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Abstract

Robotic grasping is a challenging task that has been approached in a variety of ways. His-
torically grasping has been approached as a control problem. If the forces between the
robotic gripper and the object can be calculated and controlled accurately then grasps can
be easily planned. However, these methods are difficult to extend to unknown objects or
a variety of robotic grippers. Using human demonstrated grasps is another way to tackle
this problem. Under this approach, a human operator guides the robot in a training phase
to perform the grasping task and then the useful information from each demonstration is
extracted. Unlike traditional control systems, demonstration based systems do not explicitly
state what forces are necessary, and they also allow the system to learn to manipulate the
robot directly. However, the major failing of this approach is the sheer amount of data that
would be required to present a demonstration for a substantial portion of objects and use
cases. Recently, we have seen various deep learning grasping systems that achieve impressive
levels of performance. These systems learn to map perceptual features, like color images and
depth maps, to gripper poses. These systems can learn complicated relationships, but still
require massive amounts of data to train properly. A common way of collecting this data
is to run physics based simulations based on the control schemes mentioned above, however
human demonstrated grasps are still the gold standard for grasp planning.

We therefore propose a data collection system that can be used to collect a large number
of human demonstrated grasps. In this system the human demonstrator holds the robotic
gripper in one hand and naturally uses the gripper to perform grasps. These grasp poses are
tracked fully in six dimensions and RGB-D images are collected for each grasp trial showing
the object and any obstacles present during the grasp trial. Implementing this system, we
collected 40K annotated grasps demonstrations. This dataset is available online.

We test a subset of these grasps for their robustness to perturbations by replicating scenes
captured during data collection and using a robotic arm to replicate the grasps we collected.
We find that we can replicate the scenes with low variance, which coupled with the robotic
arm’s low repeatability error means that we can test a wide variety of perturbations. Our
tests show that our grasps can maintain a probability of success over 90% for perturbations
of up 2.5cm or 10◦.

We then train a variety of neural networks to learn to map images of grasping scenes
to final grasp poses. We separate the task of pose prediction into two separate networks:
a network to predict the position of the gripper, and a network to predict the orientation
conditioned on the output of the position network. These networks are trained to classify
whether a particular position or orientation is likely to lead to a successful grasp. We also
identified a strong prior in our dataset over the distribution of grasp positions and leverage
this information by tasking the position network to predict corrections to this prior based
on the image being presented to it. Our final network architecture, using layers from a
pre-trained state of the art image classification network and residual convolution blocks, did
not seem able to learn the grasping task. We observed a strong tendency for the networks
to overfit, even when the networks had been heavily regularized and parameters reduced
substantially. The best position network we were able to train collapses to only predicting
a few possible positions, leading to the orientation network to only predict a few possible
orientations as well. Limited testing on a robotic platform confirmed these findings.
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Chapter 1

Introduction

A robot is a general purpose machine that can be programmed to perform a variety of tasks.
However, unlike conventional tools or machines, a robot is capable of being repurposed for
different tasks [50]. Robots have been used in industry for decades, performing many tasks
faster and more accurately than a human being possibly could. Yet there are many more
tasks that robots are not capable of doing that we would consider basic. This mismatch
has to do with our ability to program these robots. Rote, repetitive tasks in a controlled
environment are easy for us to program. As soon as the environment is not being controlled,
the tasks become much harder to program.

Take for example the classic robotic task: pick and place. Under pick and place a robot
is tasked with picking some object and accurately placing it in a different location. For a
human, this task is quite easy, but for a robot a number of fundamental questions need to
first be answered: where is the object? what trajectory needs to be used to approach the
object? how are the joints going to be moved to fulfill this trajectory? how should the
object be grasped? has the object been grasped properly? if not, how should this be fixed?
etc. Even through all this uncertainty, industrial robots perform pick and place operations
everyday. They rely on simplifications to their environment like making sure that the objects
are always arranged in a specific order, or using strong backlights to allow computer vision
systems to locate objects. However, there is still a strong desire to relax these constraints as
it would make robots more useful in a wide variety of environments, like clinical or household
settings. Primarily, there have been two challenges to allow robotic tasks like pick and place
to be carried out in a wider range of settings: coming up with robust perception systems to
locate the objects, and planning robust grasp locations on objects.

Until recently, computer vision systems were not capable of quickly and accurately iden-
tifying objects. However, in 2012 Krizhevsky et al. [30] presented AlexNet, a deep convo-
lutional neural network trained on consumer hardware to almost match human level per-
formance on ImageNet Large Scale Visual Recognition Challenge. The success of AlexNet
spurred many other researchers to pursue deep learning to tackle many problems in computer
vision. Deep learning computer vision systems now routinely outperform human performance
on identification tasks.

However, deep learning has proven to not only be useful for computer vision tasks but
across a wide variety of problems. Deep learning has been used to achieve state of the art
performance in machine translation [4], speech synthesis [44], fraud detection [56] and of
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course in robotic control [32] and grasp selection [36]. These grasps planners actually solve
the perception and planning problems in one step. They are also designed to work even
when they do not have access to 3D models of the objects they are trying to grasp. In fact
they can plan grasp poses for objects they have never seen before.

Deep learning’s weakness is the sheer amount of data needed to train these systems.
The ImageNet dataset consists of more than fourteen million images that had to be hand
annotated so that a deep network could learn from them. Many of the modern deep learning
grasping systems try to find ways to quickly synthesize a dataset [36], try to collect data
autonomously for months [32], or train in simulation [57] before attempting their tasks.

We hypothesize that a dataset collected using human intuition might provide a stronger
signal to learn how to perform grasping tasks. As stated previously, humans’ grasping
ability is far greater than even the best deep learning grasping systems today. DexNet 2.0
[36], a modern deep learning grasping system achieves an 80% success rate in a controlled
environment, when only one object is placed on a flat surface. Morrison et al. [41] won
Amazon’s Robotic Challenge in 2017, with a grasp success rate of 63%. The task was to
move a set of objects from one bin to another, a more complicated task since multiple
objects were in the workspace at the same time. In both of these cases humans are not
expected to face any difficulties, completing these tasks in seconds, highlighting the vast
discrepancy between robotic and human grasping. It is important to note that this is not
a failing on the robotic grippers availble today, as during our data collection we found that
our human demonstrators failed grasps only rarely, less than a hundred times in over forty
thousand attempts. This is decidedly a control problem; the gripper is capable of executing
the grasps but modern systems fail at controlling where to place the gripper and how to
follow through. Having encountered many objects over years of experience, many of us do
not even think about how to grasp new and unknown objects because we are already familiar
with the constraints of the real world. This is why, we hypothesize human demonstrated
grasps will provide a cleaner signal for a grasping system to learn to perform robust grasps.
However, we do not want to deal with any correspondence problems between human hands
and robotic grippers. Therefore, we devise a way to quickly and naturally collect grasp poses
by holding the robotic gripper in one hand, and controlling the fingers using a joystick with
the other hand. As mentioned previously, this data collection scheme allowed us to collect
forty thousand grasps on over one hundred objects.

1.1 Outline

In the following chapters we present the work we have done on this project to collect this
dataset, show its robustness and build a deep learning grasp pose planner. Appendix A
covers relevant mathematical subjects that are useful for understading this work.

In Chapter 2 we introduce our problem, and present a literature review of classical, deep
learning and demonstration based approaches to grasping.

Chapter 3 we introduce all the hardware we used for this project: the gripper, robotic
arm, camera and position trackers. We also go over the taxonomy we used to organize our
grasps before delving in detail on how we conducted our human demonstrated data collection.

Chapter 4 we go over how we processed the raw data we collected into a useful dataset for
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grasp pose training. Predominantly, we talk about how to perform reference frame changes
from each frame in our setup and how to find the final grasp pose from our dataset of
trajectories. We also show relevant plots to provide some intuition as to what the data we
collected looks like.

After having collected the dataset, we empirically show that the grasps we collected are
robust to perturbations in Chapter 5. We go into detail about how we replicated grasps so
that they could be replayed on our robotic arm and how we collected data on the perturbed
grasps. We then show results from these experiements.

Having shown that our dataset is robust to perturbations, we then explain our approaches
to train a deep learning grasp planner in Chapter 6. First we describe preprocessing steps
we took to prepare the data for the partiuclar approach we settled on. We then go into some
detail about what kinds of architectures, loss functions and hyperparameters we used for our
training.

Finally, we provide concluding remarks in Chapter 7.

1.2 Contributions

We provide the following lists of contributions:

• A system that can be used to record reaching and grasping data in real time using a
human operator’s intuition to guide a robotic gripper.

• Empirical evidence for the robustness of the collected human demonstrated dataset to
perturbations of up 2.5cm in position and 10◦ in orientation.

• An approach for how to train a deep network grasp planning system using the collected
dataset, and intuitions on how to improve this approach.
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Chapter 2

Background

Robotic grasping is a complicated task that has been area of research for decades. Recently
deep learning methods for grasping has become a popular area of research. Deep learning,
however, depends on having large amounts of high quality data, but such a dataset does not
yet exist. Large datasets of grasping data created from simulation do exist, but these suffer
from not having realistic enough physics [36, 28]. DexNet 2.0, one of these systems, has an
80% chance of grasp success, while we expect humans to have perfect grasping ability under
the same circumstances. Reinforcement learning approaches to grasping trained in the real
world can produce very large datasets [32], over 800k grasps, but their rate of success is also
around 80%. One possible reason for this is that these datasets do not have high quality
labels. Human demonstrated grasps are considered the gold standard [28] for a grasping
system, but in the past it has been labor intensive to collect enough human demonstrated
grasps to train a deep learning model. In this work, we demonstrate how to collect such
a dataset of high quality human demonstrated grasps in quantities large enough to train a
deep learning model. This system is described in Chapter 3, while in this chapter we present
a literature review of robotic grasping as seen through the lens of classical, deep learning,
demonstration approaches to the field. Each of these approaches treats the grasping problem,
quite differently, but they are all intererlated and frequently build on each other’s work. For
reference, relevant mathetical topics are covered in Appendix A. In the second section of this
chapter we introduce our problem statment and demonstrate how we believe this project
helps to address some of the shortcomings of modern approaches to grasping.

2.1 Grasping Literature

Robotic grasping is not a new discipline, but the modern approaches to robotic grasping are
now quite divorced from the classical approaches. The oldest approaches (1980’s - 1990’s)
are characterized by their reliance on calculating force closure characteristics [15, 40, 42, 21].
More modern approaches (2000’s) [49] begin to lean on machine learning but still rely on
hand crafted features. By contrast deep learning based grasping systems are more concerned
with finding the appropiate representation [9] for the grasp pose and letting the system find
its own features. Approaches where humans demonstrate grasps [23, 13, 20, 24] for data
collection are not as common, presumably because of how time intensive collecting the data
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can be. In the next few sections we present some of the work in these areas and comment
on how they relate to our project.

2.1.1 Classical Approaches to Grasping

Perhaps the most intuitive approach to robotic grasping is to calculate exactly what are the
forces and torques necessary to secure an object to a robotic gripper. Hanafusa and Asada
[21] provide some of the earliest research into calculating stable grasps with robotic grippers.
They propose a general definitnion for what constitutes a stable grasp: a grasp is stable if
for any small perturbation the contact forces from the gripper provide a restorative force on
the object towards the unperturbed state. This practical definition is easy to understand,
but hard to quantify. Mishra et al. [40] use this definition to mathematically show that
such stable grasps exist even in a friction free situation, and can even compute how many
fingers are needed to execute these grasps on basic polygons. Knowing that such grasps
exist, Ferrari and Canny [15] introduced a grasp quality metric that tries to encapsulate the
stable grasp criteria given by Hanafusa. This quality metric came to be known as ε-metric,
and is available in most robotics simulators to test for force closure.

Ferrari works in wrench space [5], where the force, ~F , and torque, ~τ , acting on a body

are represented as a six dimensional vector, ~w = [~F ~τ ]T , called a wrench. The vector space of
wrenches then represents all the possible force and torque combinations. Ferrari generalizes
the forces the gripper is capable of exerting as a vector ~g, which carries information about
the normal forces each of the fingers apply to the object’s surfaces. From these two vectors,
they posit a predicate, A : W × G → {T, F}, which maps whether a given set of contact
forces, ~g ∈ G, can resist a wrench, ~w ∈ W . They then propose the following grasp quality
criteria, Q:

Q = min
~w

max
~g∈~wA

||~w||
||~g||

(2.1)

In this equation ~wA is used to represent the space of all contact forces that can resist
the wrench ~w.

This metric can be understood as the ratio of a wrench applied to an object being held
in place by the fingers’ normal forces. Ideally we want ||~g||, the contact forces, to be small
but able to resist some amount of force/torque, ||~w||. By maximizing the ratio over ~g,
we encourage minimizing the contact forces. However, by minimizing that over ~w, we are
searching for the smallest wrench that requires the most contact forces to overcome. In other
words, this metric allows us to test for the worst case scenario. Ideally we want this metric
to be as high as possible, since that implies that large magnitude wrenches are required to
loosen the object, or that very small contact forces can be used to hold the obejct. Ferrari
and Canny also work out a geometric way to calculate this constraint as the radius of the
largest sphere that fits within the convex hull of the possible contact forces for a given
wrench.

One of the prerequisites for this kinds of force calculations is access to accurate 3D models
of the objects to be grasped. This condition is too restrictive for a general purpose grasping
system, as it implies that it must know every single object that it might interact with. Saxena
et al. [49] tackle this problem by building a system that does not require or attempt to build
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a 3D model to grasp the object, thus showing that is possible to learn generic features that
useful for grasping.

They approach the problem by training a logistic regression to recognize useful grasp
points in an image. To do this they synthetically generated a set of 2500 examples from five
object classes. Since these were synthetic, the grasp points were computed as the data set
was made. They then manually engineered features that they believe would benefit their
task. To decide if a given point is a good grasp point, they would crop a small rectangle
around the point in question and apply their engineered features. This new feature vector
would then be fed into a logistic regression algorithm that would classify the point as a good
grasp point (1) or a bad grasp point (0). To actually execute the grasps they needed to know
the 3D location of the grasp point, so they actually use multiple images of the same object
from different views and use their feature vectors to try and identify the same grasp point
from the different views. If successful they then triangulate the full 3D position of the grasp
point. Since they have more information with two images they also combine the two sets of
grasp point predictions using MAP to pick the best based on their observations. By training
their classifier on tableware, they were able to demonstrate their systems ability to empty a
dishwasher. This system still does not use deep learning, but it does start to lean more on
machine learning techniques to identify useful features, and importantly showed that it was
possible to learn grasping features.

All of the approaches described so far have been useful and have applications outside of
research. However, they all suffer from the same key failure: it is very difficult to extrapolate
to new and unseen objects. The force closure approaches have provided us with many of the
analytical tools that are used in computer simulations, but as a general grasping system they
fail because they depend on accurate 3D models of their objects, which will not be available
a priori. Saxena’s work, though more general, still depended on hand coded feature vectors
over a relatively small synthetic dataset. These feature vectors might fail to represent some
object features which might be easily picked up by deep learning systems.

2.1.2 Deep Learning Approaches to Grasping

Deep learning approaches to grasping are relatively new, but they are now a very active area
of research. This section will present the works of Mahler et al. [39, 36, 37, 38], Levine et
al. [32], and Kappler et al. [28]. There are many other active researchers in the area, so
we recommend Caldera et al. [9] who have compiled a review of deep learning approaches
applied to grasping.

DexNet

The DexNet project [39, 36, 37, 38] is one of the better known deep learning grasping systems.
Mahler et al. have published multiple articles describing this project. DexNet 1.0 [39] uses
a variety of techniques to try to achieve force closure around an object. First an image
of the object to be grasped is taken, and a set of grasps are sampled using the work of
Smith et al. [51]. The algorithm has to decide from these grasps which is the one that is
going to be attempted. It does this by treating this as a multi-armed bandit problem: from
the sampled grasps (arms) it has to pick the one with the highest reward (probability of
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success). Multi-View-CNN is used to build a feature vector that can be used to quickly find
a similar object in DexNet 1.0’s database of over ten thousand 3D models (collected from
academic datasets). Probability of success for the sampled grasps are then computed on the
most similar objects in the database. The grasp with the highest chance of success is then
sampled and it is computationally evaluated for force closure against the object placed in a
pose that is slightly perturbed from the original. The probability of success for that grasp
is then updated, that is the multi-armed bandit model updates its expected reward. This is
repeated a set number of times before the model makes a decision. As DexNet 1.0 sees more
data it can make better predictions about what kinds of grasps will be successful.

DexNet 2.0 [36] takes a different approach to grasp planning. Here, the robotic arm with
the parallel jaw gripper is paired with a depth sensing camera capable of capturing point
cloud data. Instead of using a multi-armed bandit to calculate probability of success, a grasp
quality convolutional neural network (GQ-CNN) is trained to predict probability of success.
The training set for this network is constructed by using traditional grasp quality metrics
(like force closure) on a set of 1,500 3D object models. That is to say that the training set
is bootstrapped by using other grasping methods that exploit the information from the 3D
object models. The inputs to the GQ-CNN consist of a depth map and a corresponding
point cloud. The depth map is aligned so that the potential grasp location is centered on the
image and the parallel jaws come in from the sides. This makes actual representation of the
grasp four dimensional: 2D object position of the center pixel (corresponding to position on
a flat table), orientation of the gripper (taken from the rotation applied to align the image),
and the distance of the gripper from the object. As the name implies the GQ-CNN does
not try to calculate gripper poses but only evaluates them. From a sampled set of grasps,
DexNet 2.0 always picks the one with highest score given by the GQ-CNN. DexNet 2.0, has
a success rate of 80% for objects it has never seen before.

DexNet 3.0 [37] extends the same ideas to suction grippers. Suction grippers present a
different challenge since they require relatively planar surfaces and are pressed directly onto
the object. DexNet 4.0 [38] combines DexNet 2.0 and 3.0 in an ambidextrous robot in such
a way that DexNet 4.0 can choose which of the two algorithms (arms) to use to maximize its
probability of success. DexNet 4.0 also contributes a method to better transition performance
of a robotic grasping system from simulation to real world grasps.

The DexNet project as a whole solves some of the problems present in early robotic
grasping research. By using computer simulations and force closure calculations DexNet can
learn to find its own features in the RGB-D input it is given. However, there is still room
for improvement. Many of the grasping simulators availble today do not handle friction in a
realistic way. These unrealistic interactions are then carried into the data that DexNet uses
to train. Furthermore, Kappler et al.[28] show that grasping ground truth based on human
rated grasps outperform many of the force closure approaches used to train DexNet. This
points to the need for collecting real world grasping data by demonstration, since it would
be representative of real friction and would be based on human rated grasps.

