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Abstract: Interferon-stimulated genes (ISGs) are a set of genes whose transcription is induced by
interferon (IFN). The measure of the expression of ISGs enables calculating an IFN score, which gives
an indirect estimate of the exposition of cells to IFN-mediated inflammation. The measure of the
IFN score is proposed for the screening of monogenic interferonopathies, like the Aicardi-Goutières
syndrome, or to stratify subjects with systemic lupus erythematosus to receive IFN-targeted treatments.
Apart from these scenarios, there is no agreement on the diagnostic value of the score in distinguishing
IFN-related disorders from diseases dominated by other types of cytokines. Since the IFN score is
currently measured in several research hospitals, merging experiences could help define the potential
of scoring IFN inflammation in clinical practice. However, the IFN score calculated at different
laboratories may be hardly comparable due to the distinct sets of IFN-stimulated genes assessed and
to different controls used for data normalization. We developed a reliable approach to minimize the
inter-laboratory variability, thereby providing shared strategies for the IFN signature analysis and
allowing different centers to compare data and merge their experiences.

Keywords: interferon signature score; inter-laboratory variability; data sharing; systemic lupus
erythematosus; interferonopathies; biostatistics

1. Introduction

Type I interferon (IFN) production is part of the innate immune response to viruses or intracellular
bacteria, which is triggered by the sensing of pathogen-associated nucleic acids [1]. Even though the
identification of IFNs dates back to the 50s–60s [2], the description of a group of mendelian disorders
with dysregulated IFN-mediated inflammation has only recently shed light on the fine regulation of
the production and action of these cytokines [3]. Of note, this new group of disorders, known as type I
interferonopathies, displays significant phenotypic overlaps with both systemic lupus erythematosus
(SLE) and congenital viral infections of the TORCH (Toxoplasmosis, Rubella, Cytomegalovirus, Herpes
simplex) and HIV (human immunodeficiency virus) groups [3,4].

Type I interferonopathies are marked by the hyper-expression of a set of genes (IFN-stimulated
genes, ISGs) in inflamed tissue and often in peripheral blood, leading to the definition of the so-called
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“IFN signature” [5,6]. The IFN signature was firstly defined in subjects with SLE to assess the level of
IFN related inflammation and to help stratify patients to receive IFN targeted treatments [7–9].

Since then, the measure of expression of the ISGs (IFN signature analysis) is increasingly used in
biomedical research centers, as well as for the functional classification of other conditions characterized
by a type I IFN dysregulation [10], to distinguish such conditions from classical inflammatory
disorders predominantly mediated by other cytokines, like Tumor Necrosis Factor α and Interleukin 1
(i.e., inflammatory bowel diseases, rheumatoid arthritis, and periodic fevers) [11].

Different ISG sets were identified to evaluate interferon-mediated autoinflammation and are
frequently restricted to 5-6 targeted genes [6,10,12,13], suitable, for example, for the discrimination
of Aicardi-Goutières syndrome (AGS) [6,10]. However, IFN signature analysis could be extended to
larger gene lists [7] or even restricted to just one single gene, particularly when directly assessed in
affected tissues, as in the case of dermatomyiositis [14–16].

Even though the IFN signature measure has become widely available at research hospitals, there
is no consensus for the selection of calibration controls. Thus, it is hard to compare data among distinct
centers and to estimate the potential of IFN signature testing for discriminating among inflammatory
conditions in the clinical practice. For example, thousands of subjects with antiphospholipid syndrome
have been described in multicenter studies [17], while the interferon score has been separately studied
in several small series without allowing the merging of results [18–22].

The main problem hindering the use of IFN signature analysis for in vitro diagnostics is the
expression of data relativized to independent healthy control(s) in each laboratory, leading to
unpredictable inter-laboratory variability. It is logical to assume that the use of pooled cDNA
from healthy donors can represent a convenient strategy for calibrating Real Time quantitative PCR
(qPCR) for the assessment of the IFN score. However, it can be difficult to predict the optimal number
of samples to be pooled, which requires minimizing variability between one pool and another prepared
at distinct laboratories, as already pointed out by others [23,24].

