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Abstract— This paper proposes a method to diagnose unex-
pected changes in the dynamic behavior of Chemical Reaction
Network models. It is considered that the disturbances can
induce changes in the reaction rate coefficients of chemical
reactions. Conditions for the estimation of such disturbances are
formulated. Using the algebraic properties of kinetic models,
on-line observers are designed to monitor the disturbance-
generated modifications in the reaction rate coefficients. An
extended disturbance observer is also introduced for such cases
when not all the states of the Chemical Reaction Network are
measurable. The applicability of the developed method is shown
through simulation studies.
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I. INTRODUCTION

The design of observer-based diagnosis methods for gen-
eral nonlinear systems is a challenging task that presents both
theoretical and computational difficulties [1]. Therefore, the
research efforts in this area are directed toward developing
special computationally efficient methods that utilize the
specialties of the application field.

Several kinds of important dynamical phenomena in nature
or technology can be modeled in the framework of non-
negative systems having the property that the nonnegative
orthant is invariant for the dynamics. Notable examples
are (bio)chemical kinetic processes, models of disease and
population dynamics, a wide range of models in the process
industries, and certain economic or transportation processes
(see e.g. [2] or [3]).

Chemical Reaction Networks (abbreviated as CRNs) form
an important class within the family of smooth nonnegative
nonlinear systems with increasing research interest in the
last decade [4], because they are suitable for the modeling
of complex nonlinear dynamical behavior, but have a math-
ematically simple and therefore computationally appealing
structure. In addition, there are numerous strong results in
the literature on the relation between the graph structure and
important dynamical properties of CRNs. The first results on
the dynamical and other properties of CRNs have appeared
in the late 1970’s by [5], but they have become widely
known in the systems and control literature in the 2000s [6].
Utilizing the strong results on the structural (i.e. parameter
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independent) stability of CRNs, computationally efficient
state estimation [7], stabilizing feedback controller design
[8] and observer design [9] methods have been developed
for this nonlinear system class. These results have paved the
way to develop observer-based diagnosis methods for CRNs,
too.

For efficient analysis and control, the modelling and
identification of CRNs are required. Off-line identification
methods for chemical process models were developed e.g. in
[10] and [11]. In the paper [12] conditions were formulated
for the identifiability of CRNs. Similar identifiability results
were developed for system biology models in the study [13].

Disturbance- and state estimation problems for chemical
processes, to which CRNs also belong, stayed constantly
in focus of the researchers in the last decades due to their
importance in industrial production [14]. The parameter- or
input disturbances not necessarily lead to malfunction of the
process control systems but they could affect both the steady
state and transient control performances, and consequently
the quality of the production. It is why efficient disturbance
estimation methods are necessary for the monitoring and
feed-forward disturbance compensation in process systems.
Recent approaches for the state- and disturbance estimation
in process systems can be found e.g. in [15] in which a robust
extended Kalman filter was proposed for simultaneous state
and parameter/disturbance estimation in process systems. In
the study [16] the virtual sensor approach was applied to
estimate unknown disturbances.

The aim of this study is the design of an on-line chemical
reaction rate coefficient- and input disturbance estimator for
CRNs. First, a reformulated CRN model is proposed that is
suitable for on-line estimation of reaction rate changes in
these systems. Second, a disturbance observer algorithm and
sufficient conditions are formulated for exact on-line esti-
mation of the reaction rate changes in CRNs. The proposed
observer design approach exploits the properties of the CRN
models. The algorithm was extended for open CRNs with
possible input disturbances. Third, a modified disturbance
observer structure was proposed for such case when not all
the concentration states of the CRN are known during the
estimation process.

The rest of the paper is organized as follows: in section II a
modeling approach for CRNs with disturbances is presented
that facilitates the observer design. Section III introduces the
proposed disturbance observers for CRNs. Simulation results
are given in section IV. Finally, section V concludes this
study.
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II. CRN MODELS FOR OBSERVER DESIGN

The dynamic model of CRNs is described below illustrated
with a simple example. Then the considered disturbances and
their appearance in this model are briefly outlined.

