
Paper 26

© Civil-Comp Press, 2019
Proceedings of the Sixth International Conference on
Parallel, Distributed, GPU and Cloud Computing for Engineering,
P. Iványi and B.H.V Topping (Editors)
Civil-Comp Press, Stirlingshire, Scotland

Automatic, cloud-independent, scalable Spark cluster de-
ployment in cloud

E. NAGY, Á. HAJNAL, I. PINTYE, P. KACSUK
Institute for Computer Science and Control, Hungarian Academy of Sciences (MTA SZTAKI),
Budapest, Hungary

Abstract

This paper shows the results of the second step of a project targeting the creation of all the ma-
jor Big Data and Machine Learning environments by the use of Occopus, a cloud orchestrator
tool. In this second step we have created the Occopus descriptors of a Spark environment that
is combined with Hadoop HDFS, scalable and deployable in major cloud systems like Ama-
zon, OpenStack, OpenNebula, CloudSigma, etc. The deployment of such a Spark environment
is automatic and hence facilitates the usage of Spark technology in clouds. The Spark environ-
ment was successfully used by the Institute for Political Science of the Hungarian Academy
of Sciences to the classification of newspaper articles.

Keywords: artificial intelligence, big data, cloud computing, distributed computing, orches-
tration, Spark

1 Introduction

Cloud-based Big Data and Machine Learning applications are becoming increasingly popular
in the industry, also in academic and education sectors. In many cases, clouds are used to
support the computation and storage needs of such applications by building and managing
multi-VM virtual infrastructures (clusters) using some cloud-based system (IaaS), temporarily
or for a longer period of time, respectively.

Recently, a popular choice to convey big data analytics or machine learning is to use
Apache Spark, which is an open source distributed, cluster computing system. For best per-
formance, it is also recommended to use Hadoop File System (HDFS) along with Spark, with
which Spark can perform data processing in data locality-aware way, i.e. moves computation
to the site of the data, so avoiding data movement overhead. Manual deployment and config-
uration of such a cluster in a cloud is non-trivial, error-prone and tedious task, requiring con-
siderable expertise in both cloud and Spark-Hadoop technologies. It might take days, which
may even exceed the time required to perform the actual data processing. After discarding the
infrastructure when the current computation is done, the same infrastructure might have to be

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SZTAKI Publication Repository

https://core.ac.uk/display/228079494?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


re-built again for a subsequent computation later, or when deciding to choose another cloud
provider, respectively.

This paper proposes a solution to manage (create and discard) such infrastructures rapidly,
easily, and efficiently in clouds, which are guaranteed to be consistent, properly configured,
well integrated, controllable, scalable and fault-tolerant. An important advantage of the pro-
posed solution is that the main parameters of the Apache Spark architecture (such as the size
of the cluster, number of CPU cores and memory configurations per workers, etc.) can be cus-
tomized, the computing capacity required for processing can be scaled and cloud-independent.
To fulfill these goals we used a hybrid-cloud orchestration tool called Occopus, which was
developed by MTA SZTAKI. Occopus uses so called descriptors to define the required in-
frastructure, which contains the definition of the node types (Spark Master and Worker). The
Spark Master will also be the HDFS Name Node, and the Worker nodes will be Data Nodes
for the HDFS system at the same time to enable data locality-aware processing. The number
of the worker nodes is configurable before deployment and scalable even at runtime. Occopus
uses these descriptors (infrastructure descriptor, node definition descriptor and optionally the
cloud-init files for contextualization) to deploy the required infrastructure in the target cloud.
Occopus supports several interfaces to various clouds: EC2, OpenStack Nova, Docker, Cloud-
Broker, CloudSigma, which allows of easily deploying the very same infrastructure in almost
any commercial or private cloud providing such an interface (Amazon, OpenStack, OpenNeb-
ula, etc.).

As a result of this work, the MTA Cloud research community is now able to create a scal-
able Spark-HDFS cluster in cloud of Hungarian Academy of Sciences (MTA Cloud), in a
user-friendly way, using only a few commands. Researchers can thus focus on their own work
in their specific domain of knowledge, without having to know technical details about cloud
computing, Spark deployment or networking at all.

2 Apache Spark

Apache Spark is an open source fast and general purpose cluster framework, designed to run
high performance data analysis applications. Instead of the Apache Hadoop’s Map Reduce
programming paradigm [1], it performs internal computational data processing that results in
a more flexible and faster run. The module uses a parallel data processing framework that
stores data in memory and, if necessary, on disk. This type of approach exceed up to ten times
the speed of Hadoop Map Reduce data processing [2].