Leveraging Big Data for Grasp Planning

We start by looking at the work of Kappler et al. [28]. In their article, they proposed
a new kind of database of objects and grasp poses that could be used to train machine
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learning models to predict whether or not a grasp was likely to succeed. They sought to
answer two questions: what grasp quality metrics are useful for grasp planning, and how can
deep learning be used for grasp planning. Kappler presented three different grasp quality
metrics: ε-metric [15], physics based simulations, and finally crowdsource labels (human
rated grasps). The use of human rated grasps was motivated by the need to have a gold
standard rating for which to compare against. The physics based simulation involved trying
a grasp on the object 3D model and then running a physics simulation, without gravity,
only on that grasp. To arrive at a probability of grasp success they would slightly perturb
the pose of the object and run the simulation again. They considered a grasp successful if
over 90% of the perturbations resulted in success, while grasps with less than 10% chance of
success are considered failures. Their human judging was done by leveraging a mechanical
turk service. The tasks commonly seen in these services are are things that are easy for
humans to achieve, but hard to program. Kappler set up their task to judge whether images
of grasps were stable or unstable. They made sure to include some pre-labeled grasps as a
test so that they could filter out people spamming or clearly not understanding the task.
Like with the physics based simulation, they considered a grasp a success if over 90% of the
human judges rated the grasp as stable, while less than 10% would still count as failure.

They trained two models, a logistic classifier and a convolutional neural network. They
used grasp heightmaps [24] (see section 2.1.3) as the input to both models. Kappler found
that the CNN outperforms the logistic classifier as the number of object classes increases.
Furthermore, they found that the models trained with the physics based labels consistenly
outperform the ones trained with the ε-metric labels. This shows us the need for labels
derived from more realistic sources. Kappler et al. conclude that labels from physics based
simulations are good enough to bootstrap learning. However, using human judges to build
a gold standard grasping dataset, we believe, might lead to even better labels. The work of
Levine et al. [32] is useful for understanding why we believe that what we need to collect is
human demonstrated grasps, rather than just grasps under more realistic scenarios.

Learning Hand-Eye Coordination

Levine et al. [32] investigated learning hand-eye coordination on a robotic platform. In
this context, hand-eye coordination refers to the ability of a system to be able to direct its
end-effector based on visual input to accomplish a task, which in this case is a grasping task.
They did so by training a convolutional neural network to predict which commands would
lead the robotic system to a succesful grasp, what they call visual servoing. The system
itself would not be aware of the position of the robotic arm or the camera with respect to
the workspace. The CNN would have to learn to associate the gripper and objects in the
image with each other, but also with the possible commands that can be given to robotic
system. The algorithm itself is split into two parts: a network that predicts the probability
of a succesful grasp given the current image and a randomly sampled command, and a
separate algorithm that samples potential commands from the network and decides which to
follow. One of the key aspects of this work is that it was carried out using multiple robotic
systems simultaneously, each with different wear and tear and with slightly different camera
positions, yet the system was trained using data from across all the robots. This serves to
highlight the robustness of the system to different camera positions and emphasizes that the
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CNN must have learned some representation that allowed it to identify the gripper and its
location in space.

Their data collection functioned in the real world, but required at times eighteen robotic
arms and took over three months. Of particular note, is that even though the training took
place in the real world (as opposed to a simulation), the success rate for this system is still
around 80%, about the same as DexNet. So Levine had both collected a large amount of
data (over 800k grasps) and done so under real world conditions. This hints towards a need
for higher quality labels, which Kappler et al. [28], believe can come from human rated
grasps.

2.1.3 Programming by Demonstration

Having established the need for higher quality, human demonstrated grasps, we need to find
a way to record these grasps. Programming robots by demonstration is yet another way to
tackle the grasping problem. The main hallmark of this research is to figure out a way to
transfer a human provided demonstration to a robot so that it can be executed. Argall et
al. [2] provide a survey on using demonstration for robotic tasks. We recommend reading
their survey for a more in depth look. Presented here are the works of Herzog et al. [24] and
Granville and Fagg [13].

Learning of Grasp Selection Based on Shape-Templates

Herzog et al. [24] proposed learning to grasp by learning shape templates. Their learning
of these templates was bootstrapped by a human demonstrator kinesthetically manipulating
the robot to the desired position to execute a grasp. They describe their shape template as
localized heightmap. A depth sensor looks out over the scene (a flat tabletop) and identifies
the object to be grasped. To compute the grasp heightmap, they find a tangential plane
to the object, and then calculate the distance from the points in the object point cloud to
the tangent plane. If more than one point lands in the same bin on the tangent plane, the
greatest distance between the two points is kept. The size of these grasp heightmaps (and
therefore how big the tangent plane needs to be) is determined based on the robotic gripper
being used. Their system would get the point cloud for an object, and begin to calculate
grasp heightmaps. Each heightmap is compared against a database of grasps, and when a
close match is found the robot attempts the pose associated with the matched template.

To bootstrap their database of grasps they have a human demonstrator physically move
the robot’s gripper to an area where a successful grasp can occur. The system then finds the
closest tangent plane to the object point cloud, calculates and stores the heightmap and the
gripper pose. Using only eighteen demonstrations they show their system is able to grasp a
wide variety of objects because the grasp heightmaps encode object properties that generalize
to other objects. Of interest is the way they extend their database of grasps by recording only
heightmap-grasp combinations that fail. Their rationale is that their system’s assumption is
that if two grasp heightmaps are similar, then the same gripper pose should succeed for both
heightmaps. However, if the system concluded two grasp heightmaps were similar, but then
failed to grasp the object, then one of two things must be true: the demonstrated template
is false, or the heightmaps were not similar to begin with. Since the demonstrated templates
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are unlikely to be false, it must be the case that the heightmaps are not similar, so by adding
it to the database, anything that matches to it can be ignored. The same logic does not
extend to positive examples: two heightmaps that are different might still admit the same or
different grasp poses. They use the example of a cup being face up as opposed to face down.
From the top the heightmaps would look different but they both admit the same overhand
grasp. They conclude that it might be possible to add more positive examples autonomously
but care must be taken to not overwrite previous negative examples.

As a whole this work is impressive for introducing the concept of a grasp heightmap.
Their ability to learn to avoid failing grasps based on experience is a very useful ability that
not many other grasp systems possess. However, since the human demonstrator must move
the robotic arm manually for every demonstration, the amount of time and effort required
to collect training data for this system is quite high. The fact that using only eighteen
demonstrations is enough to grasp a wide variety of objects, points to the idea that higher
quality labels paired with a good representation is a good strategy to pursue for building a
grasping system. In our case, by setting up an appropriate deep learning system we should
be able to learn a good representation. To collect the human demonstrated grasps, we want
to avoid having the human demonstrator move the robot’s arm. Our goal is to have the
grasping action happen as naturally and as efficiently as possible.

Learning Grasp Affordances through Demonstration

Granville and Fagg [13] collected data on grasp affordances using a human demonstrator
performing natural grasps. This involved the human demonstrator wearing a special glove
that was used to track the pose of the hand (position and orientation) with respect to the
object at 15Hz. To make sure that the poses remained consistent with respect to some object
frame, a tracker was also attached to the object that was being manipulated. Over a series
of trials, the human demonstrator would proceed to grasp the object at any locations that
felt natural. For example, a hammer might be grasped by any position along the handle,
a spray bottle by the neck, a heat gun by the handle. Having collected a large series of
possible grasp poses over the objects, they devised a compact representation for these by
approximating the distribution of points using expectation maximization. They find good
representations for their poses, but Granville does not test these on a robotic platform.

This work shows that it is possible to collect human demonstrated grasps at a reasonable
speed, and that those demonstrations encode some generalizable information that might be
used in other systems. However, this work suffers from the correspondence problem: robotic
grippers are generally not articulated like human hands. This means that even though the
position information might be valuable, exploiting the individual finger positions recorded
here might not be possible, depending on the robotic gripper used. In our work, we instead
directly use the robotic gripper, and have our operators manipulate the gripper to execute
robust grasps.
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2.2 Problem Statement

At this point, force closure approaches for grasping seem to have reached a plateau. More
accurate physics based simulations can be made, but these systems tend to require 3D
models of the objects being grasped which are not always available. In fact we know that
such models are not required, since Saxena [49] showed that it was possible to train machine
learning models in the absence of such 3D object models. Currently, deep learning seems to
be the most promising path towards building general purpose grasping systems. DexNet 2.0
claims to have an 80% success rate [36] when shown objects it has not seen before. Levine
et al. [32] showed that deep learning can learn to pick up arbitrary objects out of a bin
when given sufficient data, also with roughly an 80% success rate on their own benchmark.
We know that these robots are capable of moving wth millimeter precision, which mean
that the problem is not having the ability to place the gripper, but knowing where to place
the gripper. Since Levine et al. collected around 800k grasp examples, we also know that
quantity of data might not be enough. The problem seems to be how to collect enough high
quality training data.

Kappler et al. [28], showed that human rated grasps could be used to provide high quality
labels for a deep learning system. The work of Granville and Fagg [13] showed that it is
possible to collect grasping pose data in real time, but Granville opted to track a human
hand directly. This introduces a correspondence problem: what is the best way to map
the human hand, to a robotic gripper with fewer degrees of articulation, and often a very
different shape. Herzog et al. [24] avoid this problem by having the human demonstrator
move the robot manually to the graspable points of an object. However, this can again be
time consuming.

We hypothesize that using human demonstrated grasps, collected with the robotic gripper
itself, would allow us to have both high quality labels, and avoid the correspondence problem,
and that in turn will lead to better deep learning models. In the following chapter, we show
how we used a series of position trackers and 3D cameras, to be able to collect human
demonstrated grasps at a natural pace for the human operators, and how we avoided the
correspondence problem by having the human operators hold the robotic gripper directly.
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Chapter 3

Methodology

The main thrust of the work is based on the idea that humans already possess a deep well of
intuitive grasping knowledge. Humans routinely use visual perception to plan and execute
grasps. By collecting data on how a human operator would execute a grasp using a particular
robotic gripper we hope to capture this intuitive knowledge in our dataset. Then that dataset
can be used to train a neural network algorithm to execute grasps on new objects. There
are then two questions that we seek to answer: how to better collect human inspired grasps,
and how to use them to train a neural network to exceute novel grasps.

To answer these questions we put together a system that allowed us to quickly and
accurately collect grasping data. For each grasp attempt, we collect multiple color images
of the object, depth maps from the same cameras, and the final pose of the human operated
robotic gripper. Once data is collected, we can then test the robustness of the dataset by
replicating the same human grasps on a robotic arm, and also train a neural network to map
images/depth maps to gripper poses.

In this chapter we will go over the methods and equipment that were used during the
data collection portion of this project. First we will discuss the hardware that was used to
collect and test the human demonstrated grasping data. The setup used involves a series of
3D cameras, position trackers, and robotic equipment. Afterwards we introduce the object
dataset we collected grasping data on, the grasping taxonomy and the overall data collection
procedure.

3.1 Hardware

To effectively collect grasping data bassed on human demonstration a collection of hardware
was needed. Most of the hardware that we used could be bought off-the-shelf, but we wrote
the software used to put all the aspects together. Since the goal was to collect human inspired
grasping data using a robotic gripper, one of the first steps was to pick an appropriate gripper
and design a human friendly way to control and handle the gripper. Capturing the pose of
the gripper would be the next step. To capture the pose of the gripper we used the NDI
Polaris along with two IR tracking crosses attached to the gripper. Along with capturing
the gripper pose, we also require an image of the object we are attempting to grasp. These
images were taken using two RGB-D cameras from two different perspectives. Finally, to
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test the robustness of the collected data, and to test any new grasping algorithm we need to
use a robotic arm that can be coupled with our gripper.

To support all of this hardware, we custom built a table out of 80/20 aluminum square
tubing. This table was designed such that the cameras could be positioned, and adjusted to
view the grasping area, and to allow for moving the whole table from the robotic arm stand
to a more ergonomic position for data collection.

Figure 3.1: A picture of the the table and some of the hardware. Pictured here is the
ReFlex SF mounted on the UR 5 robotic arm. A red cup from the YCB object dataset [10]
is placed on the workspace wooden table. The ZED RGB-D camera is placed on the upper
cross bar across from the robot. Not pictured here is the SR300 RGB-D camera, which is
placed on one of the vertical aluminum bars across from the robot about a halfway up.

3.1.1 Gripper

We decided to use the ReFlex SF gripper from RightHand Robotics [47]. This gripper design
is characterized by the use of the 3 under actuated fingers (two parallel, one opposing), along
with four degrees of freedom, packed in a 3D printed shell. The four degrees are comprised of
being able to rotate each finger individually, and additionally having the ability to scissor the
two parallel fingers. The under actuated fingers make the gripper exhibit useful compliant
properties. As the fingers close, the variable stiffness of the rubber along the fingers leads to
a natural looking bend in each finger. If any opposing force is encoutered the finger complies
with the force and can wrap around the object causing the force.

Since the shell is 3D printed, we could print a new shell that allowed us to attach a simple
handle, and tie points for the IR trackers used by the NDI Polaris. These tie points were
chosen such that one of the trackers should always be visible for most poses we expected to
do with the gripper.

Controlling the gripper’s fingers was done by use of a joystick. For the purposes of
the grasping task, the three fingers were moved together in sync, reducing three degrees of
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Figure 3.2: A picture of the shell (left) and the ReFlex SF (right). On the shell the visible
screw is one of the locations where one of the trackers would be placed. The other location
is on the shell under the handle, where another screw is visible.

freedom to one. The up-down axis on the joystick was used to control the three fingers,
essentially controlling the finger opening. In the neutral position, the fingers are halfway
between open and closed. Moving the joystick down opens the fingers, while up closes them.
The left-right axis of the joystick was used to control the scissor degree of freedom. The
neutral position keeps the fingers parallel, moving the joystick to the right forces the fingers
to close, while moving the joystick to the left forces them to open. Since the ReFlex SF
does not have absolute encoders for any of the motors, we calibrated the motors after every
power-cycle. The calibrated position is fingers parallel, and open such that the fingers are
flush with the palm. The finger position for each grasp is also recorded as a value relative
to the calibrated motor position.

There were a couple of faults that we found with the ReFlex SF when we executed
the data collection portion of the project. The fingers are connected to the motors with
a length of nylon string, which over many cycles starts to wear out and will eventually
snap. Though incovenient, the repair is relative simple and can be done without any special
tools. Frequently checking the state of the nylong strings was done to prevent a grasp failing
due to unexpected string failure. The second fault has to do with the gear system used
to transfer torque to the fingers scissor action. The gears themselves are 3D printed, and
over time, and under stress, the teeth on the gears start to pulverize. The dust can become
caught in between other teeth leading to motor shutdown (self-protection mechanism). In
some cases the teeth snap and the fingers become loose and the scissor degree of freedom
becomes unusuable. The repair for this fault is more involved, but is also relatively easy
to execute, provided that fresh gears are available. Unlike the nylong string, it proved to
be too time consuming to check the gear before every data collection session, leading to
some sessions ending early. We admit that we did push the limits the gripper’s intended
duty cycle. RightHand Robotics has addressed many of these issues in some of their newer
grippers.
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3.1.2 Position Trackers

To track the pose of the gripper we used the North Digitial Imaging (NDI) Polaris. The
Polaris consists of an IR source and two IR sensitive cameras set some known distance apart.
By using special IR trackers, consisting of four IR reflective orbs, it is possible to track the
full 6D pose of an object with respect to the Polaris’ frame so long as the tracker is rigidly
attached to the object. By using homogenous transformation matrices we can then obtain
the pose with respect to any other frame we have measured.

The Polaris itself is capable of millimeter resolution in position and sub-degree resolution
in orientation. It is also capable of recording data in real-time at greater than 20Hz. For
each grasping trial we collect data not just on the final gripper pose, but also on the full
trajectory towards the object. This data is not used in this project, though it is availble.

Figure 3.3: NDI Polaris and 3D printed gripper shell with IR tracker. The Polaris has two
cameras placed at either end of plastic shell. Around each camera there are a series of IR
emitters that are used to illuminate the IR trackers.

3.1.3 Depth Cameras

To provide visual input to our neural network model, we used two RGB-D cameras. The
RGB data is routinely used in CNNs used for grasping and object localization. Depth is
becoming more common in grasping tasks, since it can be used to get local curvature of an
object. The two cameras we used were the Intel RealSense SR300, and the StereoLabs ZED.

The SR300 is a combination of a high definition RGB camera along with an IR depth
camera [25]. The depth camera works by shining structured IR light using a built-in emitter
and then capturing the resulting patterns using an IR camera. Each camera can work
independently of the other, though for most purposes both cameras run simultaneously.
Since there are two distinct cameras, the images need to be rectified so that pixels in one
image correspond to pixels in the other image. This operation can be automatically done
by the software tools that come with the camera. Another important difference between the
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Figure 3.4: Early version of the mounting mechanism for the RGB-D cameras. Above:
SR300, which after some tests we found would be better placed closer to the workspace.
Below: ZED camera.

cameras is that the depth camera only records at standard VGA resolution (640×480), while
the RGB camera can record from VGA up to HD resolution (1920 × 1080). We record the
images at HD resolution with the RGB camera, but when running any tests of algorithms
we crop and scale so that the color image matches the depth image. The SR300 has an
effective depth window from 20cm to 150cm, which is why it is placed closer to the objects
across from the gripper operator. The center of the workspace is about 50cm away from
the camera, with the closest spot being 20cm away and the farthest spot being roughly
70cm away. Importantly, depth is returned from the camera as a 16bit integer (max value
of 65535), which makes the depth maps unsuitable to be saved in common image files (jpg,
png, bmp), since those formats only have an 8bit channel depth. As a result the RGB-D
images are stored as binary arrays on disk so as to not lose any resolution. Finally, it is
important to realize that both the NDI Polaris and the SR300 use IR light, which means
that as a result it is not possible to use both simultaneously. When we recorded images
during the data collection process, the Polaris’ emitter would be turned off while recording
the RBG-D image of the object, and then the SR300’s emitter would be turned off to allow
the Polaris to function.

