
Western University Western University

Scholarship@Western Scholarship@Western

Electronic Thesis and Dissertation Repository

6-3-2019 2:00 PM

Algebraic Neural Architecture Representation, Evolutionary Neural Algebraic Neural Architecture Representation, Evolutionary Neural

Architecture Search, and Novelty Search in Deep Reinforcement Architecture Search, and Novelty Search in Deep Reinforcement

Learning Learning

Ethan C. Jackson
The University of Western Ontario

Supervisor

Daley, Mark

The University of Western Ontario

Graduate Program in Computer Science

A thesis submitted in partial fulfillment of the requirements for the degree in Doctor of

Philosophy

© Ethan C. Jackson 2019

Follow this and additional works at: https://ir.lib.uwo.ca/etd

 Part of the Artificial Intelligence and Robotics Commons, and the Theory and Algorithms Commons

Recommended Citation Recommended Citation
Jackson, Ethan C., "Algebraic Neural Architecture Representation, Evolutionary Neural Architecture Search,
and Novelty Search in Deep Reinforcement Learning" (2019). Electronic Thesis and Dissertation
Repository. 6510.
https://ir.lib.uwo.ca/etd/6510

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F6510&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=ir.lib.uwo.ca%2Fetd%2F6510&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=ir.lib.uwo.ca%2Fetd%2F6510&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/6510?utm_source=ir.lib.uwo.ca%2Fetd%2F6510&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

Abstract
Evolutionary algorithms have recently re-emerged as powerful tools for machine learning

and artificial intelligence, especially when combined with advances in deep learning devel-
oped over the last decade. In contrast to the use of fixed architectures and rigid learning algo-
rithms, we leveraged the open-endedness of evolutionary algorithms to make both theoretical
and methodological contributions to deep reinforcement learning. This thesis explores and de-
velops two major areas at the intersection of evolutionary algorithms and deep reinforcement
learning: generative network architectures and behaviour-based optimization. Over three dis-
tinct contributions, both theoretical and experimental methods were applied to deliver a novel
mathematical framework and experimental method for generative, modular neural network
architecture search for reinforcement learning, and a generalized formulation of a behaviour-
based optimization framework for reinforcement learning called novelty search. Experimen-
tal results indicate that both alternative, behaviour-based optimization and neural architecture
search can each be used to improve learning in the popular Atari 2600 benchmark compared to
DQN — a popular gradient-based method. These results are in-line with related work demon-
strating that strictly gradient-free methods are competitive with gradient-based reinforcement
learning. These contributions, together with other successful combinations of evolutionary al-
gorithms and deep learning, demonstrate that alternative architectures and learning algorithms
to those conventionally used in deep learning should be seriously investigated in an e↵ort to
drive progress in artificial intelligence.

Keywords: Artificial neural networks, deep learning, reinforcement learning, algebraic
methods, genetic algorithms, novelty search, neural architecture search

ii

Lay Summary
Artificial neural networks (ANNs) have become popular tools for implementing many kinds
of machine learning and artificially intelligent systems. While popular, there are many out-
standing questions about how ANNs should be structured, and how they should be trained.
Of particular interest is the branch of machine learning called reinforcement learning, which
focuses on training artificial agents to perform complex, sequential tasks, like playing video
games or navigating a maze. In this thesis, three contributions to research at the intersec-
tion of ANNs and reinforcement learning are presented. First, a mathematical language that
generalizes multiple contemporary ways of describing neural network organization, second,
an evolutionary algorithm that uses this mathematical language to help define an algorithm
for machine learning with ANNs in which the network’s architecture can be modified during
training by the algorithm, and third, a related algorithm that experiments with an alternative
method to training ANNs for reinforcement learning called novelty search, which promotes
behavioural diversity over greedy reward seeking behaviour. Experimental results indicate that
evolutionary algorithms, a form of random search guided by evolutionary principles of selec-
tion pressure, are competitive alternatives to conventional deep learning algorithms such as
error back propagation. Results also show that architectural mutability the ability for net-
work architectures to change automatically during training can dramatically improve learning
performance in games over contemporary methods.

iii

Co-Authorship Statement

Chapter 2 was published in the proceedings of the 2017 IEEE Conference on Computational In-
telligence in Bioinformatics and Computational Biology with Mark Daley, James Hughes, and
Michael Winter as co-authors. Co-authors were responsible for helping to frame the narrative
of the paper as well as examples. Michael Winter in particular contributed to the verification
of algebraic methods used in the paper. I was responsible for the large majority of research and
writing.
A condensed version of Chapter 3 has been accepted for publication for at the 2019 Genetic
and Evolutionary Computation Conference with Mark Daley as a co-author, who provided
supervisory advice and direction for the paper. I was responsible for all other research and
writing.
Chapter 4 will be submitted for review to a suitable venue later in 2019 with Mark Daley as
a co-author, who provided supervisory advice and direction. I was responsible for all other
research and writing.

iv

Acknowledgements

I would like to acknowledge the following people and institutions for their part in supporting
me throughout my doctoral studies: Dr. Mark Daley, who challenged and enabled me to have
the most productive learning experience of my life; The Vector Institute, for supporting me
financially and for providing immensely valuable research community connections and com-
puting resources; Dr. James Hughes, for being the friend, colleague, and collaborator who
helped me navigate the ups and downs of life as a graduate student; Dr. Jim Staples, for pro-
viding guidance and for facilitating interdisciplinary research opportunities; Dr. Jody Culham,
for providing incredibly valuable mentorship in teaching and science; My parents, Susan and
Frank Hawkins, and Joe Jackson, for unwaveringly supporting me in all aspects of life; Andrew
Herring, for helping me to not get completely absorbed by academic life; and my wife Kate for
being the most supportive, loving partner I could possibly ask for.

v

Epigraph
“It was the best of times, it was the BLURST of times?!”

vi

Contents

Abstract ii

Lay Summary iii

Co-Authorship Statement iv

Acknowledgements v

Epigraph vi

List of Figures x

List of Tables xiii

List of Appendices xv

1 Introduction 1
1.1 Neural Network Model Description . 3

1.1.1 Neural Networks and Evolutionary Algorithms 4
1.1.2 Neuromorphic Computing . 4
1.1.3 Generalized Connectionist Models . 5