The Apache Spark project was launched in 2009 and was originally developed by the UC
Berkeley University’s AMPLab lab [3] as an alternative to the Hadoop’s Map Reduce frame-
work. The Spark code base was later donated to the Apache Software Foundation in 2010 and
became open source [4]. Originally created by its creators, Databricks [5] is currently working
on expanding the open source project, simplifying the running of Big Data and machine learn-
ing applications, developing a web platform for Spark that automates cluster management and
provides IPython-style notebooks, organizing large-scale open online Spark courses as well as
being the leader of Spark Summit, which is the largest Spark conference.

Apache Spark was written in Scala, and one of its favourite feature is its highly-developed
easy-to-use APIs, such as Scala, Java, Python and R, designed specifically for handling large
data sets. In addition to the Spark Core API, other libraries are part of the Spark ecosystem,

2



Figure 1: High-level architecture of the Apache Spark stack

Figure 2: Integrating Spark with Hadoop

providing additional opportunities for large data analysis and machine learning. These include
Spark SQL for structured data processing, MLlib for Machine Learning, GraphX for graph
processing, and Spark Streaming for real-time data analysis on large amounts of data. Figure 1
shows a high-level architecture of Apache Spark stack. [6]

It is important to emphasize that Apache Spark is not a substitute for Apache Hadoop, but
a kind of extension of it. Spark has been designed to be able to read and write data from
Hadoop’s own distributed file system (HDFS), and other storage systems such as HBase or
Amazon S3. Thus, Hadoop users can enrich their processing capabilities by combining Spark
with Hadoop MapReduce, HBase, and other Big Data frameworks. Spark can be used on
the same cluster that embodies the Hadoop cluster, along with the MapReduce framework,
either alone or as a processing framework. Spark applications can also be run on the Hadoop
cluster manager, YARN. MapReduce and Spark can be used in conjunction with MapReduce
for batch processing and Spark for real-time data processing. There are three basic ways to
install Spark in the Hadoop cluster: standalone, YARN, and SIMR (Spark in MapReduce) (see
FigureFigure 2). [7]

3



3 Occopus

Occopus [12] is a hybrid cloud orchestration tool developed by MTA SZTAKI, which en-
ables end-users to build and manage virtual machines and complex infrastructures in the target
cloud. Occopus was designed to be cloud-independent, the currently supported cloud inter-
faces are: EC2, Nova, OCCI, CloudBroker [9], Docker [10] and CloudSigma [11]. It can
handle interchangeable plugins, thus being able to simultaneously implement cloud-dependent
interactions via these various cloud interfaces (multi-cloud support). The Occopus tool is able
to interact with different configuration management tools (”multi-config”), applying multiple
contextualization methods and health-check services. As a result, the device can be used in
many cloud environments using any combination of the plugins. The task of the orchestra-
tor motor is to set the target state of the infrastructure and to maintain it continuously. The
essence of life cycle management is that, in order to reach the target state, Occopus calculates
the difference between the desired and the current infrastructure state (delta) by monitoring the
nodes, and then performs the steps required to reach the desired state (e.g. starting / breaking /
restarting a new node). Thus, the device becomes fault-tolerant and will be able to recover lost
or failed cluster nodes by restarting or building a new node. Occopus supports manual scaling,
and could be used via command line interface (REST as a service or library). [8]

3.1 Occopus descriptors

The virtual infrastructure which should be instantiated by Occopus consists of nodes. The
node is an abstract component implemented by a virtual machine in the cloud and a container
in the case of Docker. A node may contain as many services as necessary for its function-
ality. Occopus works on the basis of so-called descriptors, which describe the design of the
virtual infrastructure to be built, the individual nodes, the resources to be used, the config-
uration management details, the contextualization of the nodes, and the way to monitor the
services running on the nodes. For a virtual infrastructure specification, there are two types
of descriptors to be provided, an infrastructure descriptor (infra descriptor), a node descriptor
file (node definition), and as many different contextualization files as many types of nodes
are in the infrastructure. The language format of the Occopus descriptors is YAML, which is
easy to read and edit, supports structured information, and can be easily processed by Python
(Occopus was implemented in Python 2.7 program languages).

4 Spark deployment and scaling by Occopus

Figure 3 shows the architecture of the implementation at a higher abstraction level. In order
for Occopus to be able to create an Apache Spark cluster in the target cloud, the appropriate
Apache Spark descriptor files are needed, that have been made publicly available on the offi-
cial website of Occopus [12]. End users must customize the node definition files to specify
what resources to be used while building up the Spark cluster (cloud endpoint, VM size, image
ID, firewall settings, etc.). Based on the personalized descriptors, the Occopus tool can build,
maintain, scale, and delete the Spark infrastructure in any of the computing clouds supported
by the Occopus tool. It uses the predefined authentication data and the cloud API for deploy-
ment. The cluster can include a Spark Master and a number of Spark Worker nodes. The latter

4



Figure 3: Spark cluster deployment using Occopus

depending on the preset scaling parameters and the size of the available quota on the target
cloud.

