area, at the north end of Belmont at Union is a field.  There are many trees.  It could be re-

landscaped and redesigned, so that trees hide the backs of the buildings, and it provides an 

entrance into Belmont Village from the trail.” 

It appears that cluster scores played a larger role in this GR analysis as they show more 

variation. However, on further inspection, it appears that the trail segment was improperly assigned 

cluster score because the segment has a score of 0.76 but the segment does not intersect any clusters. 

Table 4.11: P-footprint VGI data point 371, the red rows are filtered out due to negative proximity scores 

gID Table Column Search 

Term 

Search 

Category 

Proximity Co-

location 

Cluster Topicality Geographic 

Relevance 

371 roads street_nam BELMONT Attribute 0.49 0.44 0.52 0.13 0.35 

371 roads street_nam UNION Attribute 0.52 0.44 0.52 0.13 0.36 

371 roads street_nam NORTH Attribute -0.46 0.44 0.52 0.13 0.03 

371 roads street_nam VILLAGE Attribute -1.11 0.44 0.52 0.13 -0.18 

371 trails  trail Layer 0.47 0.58 0.76 1.00 0.69 

 

This comment had no ambiguous location references, but the UrbanContext system identified 

false p-footprints due to errors in place name disambiguation. As shown in Table 4.11, North and Village 

were falsely identified as streets, but the GR proximity and cluster ranking module were very effective at 

generating relevance metrics that indicate that the features are not part of the context of the VGI 

comment. The QC process identified five valid explicit and implicit location references. Three spatial 

entities were accurately matched. Two additional location references were matched, but the GR rating 

system pre-emptively identified these entities as false positives. 

The third sample comment is a complex comment because it has multiple implicit and explicit 

location references. The comment also makes valid references to locations that are a significant distance 
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from the VGI data point. This comment highlights the variances in content and structure that are 

endemic to VGI and VGI data. 

 

Figure 4.15 Comment 97, the scale of this VGI comment varies significantly from other comments 

Figure 4.15 shows and VGI comment that is located near the middle of the study area and some 

distance from the trail and any comment clusters. The location references identified by the gazetteer 

within the VGI comment are highlighted below and listed in Table 4.12.  

“I am glad to see that this proposed trail is here, as there are really few good ways to bike right 

downtown from the iron horse trail. Neither Victoria nor Queen street have bike lanes all the way 

to king street. There should be AT LEAST ONE primary trail” 

The UrbanContext system matched the comment in Figure 4.15 to seven features in the framework data 

as shown in Table 4.12. Three of the matched locations reference trails, two of the matches are trail 

entities while one match is a park entity. The analysis gave the trail entities higher GR scores due to 

higher proximity, cluster and topicality scores. The analysis also failed to recognize key location 

adjectives such as ‘proposed trail’ and ‘primary trail’.  
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Table 4.12: GR footprint for VGI point 97, red rows are filtered features due to negative proximity scores. 

gID Table Column Search Term Search 
Category 

Proximity Co-
location 

Cluster Topicality Geographic 
Relevance 

97 trails route_name 
IRON HORSE 
TRAIL Attribute 0.54 0.58 0 1.00 0.71 

97 trails  trail Layer 0.41 0.58 0 1.00 0.67 

97 roads street_nam VICTORIA Attribute 0.65 0.44 0 0.13 0.40 

97 parks park 
IRON HORSE 
TRAIL Feature 0.42 0.66 1 0.08 0.39 

97 roads street_nam KING Attribute 0.13 0.44 0 0.13 0.23 

97 roads street_nam QUEEN Attribute -0.26 0.44 0 0.13 0.10 

97 roads street_nam STREET ONE Attribute -2.33 0.44 0 0.13 -0.59 

 

The other four p-footprints are street entities that earned very low GR scores. The system effectively 

filtered out the false location reference of ‘Street One’ but it also filtered out the valid Queen Street 

location reference. The other valid location references of Victoria and Queen street were not filtered 

out, but they received very low GR scores. 

 The following paragraphs depict clusters of GR-Footprints generated by UrbanContext. The 

exact GR metrics and scores associated with the following figures can be reviewed in Appendix B and the 

visualizations can be explored using the UrbanContext web application. The following paragraphs look at 

groups and clusters of VGI comments to review the consistency of results and effectiveness of GR 

metrics. The review looks at consistency and reasonableness of GR-footprint matches, it does not look at 

individual GR scores or GR rankings of features. Q-footprints, proximity, and cluster are primary metrics 

used to filter and match features while topicality and co-location are used to determine relevance 

ranking of features. The following paragraphs focus on the filtering and matching of features. Thus q-

footprints, proximity scores, and cluster scores will be the focus of the review. 

       

Figure 4.16: Comments 113, 193 & 189 reference trails, parks, and cycling networks  

 Figure 4.16 presents three VGI points located at the southern end of the Iron Horse trail; most of 

these comments discuss the connection between the trail and the cycling network at the intersection. 
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UrbanContext was effective across the cluster at consistently identifying key features that were 

discussed by all comments. UrbanContext was particularly effective at selecting features from different 

layers that intersect as described in the comments. The figures reinforce the idea that the cluster metric 

has significance, and VGI data points tend to cluster around features that are considered important. 

Figure 4.16 also reflects how complicated some comments are, three or more connected location 

references are made in all comments. 

       

Figure 4.17 Comments 8, 242, 47 reference road and trail segments 

 Comments in Figure 4.17 discuss the Iron Horse trail in relation to the road. This cluster of 

results show inconsistencies in the selection criteria because trail segments seem to be erroneously 

matched. The road segments selected by UrbanContext appear to match the GR criteria from section 4.3 

where p-footprints are selected based on the q-footprint and proximity, the cluster metric does not 

apply because the referenced road segment does not intersect a cluster. The trail segments selected by 

UrbanContext do not appear to match GR selection criteria because the selected trail segments are not 

the segments that intersect the cluster or have the highest proximity score. The cluster metric seems to 

have been ineffective for the results in Figure 4.17. It is possible that cluster scores were erroneously 

assigned or issues with the segmentation of geometry features are causing attributes from a feature in a 

cluster to be assigned to features outside of the cluster. 

     

Figure 4.18 Comments 63, 19 & 348 reference trails, parks, roads, and railway segments. 
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 Figure 4.18 looks at a set of VGI data points located in the central section of the Kitchener Iron 

Horse trail along downtown Kitchener and Victoria Park. The cluster of comments selected is close to 

the largest cluster detected in the study, the size of the neighbouring cluster should influence the 

selection of features. However, the UrbanContext application predominantly matches VGI data points to 

trail and park features that touch the comment cluster indicating that the proximity metric is prioritized 

over the cluster metric. All three comments in Figure 4.18 have large extents for their GR footprints 

where several features referenced in the comments are located a significant distance from the 

comment. The middle image in Figure 4.18 above depicts one such example where a railway line is 

matched to the comment despite the distance between the two features. The match is wrong because 

the comment discusses an intersection between the trail and the railway line and it is unclear why that 

segment was matched by UrbanContext. In general, valid references to significant features that are 

distant are difficult for UrbanContext to handle because the proximity threshold filters out distant 

features even if they are valid matches. The UrbanContext system would benefit from a model that 

helps determine threshold distance based upon the importance of features. Figure 4.18 indicates that 

there are some inconsistencies in the systems’ approach to using GR metrics to match features, it is 

unclear whether this inconsistency is created by flaws in the conceptualization of GR metrics or if these 

results are caused by software implementation errors. 

4.5.2 GR Summary Results  

 Evaluating the validity of the UrbanContext is challenging because of the challenges associated 

with visualizing one to many relationships and the subjective nature of linking a location reference to a 

place. Even humans who review the VGI data must be familiar with the study area to match VGI 

comments to the referenced location. In this analysis, 50 random individual VGI points and their 

associated GR-footprints were manually reviewed using the UrbanContext web application, the 

evaluation resulted in the review of 196 individual p-footprint records. Each p-footprint was compared 

to the text content of the VGI data point as well as the spatial context of the geotag to determine if the 

correct semantic term was used to match data and if the VGI point is matched to the correct geometry. 

The semantic and spatial quality checks are boolean measures where matches are either considered 

correct or incorrect based upon the reviewer’s judgment and understanding of the spatial context. The 

overall result table from the review can be found in Appendix B. Figure 4.19 presents the error rate of 

semantic matches and spatial matches. Semantic matches refer to correct place name matches for the 

q-footprint where UrbanContext correctly identified place names or location references within the 

comment to generate the q-footprint. The review shows that UrbanContext had an 82% accuracy when 
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generating q-footprints but it’s important to note that the most common reference in the data set was 

“trail”. The UrbanContext application was effective at identifying simple location references such as trail 

or park but complex multi-word location references tended to result in errors.  