1.2 Open-Endedness in Machine Learning . 5
1.2.1 Evolutionary Algorithms . 6
1.2.2 Novelty Search . 6

1.3 Modular Neural Networks . 7
1.3.1 Neural Architecture Search . 7
1.3.2 Modular Deep Learning . 7

2 Background 12
2.1 Category Theory . 12
2.2 Artificial Neural Networks . 13

2.2.1 Deep Learning and Tensors . 13
2.3 Genetic Algorithms . 14
2.4 Evolutionary Neural Networks . 14

NEAT and HyperNEAT . 15
2.4.1 Descriptive Encodings for Neural Networks 15

2.5 Reinforcement Learning . 16

vii

2.5.1 Reinforcement Learning for Games 16
2.5.2 Deep Q-Learning . 16
2.5.3 Highly Scalable Deep Neuroevolution 16

2.6 Summary . 17

3 An Algebraic Generalization for Graph and Tensor-Based Neural Networks 19
3.1 Introduction . 19
3.2 Mathematical Preliminaries . 20

3.2.1 Matrix Notation . 20
3.2.2 Relations . 20
3.2.3 Relational Operations . 21
3.2.4 Relational Sums . 22

3.3 Extended Algebraic Operations . 23
3.3.1 Connect . 24

Example . 24
Algebraic Formulation . 24

3.3.2 Substitution . 25
Example . 25
Algebraic Formulation . 26

3.3.3 Total Network Matrix . 27
Algebraic Formulation . 27

3.4 Implementation . 28
3.5 Applications . 29

3.5.1 Constructing a Connectivity Matrix 29
3.5.2 Connectivity Matrix as a HyperNEAT Genome 30
3.5.3 Connectivity Matrix as a Tensor Operation 32

3.6 Conclusions and Future Work . 33

4 Novelty Search for Deep Reinforcement Learning Policy Network Weights by
Action Sequence Edit Metric Distance 36
4.1 Introduction . 36
4.2 Highly-Scalable Genetic Algorithms for Deep Reinforcement Learning 38

4.2.1 DQN Architecture and Preprocessing 38
4.2.2 Seed-Based Genetic Algorithm . 38
4.2.3 Atari 2600 Benchmark . 39
4.2.4 Experimental Setup . 40

4.3 Novelty Search Over Action Sequences . 40
4.3.1 Behaviour Characteristic . 41
4.3.2 Behavioural Distance Function . 41
4.3.3 Hybrid Algorithm . 42

4.4 Novelty-Based Population Resampling in Genetic Algorithms 42
4.5 Experiments . 43

4.5.1 Method I . 44
4.5.2 Method II . 47

4.6 Discussion . 50

viii

4.7 Future Work . 50

5 Generative, Mutable Network Architectures for Deep Reinforcement Learning
via Genetic Algorithms 53
5.1 Introduction . 53
5.2 Overview of SparseNALG . 54
5.3 Limitations of SparseNALG for Neuroevolution 55
5.4 Highly Scalable Genetic Algorithms for Deep Reinforcement Learning 56
5.5 EvoAlgNN . 56

5.5.1 Mutable Subnetworks . 56
5.5.2 Operations for Network Mutability . 57
5.5.3 Network Reconstruction . 58
5.5.4 Scalability . 59

5.6 Experiments . 59
5.6.1 Baseline and Architecture . 59
5.6.2 Single-Connection Mutability . 59
5.6.3 Modular Mutability . 60
5.6.4 Experimental Set-up . 61
5.6.5 Hyperparameters . 61
5.6.6 Results . 61

5.7 Discussion . 62
5.8 Future Work . 64

6 General Discussion and Conclusions 68
6.1 Interpretability and Modularity . 68
6.2 Open-Endedness in RL . 70
6.3 Conclusions . 71

A Genetic Algorithms Pseudocode 74

Curriculum Vitae 77

ix

List of Figures

3.1 Matrix interpretations of R (left) and iT L(R, A, B) (right) where R is an |N| by
|N| matrix and A, B are finite sets. 23

3.2 a) Relations In : A! H, Hid : H ! H, and Out : H ! B defined by matrices.
b) A graph visualizing the connected relations. 24

3.3 The result of applying connect to relations In, Hid, and Out. The position
of coe�cients in this matrix identify the source and target sets to which they
originally belonged. 25

3.4 Substitution of connections by a repeating pattern. a) A high-level network
Net. b) A substitution connectivity pattern S . c) The result of substituting each
connection in Net by S . Notice that Net is necessarily a graph minor of this
graph. 26

3.5 Replacing the connection (N1,N2) in Net by the relation S . The crossed out
entry indicates removal; underlined entries indicate new connections between
nodes in N and C. Each quadrant in the matrix represents connectivity between
di↵erent sets, as indicated by the row and column labels. 26

3.6 Python implementation of the TNM operation. Scipy’s sparse matrices (csc matrix)
are used to improve e�ciency. Rather than considering each (S x, S y) 2 S ⇥ S ,
only those pairs present in the map M implemented as a dictionary are consid-
ered. All other pairs are assumed to be zero matrices. 29

3.7 A matrix interpretation of the connectivity between pairs of sets in S ⇥S . With
no relations on or below the diagonal of this matrix, we can assert that all
instances of such a network will be feed-forward. 30

3.8 Matrix visualization of TotalNet — the result of TNM applied to S and a map
M : S ⇥ S =) {R1 . . .R9} using the Python implementation. 31

3.9 A graph visualization of TotalNet. 31
3.10 Example of subst being applied to substitute all connections in TotalNet with

the connectivity pattern defined by Figure 3.4b. 32
3.11 TotalNet exported as a HyperNEAT genome and visualized as a seed network

for HyperSharpNEAT — a C# implementation of HyperNEAT. 33

4.1 Example of a simple game stage with a deceptive local optimum. Assuming the
goal is for the player to earn points by collecting as many diamonds as possible
before using a door to exit the stage, a globally suboptimal policy may never
learn to scale the wall to the player’s left and collect three additional diamonds. 40

4.2 Base GA and Method I learning progress. 46

x

4.3 Population mean game score over generations during training on MsPacman.
Mean scores diverge after generation 160. Levenshtein distance (Method I)
and lifespan are thus not equivalent behavioural distance functions. 47