As discussed in chapter 3.1, the Occopus tool needs an infrastructure descriptor and a node
definition file as an input (including cloud-init configurations for each node type) to be able
to build an Apache Spark cluster in the target cloud. The infrastructure descriptor defines
the node types, in this case the Spark Master and Spark Worker nodes (see Figure 4). The
dependency between the two node types was set, therefore the Worker nodes depend on the
Master node. This ensures that Occopus, to launch the Master node firstly, and only after it has
completed the required Spark daemons, it starts to create Worker nodes in parallel, which will
join to the Spark cluster. Scaling is only allowed for Spark Worker nodes. In terms of scaling,
an Occopus infrastructure, for each node, can be given a lower and an upper limit. The task of
Occopus is to keep the number of copies between these limits. At startup, the minimum node
number will be implemented. The scaling mechanism is available even at running time. If no
value is specified, by default 1 node is built in the cluster, which cannot be scaled.

Figure 5 shows the structure of the node definition file. For security reasons, cloud-
dependent identifiers have been removed from the example. The Resource section describes
the resource-related parameters such as the endpoint, the image identifier, the flavour name,
etc. that are required to initialize a new virtual machine. These parameters depend on the
resource used, in this example nova plugin was used, which is needed to use MTA Cloud. In
the contextualization section, it was determined that the contextualization will be done with
cloud-init, as well as the cloud-init configuration files for the individual nodes. Finally, in the
”health-check” section ports were configured to check the availability of Spark deamons.

Occopus performs customization of nodes in infrastructure based on cloud-init files. There-
fore completely blank images can be used, which should contain only a Linux operating sys-
tem. All deployments and configurations that are needed for a properly functioning Spark

5



Figure 4: Infrastructure descriptor

Figure 5: Node definition file

6



cluster will be implemented through cloud-init, using the Occopus orchestration tool. For
each node type, there is a cloud-init file, in a case of a Spark cluster, a total of two, one for
the Spark Master and one for the Spark Worker. These files are the longest and most complex
among the descriptors, but they do not need to be modified by the end users unless an ad-
vanced user wants to fine-tune the configuration of the Apache Spark cluster to be built before
building.

5 Applications

Spark has been used for machine learning on big data. The large volumes of data need ap-
propriate analytics tools to extract value hiding in the data. Spark is a very popular big data
analitical tool mainly because it has several built in machine learning algorithms and is able
to handle data transformation in a distributed fashion, as well. The combination of Jupyter
notebook and Spark extended with R kernel and library import provides a very productive
environment for text analysis. The traditional desktop analytics tools are not meant to handle
Big Data. Hadoop, though being a popular framework for data intensive computations, does
not perform well on iterative processes (like text classification) due to the cost appearing for
data reloading from disk for each iteration. In order to make the usage of this analitical and
machine learning tool more convenient, a Jupyter Notebook and an RStudio Web Server was
installed on the Spark Master Node. Spark can be used for several machine learning tasks.
Regression task, classification and clustering are built in spark ml library. This task can be
used in a very few lines of code. In the text, document dataset, the performance indicators
are evaluated using five different classifiers. Namely, the multinomial logistic regression, the
Naive Bayes, the Random Forest, the multi layer perceptron with 2 hidden layers and the
convolution neural network. The obtained results are compared and will be discussed later.
The experiments are conducted on a cluster consisting of eleven nodes: one master node and
ten worker nodes. Each node has 8 virtual CPU core and 16GB of RAM. A cloud-based
methodology that consists of five consecutive stages is developed for learning and evaluating
classification models in parallel using Spark. The first stage is to create Resilient Distributed
Dataset, which is data structure of Spark by dividing the dataset into logical partitions. These
partitions may be computed in parallel on different nodes of the cluster. The second stage is to
tokenize the documents to an array of words. Spark machine learning library (mllib) has a lot
of built in functions for text mining such as RegexTokenizer, StopWordRemover, CountVec-
torizer. CountVectorizer aims at converting a collection of text documents to vectors of token
counts. It can be used to extract the vocabulary, and generates an array of strings from the
document. This method produces a sparse representation for the documents over the vocabu-
lary instead of dense vector representation. In our application this vectors are the inputs of the
above mentioned machine learning algorithms. Before the learning we randomly shuffle and
stratify our data/documents. The fourth state is testing, measuring, evaluating and ranking of
the classification models.

