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Abstract

Restarts are a widely used class of techniques integral to the efficiency of Conflict-Driven
Clause Learning (CDCL) SAT solvers. While the utility of such policies has been well-
established empirically, to-date we still lack a deep theoretical understanding of why restart
policies are crucial to the power of CDCL SAT solvers.

This thesis first presents studies on three classes of formulas which were conjectured
to be able to exponentially separate a solver configuration S with restarts and S with no
restarts. However we were able to prove that these candidates classes of formulas are not
even sufficient to super-polynomially separate the two solver configurations.

We then provide a series of results that theoretically provide evidences for establishing
the power of restarts for various models of Boolean SAT solvers. More precisely, we make
the following contributions. First, we introduce a new class of satisfiable instances called
Laddern and use it to construct another formula FT , and prove that for the drunk random-
ized DPLL SAT solver D (introduced by Alekhnovich and Razborov), the configuration D
with restarts can solve Laddern formulas in sub-exponential time in size of Laddern, while
D without restarts requires exponential time in the size of Laddern, with high probabil-
ity. Two crucial insights enabled us to prove this separation result for restarts: first, we
changed the focus from unsatisfiable instances to satisfiable ones; second, we observed that,
at least for the models we considered, restart heuristics add proof-theoretic or algorithmic
power by compensating for the weaknesses in some other important heuristic like value
selection. Second, we introduce a key new notion used in above-mentioned proofs, called
Decision Complexity dc(ϕ), for DPLL proofs of an unsatisfiable formula ϕ and show that
size of DPLL proofs of ϕ are lower bounded by 2dc(ϕ).
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Chapter 1

Introduction

Boolean SAT solvers have been dominant tools used across variety of domains in computer
science and software engineering. Researchers and practitioners encode problems they are
interested in into Boolean formulas, and try to solve them using a SAT solver. Even
though the SAT problem is NP-complete [11], modern Conflict-Driven Clause Learning
(CDCL) SAT solvers [25, 26] have proven to be extremely successful and can solve industrial
instances with millions of variables.

While most of the work in the field of SAT solvers has been focused on improving
the efficiency of solvers from an empirical point of view, there have also been significant
advances in understanding SAT solvers from a proof complexity-theoretic point of view.
For instance, in their seminal paper, Pipatsrisawat and Darwiche [30] proved that CDCL
SAT solvers with non-deterministic variable and value selection, and with restarts (as well
as asserting clause learning schemes) are polynomially equivalent to general resolution.
Around the same time, Atserias et al. independently showed that CDCL SAT solvers with
sufficient randomness in branching and restarts can polynomially simulate bounded-width
resolution with high probability [3]. However, it remains unknown if these polynomial
equivalence results still hold when restarts are disabled.

More generally, despite considerable effort for nearly two decades, we still do not have
a complete picture of why restarts are so crucial to the efficiency of CDCL SAT solvers.
Recently, Bonet, Buss and Johannsen [9] showed that CDCL SAT solvers with no restart
(but with non-deterministic variable and value selection) are strictly more powerful than
regular resolution, and they also refuted several candidate class of formulas which were
conjectured to be separators for restarts. This is a strong result, given the well-known
theorem of Alekhnovich that regular resolution is strictly weaker than general resolution
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[2].

In this thesis, we address the question of the power of restarts in both the DPLL
[14, 13] and CDCL SAT solver settings. Specifically, we present three results on the power
of restarts: First, we proved that three classes of formulas which were conjectured to be
separators for exponentially separating models of CDCL SAT solver with non-deterministic
dynamic variable and value selection with and without restart are not sufficient to even su-
perpolynomially separate the two. Second, we introduce a new class of satisfiable instances
called Laddern and use it to prove that for the drunk randomized DPLL SAT solver model
(DND RD) introduced by Alekhnovich and Razborov [1], the configuration of DND RD with
restarts can solve Laddern formulas in sub-exponential time in size of Laddern, while the
configuration of DND RD without restarts requires time exponential in the size of Laddern,
with high probability (w.h.p.). Finally, we show that models of CDCL SAT solvers with
non-deterministic static variable and value selection, and with restarts are no more power-
ful from a proof-complexity theoretic point of view than the same configurations without
restarts.

As we studied this problem in depth, we made the following observation about restarts,
namely, that there seems to be a subtle interplay between various solver heuristics and
restarts, wherein the power of restarts becomes apparent only when one or more impor-
tant heuristics (e.g., variable or value selection) are weakened (e.g., solver configurations
where non-deterministic value or variable selection heuristics are replaced by their weaker
randomized cousins). Another observation we made was that all previous theoretical work
on the power of restarts seems to have focused on treating solvers as proof systems, i.e., on
unsatisfiable instances only. For one of our result, we show that one can separate certain
solver configurations with and without restarts, if we change our perspective from unsat-
isfiable to satisfiable instances (see Section 4.4). All our results hold irrespective of the
computational overhead of the various heuristics considered in this thesis.

Contribution

1. First, we prove that three classes of formulas which were conjectured to be able to
exponentially separate CDCL SAT solvers with non-deterministic variable selection,
value selection and restart from the same solver without restart are not sufficient to
even superpolynomially separate the two solver configurations. (See Chapter 3 for
details.)

2. Second, we show that CDCL SAT solvers with non-deterministic static variable se-
lection, non-deterministic static value selection, and with restarts, are polynomially
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equivalent to the same model but without restarts. In fact, our result is stronger,
in that, both configurations produce the exact same proof for the same unsatisfiable
input formula. Further, their runs are identical for satisfiable instances as well. Fi-
nally, the result holds irrespective of the choice of learning scheme. (See Section 4.1
for details.)

3. Third, we introduce the notion of decision complexity of an unsatisfiable formula ϕ,
and prove that the size of any DPLL proof for ϕ is lower bounded by 2dc(ϕ). We use
this result to prove the separation result mentioned below. Additionally, we believe
that this lower bound theorem is of independent interest to the proof complexity
theory community (See Section 4.2 for details.)

4. Finally, we prove that DPLL SAT solvers with non-deterministic variable selection,
arbitrary value selection, and with restarts are polynomially equivalent to DPLL SAT
solvers with the same configuration but with no restarts. (In fact, this result is not
surprising at all.) However, very surprisingly, when we shift our focus to satisfiable
instances we are able to prove a separation. More precisely, we prove that DPLL
SAT solvers with non-deterministic variable selection, restarts, and randomized value
selection are exponentially faster than the same model, but without restarts, with
high probability. To prove this result we introduce a class of formulas we refer
to as Laddern formulas, which we believe are of independent interest to the proof
complexity theory community. (See Sections 4.3 and 4.4 for details.)
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Chapter 2

Background

In this chapter, we present definitions and concepts which we use for the rest of the thesis.

2.1 SAT Solving

CDCL SAT solvers can be viewed as extensions of DPLL SAT solvers. Both DPLL SAT
solvers and CDCL SAT solvers are backtracking based algorithms with a handful of key
components. At its core, DPLL SAT solvers relies on the following components: variable
selection, value selection, Boolean constraint propagation(BCP) and restart. On the other
hand, on top of all the key components that are also in DPLL SAT solvers, CDCL SAT
solvers has one more essential component called conflict analysis which gives CDCL SAT
solvers exponential speedup comparing to DPLL SAT solvers. On a high level, conflict
analysis analyzes why certain partial assignments are not satisfying, and produces so called
learnt clauses which are later added to the input formula to help speed up the search. In
this section, we describe how DPLL and CDCL SAT solver works including input format,
heuristics and how does a solver search for satisfying assignments.

2.1.1 Preliminary

A typical SAT solver takes input a Boolean formula in conjunctive normal form(CNF). In
order to define what CNF is, we start by presenting notions needed to define a formula.

A Boolean variable used to define a formula is a variable that can take either the value
true (or >) or the value false (or ⊥). A literal is defined to be either a variable x or its
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negation ¬x. A clause is a disjunction of literals, and we say a clause c has width w if c
contains w literals. A CNF formula is a conjunction of clauses. And the size of a formula
is the number of clauses in it.

Consider a CNF formula ϕ. An assignment p is a map from variables in ϕ to truth
values. We say p is empty if p is an empty map. We say p is complete if p maps all variables
in p to truth values, and we say p is partial if p does not map some of the variables in ϕ
to truth values. (We sometimes use the term “assign” instead of “map”.) A clause c is
satisfied under a partial assignment p if p assigns some literal in C to >. And c is falsified
under p if p assigns every literal in C to ⊥, we also say c is conflicting. And we say C is
unit under p if p assigns all but one literal in C to ⊥.

Restriction: We use F [x] to denote the restricted (or simplified) formula of F after the
variable x is set to >, and similarly, we use F [¬x] to denote the restricted formula of F
after the variable x is set to ⊥.