4.4 Base GA and Method II learning progress. Mean denotes population mean
game score over generations in training, high denotes score of top-performing
individual over generations in training, and validation denotes the mean score
of the best-generalizing individual to 30 di↵erently-seeded environments. In
each generation, the best individual in validation is designated as the elite. In
3 out of 4 games, validation scores reach a higher maximum. Whereas the
Base GA seemingly failed to escape a local optima, Method II was particularly
e↵ective for improving performance in Space Invaders. 49

5.1 Application of a substitution operation in SparseNALG. a) A network architec-
ture A. b) A connectivity pattern P. c) The result of substituting each connec-
tion in A by P. These substitutions can be performed using a combination of
injection and projection operations on the adjacency matrix of A, which grows
in size as new neurons are inserted. 55

5.2 Adjacency matrix over the set A � B, where A = {a1, b1} and B = {b1, b2} are
disjoint, ordered sets. The relative order of elements in A and B are preserved
by the adjacency matrix indices. 57

5.3 Single-Connection substitutions enabled by defining a single operation (Sub-
stitute and fully connect) and a single primitive (boxed). After this operation
is applied, any of the four connections in the resulting mutable subnetwork are
eligible for subsequent substitution. 60

5.4 Substitution operations and the substitution primitive (boxed) implemented for
the Modular Mutability experiment. Substitute and fully connect (a) and di-
rect substitution (b) are used to replace a connection (dashed) with a primitive
in two di↵erent ways. Substitute and fully connect connects the source node
of the outgoing connection to all inputs of the substitution primitive and con-
nects the target note of the outgoing connection to all outputs of the substitution
primitive. Direct substitution replaces the source and target nodes of the out-
going connection with the input and output nodes of the substitution primitive,
respectively. These operations and primitive were designed to demonstrate the
flexibility that EvoAlgNN provides for defining architectural modification op-
erations and substitution primitives. 60

xi

5.5 Comparative learning progress for the Base GA, Single-Connection Mutabil-
ity, and Modular Mutability experiments. Mean denotes population mean game
score over generations in training, high denotes score of top-performing indi-
vidual over generations in training, and validation denotes the mean score of
the best-generalizing individual to 30 di↵erently-seeded environments. In each
generation, the best individual in validation is designated as the elite. DQN
testing results provided in [12] are shown against validation results as a dashed
line. In two out of four games (Asteroids and MsPacman, methods with ar-
chitectural mutability enabled achieve higher scores than DQN in validation.
This is in spite of the using a relatively small population (N=100+1). Single-
Connection Mutability yielded a very large performance increase in Asteroids
over other methods. 63

xii

List of Tables

4.1 Hyperparameters for Method I and Method II experiments. Note that the Im-
provement Generations hyperparameter is only used in Method II experiments,
and that baseline results do not use archiving. Population sizes are incremented
to account for elites. 43

4.2 Comparison of Base GA and Method I testing results over 30 episodes not used
in training or validation. Means and standard deviations are measured in game
score units. Bolded means denote significantly better testing performance (p
< 0.05 in a two-tailed t-test). The Base GA outperforms Method I in all but
one game. 44

4.3 Comparison of Base GA and Method I lifespans over 30 episodes not used in
training or validation. Means and standard deviations are shown in numbers of
frames over which agents survived. Bolded means denote significantly longer
lifespans (p < 0.05 in a two-tailed t-test). Method I produced agents with
significantly longer mean lifespans in testing in Assault and Space Invaders. . . 45

4.4 Hyperparameters for experiment on Method I-L. Validation episodes were not
used in this experiment – elites determined using highest game score in training
over 2 episodes. 45

4.5 Comparison of Method II (novelty-based population resampling) to random
population-resampling over 30 episodes not used in training or validation. In
MsPacman, Method II yielded better mean game scores in testing than random
population resampling with p < 0.05 in a two-tailed t-test. 48

4.6 Comparison of Base GA and Method II testing results over 30 episodes not
used in training or validation. Means and standard deviations are measured in
game score units. Bolded means denote significantly better testing performance
(p < 0.05 in a two-tailed t-test). Method II improves learning in 2 out of 4
games over the Base GA. 48

4.7 Comparison of DQN and Method II using testing scores over 30 randomly-
seeded episodes reported in [16]. Means and standard deviations are measured
in game score units. Means and standard deviations are measured in game
score units. Bolded means denote significantly better testing performance (p
< 0.05 in a two-tailed t-test). Method II outperforms DQN in one game, per-
forms similarly to DQN in one game, and is outperformed by DQN in two
games. These mixed results are consistent with previous comparisons between
gradient-based and gradient-free learning methods [25]. 48

5.1 GA hyperparameters used in all experiments. 61

xiii

5.2 Comparison of all experimental variation testing results over 30 episodes not
used in training or validation. S-C denotes Single-Connection Mutability and
Modular denoted Modular mutability. DQN results from 30 independent test-
ing episodes are also reported directly from [12]. Means and standard devi-
ations (shown in parentheses) are measured in game score units. Using two-
tailed t-tests, experimental variations with mean testing scores higher than the
Base GA with p < 0.05 are denoted by †. The best overall method when DQN
is also considered is bolded. In two out of four games (Asteroids and MsPac-
man), architectural mutability leads to better testing performance than the Base
GA and the DQN method. 62

xiv

List of Appendices

Appendix A Genetic Algorithms Pseudocode . 74

xv

Chapter 1

Introduction

Artificial neural networks (ANNs) form much of the bedrock of contemporary machine learn-
ing. Inspired by computing in the brain, ANNs embody the connectionist approach to cognitive
modelling [14]. In contrast to symbolic models of cognition or computation, connectionism
does not assume that processes must be expressible using structured symbolic expressions in-
volving explicit operations for storage and retrieval of information. Instead, connectionism
models computation using a network of relatively simple computational units that, in isolation
of each other, do not necessarily exhibit similar properties as the whole system. Furthermore,
memory is an emergent feature of a network’s state and parameters, as opposed to being oper-
ationally encoded or making use of ad hoc data structures.

The theoretical and practical merits of connectionist and symbolic artificial intelligence
were being compared and debated by the late 1980’s and early 1990’s [32]. Where symbolic
systems were being successfully applied to develop highly-structured models including expert
systems, neural networks were were often seen as uninterpretable models that learned repre-
sentations rather than solutions [17]. Despite this being the view of many computational and
cognitive scientists, early successes especially in computer vision [24] motivated research on
the theory and applications of ANNs continued alongside an explosion of computing resources.
This enabled researchers to explore the e↵ectiveness of larger or deeper neural architectures.