A. Dynamic model of Chemical Reaction Networks

The dynamic model of a CRN is built upon the following
elements [5]:
• Species: S := {S1 . . . Sn} are constituent molecules

undergoing (a series of) chemical reactions.
• Complexes: C := {C1 . . . Cm} are formally linear com-

binations of the species with integer coefficients, i.e.
Ck :=

∑n
i=1 αk,iSi, where αk,i are the stoichiometric

coefficients. If Si is not present in Ck, then αk,i = 0.
• Reactions: R := {R1 . . .Rr} where Rk : Ci → Cj .

Here Ci is the reactant (or source) complex, and Cj is
the product complex for k = 1, . . . , r.

• Reaction rate coefficient: κk > 0 that is associated to
Rk for k = 1, . . . , r.

We associate vectors yk ∈ Rn to the complexes Ck
composed of their stoichiometric coefficients αki such that
yk,i = αki for k = 1, . . .m. Let us denote by ykR ∈ Rn the
so-called complex vector associated to a reactant complex,
and by ykP ∈ Rn the vector associated to the product
complex of the kth reaction, i.e. Rk : CkR → CkP .

The reaction vector for the kth reaction is defined as ykP−
ykR. The stoichiometric matrix N ∈ Rn×r contains all the
reaction vectors of a CRN in its columns.

The CRN model describes the dynamics of the species’
concentrations. Let us denote the concentration vector by
c = (c1 c2 . . . cn) ∈ Rn+.

Mass action law: The simplest polynomial rate function
corresponds to the so called mass action law, when the
reaction rate of the kth reactionRk :

∑nS
i=1 αkR,iSki → CkP

is in the following form

rk(c,k) = κk

n∏
i=1

c
αkR,i

i (1)

where 00 := 1 and k = (κ1 κ2 . . . κr) ∈ Rr+. Let us
introduce the monomial vector

p(c) = (p1(c) p2(c) . . . pr(c)) ∈ Rr+ (2)

with pk(c) =
∏n
i=1 c

αkR,i

i Now we can form the reaction
rate vector r(c,k) = (r1 . . . rr)

T in the form

r(c,k) = diag(k)p(c) = diag(p(c))k

With these notations the ODE (Ordinary Differential Equa-
tion) model of a CRN reads as [17]:

ċ = Nr(c,k), c(0) = c◦. (3)

Example 1: (Plain Edelstein Network)
This model was originally published in [18] for illustrating
the phenomena of multiple steady states and hysteresis for
a simple biologically motivated reaction network structure.
The Edelstein CRN is composed of three species (S1, S2

and S3) and six chemical reactions. The reactions describe
autocatalytic production and the enzymatic degradation of
the species S1 [19]. The reaction structure of this CRN has
the form:

S1
κ1−⇀↽−
κ2

2S1

S1 + S2
κ3−⇀↽−
κ4

S3
κ5−⇀↽−
κ6

S2

Let the matrices NR and NP whose columns are the
reactant- and product vectors (ykR and ykP ). In the case
of the Edelstein network they have the form:

NR = NP =

 1 2 1 0 0
0 0 1 0 1
0 0 0 1 0

 . (4)

The stoichiometric matrix of the Edelstein network reads
as:

N =

 1 −1 −1 1 0 0
0 0 −1 1 1 −1
0 0 1 −1 −1 1

 , (5)

and

r(c) =
(
κ1c1 κ2c

2
1 κ3c1c2 κ4c3 κ5c3 κ6c2

)T
(6)

where ci represents the concentration of Si, i = 1, 2, 3.

B. Disturbance modeling

In this work, disturbances are assumed to act through
the change of reaction rate coefficients. For chemical sys-
tems, this can be the result of e.g. unexpected change of
temperature or chemical composition of a catalyst. In the
case of mass convection networks (see e.g. in [20]) which
are formally kinetic, change in the ‘rate coefficients’ can
be caused by altered flow conditions. Or, for a kinetic
disease model (see e.g. in [21]), changes in the probability
of infection or in the healing process might modify the rate
coefficients.