This study aims to investigate, through laboratory, bioinformatic, and statistical analyses, a reliable
approach to minimize the variability that can be observed in inter-laboratory assays.

The final goal is providing shared recommendations for IFN signature analysis and interpretation
of data in the clinical practice, thereby allowing data sharing among reference centers and improving
knowledge on IFN-related disorders.

2. Materials and Methods

The study is part of the IRCCS Burlo Garofolo project RC #24/2017, approved by the Institutional
Review Board and by the Friuli Venezia Giulia Independent Ethical Committee (2018-SPER-079-BURLO,
N. 0039851, approved on 12 December 2018). All investigations were performed after obtaining written
informed consent from volunteers and patients or their parents/guardians.

2.1. Subjects

On wet IFN signature analysis was assessed by quantitative PCR (qPCR) in ten young-aged
healthy subjects (Dataset A, ten out of eleven individuals, five males and five females).

To establish whether data from qPCR and RNAseq analysis were comparable, IFN signature on
wet (by qPCR) and in silico (by RNAseq) analysis was performed in twenty subjects with inflammatory
diseases, such as systemic lupus erythematosus (SLE), interferonopathies or inflammatory bowel
diseases (IBD), and patients’ relatives, recruited at our center (Dataset E). A brief description of patients’
clinical diagnosis is displayed in Table S1.

To increase healthy donors numerosity, in silico IFN signature investigation (by RNAseq)
has been performed in twenty healthy individuals, collected at our center Dataset A (four out of
eleven individuals), and selected from different whole blood RNA-sequencing (RNAseq) open-access
web-based datasets: we sorted another three datasets, while considering exclusively healthy control
samples, accessible at ArrayExpress (accession number E-MTAB-5735, Dataset B, five individuals) and
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at the Gene Expression Omnibus (GEO) (accession number GSE112057, Dataset C, nine individuals;
GSE90081, Dataset D, two individuals). Specification about gender was not available for all the
samples. However, sex has been easily inferred by expression analysis of the sex-specific genes RPS4Y1
and USP9Y.

The dataset composition is shown in Table 1.

Table 1. Dataset composition: subjects, size, methods and purposes.

Datasets Subjects n Total (F/M) Method (n) Purpose

A—Data of from our
center; Accession: #

Healthy donors 11 (5/6)
qPCR (10)

RNAseq (3)

To test the variability of expression
of the six ISGs in a healthy donor

small group available at out center

RNAseq (1)
To increase the healthy donor group

size, to improve the power of the
variability measurement

B—Accession:
E-MTAB-5735 Healthy donors 5 (2/3) RNAseq (5)

To increase the healthy donor group
size, to improve the power of the

variability measurement

C—Accession:
GSE112057 Healthy donors 12 (6/6) RNAseq (9)

To increase the healthy donor group
size, to improve the power of the

variability measurement

D—Accession:
GSE90081 Healthy donors 12 (12/0) RNAseq (2)

To increase the healthy donor group
size, to improve the power of the

variability measurement

E—Patients and
patient’s relatives

recruited at our center
Patients 20 (9/11) qPCR (20)

RNAseq (20)

To compare IFN signature results
between qPCR and RNAseq

analyses

# data not present in open-access web-based datasets.

2.2. Sample Collection, RNA Isolation and cDNA Preparation

Peripheral blood was collected in PAXgene Blood RNA Tubes (PreAnalytiX, Hombrechtikon,
Switzerland) and, after two-hours incubation at room temperature, tubes were frozen at −20 ◦C until
processing. Total RNA was extracted with PAXgene Blood RNA Kit (PreAnalytiX, Switzerland),
following the manufacturer’s instructions, and quantified with NanoDrop Spectrophotometer (Thermo
Fisher, Waltham, MA, USA). RNA integrity was checked using an Agilent Technologies 2100 Bioanalyzer.

