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Abstract: Recommendation services bear great importance in e-commerce, shopping, tourism,
and social media, as they aid the user in navigating through the items that are most relevant to
their needs. In order to build recommender systems, organizations log the item consumption
in their user sessions by using different sensors. For instance, Web sites use Web data loggers,
museums and shopping centers rely on user in-door positioning systems to register user movement,
and Location-Based Social Networks use Global Positioning System for out-door user tracking.
Most organizations do not have a detailed history of previous activities or purchases by the user.
Hence, in most cases recommenders propose items that are similar to the most recent ones viewed
in the current user session. The corresponding task is called session based, and when only the last
item is considered, it is referred to as item-to-item recommendation. A natural way of building
next-item recommendations relies on item-to-item similarities and item-to-item transitions in the
form of “people who viewed this, also viewed” lists. Such methods, however, depend on local
information for the given item pairs, which can result in unstable results for items with short
transaction history, especially in connection with the cold-start items that recently appeared and
had no time yet to accumulate a sufficient number of transactions. In this paper, we give new
algorithms by defining a global probabilistic similarity model of all the items based on Random
Fields. We give a generative model for the item interactions based on arbitrary distance measures
over the items, including explicit, implicit ratings and external metadata to estimate and predict
item-to-item transition probabilities. We exploit our new model in two different item similarity
algorithms, as well as a feature representation in a recurrent neural network based recommender.
Our experiments on various publicly available data sets show that our new model outperforms
simple similarity baseline methods and combines well with recent item-to-item and deep learning
recommenders under several different performance metrics.

Keywords: recommender systems; recurrent neural networks; fisher information; markov
random fields

1. Introduction

Consider a museum that wants to provide a virtual guide for visitors that explains the items in an
exhibition and keeps tracks of the items viewed during the visit with a beacon by using in-door and

Sensors 2019, 19, 3498; doi:10.3390/s19163498 www.mdpi.com/journal/sensors

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SZTAKI Publication Repository

https://core.ac.uk/display/228079498?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0001-6233-3490
http://www.mdpi.com/1424-8220/19/16/3498?type=check_update&version=1
http://dx.doi.org/10.3390/s19163498
http://www.mdpi.com/journal/sensors


Sensors 2019, 19, 3498 2 of 23

out-door positioning systems for tracking. Using the list of items viewed, the museum can suggest
unseen items that might be relevant [1–3]. In such applications, the task is to recommend relevant
items to a user based on items seen during the current session [4] rather than on user profiles.

An intuitive approach to building the list of relevant items to recommend in a user session is to
compare the attributes of the most recent item against those of candidate next items, and select the most
similar one. Such naive methods only use the attributes of the item pair in question. When considering
more complex patterns, it becomes challenging to deal with the high-dimensional and nonlinear
complete sensor data collection [5]. More data provides more accurate prediction, however at the same
time, useful knowledge might be submerged in large amounts of redundant data.

More recent methods construct a notion of similarity based on global information, for example,
by dimensionality reduction [6] or by building a neural embedding [7]. Dimensionality
reduction is often used to obtain a more compact representation of the original high-dimensional
data, a representation that nonetheless captures all the information necessary for higher-level
decision-making [8].

Our goal is to use global information for defining item similarity, which can help to handle rare and
new items and tackle the so-called cold start case [9] where the new items do not yet have sufficient
number of interactions to reliably model their relation to the user. The main difficulty compared
to the traditional dimensionality reduction task is that a session is too short to gather meaningful
description over the user side of the data, hence dimensionality reduction has to be performed by
partial information, the item side of the data only.

Our key idea is to define a notion of similarity based on the global characteristics of the items,
possibly combining multiple modes, such as user feedback, content, and metadata. Our starting point
is the Euclidean Item Recommender (EIR) method of [6], which utilizes all training data to estimate
item-item conditional probabilities through latent factor vectors, which are learned globally.

Our new algorithm is based on a simple generative model for the occurrence and co-occurrence
of items. The generative model itself can be defined by combining and augmenting standard similarity
measures, such as Jaccard or Cosine based on collaborative, content, multimedia, and metadata
information. As a common practice, especially with cold-start items, we also include the item attributes
to compute similarities. As an example, in the use case of the person visiting a museum with a in-door
positioning device, the recommender system could use the content of the viewed items to improve the
recommendations of the next items to visit. We incorporate content similarity in our experiments by
mapping the movies in the MovieLens data set to DBpedia [10].

Rather than using our generative model directly for recommendation, we utilize the tangent space
of the model to derive mathematically grounded feature representations for each item. We compute
an approximation of the Fisher vector corresponding to the Gibbs distribution of the generative
model. Our method is based on the theory described in a sequence of papers with the most important
steps including [11–13], which are in turn used in most of the state-of-the-art image classification
methods [14,15].

We propose two direct ways of using the space of Fisher vectors for item to item recommendation.
In addition, we also utilize the Fisher vectors by considering them as a predefined embedding in
Recurrent Neural Network (RNN) recommender models. The past few years have seen the tremendous
success of deep neural networks in several tasks [16]. Sequential data modeling has also recently
attracted a lot of attention based on various RNNs [17,18]. In recommender systems, recurrent networks
were perhaps first used in the Gru4Rec algorithm [7]. In our best performing algorithm, we replace the
dynamically trained neural embedding of Gru4Rec by the precalculated Fisher vectors.

We experimentally show that item-to-item recommendations based on the similarity of the
Fisher vectors perform better than both traditional similarity measures and the Euclidean Item
Recommender [6]. For session recommendation, by replacing the neural embedding in Gru4Rec [7]
with the Fisher vectors, we obtain a class of methods based on different item descriptors that combine
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well and improve the recommendation quality of Gru4Rec. We evaluate our experiments using top-n
recommendation [19] performance of our models by MPR [6], Recall, and DCG [20].

Our key contributions in this research can be summarized as follows:

• We propose a novel application of Fisher vectors by using them as item representations in
recommender systems. We symbolically derive the Fisher vectors for our tasks and give
approximate algorithms to compute them.

• We propose two ways of using the representations for item-to-item recommendation. We measure
a performance improvement compared to prior methods.