Deep neural networks consisting of many structured layers of artificial neurons are now be-
ing used to solve very di�cult problems in a wide range of application areas. The architecture
of a deep learning model can be hand-designed to reflect high-level domain knowledge, and
this aspect has helped deep learning to become a dominant method for machine learning. By
2012, deep convolutional neural networks (CNNs) had emerged as the new state-of-the-art in
image classification [22]. The convolutional layers of CNNs are designed to exploit the geom-
etry of visual input spaces. Successes in computer vision using CNNs attracted the attention
of many researchers, and has sparked progress in other areas of computer vision, audio, and
natural language processing [23].

In reinforcement learning, characterizable as the application of machine learning to control
or decision problems in which artificial agents learn behaviours or policies as a function of
environmental observations, deep learning has also had great success. In 2015, Mnih et al.
showed that deep convolutional neural networks could be used for reinforcement learning (RL)
in an approach called deep Q-learning [29]. The policies yielded by deep Q-learning were some
of the first to reach human-level control in the Atari 2600 benchmark [3] when learned directly

1

2 Chapter 1. Introduction

from pixels, as opposed to hand-crafted features.
Prior to the emergence of deep Q-learning, neuroevolutionary algorithms such as Neu-

roevolution of Augmenting Topologies (NEAT) [41] and Hypercube NEAT (HyperNEAT) [39]
had also been successfully applied to complex RL problems including the Atari 2600 bench-
mark [16]. In general, a neuroevolutionary algorithm is the application of an evolutionary
algorithm to learning the structure or parameterization of an ANN. Neuroevolutionary algo-
rithms that learn both the topology and weights of an ANN are called topology and weight
evolving artificial neural networks (TWEANNs). Recently, researchers have experimented
with combinations of tensor-based deep learning and neuroevolutionary algorithms.

For reinforcement learning, Such et al. introduced a method for learning the weights of
a deep neural network architecture using a very simple genetic algorithm (GA) [42]. This
showed that, given a fixed network architecture, gradient-based learning can be completely
substituted by a gradient-free approach and yield often improved performance. Other work has
focused on the architecture, rather than parameterizations. In recent work from Google Brain,
an evolutionary algorithm was used to evolve the architecture of a deep neural network for
image classification that achieves state-of-the-art performance in image classification [33]. The
method was also successfully applied in RL contexts. The re-emergence of neuroevolution, in
conjunction with deep learning, as a competitive machine learning framework presents many
challenges and opportunities.

First, we consider the problem of representation — how an instance of a neural network will
be represented as an individual in the evolutionary search, or how as a point in a search space.
The most popular contemporary deep learning tools (TensorFlow [1], Keras [8], PyTorch [31],
etc.) use graphs of computational units (usually layers) to represent neural networks. Users
design a neural network architecture by specifying how various network layers are to be in-
terconnected. Neuroevolutionary methods typically use a di↵erent approach, especially when
they are used to automatically learn topologies or architectures. NEAT, for example, represents
neural networks at the level of individual neurons and connections. HyperNEAT additionally
introduces an indirect encoding for ANN topologies using an abstraction called Compositional
Pattern Producing Networks (CPPNs) [38], thus representing ANNs di↵erently than in deep
learning tools or NEAT. To do research at the intersection of deep learning and neuroevolution,
we needed a descriptive language for ANN architectures that generalized the representations
used in each of these contexts. This problem is described further in Section 1.1 and a frame-
work designed in response is presented in Chapter 3.

Second, we consider the usefulness of some of the loosened constraints that are enabled by
evolutionary frameworks, including non-di↵erentiable objective functions. In RL, researchers
are typically interested in developing methods that produce high-quality policies in a given
context. In control benchmarks and games, a high-quality policy can be characterized as one
that successfully completes a task, or performs well, across many environments. In an Atari
game, these environments could be di↵erent stages of the same game, the same stage with
di↵erent initial conditions such as avatar, enemy, or game item positions, or even entirely dif-
ferent games. For benchmarking in such games, policy quality is typically reported using game
scores. Similarly, RL methods typically, but do not necessarily, use game score as the reward
source. Deep Q-learning optimizes neural network weights by following policy gradients com-
puted in terms of this reward [28], [29]. Evolutionary algorithms can be used to optimize for
reward by defining selection pressure or fitness in terms of it. Regardless of which approach

1.1. Neural NetworkModel Description 3

to learning is taken, naı̈ve reward-based optimization often leads to degenerate policies due
to reward sparsity or deceptive local optima. Novelty Search is an evolutionary framework
for addressing these problems and was first applied to deep reinforcement learning in [42].
The application of Novelty Search to RL is described further in Section 1.2 and a generalized
application of it to deep neuroevolution for RL is presented in Chapter 4.

Third, we develop a more deeply connected combination of deep learning and neuroevolu-
tion in a new approach to TWEANNs. In 2002, Stanley and Miikkulainen introduced NEAT as
a state-of-the-art neuroevolution method [41] and successfully applied it to contemporary RL
problems [40] such as pole-balancing. NEAT, its many derivatives, and other methods that it
inspired, have since been applied to more complex RL problems, such as platform games [43]
and control problems related to robotics [39]. More recently, neural architecture search (NAS)
has gained popularity in the deep learning community as an alternative to the hand-design of
deep learning architectures.

In [30], Negrinho and Gordon introduced DeepArchitect — a method for describing the
search space of neural network architectures and hyperparameterizations using trees. A number
of algorithms including random search, Monte Carlo tree search, and sequential optimizers can
be used to construct neural network instances. DEvol [10] is another approach to NAS that uses
a simple genetic algorithm to learn sequential models in Keras [8]. More recently, Google Brain
developed and applied another neural architecture search method based on an evolutionary
algorithm [33]. This method searches a space of constrained architecture-inducing parameters.
As of February 2019, this method produces the state-of-the-art ImageNet classification model
(top-1 and top-5).

Each of these approaches works at the same level of abstraction: deep learning layers
or tensors. In an e↵ort to investigate the e↵ectiveness of NAS using mixed abstractions in an
evolutionary algorithm, Chapter 5 introduces a method for mixed neuroevolution that combines
deep learning layers and generative graph-based modules for arbitrary neural connectivity.

The remainder of this chapter provides further context and motivation.