For the project presented here, we did not use the images captured by the ZED. We
present the following information for completness. The ZED camera achieves depth through
a different means than the SR300. The ZED is a pair of RGB cameras poisitioned a set
distance apart [54]. StereoLabs runs a proprietary algorithm on the two color images that
come out of the cameras to produce a depth map. It is safe to assume that this algorithm
works by doing some sort of feature matching across the two images and then by knowing
the pixel distance between a particular feature in an image, and the distance between the
cameras it is possible to calculate the distance to that feature. Both cameras can operate
from WVGA (672 × 376) to a 2.2k (2208 × 1242) resolution. We found that the camera
itself was very power hungry when operating at the max resolution which would lead to
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Figure 3.5: The final mounting positin for the SR300 and the checkerboard pattern used
to calibrate the position of the camera with respect to the workspace. The SR300 position
is much closer to the workspace since it has a tighter range for depth sensing.

frequent shutdowns, therefore we recorded images at HD resolution. The effective depth
range for the ZED is between 0.5m and 20m, where the distance between the cameras is the
major constraint setting the range. Since the bottom of the range is so much higher than for
the SR300, the ZED is placed in an overhead configuration, with the top of the workspace
starting about 45cm from the ZED and the bottom of the workspace being about 80cm from
the ZED. The ZED returns two images for each frame: a joint RGB image with both the
left and right images, and a depth map. Again, the depth map is provided in a format that
is not suitable for storage in traditional image formats, so it is stored as a binary array on
disk.

3.1.4 Robotic Arm

To test the recorded grasps and the new grasping neural network we used Universal Robotics’
UR 5. The UR 5 is a six degree of freedom, 850mm long, robotic arm that is designed to
be used in situations that might see humans frequently entering its work space [48]. The
arm itself is capable of achieveing a repeatability of roughly 1mm, and can be programmed
using a variety of interfaces. For quick testing and debugging, it is possible to use a tablet
that is attached to the control box and to operate, program and manipulate the robot. For
more complicated situations, it is possible to send commands to the control box the UR 5
is attached to from any computer with an ethernet connection. When performing any tests
we use the second interface to automate all the movements of the robot. For the commands
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Figure 3.6: The UR 5 robotic arm. The six degrees of freedom can be seen in this image.
Each joint can move ±360◦ around its neutral position, allowing for a wide range of poses.
Mounted on the UR 5 is the ReFlex SF gripper through an adapter plate.

themselves, after transforming any coordinates to the frame of the base of the robot using
homogenous transformation matrices, we call on Universal Robots’ provided software for
inverse kinematics. As a result, we generally have to be mindful of any robot motion as the
inverse kinematics functions will sometimes return trajectories that seem more drastic than
are required, or that might put the gripper in danger of collision with arm.

3.2 Object Dataset & Grasping Taxonomy

The set of possible grasps for a given object is dictacted by not just the object but also by
the gripper. As a result, we need to identify not just what objects are graspable, but also
what kinds of grasps are possible with the ReFlex SF. We would also like to relate the grasps
that we are attempting to realistic human grasps. Feix et al. [14] analyzed the state of grasp
taxonomies in 2015 and provided a taxonomy of their own, GRASP, that encompasses the
major grasps present in their review. Thirty-three different single hand holds were identified
in their study. The conditions for a grasp to make it into their taxonomy were given as
ensuring the object and hand remain rigidly attached no matter the pose of the hand (force
closure). This means that grasps have to be robust to changes in applied force, predominantly
gravity, and that only grasps performed with one hand would be considered. Feix provides
a many different labels to categorize the thirty-three grasps presented, but we found that
the most useful labels were to identify whether a grasp was a power or precision grasp. The
definition of each can vary, but a power grasps predominantly involve the use of the palm
as an opposing or virtual finger and can therefore exert more pressure on the object being
grasped. A precision grasp only involves the finger and is associated more with fine motor
control tasks, like writing.
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GRASP number GRASP name

3 Medium Wrap
12 Precision Disk

6,7,8 Prismatic 4/3/2 Fingers
11 Power Sphere
22 Parallel Extension
1 Large Diameter
28 Sphere 3 Finger
2 Small Diameter
13 Precision Sphere
10 Power Disk

Table 3.1: This table shows the GRASP [14] taxonomy numbers and names for the grasps
we identified as being possible with the ReFlex SF. The order of the grasps corresponds to
the frequency of use for each grasp observed by Feix et al. from footage of housekeepers and
machinists.

Many of the grasps are not possible to execute with the ReFlex SF due to limitations
of both the gripper itself, but also our chosen control scheme for the gripper (i.e. using the
joystick). Out of the thirty-three grasps, we identified only twelve (see table 3.1) that we
believe could be exceuted with our gripper. Feix also provided data on the frequency of each
grasp from analyzing footage of housekeepers and machinists. Based on their table, we find
that the twelve identified grasps cover 40% of the grasps used by these workers. During our
data collection procedure, we note the GRASP number for the grasp we attempt on each
object.

The grasp choice is not only influenced by the gripper, but also the object that is being
grasped. The YCB object dataset [10] is an attempt to standardize the set of objects available
to researchers to perform grasping studies. The objects in the dataset have been chosen to
represent a wide range of objects across different domains. The main subject categories
are: food items, kitchen items, tool items, shape items, and task items. Not all the YCB
objects seemed graspable, given our constraints. Examples of objects in the YCB dataset
we did not feel could be grasped with the ReFlex SF according to Feix’s criteria include:
magazines, washers, dice, credit card, screws, cordless drill, and others. Many of these are
simply too small to realiably grasp with the configuration we had set for the ReFlex SF,
while others are too heavy to allow the kind of repitition we needed from human operators.
To supplement the YCB dataset we collected common objects from our lab. This included
items like: disposable coffee cups, water bottle, glue stick, flashlights, stapler, etc. The list
of objects used is available in Appendix B. In total, 109 unique objects were used, with some
objects having multiple possible grasps that were explored.

3.3 Data Collection Procedure

We projected that we would require roughly fifty thousand training examples to training a
grasping neural network. Since we want to collect human inspired grasping data, we devised
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Figure 3.7: Diagram showing a sketch of the physical layout of the space during data
collection along with the coordinate axes of the Polaris (green rectangle), the workspace
(blue square) and the operator (red circle). The Polaris line of sight is along the -Z axes,
which is why the reference frame is oriented the way it is. All refrence frames are right
handed, so the direction of the third axis can be inferred from the two shown. The RGB-D
camera’s position is also shown. It was located on a post looking out over the workspace.

a data collection procedure that we could use to minimize human effort and error, but also
to avoid the human operators from performing the exact same grasp multiple times in a row.
The data collection itself was as much a logistical problem as an engineering problem. To
prevent repetitive stress injuries, a number of volunteers were recruited to spread out the
number of trials each person would be conducting. For each of these volunteers an hour
and half orientation session was made for them to familiarize themselves with the equipment
and the way the ReFlex SF would control with the joystick. This orientation session would
involve explaining the goals of the research and showing example grasps, followed by getting
the volunteers to complete a set of dexterity based tasks with the gripper: unstacking and
restacking cups, picking up small objects and depositing them in a container, and building
towers out of cups.

Every data collection session was done by a pair of people so that one person could focus
on grasping and one person could focus on setting up trials. An individual grasping trial
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would proceed as follows. One person, the setter, would be in charge of setting the object in
the middle of the workspace and making sure that the workspace was configured correctly.
The other person, the operator of the gripper, would wait until the first person was done
before pressing the start trial button on the joystick. When the button is pressed, the two
RGB-D cameras record images and tag them with a unique ID to store on disk. Then the
SR300 would be commanded to shut down its IR emitter and the Polaris would start up
its own IR emitter. At that point, a prompt would show up on a screen across from the
operator telling them that the trial had successfully started. The setter would then monitor
a different screen with pose information being recorded by the Polaris for any blind spots or
other irregularities. Once the operator had grasped the object, they would lift the object at
least ten centimeters to demonstrate a solid grasp. At that point, the successful grasp button
on the joystick would be pressed and the information from the Polaris would be tagged with
the same unique ID as the images and saved. The operator would then release the object
in the hands of the setter to set the next trial. If the setter notices any irregularities in the
images, the pose information, or the operator does not successfully grasp the object, then
the failure trial button would be pressed. The images and pose trajectory information would
still be saved under a unique ID, but the trial would also be tagged as a failure. The average
time to complete a trial was around six to seven seconds.

For each object/grasp combination three hundred grasps would be collected. The object
was always placed standing up, where up was defined prior to the session starting, and in
the center of the workspace. For each trial the object could be randomly rotated about
the center of the workspace. The first hunddred grasps would be collected with only the
object in the workspace, but for the second set of one hundred grasps, an obstacle would be
introduced to prevent the exact same grasp from being used multiple times in a row. The
most commonly kind of obstacle was to place a tall, thin object between the operator and
the object in question to force the operator to grasp the object by approaching from the sides
instead of head on. For the last hundred grasps, a new obstacle would be introduced, again
to prevent all the grasps from being too similar. The most common kind of second obstacle
to be introduced would be any object that would block approaching from the operator’s
right as most operators were right-handed. The location of the obstacles described here
merely represent the most common kinds of obstacles used. Many different placement and
orientations were used to set up obstacles. The only contraint was that the obstacle must
not occlude the object being grasped.

In a data collection session, only two to three objects would be grasped, around nine
hundred grasps per session. Before each session we would identify the objects to be grasped
and the GRASP number for the grasps that would be attemped. At the beginning of the
session we would use the Polaris’ pen tool tracker to get the exact position of the center of
the workspace with respect to the Polaris. This would allow us to later build the homogenous
transformation matrix that would take us from the Polaris reference frame to the workspace
frame. During the session, the operator and setter would switch places every fifty grasps,
and take a longer break at the end of every object (every three hundred grasps). Each session
usually lasted two to three hours depending on how many breaks were taken and whether
or not any problems arose during the data collection session.

It is interesting to note that most volunteers expressed concern about being able to grasp
some of the objects before doing their orientation session. However, after only an hour most
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people felt comfortable doing relatively dextrous and complicated tasks using the gripper
and joystick. It was also interesting to witness human operators adjusting to the object
being grasped. Generally any dropped object trials would only happen in the first ten to
fifteen trials, if at all, for that particular operator, and afterwards the rate of failures due
to dropping would fall to zero. We believe this speaks to the ability of human operators to
leverage their experience to quickly adapt to the new situations being shown to them and
formulate robust grasp planning under these circumstances.

In this chapter, we showed that it was possible to construct a system and procedure to
allow for the efficient collection of human demonstrated grasps while also avoiding the corre-
spondence problem. We not only collected final grasp poses, but also the trajectory of each
individual grasp attempt over time. The dataset is available online at https://dataverse.
scholarsportal.info/dataset.xhtml?persistentId=doi:10.5683/SP2/1XRF9U. In the
next chapter we provide our data processing procedure for taking the raw data collected
gaining insights from it. In chapter 5 we show that the data we collected is robust to per-
turbations, while in chapter 6 we go over how we trained our neural networks using this
data.
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Chapter 4

Data Preparation

After collecting data for three months, we ended data collection with 40,150 individual
grasping trials over 109 objects. Due to the nature of our data collection, and the complexity
of our setup, we reasonably expected some of the data to not be useable. In total we ended
up with about 35,000 grasping trials, about 87% of the total amount of collected data. About
half of the bad data was due to one of the SR300 or the Polaris not saving the data properly.
Without both an RGB-D image and the final gripper pose, the trial is not useful for training
a neural network. The other half of the bad data was discarded due to the gripper pose being
non-sensical, most often with the pose being reported as being outside of the workspace we
operated in. The two main reasons we expect these kinds of errors might have happened is
due to IR interference on the Polaris (i.e. strong sunlight being visible even after covering
windows), and also the times we might have operated the gripper into a blind spot for the
Polaris.

Regardless, 35,000 trials should be enough to train a neural network model as a proof
of concept. Over the next couple of sections, we will go over the different data preparation
steps we took to build our final training set. First, we discuss all the different coordinate
transformations that we require to shift the frames of reference to the ones that are convenient
for this study. Then we describe the procedure we used to take the gripper trajectory and
extract the final gripper pose at the time of the grasp. Finally, we present some figures to
give insight into what information was captured through the data collection.

4.1 Coordinate Transformations

In appendix section A.2 we go over how to use homogenous transformation matrices to
represent reference frames and to change the frames vectors are being described with respect
to. In this section we show how we used these tools to calculate the pose of the gripper with
respect to the center of the workspace and with respect to the SR300.

The Polaris calculates the pose of the IR trackers with respect to its own reference frame.
This means that the raw data given from the Polaris can be used to construct HT1

Polaris and
HT2
Polaris. These are the matrices that describe the pose of tracker 1 (T1) and tracker 2 (T2)

with respect to the pose of the Polaris. Alternatively, they are the matrices that can be
used to describe a vector in the Polaris reference frame in the reference frame of one of the
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trackers. Since the trackers move in space relative to the Polaris, both of these matrices are
time dependent.

4.1.1 Palm with respect to Trackers

Since we are interested in the pose of the gripper, and not the trackers, we need to define
the reference frame of the gripper and find the transformation matrix that will take us from
the trackers to it. We define the reference frame of the gripper in the standard for robotics:
the z-axis points out of the palm, the y-axis is perpendicular to it and parallel to the fingers,
and the x-axis is chosen to make a right handed coordinate system. To find the center of
the palm we used the 3D printed shell that the trackers would be attached to. Without
mounting the gripper in the shell, we place one of the trackers in its final position, T1 or
T2. The other tracker is mounted in a special aluminum jig that when mounted to the
shell places the tracker at the center of where the palm will be. We then use the Polaris
to measure coordinates of both trackers. This means that we will end up with the follwing
matrices: Hpalm

Polaris, H
Tn
Polaris (where n is either 1 or 2 depeding on the tracker). Which means

that we can then calculate:

Hpalm
T1

= Hpalm
PolarisH

Polaris
T1

Hpalm
T2

= Hpalm
PolarisH

Polaris
T2

(4.1)

Figure 4.1: Figure showing the orientation of the reference frame centered on the palm of
the ReFlex SF. The location of the origin is flush with the closest plane that can be placed
on the gripper’s pads, and not with the center screw ( 1cm under the plane).

For each of the two matrices we will need to swap the placement of the trackers such that
one of the trackers is in its final position while the other is on the palm posistion. Since the
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gripper will be rigidly attached to the shell, these relationships will not depend on time. At
the end of this process we will have the following constant matrices: Hpalm

T1 , Hpalm
T2 .

4.1.2 Workspace with respect to Polaris

Now we need to define the relationship between the reference frames of the Polaris and the
workspace. We constructed the reference frame of the workspace such that the z-axis is
pointing up, the x-axis is parallel with the z-axis of the Polaris, and the y-axis is chosen to
form a right handed coordinate system. (See Figure 3.7)

We leveled the workspace and the Polaris to same orientation, which restrains two of
the orientation degrees of freedom such that some of the axes are pointing along the same
line. The third degree of freedom we restrain by making sure that both the workspace and
the Polaris are square with respect to the same edge of the table. This alignment makes
computing the orientation between the two frames simple. We just need to apply a rotation
to align the z-axis (-90 degrees about the y-axis of the workspace on the Polaris frame). To
find the translation we use the measurements we took before each data collection using the
Polaris’ pen tool. These measurements give us the location of the origin of the workspace
relative to the origin of the Polaris. We found that these measurements could change as
much as 5mm over the course of 24 hours even though both the Polaris and the alumunium
rig were clamped to the same table. We never managed to identify the source of this shift.
In our analysis we correct for the daily variation of the center, but assume that within the
same data collection session the center of the workspace with respect to the Polaris does not
appreciably shift. Using the previous measurements we can then construct Hws

Polaris.

4.1.3 Palm with respect to Workspace

Using the above results, we can now find the pose of the gripper with respect to the center
of the workspace.

Hpalm
ws (t) = HPolaris

ws HT
Polaris(t)H

palm
T (4.2)

Where in equation 4.2 T could be either T1 or T2. In practice, if we can see both trackers
we take the pose to be the average of the two recorded poses, otherwise we just use whichever
tracker happens to be visible.

4.1.4 Camera with respect to Workspace

We also want to be able to obtain coordinates with respect to the SR300 so that we can
better train a neural network. To do so we leverage the OpenCV library [8], to handle
finding intrinsic and extrinsic camera parameters so that we can track a checkered target
(see Figure 3.5). We can place this target in our workspace, taking care to note the location
of the origin of the reference frame of the target pattern with respect to the origin of the
workspace. Since we can track the pose of the target, we can build Hws

cam. Aside from using
this transformation matrix during the data processing step, we also used it to ensure that
the camera was still in the same place relative to the workspace after moving the aluminum
table from the data collection setup to the testing setup.
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4.1.5 Robot base with respect to Workspace

Finally, we need to find the pose of the workspace with respect to the reference frame at
the base of the UR 5, since the robotic arm accepts commands in that reference frame by
default. We easily find the pose by setting the robot to compliant mode and moving the
end effector to the center of the workspace. We then line up the x of the end effector with
the corresponding axis of the workspace. Note that since both the workspace and the end
effector use right handed coordinate systems, and in this configuration their z-axis are anti-
parallel, that it is only possible to line up either x or y, and not both. We then read the
position of the workspace from the robot’s interface, and we calculate the rotation matrix
required to line up the orientation of the reference frames. Using this information we build
Hrobot
ws , which we can use to convert poses to the default frame the robotic arm uses.

4.2 Finding Final Gripper Pose

It is important to understand that our data collection method yields gripper trajectories:
the set of poses from the beginning of the trial until one of the end of trial buttons is pressed.
During data collection we did not have a way of defining when the actual grasp happens,
since we need to test that the grasp is succesful. As a result we needed to come up with
some algorithm to find the most likely time during the trajectory that the grasp occurs. We
tried the following heuristics: find the time of the lowest height above the workspace, find
the time of the last minimum in height above the workspace, find the time at which the
gripper was closest to the origin of the workspace. We found that the third method seemed
to work the best, but we will go over the rationale for all three.