2.1.2 DPLL SAT solvers

On a high level, a DPLL solver S starts with an empty assignment p, and then picks a
variable x using variable selection function and assigns it a value using value selection
function, and we say such x is a decision variable. After adding the assignment to the
variable to the empty assignment p, S performs BCP and then checks if any clause is
falsified under p, and we call the variables that are added during the BCP subroutine
propagated variables. If there is such a clause, the solver backtracks and re-assigns x to the
opposite value (and now the variable x becomes a propagated variable), and then updates
p and recursively calls itself with ϕp. If there is no conflicting clause under p, the solver
picks another variable and assigns it a value, and then adds it to p and recursively calls
itself with ϕ[p]. We first describe the key components in a DPLL SAT solver and then
present the pseudocode of the DPLL SAT solving algorithm in Algortihm 1.

Variable selection: Variable selection function takes input the state of the solver and
outputs a variable that has not been assigned a value.

Value selection: Value selection function takes input the state of the solver and a vari-
able, then outputs a truth value.
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Algorithm 1 The DPLL SAT Solving Algorithm

1: function DPLL(φ, µ)
2: Input: A CNF formula ϕ, and an assignment p
3: Output: true (SAT) or false (UNSAT)
4:

5: bcp ret = BCP(ϕ,p);
6: if (bcp ret == CONFLICT) then . If top-level conflict, return UNSAT
7: dpll ret = false;
8: else
9: if (All variables have been assigned) then . If solution found, return SAT

10: dpll ret = true;
11: else (Select decision variable x) . Select an unassigned variable x using

variable selection function
12: dpll ret = (DPLL(ϕ, p ∪ valueselection(x))
13: || DPLL(ϕ, p ∪ ¬valueselection(x))); . Recurse DPLL
14: end if
15: end if
16: return dpll ret;
17: end function

Boolean constraint propagation(BCP): BCP is a key component in both DPLL and
CDCL SAT solvers, and it is believed to be the main workhorse for both DPLL and CDCL
SAT solvers. The BCP function takes input a partial assignment p and a CNF formula
ϕ, if ϕ has a unit clause under p, BCP propagates the unit literal l to > and adds it
to the partial assignment and extends p. We say BCP is formed till “saturation” if the
BCP function then recursively invoke BCP with input the extended assignment p and the
formula ϕ.

2.1.3 CDCL SAT solvers

CDCL SAT solvers are extension of DPLL SAT solvers. CDCL SAT solvers kept all the
key components in DPLL SAT solvers, but CDCL SAT solvers have an extra component,
conflict analysis, which is crucial to the solvers’ success. Similar to DPLL SAT solvers,
CDCL SAT solvers take input CNF formulas, and start the search by simplifying the
formula using BCP. And then generates a decision variable and assign it a value using value
selection. And lastly recursively calls itself with a updated partial assignment. However,
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upon detecting a conflict, CDCL SAT solvers do not simply backtrack the last decision
variable, but instead analyze which literals on the current partial assignment contributed
to the conflict using conflict analysis. By producing a learnt clause which asserts that the
solver should not make the same mistake again, CDCL SAT solver then add the learnt
clause to the formula. The pseudocode of the DPLL SAT solving algorithm is presented
in Algortihm 2.

2.1.4 Solvers as Proof Systems

All results in this thesis relies on the connection between solvers and proof systems. We are
not the first ones to study solvers as proof systems. For instance, in their seminal paper,
Knot Pipatsrisawat and Adnan Darwiche [30] proved that CDCL SAT solvers with non-
deterministic variable and value selection, and with restarts (as well as asserting clause
learning schemes) are polynomially equivalent to general resolution. Around the same
time, Albert Atserias, Johannes Klaus Fichte and Marc Thurley independently showed that
CDCL SAT solvers with sufficient randomness in branching and restarts can polynomially
simulate bounded-width resolution with high probability [3]. However, it remains unknown
if these polynomial equivalence results still hold when restarts are disabled.

Just like solvers, proof systems can be viewed as blackboxes to solve the SAT problem.
A propositional proof system takes input a Boolean formula, and produces proofs that
certify the satisfiability of the formula. And proof complexity is the field of studying
the complexity of the size of the proofs generated by a proof system. Fortunately, in
proof complexity research literature, researchers have developed tools which are used for
comparing the power of proof systems. Please find details about proof systems and proof
complexity in Section 2.2.

At its core, proof complexity is about studying the complexity of proof systems, and
comparing the power of different proof systems. Researchers do so by either establishing
so called p-equivalence between proof systems to show two proof systems are as powerful,
or prove a separation in the power of proof systems by showing the existence of a class of
formulas for which one proof system can produce short proofs where the other solver can
only produce large proofs.

2.1.5 SAT solver configurations

To leverage the tools and method used in proof complexity, we first have to first define a
solver model mathematically, and we can then think solvers as proof systems.
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Variable and Value selection We first present notations we use to characterize different
variable and value selection functions.

1. Non-deterministic Static (NS) Variable Selection Heuristic: A non-deterministic
algorithm that takes as input a formula, and outputs a total ordering (or ranking)
of all variables of the input formula prior to solver’s execution. During the solver’s
execution, the NS variable selection heuristic returns the unassigned variable with
the highest rank in this total ordering.

2. Non-deterministic Dynamic (ND) Variable Selection Heuristic: A non-
deterministic algorithm that, upon invocation, outputs an unassigned variable during
the run of the solver.

3. Non-deterministic Static (NS) Value Selection Heuristic1: A non-deterministic
algorithm that takes as input a formula and outputs a map from variables of the in-
put formula to truth values, prior to the solver’s execution. During the run of the
solver, the NS value selection algorithm takes as input a variable, and returns its
predetermined value.

4. Random Dynamic (RD) Value Selection Heuristic: A randomized algorithm
takes as input a variable of the input formula and assigns it a truth value uniformly
and independently (i.e., independent of any other invocation of the heuristic) at
random.

Notation for SAT Solver Configurations. Below we present notation that is used to
describe configurations of SAT solvers that we study in this paper:

1. Solver Configurations CNS NS and CR
NS NS: By CNS NS we denote CDCL SAT

solvers with non-deterministic static variable selection and value selection with no
restarts, and by CR

NS NS we denote the same configuration with restarts. (Used in
Section 4.1)

2. Solver Configurations DND arbitrary and DR
ND arbitrary: By the term arbitrary we

mean that the value selection heuristic can be any algorithm whatsoever, that take
as input a variable of the input formula, and output a truth value. By DND arbitrary

we denote DPLL SAT solvers with non-deterministic dynamic variable selection and

1While we use the same abbreviation NS for both non-deterministic variable and value selection, we do
not anticipate any confusion since it will be very clear from context which heuristic is being referred to.
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arbitrary value selection without restarts, and by DR
ND arbitrary we denote the same

configuration with restarts. (Used in Section 4.4)

3. Solver Configurations DND ND and DR
ND ND: By DND ND we denote DPLL SAT

solvers with non-deterministic dynamic variable selection and value selection without
restarts, and by DR

ND ND we denote the same configuration with restarts. (Used in
Section 4.4)

4. Solver Configurations DND RD and DR
ND RD: By DND RD we denote DPLL SAT

solvers with non-deterministic dynamic variable selection and random dynamic value
selection without restarts2, and by DR

ND RD we denote the same configuration with
restarts. We choose to refer to these models as drunk DPLL SAT solvers. (Used in
Section 4.4)

2.1.6 Graph representation of DPLL proofs

We now define the graph representation of a DPLL proof, conventionally, DPLL proofs are
represented as trees, where internal nodes are labelled with variables. In our definition,
we choose to label the edges of a DPLL proof tree to better capture a run of a DPLL
SAT solver, such definition allows us to define decision complexity, dc(ϕ), of a formula
ϕ. Further, with decision complexity, we can lower bound the size of DPLL proofs to be
2dc(ϕ). The motivation of our lower bound result is as follows: The famous result by Ben-
Sasson and Widgerson [6] suggests that one can use the resolution width of a formula to
lower bound the size of tree-like/general resolution proofs. But resolution width is a proof-
theoretic notion, a natural question one can then ask is whether we can show a similar lower
bound result using algorithmic properties of solvers. decision complexity turns out to be
one of such algorithmic properties, as it is a notion that naturally captures the behaviours
of DPLL-style proof search algorithms. And lastly we think decision complexity can be a
powerful tool in analyzing and understanding solver behaviours in CDCL setting as well.

DPLL proof trees with labels. A DPLL proof tree with labels is a binary tree used
to represent a run of a DPLL SAT solver, where the nodes denote variables of the input
formula and edges are labelled as follows: an edge is either labeled with “d : l” or “p : l”,
where l is a literal, and “d : l” means the literal l is set to > as a decision, and “p : l”

2This model is inspired by the drunk model proposed by Alekhnovich and Razborov [2]. In their
paper, they defined drunk model as DPLL SAT solvers with arbitrary variable selection and random value
selection.
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Figure 2.1: A DPLL proof tree with labels for (a ∨ b ∨ c) ∧ (b ∨ ¬c ∨ d) ∧ (a ∨ ¬c ∨ ¬d) ∧
(a ∨ ¬b ∨ d) ∧ (¬b ∨ ¬d) ∨ (¬a ∨ c) ∧ (¬c ∨ d) ∧ (¬c ∨ ¬a ∨ ¬d)

means the literal l is set to > as a propagation. A DPLL proof tree is very similar to
the tree-like resolution proof of a formula, with the only difference is that the edge labels
have an additional tag of being a “decision branch” or a “propagation branch”. Figure
2.1 presents a DPLL proof tree for an unsatisfiable (UNSAT) formula. Then from the
definition above, if an internal node of the DPLL proof tree has only one child, then the
edge connecting the child is labelled with a “p : l”, for some literal l. And if a node has
two children and that node is not a parent of two leaf nodes, then exactly one edge to one
of its child is labelled with “d : l” and the edge to the other child is labelled with “p : ¬l”
for some literal l.