• We examine the usage of Fisher vectors as a predefined embedding in recurrent neural network
based recommendation systems and measure competitive, in some cases even significantly
improved, performance compared to dynamically trained neural embedding methods.

The rest of this paper is organized as follows. After the related results, in Section 3 we describe
traditional item pair similarity measures and our Fisher vector based machinery for defining similarity
based on global item information. In Section 4 we give a brief overview of the Gru4Rec algorithm [7]
and show how we can incorporate Fisher vectors by replacing the neural item embeddings. In Section 5
we describe the experimental data sets, settings, and algorithms, and in Section 6 we present our
experimental evaluation.

2. Related Results

Recommender systems surveyed in [21] have become common in a variety of areas including
movies, music, tourism, videos, news, books, and products in general. They produce a list
of recommended items by either collaborative or content-based filtering. Collaborative filtering
methods [4,22,23] build models of past user-item interactions, while content-based filtering [24]
typically generates lists of similar items based on item properties. Recommender systems rely on
explicit user feedback (e.g., ratings, likes, dislikes) or implicit feedback (e.g., clicks, plays, views) to
assess the attitude towards the items viewed by the user.

The Netflix Prize Challenge [25,26] has revolutionized our knowledge of recommender systems,
but caused bias in research towards scenarios where user profiles and item ratings (1–5 stars) are
known. However, for most Web applications, users are reluctant to create logins and prefer to browse
anonymously. In other cases, users purchase certain types of goods (e.g., expensive electronics) so rarely
that previous purchases are insufficient to create a meaningful user profile. Several practitioners [6]
argue that most of the recommendation tasks they face count as implicit feedback and are without
sufficient user history. In [27] the authors claim that 99% of the recommendation systems they built
for industrial application tasks are implicit, and most of them are item-to-item. For these cases,
recommender systems rely on the recent items viewed by the user in the given shopping session.

The first item-to-item recommender methods [4,22] used similarity information to find nearest
neighbor transactions [28]. Another solution is to extract association rules [29]. The method outlined
in [30] learns similarity weights for users; however, the method gives global and not session-based
user recommendation.

Rendle et al. [31] proposed a session-based recommender system that models the users by
factorizing personal Markov chains. Their method is orthogonal to ours in that they provide more
accurate user-based models if more data is available, while we concentrate on extracting actionable
knowledge from the entire data set for the sparse transactions in a session.

Item-to-item recommendation can be considered a particular context-aware recommendation
problem. In [32] sequentiality as a context is handled by using pairwise associations as features in
an Alternating Least Squares (ALS) model. The authors mention that they face the sparsity problem
in setting minimum support, confidence, and lift of the associations, and they use the category of
last purchased item as a fallback. In a follow-up result [33], they use the same context-aware ALS
algorithm. However, they only consider seasonality as a context in the latter paper.
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In case of sequential item-to-item recommendation, we exploit our knowledge about previous
item transitions. The closest to our work is the Euclidean Item Recommender [6] by Koenigstein and Koren.
They model item-to-item transitions using item latent factors where the Euclidean distance between
two vectors approximates the known transition probabilities in the training data set. Our model
differs in that we do not need to optimize a vector space to learn the transition probabilities in a lower
dimensional space. Instead, we start from an arbitrary similarity definition, and we can extend
similarity for all items by using all training data, in a mathematically justified way. We use Fisher
information that has been applied for DNA splice site classification [12] and computer vision [13],
but we are the first to apply it in recommender systems. In our experiment, we made an effort to
reproduce the experimental settings of EIR to the greatest extent possible.

Recurrent Neural Networks have been applied in capturing temporal dynamics of implicit and
explicit recommendation. One of the first uses of neural networks for recommendation is the Restricted
Boltzmann Machines (RBM) method for Collaborative Filtering [34]. In this work, an RBM is used to
model user-item interaction and perform recommendations. Hochreiter in [35] showed that simple
recurrent units are not entirely sufficient to describe long-term dependencies, and together with
Schmidhuber he suggested Long-Short Term Memory (LSTM) in [18]. Cho et al. [17] proposed a less
complex recurrent unit, the Gated Recurrent Unit (GRU). Hidasi et al. [7] built a widely used neural
network structure, the Gru4Rec with GRU and a specific input, output embedding for sequential
recommendation. Their model transforms a high dimensional one-hot coded item representation into
a relative small dimensional but dense embedded vector. The context-free embedding vectors act as
input to the single GRU layer with output gates, and they are finally transformed back into the high
dimensional, itemset-sized probabilistic space. During training, the model is optimized for predicting
the next item in the sequence.

Finally, we review the results of extending content description by knowledge graphs. To help
with the cold-start problem, it is a common practice to include the attributes of the items in the
recommender system. For example, in the case of recommender system based on a in-door positioning
device, we could use the content of the viewed items to improve the recommendations of additional
items [36,37].

Knowledge-based recommendation systems include the characteristics of the required item [38].
The characteristics of items and their descriptions is crucial for a knowledge-based recommendation
system to make accurate recommendations [39]. Knowledge about items can be compiled as statements,
rules or ontologies [40] using case-based or rule-based reasoning [41] such that knowledge is extracted
from a case database [42].

Linked open data has been used in several results to support content-based recommender
systems [43], our main result is the fusion of such techniques with collaborative filtering. The main
example of linked open data is DBPedia [10], a popular ontology used in recommender systems [44].
Such systems are used for recommender systems in several domains, including music [45] and
tourism [46]. However, the methods to fuse similarity based on ontologies and other techniques do
not go beyond simple score combination by using stacking [47].

3. Item-to-Item Similarity Measures

The natural way of item-to-item recommendation is to rank the next candidate items based on
their similarity to the last visited item. While the idea is simple, a wide variety of methods exist to
compute the distance or divergence of user feedback, content, and other potential item metadata.

In this section, first we enumerate the most common similarity measures among raw item
attributes, which will also serve as the baseline in our experiments. Then we describe our new
methodology that introduces an item representation in a kernel space built on top of the raw similarity
values. Based on the item representation, we define three different types of “kernelized”, transformed
similarity measures.
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3.1. Raw Attribute Similarity Measures

First, we enumerate distance and divergence measures that directly compare the attributes of
the item pair in question. We list both implicit feedback collaborative filtering and content-based
measures. The raw attribute similarity formulas yield the natural baseline methods for item-to-item
recommendation.