Up to 1 µg of total RNA was retro-transcribed using SensiFAST cDNA Synthesis Kit (Bioline,
London, UK).

2.3. IFN Signature Analysis

The expression of six IFN-stimulated genes was assessed by qPCR using AB 7500 Real Time PCR
System (Applied Biosystems, Waltham, MA, USA), TaqMan Gene Expression Master Mix (Applied
Biosystems, USA) and UPL Probes (Roche, Basel, Switzerland) for IFI27, IFI44L, IFIT1, ISG15, RSAD2,
and SIGLEC1. Using AB 7500 Real Time PCR software, each target quantity was normalized with the
expression level of HPRT1 and G6PD, and the relative quantification (RQ) was conducted relating to a
“calibrator” sample (mix of ten healthy controls, Dataset A) using the 2−∆∆Ct method [25]. The median
fold change of the six genes was used to calculate the IFN score for each patient.

2.4. RNAseq Analysis

Transcriptome sequencing was performed using the TruSeq Stranded mRNA Sample Preparation
kit (Illumina, San Diego, CA, USA) and sequenced on a NovaSeq 6000 platform (Illumina, San Diego,
CA, USA), generating 2X100 bp paired-end reads (30 million reads per sample) in twenty subjects from
Dataset E (patients and patients’ relatives) and four out of eleven controls from Dataset A.
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RNAseq raw data (either our data and open-access web-based data) workflow was conducted
as follows: quality control by FastQC (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/),
quality filtering by Trim Galore (https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/),
read alignment to hg38 using annotation from GENECODE v.31 (https://www.gencodegenes.org/) with
STAR [26], reads counting into genes by featureCounts [27].

Data of patients with autoinflammatory diseases and three healthy individuals of our dataset
were normalized and analyzed for differentially expressed genes by DESeq2 [28]. From the result table,
we only considered the ISGs and evaluated their relative fold changes on each patient compared to the
set of controls.

To assess the ISGs expression variability within the group of twenty healthy subjects, shortlisted
from the datasets described above, we determined the expression values for each gene, normalized by
Fragments Per Kilobase per Million mapped reads (FPKM) method with edgeR (rpkm function) [29,30],
using the values from the “Length” column, in the featureCounts’ output, for the calculation.

Principal component analysis (PCA), useful for data visualization, was conducted with DESeq2,
to define the overall variability between samples.

2.5. Statistical Analyses

Considering that each of the six genes measured was expressed on a different scale, we decided to
calculate the sample size based on the coefficient of variation, instead than the mean and the standard
deviation. We further hypothesized that different runs did not increase the variation in comparing the
samples, assuming the only origin of variability to be represented by the subjects’ heterogeneity.

To determine the statistical power for data obtained by qPCR and RNAseq, we computed the
noncentrality parameter (λ) using GPower 3.1.9.2. software [31,32], with a generic two-tailed t-test,
given α = 0.05, β = 0.2, and degrees of freedom equal N-1. If the noncentrality parameter under these
conditions (reference value, “λref”) resulted in being lower than the one calculated on our samples, we
considered the sample size as appropriate.

GraphPad Prism 6 software was employed for χ2 contingency analysis; p-values <0.05 were
considered significant.

To identify the appropriate sample size for variability assessment, we computed λ for increasing
numerosity (up to forty) using GPower 3.1.9.2. (Heinrich-Heine University Düsseldorf, Germany), and
determined a “plateau value” by an exponential decay function (GraphPad Prism 6 software, La Jolla
California USA).

3. Results

3.1. Variability Assessment in IFN-Stimulated Genes Expression in Healthy Controls (Dataset A) Analyzed by
qPCR

The variability of expression of the six ISGs (IFI27, IFI44L, IFIT1, ISG15, RSAD2, SIGLEC1) was
assessed in ten healthy controls processed by on wet qPCR analysis. Five out of six genes showed
low variability coefficients and noncentrality parameters (λ) that fulfilled the analysis criteria (as
described in Materials and Methods, Section 2.5) (Table 2). Only IFI44L did not comply with the analysis
parameters, presenting higher variability and a lower λ than the reference value (λref) (Figure 1)

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
https://www.gencodegenes.org/
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Table 2. Variability assessment for interferon-stimulated genes (ISGs) expression values quantified in
ten out of eleven healthy subjects from Dataset A by qPCR.