 

Figure 4.19 The error rate of semantic matches and spatial matches in UrbanContext. 

Correct spatial matches are determined using the UrbanContext Visualization app and to 

compare location references in the comment to surrounding features. If the p-footprint fits the semantic 

description of the location reference and if the feature geometry is located in a reasonably correct place 

it is considered correct. As shown in Figure 4.19, the percent of correct spatial matches of p-footprints 

for VGI points is 69%. The spot checks of data indicated that the cluster metric did not work consistently 

and there are several cases where the UrbanData platform selected distant features over close features 

as p-footprints. Some of these errors may be caused by the way geometry is structured in the 

framework database where lines and polygons can be represented as multi geometries that share 

attributes. This can lead to incorrect assignments of relevance scores to spatial features. 

The summary map below is a sample application that depicts approaches that can be used to 

create summary maps and visualizations using the outputs of the UrbaContext analysis. The application 

below shows the most important locations in the City of Kitchener according to UrbanContext. The 

bubbles are linked to framework features such as parks, trails, roads and more. The size of the bubbles 

represents the number of VGI comments that refer to the location and the color represents aggregate 

geographic relevance scores from all the VGI data points that reference the location. The application 

was made using aggregate operators such as sum() and count() on the GR-Footprint output tables. This 

application depicts how UrbanContext results can be used in planning studies, the summary map depicts 

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Semantic Matches

Spatial Matches

UrbanContext Error Rate

Correct Matches Incorrect Matches
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a set of key locations and features across the study site that should be prioritized in the planning 

process. The official Kitchener Iron Horse Trail Improvement Strategy staff report identifies several key 

locations and important sections of the Iron Horse trail to direct investment and planning resources. 

These locations are manually identified by city staff by reviewing feedback provided by citizens. The 

report divides the Iron Horse Trail into the Northern section between Victoria and Union, the central 

section between Victoria and Queen and the Southern section between Queen and Ottawa. The central 

section is identified as the primary priority of the trail improvement plan. Key locations identified in the 

report by Josh Joseph (2015) include;  

• Victoria Park  

• Downtown Kitchener 

• Victoria Street 

• Cherry Street 

• Borden Street 

• Gildner Green 

• Radatz Park  

• Small Parks 

• Intersections 

The report generally identified road and trail intersections as a safety concern that need to be 

addressed. Parks and green spaces near the trail are identified as opportunities for improvement (Josh 

Joseph, 2015). The report also identified the central portion of the trail between Victoria and Queen as 

the most important section of the trail for future infrastructure projects (Josh Joseph, 2015). 

 

Figure 4.20: Most important locations discussed in the survey (urban-context-summary.glitch.me)  

The summary map in Figure 4.20 highlights the most important location identified by 

UrbanContext. The application was able to identify and prioritize many of the key locations identified in 

the report such as Victoria Street, Borden Street, and Victoria Park. The application also highlights 

numerous locations that are not identified in the report, some of these locations are erroneous matches 

and others are valid locations that are not prioritized in the report. Figure 4.20 shows key locations 

https://urban-context-summary.glitch.me/
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identified by UrbanContext near Victoria Street and downtown Kitchener. The most important features 

identified in Figure 4.20 are Victoria Street, two Iron Horse Trail segments near Victoria Street and 

Victoria Park. The Victoria Street segment is referenced 23 times and has an aggregate GR score of 7.5 

while Victoria Park has three references and an aggregate GR score of 1.2. The full summary map in 

Figure 4.21 illustrates how UrbanContext was able to identify key roads, parks, and features across the 

whole study site. The summary highlights numerous valid locations, but some of the most important 

features in the summary map are false matches. The most common observed errors are matching 

adjectives such as green, north or west to street names such as Green Street or North Street. In general, 

the application was effective at identifying important locations in the report, but the results contain a lot 

of noise and some locations are not prioritized as much as they should be.  

 

Figure 4.21 The three images highlight major locations from the analysis. 

The staff report also identified several safety concerns along the trail but specific locations were 

not identified (Josh Joseph, 2015). In general, survey responses indicated that trail and road 

intersections are safety concerns (Josh Joseph, 2015). This map is generated by filtering VGI data using a 

keyword search on “danger”. The UrbanContext dangerous locations summary map shown in Figure 

4.22 effectively identifies road segments that are of concern such as Borden Street or Victoria Street, the 

application does not correctly identify specific segments and intersections consistently. UrbanContext is 

reasonably effective at matching discrete point and polygon geometries such as parks or bridges but 

matching specific trail or road segments have been inconsistent. The UrbanContext results are enough 

for a general summary map but a human review is required to identify specific locations and features 

where resources need to be directed. 
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Figure 4.22 A map of GR-Footprints that contain the danger keyword (urbancontext-safety.glitch.me) 

The UrbanContext summary map shows promising results that compare well against official 

studies of the same data set. However, the results contain a lot of noise and there is still a need for 

human interpretation of results. There are opportunities to reduce noise and improve the reliability of 

results using better data, and there is room to improve the implementation of individual GR metrics.  

4.6 Discussion and Conclusion 

 This Chapter has developed a GR model to organize and filter heterogeneous and unstructured 

VGI data. The UrbanData model discussed in this Chapter built on ideas presented in Chapter 3 to 

address a data analysis problem that is an order of magnitude more complicated than the problem 

explored in Chapter 3. The challenge addressed in this Chapter was using GR metrics to match 

heterogeneous and unstructured geotagged comments to features and locations within a framework 

database. The GR model developed in this Chapter had to address challenges such as managing many to 

on relationships, filtering noise, accounting for spatially inaccurate data and handling vague location 

references. The UrbanContext model was not expected to handle all of these challenges completely, it is 

a test model to evaluate the feasibility of using GR metrics to handle some of these challenges.  The 

UrbanContext case study demonstrated an approach to couple query footprints with GR metrics in order 

to handle multiple location references within a free form comment and to evaluate geographic 

relevance between one to many objects. The case study demonstrated that there is merit to this 

approach as several analysis results effectively replicated human judgement. However, the system was 
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prone to noise and it was not effective at filtering out false matches in the relevance analysis. The GR 

metrics did not work as effectively as desired to improve relevance analysis and there is a need to revise 

the GR analysis model used in UrbanContext. It appears that q-footprints are an effective approach to 

handling multiple location reference and supporting relevance analysis for one to many features. The 

gazetteer used to generate q-footprints can undoubtedly be improved to handle complex location 

references, lexicon and taxonomies. However, handling such complexity requires large volumes of data 

and resources to build ontologies that can account for differences in location references, user 

perspective and terminology. It is very difficult to address all the complexities of this problem and it is 

beyond the scope of this thesis. The q-footprints worked as desired in the UrbanContext model and 

future work looking at similar problems would likely benefit from adopting this approach.  

The effectiveness of the GR metric is not clear as results varied across the data set. It may be 

possible that GR metrics such as cluster, co-location and topicality are not useful indicators of relevance 

in this study context, but there is reason to believe that these metrics can be good indicators of 

relevance if the implementation of the GR model and the GR metrics are improved. Improving the GR 

model requires an improved understanding of GR metrics through parameter testing and iterative 

evaluation model using step-by-step processes. Parameter testing could involve testing multiple values 

to determine optimal values for parameters such as the proximity threshold distance, the co-location 

search distance or the cluster size and distance thresholds. Parameter values can also potentially be 

dynamically generated by evaluating characteristics of the input data set. Evaluating criteria such as the 

average distance between features, the density of features, the average size of features and the extent 

of the layer are all potential characteristics that can be used to determine parameters such as the 

proximity metric threshold distance and more. GR metrics should also be evaluated at different scales. 

The proximity and cluster metric where implemented between features while the co-location and 

topicality where implemented between layers. A possible improvement for UrbanContext would be to 

evaluate relevance between feature categories when it is not possible to evaluate relevance between 

individual features. An example of comparing feature categories could be assessing co-location patterns 

between VGI comments that reference safety and road classes such as highways or avenues. Similarly, 

the topicality metric can be improved by categorizing VGI comments using topics such as ‘biking’ and 

comparing the semantic similarity between comment categories and feature categories such as ‘biking’ 

and road classes such as ‘highway’. Changing the GR analysis model in this manner would increase the 

complexity and computational cost of analysis but it should result in better relevance scores that can be 

used to differentiate the relevance of features. Future improvements on the UrbanContext model 
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should consider comparing GR metrics to ensure that metrics are not redundant or being double 

counted. The UrbanContext study did not indicate that any of the metrics where redundant, but future 

tests may indicate that there is a need to adjust the equal weighted score aggregation model.  