For user implicit feedback on item pairs, various joint and conditional distribution measures can
be defined based on the frequencies fi and fij of items i and item pairs i, j, as follows.

1. Cosine similarity (Cos):

cos(i, j) =
fij√
fi f j

. (1)

2. Jaccard similarity (JC):

JC(i, j) =
fij

fi + f j − fij
. (2)

3. Empirical Conditional Probability (ECP), which estimates the item transition probability:

ECP(j|i) =
fij

fi + 1
, (3)

where the value 1 in the denominator is used for smoothing.

Additionally, in [6] the authors suggest the Euclidean Item Recommender (EIR) model to
approximate the transition probabilities with the following conditional probability

p(j|i) = exp−||xi−xj ||2+bj

∑k∈T exp−||xi−xk ||2+bk
, (4)

where T is the set of items. They learn the item latent vectors {xi} and biases {bi}.
Besides item transitions, one can measure the similarity of the items based on their content

(e.g., metadata, text, title). We will measure the content similarity between two items by the
Cosine, Jaccard, tf-idf, and the Jensen–Shannon divergence of the bag of words representation of
the metadata description.

3.2. Similarity in the DBPedia Knowledge Graph

We obtain text description of MovieLens movies by mapping them to DBpedia (http://wiki.
dbpedia.org) [10]. DBpedia is the representation of Wikipedia as a knowledge graph described in
the machine readable Resource Description Framework (RDF). RDFs are triplets of the resource,
the property, and the property value, all identified by a Uniform Resource Identifier (URI), which we
use for defining the item description vocabulary.

We compute the Jaccard similarity between two items using the nodes connected to the movies
represented by their graphs. For an item i, we build the set of properties iprop of the neighboring
resources. The Jaccard similarity between the items is defined by the formula

sim(i, j) =
|iprop

⋂
jprop|

|iprop
⋃

jprop|
. (5)

3.3. Notion of Similarity Based on Fisher Information

In this section, we describe our new method, a feature representation of the items that augments
the similarity measures of the previous section by using global information. Our representation can
be the basis of performance improvement, since it relies on global structural properties rather than

http://wiki.dbpedia.org
http://wiki.dbpedia.org
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simple statistics between the user feedback or content of the two items in question. In addition,
by starting out with multimodal similarity measures, including implicit or explicit user feedback,
user independent metadata, such as text description, linkage, or even multimedia content, our
machinery yields a parameter-free combination of the different item descriptions. Hence, the current
section builds upon and fuses all the possible representations described in the previous sections.

Our method is based on the theory of the tangent space representation of items described in
a sequence of papers with the most important steps including [11–13]. In this section, we describe
the theory and its adaptation to the item-to-item recommendation task where we process two
representations, one for the previous and one for the current item.

After describing our feature representation, in the subsequent subsections we give three different
distance metrics in the representing space, based on different versions of the feature representations.
We start our definition of global structural similarity by considering a set of arbitrary item pair
similarity measures, such as the ones listed in the previous section. We include other free model
parameters θ, which can, for example, serve to scale the different raw attributes or the importance
of attribute classes. We give a generative model of items i as a random variable p(i|θ). From p(i|θ),
we infer the distance and the conditional probability of pairs of items i and j by using all information
in θ.

To define the item similarity generative model, let us consider a certain sample of items
S = {i1, i2, . . . , iN} (e.g., most popular or recent items), and assume that we can compute the distance
of any item i from each of in ∈ S. We consider our current item i along with its distance from each
in ∈ S as a random variable generated by a Markov Random Field (MRF). Random Fields are a set of
(dependent) random variables. In case of MRF, the connection between the elements is described by
an undirected graph satisfying the Markov property [48]. For example, the simplest Markov Random
Field can be obtained by using a graph with edges between item i and items in ∈ S, as shown in
Figure 1.

Figure 1. Similarity graph of item i with sample items S = {i1, i2, ..., iN} of distances dist(i, in) from i.

Let us assume that we are given a Markov Random Field generative model for p(i|θ). By the
Hammersley–Clifford theorem [49], the distribution of p(i|θ) is a Gibbs distribution, which can be
factorized over the maximal cliques and expressed by a potential function U over the maximal cliques
as follows:

p(i | θ) = e−U(i|θ)/Z(θ), (6)

where U(i | θ) is the energy function and

Z(θ) = ∑
i

e−U(i|θ) (7)

is the sum of the exponent of the energy function over our generative model, a normalization
term called the partition function. If the model parameters are previously determined, then Z(θ)
is a constant.
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By using the Markov Random Field defined by the graph in Figure 1, or some more complex ones
defined later, a wide variety of proper energy functions can be used to define a Gibbs distribution.
The weak but necessary restrictions are that the energy function has to be positive real valued, additive
over the maximal cliques of the graph, and more probable parameter configurations have to have
lower energy.

We define our first energy function for (6) based on the similarity graph of Figure 1. Since the
maximal cliques of that graph are its edges, the energy function has the form

U(i | θ = {α1, .., αN}) :=
N

∑
n=1

αndist(i, in), (8)

where S = {i1, .., iN} is a finite sample set, dist is an arbitrary distance or divergence function of item
pairs, and the hyperparameter set θ is the weight of the elements in the sample set.

In a more complex model, we capture the connection between pairs of items by extending the
generative graph model with an additional node for the previous item as shown in Figure 2. In the
pairwise similarity graph, the maximal clique size increases to three. To capture the joint energy
with parameters θ = {βn}, we can use a heuristic approximation similar to the pseudo-likelihood
method [48]: we approximate the joint distribution of each size three clique as the sum of the individual
edges by

U(i, j | θ) :=
N

∑
n=1

βn(dist(i, in) + dist(j, in) + dist(i, j)). (9)

At first glance, the additive approximation seems to oversimplify the clique potential and falls
back to the form of Equation (8). However, the three edges of clique n share the hyperparameter βn,
which connects these edges in our modeling approach.

Figure 2. Pairwise similarity graph with sample set S = {i1, i2, ..., iN} for a pair of items i and j.