To start, for all three of these methods we need the grasp trajectories to be in workspace
coordinates. We can use the results from section 4.1 to achieve this. The first method came
about when we did a small scale test before starting the full data collection regimen. For
this test we used two objects: one that used an overhead precision grasp, and one that
used power grasp from the side. In this small set, we found that plotting the z axis of the
trajectories showed a high point at the beginning, a low point close to the end and then
sharp up tick at the end. These three phases correspond, to the start of the trial (gripper
held roughly chest height), the grasp point, and the grasping test. However, what we found
was that during the course of the data collection, operators would not always start with the
gripper at chest height. Due to the weight of the gripper and its bigger shell, the number
of sheer repititions, and the total time it took to perform one data collection session, many
of the operators would place the gripper in various different poses to ease strain on their
muscles. This meant that for many trials, the gripper starts below, or close to, the height of
the workspace. For these trajectories, the first algorithm would return many poses outside
of the workspace, or poses where the orientation was not even pointing towards the object.
The solution was to find the last local minimum in the z axis trajectory. This meant that
we would avoid the beginning of the trial, or any other strange dips that might have ocurred
during data collection and only keep the most likely dip that was due to the grasp.

However, after some thinking we settled on using the final approach: taking the time
when the gripper is closest to the origin of the workspace. Since the objects are always
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placed at the origin of the workspace, this method works not only for overhead grasps, but
also side grasps. It also works no matter where the operator had placed the gripper at the
beginning of the trial. It is also more robust since we depend not just on the z coordinate
of the gripper, but also the x and y. Using the other two methods we found that we were
throwing away a large number of trials since they seemed to be grasps that had not occurred
in the workspace at all. With this final method we recovered many of those trials and were
able to use them for further analysis.

4.3 Understanding the Data

Now that we have described the bulk of the data preparation, we dedicate some space to
present some visualizations from the data to give a better sense of what was captured.
Unless specified all the poses will be with respect to workspace reference frame, whose origin
is where we placed all the objects to be grasped. We present the position and orientation
data separately.

4.3.1 Position Visualizations

First we show histograms of the position variables in Figure 4.2. As a reminder, the reference
frame for the workspace is laid out in such a way that positive x corresponds to the operator’s
right, and positive y corresponds to the direction directly away from the operator. With this
in mind, we see that there is a slight bias in the top histogram of Figure 4.2 for positive
x. If there was no bias, we would expect the mean of the distribution to be centered at 0,
but instead we see a mean of (5.1 ± 0.1)mm. We believe this is due to most of our gripper
operators being right handed (one person out of five was left handed). This bias would
obviously affect any models build using data. There is also a bias in the negative y direction.
This is the side of the object that is closer to the gripper operator. Unless an obstacle was
placed specifically to prevent it, most operators would grasp around the closest point they
felt they could reasonably apply a successful grasp. Again this bias is worth keeping in mind
for any systems or models built using this data. That is, the data is not position agnostic;
just like most humans there is a preference for a particular side (right) and a particular
location (closer to body).

Figure 4.3 shows all the pairwise scatter plots of the position variables, along with a 3D
scatter plot of all three variables together. In the top left we have a view as would be observed
looking down on the workspace from above. The main ball in the middle corresponds to
a large portion of the grasps, while the bar below is a much lower proportion. That bar
represents some of the side grasps that were done on the side of the workspace closest to the
operator. There were much fewer examples of the same on the far side of the workspace;
this position was uncomfortable to use the gripper given the handle that was designed and
the overall weight of the gripper. Bottom left is the view as would be seen from the right of
the workspace. In this view it is easier to see the bias towards grasps closer to the gripper
opertator. A small blob also becomes visible above most of the grasps. This corresponds
to the few thin, tall objects we grasped, around twenty centimeters or more in height and
less than five centimeters across. The top right view is the view as would be seen from the
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Figure 4.2: Histograms of the three position variables in workspace coordinates. All mea-
surements are in millimeters, with the size of the workspace being 200mm×200mm×400mm

opertator’s side of the table. Here we again see the small blob above the larger proportion
of grasps, and it is also more obvious that there is a right bias to the grasps (this can also
be noticed from the top left but it is harder to pick out).

Figure 4.4’s left column shows position scatter plots for three different objects. We can
see that the distribution of positions is conditional on the object identity. Object A is a
blue plastic cup from a children’s toy set. This object is predominantly grabbed from the
top, and we see that the scatter plot is fairly flat in the z axis, at around 150mm. On the
x and y axis the position is biased left (-x) and towards the operator. The left bias is due
to this object being grasped by the left handed operator. Object C is a Rubiks cube, this
object was also grasped from the top, but it was about a centimeter shorter than the cup.
We again see a flat distribution on the z axis, but this time it is centered around 130mm.
The distribution along the x and y axes is more uniform with a right hand bias and bias
towards the operator. Even though these objects were grasped similarly, their poses differ
as a result of their own geometry, which is to be expected. Object B was a tall water bottle.
For this object two sets of grasps were attempted, from the top and from the side. This is
clearly seen in the position scatter plot as two different clusters of positions.

4.3.2 Orientation Visualizations

For the orientation degrees of freedom we have a lot more freedom to define which represen-
tation we want to use for visualization. We settled on using the Euler angles corresponding
to pitch-yaw-roll (x-y-z) in the workspace coordinates. This extrinsic set of Euler angles
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Figure 4.3: Scatter plots of the different combinations of position variables. Bottom right:
A 3D scatter plot of all the position variables

is useful because it is easier to physically interpret what the angles correspond to in the
physical world. The gripper’s starting position is with its axes (Figure 4.1) aligned with
the workspace. To arrive at the final gripper orientation, first we apply a rotation about
the workspace’s x axis, then we apply a rotation about the workspace’s y axis, and then a
final rotation about the workspace’s z axis. The rotations are extrinsic, so they are easier to
visualize since the rotation axis stay fixed as the gripper rotates. Other Euler angles could
be chosen, but we found these to be the most convenient. If another set of Euler angles is
chosen that would change the relationship between the different variables even though they
would still be representing the same orientation.

Figure 4.5 shows the histograms for pitch-yaw-roll of the gripper with respect to the
workspace coordinates. It is important to note that since angles are periodic, the peaks seen
in the pitch histogram actually correspond to only one peak. Similarly, the roll histogram
has three peaks, one of them being obscured by the fact that the histogram axis is not
periodic. The pitch histogram being centered around π radians is consistent with the fact
that the z-axis of the workspace points up, while the gripper needs to point down for most
grasps; a rotation of π radians. The yaw histrogram shows slight symmetry about the zero
radians line. The first peak from the zero point corresponds to slight variations from having
the gripper pointing straight down along the axis of the gripper’s fingers. The second peak
(around 1.5 radians) corresponds to all the grasps we did from side (as opposed to overhand).
It also highlights that most of the grasps we could execute with the gripper were overhand
grasps even when we did not limit ourselves to only those grasps. There is some slight
assymetry about the zero line, biased towards negative yaw. This is again the bias for right
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Figure 4.4: 3D scatter plots for the position and orientation of three different objects. The
left column corresponds to the position variables, while the right is the orientaiton variables.
Notice how both the position and orientation distributions change when conditioned on the
object. A: Large Blue Cup. B: Water Botle. C: Rubiks Cube.
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handed operators that we saw in the previous section. Finally for the roll histogram we see
a pretty consistent run from about 2 radians, wrapping around to -1.5 radians, with a clear
dip around zero radians. The run corresponds to the rotational freedom we experienced with
most objects when performing grasps overhand. We could roll the gripper, sometimes freely
for objects with cylindrical symmetry, and still perform a successful grasp. The bias away
from the zero radian position has to do, again, with how uncomfortable such grasps would
be. These would generally involve putting the gripper such that the two parallel fingers
are pointing away from the operator, but the gripper would be lined up with the operator’s
torso. The only way to realize that grasp would be to step aside, increasing the distance
to the object and thus making the grasps harder, or to place the elbow pointing into the
operator’s torso, with the forearm poiting straight ahead. So again as expected we see that
our data collection managed to collect many of the problems and solutions faced by real
grasp systems (i.e. humans) when operating in the real world.
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Figure 4.5: Histograms of the three orientation variables as the Euler angles corresponding
to pitch-yaw-roll in workspace coordinates. All measurements are in radians.

As mentioned above, Figure 4.6 shows scatter plots of the pairwise combinations of pitch,
yaw and roll. For these scatter plots, we slid the pitch and roll variables to place their peaks
at the zero position. This operation does not break or generate any patterns that could be
seen in the data, but does mean that the axis for the pitch and roll variables are off by an
additive factor of −π. It is important to note that for all the scatter plots there seems to
be more outliers. In this case by outliers we mean points that do not seem to line up with
the main features we see in the data. The data is dominated by a cylinder like structured
lined up with the roll variable. This is again due to the amount of freedom we had when
collecting data to vary the angle about this axis. The column’s cross section extends some

31



distance from the center of the column. These combinations of pitch and yaw correspond
to orientations that keep the gripper pointing relatively down and towards the objects in
the center of the workspace. There are also thin wall-like features around yaw 1.5 and -1.5.
These walls represent the planes that have combinations of variable consistent with side
grasps. There are other faint patterns in the histrogram, but they do not seem to be strong
trends. These might be due to one or two objects needing some special combination of angles
or an operator trying to collect more esoteric data.

Figure 4.6: Scatter plots of the different combinations of orientation variables using Euler
angles pitch-yaw-roll. Bottom right: A 3D scatter plot of all the orientation variables

Figure 4.4’s right column shows orientation scatter plots for the same three objects dis-
cussed previously. Again object A and C show similarities in their orienation scatter plots.
This is to be expected as the orientation for the gripper for these grasps needs to be similar
given how similar the object’s grasps are. Object B, the water bottle, shows a more com-
plicated set of orientations. We can still recognize the same cylinder running along the roll
axis that we see for the other two objects. These grasps correspond to the overhand grasps
used for the water bottle. However we also see other orientations present in the scatter plot.
These represent the side grasps that were also recorded for this object. Once again we see
that the recorded poses are conditional on the objects themselves.

Seeing that the insights we can draw from the dataset seem to be consistent with our
expectations, we move in the next chapter to showing that our grasps are robust to per-
turbations. We expect that if human demonstrations produces high quality grasping labels,
that the grasps should be robust to some perturbations. Being able to resist perturbations
is a useful property since errors can creep in from anywhere in the system, errors in object
pose being the most likely to occur.
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Chapter 5

Grasp Robustness

We hypothesize that by leveraging human intuition, the grasping dataset we have collected is
robust to various kinds of perturbations. This is a desired property for any grasp; the more
robust a grasp is the more likely the grasp is to succeed in the real world where conditions
can change relatively quickly, or information might not be the most precise. To test the
robustness of our grasps we seek to replicate the conditions during a grasp trial, and then
perturb the final pose of the gripper in each of the six dimensions (three for position and
three for orientation). We achieve this by using an image overlap method: our dataset image
overlapping the live view of the camera. Aligning the two images should yield conditions
relatively close to the original condition. To quantify how robust our grasps are we seek to
find the probability of a successful grasp given a particular object and perturbation. We
estimate this function by taking each perturbation test as Bernoulli trial, and bounding our
confidence on the probability of a successful grasp. We find that our grasps are very robust
to different kinds of perturbations.

5.1 Replicating Grasp Trials

The first step towards conducting a test of grasp of robustness is to be able to replicate the
conditions during a trial as precisely as possible. This means that we need to replicate the
location of the object with respect to the workspace accurately. The approach we take is to
manually align the object using the image captured during data collection. This is done by
displaying the image from the data collection and a live stream from the SR300 over each
other at half intensity each. The object can then be manually aligned by having the live
stream match the data collection image as closely as possible. However this depends on the
alignment of the camera with respect to the workspace.

As mentioned in section 4.1.4, we can align the SR300 to the workspace with a decent
amount of precision: about 0.1mm in each position axis, and 0.001 rad in each orientation
axis. This means that in the worst case scenario we would be accumulating on the order
of 0.2mm in the position axis and 0.002 rad in the orientation axis. We find this amount
of error to be acceptable. With the camera aligned properly, we can use the superimpose
image method described above.

We would like to also quantify the error we introduce by superimposing the images. This
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is hard to measure, but we can get an estimate by getting multiple people to try to align the
same image and measuring the difference between the two attempts. The way we choose to
do this is to place a sheet of paper on the table in the workspace, and tracing the outline of
the object after making an attempt to align the object. We can then look at the outlines of
multiple attempts and measure the difference between the two. There are only three degrees
of freedom when placing an object on a place: the x,y position and the orientation of the
object. After measuring alignment across three diferent trials using this method we found
on average a difference of 2mm in the position variables from trial to trial and a negligible
(less than 2◦) amount in the orientation variable. We found that in practice getting the
alignment correct depended heavily on the object. Objects that have unique features, like
visible handles or text, were much easier to align in both position and orientation. We believe
that the error we accumulate by using this image superimposing approach is about 3mm in
the position and on the order of 0.02 rad in the orientation.

The final tool needed to replicate a grasp trial is the UR 5. The UR 5 has a repeatability
of 0.1mm [48]. Universal Robots does not provide the value for the repeatability in the
orientation variables. Overall, this means that most of the error from trying to replicate a
grasp comes from doing the image superimpose method. If we add all the sources of error
together we expect that we should have an error of about 3mm in the position variables, and
0.02 rad for the orientation. We believe that error is low enough that we can claim that the
grasps are being replicated with sufficient precision to conduct the robustness tests.

5.2 Statistically Estimating Ps(Obj|Perturbation)
As a way of quantifying the robustness of our collected grasps, we want a way of estimating
the probability of grasp success for a given a particular perturbation Ps(Obj|Perturbation).
One way to do this is to model a grasp trial+perturbation with a Bernoulli distribution.
The Bernouilli distribution is a simple discrete probability distribution that only tracks two
outcomes: success or failure. The probability of success is usually denoted p, with the
variance being given by p (1− p).

Using this model, we see that we want to estimate the value of p for a given object given
a perturbation. Since we have multiple trials for each object, each with its own image we
can replicate, we can estimate this probability by taking the marginal over all the images.

Ps(Obj|Perturbation) ≈
∑

Images

Ps(Obj|Perturbation, Image) (5.1)

This approximation becomes exact if we can cover all possible images that might have
that object show up for grasping in our setup. By assuming that all images (i.e. conditions)
are equally likely, we can replace the marginal with just an average over the images. Then
taking a finite sum over the images we can get a decent approximation of the probability.
However, replicating and running the trials is a time consuming process, so we are interested
in minimizing the number of elements in that sum.

One way to do that is to specify what kind of confidence we require in our estimate
of Ps(Obj|Perturbation). We can model our uncertainty that a given approximation to
Ps(Obj|Perturbation) is correct by assuming that our error in estimating the probability is
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normally distributed. We know that for a Bernoulli distribution the mean is given by the
p. The error on the mean (also known as the standard error) is given by σ√

n
, where σ is the

standard deviation of the data set and n is the number of samples. Then it becomes obvious
that we can quantify our confidence on the approximation of Ps(Obj|Perturbation) by using
a normal distribution with mean µgrasp = Ps(Obj|Perturbation) and standard deviation

σgrasp =

√
Ps(Obj|Perturbation) (1−Ps(Obj|Perturbation))√

n
.

We need, however, to choose a threshold that we would like to meet; that is how much
error are we comfortable tolerating. For the purposes of grasping we choose the following
criteria: we will do at least 10 tests and will continue doing tests until we reach n = 20 or
we have 95% confidence that the true value of p is not greater than 90%. We chose the value
of 90% as that is the threshold Kappler et al. [28] set for a grasp to be considered a success.∫ 0.9

−∞
N(µgrasp, σ

2
grasp)dx > 0.95 (5.2)

The confidence criteria can be summarized with the inequality in equation 5.2. If that
inequality is true, then we stop doing tests and move on to the next perturbation or object.
When the inequality is false we keep testing until we finish all twenty trials. This means
that if the probability of success if greater than 90% we will at worst approximate the true
to within 5%. There are two special cases. If in the first ten tests either none of the tests
are successful or they are all successful then we stop testing and move on. These are special
cases because they are when σgrasp = 0. Since the normal distribution is not defined for
zero variance, we have to handle this case separately. We assume that if ten grasps in a row
were either success or failure, that it is unlikely that the real value of p is going to be much
different.

Using these tools we can estimate the probability of a successful grasp given a pertur-
bation, and also bound our confidence around that estimate. We can also save some time
without sacrificing too much accuracy.

5.3 Test Procedure

Here we describe the test procedure in more detail. First we chose four objects from the
YCB object dataset [10]: the foambrick, the purple toy arch, the bathroom cleaner and the
sugar box. We chose these objects because they represent a mix of overhand and side grasps.
We also want to make sure that our test and methodology can be replicated by other groups
with the YCB objects.

After having selected objects, we sample twenty grasps for each object from our collected
data set. Even though we sample grasp trials with obstacles, when we replicate the image,
we do not bother replicating the obstacles. For each of the twenty selected grasps we then
generate perturbations in each of the six pose dimensions. We do not mix dimensions when
applying perturbations. That is, when we apply a perturbation on the x-axis, we do not
apply any other perturbations. We apply seven levels of perturbation, with a logarithmic
scale. For perturbations in the spatial dimensions, we apply the following perturbations:
5mm, 8.2mm, 13.6mm, 22.4mm, 36.8mm, 60.7mm and 100mm. The spatial perturbations
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are applied with respect to the gripper’s reference frame. For the orientation, we perturb
by rotating about the coordinate axes of the gripper. We apply the following perturbations:
5◦, 7.21◦, 10.40◦, 15.0◦, 21.63◦, 31.20◦ and 45.0◦. At this point, we check that the generated
perturbations will not collide with the table in the workspace. If they do happen to collide,
we perturb in the opposite direction. The most common correction was to make sure that
when the UR 5 executed the grasp, the robotic arm would keep the wrist high so as to not
hit the table. To avoid the gripper colliding with the object, we always perturbed the z
direction such that the gripper would move away from the object.

Then we move on to the tests. For each test, we would load one of the twenty images
for a particlar object and replicate the image as closely as possible. We would then trace
the outline of the object on the workspace table so that we could quickly place the object
back on the table after every test. We would then have the UR 5 replay final pose of the
gripper, first with no perturbation then with perturbations in ascending order, first through
the spatial variables then the orientation. The UR 5 does not follow the trajectory that we
collected during the grasp trial, instead it only replicates the final pose. To approach the
object we used the following procedure.