The effect of the disturbance on the reaction rate: Consider
that in the case of a disturbance event a number of q ≤
r elements of the reaction rate coefficient vector k suffer
changes, i.e. a number of q reactions are affected by the
disturbance. The rate disturbance vector is defined as φ =
(f1 . . . fr)

T ∈ Rr, fk ≥ −κk ∀k = 1 . . . r. The modified
rate vector is

kf = k + φ (7)

where φ may be time-dependent.
If the kth rate is not affected by the disturbance, fk = 0.
If fk > 0, the reaction rate increases.
If fk = −κk, the reaction vanishes.
The CRN model with disturbance reads as

ċ = Ndiag(p(c))(k + φ). (8)

Consider the truncated disturbance vector f =
(f1 . . . fq)

T ∈ Rq containing only those elements of
φ that could take non-zero values in the case of a
disturbance event. The corresponding truncated monomial
vector is denoted as pt(ct) ∈ Rq . Here ct represents
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the concentration vector of such species that take part in
disturbance-influenced reactions. Let the set of these species
be St ⊆ S.

The truncated stoichiometric matrix (Nt ∈ Rn×q) contains
those columns of N that describe such reactions that could
be influenced by the disturbances. With the appropriately
ordered Nt, pt, f , the equation (8) can be rewritten as:

ċ = Nr(c) +NtPt(ct)f (9)

where Pt(ct) = diag(pt(ct)).
Example 2: (Plain Edelstein Network continued)
Consider that the reactions 1, 3 are affected by distur-

bances. In this case:

ct = (c1 c2)T , Pt(ct) = diag (c1 c1c2) , (10)

Nt =

 1 −1
0 −1
0 1

 . (11)

III. DISTURBANCE OBSERVER DESIGN FOR CRNS

This section introduces a diagnosis method to determine
rate disturbances in CRNs. The proposed observer-based
design is extended to deal with open CRNs, and with partial
state measurements.

A. Rate disturbance estimation problem

Consider the disturbance-affected CRN model given by the
equation (9). The aim of the observer design is to compute
an estimate of f based on which the changes in the dynamics
of the CRN can be anticipated.

Let Σ∆ be a dynamic system which has the estimated
disturbance vector (f̂ ∈ Rq) as output, and its input is cm ∈
Rm, a vector which contains the measurable entries of the
state vector c.

Definition 1: Σ∆ is a disturbance observer of (9) if its
internal state vector is bounded and its output satisfies f̂ → f
as t→∞ for bounded inputs and finite initial conditions.

If no disturbance is present in the system (f = 0), then
f̂ → 0. Here 0 = (0 0 . . . 0)T .

Relation with the parameter identification problem:
According to the definition of [12], the CRN (3) has

uniquely identifiable rate constants assuming that each con-
centration is measurable, if Nr(c,k(1)) 6= Nr(c,k(2)) ∀c
and k(1) 6= k(2). It was shown in [12] that the rate constants
are identifiable iff for each reactant complex the vectors of
the outgoing reactions are linearly independent.

In the case of the off-line identification, the applied iden-
tification methods can be planned in such a way to directly
serve the computation of the unknown rate parameters. How-
ever, the on-line estimation is based only on instantaneous
measurements that cannot be influenced during the observer
design. It is why stronger assumptions are necessary to
develop an on-line estimation algorithm.

B. Observer design - Full state measurement

To design a disturbance observer for the system (9), the
following assumptions are made:

Assumption 1: The disturbance vector f is piecewise con-
stant.

Assumption 2: The matrix NtPt(ct) has full column rank
∀ct.

If the elements of the vector ct are non-zero during the es-
timation process, and Nt has full column rank (rank(Nt) =
q) the assumption 2 holds. The full column rank condition
is in concordance with the identifiability condition.

Let us construct the observer in the following form{
˙̂c = Nr(c) +NtPt(ct)f̂ + Γc(c− ĉ)
˙̂
f = Pt(ct)N

T
t Γf (c− ĉ)

(12)

where Γf ∈ Rn×n is a diagonal, positive definite matrix,
Γc ∈ Rn×n is a positive definite symmetric matrix. The
estimated disturbance is denoted by f̂ , the estimated state
vector is ĉ. The output of (12) is f̂ .