Based on either of the energy functions in Equation (8) or (9), we are ready to introduce the Fisher
information to estimate distinguishing properties by using the similarity graphs. Let us consider a
general parametric class of probability models p(i|θ) where θ ∈ Θ ⊆ R`. The collection of models
with parameters from a general hyperparameter space Θ can then be viewed as a (statistical) manifold
MΘ, provided that the dependence of the potential on Θ is sufficiently smooth. By [50], MΘ can be
turned into a Riemann manifold by giving an inner product (kernel) at the tangent space of each point
p(i|θ) ∈ MΘ where the inner product varies smoothly with p.

The notion of the inner product over p(i|θ) allows us to define the so-called Fisher metric on
M. The fundamental result of C̆encov [11] states that the Fisher metric exhibits a unique invariance
property under some maps, which are quite natural in the context of probability. Thus, one can view
the use of Fisher kernel as an attempt to introduce a natural comparison of the items on the basis of
the generative model [12].
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We start by defining the Fisher kernel over the manifold MΘ of probabilities p(i|θ) as in
Equation (6), by considering the tangent space. The tangent vector, which is the row vector defined as

Gi = ∇θ log p(i|θ) =
(

∂

∂θ1
log p(i|θ), . . . ,

∂

∂θN
log p(i|θ)

)
, (10)

is called the Fisher score of (the occurrence of) item i. An intuitive interpretation is that Gi gives
the direction where the parameter vector θ should be changed to fit item i the best [13]. The Fisher
information matrix is a positive definite matrix of size N × N, defined as

F(θ) := Eθ

(
∇θ log p(i|θ)T∇θ log p(i|θ)

)
, (11)

where the expectation is taken over p(i|θ), i.e.,

F(θ)nm = ∑
i∈T

p(i|θ)
(

∂

∂θn
log p(i|θ)

)(
∂

∂θm
log p(i|θ)

)
,

where T is the set of all items. The corresponding kernel function

K(i, j) := GiF−1GT
j (12)

is called the Fisher kernel. We further define the Fisher vector of item i as

Gi = GiF−
1
2 , (13)

so that the equation
GiGT

j = K(i, j) (14)

holds (as F is symmetric).
Thus, to capture the generative process, the gradient space of MΘ is used to derive the Fisher

vector, a mathematically grounded feature representation of item i.

3.4. Item-to-Item Fisher Distance (FD)

Based on the feature representation framework of the previous section, in the next three
subsections we propose three item similarity measures.

Our first measure arises as an inner product of the Fisher vectors. Any inner product can be used
to obtain a metric by having ‖u‖ = 〈u, u〉 1

2 . Using the Fisher kernel K(i, j), the Fisher distance can be
formulated as

distF(i, j) = ‖Gi − Gj‖K =
√

K(i, i)− 2K(i, j) + K(j, j). (15)

Thus, we need to compute the Fisher kernel over our generative model as in (12). By substituting
into (15), the recommended next item after item i will be

j∗ = arg min
j 6=i

distF(i, j). (16)

The computational complexity of the Fisher information matrix estimated on the training set
is O(T|θ|2) where T is the size of the training set. To reduce the complexity to O(T|θ|), we can
approximate the Fisher information matrix with the diagonal as suggested in [12,13]. Our aim is then
to compute

Gi = GiF−
1
2 ≈ GiF

− 1
2

diag.

For this, we observe that
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Gk
i (θ) =

∂

∂θk
log p(i|θ) = ∂

∂θk
log

e−U(i|θ)

∑j∈S e−U(j|θ)

= ∑
l∈T

e−U(j|θ)

∑j∈S e−U(j|θ)
∂U(l|θ)

∂θk
− ∂U(i|θ)

∂θk

= ∑
l∈T

p(l|θ)∂U(l|θ)
∂θk

− ∂U(i|θ)
∂θk

, (17)

and also that
∂U(i|θ)

∂θk
= dist(i, ik) . (18)

Combining (17) and (18), we get

Gk
i (θ) = Eθ(dist(i, ik))− dist(i, ik) . (19)

Also, since

Fkk = Eθ

[(
∂

∂θk
log p(i|θ)

)2
]

, (20)

by (17) and (18)
Fkk = Eθ

[
(Eθ(dist(i, ik))− dist(i, ik))

2
]

, (21)

i.e., for the energy functions of Equations (8) and (9), the diagonal of the Fisher kernel is the standard
deviation of the distances from the samples.

Finally, using this information, we are able to compute Gi as

Gk
i =

Eθ [dist(i, ik)]− dist(i, ik)

E
1
2
θ

[
(Eθ(dist(i, ik))− dist(i, ik))

2
] , (22)

which gives us the final kernel function as

K(i, j) = GiF−1GT
j ≈ GiF−1

diagGT
j

= GiF
− 1

2
diagF−

1
2

diagGT
j = ∑

k
Gk

i Gk
j .

(23)

The formula in (22) involves the distance values on the right side, which are readily available,
and the expected values on the left side, which can be estimated by using the training data. We note that
here we make a heuristic approximation: instead of computing the expected values (e.g., by simulation),
we substitute the mean of the distances from the training data.

All of the measures in Section 3 can be used in the energy function as the distance measure after
small modifications. Now, let us assume that our similarity graph (Figure 1) has only one sample
element i, and the conditional item is also i. The Fisher kernel will be

K(i, j) =
1
σ2

i
(µi − dist(i, i))(µi − dist(i, j))

=
µ2

i
σ2

i
− µi

σ2
i

dist(i, j)

= C1 − C2 ∗ dist(i, j),

(24)
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where µi and σi are the expected value and variance of distance from item i. Therefore, if we fix θ, C1

and C2 are positive constants, and the minimum of the Fisher distance is

min
j 6=i

distF(i, j) = min
j 6=i

√
K(i, i)− 2K(i, j) + K(j, j)

= min
j 6=i

√
2C2 ∗ dist(i, j) = min

j 6=i
dist(i, j).

(25)

Hence, if we measure the distance over the latent factors of EIR, the recommended items will be
the same as defined by EIR, see Equation (10) in [6].