From an application perspective, the UrbanContext case study demonstrated that there is 

potential to use relevance analysis to support public engagement and urban planning. The UrbanContext 

data processing application and the UrbanContext Viz application linked data in a manner that made it 

far easier to review and verify contents of individual comments and it provided guidance on identifying 

key locations from the survey comments. UrbanContext can not be relied upon to independently 

produce summary figures without oversight due to the prevalence of noise in the output. However, the 

UrbanContext system is not designed to operate independently because planners should be a part of 

the comment review process. At small scales, the UrbanContext system will likely be unnecessary. But, if 

the volume of online engagement increases there will be a need for a system like UrbanContext to 

handle increased data loads. The Kitchener case study showed that a relatively small city like Kitchener 

can generate large volumes of content through public engagement. Larger metropolitan cities can likely 

generate double or triple the volume of data assessed in this study. Overall there is potential to 

significantly improve the GR model presented in this chapter and the case study indicates that advances 

in GR could make it easier to analyze and summarize the growing volumes of unstructured VGI data 

produced on the web. 
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5 Conclusion  

 The goal of this thesis was to identify a general set of geographic relevance metrics that could be 

used to evaluate spatial relevance between structured and unstructured spatial data in different context 

and at different scales. The basic assumption is that there are a general set of geographic relevance 

metrics that can provide a comprehensive model for measuring relevance to support spatial data 

management tasks such as data matching, data filtering and data sorting. The case study analyses 

demonstrate that GR metrics have considerable promise to aid real world data relevance challenges, 

however further refinement of the methods is needed. Conceptually, it is likely possible to define GR 

using a general set of criteria. The models built in Chapter 3 and Chapter 4 were developed using a 

common set of basic metrics which include topicality, proximity, co-location and cluster. However, the 

effectiveness of the GR applications varied across the two case studies which indicates that it may not 

be feasible to develop a general GR model that can be used as a general GIS tool. 

5.1 Research Objectives Review and Discussion 

The literature review showed that literature on spatial relevance analysis is spread across a number 

of research fields that include VGI data quality (Goodchild & Li, 2012), VGI enrichment (Spinsanti & 

Ostermann, 2013), fitness for use (Jonietz et al., 2016), open data retrieval (Corti et al., 2018), 

geographic information retrieval (Purves et al., 2018) and geographic relevance (Reichenbacher et al., 

2016). The literature review guided the identification and implementation of the four GR metrics used in 

this thesis.  

The literature also provides guidance on expected results of the two case studies and an indication 

of how to interpret results such as the seemingly ineffective topicality metric in Chapter 3 and 4 or the 

seemingly redundant co-location and cluster co-location metrics. In Chapter 3 and 4 it was noted that 

the topicality metric appeared to be an ineffective indicator of relevance and there may be cause to 

remove the topicality metric from GR criteria. However, there is an overwhelming volume of literature 

that indicates that topicality is an essential measure of relevance between spatial data (Bordogna et al., 

2012; McKenzie et al., 2014; Reichenbacher et al., 2016; Spinsanti & Ostermann, 2013). The topicality 

metric is generally difficult to implement due to the complexity of natural language processing. In this 

case study, the WordNet library did not fit the use case. Future work should consider the use of another 

ontology or explore the development of a spatial ontology to better address this dimension of the GR 

problem. The literature also provides models to aggregate GR scores using weighted models that 
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account for redundancy in metrics such as cluster and co-location (Reichenbacher et al., 2016). These 

models where not adapted in this study, but future research should consider adapting these models. 

The literature review helped direct the second and third objectives of identifying a common set of 

GR criteria that can be used to evaluate relevance in two significantly different contexts. The second 

objective was explored in Chapter 3 looked at relevance analysis between large data sets. The third 

objective explored in Chapter 4 looked at relevance analysis between structured and unstructured 

spatial features. The overall objective was to evaluate if a common set of GR criteria can be used to 

solve increasingly complex GIS analysis problems. However, the goal of using a common set of 

conceptual GR metrics was not fully achieved as the cluster metric was significantly adjusted between 

Chapter 3 and Chapter 4 and the proximity metric was adjusted slightly to fit. In Chapter 3, the cluster 

co-location metric essentially measures similar distribution of features between two layers. In Chapter 4, 

cluster metric evaluates the importance of individual features based upon their location within a cluster. 

In Chapter 3, proximity is evaluated using layer centroids and in Chapter 4 the nearest points between 

features are used. The formula used to generate the proximity score was the same for Chapter 3 and 

Chapter 4 but the formulas for cluster co-location and cluster were different. The topicality, spatial 

proximity and co-location metrics worked well as general GR criteria but the cluster metric may not be 

applicable to all use cases.  

The fourth major objective of this thesis was to evaluate the effectiveness of the conceptual GR 

criteria using sample applications and case studies. This objective was addressed in Chapter 3 and 4 with 

the UrbanContext and UrbanData application. The applications demonstrated how to implement GR 

metrics in a software application, and it showed how the GR model can be used to organize and filter 

spatial data. The UrbanData and UrbanContext case studies provide insight on the effectiveness of GR 

metrics in different scenarios and it brings to light some of the challenges with implementing and using 

GR metrics for relevance analysis. The development of UrbanData and UrbanContext demonstrated that 

data management is a significant issue in GR systems as relevance analysis is computationally expensive, 

implementing GR at scale will require innovation around improving the efficiency of GR functions. The 

results of the case study indicate that parameter generation and score aggregation are key problems 

that are not addressed well in this thesis or the GR literature. The UrbanData case study indicated that 

most GR metrics were good indicators of relevance between layers while the UrbanContext analysis 

indicated the GR metrics where not reliable indicators of relevance between framework features and 

VGI data points. However, the complexity of the GR analysis model in UrbanContext makes it difficult to 
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determine the impacts of the various GR metrics. Future work should consider the development of 

models that make it possible to isolate variables and use regression models to evaluate the performance 

of individual GR metrics in relation to other GR metrics. 

The development of the UrbanData and UrbanContext application also raises questions about 

societal impact of GR applications. Due to the complexity of GR models and its dependence on input 

data and input parameter values, it is very possible to manipulate GR models to prioritize corporate 

interests over the public good with little oversight. Similar concerns have been expressed concerning the 

use of machine learning and artificial intelligence in the public realm (Batty, 2018; Kwan, 2016). A 

possible approach to ensure democratic and equitable use of this type of technology is through open 

source technologies and open standards. The GIS community has a strong history of maintaining open 

source projects and standards as exemplified by projects such as QGIS, OpenLayers and PostGIS. 

Creating low level Python or PL/SQL packages to enable GR analysis between spatial data sets or spatial 

features would ensure that GR applications such as UrbanData and UrbanContext are broadly available 

and it makes it possible for an open community to oversee the continued development of GR tools. The 

UrbanData application is primarily a tool to evaluate relevance between spatial data and it is envisioned 

that it would primarily be coupled with search systems in open data portals. UrbanData may be prone to 

generating filter bubbles in search portals if the GR relevance modules are coupled with profile data 

about the user which may or may not be available. UrbanContext and UrbanContext Viz are purpose-

built tool that are focused on VGI feedback analysis. It is possible to skew UrbanContext analysis results 

by selectively adding framework data to the analysis system. The only way to ensure integrity of results 

is to publish the UrbanContext framework data sets with any output reports to ensure that report 

readers understand how summary figures where generated. All the applications are still unknown, and it 

is difficult to make recommendations on all the potential applications of this technology. It is primarily 

envisioned as a research tool and it is likely that the open source community is the best steward of this 

technology. 

5.2 Contributions 

This thesis has demonstrated new applications and implementations of GR provide direction for 

future research and highlight some of the current gaps in GR research. The results of this thesis also 

provide guidance on the characteristics of GR metrics and their behaviour in different contexts. The 

evaluation of the topicality, proximity, co-location and cluster GR metrics over two case studies 

demonstrate that proximity is an essential measure of spatial relevance while the other metrics of 
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relevance vary in importance across different study contexts. This thesis demonstrates that topicality, 

proximity and co-location can be considered to be general metrics of GR that can be used to evaluate 

relevance across multiple contexts; this finding aligns with the ideas proposed by Reichenbacher et al 

(2016) regarding criteria of GR. However, the case studies also indicated that the cluster metric is not a 

GR metric that is effective at multiple scales and future work in GR should evaluate if the cluster metric 

should be used as a GR criterion. Study results also support grouping GR metrics during score 

aggregation as suggested by Reichenbacher et al. (2016) because some GR metrics may be double 

counted or overweighed.  