Definition 2.1.1. The decision complexity of a path p in a DPLL proof tree, denoted
dc(p), is the number of decision branches in p. The decision complexity of a DPLL proof
tree T , denoted dc(T ), is the maximal decision complexity of a path in T , that is dc(T ) =
maxp∈T{dc(p)}. Lastly, the decision complexity of a formula ϕ, denoted dc(ϕ), is the
minimum decision complexity over all DPLL proof trees of ϕ.

By our definition of decision complexity, the DPLL proof tree in Figure 2.1 has decision
complexity 2, while the formula that it proves has decision complexity 1.

Definition 2.1.2. We define a size-preserving transformation, label switch, over decision
nodes in DPLL proof trees. A node in a DPLL proof tree is a decision node if it has two
children that are not leaves. Applying label switch on a decision node x in a DPLL tree,
denoted ls(x), relabels the decision branch of x as a propagation branch, and relabels the
propagation branch as a decision branch.

Definition 2.1.3. A relabelling for a DPLL tree T is defined over a sequence of label switch
on decision nodes in T .
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Figure 2.2: A DPLL proof tree of decision complexity 1 for the formula in Figure 2.1.

Figure 2.3: A relabelling of the DPLL proof tree in Figure 2.1 into a DPLL proof tree of
the same size, but with decision complexity 1.

Figure 2.3 shows a relabelling of the DPLL proof tree in Figure 2.1, the new tree has
same size as the original tree, however the new tree has decision complexity 1.

2.2 Proof Complexity

2.2.1 Proof system

In general, in the context of propositional proof systems, for any proof propositional proof
system P . P produces proofs of unsatisfiability for the class of formulas TAUT, which
is the class of all unsatisfiable formulas. P produces proofs of formulas in TAUT using
deduction with the help of inference rules.
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2.2.2 p-equivalence

Definition 2.2.1. Let A and B be proof systems [12, 20]. We say that A polynomially
simulates or p-simulates B (denoted as A ≤p B) if for every proof π in B, there is a proof
in A of size at most f(|π|), where f is a polynomial function.

Definition 2.2.2. Let A and B be proof systems. We say that A is polynomially equivalent
or p-equivalent to B (denoted as A ∼p B) if A ≤p B and B ≤p A.

2.3 Related Work

To the best of our knowledge, the first paper to discuss restarts in the context of SAT
solvers was one by Gomes and Selman [15]. The paper also suggested the “heavy-tailed
distribution” explanation for the power of restarts. This explanation is not considered
valid anymore in the CDCL setting [22]. The dominant static restart policy today is the
one proposed by Luby [24], which is theoretically proven to be the optimal universal restart
policy for Las Vegas algorithms. The dominant dynamic restart policy is the one proposed
by Glucose in 2012 [4]. The development of dynamic restart policies has attracted many
researchers to work on it. To name a few, Biere et al. [7] proposed a variation of the
Glucose restart policy; Liang et al. [23] developed machine learning based restart policies;
and Nejati et al. [27] used multi-armed bandits in their portfolio based restart policy. In
addition to the empirical work on restarts, there has been considerable interest among
theorists to better understand why restart policies are so crucial to the success of modern
SAT solver, as well as seem to be necessary to carry out certain simulation results [9].
Hypotheses aimed at explaining the power of restarts based on empirical observations
have also been also proposed. Examples include, the heavy-tail explanation [15], and
the “restarts compact assignment trail and hence produce clauses with lower literal block
distance (LBD)” perspective [23].

Heavy-tailed explanation. A heavy-tailed distribution was observed for the runtime
of randomized DPLL solvers on various satisfiable formulas [15]. Which on a high level
means that the probability of a DPLL solver with randomness having a long runtime is
non-negligible in practice, and hence the solver could benefit from restarting. One could
relate our theoretical analysis of the power of restart to the heavy-tailed explanation, since
the core arguments of the heavy-tailed explanation and our proof for the separation results
rely on the same observation: after a bad initial partial assignment, the solver gets “stuck”

12



in a hard restricted formula which is unsatisfiable, by having the power of restarts, the
solver has the opportunity to choose another potentially better initial partial assignment.
Because of the above, one may then argue that we cannot lift our results to a CDCL
setting just like the heavy-tailed explanation does not lift to CDCL. However we believe
that our result is not a proof-complexity theoretic analog of the heavy-tailed explanation
in the DPLL setting. We make no assumptions about independence (or lack thereof) of
branching decisions across restarts boundaries. In point of fact, the variable selection in
the DPLL model we use is non-deterministic. Only the value selection is randomized. We
have arrived at a separation result without relying on the assumptions made by the heavy-
tailed distribution explanation, and interestingly we are able to prove that the “solver does
get stuck in a bad part of the search space by making bad value selections”. Note that in
our model the solver is free to go back to “similar parts of the search space across restart
boundaries”. In fact, in our proof for DPLL with restarts, the solver chooses the same
variable order for Ladder formulas across restart boundaries. Further, the reason heavy-
tail explanation does not apply to CDCL is because modern variable selection heuristics
in CDCL allow the solver to “go back to similar parts of the search space across restart
boundaries”. Hence, at this point we cannot rule out the possibility that an idea similar
to the one we used in our proofs can be successful in proving a restarts separation result
for CDCL (in a setting similar to the one we used for DPLL for satisfiable instances).
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Algorithm 2 The CDCL SAT Solving Algorithm

1: function CDCL(ϕ, p)
2: Input: A CNF formula ϕ, and an assignment p
3: Output: true (SAT) or false (UNSAT)
4:

5: if (CONFLICT == BCP(ϕ,p)) then
6: return UNSAT;
7: end if . If top-level conflict, return UNSAT
8: dl = 0; . : Initialize decision level dl to be 0
9: while all variables have NOT been assigned do . The search loop

10: l = DecisionHeuristic(ϕ,p); . Variable and value selection heuristic combined,
l is the literal to be assigned T .

11: dl = dl + 1; . : Increment dl for each new decision variable
12: p = p ∧ x; . Add literal l to the assignment trail p
13: if CONFLICT == (BCP(ϕ, p)) then
14: c, bt level = ConflictAnalysis(ϕ, p); . Analyze conflict and return a learnt

clause c and a backjump level bt level
15: if bt level < 0 then
16: return UNSAT; . Top-level conflict
17: else
18: backtrack(ϕ, p, bt level); . Backjump to start search again
19: dl = bt level;
20: end if
21: end if
22: end while
23: return SAT;
24: end function

14



Chapter 3

Refuting candidate instances

In this chapter, we study three classes of instances which are conjectured to be candidates
separators to exponentially separate CND ND from CR

ND ND, and prove that none of the
three classes of candidate instances are sufficient to even prove super-polynomial separation
results. For each section of the chapter, we present the construction of the instances,
properties of the instances which were conjectured to be hard for CND ND, and follows by
proofs of why these classes of instances are not sufficient for the separation result.

3.1 LS vs LSR formulas

LS vs LSR is a class of instances Ed Zulkoski et al. used to exponentially separate the size
of Learning-sensitive Backdoor[33] of a SAT solver with and without Restart.

3.1.1 Original construction

The LS vs LSR formulas contain following sets of clauses:
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Figure 3.1: A polynomial size proof of a LS vs LSR formula produced by CND ND

(x0 ∨ x1 ∨ · · · ∨ xn−1 ∨ xn ∨ ¬q0)∧

∧(q0 ∨ a0) ∧ (q0 ∨ b0) ∧ (q0 ∨ ¬a0 ∨ ¬b0)∧

∧(x0 ∨ x1 ∨ · · · ∨ xn−1 ∨ ¬xn ∨ ¬q0 ∨ ¬q1 ∨ · · · ∨ ¬q2n−1 ∨ ¬q2n)∧

∧(q2n ∨ a2n) ∧ (q2n ∨ b2n) ∧ (q2n ∨ ¬a2n ∨ ¬b2n)∧

....

