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Abstract
Pairwise comparison matrices often exhibit inconsistency, therefore many indices have been
suggested to measure their deviation from a consistent matrix. A set of axioms has been
proposed recently that is required to be satisfied by any reasonable inconsistency index. This
set seems to be not exhaustive as illustrated by an example, hence it is expanded by adding
two new properties. All axioms are considered on the set of triads, pairwise comparison
matrices with three alternatives, which is the simplest case of inconsistency. We choose the
logically independent properties and prove that they characterize, that is, uniquely deter-
mine the inconsistency ranking induced by most inconsistency indices that coincide on this
restricted domain. Since triads play a prominent role in a number of inconsistency indices,
our results can also contribute to the measurement of inconsistency for pairwise comparison
matrices with more than three alternatives.

Keywords Pairwise comparisons · Analytic Hierarchy Process (AHP) · Inconsistency
index · Axiomatic approach · Characterization

Mathematics Subject Classification 90B50 · 91B08

If you cannot prove your theorem, keep shifting parts of the conclusion to the assumptions, until you can.
(Ennio di Giorgi)

1 Introduction

Pairwise comparisons play an important role in a number of decision analysis methods such
as the Analytic Hierarchy Process (AHP) (Saaty 1977, 1980). They also naturally emerge
in country (Petróczy 2019) and higher education (Csató and Tóth 2019) rankings, in voting
systems (Čaklović and Kurdija 2017), as well as in sport tournaments (Bozóki et al. 2016;
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Chao et al. 2018; Csató 2013, 2017b). Theoretically, an appropriate set of n − 1 pairwise
comparisons would be sufficient to derive a set of weights or to rank all alternatives. However,
usually, more information is available in real-life situations. For example, the decisionmakers
are asked further questions because it increases the robustness of the result. It is also clear
that a round-robin tournament can be fairer than a knockout format as a loss does not lead to
the elimination of a player.

Nonetheless, the knowledge of extra pairwise comparisons has a price. First, processing
this additional information is time-consuming. Second, the set of comparisons may become
inconsistent: if alternative A is better than B, and B is better thanC , thenC still might turn out
to be preferred over A.While consistent preferences do not automatically imply the rationality
of the decision maker, it is plausible to assume that strongly inconsistent preferences indicate
a problem. Perhaps the decisionmaker has not understood the elicitation phase, or the strength
of players varies during the tournament.

Thus it is necessary to measure the deviation from consistency. The first concept of
inconsistency has probably been presented in Kendall and Smith (1940). Since then, sev-
eral inconsistency indices have been proposed (Saaty 1977; Koczkodaj 1993; Duszak and
Koczkodaj 1994; Barzilai 1998; Aguaron and Moreno-Jiménez 2003; Peláez and Lamata
2003; Fedrizzi and Ferrari 2018), and compared with each other (Bozóki and Rapcsák 2008;
Brunelli et al. 2013; Brunelli and Fedrizzi 2019; Cavallo 2019). Brunelli (2018) offers a
comprehensive overview of inconsistency indices and their ramifications.

Recently, some authors have applied an axiomatic approach by suggesting reason-
able properties required from an inconsistency index (Brunelli and Fedrizzi 2011, 2015;
Brunelli 2016, 2017; Cavallo and D’Apuzzo 2012; Koczkodaj and Szwarc 2014; Koczkodaj
and Urban 2018). There is also one characterization in this topic: Csató (2018a) intro-
duces six independent axioms that uniquely determine the Koczkodaj inconsistency ranking
induced by the Koczkodaj inconsistency index (Koczkodaj 1993; Duszak and Koczkodaj
1994). In the case of such characterizations, the appropriate motivation of the properties
is not crucial. The result only says that there remains a single choice if one accepts all
axioms.

This work aims to connect these two research directions by placing the axioms of
Brunelli (2017)—which is itself an extended set of the properties proposed by Brunelli
and Fedrizzi (2015)—and Csató (2018a) into a single framework. They will be considered
on the domain of triads, that is, pairwise comparison matrices with only three alterna-
tives. Bozóki and Rapcsák (2008) have already proved that there exists a differentiable
one-to-one correspondence between the inconsistency indices of Saaty (1977), Koczkodaj
(1993) and Duszak and Koczkodaj (1994) on this set, furthermore, almost all inconsis-
tency indices are functionally dependent for triads (Cavallo 2019). We will show that the
inconsistency ranking induced by this so-called natural triad inconsistency index is the
unique inconsistency ranking satisfying all properties on the set of triads. Since triads play
a prominent role in a number of inconsistency indices, our results can also contribute to
the measurement of inconsistency for pairwise comparison matrices with more than three
alternatives.