3.5. Item-to-Item Fisher Conditional Score (FC)

Our second item similarity measure relies on the item-item transition conditional probability
Gj|i(θ) computed from the Fisher scores of Equation (10). As the gradient corresponds to how well the
model fits the sample, the easiest fit as next item j∗ has the lowest norm; hence,

j∗ = arg min
j 6=i

||Gj|i(θ)||. (26)

We compute Gj|i(θ) by the Bayes theorem as

Gj|i =∇θ log p(j|i; θ) = ∇θ log
p(i, j|θ)
p(i|θ) =

=∇θ log p(i, j|θ)−∇θ log p(i|θ) =
=Gij − Gi. (27)

To compute, we need to determine the joint and the marginal distributions Gij and Gi for a
particular item pair. For an energy function as in Equation (8), we have seen in (19) that the Fisher
score of i has a simple form,

Gk
i (θ) = Eθ [dist(i, ik)]− dist(i, ik), (28)

and it can be seen similarly for Equation (9) that

Gk
ij(θ) = Eθ [dist(i, ik) + dist(j, ik) + dist(i, j)]

−(dist(i, ik) + dist(j, ik) + dist(i, j)).
(29)

Now, if we put (28) and (29) into (27), several terms cancel out and the Fisher score becomes

Gk
j|i = Eθ [dist(j, ik) + dist(i, j)]− (dist(j, ik) + dist(i, j)). (30)

Substituting the mean instead of computing the expected value as in Section 3.4, the probabilities
p(k, l|θ) = 1

n2 . Using this information, we can simplify the above formula:

∑
r∈T

∑
l∈T

1
n2 [dist(l, ik) + dist(r, l)]− [dist(j, ik) + dist(i, j)] = (31)

=
1
n ∑

l∈T
dist(l, ik) +

1
n2 ∑

r∈T
∑
l∈T

dist(r, l)− dist(j, ik)− dist(i, j) . (32)

Since the second term is independent of k, it has to be calculated only once, making the
computationO(|T|2 + |T|N). Thus, this method is less computationally efficient than the previous one.
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3.6. Multimodal Fisher Score and Distance

So far we have considered only a single distance or divergence measure over the items. We can
expand the model with additional distances with a simple modification to the graph of Figure 1.
We expand the points of the original graph into new points Ri = {ri,1, .., ri,|R|} corresponding to R
representatives for each item in in Figure 3. There is an edge between two item representations ri,` and
rj,k if they are the same type of representation (` = k) and the two items were connected in the original
graph. This transformation does not affect the maximal clique size and, therefore, the energy function
is a simple addition, as

U(i | θ) =
N

∑
n=1

|R|

∑
r=1

αnrdistr(ir, inr). (33)

If we expand the joint similarity graph to a multimodal graph, the energy function will be

U(i, j | θ) =
N

∑
n=1

|R|

∑
r=1

βnr(distr(ir, inr)

+distr(jr, inr) + distr(ir, jr)).

(34)

Figure 3. Single and multimodal similarity graph with sample set S = {i1, i2, ..., iN} and |R|modalities.

Now, let the Fisher score for any distance measure r ∈ R be Gir. In that case, the Fisher score for
the multimodal graph is the concatenation of the unimodal Fisher scores, as

Gmulti
i = {Gi1, .., Gi|R|}, (35)

and, therefore, the norm of the multimodal Fisher score is a simple sum over the norms:

||Gmulti
i || =

|R|

∑
r=1
||Gir||. (36)

The calculation is similar for the Fisher kernel of Equation (23); thus, the multimodal kernel can
be expressed as

Kmulti(i, j) =
|R|

∑
r=1

Kr(i, j). (37)

4. Recurrent Neural Networks and Fisher Embedding

All similarity measures of Section 3, both the traditional and the Fisher information based ones,
utilize only the last consumed item for prediction. Clearly, additional information can be gained from
previous items and item transitions in the session. In this section, we give a new method that utilizes
the representations of potentially all previous items in the session by incorporating them as an item
embedding in a recurrent neural network.

A possible method for predicting the next item based on a sequence of items is Gru4Rec [7],
a Recurrent Neural Network model. Gru4Rec transforms a high-dimensional one-hot encoded
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item representation into a relative small dimensional but dense embedded vector. The model
dynamically learns vector embeddings for the items and feeds the representations of the item sequence
to GRU units [17] in a neural network. The prediction of the next item is done by a softmax layer,
which represents the predicted probability distribution of the next item. During training, the model is
optimized for predicting the next item in the sequence.

The Gru4Rec session recommender algorithm reads a sequence of items i1, i2, . . . , im consumed
by a user, and predicts the next item im+1 in the session by estimating the probability distribution
p(im+1 | im, im−1, . . . , i1). Gru4Rec uses GRU units as shown in Figure 4. In each time step m, a GRU
unit reads an input xm and updates its internal state hm:

zm = σ (Wzxm + Uzhm−1) (38)

rm = σ (Wrxm + Urhm−1) (39)

ĥm = tanh (Wxm + U (rm � hm−1)) (40)

hm = (1− zm)hm−1 + zm ĥm, (41)

where the matrices W and U are trainable parameters of the GRU unit.
In our case, xm = Eim is an embedding E ∈ R|T|×k of item im where T is the set of items and k is

the predefined dimensionality of the embedding. Gru4Rec defines another matrix S ∈ Rk×|T| as the
output item representation in the softmax layer that selects the most probable next item to recommend.
The model recursively calculates the prediction the following way:

hm = GRU(hm−1, Eim); (42)

p(im+1 = j) =
e−hmSj

∑n∈T e−hmSn
. (43)

Since the matrices E and S both contain representations of the items, the model can also be defined
so that it shares the same parameters for both, i.e., it has the constraint S = ET .

In the original Gru4Rec algorithm, matrices E and S are updated by backpropagation, using the
error defined at the output softmax layer. In our modified algorithm, we propose two ways to take
advantage of the similarity graphs and Gru4Rec:

1. Instead of using the embedding that we obtain by training the network, we use the Fisher
normalized vector from Equation (13).

2. Optionally, we further extend the model with a linear layer, represented by matrix M ∈ Rk×k and
calculate hm = GRU(hm−1, Eik M), see Figure 4.