1. Move the gripper 20cm above the final pose

2. Rotate the gripper to the final pose

3. Back the gripper off 5cm in the negative z gripper direction

4. Lower the gripper 20cm

5. Cover the last 5cm in the positive z direction of the gripper

6. Close the fingers

After the fingers closed, we would be prompted to test the grasp. If the gripper did not
make a good grasp with the object, we would skip the test and classify the test as a failure.
If the gripper appears to have a decent grasp, then we would proceed with the test: lifting
the object ten centimeters and shaking it back and forth five times. If the object is not
dropped, then the test is successful. If the fingers of the gripper would drag or collide with
the table or the UR 5 joints we would also consider that a failure. Regardless of whether or
not the test was successful, the gripper would be backed away following the same procedure
as above but in reverse.

After ten images with the same object, we apply equation 5.2 to decide whether we should
continue testing that object-perturbation combination. After five more tests we would check
again for any other perturbations that needed to be dropped (total fifteen), before doing the
last 5 tests (grand total twenty). Since we performed the tests by starting with the small
perturbations first, we could skip the larger perturbations if there was a failure early on (i.e.
if a perturbation of 36.8mm did not work, then neither would 60.7mm or 100mm). In total
it would take us a day to go through each object.
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5.4 Results from Robustness Tests

Figures 5.1 and 5.2 show the results from our robustness testing. We have added logistic
fits to all the plots, with the exception of yaw perturbations for the bathroom cleaner and
the sugar box as these objects had a perfect success rate. Figure 5.1 shows the data for
the purple toy arch and the foambrick; both of these objects were tested for perturbations
against overhead precision grasps. As such, it is is expected that perturbing the grasp in
the z direction will cause a sharp decrease. However, we see that even perturbations of up
to 10mm have a relatively high chance of success. Perturbations in the y direction fall off
the most dramatically. The y direction is the direction that lies parallel with the fingers of
the gripper. As a result, even moving a small distance in this direction might cause one or
more of the gripper’s fingers to miss the object completely. Even then, the grasps performed
on the foam brick are robust, achieving a hundred percent success rate for perturbations as
high as 13.6mm. The purple toy arch has a more precipitous fall in success rate. Which
is probably due to the arch shape of the object not having much surface area to grab after
having moved even a small amount. The x direction lies along the long axis of both objects,
which is why we see a gentler drop-off. It is still encouraging that perturbations on the order
of a centimeter do not lead to absolute failure. The rotation degrees of freedom tell a similar
story. Rotation about the z axis (roll) for overhand grasps leads to very little drop-off in
success rate. The foambrick probably has a higher success rate due to its compliant nature
compared to the hard plastic arch. Rotation about the y axis (yaw) seems to be able to
withstand 10◦ without much of a drop-off, which again we find to be very encouraging. As
far as pitch, the grasps associated with the foam brick seem able to take advantage of its
compliant nature to go almost 40◦ without a decrease in success rate. The purple toy arch
has a similar success rate up to about 10◦. Overall these grasps seem to be quite robust.
Changes of up to 10mm and 10◦ seem to have a pretty high chance of success. This means
that systems built using this data might be able to function on conventional data and do
not require high precision cameras or equipment to perform well.

Figure 5.2 shows the plots for the bathroom cleaner and the sugar box. Both of these
objects were grasped from the top and from the side during the data collection sessions, but
for these tests only grasps from the side were sampled. In analogy to the overhand grasps,
where roll has a very slow decline due to the gripper placement, rotational perturbations
along the y-axis (yaw) yielded no failures whatsoever. This is most likely due to the fact
that both objects are tall and thus perturbations along the yaw axis still allow the gripper
to find enough contact points to successfully grasp the object. Rotations about the x axis
also yielded pretty high success rates: perfect scores even with perturbations of 20◦. This is
another axis about which the gripper can rotate, and still find enough contact points. These
perturbations almost line up with a cylindrical symmetry; to achieve such symmetry it would
be necessary to also perturb the spatial dimensions to keep the gripper pointing towards the
object as it rotates. For the spatial variables we see even more robust performance, alsmot
all the way out to four centimeters for both objects. This is to be expected as both objects
were being grasped with power grasps, which place the palm of the gripper to the object,
so there is a decent amount of perturbing that can happen before the fingers lose contact
with the object completely. The sharp drop for perturbations along the y axis has to do
with the overall length of the ReFlex SF’s fingers. At roughly 12cm in length, after being
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Figure 5.1: Plots showing the approximations of the probability of grasp success under
various perturbations. Blue points correspond to the purple toy arch, while the green points
correspond to the foambrick. Both of these objects are grasped with precision overhand
grasps.

perturbed by six centimeters the fingers are more likely to push the object out of the way
than wrap around them. In any case, we once again see that this data is robust to relatively
large perturbations.

To quantify the robustness to these perturbations we use Kappler et al.’s [28] threshold
criteria: anything with greater than 90% probability of success is considered a successful
grasp. We then solve our logistic fits to find at which level of perturbation the grasp crosses
the 90% threshold. Tables 5.1 and 5.2 show the results of taking the average across the set of
objects grasped overhand with precision grasps and those grasped from the side with power
grasps. We see that, except for the z axis, our grasps can resist perturbations of greater than
10mm. The z axis for precision grasps shows only the ability to resist up to 4.5mm, which is
most likely due to the fact that these grasps are made only using the fingertips and backing
away in the z axis would quickly lead to missing the object altogether. For the orientation
perturbations we again see that our grasps can resist perturbations greater than 10◦. We
report N/A for the yaw perturbations of the power grasps since we never observed any of
these grasps failing.

We conclude that the data set we have collected seems to be robust to perturbations.
This is what we expect to find when we leverage human intuition to guide our data collection
process. Even when the gripper itself is far from human-like, humans have developed a sense,
over years of grasping objects, for what kinds of envelopments and enclosures are most likely
to succeed in the real world. We believe that our dataset has captured this intuition to some
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Figure 5.2: Plots showing the approximation of the probability of grasp success under vari-
ous perturbations. Blue points correspond to the bathroom cleaner, green points correspond
to the sugar box. Both of these objects are grasped from the side with power grasps.

X (mm) Y (mm) Z (mm)
Precision Grasp 14.72 11.18 4.50

Power Grasp 59.16 56.91 46.77

Overall Mean 36.94 34.05 25.63

Table 5.1: Here we present the average across precision and power grasps for the point at
which the logistic fits for the position data crossed the 90% threshold for a successful grasp.

extent, such that building grasping systems on top of it might lead to cheaper and more
robust grasping systems. This is why in the next chapter we show our attempts at training
a deep learning system to leverage this dataset to plan grasp poses based on the RGB-D
images we collected along with the grasp poses.
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Pitch (degrees) Yaw (degrees) Roll (degrees)
Precision Grasp 27.20 11.44 31.49

Power Grasp 35.68 N/A 19.13

Overall Mean 31.44 <11.44 25.31

Table 5.2: Here we present the average across precision and power grasps for the point at
which the logistic fits for the orientation data crossed the 90% threshold for a successful
grasp. We report N/A for the yaw of the power grasps since we never observed a failing
grasp in those experiements.
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Chapter 6

Deep Learning Algorithm

In chapter 5 we showed that our data set has managed to collect some features that lead to
robust grasps. With this in mind, we then sought to build a grasping convolutional neural
network that would leverage our data set to attempt grasps on novel objects. One of the
fundamental problems that we need to address to build a grasping network is a way to build a
one-to-many mapping. Neural networks are by design function approximators, which means
that they are actually one-to-one mappings. However, any one object might admit vastly
different grasps. As an example, a coffee cup, could be grasped by the handle, or from the
top, or many other ways. We need to find a way to encode this idea into our network: one
image can lead to multiple grasp candidates. We look to DexNet 2.0’s [36] as an example
of how to tackle this problem using a grasp quality network, in essence turning the problem
into a classification problem: for a given a pose, what is the probability of success. However,
we try to do a dense classification across a quantized set of possible poses, in a similar way to
Zeng et al. [57] and Fischinger et al. [16]. We also do not restrict ourselves to only overhand
grasps (three dimensions) and seek to create grasps in the full space of poses (six dimensions).
To attmept to deal with the curse of dimensionality in this scenario, we train two networks:
a position network and an orientation network. The position network consumes an image
and produces a dense map of all the possible positions the gripper could be located in, while
the orientation network consumes the same image plus the chosen position and produces a
dense map of all the possible orientations. In essence we use our position network output
to condition our orientation network. This allows us to reduce the complexity of our output
space from six dimensions to two different subsets of three dimensions each. We expect that
if our hypothesis is right that our grasping system should be able to approach, or surpass,
an 80% success rate on unknown objects, which are the rates we see for Levine et al. [32]
and Mahler et al. [36].

We tried a couple of different approaches, and many different architectures within those,
but have yet to find any positive results. In the next couple of sections we will discuss the
steps and experiements we have taken thus far. We will begin by explaining the extra steps
we took to prepare the data set to be consumed by the neural network during training. Then
we will cover our approach for creating realistic failures so that we might build a classifier
based on our data of successful grasps. Afterwards we will cover the different architectures
we tested and how we trained them. Finally we will deliver insights into why the approaches
we have tried thus far have not delivered positive results.
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6.1 Preparing Data and Quantizing

To prepare the data to be used in a grasping CNN, we do two things. First, we change the
reference frame of our entire data set from the workspace frame to the camera frame. In
section 4.1.4 we discussed how to find the transformation matrix that can do this. We want
the data to be in the camera reference frame because we want the most direct correspondence
between the recpetive fields of the nodes in our CNN and the pose coordinates they are
matching to in space. The second thing we want to do is shift all the positions in our data
set five centimeters in the direction the gripper was facing at the time. We do this because
we want the coordinates the network is associating with the grasps to be associated with the
actual point the gripper’s fingers enclosed, rather than the palm of the gripper which does
not always make contact. The choice of five centimeters is chosen as a rough halfway point
down the length of the ReFlex SF’s fingers. For a lot of precision grasps the five centimeters
brings the position we are training substantially closer to the object. For the power grasps,
the shift of five centimeters might bring the position inside the object itself. We tried with
and without this shift and found that using the shift led to slightly faster learning, and did
not negatively affect the loss.

Turning the grasping problem into a dense prediction problem requires that we quantize
the space of 3D poses. We know from section 4.3, that the data does not occupy all of the
3D position or 3D orientation space. Instead there are underlying structures that we can
use to help us quantize the space.

6.1.1 Quantizing Position

In position space, we know that there is a concentration of points near the workspace origin.
Since we are now working in camera coordinates, the relative location of these points has
shifted, but they still have the same general shape. We can contain most of these points
in a compact rectangular prism, whose axes follow the camera’s coordinate axes, and then
quantize the space inside the prism into partitions at regular intervals. We assign each
point inside the prism to some paritition and use that as our quantized variable. Ideally,
we want the partitions to be as small as possible, since the bigger they are the bigger the
error we accumulate. We decided to drop the two hundred furthermost points in each axis
(x,y, and z), which was roughly equivalent to dropping outliers more than 3.5 standard
deviations from the mean in each axis. This reduced the size of the prism substantially at
the cost of only six hundred grasps (1.67% of the total data). We settled on using a prism
with 8 × 8 × 8 = 512 partitions, with each partition being roughly 1.5cm × 1.5cm × 2cm.
The worst case scenario is that of a data point at the corner of a parition, which would
place it

√
0.752 + 0.752 + 12 = 1.45cm away from the center of the partition. According to

our robustness tests, this is well within the range we expect our grasps to survive being
perturbed.

6.1.2 Quantizing Orientation

Orientation space was not as easy to quantize since the features are distributed widely across
the space. To quantize the space, we took a different approach, first we imagine adding nodes
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evenly every π
32

radians. Then every data point is associated with the closest node, and we
count how many points each node has accumulated. Finally we only keep nodes that have
four or more data points associated with them. We then enumerate the nodes and use those
labels as our quantized variables. After applying this algorithm we end up with 1160 nodes
with four or more data points close to them, and dropped about one thousand points from
our data set that were not close to these points, keeping about 97% of the data. As with
the position quantization, π

32
radians in all three angles corresponds to a worst case of 9.73◦

which is within the range we expect a decent amount our grasps to survive any perturbations.

6.1.3 Preparing Images

Finally we need to prepare our images to be consumed by a CNN. Since we used the first two
sets of residual blocks from a pretrained ResNet50 [22] model for most of our models, we need
to use their preprocessing steps. These steps were already encapsulated in Keras [11], the
neural network library that we used to implement our models. For the images themselves,
we take the 640× 480 size images and downscale them to 320× 240 and then crop them so
that only the workspace table and the space above it is visible. By coincidence, this lead to
images being 224 × 224 pixels, the same size that our pretrained model was trained with.
We applied a similar pattern to our depth channel, but also made sure to align the color and
depth maps so that visual features would correspond to the same pixel locations.

We did another substantial change. To be able to use pretrained weights, we replaced
the blue channel of our images with the depth channel of our RGB-D images [46, 12]. We
tried a couple of architectures trained from scratch on all four channels and did not see any
substantial benefits. We believe that is makes more sense to leverage the pretrained weights
of the ResNet50 as a feature extractor. Even though the blue channel is now depth, there
are still common features that the CNN will have learned to pick out, like edges and curves,
that will still have the same basic composition in depth as they do in color.

6.2 Generating Realistic Failures

One of the basic approaches that we tried was to learn a CNN by providing the network
with enough success and failure examples. However, we did not have a source of substantial
failures to correspond to our data set of successful grasps. It is not enough to generate failing
grasps if they are not realistic, as the classification problem would be too easy and the CNN
would not generalize across to novel objects. As a result we sought a way to generate realistic
failures to feed our network. We decided that the best way to do this would be to implement
most of another grasping algorithm and to tweak it to produce realistic enough grasps, but
that we were confident would be failures.

We decided that with our data set we could recreate the first part of Bohg et al 2011 paper
[7]. In the paper depth maps are used to complete object point clouds under a symmetry
assumption. These point clouds are then used to build high quality meshes which can then
be fed into mature grasp planning software. We implemented the completion by symmetry,
and the mesh reconstruction, but built a very simple grasping algorithm that could give us
sufficiently realistic failures.
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Completing the point cloud from a depth map involves the assumption that the part of
the object not visible from the camera is similar to the visible part. The algorithm proceeds
as follows:

1. Segment the table from the objects above the table surface

2. Identify the object in question (in our case the centermost object)

3. Find the weighted center of the point cloud, and pick the plane of reflection symmetry
that would complete the back of the object

4. Generate a set of hypotheses for the plane of symmetry by varying the angle of the
first plane, and its location relative to the point cloud center

5. Score the hypotheses and pick the best one from among them

6. Mirror the point cloud along the best plane of symmetry

The scoring mechanism is an integral part of how this algorithm works. Bohg et al.
identified two conditions that would mean the symmetry assumption was being violated.
These occur when a reflected point is either in front of the object it was reflected about, or
it occupies some space that we already have depth data for (outside the space of the object).
Both conditions essentially lead to violations of our prior knowledge about the scene, so they
need to be penalized. Bohg et al. penalize the case where points end up in front of the object
by a score proportional to the distance it would take to bring the point behind the object.
The second case, a point outside of the object in an area that already has information, is
penalized by finding the pixel euclidean distance to the object. In the best case scenario,
both of these penalties are zero. We added a term to vary the relative importance between
the terms and weighed penalties against points outside an object as being ten times worse.

For the mesh reconstruction we found the points that would make a convex hull from the
point cloud and applied a Delaunay tesselation using SciPy [27]. This mesh is guaranteed
to be completely closed, but it is not guaranteed to be smooth and it cannot preserve any
internal structure since we use the convex hull as our starting point. We believe that this is
not necessarily a bad outcome, since we wanted to create failing grasps. The meshes capture
enough of the of objects’ geometry that any grasps generated would not be completely non-
sensical.

The final step was to build a simple grasp planner that would use these meshes to return
poses for the gripper. We modeled the ReFlex SF as a three dimensional trapezoid with
three twelve centimeter long fingers coming out of it. We randomly selected one of the facets
making up the object mesh, and then randomly sampled a location in that facet. By finding
the normal of the plane coming out of the triangle, we arrive at the orientation of the z
axis of the gripper. We then pick a random number between 1cm and 12cm, and place
the origin of the gripper at that distance along the facet’s normal and intersecting random
point that was selected earlier. The last degree of freedom, the rotation about the z-axis, is
also decided by a random number. With all of these pieces, we can generate poses around
the object meshes that look somewhat realistic as grasps. We add three more constrainsts
however: 1) The gripper shell cannot be colliding with either the object or the table, 2) As
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the fingers would be closing around the object, they cannot touch or drag on the table and
3) only poses that allow the fingers to provide opposing forces are allowed.

A B

C

D

Figure 6.1: Panel showing some of the key steps for generating the realistic failures. All
units in mm. A: RGB image of the headphones case being used in this example. B: The
point cloud collected from the SR300’s depth sensor. Notice how the back of the case is
not closed. C: Scatter plots of the original point cloud (blue) and the mirrored point cloud
(orange). There are still some points that stick out, but they seem to be minimized. D: The
simple grasp planner showing the grasp pose on the completed mesh. Notice how the fingers
barely make contact. This pose is likely not succesful.

The poses generated from this procedure look at first glace as if they are reasonable,
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but many of them would fail for small details. The biggest source we could identify for
potential failures is that we do not check for force closure at any point, so many grasps
might not be stable. Similarly, since we do not check forces or torques as the grasp occurs,
the gripper might end up pushing the object out of reach before a full enclosure is reached.
Another failing of this method is that it generates many grasps where the gripper is either
too far or too close to the object. Being too far means that only the fingertips would make
contact with the object, which in our experience does not provide enough force to secure
many objects. We recognize that there is still the possibility that some of these grasps would
be successful, but based on visually inspecting a large subset of them we do not believe
that more than a small amount (10% 15%) would succeed in the real world. Differentiating
our human demonstrated grasps from this synthetic dataset should still be a challenging
task that forces the network to learn the subtle differences between the real and synthetic
datasets.

To generate pairs of successful and failing grasps, for each grasp in our dataset and we
run the algorithm above on the corresponding depth map. We then save the pose generated
for each depth map along with the poses for our data set. This guarantees that for every
grasp trial we have at least one failure to present to our grasp CNN. We did find about 500
cases where our algorithm did not find a pose within one thousand tries; we decided to drop
those from our data set.