This thesis has demonstrated an approach to analyze unstructured data and handle many to one 

relationships. Analyzing heterogeneous unstructured VGI data contributed by a large number of users 

with unique perspectives, lexicons and taxonomies is a very complex task. There is large variance in the 

accuracy of location data and location references within unstructured comments can be very complex. 

The use of query footprints with GR metrics appears to be a promising solution for analyzing 

unstructured VGI data that is collected using social media or map-based surveys. Q-footprints can not 

solve the inherent ambiguity and uncertainty associated with natural language analysis, but it provides a 

model to filter and organize data in order to enable GR analysis between structured and unstructured 

features. As noted in Chapter 4, the GR metrics and aggregation model developed for UrbanContext 

needs to be improved but the basic model is a blueprint that can be used for future analysis. 

From an application perspective, this thesis demonstrates that GR has applications outside of 

mobile search. The UrbanData case study demonstrated that GR metrics can be used to develop spatial 

data retrieval systems that are not as reliant on metadata as current solutions (Florance et al., 2015; 

Ivanova et al., 2013) and evaluate spatial data characteristics when determining relevance. 

UrbanContext improves on existing models that prioritize semantic relevance and spatial proximity 

(McKenzie et al., 2014; Spinsanti & Ostermann, 2013), to incorporate relevance metrics that evaluate 

the geographic environment of features.  

The concept of geographic relevance has been generally defined in the literature (Raper, 2007; 

Reichenbacher et al., 2016), but criteria of geographic relevance has been defined using context specific 

criteria (Reichenbacher et al., 2016). This thesis emphasizes the need to better define the concept of GR, 

the criteria of GR and the application of GR within the broader context of GIS. It is unclear whether GR is 

intended to be a generally applicable to GIS, much like Tobler’s law, or if GR is a concept that is intended 

to solve a specific problem in geographic information retrieval. 
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5.3 Limitations 

This thesis has presented two studies on GR with limited scope due to the finite amount of time 

to conduct the study and limited computing resources to execute the analysis. These limitations where 

necessary due to the scope of the study but they are issues that should be addressed in future research.  

The first limitation is the use of external modules to evaluate semantic relevance. The topicality 

metric did not produce expected results in both the UrbanData and the UrbanContext analysis. The use 

of the Python NLTK WordNet module made it difficult to identify the causes of inconsistencies of scores 

due to the limited understanding of the WordNet database and the Python NLTK module. Both the NLTK 

module and the WordNet database are open source tools and future researchers may have an 

opportunity to manipulate these systems to attain better results.  

The second study limitation is the lack of parameter testing, spatial GR metrics such as proximity, 

co-location, and cluster rely on assumptions around threshold distance or cluster size. All the parameter 

values used in this thesis rely on the author’s limited understanding of the study context, this approach 

to parameter generation is unreliable and prone to errors. As noted in Chapter 3 and 4, a systematic 

approach is needed to determine key parameters such as threshold distance or cluster size based upon 

characteristics of input data sets and the study site.  

The third limitation is the manual review of results by a single reviewer, both studies conducted in 

this thesis relied on manual review of the data using limited spot checks of results. This is a reasonable 

approach for reviewing large data sets, but the samples selected for review may not be representative 

of all analysis results. Furthermore, manual review of results was conducted by the author using a 

limited understanding of the study context. Therefore, conclusions made from the review of data are 

biased by the authors’ perception and understanding of the study context. A more comprehensive 

review of results would also provide more insight into the usefulness of the UrbanData and 

UrbanContext applications. This research was conducted on the premise that organizing and retrieving 

spatial data is currently a challenge for cities and citizens but there was minimal formal feedback 

collected on the need for the UrbanContext and UrbanData applications. 

Lastly, the scope of the studies in Chapter 3 and 4 were very limited in size due to the limited 

computing resources available for this thesis. The UrbanData and UrbanContext studies processed 

several thousand individual features using computationally expensive spatial calculations. The 
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computational cost of the UrbanData and UrbanContext analysis resulted in studies with limited size and 

scope.  

5.4 Directions for Future Research 

Though this thesis was limited in scope, this research has demonstrated novel ways to use GR 

metrics to address challenges associated with growing volumes of web-based spatial data. Future 

research in GR should look at parameter testing and sensitivity analysis of GR metrics and aggregation 

models. Future work can improve the UrbanData and UrbanContext models by implementing feature 

level co-location and topicality metrics, improving the topicality implementation and gathering feedback 

on results. Parameter testing and sensitivity analysis for key input values such as threshold distance for 

proximity, search distance for co-location and cluster size for the cluster metrics are needed to optimize 

GR models.   

Measuring geographic relevance is a complex multi-criteria problem that is not easily delimited 

because relevance is an ambiguous concept. As a result, parameter values and GR metric weights are 

subjectively defined. These values are the greatest source of uncertainty in GR models due to their 

impact on the final GR score. As discussed in multi-criteria analysis literature, sensitivity analysis of GR 

metrics can help reduce uncertainty in GR models and improve the reliability of outputs by 

demonstrating the impact of small changes in parameter values and GR weights on outcomes (Robert 

Feick & Hall, 2004). Sensitivity analysis of GR models is challenging because parameter values should 

need to account for the study scale and spatial data characteristics. For example, the distance threshold 

value for generating proximity scores should be higher when comparing spatial data sets and lower 

when comparing spatial features. Parameter values can be evaluated by manually testing multiple 

parameter values using applications such as UrbanData and UrbanContext. However, the preferred 

approach to parameter testing would be a systematic approach to parameter generation. A systematic 

model for parameter generation would evaluate characteristics of spatial data sets and the study 

context. Parameters can be generated using criteria such as the average distance between features, the 

study extent and feature density. Future research should acknowledge that changes in parameter values 

will have varying impacts on different types of analysis. For example, the UrbanData proximity metric is 

likely not very sensitive to variances in the proximity threshold distance because layers tended to occupy 

city extents which means layers tended to be very close or very far. Thus, minor changes in the 

threshold distance should not alter results. In contrast, the UrbanContext GR model is very sensitive to 

changes in the threshold distance for spatial proximity because the distance between VGI features and 
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relevant features can legitimately vary between 1m, 5m, 50m, 500m and 2km. Parameter tests should 

use a benchmark data set to measure how well changes in parameter values improve GR models such as 

UrbanData and UrbanContext.  

Future evaluation of GR metrics and parameter testing of GR metrics should also consider the use 

of regression models to evaluate correlation between GR metrics to identify redundancy in GR metrics in 

order to inform the development of GR aggregation models. Regression models should compare scores 

of one each GR metric against scores of other GR metrics to determine whether there is overlap and 

redundancy between metrics. The regression analysis should inform the GR aggregation model and 

weighting scheme. The GR model developed by Reichenbacher et al. (2016) provides a good conceptual 

example for grouping GR metric types and generating aggregate GR scores. In this model, GR metrics are 

categorized, and metrics are aggregated using equal weights into a categorical GR score which is then 

used to generate an equal weighted GR score. A comparable model should be explored in future GR 

research. The performance of GR aggregation models can also be evaluated using backwards step wise 

regression models to evaluate the performance of individual GR metrics. It would also be interesting to 

explore GR models that dynamically add and remove GR metrics based upon the effectiveness of the 

metric. 

A major challenge of this thesis was developing the GR metrics and evaluation model for Chapter 4 

due to the complexity of implementing GR metrics between individual features. The topicality and co-

location metric were not good measures of relevance between features because they were 

implemented between layers. The co-location and topicality metrics can likely be implemented between 

feature categories. This adjustment in the metric may improve complexity of analysis but it should 

contribute to more relevant metrics.  

The Python module and WordNet database used to implement the topicality metric did not 

measure semantic similarity accurately. The implementation of this metric can potentially be improved 

by leveraging other natural language processing modules such as Amazon Comprehend or customizing 

the Python NLTK module to generate relevance scores that are representative of semantic relevance 

between spatial concepts. 