The linear transformation M is meaningless in the original model; however, it is useful when
using the model with precalculated item representations based on Fisher score. In particular, the linear
space in Equation (23) can formulate a linear embedding as

Gi ≈ GiF
− 1

2
diag,

and the additional quadratic transformation seems to make the diagonal approximation unnecessary,
as for a given i item the k-th element in the transformed embedding will be

Eik = (GiF
− 1

2
diagM)k = ∑

j
Gij f j Mjk.

Since we use the diagonal approximation Gik = Gik fk of (GiF−1/2)k in the formula, we simply
scale the dimensions of the vector Gi by constants, which is seemingly made unnecessary by the
learned transformation matrix. However, since the optimization process is highly non-convex, we may
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converge to a completely different suboptimal local optimum without using the scaling provided by
the F-term.

Embedding

track_id

GRU

m

hm-1 hm

Transformation

Softmax

x m

p(track_id       = j)m+1

Figure 4. Expanded Gru4Rec model for Fisher embedding.

5. Experiments

We performed experiments on four publicly available data sets: Netflix [25], MovieLens (http:
//grouplens.org/datasets/movielens/), Ziegler’s Books [51], and Yahoo! Music [52]. We randomly
split users into a training and a testing set. The number of training and testing pairs and the properties
of the data sets can be seen in Table 1.

Table 1. Data sets used in the experiments.

Data Set Items Users Training Pairs Testing Pairs

Netflix 17,749 478,488 7,082,109 127,756
MovieLens 3683 6040 670,220 15,425
Yahoo! Music 433,903 497,881 27,629,731 351,344
Books 340,536 103,723 1,017,118 37,403

We compute an item transition matrix from the items consumed by the users in sessions of the
training data. For example, for a session of items a, b, and c, we create three co-occurrence pairs
[(a, b), (b, c), (c, a)]. In a co-occurrence pair (i, j) we call the first element current item and the second
element next item. For each session in the dataset we first generate the co-occurrence pairs, and then
calculate the frequency of the pairs and items. Table 2 shows that most co-occurrence pairs in the data
sets are infrequent, and 75% of the pairs have low support. Another way to show that most of the
pairs are infrequent is to compute the kernel density estimation (KDE) of the frequency of the pairs.
KDE [53] is a non-parametric approach for density estimation. Figure 5 shows the KDE plots for the
data sets. We observe that most of the co-occurring pairs are infrequent for all the data sets. In our
experiments, we focus on infrequent item transitions using only the pairs of items where the current
item appears with low support in the dataset (i.e., under the 75% percentile). The maximum item
support that we considered for the data sets in our experiments is 2 for Books, 23 for Yahoo! Music,
300 for MovieLens and 1241 for Netflix.

We extended the item metadata of the MovieLens dataset by mapping attributes to DBpedia.
By doing this, we enriched the attributes of the movies by connecting them with edges labeled by the
director, actors, or genre. Figure 6 presents an example of the relations between movies using some

http://grouplens.org/datasets/movielens/
http://grouplens.org/datasets/movielens/
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of the properties of DBpedia. We compute the Jaccard similarity between two items using the nodes
connected to the movies represented by their graphs.

Table 2. Co-occurrence quartiles.

Data Set 25% 50% 75% Max

Books 1 1 2 1931
MovieLens 29 107 300 2941
Netflix 56 217 1241 144,817
Yahoo! Music 4 9 23 160,514

Figure 5. The Kernel Density Estimation function of the item co-occurrence concentrates at
infrequent values.

Figure 6. An example of movies from the MovieLens dataset that shows the relations of the movies
using the DBpedia knowledge graphs. The black squares show the movie title, the edges are the
properties and the white nodes are the property values.
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Out of the 3600 movies in the MovieLens dataset, we were able to map 3100 movies to DBpedia
using DBpedia Spotlight [54]. The resulting mapping consists of 371 properties and 146,000 property
values. Most properties appear only a few times, as presented in Table 3. Due to sparsity, we only used
the some of the properties including starring, writer, genre, director, and producer. Table 4 shows the
the most popular values for each of the selected movie properties. We consider the similarity between
the movies as the Jaccard similarity of the sets of the corresponding movie properties. Table 5 presents
statistics for the Jaccard similarity between the movies using the 100 most similar movies for each item.

Table 3. Percentiles for the distribution of how many times a property is used in the knowledge graph.
75% of the properties are used only 42 times. We discard rare movie attributes, and only focus on
Starring, writer, genre, director, and producer.

Mean Std. Min. 25% 50% 75% Max.

1 K 5.3 K 1 1 3 42 70 K

Table 4. Top 5 movie features for the selected properties in the knowledge graph.

Property Popular Values

Starring Robin_Williams, Robert_De_Niro, Demi_Moore, Whoopi_Goldberg, and Bruce_Willis.
Writer Woody_Allen, John_Hughes_(filmmaker), Robert_Towne, Lowell_Ganz, and Ronald_Bass.
Genre Drama_film, Baroque_pop, Blues, Drama, and Rhythm_and_blues.
Director Alfred_Hitchcock, Woody_Allen, Steven_Spielberg, Barry_Levinson, and Richard_Donner.
Producer Walt_Disney, Arnon_Milchan, Brian_Grazer, Roger_Birnbaum, and Scott_Rudin.

Table 5. Statistics of the Jaccard similarity using the 100 most similar movies for each movie.

Mean Std. Min. 10% 20% 30.0% 40% 50% 60.0% 70% 80% 90% Max.

0.1276 0.0728 0.0365 0.0778 0.087 0.0945 0.1005 0.1066 0.1179 0.126 0.1429 0.1976 0.8165

As baseline methods, we computed four item-item similarity measures: Empirical Conditional
Probability (ECP), Cosine (Cos), and Jaccard as defined in Section 3, and we also implemented the
Euclidean Item Recommender of [6] and modified the original Gru4Rec implementation for Fisher
embeddings (Code is available at https://github.com/daroczyb/Fisher_embedding). For evaluation,
we used MPR [6], Recall, and Discounted Cumulative Gain (DCG) [55].

By following the evaluation method of [6], we sampled 200 random items for each item in the
testing set. Given the current item i and next item j in a session, we used our algorithms to rank j along
with the random 200 items; we broke ties at random. In our settings, the better the model, the higher
the rank of the actual next item j.