The paper is structured as follows. Section 2 presents the setting and the properties of
inconsistency indices suggested by Brunelli (2017). This axiomatic system is revealed in
Sect. 3 to be not exhaustive. Section 4 introduces two new axioms and discusses logical
independence. The natural triad inconsistency ranking is characterized in Sect. 5. Finally,
Section 6 summarizes our results.
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2 Preliminaries

AmatrixA = [
ai j

] ∈ R
n×n is called a pairwise comparisonmatrix ifai j > 0 andai j = 1/ai j

for all 1 ≤ i, j ≤ n. A pairwise comparison matrix A is said to be consistent if aik = ai j a jk

for all 1 ≤ i, j, k ≤ n.
Let A denote the set of pairwise comparison matrices. Inconsistency index I : A → R

associates a value for each pairwise comparison matrix.
Brunelli and Fedrizzi (2015) have suggested and justified five axioms for inconsistency

indices. They are briefly recalled here.

Axiom 1 Existence of a unique element representing consistency (URS): An inconsistency
index I : A → R satisfies axiom URS if there exists a unique v ∈ R such that I (A) = v if
and only if A ∈ A is consistent.

Axiom 2 Invariance under permutation of alternatives (I P A): Let A ∈ A be any pairwise
comparison and P be any permutation matrix on the set of alternatives considered in A. An
inconsistency index I : A → R satisfies axiom I P A if I (A) = I (PAP�).

Axiom 3 Monotonicity under reciprocity-preserving mapping (MRP): Let A = [
ai j

] ∈ A
be any pairwise comparison matrix, b ∈ R and A(b) =

[
abi j

]
∈ A. An inconsistency index

I : A → R satisfies axiom MRP if I (A) ≤ I (A(b)) if and only if b ≥ 1.

Axiom 4 Monotonicity on single comparisons (MSC): LetA ∈ A be any consistent pairwise
comparison matrix, ai j �= 1 be a non-diagonal element and δ ∈ R. Let Ai j (δ) ∈ A be the
inconsistent pairwise comparison matrix obtained from A by replacing the entry ai j with aδ

i j

and a ji with aδ
j i . An inconsistency index I : A → R satisfies axiom MSC if

1 < δ < δ′ ⇒ I (A) ≤ I
(
Ai j (δ)

) ≤ I
(
Ai j (δ

′)
) ;

δ′ < δ < 1 ⇒ I (A) ≤ I
(
Ai j (δ)

) ≤ I
(
Ai j (δ

′)
)
.

Axiom 5 Continuity (CON ): Let A = [
ai j

] ∈ A be any pairwise comparison matrix. An
inconsistency index I : A → R satisfies axiom CON if it is a continuous function of the
entries ai j of A ∈ A.

Brunelli (2017) has introduced a further reasonable property.

Axiom 6 Invariance under inversion of preferences (I I P): Let A ∈ A be any pairwise
comparison matrix. An inconsistency index I : A → R satisfies axiom I I P if I (A) =
I
(
A�)

.

The six properties above do not contradict each other and none of them are superfluous.

Proposition 1 AxiomsU RS, I P A, MRP, MSC, CON, and I I P are independent and form
a logically consistent axiomatic system.

Proof See Brunelli (2017, Theorem 1). 
�
A triad is a pairwise comparison matrix with three alternatives, the smallest pairwise

comparison matrix which can be inconsistent. Therefore, triads play a prominent role in the
measurement of inconsistency. For instance, the Koczkodaj inconsistency index (Koczko-
daj 1993; Duszak and Koczkodaj 1994), the Peláez–Lamata inconsistency index (Peláez
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and Lamata 2003), and the family of inconsistency indices proposed by Kułakowski and
Szybowski (2014) are all based on triads.

In this paper, we will focus on the set of triads T , and inconsistency will be measured by
a triad inconsistency index I : T → R. Note that a triad T ∈ T can be described by its three
elements above the diagonal such that T = (t12; t13; t23) and T is consistent if and only if
t13 = t12t23.