IFI27 IFI44L IFIT1 ISG15 RSAD2 SIGLEC1

Mean 4.57 0.72 2.18 4.61 1.24 5.14
SD 1.04 0.91 1.05 0.60 1.20 0.42

Variability coefficient 0.23 1.26 0.48 0.13 0.96 0.08

λ (n = 10) 13.92 2.52 6.56 24.47 3.28 38.99

λref: 3.15

SD: standard deviation; λref: noncentrality parameter (λ) calculated based on α = 0.05, β = 0.2, and degrees of
freedom equal N-1. Sample size is considered as appropriate when λ computed on each gene is higher than λref.
The value below λref is highlighted in bold.
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Figure 1. Graphical representation of the noncentrality parameter (λ) calculated for each ISG by on
wet qPCR analysis. The λref for ten subjects is displayed by the dashed line and reported in the figure.
Sample size is considered as appropriate when λ computed on each gene is higher than λref.

Thus, ten healthy controls could not be considered an appropriate sample size to represent an
ideal healthy population, in which the physiologically floating expression values of the ISGs present
acceptable variability. For this reason, we should increase the numerosity of healthy controls to obtain
a suitable pool in which the gene expression variability is minimized.

3.2. IFN-Stimulated Genes Expression Evaluated by qPCR or RNAseq Analysis Are Comparable

To improve the power of the variability measurement, we decided to take advantage of RNAseq
open-access web-based data, as an easy source to increase the number of healthy subjects to calculate
ISGs interindividual differences. This choice came from comparisons between the relative ISGs
fold change assessed in the same twenty subjects (Dataset E) by both qPCR and RNAseq analysis,
selecting the same set of three out of eleven healthy controls from Dataset A, to normalize data for
both techniques.

Some subjects showed different relative expression values for the same gene calculated by on wet
qPCR and in silico RNAseq, but the overall results of the IFN signatures (IFN scores) were extremely
consistent between the two techniques for each individual (χ2 contingency analysis p-value = 0.405, not
significant). The comparability of IFN scores is easily explained, considering that these values represent
the median of the six relative ISGs quantifications, and they broadly reflect the overexpression status in
the analyzed sample (Table 3). Thus, the two methods provided the same trend in gene expression in
subjects presenting low, intermediate, and high IFN signatures, as indicated by the three representative
graphs in Figure 2 (Subject n.9: low IFN signature; Subject n.14: intermediate IFN signature; Subject
n.11: high IFN signature).
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Table 3. Comparison of interferon (IFN) scores determined in twenty subjects by both qPCR and
RNAseq by χ2 contingency analysis (p-value = 0.405, not significant).

Subject n.
IFN Score

In Silico RNAseq On Wet qPCR

1 3.26 5.01
2 6.79 10.05
3 7.12 9.85
4 8.58 10.74
5 1.55 1.37
6 1.11 0.97
7 0.55 0.67
8 0.22 0.19
9 1.14 1.05

10 3.68 2.60
11 77.73 82.61
12 44.03 94.25
13 17.44 16.48
14 15.44 16.35
15 37.43 49.98
16 37.44 84.99
17 1.07 1.18
18 2.39 4.70
19 3.01 1.71
20 1.82 1.82

Mean 19.83 13.59
SD 31.19 20.33

Variability
coefficient 1.57 1.50

SD: standard deviation.
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Figure 2. Representative display of low (a), intermediate (b) and high (c) IFN signatures analyzed by
both qPCR and RNAseq for each subject. For the optimal graphical representation of all histograms,
the scales of values are set different. The IFN scores computed for each subject are reported in the
legend of the figures.