The fifth stage is using the best classification model to classify the new incoming document.
The configuration of Spark is adjusted to control the level of parallelism applied to the data.
We used 80 vcpu core and the data was partitioned into 160 parts in order to use maximum
capability of our spark cluster. Our methodology was applied by the Institute for Political
Science of the Hungarian Academy of Sciences in their CAP [14] and POLTEXT Incubator
Projects [15] to the classification of the front-page articles of the two leading Hungarian daily

7



newspapers, Népszabadság (NS) and Magyar Nemzet (MN) from between 1990 and 2014. The
coding of public policy major topics on various legal and media corpora serves as an important
input for testing a wide range of hypotheses and models in political science. Therefore, they
investigated how to use large computing resources like MTA Cloud. The main issue here
was how to exploit the available large number of physical and virtual machines in order to
accelerate the process of article classification. Their application was successfully handled by
using the Spark ecosystem we have developed and deployed on MTA Cloud.

6 Conclusions

There is a growing need to process very large scientific and commercial data applying Big Data
and Machine Learning techniques. However, these applications require computing and storing
capacity beyond the average application needs. Clouds with their elasticity are good candidates
to solve these problems. However, creating Big Data and Machine Learning environments in
IaaS clouds is beyond the capabilities of most scientists and industrial users. Therefore, they
need higher level tools by which the creation of such systems is manageable. Our goal was to
provide such a high level cloud orchestrator tool Occopus and by means of Occopus to enable
the rapid and easy creation of Big Data and Machine Learning environments. The first such
environment was a Hadoop/Mapreduce environment [16] and recently in the second phase of
our project we have extended this experiment with the creation of a Spark environment that was
successfully used by the Institute for Political Science of the Hungarian Academy of Sciences
to the classification of newspaper articles. The current Spark environment supports the Spark
MLlib for Machine Learning. In the third phase we are currently instigating how to create
and deploy Spark Streaming environment for real-time data analysis on large amounts of data
using the power of Occopus. In a long term our plan is to create all the major Big Data and
Machine Learning environments (including the support of deep learning environments, too)
and make accessible their Occopus descriptors in a repository. This repository will be available
for the users of MTA Cloud and if other scientific communities and/or commercial companies
are interested in using them we will open up this repository for further user communities.
Currently results of this work are available for the academic and commercial project partners
in two large EU projects: ”COLA - Cloud Orchestration at the Level of Application” and
”CloudiFacturing”.

Acknowledgement
This work was partially funded by the European ”COLA - Cloud Orchestration at the Level
of Application” project, Grant Agreement No. 731574 (H2020-ICT-2016-1), by the Na-
tional Research, and by the European CloudiFacturing project, Grant Agreement No. 768892
(H2020-FoF-2017). On behalf of the Project Occopus, we thank for the usage of MTA Cloud
(https://cloud.mta.hu) that significantly helped us achieve the results published in this paper.

References

[1] Apache Hadoop Map Reduce Tutorial https://hadoop.apache.org/docs/
r1.2.1/mapred_tutorial.html

8



[2] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, Ion Stoica:
Spark: Cluster Computing with Working Sets, Proceedings of the 2nd USENIX confer-
ence on Hot topics in cloud computing, pp. 10-10 (2010)

[3] AMPLab UC Berkleyhttps://amplab.cs.berkeley.edu/
[4] Apache Spark website https://spark.apache.org/
[5] Databricks website https://databricks.com/
[6] Salman Salloum, Ruslan Dautov, Xiaojun Chen, Patrick Xiaogang Peng, Joshua Zhexue

Huang: Big data analytics on Apache Spark, International Journal of Data Science and
Analytics, pp. 145-164, Volume 1, Issue 3-4

[7] DataBricks - Apache Spark and Hadoop: Working Together https://databricks.
com/blog/2014/01/21/spark-and-hadoop.html

[8] Jozsef Kovacs, Peter Kacsuk, ”Occopus: a Multi-Cloud Orchestrator to Deploy and Man-
age Complex Scientific Infrastructures”, Journal of Grid Computing, Volume 16, Issue
1, pp 19–37, 2018

[9] CloudBroker website http://cloudbroker.com
[10] Merkel, D.: Docker: lightweight Linux containers for consistent development and de-

ployment. Linux J. 2014, 239 (2014)
[11] CloudSigma website http://www.cloudsigma.com
[12] Occopus website http://occopus.lpds.sztaki.hu/
[13] COLA project website https://project-cola.eu/
[14] CAP Project website https://cap.tk.mta.hu/
[15] POLTEXT Incubator Project website https://qta.tk.mta.hu/
[16] R. Lovas, E. Nagy, J. Kovacs: Cloud agnostic Big Data platform focusing on scalability

and cost-efficiency, Advances in Engineering Software, 2018

9