Lastly, it is important that GR researchers continue to expand the scope of studies to handle the 

growing number of complex GIS problems emerging on the web and to gather feedback from potential 

users of these solutions. Prototype applications should be developed to allow users to review the 
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validity of results from applications such as UrbanContext and to provide feedback on the usefulness of 

the developed solution. GR research should be guided by user feedback in order to validate results and 

to ensure that efforts are directed at solving societal needs while acknowledging the ethical challenges 

associated with any new technology. 
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Appendix A: Code Samples from UrbanData and UrbanContext 

Gazetteer Query 

CREATE VIEW gazetteer AS SELECT row_number() OVER () AS id, 

    a.table_schema, 

    a.table_name, 

    a.column_name, 

    a.search_term, 

    a.category 

   FROM ( SELECT a_1.table_schema, 

            a_1.table_name, 

            a_1.column_name, 

            a_1.search_term, 

            a_1.category 

           FROM ( SELECT pg_stat_user_tables.schemaname AS table_schema, 

                    pg_stat_user_tables.relname AS table_name, 

                    NULL::text AS column_name, 

                    pg_stat_user_tables.relname AS search_term, 

                    'Layer'::text AS category 

                   FROM pg_stat_user_tables 

                  WHERE (pg_stat_user_tables.schemaname = 'kitchener'::name)) a_1 

        UNION 

         SELECT 'kitchener'::name AS table_schema, 

            'roads'::name AS table_name, 

            'street_nam'::text AS column_name, 

            roads.street_nam AS search_term, 

            'Attribute'::text AS category 

           FROM kitchener.roads 

          GROUP BY roads.street_nam 

        UNION 

         SELECT 'kitchener'::name AS table_schema, 

            'trails'::name AS table_name, 

            'route_name'::text AS column_name, 

            trails.route_name AS search_term, 

            'Attribute'::text AS category 

           FROM kitchener.trails 

          WHERE (trails.route_name IS NOT NULL) 

          GROUP BY trails.route_name 

        UNION 

         SELECT 'kitchener'::name AS table_schema, 

            'parks'::name AS table_name, 

            'park'::text AS column_name, 

            parks.park AS search_term, 

            'Feature'::text AS category 

           FROM kitchener.parks 

          WHERE (parks.park IS NOT NULL)) a 

  ORDER BY a.category; 
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Q-Footprint Query 

CREATE MATERIALIZED VIEW iht_survey_q AS SELECT a.gid, 

    a.dsc, 

    a.geom, 

    b.id, 

    b.table_schema, 

    b.table_name, 

    b.column_name, 

    b.search_term, 

    b.category 

   FROM ( SELECT iht_survey.gid, 

            iht_survey.dsc, 

            iht_survey.geom 

           FROM kitchener.iht_survey) a, 

    ( SELECT static_gazetteer.gid AS id, 

            static_gazetteer.table_schema, 

            static_gazetteer.table_name, 

            static_gazetteer.column_name, 

            static_gazetteer.search_term, 

            static_gazetteer.category 

           FROM kitchener.static_gazetteer) b 

  WHERE (to_tsvector((a.dsc)::text) @@ plainto_tsquery(replace((b.search_term)::text, 

' '::text, '|'::text))); 

 

Topicality Score Script 

 

from nltk.corpus import wordnet as wn 

import csv 

 

 

def compare(tag1,tag2): 

    try: 

        word1 = wn.synsets(tag1)[0] 

        word2 = wn.synsets(tag2)[0] 

 

        return(word1.path_similarity(word2)) 

    except: 

        return 0 

 

outputCSVString = "" 

outputFile = "urban_data_topicality.csv" 

 

for dlayer in domain_layers: 

 

    dtags = layers[dlayer] 

 

    for layerName in layers: 
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        lyrTags = layers[layerName] 

        top_score = compare(dlayer,layerName) 

 

        for domTag in dtags: 

            for lyrTag in lyrTags: 

                new_score = compare(domTag,lyrTag) 

                if new_score > top_score: 

                    top_score=new_score 

 

         

        print(dlayer,layerName,top_score) 

 

        row = [dlayer,layerName,top_score] 

 

        with open(outputFile, 'a') as csvFile: 

            writer = csv.writer(csvFile) 

            writer.writerow(row) 

 

        csvFile.close() 

 

 

Cluster Score Query 

CREATE VIEW cluster50 AS SELECT row_number() OVER () AS gid, 

    layerA.cluster, 

    count(layerA.gid) AS size, 

    st_convexhull(st_collect(st_buffer(layerA.geom, (1)::double precision))) AS geom 

   FROM ( SELECT trail_survey.gid, 

            st_clusterdbscan(trail_survey.geom, (50)::double precision, 3) OVER () AS 

cluster, 

            trail_survey.dsc, 

            trail_survey.geom 

           FROM kitchener.trail_survey) layerA 

WHERE (layerA.cluster IS NOT NULL) 

GROUP BY layerA.cluster; 

 

 

 

SELECT max(b.density_metric) AS cluster_density_sc 

FROM kitchener.cluster50 b 

WHERE st_intersects(st_transform(a.geom, 26917), st_transform(b.geom, 26917)) 

LIMIT 1 
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Co-location Score Function 

DECLARE 

    colocation_score FLOAT; 

  BEGIN 

 

    EXECUTE format('SELECT 

                   count(distinct(a.gid))::float/(SELECT count(*) FROM %I.%I)::float 

          FROM 

            %I.%I a 

            JOIN %I.%I b 

            ON 

              

st_dwithin(st_transform(st_makevalid(a.geom),26917),st_transform(st_makevalid(b.geom),

26917),%L)', 

                   

input_schema,input_table,input_schema,input_table,target_schema,target_table,buffer_di

stance) INTO colocation_score; 

 

    RETURN colocation_score; 

END; 
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Cluster Co-location Score Function 

DECLARE 

    colocation_score FLOAT; 

  BEGIN 

 

    EXECUTE format(' 

                   SELECT count(*)::float/ 

                    (SELECT count(*) 

                     FROM 

                      (SELECT 

                       

distinct(st_clusterdbscan(st_transform(st_makevalid(geom),26917), (50)::double 

precision, 3) OVER ()) AS cluster 

                     FROM %I.%I) g 

                    )::float as clusters_total 

                  FROM 

                    (SELECT gid,cluster, 

                      (SELECT count(*)>0 FROM %I.%I k WHERE 

st_dwithin(st_transform(st_makevalid(k.geom),26917),cluster.geom,%L)) colocated 

                    FROM 

                      (SELECT row_number() OVER () AS gid, 

                          ham.cluster, 

                          count(ham.gid) AS size, 

                          st_convexhull(st_collect(st_buffer(ham.geom, (1)::double 

precision))) AS geom 

                      FROM ( SELECT gid, 

                                

st_clusterdbscan(st_transform(st_makevalid(geom),26917), (50)::double precision, 3) 

OVER () AS cluster, 

          st_transform(st_makevalid(geom),26917) as geom 

                     FROM %I.%I) ham 

                      WHERE (ham.cluster IS NOT NULL) 

                      GROUP BY ham.cluster) cluster) h 

                  WHERE 

                    colocated = true 

                   ', 

                    input_schema,input_table, 

                    target_schema,target_table, 

                    buffer_distance, 

                    input_schema,input_table 

                   ) INTO colocation_score; 

    RETURN colocation_score; 

END; 
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Appendix B: Output Tables for UrbanContext 