1.1 Neural Network Model Description
The research reported in this thesis began with an investigation of general mathematical models
suitable for modelling both artificial and biological neural networks. Graph and network the-
oretic methods have been applied to create quantitative and qualitative measures for high level
features of biological neural networks. For example, in [36] Sporns identified small world
properties in graph models of primate neural connectivity, and also wrote about the emergence
of self-similarity or fractal-like patterns in neural connectivity models. These are characterized
by regular patterns occurring at di↵erent levels of organization within the brain. The study of
network models of the brain has been coined connectomics, and a review of graph theoretical
analytical methods for studying brain networks is given in [4].

With the rising popularity of studying brain connectivity using mathematical models, it is
unsurprising that a variety of software systems for simulating neural network dynamics have
been developed. These include NEURON [5], NEST [13], and Brian [15]. Such tools can be
used to study how neural architecture and other parameters a↵ect the behaviour of the simulated
system as a whole. High-level interfaces for experimenting with various neural simulators have

4 Chapter 1. Introduction

been developed, including PyNN [9]. Network architectures can be specified for these tools
‘by hand’ using a neural adjacency representation, or by using other tools for generating larger,
more complex networks.

One of the most cited such tools is called Connection Set Algebra (CSA) [11]. CSA is a
mathematical framework and software implementation that provides a small set of primitive
objects and operations that can be combined to form expressions to generate large connectivity
patterns for neural networks. Though certainly useful in some applications, CSA has several
flaws. CSA is not truly a formal algebraic framework. Its objects and operations are similar to
those described in existing mathematical frameworks, but the connection is not explicitly made
nor is it exploited. It also lacks the ability to specify arbitrary connectivity patterns at higher
levels of organization. As a result, CSA lacks important operations, is not easily extensible,
and does not provide any formal framework for reasoning. This makes CSA unsuitable for use
as a general mathematical framework for describing neural network architectures.

1.1.1 Neural Networks and Evolutionary Algorithms
The lack of a standard, general model description language for biological neural network ar-
chitectures is similarly mirrored in the artificial neural networks community. Though currently
dominant, tensors and deep learning layers provide a single level of abstraction for ANN or-
ganization. Other popular approaches for connectionist or network-based learning including
NEAT [41], HyperNEAT [39], and Cartesian genetic programming [27] represent (neural) ar-
chitectures each using di↵erent levels of abstraction. NEAT operates at the level of individ-
ual connections and neurons, while HyperNEAT is much more powerful. HyperNEAT uses
a hypercube-based indirect encoding to represent compositional pattern producing networks
(CPPNs). The motivation for CPPNs stems from the natural relationship between genotype
and phenotype, which is necessarily developmental. Stanley cites the relatively small number
of genes in the human genome, roughly 30,000, compared to the trillions of connections in the
human brain as evidence. CPPNs can be used to define the geometry of the input space for a
particular problem. For example, a CPPN can be used to define retinotopy for visual problem
spaces by specifying geometric parameters for neuron placement.

CPPNs represent only one possible indirect, developmental encoding for neuroevolution. A
recursive description language for modular neural networks was proposed by Jung and Reggia
in 2004 [19]. Their descriptive language allows a network to be defined in terms of subnet-
works, and the language is purpose-built for manipulation using evolutionary algorithms given
its grammatical properties.

1.1.2 Neuromorphic Computing
Model description languages are also used in neuromorphic computing. IBM’s TrueNorth
architecture, for example, is implemented using interconnected chips of artificial spiking neu-
rons [6]. Programs for TrueNorth are written using the Corelet programming language [2] and
are compiled to TrueNorth’s hardware-level model description language. One of TrueNorth’s
strengths is that it is designed to support highly modular and nested programs, while still being
implemented using a connectionist model of computation at the hardware level. Other ap-

1.2. Open-Endedness inMachine Learning 5

proaches to neuromorphic computing such as SpiNNaker [20] again use di↵erent description
languages for expressing neural connectivity.

1.1.3 Generalized Connectionist Models

Considering that, underlying each of these frameworks or systems is a connectionist inter-
pretation of computation, it is perhaps surprising that little work has been done to develop
theoretical or practical tools for enabling direct comparison or conversion between them. From
a theoretical point of view first, this presents an opportunity to identify or develop a common,
generalized abstraction.

In response, we developed a mathematically sound framework as an alternative to CSA
based on relation and matrix algebraic methods that has several potential applications. Though
they are not used to encode computations directly, the framework enables the description of
connectionist architectures using symbolic expressions. In summary, we exploited the abstract
connection between relations and matrix algebras [21] to define a very simple framework in
which complex, modular network architectures can be described using algebraic expressions.
To show that our framework has possible applications for artificial neural networks, we showed
that network models written as expressions in the algebraic framework can be translated to con-
crete models in two popular frameworks for artificial neural computation, namely HyperNEAT
[38] and TensorFlow [37]. HyperNEAT is a framework and implementation for neuroevolution,
while TensorFlow is a high-level tool for designing and training deep learning architectures.
The introductory paper about this framework is presented as Chapter 3.

1.2 Open-Endedness in Machine Learning
Deep learning combines powerful machine learning models and algorithms that can be applied
in a wide variety of contexts. In most cases, deep neural networks are used in optimization
contexts with a clear objective function. For example, minimize classification error or cross-
entropy loss of images, or, maximize the similarity between outputs and reconstructed, com-
pressed inputs. In reinforcement learning, or specifically in Q-learning [46], agent actions are
similarly framed as an optimization problem. In games, the reward signal used to characterize
the optimization objective is usually provided by the game itself (e.g. score, number of wins,
levels cleared, etc.)

Deep Q-learning [28], [29] combines Q-learning with a deep convolutional neural network
architecture (DQN) and a policy gradient algorithm. It applies a reward-seeking optimization
objective to learning agent policies directly from pixels. This aspect of DQN is in contrast
to many prior methods for RL in complex environments, such as games. To be e↵ectively
used in RL, evolutionary methods such as NEAT [41] and Cartesian genetic programming [27]
require hand-constructed features to be used as inputs rather than raw pixels. This is largely
due to their relative unlikeliness to capture important input space regularites that convolutional
network layers explicitly assume. HyperNEAT [39] is an evolutionary algorithm that enables
input space geometry to be specified and has been successfully applied in game benchmarks
[16].