∧(¬x0 ∨ ¬x1 ∨ · · · ∨ ¬xn−1 ∨ xn ∨ ¬q0 ∨ ¬q1 · · · ∨ ¬q2n−1)∧

∧(q2n−1 ∨ a2n−1) ∧ (q2n−1 ∨ b2n−1) ∧ (q2n−1 ∨ ¬a2n−1 ∨ ¬b2n−1)∧

∧(¬x0 ∨ ¬x1 ∨ · · · ∨ ¬xn−1 ∨ ¬xn ∨ ¬q0 ∨ ¬q1)∧

∧(q1 ∨ a1) ∧ (q1 ∨ b1) ∧ (q1 ∨ ¬a1 ∨ ¬b1)

Size of this formula, N , equals to 2n where n is the number of x variables. The idea
of above gadget is that one needs to learn the (qi) clauses in lexicographical order in order
to produce a short proof. However the formula by itself turns out to be easy for CND ND

if the solver branches on all N qi’s lexicographically, each time the solver branches on qi,
it immidiately derives a conflict and learns unit clause (¬qi) and backtrack to the root
(Figure 3.1), and after learning all such unique clauses for 0 ≤ i ≤ N , the solver can start
branching on all the x variables to derive UNSAT in linear time in the size of the formula.
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3.1.2 XOR-lifting qi variables

The idea of XOR-lifting or xorification of a CNF formula is often used in proof complexity[5]
to lift the hardness of the formulas for certain underlying proof systems. To XOR-lift vari-
ables, we replace each variable by an xor of several variables and then rewrite the formula in
CNF. This idea has helped lifting an easy formulas for certain proof systems to hard formu-
las for the same proof system, and thus proving lower bounds. For example, Alekhnovich et
al.[2] and Urquhart [31] provided classes of instances that requires exponential size proofs
for regular resolution but polynomial size proofs for general resolution. We tried to apply
these lifting ideas to the instances we are considering, and study if a CND ND solver can
still produce a short proof.

Based on the original LS vs LSR formulas, we modify the formulas using XOR-lifting
such that it may potentially require a CND ND solver to do extra work, and only produces
proofs of exponential size. The intuition is as follow: instead of using a single qi in the
clauses, we have two new variables, qsi and qti , and replace qi’s with:

q⊕i = (qsi ∨ qti) ∧ (¬qsi ∨ ¬qti)

In this way, instead of learning a unit clause right away by making just one decision, the
solver needs to branch on two variables before learning ”useful clauses”. Since we only
allow backtracking, the solver can only backtrack one of qsi or qti after learning a conflict,
which blocks the solver from learning the desired clauses in polynomial time.

However simply doing this is not enough, since expanding the new formula into CNF
causes exponential blowup in size (for the reason that there exists a clause with N q′s).
One way to avoid this problem is to introduce new variables Di and add the following
clauses to the formula:

D0 ⇒ (¬q⊕0 )

D1 ⇒ (D0 ∨ ¬q⊕1 )

...

D2n−1 ⇒ (D2n−2 ∨ ¬q⊕n−1)

D2n ⇒ (D2n−1 ∨ ¬q⊕n )

Then replace corresponding subclauses in the original formula by the Di variables.

Resulting formula is shown below:

(x0 ∨ x1 ∨ · · · ∨ xn−1 ∨ xn ∨D0)∧
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Figure 3.2: CND ND proof tree for learning unit clauses (¬D0) and (¬D1), rest of the tree
for learning all other (¬Di) clauses are omitted

∧(q⊕0 ∨ a⊕0 ) ∧ (q⊕0 ∨ b⊕0 ) ∧ (q⊕0 ∨ ¬a⊕0 ∨ ¬b⊕0 )∧

∧(x0 ∨ x1 ∨ · · · ∨ xn−1 ∨ ¬xn ∨D2n)∧

∧(q⊕2n ∨ a⊕2n) ∧ (q⊕2n ∨ b⊕2n) ∧ (q⊕2n ∨ ¬a⊕2n ∨ ¬b⊕2n)∧

....

∧(¬x0 ∨ ¬x1 ∨ · · · ∨ ¬xn−1 ∨ xn ∨D2n−1)∧

∧(q⊕2n−1 ∨ a⊕2n−1) ∧ (q⊕2n−1 ∨ b⊕2n−1) ∧ (q⊕2n−1 ∨ ¬a⊕2n−1 ∨ ¬b⊕2n−1)∧

∧(¬x0 ∨ ¬x1 ∨ · · · ∨ ¬xn−1 ∨ ¬xn ∨D2)∧

∧(q⊕1 ∨ a⊕1 ) ∧ (q⊕1 ∨ b⊕1 ) ∧ (q⊕1 ∨ ¬a⊕1 ∨ ¬b⊕1 )

Unfortunately, we managed to find a polynomial proof (Figure 3.2) for the gadget above
by branching on Di variables and followed by qsi and qti , then the solver is able to learn all
the unit clauses (Di) in polynomial time, it turns out that being able to learn all the (Di)
clauses in lexicographical order gives same power as learning (¬qi) clauses in the unlifted
formula, and thus leads to a polynomial size proof.
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3.1.3 XOR-lifting both qi and Di variables

One of many reasons that above construction was not sufficient for a separation result is
that a CND ND solver could still learn unit clauses (Di) by just lexicographically making
decision on Di variables (along with a constant number of queries to qi variables), so we
tried to apply XOR− lifting to all Di’s as well. Having said that, we replaced all the Di

variables with D⊕i , in the way it’s done with the qi variables.

Clearly in order to produce a short proof, we need to derive both (Ds
i ∨ ¬Dt

i) and
(¬Ds

i ∨Dt
i) for all D variables.

• In a CR
ND ND solver, we can start by first branching on ¬Ds

0 and Dt
0 followed by

queries to qs0 and qt0 to learn (Ds
0 ∨ ¬Dt

0), then restart, and branch on Ds
0 and ¬Dt

0

followed by queries to qs0 and qt0 to learn (¬Ds
0∨Dt

0), then restart, do the similar and
continue on learning (Ds

1 ∨ ¬Dt
1) and (¬Ds

1 ∨Dt
1) and repeat until we learn all ¬D⊕i

clauses.

• However in a CND ND solver, if we follow the strategy we used when only qi’s are
XOR-lifted, that is branch on ¬Ds

0 and Dt
0 followed by queries to qs0 and qt0 to learn

(Ds
0∨¬Dt

0), at this point, we are forced to backtrack, which results in a path with ¬Ds
0

and ¬Dt
0 on the trail (Figure 3(a)), it’s easy to see that branching just on qs0 and qt0

will not yield a conflict anymore, so we need to branch on the next D variables, that
is Ds

1 and Dt
1. However since we only consider Decision Learning Scheme and ¬Ds

0 is
currently on the trail as a decision variable, future learnt clauses are ”polluted” by it
(Figure 3(b)), in the sense that (Ds

i ∨¬Dt
i) and (¬Ds

i ∨Dt
i) will not be learnt unless

we’ve exhausively search the subtree. But on the other hand, each time we branch
on a new D variable, the number of branches in the proof tree gets doubled (Figure
3(c)), and since the tree has depth N , size of the whole proof tree is exponential in
the size of N .

Note that in the CR
ND ND proof, we don’t need to query any x variables to learn all

¬D⊕i clauses. So we decided to focus on a specific part of the formula:

D⊕0 ⇒ (¬q⊕0 )

D⊕1 ⇒ (D⊕0 ∨ ¬q⊕1 )

...

D⊕2n−1 ⇒ (D⊕2n−2 ∨ ¬q⊕n−1)
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Figure 3.3: Proof tree to learn all (Ds
i ∨ ¬Dt

2) clauses (only useful learnt clauses are
displayed, unuseful clauses means that the clause is only used once, when backtracking at
the conflict happens.)

D⊕2n ⇒ (D⊕2n−1 ∨ ¬q⊕n )

The problem with the previous strategy is that after we learn (Ds
0∨¬Dt

0) we have to branch
on other D varibles, we solved this problem by falsifying all ¬D⊕i at the begining in reverse
order. (Figure 3.3) The informal intuition is as follow: observe that above fragment forms
a chain of implications, which is inductive in nature, so instead of proving from D0 to
D2n , we “assume” D1, D2, ..., D2n to be false, and try to disprove our “assumption” from
bottom up. This intuition is still not concrete at the moment, but we are trying to apply
it to other instances for justification. As shown in the proof tree, we only need to pay a
constant price for learning a (Ds

0 ∨ ¬Dt
0) clause, since we have 2N number of D′s on the

trial, a complete search over the tree in Figure 4 still takes polynomial time. And after we
learn all (Ds

i ∨ ¬Dt
i), we are at the root of the tree, and can start branching in the same

manner and learn all (¬Ds
i ∨Dt

i) clauses, clearly it will take polynomial time as well. And
we have a short CND ND proof.
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3.2 Pebbling formula

Pebbling formulas are a class of unsatisfiable formulas, there are three kinds of clauses:
source clauses, target clauses and precedence clauses. Figure 3.4 presents the high level
structure and the clauses in XOR-lifted Pebbling formula. If we consider the unlifted
version of the Pebbling formula, that is ignoring all of the ⊕ in Figure 3.4, there are n
nodes in the graph, which correspond to n distinct variables in the CNF, and consequently
depth of a pebbling graph is log(n). We define levels incrementally from root to leaves,
that is the target node is on level 1, and source nodes are on level 4. We can easily see
that the formula is unsatisfiable, since the nodes at level 4 (source nodes) implies the nodes
at level 3, which implies the nodes at level 2, and for the same reason, the node at level
1, 10⊕, has to be >, however from the target clause, (¬10⊕), we have a contradiction.
Since unlifted pebbling formulas are trivially easy to solve, that is a CND ND solver can
derive UNSAT using only linearly number of unit propagations. To lift the hardness of the
Pebbling formulas, we consider the XOR-lifted pebbling formula. There is a nice relation
between the Pebbling structure and the structure of LS vs LSR formulas. Recall that the
hardness of LS vs LSR formulas come from the fact that, a solver needs to learn clauses
which correspond to (¬D⊕), however the formulas are set up in a way that to learn (¬D⊕i ),
the solver needs to first learnt (¬D⊕i−1). This is the same for Pebbling formulas, except
that to learn about a node x in the Pebbling formula, a solver needs to first learn all the
nodes that appear in the subtree rooted at x. In other words, the LS vs LSR formulas can
be viewed as a single path from the root nodes to a leaf node in the Pebbling formulas.