3.3. Preliminary Analysis for Sample Selection and Variability Assessment in IFN-Stimulated Genes Expression
Analyzed by RNAseq

Given the comparability of data between qPCR and RNAseq, we exploited the availability of
large open-access web repositories containing RNAseq data to calculate the proper sample size for the
assessment of the IFN score with an acceptable inter-laboratory variability.

To select the appropriate sample size, we firstly calculated the noncentrality parameter (λ) on a
numerosity up to forty individuals using GPower software. Then, we determine the plateau value
of the exponential decay function of the previously computed λ values. The provided plateau (3.01)
corresponds to λ for sample size n = 15 (Figure 3), leading us to consider fifteen subjects as an
appropriate sample size. For more experimental strength, we considered both n = 15 and n = 20 in
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the following analyses. We did not further increase the sample size over twenty subjects, whereas
exceeding this number might bring difficulties in term of donors’ collection.Diagnostics 2019, 9, x FOR PEER REVIEW 7 of 14 
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computed for sample sizes up to forty subjects. Each sample size is represented by a black dot. In blue
the exponential decay function curve of the previously computed λ.

We performed a principal component analysis (PCA), a data visualization analysis, to evaluate
the total expression variation of the six ISGs and to define the most homogeneous set of twenty healthy
individuals. This investigation allows the detection of possible rare outliers with the highest variance
that might not be considered as suitable controls to study IFN signature.

RNAseq records have been chosen considering the presence of similar features such as blood
collection type, RNA extraction protocol and library selection, to reduce as much as possible the
technical procedure variability (Table 3).

As a first attempt, we investigated all the RNAseq samples of healthy donors from Dataset A
(data from our center, n = 4/11), Dataset B (E-MTAB-5735, n = 5) and Dataset C (GSE112057, n = 12),
twenty-one specimens in total. Figure 4a displays the PCA results showing the overall ISGs expression
variability between individuals. The analysis exhibited a higher variance in three out of twenty-one
subjects: we thus decided not to include these three samples in further studies, collecting eighteen
samples that were suitable for our purpose. To get the proper numerosity (n = 20), we examine
Dataset D (GSE90081, n = 12) and we ran the same analysis again, obtaining a satisfactory level
of variation, without outliers, between datasets and among individuals. From these preliminary
observations, we randomly chose two out of twelve samples from Dataset D, combining them with
data previously selected. Again, we observed an acceptable gene expression variability among our
final twenty-controls-sized group (Table 4), as shown in Figure 4b.
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Table 4. Detailed report of final twenty-controls-sized healthy subject groups.

Datasets Subjects RNAseq Details

Authors &
Accession

Female
(n = 9)

Male
(n = 11)

Whole Blood
collection/RNA

extraction

RNAseq library
preparation/platform Read Length

A—Data from
our center;

Accession:#
2 2

PAXgene blood
RNA

tube/PAXgene
Blood RNA Kit

Illumina TruSeq stranded
mRNA library

protocol/Novaseq

Paired-end
100 bp reads

B—Rodero MP,
et al., 2017;
Accession:

E-MTAB-5735

2 3

PAXgene blood
RNA

tube/PAXgene
Blood RNA Kit

Illumina TruSeq stranded
mRNA library

protocol/Illumina HiSeq 2000

Paired-end
75 bp reads

C—Mo A., et
al., 2018;

Accession:
GSE112057

3 6

Tempus
Tube/Tempus
Spin isolation

RNA kit

Illumina TruSeq stranded
mRNA library

protocol/Illumina HiSeq Rapid
Run

Paired-end
100 bp reads

D—Shchetynsky
K., et al., 2017;

Accession:
GSE90081

2 -

PAXgene blood
RNA

tube/PAXgene
Blood miRNA kit

Standard illumina TruSeq
RNA protocol, following

PolyA enrichment/Illumina
HiSeq 2000

Paired-end
100 bp reads

# data not present in open-access web-based datasets.

We calculated the λref for larger samples of healthy controls (fifteen and twenty subjects) using
GPower software, and the variability of the ISGs expression in fifteen and twenty healthy controls
processed by in silico RNAseq analysis. Table 5 shows that all the variability coefficients are considerably
low and all λ calculated fulfilled the analysis parameters (Figure 5) (expression values of single gene for
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each control are displayed in Table S2. Thus, we can hypothesize that pooling together samples from
fifteen or twenty healthy subjects could also be considered a proper sample size in qPCR analyses.