Theorem 1: If the Assumptions 1, 2 hold, then (12) is a
disturbance observer of the system (9).

Proof: Based on the models (9), (12) and Assumption 1
the dynamics of the observation errors (c̃ = c− ĉ, f̃ = f− f̂ )
yields as(

˙̃c
˙̃
f

)
=

(
−Γc NtPt(ct)

−Pt(ct)NT
t Γf 0

)(
c̃

f̃

)
. (13)

Define the Lyapunov function candidate

L(t) =
1

2
c̃TΓf c̃ +

1

2
f̃T f̃ . (14)

The time-derivative of it reads as

L̇(t) = c̃TΓf ˙̃c + f̃T
˙̃
f . (15)

From the model (13) we obtain:

L̇(t) = c̃TΓf

(
−Γcc̃ +NtPt(ct)f̃

)
− f̃TPt(ct)N

T
t Γf c̃.

(16)

As c̃TΓfNtPt(ct)f̃ =
(
c̃TΓfNtPt(ct)f̃

)T
(it is scalar),

it yields:

c̃TΓfNtPt(ct)f̃ = f̃TPt(ct)N
T
t Γf c̃. (17)

Consequently, taking into account that ΓfΓc is positive
definite:

L̇(t) = −c̃TΓfΓcc̃ ≤ 0. (18)

By LaSalle invariance principle, the trajectories of the
system (13) converge to the invariant set c̃ = 0. Accordingly,
c̃, ˙̃c → 0 as t → ∞. Hence, by (13) we obtain that
NtPt(ct)f̃ → 0 as t → ∞. By Assumption 2 the matrix
NtPt(ct) admits left inverse. Then we conclude that f̂ → f
as t→∞. �
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C. Extended observer with input disturbance compensation

Consider the model of an open CRN, with input and output
flows as in [22]

ċ = Nr(c) + i− Voc. (19)

The vector of the rate of supply is i, Voc is the rate of
removal. Vo = diag(v v . . . v) where v ≥ 0 is the outflow
rate.

The rate of supply can be modelled as

i = (vI1cI1 vI2cI2 . . . vIncIn)T (20)

where cIi is the ith inlet concentration and vIi ≥ 0 is the
ith input flow rate.

If constant volume is assumed in the reactor where the
reaction takes place, the relation

∑n
i=1 vIi = v holds.

The input disturbance is considered as a change in the inlet
concentration and it is modeled as an additive term in the
open CRN model in the form Ed, where d ∈ Rp is the input
disturbance vector and E ∈ Rn×p is the input disturbance
matrix, containing p standard basis vectors with dimension n,
indicating that which species’ concentrations are influenced
by the disturbance.

Assumption 3: The input disturbance vector d is piece-
wise constant.

By (9), the open CRN model with rate- and input distur-
bance has the form:

ċ = Nr(c) +NtPt(ct)f + i + Ed− Voc. (21)

Formulate the augmented observer as
˙̂c = Nr(c) +NtPt(ct)f̂ + i− Voc + Ed̂ + Γc(c− ĉ)
˙̂
f = Pt(ct)N

T
t Γf (c− ĉ)

˙̂
d = ETΓf (c− ĉ).

(22)

Assumption 4: The state dependent matrix NE(ct) =
[NtPt(ct) E] has full column rank ∀ct.

Note that for Assumption 4 it is necessary that dim(f) +
dim(d) ≤ n.

Corollary 1: If the Assumptions 1, 3, 4 hold, then (22)
is a disturbance observer of the system (21). Moreover,
limt→∞d̂ = d.

This corollary can be proven applying similar considera-
tions as in the proof of Theorem 1, by using the Lyapunov
function candidate

Ld(t) =
1

2
c̃TΓf c̃ +

1

2
f̃T f̃ +

1

2
d̃T d̃. (23)

In this case, the disturbance observer’s output vector is
(f̃T d̃T )T .