6.3 Loss Functions

We tested two different kinds of loss functions. The first is a more traditional kind of loss
function, which requires the realistic failure grasps described above. This loss function is
binary cross entropy (equation A.16 in appendix section A.3.1) applied only to the output
node associated with our ground truth sample. This is equivalent to training a number of
networks equal to the number of output nodes that share all weights except the last layer.
Practically, we do this by calculating binary cross entropy individually across all nodes, but
setting all the errors to zero for all nodes except the node we are currently training. That
is, if our ground truth is that position (i, j, k) is a good position for grasping, we propagate
gradients through the node corresponding to position (i, j, k). The neighbouring nodes get
an error of zero assigned to them, and thus no gradients are propagated through them.
Without any failure data, the network could just minimize the loss by predicting high across
all the nodes, so it is important that we use this synthetic failure data.

The second loss function is in some ways the opposite. For this loss function we only use
the positive data we collected and none of the generated negative data. We apply binary
cross entropy to each node individually and only the node corresponding to the positive
sample we are currently training on will get the true (1) label associated with it. All other
nodes get a false label (0). The most important difference is that now each individual node
will see many more false labels than true labels. As a result we also combine the binary cross
entropy with Lin et al.’s [34] Focal loss. We use the default parameters they presented in
their paper (γ = 2). The other important aspect to remember when using this loss function
is that the threshold between true/false is probably going to be below 0.5. This is not really
a problem since we rank the outcomes from highest score to lowest score and take the best
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score out of them. However, because this loss function penalizes a wide swath of grasps, and
only encourages the one demonstrated grasps, it is possible that it will reduce the activation
of grasps that might be just as likely to succeed as the demonstrated grasp. Since this data
does not depend on the generated data, it makes less assumptions and is thus more likely to
be stable.

6.4 Deep Learning Architectures

We now turn our attention towards describing the different architectures that we tested our
problem against. The basic architecture that we theorized would perform the best was a
ResNet [22] architecture. We did many tests using different variations of this architecture,
but we also tested more classic CNN architectures. We spent the majority of our tests trying
to get decent results out of the first network in our system, the position predicting network.
While testing we realized that our data set of grasps is not evenly distributed across the 512
partitions, which leads to a bias in which partitions are most likely to be selected. We tried
to use this prior information to our advantage to help the network train faster, but also tried
methods to reduce the impact of this bias (namely focal loss [34]). We also spent some time
tuning the hyperparameters in our network hoping to achieve better results. We found a
combination of hyperparameters that seemed to lead to fast convergence with the networks
we tried.

6.4.1 Prior Information

We want our position network to learn to predict P (S|img, part), the probability of a grasp
being successful given a partition and an image of the scenario presented. However, we know
that not all positions are equally likely. As we saw in Figure 4.3, the position tend to form
clusters. In fact, we found that providing no image to the grasping network could still lead
to results that were much better than picking with a uniform random distribution which
partition to place the gripper at. In fact, we found that the E[P (S|part)] ≈ 78%, which is a
fairly strong prior. This provides us with another benchmark to assess: we want our position
prediction network to perform better than the prior distribution alone could.

It turns out that the P (S|part) that the probability of success for one of the 512 of
possible partitions tends to cocentrate on only some of the 512 partitions. We hypothesized
that if we could give the network this constant information then it could concentrate on
learning features that would allow it to map images to grasp success. We came up with
three different ways to incorporate this information into the network.

Multiplication

We can use Bayes’ Theorem to break down our problem. The common way of writing Bayes’
Theorem involves only one conditional variable, whereas here we have two, the image and
the partition. Since the prior information we have access to varies over the images, we leave
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the partition conditional unchanged. This gives us the following equation:

P (S|img, part) = Pprior(S|part)
P (img|S, part)
P (img|part)

(6.1)

Where we have labeled P (S|part) with the ”prior” subscript to highlight that we already
have access to this information. Based on this formulation, we would require the grasping
network to learn P (img|S,part)

P (img|part) . There are only two constraints on this value: it must be equal
to or greater than zero, and when it is multipled by the prior it must not result in a value
greater than one. If the network can learn that, then we can calculate P (S|img, part) easily
by multiplication.

Log Addition

In some cases we might prefer to perform addition, rather than multiplication. In this case
multiplication places different constraints on what the network’s outputs can be, on top of
routing gradients differently through the network. If we take the natural logarithm of both
sides of equation 6.1, we get:

log (P (S|img, part)) = log (Pprior(S|part)) + log

(
P (I|S, part)
P (I|part)

)
(6.2)

Instead of asking the network to learn P (I|S,part)
P (I|part) , we can have it learn the log of that.

This allows us to drop one of the constraints, since log
(
P (I|S,part)
P (I|part)

)
can take any value in

(−∞,∞). We still need the addition of that plus our log prior to be less than zero, so that
if we exponentiate both sides again we still get a probability bounded by [0, 1].

Residual Addition

Inspired by Zeng et al.’s Tossing Bot [57], we imagine that our network only needs to learn
some residual information. That is our prior information is good enough to get us a de-
cent guess and the network just needs to tweak that guess based on the image information
presented.

P (S|img, part) = Pprior(S|part) + δP (S|img, part) (6.3)

We briefly tried the three methods mentioned above and did not find any meaningful
difference between them. We chose to stick with the residual addition method presented
here because of its versatility and ease of implementation. Using any of the above three
methods did reduce our training time considerably, leading us to believe that adding this
prior information does indeed help the network find better features faster.

6.4.2 Model Fine Tuning

In appendix section A.3.5 we go over the different hyperparameters that are available for
us to tune. Here we present the values we used for these hyperparameters. After some
early testing, we found that using Adam with a learning rate of 10−5 seemed to be a good
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match for our problem. All our layers except the output layers were set to LeakyReLu’s
with α = 0.2. We also noticed that our training curves would sometimes seem to oscillate
and climb for an epoch before starting to decrease again. We found that by adding gradient
clipping of 1, this problem went away. We set our batch size to 64, except in cases where our
model would not run on our system due to memory errors. In those cases we decreased the
batch size by a factor of 2 until the model would run. We also added an L2 norm penalty
on the weights, with the penalty parameter being set to 10−4 after some testing. For some
tests we added dropout. The dropout rate would change from one test to another, but it
was mostly left at 0.2.

6.4.3 Architectures

We built and tested a variety of different architectures, but they all had the same inputs and
outputs. For the position network architectures, we designed networks that would consume
a 224 × 224 image and output an 8 × 8 × 8 volume, where each partition corresponds to a
position in space, as described in section 6.1. Importantly, the individual partitions do not
depend on each other. This is because, as mentioned previously, any one image of on object
might admit multiple grasps. One partition might have as much of chance of succeeding as
another. The orientation network would consume the same image, plus a 3-tuple with the
coordinates of the partition in the 8 × 8 × 8 cube. It would then output a vector length of
1160 where again the individual nodes are not dependent on each other.

In this section we will discuss all the different model architectures that we tried training.
We will not be showing results from all these architectures, as most of them did not seem to
be converging towards good results. In section 6.5 we will show results for the architectures
we felt performed the best.

Simple Architectures

We tried a few comparitively simple architectures. None of the following architectures had
any pre-trained layers. One of the first networks we tried was a traditional convolutinal
neural network, replacing the max-pool layers with stided convolutions. Overall we had 8
conv-layers with 4 of those being of stride 2. The convolutional part was followed by a three
layer MLP ending with an output of 512 nodes that was reshaped to the 8 × 8 × 8 shape
we need as an output. We varied the number of filters in the conv layers and the number of
nodes in the dense section, but this method did not perform much better than just guessing
based on the prior information.

Another network in this category was an all convolutional network [52]. This network
consisted of 5 conv-layers with no max-pooling or strided convolutions in between. This was
followed by a conv-layer with 28×28 sized filters and stride 28. By coincidence, 224÷8 = 28
so by using filters of size 28×28 and a stride of 28 we can reduce our feature maps to Cx8x8.
Following this with a 1 × 1 conv-layer with 8 filters and a sigmoid activation gives us our
final 8× 8× 8 cube. This network did not perform any better than guessing with prior.

We then moved to training more complicated networks based on the ResNet50 [22] ar-
chitecture. We copied the architecture described by He et al., except we substituted the last
three residual 2D convolution blocks with residual 3D convolution blocks. Since the output
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of the network is inherently describing 3D space, this should allow for a more straightfor-
ward mapping from image to grasp probability. This model had on the order of 50 million
parameters. We found that the model quickly overfitted and did not perform better than
just using the prior information.

We then tried to reduce the size of the network described above by only keeping the
first 10 residual blocks from the ResNet50 architecture and following that with one residual
3D convolution block to the output. By contrast, this network had around 1.5 million
parameters. We still found this network to quickly overfit the training set before reaching
performance better than just guessing based on the prior distribution.

Pre-trained Resnet style Architectures

Seeing that the previous networks had a propensity for overfitting, we moved to using some
pre-trained layers in our networks to reduce the number of parameters. We used the pre-
trained ResNet50 model provided by Keras [11], by reusing the first two layers plus the first
ten residual blocks of the ResNet50 architecture, and freezing their weights. This model had
been trained on the ImageNet dataset. We added more trainable residual blocks on top of
this base.

Our first attempt was to add a strided convolution to reduce the size of the feature maps
so that they would match the size of the next six residual blocks of the ResNet50 model
and to then resize and reshape the feature map so that it would have the Cx8x8x8 we need,
where C is the number of channels of the map at that point in the network. We then followed
that with three blocks of residual 3D convolutions and one 1× 1 3D residual convolution to
bring the size of the output to 1x8x8x8. To this output we added the prior, as discussed in
section 6.4.1. This model still had on the order of 50 million trainable parameters, but it
trained relatively quickly. However we found that the model would quickly start to overfit.
Even by controlling the number of kernels, reducing the number of parameters to 7 million,
we still saw overfitting. This lead us to experiment with networks with fewer parameters
organized in a different way.

Our next attempt was based on the second ResNet50 architecture we trained end-to-end,
except we replaced the same layers mentioned above with pre-trained layers. This network
still had on the order of 1.5 million parameters, but with only 16.5k trainable parameters,
and we still found it to be overfitting. We decided then to try to change the architecture to
see if we could encourage the network to learn the patterns we believe are there.

Our main change was to add different branches for different partition depths (see Figure
6.2), the z axis of the 8 × 8 × 8 cube of predictions. This meant that pre-trained layers
would act to extract useful features from the image, but one branch would be in charge of
finding more features that would be useful to make predictions for its depth level. Each
of the 8 branches consisted of a 2D convolution with a 1 × 1 filter followed by residual 2D
convolution block. The feature maps from these branches are then concatenated together
and one block of residual 3D convolutions is used before outputting. We found that this was
the first model we trained that could perform better than just guessing based on the prior
position information. It would still overfit, but we moved to trying to heavily regularize it.
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Figure 6.2: Diagram of the position network. Above each element the output size of the
element is listed. The network first takes the RG-D input through the first two stages (first
ten residual blocks) of a pre-trained ResNet50 [22] network. The output of the pre-trained
layers is then passed into eight parallel paths. Each of these paths corresponds to one of the
depths in the final output volume. Along each path, the feature maps are first passed through
a residual convolution block and then an extra dimension is added so that when the feature
maps are concatenated together the relationship of each bank of features as corresponding
to one particular depth is preserved. Each of our residual blocks consists of five sets of
bottleneck convolutional units, which in turn are set of three conv layers with kernel sizes of
3,1,3. After the bottleneck units a residual connection is made from the input of the block to
the last layer of the block. These concatenated features are then passed through a residual
3D conv block, before finally passing through a 3D conv layer with a tanh activation. This
result is then added to the prior distribution to arrive at a final output volume of 8× 8× 8.

Rotation Architecture

We decided to base our rotation architecture on the ResNet50 architecture again. The
important addition is that we need a way of mixing in which position we chose from the
output of the position network. The easiest way that allows us to keep using the pre-trained
layers is to combine the data somewhere after the pre-trained layers. We chose to add to
the information to the feature maps as extra channels, an idea proposed and tested by Liu
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et al. [35]. Each extra channel just holds an integer in each element. This integer represents
the coordinates of the partition in the 8× 8× 8 cube chosen by the position network.
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Figure 6.3: Diagram of the orientation network. Above each element the output size of
the element is listed. The network first takes the RG-D input through the first two stages
(first ten residual blocks) of a pre-trained ResNet50 [22] network. The output of the pre-
trained layers is then passed into two residual conv blocks and one conv layer. In parallel,
the position partition vector is expanded into three channels, with each channel holding just
a copy of each element of the vector. These channels are then concatenated in the main
network branch and the output of that is flattened. This vector is then passed into an MLP
where the last layer is a 1160 dimensional vector, with each element corresponding to one of
the quantized points in orientation space.

The network itself consists of the pre-trained ResNet50 layers followed by two residual
blocks and the extra position channels being concatenated to the block of feature maps.
Afterwards the whole block gets flattened and a series of dense layers is followed by the
output. We found that this network was also prone to overfitting, so we heavily regularized
by reducing the number of nodes in the fully connected part and using dropout between
those layers.
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6.5 Results
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Figure 6.4: Training curves for the position network.

Here we present results from our tests training these grasping networks. First we want
to make sure that the networks we are training are not overfitting. When a model is said to
overfit, we refer to the model learning to replicate the training set without any regard for
samples outside of it. That is, the model does not learn generalize across inputs, but merely
learns how to map memebers of the training set to grasp poses. Ideally we want the model
to generalize to any of the inputs that might be possible for our task, not just the ones we
happened to collect. The most straightforward way to check if a model is overfitting is to
split the data set into two parts: a training set and a validation set. The model trains on
the training set, while the validation set is not used to make any training decisions. At set
intervals, we test the model by using the validation set. If the model is not overfitting then
the training and validation losses will be decreasing together. However, once the model starts
to overfit, the validation loss will start to increase, even while the training loss continues to
decrease. This is a clear indication that the model is starting to lose its ability to generalize
even within the dataset we collected, hence we say it is overfitting.

We made two different validation sets: one contained images of objects that the network
never saw during training, the other contained images that the network never saw during
training (but the objects were seen during training). These two validation sets are meant to
test the ability of the network to extrapolate to new objects, and interpolate known objects.
To make sure that we got the best network we could out of each training run, we used a
checkpoint system. Every time the network would reached a new low in the validation loss,
we would checkpoint the model. This meant that even after the model started to overfit, we
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would have access to the best model from each run. The results presented here used the prior
information. The position network had to learn to correct the prior paritition information
by adding some value to it. These were also trained using the second loss function presented
in section 6.3.
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Figure 6.5: Training curves for the orientation network

Figures 6.4 and 6.5 show the training curves for the position and orientation networks.
For these tests we combined both validation sets. The checkpoint system saved the position
network at epoch 22, and the orientation network at epoch 212. We see that after these
points the validation loss begins to climb, which is a clear sign of overfitting. We also
measured E[P (S|part)] for the position network to be around 81%, which is better than
what we expect we could do with the prior alone. This was the highest value we recorded
before the position network started overfitting.

Having trained both models, we put them together into a grasp prediction system. This
system would work by preprocessing a brand new image from the SR300 and then feeding it
into the position network. From the position network we would get an output volume with
shape 8× 8× 8 and then proceed to find the coordinates for the highest partition, in essence
finding the largest P (S|img, part). We would then feed the orientation network the same
preproceed image plus the coordinates selected by the position network. The orientation
network would then output a vector with each element denoting one possible orientation.
We would take the largest element and find what orientation it corresponded to. Putting
the position and orientation we would have a full pose that we could then test. There was
the opportunity to do some optimization by re-using the feature maps coming out of the
pre-trained ResNet50 layers for both the position and orientation networks, but we did not
implement that at this time. This does not affect the pose results, but it might make the
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Figure 6.6: Position histograms made from predicting on the training data set using our
system. The original histograms from the training set (blue) can also be found in Figure 4.2.
The predicted position histograms (orange) are seen as being in small clusters with much
higher density. Both the training and predicted histograms are plotted using the same bins.
It is useful to remember that the space quantization took place in camera coordinates, which
is why we the predicted set is not seen as having only eight bins. See section 6.1.1 for more
details.

system faster and probably would use less memory.
As a sanity check for our system, we ran our entire training set of images through. Figures

6.6 and 6.7 show histograms for the different pose variables for the gripper. These plots are
analogous to Figures 4.2 and 4.5. Regretably, these do not look good. It seems as if the
network has collapsed its decision making to only a few positions, and then that cascades
to only having a few possible orientations. Furthermore, it is not entirely clear why the
predicitons being made for the position have collapsed to only a few values. We do not
necessarily expect the network to replicate the training set distribution; the network should
be picking the best grasp for the image shown, which since some of the images are similar
might lead to the same grasp being chosen. However, we would expect the network to have
a range of behaviours and to at least demonstrate some of the biases we saw in the training
set. The x axis predictions are not symmetric about zero, but are instead biased towards the
negative side, which is the opposite of the training set. The y axis predicted values are biased
in the right direction, but peak too late and do not show a trailing edge like the training
set. Even worse, the z axis predictions place many samples at high z values, which is not
seen at all in the training set. The orientation variables exhibit a lot of the same problems.
Pitch is the best of the three, with at least the same basic shape. Yaw does not exhibit any
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Figure 6.7: Orientation histograms made from predicting on the training data set using our
system. The original histograms (blue) cannot easily be seen as the density of the predicted
histograms (orange) is so high that the y axis scaling cannot show both at the same time.
Compare to Figure 4.5, for the orientation histograms over the training set. The quantization
for the orientation variables only kept nodes 1160 that had the highest density of data points
around them. See section 6.1.2 for more details.

symmetry and it has peaks where there is next to no data in the training set. Running the
system live on the UR 5 with novel objects has similar results. The gripper is placed in only
a few location with little variation. In our limited tests, some grasps succeed but the vast
majority drop the object due to not having a solid grasp on the object. The grasp success
rate is decidedly much lower than the 80% goal we set out to achieve.

It is worth mentioning again that we used what we think were the best position and
orientation network after having tested six different architectures, within which we tested
increasing and decreasing the number of parameters, tweaking hyperparameters, increas-
ing/decreasing regularization, and even generating our own negative data. The results we
show here are also not due to overfitting to a few outliers. We selected our models such that
we took lowest possible validation loss from the training runs. Even then, if the results were
due to overfitting, we should not see peaks in areas where the data has no peaks.