The short CND ND proof of lifted pebbling comes naturally by generalizing the strategy
we used to produce our short CND ND proof for lifted LS vs LSR formula, that is, find a
chain of implication (the idea of chain of implication still needs refinement), and falsify the
nodes in the chain in reverse order. (Figure 6)

Note that in the proof tree, we were able to learn all (5⊕), (6⊕), (7⊕) before backtracking
to level 3 in the pebbling graph. Having said that, we’ve reduced the pebbling graph by
one level, since we’ve learnt all fact that can be derived from nodes in level 4, in other
words, nodes in level 4 no longer participate in further proof. Additionally, in order to
learn each clause, we only need to reason within a constant number of variables at any
given time, so reducing pebbling graphs by 1 layer requires only polynomial effort. Since
there are only log(n) number of layers, size of our proof tree is polynomial in n.

Another very interesting and important fact is that, even though we restrict CND ND

to only do backtracking, it backtracked twice consecutively after learning (6s ∨ 6t) and
(5s ∨ 5t), which essentially simulated backjumping (labeled red in Figure 3.5). This seems
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Figure 3.4: Pebbling formula with 4 layers

to be a natural behaviour but somewhat unexpected, recall that the reason we only allow
backtracking is to avoid backjumping. As a result, we may need to either restrict our
CND ND model further so that backjumping is completely disabled, or consider backjump-
ing as part of CND ND. However unfortunately we do not have much intuition in either
direction yet.

3.3 Possibility of a non-trivial polynomial separation

Due to lack of success in exponentially separating CR
ND ND and CND ND, we started inves-

tigating in weather we can prove a non-trivial polynomial separation.

3.3.1 k-disequality (k-XOR) lifting

We extended the idea of XOR-lifting.

• In XOR-lifting, we replace each variable q by q⊕ where

q⊕i = (qsi ∨ qti) ∧ (¬qsi ∨ ¬qti)

which encodes that qs and qt cannot have same polarity.
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Figure 3.5: A small proof tree for solving the Pebbling formulas.

• In k-disequality lifting, we encode the condition such that all k variables cannot have
same polarity. For example, for 3-disequality lifting on variable q, we replace q by
q3−disequality where

q3−disequalityi = (qsi ∨ qti ∨ qri ) ∧ (¬qsi ∨ ¬qti ∨ ¬qri )

The idea of lifting a variable is to add complexity in resolving on that variable. Consider
a simple input formula:

(q) ∧ (¬q)

This formula is clearly unsatisfiable, and contradiction can be derived within one resolution
step. Now consider the 3-disequality lifted version:

(q3−disequality) ∧ (¬q3−disequality)

It’s trivial to expand (q3−disequality) to CNF:

(q3−disequality)↔ ((qs ∨ qt ∨ qr) ∧ (¬qs ∨ ¬qt ∨ ¬qr))

However there are many ways to encode (¬q3−disequality), we considered two encodings,
where one encodes it using least number of clauses possible, and the second encodes it
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using most number of clauses possible.

(¬q3−disequality)↔ ((qs ∨ ¬qt) ∧ (qt ∨ ¬qr) ∧ (qr ∨ ¬qr))

or

(¬q3−disequality)↔((qs ∨ qt ∨ ¬qr)∧
(qs ∨ ¬qt ∨ qr)∧
(qs ∨ ¬qt ∨ ¬qr)∧
(¬qs ∨ qt ∨ qr)∧
(¬qs ∨ qt ∨ ¬qr)∧
(¬qs ∨ ¬qt ∨ qr))

In the former encoding, only five resolution steps are needed to derive UNSAT, and in
the latter, eight resolution steps are required. On the other hand in terms of CR

ND ND and
CND ND, for former encoding, both CR

ND ND and CND ND can derive UNSAT by branching
on any one variable to any polarity and followed by a series of unit propagation, and for
latter encoding, both CR

ND ND and CND ND requires exploring entire search space over the
three variables. It seems from these two different encodings that the number of resolution
steps directly correlates to the size of the encoding. However at this point, we still don’t
have a full proof to justify this observation. If this correlation holds, we also prove that
k-disequality lifting is not sufficient to polynomially separate CR

ND ND and CND ND.
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Chapter 4

Separation and equivalence between
different models of CDCL SAT
solvers

From our work presented in Chapter 3, we realized it is really difficult to prove/disprove
a separation results for restarts when the underlying CDCL SAT solver has both non-
deterministic variable selection and non-deterministic value selection. In this chapter, we
approach the problem of understanding the power of restart from a slightly different angle.

In this section, we address the question of the power of restarts in both the DPLL
[14, 13] and CDCL SAT solver settings. Specifically, we present two results on the power
of restarts: First, we introduce a new class of satisfiable instances called Laddern and use
it to prove that for the drunk randomized DPLL SAT solver model (DND RD) introduced
by Alekhnovich and Razborov [1], the configuration of DND RD with restarts can solve
Laddern formulas in time polynomial in size of Laddern, while the configuration of DND RD

without restarts requires time exponential in the size of Laddern, with high probability
(w.h.p.). Second, we show that models of CDCL SAT solvers with non-deterministic static
variable and value selection, and with restarts are no more powerful from a proof-complexity
theoretic point of view than the same configurations without restarts.

Recall that one of the intuitive reasons that restart give more power to a CDCL SAT
solver is that restarts can help a solver escape from “bad” or “hard” search spaces. But
what happens if the solver has the power of non-determinism and makes no mistakes in
the first place? As we studied this problem in depth, we made the following observation
about restarts, namely, that there seems to be a subtle interplay between various solver
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heuristics and restarts, wherein the power of restarts becomes apparent only when one
or more important heuristics (e.g., variable or value selection) are weakened (e.g., solver
configurations where non-deterministic value or variable selection heuristics are replaced
by their weaker randomized cousins). Another observation we made was that all previous
theoretical work on the power of restarts seems to have focused on treating solvers as
proof systems, i.e., on unsatisfiable instances only. For one of our result, we show that
one can separate certain solver configurations with and without restarts, if we change our
perspective from unsatisfiable to satisfiable instances (see Section 4.4). All our results
hold irrespective of the computational overhead of the various heuristics considered in this
chapter.

Restart and Weak Decision Learning. Before we jump to the results of the section,
we would like to state a preliminary observation on restarts1. If we consider the Weak
Decision Learning Scheme (WDLS) for a CDCL solver defined as follow: Upon deriving
a conflict, the solver learns the clause over the disjunction of the negation of the decision
variables on the current assignment trail. Clearly, the solver model CND ND with WDLS is
only as powerful as DND ND, since each learnt clause will only be used once for propagation
after the solver backtracks immediately after learning the conlict clause, and remains sat-
isfied for the rest of the solver run, and this is exactly what DND ND does. However on the
other hand, it is clear that WDLS is an asserting learning scheme [28], and hence satisfied
the conditions in [30] which proved that CDCL with asserting learning scheme and restarts
p-simulates general resolution, thus we have CR

ND ND with WDLS is exponentially more
powerful than the same solver but with no restarts. Given that WDLS is unconventional
clause learning scheme which does not quite capture state-of-art CDCL SAT solver’s clause
learning scheme, we only list this results as a discussion.

4.1 Restarts and Non-Deterministic Static Variable

and Value Selection in CDCL SAT solvers

In this section, we show that CDCL SAT solvers with non-deterministic static variable
selection, non-deterministic static value selection, and with restarts (CR

NS NS), are polyno-
mially equivalent to the same model but without restarts (CNS NS).

1Personal communication with Robert Robere.

26



Theorem 4.1.1. CR
NS NS ∼p CNS NS

Proof. We first show that CNS NS p-simulates CR
NS NS. On a high level, we want to show

that a run of CNS NS derives the same set of learnt clauses as CR
NS NS. More formally, we

prove this by induction on the number of restart calls by CR
NS NS.