6 Chapter 1. Introduction

1.2.1 Evolutionary Algorithms
More recently, evolutionary algorithms have seen a resurgence in RL. In [42], Such et al.
introduced a very simple, highly scalable genetic algorithm (GA) for learning DQN network
weights as an alternative to gradient-based algorithms. Evolutionary algorithms have also been
successfully applied to learn tensor-based deep learning architectures [10], [35], [33].

The idea to simulate evolutionary principles using computers can be attributed at least
as far back as 1950, when Turing famously proposed the imitation game [44]. Evolutionary
computation has since become a fruitful method for combinatorial optimization and machine
learning with many successes. Genetic algorithms, in particular, have re-emerged as powerful
tools when combined with deep learning [42].

Before applying a GA, it is important to consider how a problem’s search space will be
defined, and how a point in that space can be used. In the case of a deep neural network, the
obvious search space might be the space of all possible parameterization vectors. Then, a point
in the search space would be one such vector. In practice, this approach is unwieldy for large
neural networks, and much more compact, indirect encodings have been developed [42]. In a
GA, a point in the search space is represented as an individual in a population. The objective
of a GA would then be to evolve a population of individuals until a desirable or useful one is
found. In a simple approach, the GA will first generate a population of candidate solutions by
randomly generating points in the search space. Next, the algorithm will evaluate the fitness
of each individual. This is usually the most computationally intensive step and is entirely
problem-specific. Then, using some selection criteria, selected members of the population
may be modified (mutated), combined with other individuals (reproduce), or promoted directly
to the next generation (elitism). The algorithm continues until some stoppage criteria are met,
and the best individuals at each generation are usually stored. In RL, fitness is usually defined
as a function of reward, such as the game score in an Atari 2600 game.

1.2.2 Novelty Search
With each of the aforementioned learning methods, a similar approach to reward optimization
is usually taken. With DQN, network weights are updated by following the direction of the
reward gradient, and in evolutionary frameworks, selection pressure or fitness is usually, but
not always, defined in terms of reward. One of the most important di↵erences between these
methods is that the standard DQN algorithm requires the objective function to be di↵erentiable
in order to define weight updates in terms of gradients. Evolutionary algorithms, on the other
hand, can in theory use any computable function to provide fitness scores. As such, evolu-
tionary algorithms can be used as an experimental framework for non-di↵erentiable objective
functions in RL. This provides a level of open-endedness in RL policy search that may not be
attainable using gradients alone.

A well-known example of this in the evolutionary algorithms community is novelty search
[25]. Rather than using the reward signal directly, evolutionary fitness is defined in terms of
an agent’s behaviour. The algorithm then selects agents whose behaviours were most di↵erent
from previously recorded behaviours, according to a behavioural distance function, and allows
them to reproduce. Novelty search has been successfully applied to RL [42], but not in a
game-independent context.

1.3. Modular Neural Networks 7

Ideas related to novelty search have spawned other successes in RL. Uber AI Labs recently
introduced Go-Explore [12] — an exploration-focused algorithm that uses archived environ-
ment observations to help train agents to explore their environments more successfully than
many previous methods. Go-Explore produced the current state-of-the-art policy for Mon-
tezuma’s Revenge — a game for which conventional reward-seeking learning algorithms gen-
erally fail [29], [12].

In Chapter 4, the concept of novelty search in RL is further discussed, and we present
a generalized formulation of novelty search that can be applied in diverse RL problems. It
introduces the use of string edit metric distances to compute the novelty of agent behaviours in
deep RL.

1.3 Modular Neural Networks
Until quite recently, machine learning in domains such as computer vision, natural language
processing, speech synthesis, and games has been dominated by deep learning. Artificial neural
networks tuned by gradient descent or related strategies have dominated previous approaches
— see [23], [26], [45], and [34] respectively. These successes were either due to or in spite
of the networks’ architectures being hand-crafted by machine learning and domain experts.
Evolutionary algorithms have recently re-emerged as viable tools that can complement deep
learning in several ways — with neural architecture search (NAS) at the forefront of these
e↵orts.

1.3.1 Neural Architecture Search
Various strategies for NAS or automated architecture design have been explored, and an in-
creasing number of tools and papers on this subject are being released and published. For
example, DeepArchitect [30] uses a Monte Carlo tree search-based algorithm to search for op-
timal architectures, while DEvol [10] uses a very basic genetic algorithm to search for optimal
linear arrangements of deep learning layers in Keras [8], a very high-level deep learning library
for Python. Recently, work by Google Brain has shown that evolutionary algorithms can be
used to automatically design state-of-the-art image classification model architectures [33].

1.3.2 Modular Deep Learning
An essay entitled The Future of Deep Learning [7] by François Chollet, author of Keras, asserts
that future progress in machine learning will depend heavily on automated model construction.
Models will be much more like conventional programs, and will consist of a mix of algorith-
mic and geometric modules such as convolutional layers. Informally, Chollet is hinting that
the future of machine learned programs must be preceded by the development of a framework
in which trainable deep learning models can be combined with other computational modules,
algorithms, and data structures. Chollet claims also that capability for abstraction will come
from the use and reuse of computational modules in learned programs. This is an open-ended
challenge for researchers in computer science, and it is important to encourage diverse e↵orts.

8 Chapter 1. Introduction

This should include those that draw inspiration from the recent discoveries about the organiza-
tion of biological neural networks.

Many of the building blocks needed to address this challenge already exist. TrueNorth
[6] implements a modular, hierarchical programming language for its neuromorphic hardware.
The design of this language could inspire the organization of tensors or other deep learning
modules. Other modular approaches to neural network description have been proposed in the
context of evolutionary algorithms, including Jung and Reggia’s recursive language introduced
in [19] and Stanley et al.’s compositional pattern producing networks used in HyperNEAT. In
deep learning, there are abundantly many, highly-extensible modular frameworks for describ-
ing modular neural networks including TensorFlow [1], Keras [8], PyTorch [31], Ca↵e [18],
and more. And due to progress in the development of a generalization for the connection-
ist models underlying each of these, we can interpret part of the challenge as an invitation to
combine these building blocks in meaningful ways.

In response, Chapter 5 introduces a framework for evolutionary deep RL that combines
recent advances in deep neuroevolution, deep Q-learning, and architectural mutability. Using
PyTorch [31], we implemented a framework in which deep learning layers, such as convo-
lutional layers, can be combined with architecturally mutable layers. These mutable layers
enable a NEAT-like [41] algorithm to gradually learn both the topology and weights of indi-
vidual neural network layers in a PyTorch module. A proof of concept is provided using four
Atari 2600 games, and results indicate that architectural mutability can dramatically improve
learning in certain cases.