3 Motivation

The axiomatic system suggested by Brunelli (2017) is not guaranteed to be exhaustive in the
sense that it may allow for some strange inconsistency indices. Consider the following one.

Definition 1 Scale-dependent triad inconsistency index: Let T = [
ti j

] ∈ T be any triad. Its
inconsistency according to the scale-dependent triad inconsistency index I SD is

I SD(T) = |t13 − t12t23| +
∣
∣∣
∣
1

t13
− 1

t12t23

∣
∣∣
∣ +

∣
∣∣
∣t12 − t13

t23

∣
∣∣
∣

+
∣∣∣∣
1

t12
− t23

t13

∣∣∣∣ +
∣∣∣∣t23 − t13

t12

∣∣∣∣ +
∣∣∣∣
1

t23
− t12

t13

∣∣∣∣ .

The scale-dependent triad inconsistency index sums the differences of all non-diagonal
matrix elements from the value exhibiting consistency.

Proposition 2 The scale-dependent triad inconsistency index I SD satisfies axioms U RS,
I P A, MRP, MSC, CON, and I I P.

Proof It is straightforward to show that I SD satisfies URS, I P A, CON , and I I P .
Consider MRP . Due to the properties I I P and I P A, it is enough to show that∣∣tb13 − tb12t

b
23

∣∣ ≥ |t13 − t12t23| for every possible (positive) value of t12, t13, and t23 if and
only if b ≥ 1. It can be assumed without loss of generality that t13 − t12t23 ≥ 0, which
implies tb13 − tb12t

b
23 ≥ 0. Let f (b) = tb13 − tb12t

b
23, so

∂ f (b)

∂b
= ln(b)

(
tb13 − tb12t

b
23

)
,

in other words, f (b) is a monotonically increasing (decreasing) function for b ≥ 1 (b ≤ 1).
Consider MSC . It can be assumed that t13 is the entry to be changed because of the axiom

I P A. I SD(T) = 0 if t13 = t12t23, and all terms in the formula of I SD
(
Ti j (δ)

)
increase

gradually when δ goes away from 1. 
�
According to the example below, the scale-dependent triad inconsistency index I SD may

lead to questionable conclusions.

Example 1 Take two alternatives A and B such that the decision maker is indifferent between
them. Assume that a third alternative C appears in the comparison, and A is judged three
times better than C , while B is assessed to be two times better than C . Suppose that C is a
divisible alternative and is exchanged by its half.

The two situations can be described by the triads:

S =
⎡

⎣
1 1 3
1 1 2
1/3 1/2 1

⎤

⎦ and T =
⎡

⎣
1 1 6
1 1 4
1/6 1/4 1

⎤

⎦ .
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Here I SD(S) = 19/6 ≈ 3.167 and I SD(T) = 5. In other words, the scale-dependent
inconsistency index suggests that triad S is less inconsistent than triad T, contrary to the
underlyingdata as inconsistency is not expected to be influencedby the ‘amount’ of alternative
C .

Example 1 clearly shows that the axioms of Brunelli (2017) should be supplemented even
on the set of triads.

4 An improved axiomatic system

We propose two new axioms of inconsistency indices for triads.

Axiom 7 Homogeneous treatment of alternatives (HT A): Let T = (1; t13; t23) and T′ =
(1; t13/t23; 1) be any triad. A triad inconsistency index I : T → R satisfies axiom HT A if
I (T) = I

(
T′).

According to homogeneous treatment of alternatives, if the first and the second alternatives
are equally important on their own, but they are also compared to a third alternative, then
the inconsistency of the resulting triad should not be influenced by the relative importance
of the new alternative.

Axiom 8 Scale invariance (SI ): Let T = (t12; t13; t23) and T′ = (kt12; k2t13; kt23) be
any triads such that k > 0. A triad inconsistency index I : T → R satisfies axiom SI if
I (T) = I

(
T′).

Scale invariance implies that inconsistency is independent of the mathematical represen-
tation of the preferences. For example, consider the following pairwise comparisons: the
first alternative is ‘moderately more important’ than the second and the second alternative is
‘moderately more important’ than the third. It makes sense to expect the level of inconsis-
tency to be the same if ‘moderately more important’ is coded by the numbers 2, 3, or 4, and
so on, even allowing for a change in the direction of the two preferences. If the encoding is
required to preserve consistency, one arrives at the property SI .