Table B-0.1 UrbanContext Result table for figures in Chapter 4 

GID Match 
ID 

Table Name Column 
Name 

Search Term Proximity Cluster Co-
location 

Topicality GR 
Score 

8 1951 roads 
 

roads 0.50 0.52 0.44 0.13 0.35 

19 1941 railway_lines 
 

railway_lines 0.50 0.14 0.09 0.06 0.22 

19 1302 roads street_nam NORTH 0.14 0.52 0.44 0.13 0.24 

19 1665 parks park VICTORIA PARK 0.49 0.76 0.66 0.08 0.41 

19 900 roads street_nam PARK 0.29 0.52 0.44 0.13 0.29 

19 1555 parks park IRON HORSE 
TRAIL 

0.49 0.76 0.66 0.08 0.41 

19 1950 trails 
 

trails 0.49 0.76 0.58 1.00 0.69 

19 986 roads street_nam VICTORIA 0.23 0.52 0.44 0.13 0.26 

19 1293 trails route_name IRON HORSE 
TRAIL 

0.49 0.76 0.58 1.00 0.69 

19 1957 railway_lines 
 

railway 0.50 0.14 0.09 0.06 0.22 

19 1954 trails 
 

trail 0.49 0.76 0.58 1.00 0.69 

19 1949 parks 
 

parks 0.49 0.76 0.66 0.08 0.41 

47 1950 trails 
 

trails 0.50 0.76 0.58 1.00 0.69 

47 1954 trails 
 

trail 0.50 0.76 0.58 1.00 0.69 

63 1950 trails 
 

trails 0.50 0.76 0.58 1.00 0.69 

63 1954 trails 
 

trail 0.50 0.76 0.58 1.00 0.69 

63 1949 parks 
 

parks 0.49 0.76 0.66 0.08 0.41 

63 900 roads street_nam PARK 0.30 0.52 0.44 0.13 0.29 

97 577 roads street_nam QUEENS -0.26 0.52 0.44 0.13 0.10 

97 986 roads street_nam VICTORIA 0.15 0.52 0.44 0.13 0.24 

97 1293 trails route_name IRON HORSE 
TRAIL 

0.41 0.76 0.58 1.00 0.67 

97 1954 trails 
 

trail 0.41 0.76 0.58 1.00 0.67 

97 1555 parks park IRON HORSE 
TRAIL 

0.42 0.76 0.66 0.08 0.39 

97 92 roads street_nam QUEEN -0.26 0.52 0.44 0.13 0.10 

97 1499 roads street_nam KING 0.13 0.52 0.44 0.13 0.23 

97 199 roads street_nam STREET ONE -2.33 0.52 0.44 0.13 -0.59 

97 1950 trails 
 

trails 0.41 0.76 0.58 1.00 0.67 

113 164 roads street_nam OTTAWA 0.50 0.52 0.44 0.13 0.35 

113 1954 trails 
 

trail 0.50 0.76 0.58 1.00 0.69 

113 1950 trails 
 

trails 0.50 0.76 0.58 1.00 0.69 

113 380 roads street_nam NYBERG 0.48 0.52 0.44 0.13 0.35 

189 1950 trails 
 

trails 0.49 0.76 0.58 1.00 0.69 

189 1951 roads 
 

roads 0.49 0.52 0.44 0.13 0.35 

189 164 roads street_nam OTTAWA 0.49 0.52 0.44 0.13 0.35 

189 1954 trails 
 

trail 0.49 0.76 0.58 1.00 0.69 
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189 1293 trails route_name IRON HORSE 
TRAIL 

0.49 0.76 0.58 1.00 0.69 

189 1555 parks park IRON HORSE 
TRAIL 

0.50 0.76 0.66 0.08 0.41 

193 1950 trails 
 

trails 0.49 0.76 0.58 1.00 0.69 

193 812 roads street_nam WOOD -1.29 0.52 0.44 0.13 -0.24 

193 1955 cycling 
 

bicycle 0.50 0.14 0.14 0.08 0.24 

193 1954 trails 
 

trail 0.49 0.76 0.58 1.00 0.69 

193 630 roads street_nam WINDING -2.18 0.52 0.44 0.13 -0.54 

193 1273 roads street_nam WINDING WOOD -3.12 0.52 0.44 0.13 -0.85 

242 73 roads street_nam STIRLING 0.49 0.52 0.44 0.13 0.35 

242 1950 trails 
 

trails 0.50 0.76 0.58 1.00 0.69 

242 1954 trails 
 

trail 0.50 0.76 0.58 1.00 0.69 

348 1949 parks 
 

parks 0.50 0.76 0.66 0.08 0.41 

348 1665 parks park VICTORIA PARK 0.50 0.76 0.66 0.08 0.41 

348 986 roads street_nam VICTORIA 0.25 0.52 0.44 0.13 0.27 

348 900 roads street_nam PARK 0.31 0.52 0.44 0.13 0.29 

348 1950 trails 
 

trails 0.50 0.76 0.58 1.00 0.69 

348 233 roads street_nam WATER 0.30 0.52 0.44 0.13 0.29 

348 1954 trails 
 

trail 0.50 0.76 0.58 1.00 0.69 

371 248 roads street_nam BELMONT 0.49 0.52 0.44 0.13 0.35 

371 1052 roads street_nam UNION 0.49 0.52 0.44 0.13 0.35 

371 1950 trails 
 

trails 0.47 0.76 0.58 1.00 0.69 

371 1379 roads street_nam VILLAGE -1.11 0.52 0.44 0.13 -0.18 

371 1302 roads street_nam NORTH -0.46 0.52 0.44 0.13 0.03 

371 1954 trails 
 

trail 0.47 0.76 0.58 1.00 0.69 
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Table B-0.2: UrbanContext maual spot check results where results are semantically or spatially correct 

GID Match 
ID 

Table Name Search Term Proximity Cluster Co-location Topicality GR 
Score 

Semantic Spatial 

7 1954 trails trail 0.47 0.76 0.58 1.00 0.69 TRUE TRUE 

7 1950 trails trails 0.47 0.76 0.58 1.00 0.69 TRUE TRUE 

8 1951 roads roads 0.50 0.52 0.44 0.13 0.35 TRUE TRUE 

17 1555 parks IRON HORSE TRAIL 0.50 0.76 0.66 0.08 0.41 TRUE TRUE 

17 1954 trails trail 0.50 0.76 0.58 1.00 0.69 TRUE TRUE 

17 164 roads OTTAWA 0.50 0.52 0.44 0.13 0.35 TRUE TRUE 

17 1293 trails IRON HORSE TRAIL 0.49 0.76 0.58 1.00 0.69 TRUE TRUE 

17 1950 trails trails 0.50 0.76 0.58 1.00 0.69 TRUE TRUE 

17 1093 roads FAIRVIEW 0.15 0.52 0.44 0.13 0.24 TRUE FALSE 

19 900 roads PARK 0.29 0.52 0.44 0.13 0.29 FALSE FALSE 

19 1949 parks parks 0.49 0.76 0.66 0.08 0.41 TRUE TRUE 

19 1950 trails trails 0.49 0.76 0.58 1.00 0.69 TRUE TRUE 

19 1957 railway_lines railway 0.50 0.14 0.09 0.06 0.22 TRUE FALSE 

19 1954 trails trail 0.49 0.76 0.58 1.00 0.69 TRUE TRUE 

19 1941 railway_lines railway_lines 0.50 0.14 0.09 0.06 0.22 TRUE FALSE 

19 1302 roads NORTH 0.14 0.52 0.44 0.13 0.24 FALSE FALSE 

19 986 roads VICTORIA 0.23 0.52 0.44 0.13 0.26 FALSE FALSE 

19 1555 parks IRON HORSE TRAIL 0.49 0.76 0.66 0.08 0.41 TRUE TRUE 

19 1665 parks VICTORIA PARK 0.49 0.76 0.66 0.08 0.41 TRUE TRUE 

19 1293 trails IRON HORSE TRAIL 0.49 0.76 0.58 1.00 0.69 TRUE TRUE 

26 1950 trails trails 0.49 0.76 0.58 1.00 0.69 TRUE TRUE 

26 1954 trails trail 0.49 0.76 0.58 1.00 0.69 TRUE TRUE 

31 577 roads QUEENS -0.06 0.52 0.44 0.13 0.17 TRUE TRUE 

31 92 roads QUEEN 0.05 0.52 0.44 0.13 0.20 TRUE TRUE 

38 1951 roads roads 0.47 0.52 0.44 0.13 0.34 TRUE TRUE 

38 1956 cycling_infrastructure cyclist 0.41 0.14 0.14 0.08 0.21 TRUE TRUE 

47 1954 trails trail 0.50 0.76 0.58 1.00 0.69 TRUE FALSE 

47 1950 trails trails 0.50 0.76 0.58 1.00 0.69 TRUE FALSE 

63 1949 parks parks 0.49 0.76 0.66 0.08 0.41 TRUE TRUE 

63 900 roads PARK 0.30 0.52 0.44 0.13 0.29 TRUE TRUE 

63 1954 trails trail 0.50 0.76 0.58 1.00 0.69 TRUE TRUE 

63 1950 trails trails 0.50 0.76 0.58 1.00 0.69 TRUE TRUE 

64 1950 trails trails 0.50 0.76 0.58 1.00 0.69 TRUE TRUE 

64 1954 trails trail 0.50 0.76 0.58 1.00 0.69 TRUE TRUE 

64 237 roads WENTWORTH 0.50 0.52 0.44 0.13 0.35 TRUE TRUE 

95 1956 cycling_infrastructure cyclist 0.38 0.14 0.14 0.08 0.20 FALSE FALSE 

95 1943 bridge bridge 0.49 0.10 0.07 0.11 0.22 TRUE TRUE 

95 603 roads BRIDGE -1.76 0.52 0.44 0.13 -0.40 TRUE TRUE 

95 1950 trails trails 0.50 0.76 0.58 1.00 0.69 TRUE TRUE 
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95 1954 trails trail 0.50 0.76 0.58 1.00 0.69 TRUE TRUE 