Induction base: number of restart calls, r = 0. Clearly if CR
NS NS does not restart, it is

exactly the same as CNS NS, and they have the same clause database.
Inductive hypothesis : Consider a run of CR

NS NS with r = k restarts for some k ≥ 0. There
is a run of CNS NS which produces the same clause database as CR

NS NS.
Inductive step: Consider a run of CR

NS NS with r = k + 1 restarts. Due to our inductive
hypothesis, there is a run of CNS NS which produce the same clause database as CR

NS NS

right before the (k + 1)th restart call. Now consider the assignment trail for CR
NS NS up to

the asserting literal, l, from the last learnt clause before the (k+1)th restart call. Due to the
definition of clause learning and asserting literal, we know the assignment trail for CR

NS NS

up to l does not cause a conflict, and the truth values for variables assigned from that
partial assignment are either due to the static value selection or due to the current clause
database. After the last restart call, CR

NS NS starts to branch with respect to the static
branching and propagates with respect to the clause database (By definition of restart, the
clause database does not change before and after a restart call.). And this will produce the
same assignment trail up to l, and clearly, the clause database does not change since no
conflicts are detected. By inductive hypothesis there is a run of CNS NS which produces the
same clause database. Due to the assumption that CR

NS NS only invokes k+ 1 restart calls,
CR

NS NS will not make another restart call after this point. And hence CNS NS produces
the same run as CR

NS NS.

Thus CNS NS p-simulates CR
NS NS. And the other direction, CR

NS NS p-simulates CNS NS

is true by definition.

Note that in the proof above, we not only argue that CNS NS is p-equivalent to CR
NS NS,

we also show that the two configurations produce the same run. The crucial observation is
that given any state of CR

NS NS, we can produce a run of CNS NS which ends in the same
state. In other words, our proof not only suggests that CR

NS NS is equivalent to CNS NS

from a proof theoretic point of view, it also implies the two configurations are equivalent
for satisfiable formulas.
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Figure 4.1: The path of decision complexity k + 1 appears in T1.

4.2 Decision Complexity and Size Lowerbounds for

DPLL Proofs

Theorem 4.2.1. Consider an unsatisfiable formula ϕ, the size of any DPLL trees of ϕ is
at least 2dc(ϕ).

Lemma 4.2.2. Let T be a DPLL proof tree for ϕ. If there does not exist a relabelling of
T into a new tree T ′ such that dc(T ′) < dc(T ), then size(T ) ≥ 2dc(T ).

Proof. By induction on dc(T ).
Induction base: dc(T ) = 0. Clearly, any DPLL tree for proving ϕ is unsatisfiable contains
at least one leaf, and we have size(T ) ≥ 1 = 2DP (T ) = 20.
Inductive hypothesis : For all DPLL trees T where dc(T ) ≤ k for some k, if there does
not exist a relabelling of T into a new DPLL tree T ′ such that dc(T ′) < dc(T ), then
size(T ) ≥ 2dc(T ).
Inductive step: dc(T ) = k + 1. By definition of decision complexity, there exists a path
p ∈ T where dc(p) = k + 1. W.l.o.g. consider p appears on the left side of T .

Since the path p where dc(p) = k+ 1 is in T1, we know that dc(T1) = k. Now there are
two cases for T1:

Case 1: there does not exist a relabelling of T1 into a new DPLL tree T ′1 such that
dc(T ′1) < dc(T1).
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Case 2: there exists a relabelling of T1 into a new DPLL tree T ′1 such that dc(T ′1) <
dc(T1).

For case 1. By inductive hypothesis, size(T1) ≥ 2k. Now if we prove that size(T2) ≥ 2k

then we are done. First we use ϕ(T2) to denote the formula obtained from restricting ϕ
with the partial assignment before T2. Note that dc(ϕ(T2)) ≥ k, because otherwise, by
applying label switch on x and relabelling T2, we have a new tree T ′ where dc(T ′) < k+ 1,
which is in contradiction with the assumption of T stated in the lemma. Now again there
are two subcases:

Case 1.1: dc(ϕ(T2)) = k.

Case 1.2: dc(ϕ(T2)) = k+ 1. (Note that dc(ϕ(T2)) cannot be larger than k+ 1, since
by definition dc(T ) ≥ dc(T ′) where T ′ is a subtree of T .)

For case 1.1, dc(ϕ(T2)) = k. Since dc(ϕ(T2)) = k, by definition of the decision com-
plexity of a formula, there does not exist a relabelling of T2 into a new DPLL tree T ′2 such
that dc(T ′2) < dc(T2). By inductive hypothesis size(T2) ≥ 2dc(ϕ(T2)) = 2k, and combining
with size(T1) ≥ 2k, we have size(T ) ≥ 2k+1, lemma is proved.

For case 1.2, dc(ϕ(T2)) = k+ 1. Then we know there exists a path p′ where p′ ∈ T2 and
dc(p′) = k + 1. Similar to T , T2 will have two subtrees T21 and T22 as in Figure 4.2 (figure
on the left), where p′ ∈ T21.

And we know that dc(T21) = k. If dc(ϕ(T21)) = k, then by inductive hypothesis we have
size(T21) ≥ 2k, and combining with size(T1) ≥ 2k, we have size(T ) ≥ 2k+1, the lemma is
proved. Other wise, consider T22 and continue as T2. T will be like Figure 4.2 (figure on
the right).

Since the height of T is finite, at some point, there will be a subtree T22...222 where
dc(ϕ(T22...222)) = k, and we have size(T22...222) ≥ 2k. Again, combining size(T1) ≥ 2k, we
have size(T ) ≥ 2k+1, the lemma is proved.

Now consider case 2: there exists a relabelling of T1 into a new DPLL tree T ′1 such
that dc(T ′1) < dc(T1). We first relabel T1 into T ′1 such that dc(T ′1) < dc(T1). Then
dc(T2) = k + 1 and there does not exist a relabelling of T2 into a new DPLL tree T ′2 such
that dc(T ′2) < dc(T2), due to the assumption on T stated in the lemma. Now we consider
the same argument for T2 instead of T and prove that size(T2) ≥ 2k+1, and this proves the
lemma (Again, since the height of T is finite, at some point, we will be able to apply case
1.).
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Figure 4.2: Left: The path of decision complexity k + 1 appears in T21. Right: The path
of decision complexity k + 1 appears in T221.

proof of Theorem 4.2.1. Consider any DPLL proof tree T for an unsatisfiable formula ϕ.
First relabel T into T ′ such that T ′ has the least decision complexity among all relabellings
of T . Now T ′ satisfies the assumptions of Lemma 4.2.2. Then size(T ′) ≥ 2dc(T ′). Since
relabelling is size preserving, by definition of dc(ϕ), we have size(T ) = size(T ′) ≥ 2dc(T ′) ≥
2dc(ϕ).

Note that decision complexity of a formula is different from the concept of a smallest
strong backdoor introduced by Williams, Gomes, and Selman [32]. In general a large small-
est strong backdoor does not necessarily imply size lowerbound of proofs. For example,
consider the following class of formulas:

(x1 ∨ x2 ∨ x3 ∨ ... ∨ xk−1 ∨ xk ∨ PHP 1
n)∧

∧(x1 ∨ x2 ∨ x3 ∨ ... ∨ xk−1 ∨ ¬xk ∨ PHP 2
n)∧

∧(x1 ∨ x2 ∨ x3 ∨ ... ∨ ¬xk−1 ∨ xk ∨ PHP 3
n)∧
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(x∨PHP 1
n)∧(¬x∨PHP 2

n), where PHP 1
n and PHP 2

n both encode pigeon hole principle
of size n, however over disjoint variables. Clearly, the smallest strong backdoor of the
formulas are a lot larger than the decision complexity of the formulas, and it is not clear if
smallest strong backdoor can be used to lowerbound proof size at all. On the other hand,
it seems that one may be able to relate decision complexity to the width of a formula,
however this is still subject to proof.

4.3 Laddern Formulas

Inspired by Alekhnovich’s work [1], where the authors proved exponential lowerbound for
drunk DPLL SAT solvers over a class of satisfiable instances, we studied the behavior of
restarts in a drunk style DPLL SAT solver through the lens of satisfiable instances. In this
section, we introduce a new class of satisfiable formulas, Laddern, which is then used to
prove our separation result in Section 4.4.

Definition 4.3.1. Laddern contains two sets of variables, qji and dk variables for 0 ≤ i ≤
m−1, 0 ≤ j ≤ c−1 and 0 ≤ k ≤ n−1 where m = 2n and c is some large enough constant
that is greater or equal to 2 (so that the value of qji cannot be unit propagated by just giving
a complete assignment to dk variables.). We can now construct Laddern over qji and dk
variables:

Q0 ⇒ ¬D0 D0 ⇒ Q(0+m
2
) mod m

Q1 ⇒ ¬D1 D1 ⇒ Q(1+m
2
) mod m

Q2 ⇒ ¬D2 D2 ⇒ Q(2+m
2
) mod m

· · · · · ·
Qm−3 ⇒ ¬Dm−3 Dm−3 ⇒ Q(m−3+m

2
) mod m

Qm−2 ⇒ ¬Dm−2 Dm−2 ⇒ Q(m−2+m
2
) mod m

Qm−1 ⇒ ¬Dm−1 Dm−1 ⇒ ((¬q00 ∨ q01) ∧ (¬q01 ∨ q02)∧
· · · ∧ (¬q0m−2 ∨ q0m−1) ∧ (¬q0m−1 ∨ q00))

(Q0 ⇔ Q1) ∧ (Q1 ⇔ Q2) ∧ · · · ∧ (Qm−3 ⇔ Qm−2) ∧ (Qm−2 ⇔ Qm−1)

– Qi ≡ (
∨c−1

j=0 q
j
i )∧ (

∨c−1
j=0 ¬q

j
i ). In other words, Qi evaluates to ⊥ if and only if all qji ’s

have the same truth value.