We expected that our data set would allow us to train a full six dimensional grasping
network. Even though we managed to get a slightly better position prediction accuracy than
we could with the prior alone, our networks are having a hard time learning at all. There
can be many different reasons for why the networks are having a hard time training. One
possible reason might be that the representation we picked for our input image might not
be conductive to learning. We tried both using RGB-D as separate channels, and dropping
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the blue channel and replacing it with depth and using only RGB. It might be possible that
some other combination might have been more successful. One particular representation
that would require some feature engineering would be to provide grasp heightmaps [24],
calculated from the depth map. This representation would involve a series of non trivial
non-linear transformations that might not be easy for the network to learn, but which we
know is a powerful representation. However, if we were to change the representation too
drastically we would not be able to use a set of pre-trained network layers. Another possible
area for improvement might be to try different, non-ResNet, architectures. We believe that
we tried ResNet style architectures quite extensively, so perhaps other architectures might be
able to better extract information from the RG-D images. One possible representation plus
architecture combination that we did not try would be to provide the depth information as
a point cloud volume [55] and to go directly to grasp pose prediction. The best explanation
that has come to mind thus far is that we might be suffering from the curse of dimensionality.
We need bigger networks to make better predictions, but the bigger the network the more
data we need. Since the amount of data needed to tile the space increases exponentially, we
would similarly need even more data. Other groups have tackled this challenge by limiting
the complexity of their task space; usually by only making grasp plans that involve the
gripper coming from above (two position variables) and only deciding the roll (one orientation
variable) of the gripper, with a set pitch and yaw [36]. Predicting in the full six dimensional
space is computationally prohibitive, which is why we split the problem in two. If we
wanted to keep the same spatial resolution we have now and predict directly into the full
six dimensional space, we would need more than half a million output nodes in our network.
At this point, we believe that what we missed is just simply having more data, though it is
unclear how much more data we would need.
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Chapter 7

Conclusions

In the preceeding chapers we introduced the work that we did towards creating a robotic
grasping system using demonstration and deep learning. We hypothesized that leveraging
human intuition to create a large dataset of grasps would lead to a dataset that would
encode the years of human grasping knowledge that we have gathered from interacting with
the natural world. This dataset would be robust, since human grasps tend to exhibit that
property, and it could be used to train a deep neural network to grasp objects like humans
do.

In Chapter 2 we covered the relevant literature required to place our work in context. We
introduced the works of Mahler et al. on DexNet [36], Herzog et al. [24] and Kappler et al.
[28], among others. Herzog showed that using as few as eighteen human demonstrated grasps,
and clever shape descriptors, a flexible robotic grasping system could be built. Kappler
built upon their work contributing a more robust grasp quality metric, and evidence for
how neural networks could learn from large datasets. Mahler et al. have taken a different
approach replacing the hand built shape descriptors with a grasp quality CNN that can be
used to map directly from depth maps to probability of grasp success.

Chapter 3 introduced our hardware and methodology. We described our gripper, the
ReFlex SF in detail, documenting many of its advantages but also its flaws. We also explained
how our depth camera, the RealSense SR300, works and the steps we had to take to make
sure that the IR emitters and receivers for both the SR300 and NDI Polaris would not
interfere with each other. We finally went into detail about the procedure we used to collect
over forty thousand human demonstated grasps with their respective depth maps on 109
objects. This dataset is available online.

Having described the data collection process, Chapter 4 goes into how we transform the
raw data from the data collection into a more compact grasp pose dataset. Primarily, we
explain how to perform the various change of reference frames required to go from the pose
of the tracking crosses with respect to the reference frame of the gripper, to the pose of
the gripper with respect to the workspace reference frame. We then provide some insight
into the data we collected by showing a series of histograms and scatter plots. We identify
different biases in the data which were caused by that fact that our data came from human
demonstrators which have their own biases. Some of these biases included the bias towards
gripper poses to the right of the object (operators were mostly right handed), and a bias
towards grabbing objects by the shortest path possible. We also showed that the data we
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collected is also object dependent. Different objects exhibit different distributions because
their geometry affects the poses the gripper can use to successfully grasp the objects.

A grasp that is robust, should still succeed even under uncertainty about object or gripper
pose, which is a highly desireably feature. Chapter 5 described our robustness tests. We
covered how we replicated individual scenes from our dataset and replayed them on our
gripper. We also explained our statistical estimation strategy for estimating the probability of
success given a particular object perturbation. This strategy allowed us to test the robustness
of our grasps for four objects from our dataset. These objects encompassed both precision
and power grasps both from the top of the object and from the side. We show that our
grasps are robust to perturbations in most axes, with the position variables being robust to
perturbations of up to 4.5cm for power grasps and up to 1cm for the precision grasps. The
orientation variables show more resiliency being robust to up 10◦ across all objects.

Finally we covered our experiments with training a deep grasping network in Chapter 6.
We decided that we would split the grasp pose classification task into two parts: a position
network, and an orientation network conditioned on position. To train our networks we had
to first quantize position and orienation data we had collected. Working in the reference
frame of the camera, to allow the CNNs to be able to associate feaures with physical space
better, we partitioned the position data into 512 paritions arranged as an 8×8×8 cube. The
orientation data was clustered such that we could cover 97% of the data using 1160 nodes.
We then described how we replaced the blue channel of the RGB-D images with the depth
channel to arrive at a 3 channel feature map that we could feed into a series of networks
using pre-trained ResNet50 layers. We then proposed two different ways to train these neural
networks. One loss function could be used directly with our collected dataset, but might
over penalize potentially successful grasps that we did not sample in our data. The other loss
function would avoid this penalty but it could only train one partition at a time and it would
require access to a source of negative examples. We created a source of negative examples
by implementing the first half of Bohg et al.’s [7] pipeline, and substituting the second half
with a simple convex mesh and a simple grasp planning heuristic. We then describe our
approach to take advantage of the strong prior on the distribution of the partitions used to
train the position network. We decided to mimic Zeng et al.’s [57] idea of residual physics
and have our network learn an additive correction on the prior. We then described all the
different network architectures we attempted to use to solve this problem. We found many
problems trying to find networks that would not overfit, before eventually settling on using
a network using pre-trained layers from ResNet50 and with a branching structure for each of
the different levels of the z axis of the 8x8x8 cube of partitions. We used a similar structure
for the orientation network as well. Our results for these networks were not promising.
Testing on the training set, we found that the position network had collapsed to only predict
a few values with very high probability. This in turn would carry over to the orientation
network and also cause it to predict a small number of different orientations. Even then, we
found that the position network was performing slightly better than what we would expect
from the prior alone on our validation set. Testing on the robot did not yield good results
either. The system picks a small range of poses regardless of the object presented. The
majority of grasps we tested resulted in failure, even when testing multiple times on objects
that had been succesfully grasped at least once, leading to a much lower success rate than
the 80% we aimed for.
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We conclude then on mixed results. We managed to collect a large dataset of human
demonstrated grasps. These grasps seem to be robust to a wide variety of perturbations.
However, we found training a neural network on this dataset to be a difficult task. One of
the reasons we hypothesize learning this task is difficult is due to the curse of dimensionality.
Predicting fully 6D poses might not be something that is feasible with our dataset. Other
works use large synthetic datasets of tens to hundreds of thousands of grasps [39, 36, 28, 32,
57]. Even with this amount of data, some of them learn pose representations that are less than
six dimensions [57, 36]. Yet, Hezrog et al. [24] manage to learn a flexible system using less
then twenty demonstrations. The discrepancy might come from the feature representation
that they use for their system. Calculating grasp heightmaps involve complicated, non-linear
transformations that might not be the kind of approach the loss gradients guide our networks
towards.

Potential future areas of work would involve continue to examine what kinds of neural
network architectures can learn from our dataset, or what kinds of representations can be
used to encourage our networks to learn to grasp.
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Appendix A

Mathematical Background

As seen in Section 2.1 a variety of mathematical tools are required for the analysis of the
different problems present in grasp planning. This section provides a brief introduction to
the most important concepts required for understanding the work and results presented here.
Most of the material is referenced from [50], [19], [1].

A.1 Rotation Formalisms in R3

There are a number of standard ways to express rotations in 3D space. Each of these for-
malisms has some advantages and some disadvantges. All the formalisms presented here were
used during the course of this work. The main motivation for using rotation formalisms is
to encode the relative rotation between different frames of reference throughout the exper-
iments that will be presented later. An an example, to fully describe the pose of a robotic
gripper it is necessary to capture information about both its location and its orientation,
which is most easily done by imagining that the gripper has its own reference frames and
comparing to some standard frame.

In the following sections, rotation matrices will be introduced first along with some
general rotation properties, followed by rotation quaternions. These two formalisms are the
most used both for their interpretability and their ease of use. Rotation vectors will also
be covered, but since their main strength is their compactness they are generally not widely
used in applications.

A.1.1 Rotation Matrices

Rotation matrices are generally most people’s only rotation formalism. They are easy to
teach along with other linear transformations in introductory linear algebra courses. A
rotation matrix, R, obeys three conditions:

• Rij ∈ R

• R−1 = RT

• det(R) = 1
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These three conditions are where the general group of rotations, the Special Orthogonal
3 group (SO(3)) [17], gets its name from. All the rotation formalisms discussed here are
representations of this group. There are three elementary rotation matrices in R3, one for
each coordinate axis [6].

• Rx =

1 0 0
0 cos(θ) −sin(θ)
0 sin(θ) cos(θ)



• Ry =

 cos(θ) 0 sin(θ)
0 1 0

−sin(θ) 0 cos(θ)



• Rz =

cos(θ) −sin(θ) 0
sin(θ) cos(θ) 0

0 0 1


The subscript for each of these matrices indicate which axis to rotate about. Applying

Rz(θ) to a column vector would rotate the x and y components but leave the z component
the same. Furthermore, as sanity check, each of the rotation matrices can be obtained from
any other by sliding their components along the diagonal. For example, Ry can be obtained
by shifting all the elements of Rx down and to the right, where any elemnts that end up
outside the matrix wrap around.

From composition of these elementary matrices it is possible to arrive at any arbitrary
rotation matrix. Euler angles are a way to arrive at any arbitrary rotation by using at most
three elementary matrices [3]. There are two families of Euler angles: intrinsic and extrinsic.
Intrinsic Euler angles compose their rotations with respect to the rotated frames. Extrinsic
Euler angles compose their rotation with respect to some fixed world frame. The possible
combinations of elementary rotation matrices is finite; there are 6 intrinsic combinations and
6 extrinsic combintations [18].

• Intrinsic: x-y-x, x-z-x, y-x-y, y-z-y, z-x-z, z-y-z

• Extrinsic: x-y-z, x-z-y, y-x-z, y-z-x, z-x-y, z-y-x

Taking z-x-z intrinsic combination, an arbitrary rotation matrix can be built by the
following composition Rz(θ)Rx(φ)Rz(ψ), where θ, φ, ψ are the Euler angles. Notice that the
last rotation, the ψ rotation, is the rightmost matrix. This is because the rightmost matrix
will align the axes for the second matrix and so forth. In essence, the order of the matrices
will be the same as the order given above. For extrinsic combinations, like x-y-z, the order
should be the reverse of what is shown above.

There is another way to build up rotation matrices. Imagine that two coordinate frames
are given and that it is required to know the rotation matrix that can transform from one
frame to the other. To build out this rotation matrix a method known as direction cosines can
be used [1]. The idea follows from an understanding of how to build general transformation
matrices using the projection operator.
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Some notation needs to be introduced at this point for clarity. The unit vector x̂AB is
the x-unit vector of Frame B, written with respect to Frame A. That is, the superscript
indicates which frame is being referenced, while the subscript indicates the original frame
for that vector. x̂AA would be [1, 0, 0]T , but x̂AB will be some linear combination of Frame
A’s basis vectors. The amount of x̂AB lying along x̂AA can be found by using the projection
operator, which for unit vectors is just a dot product. Then it is possible to write x̂AB, or any
of frame B’s axes, in terms of the basis vectors of frame A.

x̂AB = (x̂AB · x̂AA)x̂AA + (x̂AB · ŷAA)ŷAA + (x̂AB · ẑAA)ẑAA (A.1)

ŷAB = (ŷAB · x̂AA)x̂AA + (ŷAB · ŷAA)ŷAA + (ŷAB · ẑAA)ẑAA (A.2)

ẑAB = (ẑAB · x̂AA)x̂AA + (ẑAB · ŷAA)ŷAA + (ẑAB · ẑAA)ẑAA (A.3)

After some inspection, it should be obvious that the coefficients above correspond to the
elements of a transformation matrix. This matrix is given as follows:

RA
B =

(x̂AB · x̂AA) (x̂AB · ŷAA) (x̂AB · ẑAA)
(ŷAB · x̂AA) (ŷAB · ŷAA) (ŷAB · ẑAA)
(ẑAB · x̂AA) (ẑAB · ŷAA) (ẑAB · ẑAA)

 (A.4)

It is easy to show that this matrix is orthogonal. Since the basis vectors in each reference
frame must be orthonormal, and each row is the projection of one of these vectors, then the
elements of RTR will be the dot products of each row with every other row, which leads to
the identity matrix.

It is also easy to show that this matrix has determinant 1. The determinant of a 3 × 3
matrix can be found via the vector triple product: det(R) = ~c1 · (~c2 × ~c3), where ~ci are the
column vectors of R. Since ~ci are orthonormal, ~c2 × ~c3 must be a multiple µ of ~c1, where
µ > 0 because ~ci form a right handed coordinate system. Then:

µ|~c1| = |~c2 × ~c3|
µ|~c1| = |~c2||~c3|sin(θ23)

µ = 1

In this case, θ23 = π
2

since ~ci form a right hand coordinate system, and the magnitude of
~ci is 1 since they are unit vectors. Since µ = 1, the determinant is also 1. Since the direction
cosine matrix obeys the three conditions required for a rotation matrix, it must be a rotation
matrix.

In summary, there are many different ways to build rotation matrices. The two most
important ones are using Euler angles, and direction cosine matrices. Rotataion matrices
are used often in applications mainly due to their ease of composition and application.
Composing two rotations is as easy as matrix-matrix multiplication, while applying a rotation
to a vector is matrix-vector multiplication. The main drawback is their size, relative to some
of the other representations that are available, and that they can be hard to interpret.
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A.1.2 Rotation Vectors

Rotation vectors are not as popular as rotation matrices, but they have some advantages.
The easiest way to describe what a rotation vector is, is to go back to rotation matrices.

A rotation matrix will always have only one +1 eigenvalue. This eigenvalue corresponds
to the eigenvector that is not changed at all by the rotation matrix. Intuitively, this vector
must lie along the axis of rotation. The other two eigenvalues will be complex conjugates
encoding the magnitude of the rotation, e±iθ. This means that the magnitude of rotation
can be found through the trace by:

Tr(R) = 1 + eiθ + e−iθ

Tr(R) = 1 + 2 cos(θ)

θ = arccos

(
Tr(R)− 1

2

)
Given the axis of rotation (three numbers) and the magnitude of the rotation is enough

to reconstruct any arbitrary rotation. Often, the magnitude of the rotation is encoded in
the length of the rotation axis vector. This is known as a rotation vector.

To apply a rotation using a rotation vector it is useful to decompose it into a unit vector,
k̂, and magnitude, θ. Then Rodrigues’ rotation formula can be applied to any vector ~v ∈ R3.

~vrot = ~v cos(θ) + (k̂ × ~v) sin(θ) + (k̂ · ~v) (1− cos(θ)) k̂ (A.5)

However, the mapping is not unique. Any rotation (k̂, θ) can also be achieved by (k̂, n ·θ)
or by (−k̂, n · (2π− θ)) for integer n. For this reason, most people constrain rotation vectors
such that θ ∈ (0, π].

There are two advantages in using rotation vectors, they occupy the smallest space pos-
sible, and they are the easiest formalism to visualize at a glance. Using only three floats it
stores the same information a rotation matrix would store in nine. If the axis direction and
the magnitude are kept separate, it is also easier to visualize what the rotation would do to
a vector it is being applied on. The biggest disadvantage is that it is not easy to compose
two rotations together. As a result, rotation vectors were mostly used for storage during
the course of the work presented here. The space savings are not necessarily significant,
1.44MB in rotation matrices versus 480KB in rotation vectors over forty thousand grasps,
but this coupled with the ability to quickly tell what a rotation is supposed to look like made
troubleshooting and understanding the dataset much easier.

A.1.3 Rotation Quaternions

Rotation quaternions are another way of mathematically encoding rotations. Quaternions
can be seen as an extension of complex numbers. They correspond then to four different
kinds of objects: scalars, i, j, k. The latter three obey the following relationship.

i2 = j2 = k2 = ijk = −1 (A.6)
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A general quaternion is then of the form q = a + bi + cj + dk for a, b, c, d ∈ R. Adding
quaternions follows the same rules as regular addition, while multiplication must obey equa-
tion A.6 and is non-commutative. Conjugate quaternions can be calculated by analogy to
the complex case, that is flipping the sign on the non-scalar components. The norm of a
quaternion can also be found by analogy to the complex case as ||q|| =

√
qq∗.

All quaternions of unit length represent a rotation in R3, which is why they are sometimes
called rotation quaternions. There are many different proofs for how to build a mapping from
unit quaternions to SO(3) and many more proofs explaining the construction of rotation
quaternions, but for the sake of brevity only a mechanistic explanation is given here. For
more details see [18], [1].

To specify a rotation, a rotation axis (û) and a magnitude (θ) are needed. Given both of
those, a rotation quaternion can be built in the following way:

q = cos

(
θ

2

)
+ sin

(
θ

2

)
û (A.7)

û = u1i + u2j + u3k (A.8)

It is important to remember at this point that i, j,k are still the complex numbers defined
above and not cartesian unit vectors. To apply a rotation to a vector ~v, first one must convert
the vector to a pure quaternion ~v = 0+v1i+v2j+v3k and then apply the following equation.

~vrot = q~vq∗ (A.9)

The resulting rotated vector will also be a pure quaternion. Special care must be taken to
follow the commutator relations since the quaternion multiplication is not commutative. To
compose two different rotations, all that must be done is to multiply the two rotation quater-
nions together. Again since quaternions are not commutative, the order of multiplication
matters.

From the description of how to accomplish rotations with quaternions it should be obvious
that they suffer from the same mapping problems as the rotation vectors, that is for every
rotation there are an infinite number of ways to encode them. For that reason rotation
quaternions generally are restricted to θ ∈ [0, π).

Rotation quaternions are usually taken to be the gold standard for rotations. They are
easy to apply to arbitary vectors by multiplication and can also be easily composed in the
same way. Unlike rotation matrices they only require four numbers to represent a rotation as
opposed to nine. Even though this is one more than rotation vectors, it is still quite efficient
and is a decent trade-off for how easy they are to apply. The main disadvantges to rotation
quaterions are how involved understanding the concepts can get, and that it is not easy to
visualize what rotation any individual rotation quaternion represents.