Note that Example 1 shows the violation of SI by the scale-dependent triad inconsistency
index I SD .

HT A and SI have been introduced in Csató (2018a) for inconsistency rankings (and
HT A has been called homogeneous treatment of entities there).

In order to understand the implications of the extended axiomatic system, the logical
consistency and independence of the eight properties should be discussed.

For this purpose, let us introduce the natural triad inconsistency index.

Definition 2 Natural triad inconsistency index: Let A = [
ai j

] ∈ R
3×3+ be a triad. Its incon-

sistency according to the natural triad inconsistency index I T is

I T (A) = max

{
aik

ai j a jk
; ai j a jk

aik

}
.

This inconsistency index was considered first probably in Bozóki and Rapcsák (2008),
where it is denoted by T .

On the domain of triads,most inconsistency indices induce the same inconsistency ranking
as the natural triad inconsistency index because they are functionally related (Bozóki and
Rapcsák 2008; Cavallo 2019).
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Proposition 3 AxiomsU RS, I P A, MRP, MSC,CON, I I P, HT A, and SI forma logically
consistent axiomatic system on the set of triads.

Proof The Koczkodaj inconsistency index satisfies all properties. See Brunelli (2017, Propo-
sition 1) for the axiomsURS, I P A,MRP ,MSC ,CON , and I I P . Homogeneous treatment
of alternatives and scale invariance immediately follow from Csató (2018a, Theorem 1). 
�

However, some axioms can be implied by a conjoint application of the others.

Lemma 1 Axioms I I P, HT A, and SI imply I P A on the set of triads.

Proof Let T = (t12; t13; t23) be a triad, P be a permutation matrix and S = PTP� =
(s12; s13; s23). Let I : T → R be a triad inconsistency index satisfying I I P , HT A, and
SI .

Consider T1 = (1; t13/t212; t23/t12) and S1 = (1; s13/s212; s23/s12). Then I (T1) = I (T)

and I (S1) = I (S) according to SI .
ConsiderT2 = (1; t13/(t12t23); 1) andS2 = (1; s13/(s12s23); 1). HT A leads to I (T2) =

I (T1) and I (S2) = I (S1).
t13/(t12t23) ≥ 1 and s13/(s12s23) ≥ 1 can be assumed without loss of generality because

of the property I I P .
To summarize, I (T) = I (T1) = I (T2) and I (S) = I (S1) = I (S2).
The natural triad inconsistency index I T satisfies I P A, therefore t13/(t12t23) =

s13/(s12s23), hence T2 = S2, that is, I (T2) = I (S2) and I (T) = I (S). 
�
Lemma 2 Axioms U RS, MSC, I I P, HT A, and SI imply MRP on the set of triads.

Proof Let T = (t12; t13; t23) and T(b) = (tb12; tb13; tb23) be any triads. Let I : T → R be a
triad inconsistency index satisfying URS, MSC , I I P , HT A, and SI .

Consider T1 = (1; t13/t212; t23/t12) and T1(b) = (1; tb13/t2b12 ; tb23/tb12). Then I (T1) =
I (T) and I (T1(b)) = I (T(b)) according to SI .

Consider T2 = (1; t13/(t12t23); 1) and T2(b) = (
1; tb13/(tb12tb23); 1

)
. HT A leads to

I (T2) = I (T1) and I (T2(b)) = I (T1(b)).
It can be assumed without loss of generality that t13/(t12t23) ≥ 1 because of I I P .
To summarize, I (T) = I (T1) = I (T2) and I (T(b)) = I (T1(b)) = I (T2(b)).
If t13/(t12t23) > 1, then T2 differs only in one non-diagonal element from the consistent

triad with all entries equal to 1. Therefore, I (T2) ≤ I (T2(b)) if and only if b ≥ 1 because
of the property MSC . Otherwise, T2 is consistent, and I (T) = I (T(b)) = I (T2) = v due
to URS. 
�

There exists no further direct implication among the remaining six properties.

Theorem 1 Axioms U RS, MSC, CON, I I P, HT A, and SI are independent on the set of
triads.