Table 5. Variability assessment for IFN-stimulated genes expression values evaluated in fifteen and
twenty healthy subjects by in silico RNAseq analysis.

IFI27 IFI44L IFIT1 ISG15 RSAD2 SIGLEC1

n = 15

Mean 0.35 1.14 5.06 30.17 2.21 1.17
SD 0.23 0.28 1.29 12.44 0.86 0.55

Variability coefficient 0.64 0.25 0.26 0.41 0.39 0.47

λ 6.09 15.64 15.16 9.39 9.93 8.21

Λref: 3.01

n = 20

Mean 0.33 1.26 5.17 30.09 2.47 1.22
SD 0.22 0.38 1.38 14.41 1.00 0.50

Variability coefficient 0.67 0.30 0.27 0.48 0.41 0.41

λ 6.68 14.70 16.77 9.34 10.98 10.90

λref: 2.95

SD: standard deviation; λref: noncentrality parameter calculated based on α = 0.05, β = 0.2, and degrees of freedom
equal N-1. Sample size is considered as appropriate when λ computed on each gene is higher than λref.
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3.4. Pooling Twenty Subjects Could Be Considered an Optimal Strategy to Minimize Gene Expression
Variability among Healthy Controls for on Wet IFN Signature Analysis

We checked whether the values of mean, SD and variability coefficient obtained by on wet qPCR
on ten controls met the λ criteria considering n = 15 and n = 20 subjects as already calculated, assuming
that the variability coefficient does not change as the sample size increases (Table 6).
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Table 6. Estimated variability assessment for ISGs expression values in fifteen and twenty healthy
subjects for qPCR analysis assuming the same variability coefficient for increasing sample size.

IFI27 IFI44L IFIT1 ISG15 RSAD2 SIGLEC1

Mean 4.57 0.72 2.18 4.61 1.24 5.14
SD 1.04 0.91 1.05 0.60 1.20 0.42

Variability coefficient 0.23 1.26 0.48 0.13 0.96 0.08

λ (n = 15) 17.05 3.08 8.04 29.97 4.02 47.75

λref: 3.01

λ (n = 20) 19.69 3.56 9.28 34.61 4.64 55.14

λref: 2.95

Mean, standard deviation (SD) and variability coefficient values previously determined on ten subjects are reported
in the table. λref: noncentrality parameter (λ) calculated based on α = 0.05, β = 0.2, and degrees of freedom equal
N-1. Sample size is considered appropriate when λ computed on each gene is higher than λref.

The analysis provides quite good results for both sample sizes tested, even if IFI44L showed
a λ (3.08) very close to λref (3.01). For this reason, we can consider more adequate to increase the
numerosity to twenty subjects, a still easy-to-gather number of healthy donors. Thus, we could assert
that twenty healthy controls could be considered a suitable sample size for IFN signature analysis
performed by qPCR, as predicted by in silico RNAseq (Figure 6).
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4. Discussion

The clinical employment of the IFN signature is strictly related to the screening of pathological
conditions characterized by type I IFN dysregulation [24]. However, several studies have been
carried out to associate the IFN-related inflammation with specific clinical or laboratory features of
rheumatologic conditions, like systemic lupus erythematosus, primary antiphospholipid syndrome,
Sjögren syndrome, rheumatoid arthritis, autoimmune myositis and systemic sclerosis [18,20,33–38].
Some Authors proposed that the assessment of IFN inflammation may help identify subgroups of
patients with a better response to specific treatments, as B cell targeted therapies [39–42]. Moreover, since
most anti-inflammatory or immunomodulatory agents have only a weak effect on IFN inflammation,
the calculation of the IFN score may also serve to guide targeted therapy approaches with novel drugs
like Janus Kinase inhibitors [10].