98 1950 trails trails 0.50 0.76 0.58 1.00 0.69 TRUE TRUE 

98 659 roads BROCK 0.40 0.52 0.44 0.13 0.32 TRUE TRUE 

98 569 roads HIGHLAND 0.37 0.52 0.44 0.13 0.31 TRUE TRUE 

98 1954 trails trail 0.50 0.76 0.58 1.00 0.69 TRUE TRUE 

105 346 roads ROCKWAY 0.25 0.52 0.44 0.13 0.27 FALSE FALSE 

105 1472 roads SCHNEIDER -0.45 0.52 0.44 0.13 0.04 TRUE TRUE 

105 1954 trails trail 0.49 0.76 0.58 1.00 0.69 TRUE TRUE 

105 1950 trails trails 0.49 0.76 0.58 1.00 0.69 TRUE TRUE 

109 1052 roads UNION 0.50 0.52 0.44 0.13 0.35 TRUE TRUE 

109 1951 roads roads 0.50 0.52 0.44 0.13 0.35 TRUE TRUE 

113 380 roads NYBERG 0.48 0.52 0.44 0.13 0.35 TRUE TRUE 

113 1950 trails trails 0.50 0.76 0.58 1.00 0.69 TRUE TRUE 

113 1954 trails trail 0.50 0.76 0.58 1.00 0.69 TRUE TRUE 

113 164 roads OTTAWA 0.50 0.52 0.44 0.13 0.35 TRUE TRUE 

123 900 roads PARK 0.31 0.52 0.44 0.13 0.29 FALSE FALSE 

123 1665 parks VICTORIA PARK 0.50 0.76 0.66 0.08 0.41 TRUE TRUE 

123 1949 parks parks 0.50 0.76 0.66 0.08 0.41 TRUE TRUE 

123 986 roads VICTORIA 0.32 0.52 0.44 0.13 0.29 FALSE FALSE 

141 1950 trails trails 0.50 0.76 0.58 1.00 0.69 TRUE TRUE 

141 986 roads VICTORIA 0.49 0.52 0.44 0.13 0.35 TRUE FALSE 

141 997 roads WEST 0.47 0.52 0.44 0.13 0.34 TRUE FALSE 

141 1954 trails trail 0.50 0.76 0.58 1.00 0.69 TRUE TRUE 

150 249 roads HENRY 0.32 0.52 0.44 0.13 0.29 FALSE FALSE 

150 710 roads GREEN -0.14 0.52 0.44 0.13 0.14 FALSE FALSE 

150 1950 trails trails 0.50 0.76 0.58 1.00 0.69 TRUE TRUE 

150 1954 trails trail 0.50 0.76 0.58 1.00 0.69 TRUE TRUE 

158 1954 trails trail 0.49 0.76 0.58 1.00 0.69 TRUE TRUE 

158 1955 cycling_infrastructure bicycle 0.26 0.14 0.14 0.08 0.16 TRUE FALSE 

158 1555 parks IRON HORSE TRAIL 0.49 0.76 0.66 0.08 0.41 TRUE TRUE 

158 1950 trails trails 0.49 0.76 0.58 1.00 0.69 TRUE TRUE 

158 986 roads VICTORIA 0.21 0.52 0.44 0.13 0.26 TRUE TRUE 

158 1293 trails IRON HORSE TRAIL 0.49 0.76 0.58 1.00 0.69 TRUE TRUE 

158 1956 cycling_infrastructure cyclist 0.26 0.14 0.14 0.08 0.16 TRUE FALSE 

158 1476 roads WALKER -2.72 0.52 0.44 0.13 -0.72 FALSE FALSE 

189 1950 trails trails 0.49 0.76 0.58 1.00 0.69 TRUE TRUE 

189 1293 trails IRON HORSE TRAIL 0.49 0.76 0.58 1.00 0.69 TRUE TRUE 

189 1951 roads roads 0.49 0.52 0.44 0.13 0.35 FALSE FALSE 

189 164 roads OTTAWA 0.49 0.52 0.44 0.13 0.35 TRUE TRUE 

189 1555 parks IRON HORSE TRAIL 0.50 0.76 0.66 0.08 0.41 TRUE TRUE 

189 1954 trails trail 0.49 0.76 0.58 1.00 0.69 TRUE TRUE 
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190 1950 trails trails 0.50 0.76 0.58 1.00 0.69 TRUE TRUE 

190 1954 trails trail 0.50 0.76 0.58 1.00 0.69 TRUE TRUE 

190 986 roads VICTORIA 0.38 0.52 0.44 0.13 0.31 TRUE TRUE 

193 630 roads WINDING -2.18 0.52 0.44 0.13 -0.54 FALSE FALSE 

193 1273 roads WINDING WOOD -3.12 0.52 0.44 0.13 -0.85 FALSE FALSE 

193 1950 trails trails 0.49 0.76 0.58 1.00 0.69 TRUE TRUE 

193 812 roads WOOD -1.29 0.52 0.44 0.13 -0.24 TRUE FALSE 

193 1955 cycling_infrastructure bicycle 0.50 0.14 0.14 0.08 0.24 TRUE TRUE 

193 1954 trails trail 0.49 0.76 0.58 1.00 0.69 TRUE TRUE 

199 1954 trails trail 0.50 0.76 0.58 1.00 0.69 TRUE FALSE 

199 1424 roads GLASGOW 0.50 0.52 0.44 0.13 0.35 TRUE TRUE 

199 1950 trails trails 0.50 0.76 0.58 1.00 0.69 TRUE FALSE 

199 1949 parks parks 0.50 0.76 0.66 0.08 0.41 FALSE FALSE 

199 900 roads PARK 0.28 0.52 0.44 0.13 0.28 FALSE FALSE 

214 1954 trails trail 0.50 0.76 0.58 1.00 0.69 TRUE TRUE 

214 1046 roads SYDNEY 0.50 0.52 0.44 0.13 0.35 TRUE TRUE 

214 1950 trails trails 0.50 0.76 0.58 1.00 0.69 TRUE TRUE 

217 1954 trails trail 0.47 0.76 0.58 1.00 0.69 TRUE FALSE 

217 1950 trails trails 0.47 0.76 0.58 1.00 0.69 TRUE FALSE 

231 1950 trails trails 0.49 0.76 0.58 1.00 0.69 TRUE TRUE 

231 1555 parks IRON HORSE TRAIL 0.50 0.76 0.66 0.08 0.41 TRUE TRUE 

231 1954 trails trail 0.49 0.76 0.58 1.00 0.69 TRUE TRUE 

231 377 roads CHERRY 0.48 0.52 0.44 0.13 0.35 TRUE TRUE 

231 1293 trails IRON HORSE TRAIL 0.49 0.76 0.58 1.00 0.69 TRUE TRUE 

232 1950 trails trails 0.50 0.76 0.58 1.00 0.69 TRUE TRUE 

232 1954 trails trail 0.50 0.76 0.58 1.00 0.69 TRUE TRUE 

232 1293 trails IRON HORSE TRAIL 0.50 0.76 0.58 1.00 0.69 TRUE TRUE 

232 1555 parks IRON HORSE TRAIL 0.50 0.76 0.66 0.08 0.41 TRUE TRUE 

242 1950 trails trails 0.50 0.76 0.58 1.00 0.69 TRUE TRUE 

242 1954 trails trail 0.50 0.76 0.58 1.00 0.69 TRUE TRUE 

242 73 roads STIRLING 0.49 0.52 0.44 0.13 0.35 TRUE TRUE 

270 346 roads ROCKWAY 0.23 0.52 0.44 0.13 0.26 FALSE FALSE 

270 164 roads OTTAWA 0.47 0.52 0.44 0.13 0.34 TRUE TRUE 

270 682 roads GARDEN -0.56 0.52 0.44 0.13 0.00 FALSE FALSE 

270 1954 trails trail 0.47 0.76 0.58 1.00 0.69 TRUE TRUE 

270 1950 trails trails 0.47 0.76 0.58 1.00 0.69 TRUE TRUE 

270 1202 roads SOUTH -0.59 0.52 0.44 0.13 -0.01 FALSE FALSE 

270 1848 parks ROCKWAY GARDENS 0.49 0.76 0.66 0.08 0.41 TRUE TRUE 

279 1202 roads SOUTH -0.32 0.52 0.44 0.13 0.08 FALSE FALSE 

279 1950 trails trails 0.45 0.76 0.58 1.00 0.68 TRUE TRUE 

279 1954 trails trail 0.45 0.76 0.58 1.00 0.68 TRUE TRUE 
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282 1951 roads roads 0.50 0.52 0.44 0.13 0.35 TRUE TRUE 