Proof Independence of a given axiom can be shown by providing a triad inconsistency index
that satisfies all axioms except the one at stake:

1 URS: The triad inconsistency index I 1 : T → R such that I 1(T) = 0 for all triads
T ∈ T .

2 MSC : The triad inconsistency index I 2 : T → R such that

I 2(T) = −max

{
t13

t12t23
; t12t23

t13

}

for all triads T ∈ T . I 2 can be called the inverse natural triad inconsistency index.
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3 CON : The triad inconsistency index I 3 : T → R such that

I 3(T) =
{
0 if T is consistent
max {t13/ (t12t23) ; (t12t23) /t13} + 1 otherwise

for all triads T ∈ T . I 3 is essentially the index I T , but it is not continuous in the
environment of consistent matrices.

4 I I P: The triad inconsistency index I 4 : T → R such that

I 4(T) = t13
t12t23

for all triads T ∈ T . I 4 is essentially the natural triad inconsistency index I T , but takes
only the entries above the diagonal into account.

5 HT A: The triad inconsistency index I 5 : T → R such that

I 5(T) =
(
t12
t23

+ t23
t12

)
·
(
max

{
t13

t12t23
; t12t23

t13

}
− 1

)
(1)

for all triads T ∈ T .
6 SI : The triad inconsistency index I 6 : T → R such that

I 6(T) =
∣∣∣∣t12 − t13

t23

∣∣∣∣ +
∣∣∣∣
1

t12
− t23

t13

∣∣∣∣

for all triads T ∈ T .

Proving that the triad inconsistency index I i satisfies all axioms except for the i th is
straightforward if 1 ≤ i ≤ 4, therefore left to the reader.

Consider the triad inconsistency index I 5. It is easy to see that this function is continuous,
nonnegative and equals to zero if and only if a triad is consistent (t13 = t12t23), as well
as it meets invariance under inversion of preferences and scale invariance. I 5 also satisfies
monotonicity on single comparisons because the second term in formula (1) is essentially
the natural triad inconsistency index, and the first term is increasing in both t12 and t23
ceteris paribus, while it is independent of t13. Finally, take the triads T = (1; 8; 4) and
T′ = (1; 2; 1), which lead to I 5(T) = 17/4 �= 5/2 = I 5(T′), showing the violation of
HT A.

Now look at the triad inconsistency index I 6. It is trivial to verify that I 6 satisfies URS,
MSC , CON , and I I P . HT A is also met as I 6(T) = I 6(T′) when T = (1; t13; t23) and
T′ = (1; t13/t23; 1). Take the triads T = (1; 8; 4) and T′ = (2; 32; 8), which result in
I 6(T) = 3/2 �= 9/4 = I 6(T′), presenting the violation of SI . 
�

To conclude, the axiomatic system consisting of URS, MSC , CON , I I P , HT A, and
SI satisfies logical consistency and independence on the set of triads T .

5 Characterization

It still remains a question whether the extended set of properties is exhaustive on the set
of triads T or not. We will show that the axioms are closely related to the natural triad
inconsistency index: they mean that I T is the only appropriate index for measuring the
inconsistency of triads.
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Theorem 2 Let S,T ∈ T be any triads and I : T → R be a triad inconsistency index
satisfying MSC, I I P, HT A, and SI . Then I T (S) ≥ I T (T) implies I (S) ≥ I (T).

Proof Assume that I T (S) ≥ I T (T). The idea is to gradually simplify the comparison of the
inconsistencies of the two triads by using the axioms that are satisfied by the arbitrary triad
inconsistency index I : T → R.

Consider the triads S1 = (1; s13/s212; s23/s12) and T1 = (1; t13/t212; t23/t12). Since the
natural triad inconsistency index satisfies SI , it is guaranteed that I T (S) = I T (S1) and
I T (T) = I T (T1).

Consider the triadsS2 = (1; s13/(s12s23); 1) andT2 = (1; t13/(t12t23); 1).As the natural
triad inconsistency index meets HT A, it is known that I T (S1) = I T (S2) and I T (T1) =
I T (T2).

s13/(s12s23) ≥ 1 and t13/(t12t23) ≥ 1 can be assumed without loss of generality due to
I I P . Consequently, I T (S2) = I T (S1) = I T (S) ≥ I T (T) = I T (T1) = I T (T2), which
means that s13/(s12s23) ≥ t13/(t12t23) ≥ 1.