– Let bin(j) be the binary representation of j using n bits, and let bin(j)k denote the
(k+ 1)′th Most Significant Bit (MSB) in bin(j). Then each Dj is defined as follows:

Dj ≡ (
n−1∧
k=0

xk)

{
xk = dk if bin(j)k = 1

xk = ¬dk if bin(j)k = 0
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Proposition 1. The set of satisfying assignments for Laddern has the properties: dk = >,
for 0 ≤ k ≤ bin(m)− 1; and qji = qj

′

i′ , for all possible i, j, i′ and j′.

The core idea for the Ladder formulas is that once a DPLL solver makes a decision
that violates the conditions in proposition 1 early on, the restricted formula becomes
unsatisfiable and requires exponential size proofs for the underlying DPLL solver. To
understand the implication structure of Laddern and Proposition 1, we make the following
observations:

1. When some Qi is asserted to >, then the set of clauses
∧m−2

i=0 Qi ⇔ Qi+1 implies that
all other Q’s should also be >. Then the set of clauses

∧m−1
i=0 (Qi ⇒ ¬Di) implies

that all D’s should be ⊥. However due to the construction of the D’s, this is clearly
unsatisfiable.

2. When some Dk is asserted to >, then the set of clauses
∧m−1

i=0 (Qi ⇒ ¬Di), we know
that the corresponding Qk is implied to be ⊥. And also due to the set of clauses∧m−2

i=0 (Di ⇒ Qi+m
2

mod m), some Qk′ that is m
2

away from Qk is implied to be >. And

finally, the set of clauses
∧m−2

i=0 Qi ⇔ Qi+1 which asserts all Q’s should be equivalent
is contradicting with above.

The proof for the separation result relies on the two observations above, please find the
details of the proof in Section 4.4.

4.4 Restarts and Non-Deterministic Variable Selec-

tion in DPLL SAT Solvers

4.4.1 DND arbitrary and DND ND as Proof Systems

In this sub-section we show that, when considered as a proof system, a DPLL SAT solver
with non-deterministic dynamic variable selection, arbitrary value selection and no restart
(DND arbitrary) is p-equivalent to DPLL SAT solver with non-deterministic dynamic variable
selection, non-deterministic dynamic value selection, and no restarts (DND ND), and hence,
transitively p-equivalent to tree-like resolution. The point of this result is the following: as
long as the variable selection is non-deterministic dynamic, restarts add no proof-theoretic
power to DPLL SAT solvers. However, very surprisingly, when we shift our focus to satisfi-
able instances some of these models with restarts can be separated from their counterparts
without restarts (Theorem 4.4.8).
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Theorem 4.4.1. DND arbitrary ∼p DND ND

Proof. It is trivial to show that DND ND ≤p DND arbitrary since every run of DND arbitrary

is also a run of DND ND.

To show that DND ND ≥p DND arbitrary, we argue that every proof of DND ND can be
converted to a proof of same size in DND arbitrary. Let F be a tautology. Recall that a run
of DND ND on F starts with non-deterministically picking some variable x to branch on,
and non-deterministically choose a truth value to x. W.l.o.g. suppose the solver assigns x
to >. And after the solver proves F [x] = ⊥, it then backtracks and proves F [¬x] = ⊥, and
conclude that F is UNSAT. Now to simulate a run of DND ND with DND arbitrary, since
variable selection is non-deterministic, DND arbitrary also picks variable x to branch on first,
if value selection returns x, the solver focus on the restricted formula F [x], and if value
selection returns ¬x, the solver focus on the restricted formula F [¬x]. Because there is no
clause learning, the order of which one of F [x] and F [¬x] is searched first does not affect
the size of the search space for the other. Now by recursively calling DND arbitrary on F [x]
and F [¬x] and their further restricted formulas, DND arbitrary can produce a proof for F
of the same size as a tree-like resolution proof for F .

4.4.2 DND RD and DR
ND RD and Satisfiable Formulas

In this section, we present a proof of exponential separation of a DPLL SAT solver with non-
deterministic variable selection and dynamic random value selection with restart (DR

ND RD)
from the same configuration but with no restart (DND RD).

Lemma 4.4.2. DND RD can find satisfying assignment for Laddern[d0][d1]...[dn−1] in time
θ(m).

Proof. When all dk variables are >, we have Dm−1 = >. Which asserts that (
∧m−1

i=0 (¬q0i ∨
q0i+1 mod m)) = >, by making a decision on q00, if q00 = >, then q0i = > for all 0 < i ≤ m−1,
and if q00 = ⊥, then q0i = ⊥ for all 0 < i ≤ m− 1. W.l.o.g., consider the case q0i = > for all
0 ≤ i ≤ m− 1. Since Dm−1 = >, the set of clauses Qm−1 ⇒ ¬Dm−1 implies ¬Qm−1. Since
we have q0m−1 = >, by querying on qjm−1 variables, DND RD can then exhaustively search

over all qjm−1 and assign each qjm−1 to > for all 0 < j ≤ c in time O(2c), which is constant.

Then by using the set of clauses
∧m−2

i=0 Qi ⇔ Qi+1, the DPLL SAT solver branches on all
qjm−2 variables, and the solver will assign qjm−2 = > for all 0 < j ≤ c in time O(2c) (since

we already have q0m−2 = >). By repeatedly querying qjm−3, q
j
m−4, ..., qj1 and qj0 variables in

order, the solver assigns all qji variables to > in time m ∗O(2c) = θ(m). And at this point,
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the solver has assigned a truth value to all variables and the assignment is satisfying since
it is consistent with the conditions in Proposition 1.

Putting it differently, the set of dk variables form a weak backdoor for Laddern formulas.
Further, the following lemma shows that, with probability at least 1

2
, DR

ND RD can exploit
this weak backdoor using only θ(m) number of restart calls. Additionally, the lemma shows
that the runtime of the solver is θ(mlogm), and thus we have a polynomial upper bound
on the solver model DR

ND RD.

Lemma 4.4.3. The expected number of restarts for DR
ND RD to solve Laddern in time

O(m logm) is m.

Proof. Due to Lemma 4.4.2, if the DPLL SAT solver assigns all dk variables to > before
assigning any other variables, then the solver can find a satisfying assignment in θ(m)
time with probability 1. Now we use the power of restart to find this desire assignment
efficiently. The strategy the solver adopts is as follows: branch on all dk variables, if at
least one of the dk variables is assigned ⊥, the solver restarts, repeat this procedure until all
dk variables are assigned >. Now we argue that with probability at least 1

2
, the solver only

needs to make θ(m) restart calls before finding the desire assignment to dk variables. There
are m = 2n possible assignments to all dk variables, with probability 1

m
the solver assigns

all dk variables to > by randomly assigning truth values to dk variables. To compute the
number of restarts needed to find the desire assignment with probability 1

2
, we use the

following formula, where m is the number of possible assignments for dk variables and r
is the number of restart calls needed. (Note that the number of restarts required follows
geometric distribution.)

1− (
m− 1

m
)r =

1

2
⇒ (

m− 1

m
)r =

1

2
⇒ r =

log 1
2

log m−1
m
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Now for comparing the growth rate of r and m, we compute limm→∞
r
m

.

lim
m→∞

r

m
= lim

m→∞

log 1
2

log m−1
m

m
= lim

m→∞

log 1
2

m log m−1
m

= lim
t→0

t log 1
2

log(1− t)
(Let t = 1/m)

= lim
t→0

log 1
2

1
t−1

(L’Hôpital’s Rule)

= lim
t→0

(t− 1) log
1

2
= log 2

Since limm→∞
r
m

= log 2 is a constant, we know r and m grow as fast. In other words, we
have r = θ(m). And we finish the proof by combining the result with Lemma 4.4.2. It
takes θ(m) restart before DR

ND RD finds the desire assignments to the dk variables, during
which the solver needs to make at most n = logm decisions to assign all the dk variables
between each restart, so the solver makes θ(m ∗ logm) decisions in total before we can
apply Lemma 4.4.2. Combining the result from Lemma 4.4.2, the overall complexity is
θ(m · logm) + θ(m) = θ(m · logm).

With the above proof, we have a polynomial upper bound for the solver model DR
ND RD,

and we now present the tools needed to prove an exponential lower bound for the solver
model DND RD below.

Lemma 4.4.4. Laddern[¬da] is UNSAT and dc(Laddern[¬da]) = Ω(m) for every 0 ≤ a ≤
n− 1.