A.2 Homogenous Transformations Matrices

Throughout the course of this work there is a requirement to interpret vectors recorded in
one reference frame with respect to a different reference frame. The two reference frames
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might differ in both the orientation of their axes, and the location of their origins. It is
possible to perform the change of frame using the following equation:

~p1 = ~o10 +R1
0~p

0 (A.10)

In this equation, ~pi is used to denote the vector ~p with respect to reference frame i, ~o10
is the vector that goes from the origin of reference frame 0 to reference frame 1, and R1

0

is the rotation matrix that takes a vector from the orientation of reference frame 0 to the
orientation of reference frame 1. So in this equation, first the vector in reference frame 0 is
rotated so that its orientation is consistent with frame 1, then the vector is translated so that
its origin is consistent with frame 1. If multiple such transformations need to be completed,
this equation is easily composed but becomes messy. It is possible to encode all the relevant
information required for this transformation in a 4× 4 matrix [50].

H =


r11 r12 r13 o1
r21 r22 r23 o2
r31 r32 r33 o3
0 0 0 1

 =

(
R3×3 ~o3×1
~01×3 1

)
(A.11)

This method requires augmenting vectors to homogenous coordinates. Homogenous co-
ordinates are used throughout computer vision and robotics. The easiest way to transform
a vector to homogenous coordinates is to add an extra unit element. That is, ~v = [a b c]T be-
comes ~v = [a b c 1]T . By augmenting input vectors to homogenous coordinates, it is possible
to use the matrix in A.11 to perform the coordinate transformation. The resulting vector
will also be in homogenous coordinates, but it is easy to return to R3 by dividing the first
three elements of the vector by the fourth and then discarding the last element.

The inverse transformation is easy to find by inverting equation A.10. The equivalent
homogenous matrix can then be read from the equation.

~p0 = −(R1
0)
T~o10 + (R1

0)
T~p1 (A.12)

H−1 =

(
(R3x3)

T −(R3x3)
T~o3x1

~01x3 1

)
(A.13)

The final element required is the ability to compose coordinate transformations. This
can easily be done through matrix multiplication. Let there be 3 reference frames A, B, and
C. Analogously to the rotation matrices, let HA

B be the homogenous transformation matrix
that takes a vector from frame B to frame A. Then let HA

C be the matrix that takes a vector
from frame C to frame A. If these are the only two matrices available, then it is still possible
to find HB

C by first going through frame A:

HB
C = (HA

B )−1HA
C (A.14)

This composition rule can be extended to as many homegenous matrices as are needed.
Homogenous transformation matrices form the backbone of most of the math undertaken

during this project. The ability to change the persperctive through which a vector is seen
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is incredibly important, especially as it pertains to identifying the pose of the robotic grip-
per with respect to the various cameras used throughout the project. The most important
concepts to take forward from this section are the facts that constructing these matrices re-
quires knowledge of location and orientation of frames relative to each other, finding inverses
is relatively straightforward, and that composition is as simple as matrix multiplication.

A.3 Deep Learning

After Alex Krizhevsky’s team won ImageNet’s Large Scale Visual Recognition Challenge in
2012 using deep convolutional nerual networks, reasearch on these techniques has greatly in-
creased. Deep neural networks promise that by non-linearly combining simple stages (depth)
task relevant information can be more easily extracted.

This subsection will serve as a primer and refresher of important topics in deep learning.
It will not cover all topics however. In recent years Goodfellow et al. co-authored a compre-
hensive textbook introduction to the field [19]. This book is an excellent resource to delve
into some of the details that will be skipped here.

For the purposes of the grasping project presented here, a brief discussion on multi-
layer perceptrons and hyperparameters will be followed by summaries on convoltional neural
networks and residual networks.

A.3.1 Multi-layer Perceptron

A perceptron is the first kind of neural network envisioned. This network only had two
layers: an input layer and an output layer. Traditionally, perceptrons are used as binary
classifiers, and importantly they represent a class of linear classifiers.

Implementing a perceptron is easy using matrix-vector multiplication. Let W represent
the weight matrix, i.e. the connections between the input and output nodes. This means
that W is size n×m where n is the output size, and m is the input size. Without too much
effort it is also possible to add a bias term, ~b. This term adds an extra degree of freedom
that is often useful to classify data. The full peceptron equation is then:

o = W~v + b (A.15)

The learning occurs by correcting the weight matrix based on the error observed at the
output. This is done by measuring the performance of the model using a loss function, and
then shifting the weights in the direction that will minimize the loss function. For binary
classification problems, binary cross entropy is usually the loss function that is used.

BCE(t, o) =

{
− log(1− o) if t = 0

− log(o) otherwise
(A.16)

= −(1− t) log(1− o)− t log(o) (A.17)
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Where t ∈ {0, 1} is the target value, and o is the perceptron output. The second equation
above is merely a clever way to write an if-statement since t is a binary value. The overall

loss function is then
∑
i

BCE(ti, oi).

The linearity condition means that this correction is easy to carry out computationally
with a bit of vector calculus. However, the linearity condition means that non-linear tasks
are intractable. The most famous example of this is the XOR problem [19].

The multi-layer perceptron (MLP) is the extension to the perceptron to deal with non-
linear problems. Under this formulation a number of hidden layers are added between the
input and output layers. The term hidden comes from the fact that the outputs of these
layers are not observed, and are therefore hidden from view. It is not enough to just add
more layers, since computationally this would just collapse to the same matrix that would
be formed with a perceptron. To make the MLP non-linear, a non-linear function is added
after each layer. Importantly the non-linear function needs to be continous, and its first
derivative needs to be at least piece-wise continous so that the correction to the weights can
be calculated using vector calculus.

The actual correction is calculated using the backpropagation algorithm. The algorithm
uses automatic differentiation and differential calculus’ chain-rule to recursively calculate the
derivative of the error with respect to each of the weights. Details about how this algorithm
can be implemented can be found in [19].

Research into what kinds of features MLPs learn in their hidden layers is ongoing. A
decent intuition to carry forward is that the hidden layers non-linearly extract or combine
features to build representations that can then be linearly classified by the weights connecting
the last hidden layer to the output layer [43]. Manipulating the architecture of the network,
by changing the number of layers, the size of the layers or even the connections between
layers, can affect the kind and the effectiveness of the representations learned in the hidden
layers.

Another way to affect the representations learned by the MLP is to manipulate the cost
function to reward or penalize different aspects of the network. An example of such a change
is to add an L2 penalty on the size of the weights in the MLP. Such a penalty encourages the
network to learn representations that give less weight to uncommon features in the training
data [19].

A.3.2 Convolutional Neural Networks

Convolutional neural networks [31] (CNNs) are a special network architecture inspired by
the primate visual network to deal with computer vision tasks. Convolutional layers are
inspired by neurons in the V1 area of macaque monkeys. Neurons in this area react to
particular visual features in the visual (receptive) field of the monkey. Importantly, even
though different neurons cover different receptive fields, some of the neurons look for the
same visual features, just in different parts of the visual field.

Convolutional layers (conv layers) aim to learn useful visual features as two dimensional
filters that can be applied across the entire image. Like the neurons in the macaque visual
system, only a small set of filters need to be learned at each layer. Composing convolutional
layers means that the network can learn filters that build on top of more basic filters. In
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this way, adding depth to a CNN can lead to a complex feature detector.
Traditionally, a convolutional layer is followed by a max pooling layer. These layers use

small receptive fields, and reduce the size of the feature maps by only passing through the
maximum value in the receptive field. The most common operation is to apply a 2× 2 max
pooling filter which would reduce the dimension of the feature maps by a factor of 2 in both
height and width. These layers are also inspired by the primate visual stream. The neuron
spikes generated by simple cells in V1 are received by complex cells and are pooled by them
to make complex cells invariant to phase-shifts. These complex cells then provide (along
with the simple cells) inputs for later layers.

Finally, after stacking a set number of conv and max-pool layers, a dense set of con-
nections are used to make a prediction. This dense set of connections is merely a set of
fully connected hidden layers like those found in an MLP. A useful way to think about this
architecture is to think that the convolutional and max pooling layers act as effecient fea-
ture extractors that feed useful features into an MLP. Importantly, the features are chosen
to minimize the cost function and are not decided a priori, which means that network can
freely chose whatever features are most useful for the task at hand.

CNN architectures have proven to be incredibly efficient computer vision tools. Starting
with AlexNet [30] in 2012, CNN architectures and their variants have consistently been
pushing state of the art performance in various benchmarks. One particular variant used in
this work the extension from two dimensional inputs to three dimensional inputs. In this
case, the conv layer learns 3D filters (volumes) instead of 2D filters. Since the input is also
three dimensional, the 3D filters can be applied in an analogous manner to the 2D case. This
allows CNNs to be used in a wider set of fields than just image processing.

A.3.3 Residual Networks

Residual networks [22] (resnets) are another kind of network architecture. Residual networks
are characterized for their use of skip or residual connections. These are connections between
layers that skip one or more layers and are combined with the next layer through addition of
features. Skip connections are used to combat a common problem in neural networks known
as vanishing gradients.

Vanishing gradients tend to occur when networks are made to ‘be very deep. When a
network is very deep, and the weights are randomly initialized, it is not clear what kind
of low level features should be learned in the early layers of the network. As a result,
these networks train very slowly, if at all. Mathematically, what is occurring is that the
backpropagation algorithm assigns weight changes depending on the gradient of the loss
function with respect to each individual weight. As the algorithm progresses recursively it
is possible for the gradient with respect to early layers to have been multiplied by small
magnitude values repeatedly to the point that the gradient “vanishes”. Since the gradients
are so small, the network has a hard time training.

Skip connections help solve this problem by making a short path through which gradients
can flow and help update early network layers. Another way to interpret skip connections is
to realize that they can be seen as successive approximations from the input to the output.
Residual networks have been shown to train even when they are very deep, hundreds to
thousands of layers deep. The added depth allows for more complicated features to be
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learned. Combining convolutional layers with residual connections leads to high performing
neural networks for solving computer vision tasks.

A.3.4 Other Layers

There are many other kinds of specialized layers that are used throughout the literature.
Presented here are ones that were used during the course of the project.

The BatchNorm layer [26] is a special layer used to correct internal covariance shift.
During training, the distribution of activations for each hidden layer changes as the weights
are updated. These shifts in the distribution of activations can make it harder for subsequent
layers to train until the representations in the earlier layers start to stabilize. A BatchNorm
layer normalizes the mean and variance of the distribution, and can also learn to scale and
shift the distribution so that the new mean and variance helps subsequent layers in the
network solve its task. Ioffe and Szegedy [26] demonstrate that using BatchNorm allows
them to safely increase the learning rate of their networks leading to much faster training.
In our work, we follow what is now a standard and add BatchNorm after every layer, unless
we are using a Dropout layer.

A Dropout [53] layer is a stochastic regularization technique that randomly drops some of
the nodes from the previous layer, by setting all their outputs to zero. The intuition behind
this is to force the network to distribute its representations across the network since any
one node might be lost at any time during training. Mathematically, Srivastava et al. claim
that this is equivalent to approximating training exponentially many thin subnetworks and
then combining their outputs at test time. The ratio of dropped nodes is set as a parameter
of the network, p, with a typical value of 0.5. Recently, Li et al. [33] have explored the
incompatabilities between Dropout and BatchNorm. In general, it is not recommended to
mix both layers as Dropout will stochastically change the variance of the mini-batch, which
as BatchNorm learns to correct during training leads to worse performance at test time. In
our work, if BatchNorm is not being used, Dropout is used instead.

A.3.5 Hyperparameters

Finally there are a series of hyperparameters that need to be set or chosen while training
neural networks. There are many hyperparamters that can be set, but for the purposes of
this work, only a few are presented here.

The first hyperparameter usually introduced is the networks learning rate. The learning
rate is the fraction of the correction from the gradient of the loss function, L, that will be
applied to the weights when they are updated. The general update equation is given as:

wnew = wold − η
∂L

∂wold
(A.18)

In this equation η is known as the learning rate, which is in R+, though usually values
in the range of 10−6 to 10−3 are used. The choice of the learning rate is important because
it effectively provides a trade-off between speed of training and accuracy of inference. A low
learning rate will take longer to train, as the network has to take more steps to get to a
minimum, but it might reach a lower minimum than a higher learning rate. Low learning
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rates might also more easily get stuck in gradient plateaus leading to long periods of almost
no improvement. A high learning rate might take steps that are too big and never converge
to a reasonable minimum. Tuning the learning rate for the particular architecture and task
is an important step for training a neural network.

The next step would be to choose the kind of optimizer to be used. The classical optimizer
to use is stochastic gradient descent (SGD), other optimizers tend to be modifications on top
of SGD. SGD proceeds by first approximating the gradient with respect to the weights using
a random sample from the training set and then using that sample to correct the weights
(minimize the loss). Over time the entire traning set is sampled and then the process starts
again. This algorithm is easy to implement and is also surprinsingly robust. It does require a
bit more fine tuning; choosing the right learning rate becomes really important. A common
addition to SGD is momentum [45]. This is an extra term to the update rule, with a
corresponding parameter in (0, 1], that keeps track of which direction past corrections to the
weights were made in. This exponentially decaying memory allows the network to quickly
move through gradient plateaus, or shallow local minima.

A more modern optimizer would be Adam [29]. Adam is built on top of stochastic
gradient descent adding a per weight learning rate and updating these learning rates based
on the magnitude of previous gradient approximations. This means that the network as
a whole trains much faster as weights that need to change by a large amount will have
higher learning rates than ones that only need a small correction. There is still a learning
hyperparameter to set with Adam, which chooses the starting magnitude that is effectively
changed as the optimization progresses. Adam adds two other parameters though: β1 and
β2. β1 is used to set the exponential decay on the approximation of the mean of the gradients,
while β2 sets the exponential decay for variance of the gradients. These two parameters are
sensitive to small changes, and it is in general recommended to use the default values in
most deep learning packages (β1 = 0.9, β2 = 0.999).

Regularizers are a common tool in machine learning. In the context of neural networks
regularizers are implemented by adding an extra term to the loss function penalizing un-
wanted behaviours [19]. The most common kind of regularizer is applying an L2 norm
penalty to the magnitude of the weights. This encourgaes the network to avoid overfitting
by using all the parameters more efficiently. Another common weight based penalty is the
L1 norm which encourages some of the weights to go to zero (sparsity). Both of these can be
applied across the whole network or on specific layers. Regularizers can also be applied to
the hidden layer activations. To control the strength of the regularizer, new hyperparameters
are added to multiply with the penalties. Typical values are around 10−4 to 10−2.

The final hyperparameter in this section will be the clipping ceiling. As a result of the
weight update rule, it is possible for situations to occur where the optimizer can be stuck due
to taking steps that are too large [19]. The classical example is encoutering a gradient cliff. In
this situation a plateau in gradient space is followed by a steep change in the gradient. Since
the weight correction is based on the magnitude of the gradient, sometimes the gradient cliff
will push the weights to over-correct and undo some of the progress that has already been
made. Lowering the learning rate does not in general fix this issue since the cliffs could be
very steep and it is not known beforehand how steep they might be. Additionally, lowering
the learning rate slows learning as a whole. The solution is to clip weight corrections above
a certain value, i.e. to clip the gradients. If the gradients behave nicely, the clipping will
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not be triggered, but if the gradient is too large then it will be replaced with a predefined
value and hopefully not undo some of the training. Clipping is not usually necessary, but an
easy way to tell if it is needed is to look at the values of the gradients as the network trains.
Alternatively, seeing spikes in the training loss is another sign that cliffs might be present.
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Appendix B

Objects Used for Grasping

Object Number Object Name Object Image

1 120mmFan

2 aluminumFoot

3 arduinoBox

4 baseball

5 batteryPack
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Object Number Object Name Object Image

6 blackFlashlight

7 blackboarderaser

8 blueJug

9 blueLid

10 blueSpool

11 blueTape

12 blueduploarch

13 carpetTape
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Object Number Object Name Object Image

14 casterBag

15 chipsCan

16 clamp

17 creativeBox

18 cylindricalSpacer

19 dLinkBox

20 duploCart

21 duploEye
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Object Number Object Name Object Image

22 emptySpool

23 evenMetalShape

24 evenPlasticShape

25 eyeBox

26 flashlight

27 foamBrick

28 foamCorner

29 glueStick
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Object Number Object Name Object Image

30 goPro

31 goProRemote

32 golfBall

33 gripTape

34 headphoneCase

35 innerFanTube

36 kleenexBox

37 labjack
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Object Number Object Name Object Image

38 largeBlueCup

39 largeOrangeCup

40 largeScrewTray

41 largeYellowBox

42 laserBox

43 masterChefCan

44 measuringTape

45 medRedBox
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Object Number Object Name Object Image

46 mediumTimmies

47 mustardBottle

48 myo

49 myoCase

50 orangeBox

51 outerFanTube

52 pipetteBulb

53 plasticApple
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Object Number Object Name Object Image

54 plasticBanana

55 plasticBox

56 plasticLemon

57 plasticOrange

58 plasticPeach

59 plasticPear

60 plasticPlaneBody

61 plasticPlaneWheels
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Object Number Object Name Object Image

62 plasticPlum

63 plasticRedCup

64 plasticSleeve

65 plasticSpiral

66 plasticStrawberry

67 puddingBox

68 purpleCup

69 purpleDuploArch
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Object Number Object Name Object Image

70 racquetBall

71 redBowl

72 redCup

73 redJelloBox

74 rubberDucky

75 rubikBox

76 rubiksCube

77 scotchTape

87



Object Number Object Name Object Image

78 screwBox

79 screwTray

80 smallBlueCup

81 smallGreenCup

82 smallOrangeCup

83 smallPyrex

84 soccerBall

85 sodaCan
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Object Number Object Name Object Image

86 softScrub

87 softball

88 solder

89 soupCan

90 spam

91 squareContainer

92 stapler

93 sugarBox
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Object Number Object Name Object Image

94 tabletBox

95 tallPlasticTube

96 tennisBall

97 threadlock

98 timmiesCup

99 toyDrill

100 tunaCan

101 usbDock
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Object Number Object Name Object Image

102 waterBottle

103 whiteBox

104 wineGlass

105 woodBlock

106 woodEvenShape

107 woodHandle

108 yellowBox

109 zedBox
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