Example 3: (Plain Edelstein Network continued)
Consider two cases for the input disturbance matrices:

E1 = (1 0 0)T and E2 = (0 1 0)T . (24)

For these two cases, by (11), the state dependent matrices
NE , defined in Assumption 4, take the forms:

NE1 =

 c1 −c1c2 1
0 −c1c2 0
0 c1c2 0

 , NE2 =

 c1 −c1c2 0
0 −c1c2 1
0 c1c2 0

 .

It can be seen that rank(NE1) = 2, rank(NE2) = 3
∀c1, c2 > 0. Hence, the disturbance estimation problem is
solvable for the disturbance input matrix E2.

D. Disturbance observer in the partial state measurement
case

Partition the state vector of the CRN as

c = (cTm cTu )T (25)

where the entries of cm ∈ Rm+ are measurable (m ≤ n). The
concentrations in the vector cu ∈ Rn−m+ are not available
for the estimation.

The vector of monomials, introduced in (2), is also parti-
tioned as:

p(c) = (pm(cm)T pu(c)T )T (26)

where pm(cm) ∈ Rµ+ contains those monomials which
depend only on cm (0 < µ ≤ r).

Based on the model (3), the dynamics of cm reads as:

ċm = NmPm(cm)km +NuKupu(c) (27)

Here Pm(cm) = diag(pm(cm)), Nm contains those entries
of the stoichiometric matrix the row index of which corre-
spond to a measurable state and the column index coincide
with the known monomial vector terms. km ∈ Rµ+ are the
rate coefficients that correspond to the known monomial
vector terms, Ku = diag(ku).

Similar to the disturbance modeling approach presented in
(7) and (8), consider that km is influenced by an unknown
additive disturbance term in the form kmf = km + f .

Assumption 5: The matrix NmPm(cm) has full column
rank ∀cm.

Assumption 6: The elements of the vector pu(c) are van-
ishing, i.e. ∃ w(t) ∈ Rµ+ such that limt→∞w(t) = 0, and
|NmKmpu(c(t))| ≤ w(t) ∀t ≥ 0 element-vise.

Example 4: Let the reaction network be the following:

A+B
κ1−⇀↽−
κ2

C

C
κ3−→ D

3B
κ4−→ E

The stoichiometric matrix of it reads as:

N =


−1 1 0 0
−1 1 0 −1

1 −1 −1 0
0 0 1 0
0 0 0 3

 , (28)

and
c = (cA cB cC cD cE)

T (29)

r(c) =
(
κ1cAcB κ2cC κ3cC κ4c

3
B

)T
(30)

It can be seen that the concentration state cC is vanishing.
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Consider that the concentrations of the reactants cA and
cB are measurable. The dynamics of the measurable states
reads as:(
ċA
ċB

)
=

(
−1 0
−1 −1

)(
cAcB 0

0 c3B

)(
κ1

κ4

)
+(

−1
−1

)
κ2cC (31)

Let the disturbance observer algorithm be given in the
following form:

˙̂cm = NmPm(cm)(km + f̂) + Γc(cm − ĉm)
+ W sgn(cm − ĉm)

˙̂
f = Pm(cm)NT

mΓ(cm − ĉm)

(32)

Here W = diag(w), Γc ∈ Rµ×µ is a positive definite
symmetric matrix, Γ ∈ Rµ×µ is a positive definite diagonal
matrix, and the sign function sgn(·) applies element-wise to
the vector.

Theorem 2: If the Assumptions 1, 5 and 6 hold, then (32)
is a disturbance observer of the system (27).

Proof: Based on the equations (27) and (32) the dynamics
of the observation errors (c̃m = cm − ĉm, f̃ = f − f̂ ) yields
as:(

˙̃cm
˙̃
fm

)
=

(
−Γc NmPm(cm)

−Pm(cm)NT
mΓ 0

)(
c̃m
f̃

)
+

(
NuKupu(c)−W sgn(c̃m)

0

)
. (33)

The Lyapunov function candidate for the convergence
analysis is chosen as

Lm(t) =
1

2
c̃TmΓc̃m +

1

2
f̃T f̃ . (34)

The time-derivative of it reads as, see the model (33):

L̇m(t) = c̃TΓ
(
−Γcc̃m +NmPm(cm)f̃

)
(35)

− f̃TPm(cm)NT
mΓc̃m

+ c̃T (NuKupu(c)−W sgn(c̃m)).