However, there is no consensus on a shared and validated method to classify different inflammatory
conditions by transcriptome analysis. Crow and collaborators used pooled cDNA from healthy donors
as calibrator for qPCR, and after assessing a large number of healthy controls and patients with
Aicardi-Goutières Syndrome calculated a fixed cut-off value of normality suitable for the screening of
interferonopathies [6]. However, this cut-off has been validated to facilitate the detection of monogenic
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interferonopathies and not to assess IFN inflammation in other conditions. Moreover, the reference to
locally pooled control cDNA may make it difficult to compare results obtained in distinct centers.

Even though multiple ISG panels have been described either in peripheral blood cells or affected
tissues, many laboratories set their assays by analyzing a minimal set of 5-6 targeted-genes, usually
including the set proposed by Crow et al. This set has been applied to thousands of analyses and
its potential for screening of monogenic interferonopathies is established. After the normalization
of results on at least two housekeeping genes, the main source of variability limiting interlaboratory
comparison of data consists in the use of different controls for data normalization. Indeed, this is a
remarkable problem, considering that the potential role of IFN signature analysis in clinical practice
can be defined only by sharing data among research centers, comparing or merging case series. Of
course, the best option for the future should rely on the development of industrially manufactured kits
validated for In Vitro Diagnostics (IVD) and usable worldwide with the same reference values, not only
in the most advanced research areas. Conversely, only the analysis and comparison of data available at
various centers can tell industries whether the development of such diagnostic kits is worthwhile or
not. Thus, we focused on a strategy that could be immediately applied in biomedical laboratories to
facilitate the sharing of experience and minimize the inter-laboratory variability.

We investigated if using a pool of biological samples from healthy controls could solve the
data normalization issue, which is the main source of inter-laboratory variability. We proposed
that this strategy could “equalize” the differences in gene expression that physiologically occur
among individuals.

For this purpose, we evaluated if any pool of healthy controls more than a given number n
of subjects could be suitable to level differences, through an approach based on laboratory (qPCR),
bioinformatic (RNAseq), and statistical data integration analyses.

Starting from the ISGs expression assessment in peripheral blood from ten healthy subjects by on
wet qPCR analysis, we found that this sample size is not suitable for equalizing the variable expression
levels of all the six ISGs in healthy volunteers. To find the appropriate number of samples to be
pooled together with low enough variability, we further investigated if public data from RNAseq can
be exploited to expand our analysis. We thus compared relative ISGs fold change values calculated
by qPCR and RNAseq analysis for the same subjects with the same calibrator, showing that the two
methods yield comparable results with very low variability between each other. Previous studies
compared gene expression measurements generated by in silico RNAseq and on wet qPCR assays,
showing consistent results between the two methods for most genes, with the only exception of some
genes generally characterized by small size and low expression levels. None of the ISGs is included in
the list of genes with inconsistent estimation of expression according to the Authors [43]. Our results
confirmed that RNAseq and qPCR generate consistent results in the assessment of ISGs expression
levels. Thus, based on the literature and on our preliminary results, we considered RNAseq as a good
asset to increase the number of healthy subjects on which to calculate interindividual differences in ISGs
expression, exploiting both RNAseq samples available at our center and open-access web-based data.

The results of our study support the choice of pooling twenty healthy controls for the normalization
of the assay, allowing to express results as relative to a “standard set of controls”. Of note, we validated
this sample size only for the selected set of six ISGs in peripheral blood cells. The expression of other
genes included in larger panels, may present higher variability among donors and between different
affected tissues. However, the same procedure that we have described can also be used to define the
optimal sample size for other transcription profiles, for interferonopathies or for other rheumatologic
disorders. The performance of the proposed twenty-controls-sized standard could be improved by
analyzing all the donors separately before pooling, and by performing cluster variance analysis, which
can enable excluding rare donors with outlier variance.

Supplementary Materials: The following are available online at http://www.mdpi.com/2075-4418/9/3/113/s1.
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