Starting from this inequality and using the properties of the triad inconsistency index I :
T → R, MSC leads to I (S2) ≥ I (T2), HT A results in I (S1) = I (S2) ≥ I (T2) = I (T1),
and SI implies that I (S) = I (S1) = I (S2) ≥ I (T2) = I (T1) = I (T), which completes the
proof. 
�
Remark 1 As Theorem 2 shows, axioms MSC , I I P , HT A, and SI allow for some odd triad
inconsistency indices, for example, the flat triad inconsistency index I F : T → R such that
I F (T) = 0 for any triad T ∈ T . By attaching properties URS and CON , inconsistency
index I F is excluded, but they still allow for a ‘discretised’ natural triad inconsistency index
I DT : T → R defined as

I DT (T) =
{
I T (T) = max {t13/ (t12t23) ; (t12t23) /t13} if I T (T) ≤ 2
2 otherwise

for any triad T ∈ T .

The proof of Theorem 2 does not work in the reverse direction of I (S) ≥ I (T) ⇒
I T (S) ≥ I T (T) because monotonicity on single comparisons has been introduced without
strict inequalities by Brunelli and Fedrizzi (2015).

Axiom 9 Strong monotonicity on single comparisons (SMSC): Let A ∈ An×n be any
consistent pairwise comparison matrix, ai j �= 1 a non-diagonal element and δ ∈ R. Let
Ai j (δ) ∈ An×n be the inconsistent pairwise comparison matrix obtained from A by replac-
ing the entry ai j with aδ

i j and a ji with aδ
j i . An inconsistency index I : Rn → R satisfies

axiom SMSC if

1 < δ < δ′ ⇒ I (A) < I
(
Ai j (δ)

)
< I

(
Ai j (δ

′)
) ;

δ′ < δ < 1 ⇒ I (A) < I
(
Ai j (δ)

)
< I

(
Ai j (δ

′)
)
.

With the introduction of SMSC , there is no need for all of the six axioms.

Lemma 3 Axioms SMSC, CON, HT A, and SI imply U RS on the set of triads.

Proof Let S = (s12; s13; s23) and T = (t12; t13; t23) be any triads. Let I : T → R be a
triad inconsistency index satisfying SMSC , CON , HT A, and SI .

First, it is shown that I (S) = I (T) if triads S andT are consistent. Consider the triads S1 =
(1; s13/s212; s23/s12) and T1 = (1; t13/t212; t23/t12). Then I (S) = I (S1) and I (T) = I (T1)
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due to SI . Consider the triads S2 = (1; s13/(s12s23); 1) and T2 = (1; t13/(t12t23); 1).
Then I (S1) = I (S2) and I (T1) = I (T2) because of HT A. Furthermore, S2 = T2, so
I (S) = I (T).

Second, it is proved that I (S) �= I (T) if triad S is consistent butT is inconsistent. Consider
the triads S1 = (1; s13/s212; s23/s12) and T1 = (1; t13/t212; t23/t12). Then I (S) = I (S1)
and I (S) = I (S1) due to SI . Consider the triads S2 = (1; s13/(s12s23); 1 and T2 =
(1; t13/(t12t23); 1). Then I (S1) = I (S2) and I (T1) = I (T2) because of HT A. Furthermore,
s13/(s12s23) = 1 and t13/(t12t23) �= 1. Let δ ∈ R and Ti j (δ) ∈ T be the inconsistent
triad obtained from T2 by replacing the entry t13/(t12t23) with [t13/(t12t23)]δ . Assume, for
contradiction, that I (T) = I (S). Then I (T(δ)) < I (T(1/2)) < I (S) for any 0 < δ < 1/2
due to strong monotonicity on single comparisons, which contradicts to continuity because
limδ→0 T(δ) = S. 
�

AsTheorem 1 has already revealed, theweaker property ofMSC cannot substitute SMSC
in the proof of Lemma 3.

Proposition 4 Axioms SMSC, CON, I I P, HT A, and SI form a logically consistent and
independent axiomatic system on the set of triads T .

Proof For consistency, it is sufficient to check that the natural triad inconsistency index I T

satisfies strong monotonicity on single comparisons.
For independence, see the proof of Theorem 1. The inconsistency indices I 3, I 4, I 5, and

I 6 satisfy SMSC , too. 
�
With this strengthening ofMSC , we are able to characterize the natural triad inconsistency

index on the set of triads.