282 1950 trails trails 0.45 0.76 0.58 1.00 0.68 TRUE FALSE 

282 1954 trails trail 0.45 0.76 0.58 1.00 0.68 TRUE FALSE 

292 1954 trails trail 0.50 0.76 0.58 1.00 0.69 TRUE FALSE 

292 1950 trails trails 0.50 0.76 0.58 1.00 0.69 TRUE FALSE 

314 92 roads QUEEN 0.48 0.52 0.44 0.13 0.35 TRUE FALSE 

314 577 roads QUEENS 0.35 0.52 0.44 0.13 0.30 TRUE FALSE 

335 986 roads VICTORIA 0.44 0.52 0.44 0.13 0.33 TRUE TRUE 

335 900 roads PARK 0.30 0.52 0.44 0.13 0.29 FALSE FALSE 

335 997 roads WEST 0.45 0.52 0.44 0.13 0.34 TRUE TRUE 

335 1665 parks VICTORIA PARK 0.50 0.76 0.66 0.08 0.41 TRUE TRUE 

335 1949 parks parks 0.50 0.76 0.66 0.08 0.41 TRUE TRUE 

348 1950 trails trails 0.50 0.76 0.58 1.00 0.69 TRUE TRUE 

348 900 roads PARK 0.31 0.52 0.44 0.13 0.29 FALSE FALSE 

348 1949 parks parks 0.50 0.76 0.66 0.08 0.41 TRUE TRUE 

348 233 roads WATER 0.30 0.52 0.44 0.13 0.29 FALSE FALSE 

348 1665 parks VICTORIA PARK 0.50 0.76 0.66 0.08 0.41 TRUE TRUE 

348 1954 trails trail 0.50 0.76 0.58 1.00 0.69 TRUE TRUE 

348 986 roads VICTORIA 0.25 0.52 0.44 0.13 0.27 FALSE FALSE 

356 900 roads PARK 0.20 0.52 0.44 0.13 0.25 FALSE FALSE 

356 377 roads CHERRY 0.49 0.52 0.44 0.13 0.35 FALSE FALSE 

356 1950 trails trails 0.50 0.76 0.58 1.00 0.69 TRUE TRUE 

356 1954 trails trail 0.50 0.76 0.58 1.00 0.69 TRUE TRUE 

356 1533 parks CHERRY PARK 0.50 0.76 0.66 0.08 0.41 TRUE TRUE 

356 1949 parks parks 0.50 0.76 0.66 0.08 0.41 TRUE TRUE 

381 1956 cycling_infrastructure cyclist 0.42 0.14 0.14 0.08 0.21 FALSE FALSE 

395 986 roads VICTORIA -0.33 0.52 0.44 0.13 0.08 TRUE FALSE 

402 1642 parks HENRY STURM GREENWAY 0.50 0.76 0.66 0.08 0.41 TRUE TRUE 

402 249 roads HENRY 0.25 0.52 0.44 0.13 0.27 FALSE FALSE 

412 1957 railway_lines railway 0.50 0.14 0.09 0.06 0.22 TRUE TRUE 

419 1379 roads VILLAGE -0.98 0.52 0.44 0.13 -0.14 FALSE FALSE 

419 248 roads BELMONT 0.49 0.52 0.44 0.13 0.35 TRUE TRUE 

419 1950 trails trails 0.50 0.76 0.58 1.00 0.69 TRUE FALSE 

419 1954 trails trail 0.50 0.76 0.58 1.00 0.69 TRUE FALSE 

425 1954 trails trail 0.49 0.76 0.58 1.00 0.69 TRUE TRUE 

425 1259 roads DANIEL -1.95 0.52 0.44 0.13 -0.46 FALSE FALSE 

425 1950 trails trails 0.49 0.76 0.58 1.00 0.69 TRUE TRUE 

446 1954 trails trail 0.50 0.76 0.58 1.00 0.69 TRUE TRUE 

446 900 roads PARK 0.31 0.52 0.44 0.13 0.29 FALSE FALSE 

446 1949 parks parks 0.50 0.76 0.66 0.08 0.41 TRUE TRUE 

446 1950 trails trails 0.50 0.76 0.58 1.00 0.69 TRUE TRUE 
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446 1665 parks VICTORIA PARK 0.50 0.76 0.66 0.08 0.41 TRUE TRUE 

446 986 roads VICTORIA 0.37 0.52 0.44 0.13 0.31 FALSE FALSE 

453 1848 parks ROCKWAY GARDENS 0.50 0.76 0.66 0.08 0.41 TRUE TRUE 

453 1954 trails trail 0.50 0.76 0.58 1.00 0.69 TRUE TRUE 

453 1950 trails trails 0.50 0.76 0.58 1.00 0.69 TRUE TRUE 

453 268 roads MONTGOMERY -0.16 0.52 0.44 0.13 0.13 TRUE TRUE 

453 164 roads OTTAWA 0.49 0.52 0.44 0.13 0.35 TRUE TRUE 

453 682 roads GARDEN -0.52 0.52 0.44 0.13 0.01 FALSE FALSE 

453 346 roads ROCKWAY 0.19 0.52 0.44 0.13 0.25 FALSE FALSE 

459 1555 parks IRON HORSE TRAIL 0.50 0.76 0.66 0.08 0.41 TRUE TRUE 

459 1293 trails IRON HORSE TRAIL 0.49 0.76 0.58 1.00 0.69 TRUE TRUE 

459 1954 trails trail 0.49 0.76 0.58 1.00 0.69 TRUE TRUE 

459 1950 trails trails 0.49 0.76 0.58 1.00 0.69 TRUE TRUE 

462 52 roads MAY -0.73 0.52 0.44 0.13 -0.05 FALSE FALSE 

462 1954 trails trail 0.50 0.76 0.58 1.00 0.69 TRUE TRUE 

462 1956 cycling_infrastructure cyclist 0.24 0.14 0.14 0.08 0.15 TRUE FALSE 

462 1364 roads GAGE 0.50 0.52 0.44 0.13 0.35 TRUE 
 

462 1950 trails trails 0.50 0.76 0.58 1.00 0.69 TRUE TRUE 

479 1954 trails trail 0.50 0.76 0.58 1.00 0.69 TRUE FALSE 

479 1950 trails trails 0.50 0.76 0.58 1.00 0.69 TRUE FALSE 

482 380 roads NYBERG 0.49 0.52 0.44 0.13 0.35 TRUE TRUE 

482 1950 trails trails 0.50 0.76 0.58 1.00 0.69 TRUE TRUE 

482 1954 trails trail 0.50 0.76 0.58 1.00 0.69 TRUE TRUE 

482 164 roads OTTAWA 0.50 0.52 0.44 0.13 0.35 TRUE TRUE 

483 900 roads PARK 0.22 0.52 0.44 0.13 0.26 FALSE FALSE 

483 248 roads BELMONT 0.46 0.52 0.44 0.13 0.34 TRUE TRUE 

483 1552 parks BELMONT PARK 0.50 0.76 0.66 0.08 0.41 FALSE FALSE 

483 1954 trails trail 0.50 0.76 0.58 1.00 0.69 TRUE TRUE 

483 1950 trails trails 0.50 0.76 0.58 1.00 0.69 TRUE TRUE 

483 1949 parks parks 0.50 0.76 0.66 0.08 0.41 FALSE FALSE 

489 1949 parks parks 0.50 0.76 0.66 0.08 0.41 FALSE FALSE 

489 52 roads MAY -0.47 0.52 0.44 0.13 0.03 FALSE FALSE 

489 1950 trails trails 0.50 0.76 0.58 1.00 0.69 TRUE TRUE 

489 1954 trails trail 0.50 0.76 0.58 1.00 0.69 TRUE TRUE 

489 900 roads PARK 0.25 0.52 0.44 0.13 0.27 FALSE FALSE 

 