Bibliography
[1] Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S.,

Irving, G., Isard, M., et al. Tensorflow: a system for large-scale machine learning. In
OSDI (2016), vol. 16, pp. 265–283.

[2] Amir, A., Datta, P., Risk, W. P., Cassidy, A. S., Kusnitz, J. A., Esser, S. K., Andreopou-
los, A., Wong, T. M., Flickner, M., Alvarez-Icaza, R., and Others. Cognitive comput-
ing programming paradigm: a corelet language for composing networks of neurosynaptic
cores. In Neural Networks (IJCNN), The 2013 International Joint Conference on (2013),
IEEE, pp. 1–10.

[3] Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., and
Zaremba, W. Openai gym. arXiv preprint arXiv:1606.01540 (2016).

[4] Bullmore, E., and Sporns, O. Complex brain networks: graph theoretical analysis of
structural and functional systems. Nature reviews. Neuroscience 10, 3 (2009), 186.

[5] Carnevale, N. T., and Hines, M. L. The NEURON book. Cambridge University Press,
2006.

[6] Cassidy, A. S., Merolla, P., Arthur, J. V., Esser, S. K., Jackson, B., Alvarez-Icaza, R.,
Datta, P., Sawada, J., Wong, T. M., Feldman, V., and Modha, D. Cognitive computing

BIBLIOGRAPHY 9

building block: A versatile and e�cient digital neuron model for neurosynaptic cores.
The 2013 International Joint Conference on Neural Networks (IJCNN) (2013).

[7] Chollet, F. The future of deep learning.

[8] Chollet, F. Keras, 2017.

[9] Davison, A. P., Brüderle, D., Eppler, J., Kremkow, J., Muller, E., Pecevski, D., Per-
rinet, L., and Yger, P. PyNN: a common interface for neuronal network simulators.
Frontiers in neuroinformatics 2 (2008).

[10] Davison, J. Genetic convnet architecture search with keras, 2017.

[11] Djurfeldt, M. The Connection-set Algebra—A Novel Formalism for the Representation
of Connectivity Structure in Neuronal Network Models. Neuroinformatics 10(3) (2012).

[12] Ecoffet, A., Huizinga, J., Lehman, J., Stanley, K. O., and Clune, J. Go-explore: a new
approach for hard-exploration problems. arXiv:1901.10995 (2019).

[13] Eppler, J., Morrison, A., Diesmann, M., Plesser, H.-E., and Gewaltig, M.-O. Paral-
lel and Distributed Simulation of Large Biological Neural Networks with {NEST}. In
Computational Neuroscience Meeting CNS*06, S48, Edingburgh, UK (2006).

[14] Fahlman, S. E., and Hinton, G. E. Connectionist architectures for artificial intelligence.
Computer;(United States) 20, 1 (1987).

[15] Goodman, D. F. M., and Brette, R. The brian simulator. Frontiers in neuroscience 3, 2
(2009), 192.

[16] Hausknecht, M., Khandelwal, P., Miikkulainen, R., and Stone, P. Hyperneat-ggp: A
hyperneat-based atari general game player. In Proceedings of the 14th annual conference
on Genetic and evolutionary computation (2012), ACM, pp. 217–224.

[17] Hinton, G. E. Preface to the special issue on connectionist symbol processing. Artificial
Intelligence 46, 1-2 (1990), 1–4.

[18] Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama,
S., and Darrell, T. Ca↵e: Convolutional architecture for fast feature embedding. In
Proceedings of the 22nd ACM international conference on Multimedia (2014), ACM,
pp. 675–678.

[19] Jung, J.-Y., and Reggia, J. A. A Descriptive Encoding Language for Evolving Modular
Neural Networks. In GECCO (2004).

[20] Khan, M. M., Lester, D. R., Plana, L. A., Rast, A., Jin, X., Painkras, E., and Furber,
S. B. SpiNNaker: Mapping neural networks onto a massively-parallel chip multipro-
cessor. In 2008 IEEE International Joint Conference on Neural Networks (IEEE World
Congress on Computational Intelligence) (jun 2008), pp. 2849–2856.

10 Chapter 1. Introduction

[21] Killingbeck, D., Teixeira, M. S., and Winter, M. Relations among Matrices over a
Semiring. Relational and Algebraic Methods in Computer Science (RAMiCS 15) (2015),
Killingbeck, D., Santos Teixeira, M., Winter, M.

[22] Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing systems
(2012), pp. 1097–1105.

[23] LeCun, Y., Bengio, Y., andHinton, G. Deep learning. Nature 521, 7553 (2015), 436–444.

[24] LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., and
Jackel, L. D. Backpropagation applied to handwritten zip code recognition. Neural
computation 1, 4 (1989), 541–551.

[25] Lehman, J., and Stanley, K. O. Exploiting open-endedness to solve problems through the
search for novelty. In ALIFE (2008), pp. 329–336.

[26] Mikolov, T., Chen, K., Corrado, G., and Dean, J. E�cient estimation of word represen-
tations in vector space. arXiv preprint arXiv:1301.3781 (2013).

[27] Miller, J. F. Cartesian genetic programming. Cartesian Genetic Programming (2011),
17–34.

[28] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D.,
and Riedmiller, M. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602 (2013).

[29] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G.,
Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., and Others. Human-level
control through deep reinforcement learning. Nature 518, 7540 (2015), 529–533.

[30] Negrinho, R., and Gordon, G. DeepArchitect: Automatically Designing and Training
Deep Architectures. arXiv preprint arXiv:1704.08792 (2017).

[31] Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison,
A., Antiga, L., and Lerer, A. Automatic di↵erentiation in pytorch. In NIPS-W (2017).

[32] Pinker, S., andMehler, J. Connections and symbols, vol. 28. Mit Press, 1988.

[33] Real, E., Aggarwal, A., Huang, Y., and Le, Q. V. Regularized evolution for image
classifier architecture search. arXiv preprint arXiv:1802.01548 (2018).

[34] Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G.,
Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., and Others. Mas-
tering the game of Go with deep neural networks and tree search. Nature 529, 7587
(2016), 484–489.

[35] So, D. R., Liang, C., and Le, Q. V. The evolved transformer. arXiv preprint
arXiv:1901.11117 (2019).