Proof. Laddern[¬da] is UNSAT since a satisfying assignment should have dk = > for all
0 < k < n − 1 as stated in Proposition 1. Since da = ⊥, we know the partial assignment
can only be extended to one that satisfy some Di′ for 0 ≤ i′ ≤ m − 2. As a consequence
the set of clauses

∧m−1
i=0 (Qi ⇒ ¬Di) assert Qi′ = ⊥, and the set of clauses

∧m−2
i=0 (Di ⇒

Qi+m
2

mod m) assert that Qi′+m
2

mod m = >. However this is conflicting with the set of

clauses
∧m−2

i=0 (Qi ⇔ Qi+1). To detect this conflict, a DPLL SAT solver needs to determine
the truth value of at least m

2
Qi’s along some path of the proof tree, and this requires at

least m
2

decisions, hence dc(Laddern[¬da]) = Ω(m).
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Lemma 4.4.5. Laddern[qba][¬qb
′

a′ ] is UNSAT and dc(Laddern[qba][¬qb
′

a′ ]) = Ω(m) if a 6= a′

or b 6= b′.

Proof. Laddern[qba][¬qb
′

a′ ] is UNSAT since a satisfying assignment should have qji = qj
′

i′ for
all possible i, j, i′ and j′ as stated in Proposition 1. Now consider a DPLL SAT solver run
on Laddern[qba][¬qb

′

a′ ]. There are two cases:

Case 1: a = a′ and b 6= b′

Case 2: a 6= a′

For Case 1, we know that under the restriction, Qa can only take the value > as the
solver extends the partial assignment. Which in turn logically asserts all Qi’s to be >
from the set of clauses

∧m−2
i=0 (Qi ⇔ Qi+1), and this implies that all Di’s will be ⊥ from

the set of clauses
∧m−1

i=0 (Qi ⇒ ¬Di). However due to the definition of Di’s, this means no
assignments over dk variables can evaluate all Di’s to ⊥. To detect this inconsistency, a
DPLL SAT solver needs to determine the truth value of all Qi’s along some path, which
requires at least Ω(m) number of decisions.

For Case 2, clearly, as a DPLL SAT solver extends the partial assignment, it is impossi-
ble for it to satisfy the sets of clauses

∧m−1
i=0 (Qi ⇒ ¬Di), Dm−1 ⇒

∧m−1
i=0 (¬q0i ∨q0(i+1) mod m)

and
∧m−2

i=0 (Qi ⇔ Qi+1) simultaneously unless some of the dk variables is assigned to ⊥.
As a result, a DPLL SAT solver has to assign some dk variable to ⊥ along some path,
but again, by the same argument we used for the proof for Lemma 4.4.4, the solver must
determine the value of at least m

2
Qi’s along some path of the proof tree, and this requires

at least m
2

decisions. Combining the result from Case 1, dc(Laddern[qba][¬qb
′

a′ ]) = Ω(m).

Lemma 4.4.6. With probability at least 3
4
, the class of formulas, Laddern, requires Ω(2m)

time before finding a satisfying assignment using DND RD.

Proof. Consider the first four variables branched on by DND RD. Observe that, all clauses
in Laddern have width greater than four for sufficiently large n, so there will be no unit
propagations or conflicts after branching on the first four variables, additionally none of
the Qi’s value can be evaluated. Now we argue, Laddern restricted with any four variables
whose polarities are randomly chosen is UNSAT and has decision complexity Ω(m) with
probability at least 3

4
.

Case 1: There are at least two dk variables among the first four variables.

Case 2: There are at least three qji variables among the first four variables.
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For Case 1, with probability at least 3
4
, at least one of the dk’s is assigned ⊥ (denoted

the first such dk as da), and w.l.o.g. assume there is no pair of q variables that are assigned
opposite polarity before the assignment of ¬da. For Case 2, with probability at least 3

4
, at

least two qji ’s are assigned opposite values. W.l.o.g., let qba be the first qji variable assigned
to >, and let qb

′

a′ the first one assigned to ⊥, and assume there is no dk variables assigned
⊥ before the assignment of the pair of q’s with opposite value.

Recall that in our proof for Lemma 4.4.4 and Lemma 4.4.5, the core argument is that
a DPLL SAT solver has to determine the value of at least m

2
or at least m Qi’s. And

additionally as we stated, with just four restrictions, we cannot determine the value of
any Qi’s. Which means our argument for the proof of Lemma 4.4.4 and Lemma 4.4.5 still
applies on both Case 1 and Case 2. Thus, the decision complexity for the restricted formula
for both Case 1 and Case 2 is Ω(m). Lastly by applying Theorem 4.2.1, we complete the
proof for the lemma.

Lemma 4.4.7. The expected number of restarts needed for DR
ND RD to find a satisfying

assignment for Laddern in polynomial time is m, where DND RD will find a satisfying
assignment in exponential time with probability at least 3

4
.

Proof. The proof for Lemma 4.4.7 follows from Lemma 4.4.3 and Lemma 4.4.6.

With Lemma 4.4.7, we have shown that with probability at least 3
4
, Laddern formula

requires exponential time for DND RD to solve. However this does not give us a separation
between DR

ND RD and DND RD, as one could argue if for the remaining 1
4

probability, DND RD

can solve Ladder formula in polynomial time, then one only needs to run DND RD over the
Ladder formula four times (in other words, a constant number of times), and then one
of the four runs is then expected to have polynomial run time. To complete the proof,
we construct another class of formulas FT using Laddern formulas and show that with

probability at least 3
4

T
, FT requires Ω(2m) time for DND RD to solve, and on the other

hand, the expected number of restarts DND RD needs to solve FT in polynomial time is
mT . As a result, if we choose T = ω(1), and T grows just a little faster than a constant,
we can super-polynomially separate DND RD and DR

ND RD.

To construct Fn, we simply take the conjunction over T Laddern formulas over disjoint
sets of variables:

FT ≡ Ladder1n ∧ Ladder2n ∧ Ladder3n ∧ ... ∧ LadderT−1n ∧ LadderTn
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Theorem 4.4.8. The expected number of restarts needed for DR
ND RD to find a satisfying as-

signment for FT in polynomial time is mT , where DND RD will find a satisfying assignment

in time Ω(2m) with probability at least 3
4

T
.

Proof. We first observe that, since FT consist T Laddern formulas over distinct variables,
a satisfying assignment of FT must satisfy every one of the T Laddern formulas.

To show an upper bound for DR
ND RD, we use a similar argument used in Lemma 4.4.3,

where we showed that the expected number of restart required to set the dk variables
to the correct value is m. Now consider the case for FT , in order for DR

ND RD to solve
FT , instead of setting n dk variables to the desired value, the solver needs to set n ∗ T dk
variables before it can solver FT in polynomial time. Then the expected number of restarts
is 2Tn = 2nT

= mT .

To show lower bound for DND RD, we simply argue that since the probability of finding
a satisfying assignment for one of the T Laddern formulas is independent from finding a

satisfying assignment of another, with probability at least 3
4

T
, DND RD will get “stuck” in

at least one of the T Laddern formulas, and by Lemma 4.4.6, requires Ω(2m) time to find
a satisfying assignment for FT .
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Chapter 5

Conclusion

We made four contributions in this thesis. First, we discussed three classes of candidate
instances proposed by proof complexity theorists for separating CND ND and CR

ND ND,
and showed that both of these classes of instances are not able to exponentially separate
CND ND and CR

ND ND. For the second part of the thesis, we prove results that establish the
power of restarts (or lack thereof) for certain models of CDCL and DPLL SAT solvers. We
first show that restarts do not provide any extra power for CDCL SAT solvers when we
assume that both the variable and value selection heuristics are non-deterministic static.
Second, we show that DPLL SAT solvers with non-deterministic dynamic variable selection,
randomized dynamic value selection, and restarts are super-polynomially faster on the class
of formulas Fn than the same model without restarts. Third, in order to show the second
result we proved a generic result that may have wider applicability, namely, that the
size of DPLL proofs of unsatisfiable formula ϕ is lower bounded by 2dc(ϕ), where dc(ϕ)
is the decision complexity of ϕ. Lastly, we showed that CDCL SAT solvers with non-
deterministic static variable selection, non-deterministic static value selection, and with
restarts, are polynomially equivalent to the same model but without restarts. In fact, our
result is stronger, in that, both configurations produce the exact same proof for the same
unsatisfiable input formula. Further, their runs are identical for satisfiable instances as
well. Finally, the result holds irrespective of the choice of learning scheme.

Crucial to our results were two insights. First, that there is very subtle interplay
between restarts and other SAT solver heuristics in the models we studied, i.e., the power
of restarts becomes apparent only when some other heuristic is weakened relative to their
non-deterministic counterpart (e.g., randomized value selection). Second, we shifted the
focus from unsatisfiable instances to satisfiable instances to prove our result vis-a-vis the
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drunk DPLL SAT solver model. In the future, we plan to lift our ideas to a large number
of configurations we have identified as interesting both for restarts and other heuristics,
leveraging the lessons learnt in this work.
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