6. Results

In this section, we present our experiments related to the recommendation quality of the
similarity functions and the versions of feedback and content similarity. Our new methods are
FC, Fisher conditional score from Section 3.5 followed by similarity, and FD, Fisher distance from
Section 3.4 followed by similarity. We also investigate the size of the sample set used for defining these
methods. As our final application of our feature representation, we experiment with using FC and FD
as replacements for the neural embeddings in Gru4Rec described in Section 4.

6.1. Sample Set

The similarity graphs are defined via the set of items used as samples (Figures 1–3). To smooth the
Fisher vector representation of sparse items, we choose the most popular items in the training set as
elements for the sample set. As we can see in Figure 7, recommendation quality saturates at a certain
sample set size. Therefore, we set the size of the sample set to 10 or 20 for the remaining experiments.

https://github.com/daroczyb/Fisher_embedding
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Figure 7. The quality of algorithms FD and FC with Jaccard similarity, as the function of the number
of most popular items used as reference in the similarity graphs of Figures 1–3 (horizontal axis).
The Recall (top) and DCG (bottom) increases as we add more items in the sample set (i.e., list of
recommended items).

6.2. Modalities: Implicit Feedback and Content

In Table 6 we show our experiments with DBPedia content as a modality on MovieLens.
The overall best performing model is the multimodal Fisher with Jaccard similarity, while every
unimodal Fisher method outperforms the baselines. By using Equation (37), we can blend different
modalities, such as content and feedback, without the need of setting external parameters or applying
learning for blending. We use a sample size of 10 in these experiments.

Table 6. Experiments on MovieLens with DBPedia content, all methods using Jaccard similarity.

Recall@20 DCG@20

Collaborative baseline 0.139 0.057
Content baseline 0.131 0.056
FC content 0.239 0.108
FD content 0.214 0.093
FC multimodal 0.275 0.123

6.3. Recurrent Neural Networks and Fisher Embedding

In Table 7 we show our experiments comparing the usage of Fisher embeddings with dynamically
learned neural embeddings. The Fisher embedding based experiments are comparable to the baseline
Gru4Rec even with simple similarity measures. In the last row of the table, we linearly combine
the predicted scores of separately trained Gru4Rec networks using the feedback Jaccard similarity
based Fisher embedding and the Content similarity based Fisher embedding. The effect of the linear
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combination is presented in Figure 8. The performance of the models in case of different item supports
is presented in Figure 9.

We can observe that the performance of the feedback Jaccard similarity based Fisher embedding
in combination with the Gru4Rec network performs similar to the dynamically learned neural
embeddings of the original model, with the former performing better in terms of MPR and Recall,
and the latter performing better in terms of DCG. While using content based Fisher embeddings by
themselves produces worse results, these content based features combine well with the collaborative
feedback-based ones. The good DCG performance of the original Gru4Rec model leads us to believe
that this model places more emphasis on the top of the ranking list, in comparison to the Fisher
embedding based versions, which perform better when measured by metrics that do not weigh
by rank.

We also run experiments to measure the dependence of Gru4Rec performance on the input
embeddings. We trained Gru4Rec by using randomly sampled vectors as input embeddings,
and without any further modification of these vectors, the model still achieved an MPR score of
0.1642. While the score we achieved is weak compared to our other expriements, is still much better
than the expected score of random item ordering. We conclude that the model is still able to learn the
distribution of the items and certain item transitions via training its softmax layer.

Table 7. Experiments on MovieLens with different input embeddings in Gru4Rec. Best performing
methods are indicated in boldface.

MPR DCG@20 Recall@20

Random embedding 0.1642 0.296 0.582
Neural embedding 0.0890 0.466 0.799
Feedback Jaccard based Fisher embedding 0.0853 0.437 0.794
Content based Fisher embedding 0.0985 0.405 0.757
Feedback and Content combination 0.0809 0.446 0.803

0.0 0.2 0.4 0.6 0.8 1.0
Weight of content score

0.085

0.090

0.095

M
PR

combination
gru4rec baseline

Figure 8. Linear combination weights for Feedback Jaccard and content based Fisher
embedding models.
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Figure 9. Performance of the different Gru4Rec based models in case of different item supports.



Sensors 2019, 19, 3498 18 of 23

6.4. Item-to-Item Methods over Infrequent Items

One of the main challenges in the field of recommendation systems is the “cold start” problem
when the new items have too few transactions that can be used for modeling. Due to the importance of
cold start recommendation, we examine the performance of our methods in the case of item transitions
where the next item has low support. Figure 10 shows the advantage of the Fisher methods for
item-to-item recommendation for different item support values. As support increases, best results are
reached by blending based on item support. If the current session ends with an item of high support,
we can take a robust baseline recommender, and if the support is less than roughly 100, we can use the
FC or FD representation for constructing the recommendation.

Tables 8–11 present our detailed results for item-to-item recommendation by using feedback
similarity. The choice of the distance function strongly affects the performance of the Fisher models.
As seen in Table 8, the overall best performing distance measure is Jaccard for both types of Fisher
models. The results in Table 9–11 show that the linear combination of the standard normalized scores
of the Fisher methods outperforms the best unimodal methods (Fisher with Jaccard) for Netflix and
Books, while for MovieLens and Yahoo! Music, Fisher distance with Jaccard performs best.
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Cosine
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Figure 10. Recall@20 as the function of item support for the Netflix data set.

Table 8. Experiments with combination of collaborative filtering for the first quantile (based on KDE
estimation of 25%) of the MovieLens data. Best performing methods are indicated in boldface.

MPR Recall@20 DCG@20

Cosine 0.4978 0.0988 0.0553
Jaccard 0.4978 0.0988 0.0547
ECP 0.4976 0.0940 0.0601
EIR 0.3203 0.1291 0.0344
FC Cosine 0.3583 0.1020 0.0505
FD Cosine 0.2849 0.1578 0.0860
FC Jaccard 0.3354 0.1770 0.1031
FD Jaccard 0.2415 0.1866 0.1010
FC ECP 0.2504 0.0940 0.0444
FD ECP 0.4212 0.1626 0.0856
FC EIR 0.4125 0.0861 0.0434
FD EIR 0.4529 0.1068 0.0560
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Table 9. Experiments over the first quantile (based on KDE estimations of 25%). Best performing
methods are indicated in boldface.