By Assumption 6 yields that c̃TNuKupu(c) ≤ |c̃|W .
Consequently, by taking into account that ΓfΓc is symmetric
positive definite, it results:

L̇m(t) ≤ −c̃TmΓΓcc̃m ≤ 0. (36)

Accordingly, the Lyapunov function (34) is non-
increasing, hence c̃mi, f̃i are bounded vectors, i.e. c̃mi,
f̃i ∈ L∞ for each entry i.

By Assumption 6 and the observer error dynamics (33), it
also yields that ˙̃cmi ∈ L∞, ∀i.

The relation (36) can be reformulated as∫∞
0

c̃TmΓΓcc̃mdτ ≤ Lm(0) − Lm∞ where Lm∞ =
limt→∞Lm(t). It yields that cmi ∈ L2, ∀i.

As c̃mi ∈ L∞, ˙̃cmi ∈ L∞, c̃mi ∈ L2, it results that
limt→∞c̃mi = 0, ∀i.

By Assumptions 5, 6 and the observer error dynamics (33)
it also yields that limt→∞f̃i = 0, ∀i. �

IV. SIMULATION CASE STUDIES

Two simulation experiments were performed in Matlab/
Simulink environment to examine the performance of the
proposed disturbance estimation method.

A. E1: Disturbance estimation - full state measurement

The observer proposed in subsection III-B was tested on
an Edelstein network, that was introduced in Examples 1-3.
The dynamic model is given by the relations (3), (5), (6). The
reaction rate coefficients were chosen κk = 1, k = 1 . . . 6.

For the first experiment (E1) in the Edelstein network the
following reaction rate changes were assumed: κf1 = κ1 +
f1, κf3 = κ3 + f3 where f1 = 0.1 · 1(t − 25) and f3 =
−0.2 · 1(t− 50), where 1(·) denotes the unit step function.

The observer (12) for the Edelstein network was im-
plemented with the following gain matrices: Γc =
diag(1 1 0.75), Γf = diag(1 1 1). The matrices Pt and
Nt are given by the equations (10) and (11) respectively.

The evolution of the CRN states and the estimated distur-
bance signals are presented in Figures 1 and 2.

B. E2: Disturbance estimation - partial state measurement

During the second experiment (E2) the CRN presented in
Example 4 was considered with k = (0.01 0.01 1 0.01 0.01).
The disturbances were chosen as: f1 = −0.005 · 1(t − 10),
f4 = 0.005 · 1(t− 30).

The measurable states were cA and cB , the augmented
observer (32) was designed based on the model (31) with
the parameters Γc = diag(20 20), Γf = diag(20 20), and
w1 = w2 = exp(−10t).

For this simulation experiment the estimated and real CRN
state trajectories and the estimated disturbance signals are
presented in Figures 3 and 4.

In both cases (E1 and E2) the experimental measurements
show the convergence of the estimated rate disturbance
signals to their real values.

V. CONCLUSIONS

Based on the ODE model of mass action CRNs, nonlinear
observers were proposed that are able to estimate on-line
disturbances in reaction rate coefficients using the measured
concentrations as state variables. Based on the algebraic
structure of kinetic models, the convergence of the estimated
disturbance vector to the real one was proven using a suitable
Lyapunov function candidate. The method was extended to
simultaneously detect disturbances in the input of open CRNs

A second extension was also proposed for the case when
only partial state measurements are available. For this case
additional assumptions on some of the unmeasurable states
are necessary, and the problem is solvable using robust
estimation algorithm.

Simulation measurements show that the proposed ob-
servers can precisely estimate the disturbance induced
changes in the reaction rate coefficients.
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