Proposition 5 Let S,T ∈ T be two triads and I : T → R be a triad inconsistency index
satisfying SMSC, I I P, HT A, and SI . Then I (S) ≥ I (T) if and only if I T (S) ≥ I T (T).

Proof For the direction I T (S) ≥ I T (T) ⇒ I (S) ≥ I (T), see Theorem 2.
For I (S) ≥ I (T) ⇒ I T (S) ≥ I T (T), the proof of Theorem 2 can be followed in the

reverse direction with the assumption I (S) ≥ I (T). The key point is the implication I (S2) ≥
I (T2) ⇒ s13/(s12s23) ≥ t13/(t12t23) ≥ 1, which is guaranteed if the triad inconsistency
index I satisfies strong monotonicity on single comparisons, but not necessarily true if it
meets only MSC . 
�

On the basis of Proposition 5, our main result can be formulated.

Theorem 3 The natural triad inconsistency index is essentially the unique triad inconsistency
index satisfying strong monotonicity on single comparisons, invariance under inversion of
preferences, homogeneous treatment of alternatives, and scale invariance.

The term essentially refers to the fact that the four axioms SMSC , I I P , HT A, and SI
characterize only the inconsistency ranking induced by the natural triad inconsistency index.
Nonetheless, Csató (2018a) argues that it does not make sense to distinguish inconsistency
indices which rank pairwise comparison matrices uniformly. Naturally, continuity can also
be attached to these four axioms but it is rather a technical property.

Remark 2 Remark 1 remains valid in the case of Csató (2018a, Theorem 1) which is true
only in the following revised form:
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Let A and B two pairwise comparison matrices. If  is an inconsistency ranking satisfying
positive responsiveness, invariance under inversion of preferences, homogeneous treatment
of entities, scale invariance, monotonicity, and reducibility, then A K B implies A  B.

Contrary to Csató (2018a, Theorem 1) the implication does not hold in the other direction.
This problem can be easily solved by introducing the first axiom, positive responsiveness
(PR) in a more powerful version called strong positive responsiveness (SPR) with strict
inequalities:
Consider two triads S = (1; s2; 1) and T = (1; t2; 1) such that s2, t2 ≥ 1. Inconsistency
ranking  satisfies SPR if S � T ⇐⇒ s2 < t2.

Then the Koczkodaj inconsistency ranking would be the unique inconsistency ranking
satisfying strong positive responsiveness, invariance under inversion of preferences, homo-
geneous treatment of entities, scale invariance, monotonicity, and reducibility.

6 Conclusions

Axiomatic discussion of inconsistency measurement seems to be fruitful. While it is a well-
established research direction in the choice of an appropriate weighting method (Fichtner
1984, 1986; Barzilai et al. 1987; Barzilai 1997; Cook and Kress 1988; Bryson 1995; Csató
2017a, 2018b, 2019; Bozóki and Tsyganok 2019; Csató and Petróczy 2019), formal studies
of inconsistency indices has not been undertaken until recently (Brunelli and Fedrizzi 2015,
2019; Brunelli 2017;Koczkodaj and Szwarc 2014;Koczkodaj andUrban 2018; Csató 2018a).

The contribution of this paper can be shortly summarized as a unification of the two
axiomatic approaches. The first aims to justify reasonable properties and analyse indices in
their light (Brunelli and Fedrizzi 2015; Brunelli 2017). The second concentrates on the exact
derivation of certain indices without spending too much time on the motivation of the axioms
(Csató 2018a). In particular, the axiomatic system of Brunelli (2017) has been presented to
be not exhaustive even for only three alternatives. However, by the introduction of two new
properties, a unique triad inconsistency ranking can be identified.

Although most inconsistency indices are functionally related on this domain (Cavallo
2019), hence they induce the same inconsistency ranking, our main finding is a powerful
argument against indices which violate some of the axioms on the set of triads, like the
Ambiguity Index (Salo and Hämäläinen 1995, 1997), the Relative Error (Barzilai 1998),
or the Cosine Consistency Index (Kou and Lin 2014). This fact illustrates that it is worth
discussing inconsistency indices on special classes of pairwise comparisonmatrices, similarly
to Čerňanová et al. (2018). The results derived here can serve as a solid basis for measuring
the inconsistency of pairwise comparison matrices for order greater than three.
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