MovieLens Goodreads Yahoo! Music Netflix

MPR

Cosine 0.5024 0.4995 0.5 0.5028
Jaccard 0.5024 0.4995 0.5 0.5028
ECP 0.4974 0.5004 0.4999 0.4968
EIR 0.3279 0.482 0.2437 0.3395
FC Jaccard 0.2665 0.3162 0.2456 0.4193
FD Jaccard 0.2382 0.2389 0.0564 0.307
FC + FD JC 0.3652 0.2751 0.1319 0.3792

Recall@20

Cosine 0.0988 0.0966 0.0801 0.1254
Jaccard 0.0988 0.0966 0.0801 0.1254
ECP 0.0893 0.0956 0.0801 0.0954
EIR 0.1212 0.0996 0.1324 0.1033
FC Jaccard 0.1834 0.1084 0.1358 0.1845
FD Jaccard 0.1866 0.0917 0.2334 0.1636
FC + FD JC 0.118 0.136 0.101 0.3034

DCG@20

Cosine 0.0518 0.0505 0.044 0.0739
Jaccard 0.0518 0.0505 0.044 0.0733
ECP 0.0528 0.0505 0.044 0.0772
EIR 0.0405 0.0635 0.05 0.1198
FC Jaccard 0.1045 0.0517 0.0663 0.106
FD Jaccard 0.1085 0.0462 0.1112 0.0971
FC + FD JC 0.071 0.0757 0.0559 0.1734

Table 10. Experiments over the first two quantiles (based on KDE estimations of 50%). Best performing
methods are indicated in boldface.

MovieLens Goodreads Yahoo! Music Netflix

MPR

Cosine 0.5145 0.4995 0.5002 0.5017
Jaccard 0.5143 0.4995 0.5002 0.5014
ECP 0.4836 0.5004 0.4997 0.4953
EIR 0.3474 0.482 0.2495 0.3522
FC Jaccard 0.3181 0.3162 0.2452 0.4534
FD Jaccard 0.2589 0.2389 0.0629 0.3191
FC + FD JC 0.3167 0.2751 0.1357 0.3634

Recall@20

Cosine 0.1099 0.0966 0.0958 0.1792
Jaccard 0.1099 0.0966 0.0958 0.1789
ECP 0.1001 0.0956 0.0958 0.0863
EIR 0.1066 0.0996 0.1109 0.0914
FC Jaccard 0.137 0.1084 0.121 0.1683
FD Jaccard 0.1411 0.0917 0.208 0.1448
FC + FD JC 0.0981 0.136 0.1034 0.3071

DCG@20

Cosine 0.0572 0.0505 0.0532 0.0987
Jaccard 0.0574 0.0505 0.0532 0.097
ECP 0.0541 0.0505 0.0532 0.1104
EIR 0.0474 0.0635 0.0459 0.1283
FC Jaccard 0.0729 0.0517 0.0628 0.0973
FD Jaccard 0.0787 0.0462 0.1017 0.0833
FC + FD JC 0.0538 0.0757 0.0567 0.1743
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Table 11. Experiments over the first three quantiles (based on KDE estimations of 75%). Best performing
methods are indicated in boldface.

MovieLens Goodreads Yahoo! Music Netflix

MPR

Cosine 0.5223 0.4992 0.4989 0.4912
Jaccard 0.5203 0.4992 0.4989 0.4865
ECP 0.4668 0.5007 0.501 0.4866
EIR 0.3578 0.4663 0.254 0.3775
FC Jaccard 0.4406 0.3257 0.256 0.4491
FD Jaccard 0.3987 0.2502 0.0763 0.3441
FC + FD JC 0.3431 0.2871 0.1507 0.3613

Recall@20

Cosine 0.1233 0.0979 0.0958 0.1996
Jaccard 0.1226 0.0979 0.0958 0.1588
ECP 0.096 0.0961 0.0927 0.0689
EIR 0.1052 0.1048 0.1206 0.0724
FC Jaccard 0.1225 0.1182 0.1316 0.2023
FD Jaccard 0.1133 0.0891 0.2068 0.0983
FC + FD JC 0.0969 0.1416 0.1215 0.3235

DCG@20

Cosine 0.0655 0.0499 0.0528 0.1127
Jaccard 0.0655 0.0499 0.0528 0.0913
ECP 0.0588 0.0499 0.0528 0.1655
EIR 0.0495 0.0584 0.0545 0.1382
FC Jaccard 0.0657 0.0582 0.0681 0.114
FD Jaccard 0.0587 0.0467 0.1044 0.0542
FC + FD JC 0.0506 0.0822 0.0686 0.1827

7. Conclusions

Recommending infrequent item-to-item transitions without personalized user history is a
challenging dimensionality reduction task. In this paper, we considered the session-based item-to-item
recommendation task, in which the recommender system has no personalized knowledge of the user
beyond the last items visited in the current user session, a scenario that often occurs when physical
sensors log the behavior of visitors indoors or outdoors.

We proposed Fisher information-based global item-item similarity models for the session
modeling task. We reached improvement over existing methods in case of item-to-item transitions and
session-based recommendations by experimenting with a variety of data sets as well as evaluation
metrics. We constrained our similarity graphs for simple item-to-item transitions, defining the next
item depending only on the last seen item. By using recurrent neural networks, we were able to expand
our model to utilize more than one of the previous items in a session.

As a key feature, the model is capable of fusing different modalities, including collaborative
filtering, content, and side information, without the need for learning weight parameters or using
wrapper methods.
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Abbreviations

The following abbreviations are used in this manuscript:

DCG Discounted Cumulative Gain [55]
ECP Empirical Conditional Probability
EIR Euclidean Item Recommender [6]
FC Model from Section 3.5 followed by similarity
FD Model from Section 3.4 followed by similarity
GRU Gated Recurrent Unit [17]
Gru4Rec Recommender algorithm using GRU units [7]
KDE Kernel Density Estimation
RNN Recurrent Neural Network
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