BIBLIOGRAPHY 11

[36] Sporns, O. Small-world connectivity, motif composition, and complexity of fractal neu-
ronal connections. Biosystems 85, 1 (2006), 55–64.

[37] Staats, K., Pantridge, E., Cavaglia, M., Milovanov, I., and Aniyan, A. TensorFlow en-
abled genetic programming. In Proceedings of the Genetic and Evolutionary Computa-
tion Conference Companion (2017), ACM, pp. 1872–1879.

[38] Stanley, K. O. Compositional Pattern Producing Networks: A Novel Abstraction of
Development. Genetic Programming and Evolvable Machines 8, 2 (jun 2007), 131–162.

[39] Stanley, K. O., D’Ambrosio, D. B., and Gauci, J. A hypercube-based encoding for evolv-
ing large-scale neural networks. Artificial life 15, 2 (2009), 185–212.

[40] Stanley, K. O., and Miikkulainen, R. E�cient reinforcement learning through evolving
neural network topologies. In Proceedings of the 4th Annual Conference on Genetic and
Evolutionary Computation (2002), Morgan Kaufmann Publishers Inc., pp. 569–577.

[41] Stanley, K. O., and Miikkulainen, R. Evolving neural networks through augmenting
topologies. Evolutionary computation 10, 2 (2002), 99–127.

[42] Such, F. P., Madhavan, V., Conti, E., Lehman, J., Stanley, K. O., and Clune, J. Deep
Neuroevolution: Genetic Algorithms Are a Competitive Alternative for Training Deep
Neural Networks for Reinforcement Learning. arXiv preprint arXiv:1712.06567 (2017).

[43] Togelius, J., Karakovskiy, S., Koutnı́k, J., and Schmidhuber, J. Super mario evolution. In
2009 IEEE symposium on computational intelligence and games (2009), IEEE, pp. 156–
161.

[44] Turing, A. M. Computing machinery and intelligence. Mind 59, 236 (1950), 433–460.

[45] van den Oord, A., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., Kalch-
brenner, N., Senior, A., and Kavukcuoglu, K. WaveNet: A Generative Model for Raw
Audio. In Arxiv (2016).

[46] Watkins, C. J., and Dayan, P. Q-learning. Machine learning 8, 3-4 (1992), 279–292.

Chapter 2

Background

This thesis makes use of several concepts, tools, and prior research that warrant additional
background.

2.1 Category Theory
Category theory [5] is an abstraction for mathematical structures and associative, compositional
transformation operations between them. Category theory is commonly explained as general-
izing the relationship between functions and sets, such that di↵erent kinds of mathematical
structures and operations can be studied under a common framework. In practice, category
theory can be used to understand, and to leverage, similarity between di↵erent mathematical
structures and operations. In this thesis, we leverage the formalized connection between the
categories of relations and matrices for the purpose of applying relation algebraic methods to
a much more general class of matrices. In other words, the category theoretic connection be-
tween relations and matrices allows us to apply our understanding of relations, their associated
operations, and reasoning methods, directly to more general matrices — such as the adjacency
matrices often used to describe neural network connectivity.

Formally, a category is a mathematical construction that abstractly describes objects and
morphisms between objects.

Definition A category C is

1. A collection of objects ObC,

2. A collection of morphisms C[A, B], for every pair of objects A and B,

3. An associative, binary composition operation ; which maps morphisms f in C[A, B] and
g in C[B,C] to a morphism f ; g in C[A,C],

4. An identity morphism denoted by IA for all objects A. For all f in C[A, B] and g in
C[B, A] we have that IA; f = f and g; IA = g.

In this thesis, we are interested exclusively in the categories Rel and Mat — the categories
of relations and matrices, respectively.

12

2.2. Artificial Neural Networks 13

For Rel, the objects of the category are sets, and the morphisms are binary relations be-
tween sets. Finite relations are very commonly interpreted using matrices. Given particular
enumerations of elements in a source set A and a target set B, a matrix with elements belonging
to a Boolean structure, such as the Boolean semiring, can be used to denote the presence or
absence of a pair (a 2 A, b 2 B) in a relation.

For Mat, the objects of the category are the natural numbers N, and the morphisms are
a collection of indexed elements denoting the matrix entries. Note that, at this level of ab-
straction, we do not specify a structure to which the matrix elements must belong. Practically,
however, matrix elements typically belong to a field such as the real numbers R, or to more
constrained structures such as the Boolean semiring.

In Chapter 3, the relationship between the categories Rel and Mat is further explained and
leveraged so that relation algebraic operations can be applied to arbitrary matrices satisfying
certain constraints. In particular, this work enables relation algebraic methods to be applied to
neural network adjacency matrices.

2.2 Artificial Neural Networks
ANNs are ubiquitous in machine learning. They are typically complex networks of biologically-
inspired computational units called neurons that are trained with respect to some dataset and
objective. ANNs have also been used to learn behaviours given an environment or to learn
using underspecified or no objectives [17]. The behaviour of neurons, network representation,
and learning algorithms vary greatly between frameworks. Rather than giving a complete his-
tory of the field, the rest of this section gives an overview of specific frameworks and methods
that are most relevant to this thesis.

2.2.1 Deep Learning and Tensors

The successes of deep learning can be best summarized by a 2015 Nature review paper of
the same name [10]. Authors LeCun, Bengio, and Hinton give an overview of successful
applications of ANNs that feature increasing numbers of internal layers, rather than the previ-
ously typical one or two hidden layers. In particular, the e↵ectiveness of convolutional layers
for recognizing image features and of recurrent layers for learning sequentially or temporally
dependent features is discussed. At the time of publication, backpropagation-based training al-
gorithms for deep convolutional neural networks were delivering state of the art performance in
image recognition, classification, and description. In sequentially dependent applications such
as speech recognition and word prediction, recurrent neural networks are hailed for delivering
state-of-the-art performance.

More recently, significant progress in deep learning has come from the development of new
ANN architectures. For example, Google DeepMind’s WaveNet [21] is a deep learning model
for raw audio generation that is capable of producing near human quality speech audio. The
model’s architecture is summarized by a small graph of interconnected deep learning layers,
and can easily be implemented using high-level model design tools, such as TensorFlow [15],
PyTorch [14], or Keras [3].

14 Chapter 2. Background

Each of these tools implements a model description languages based on tensors. This
allows a computational model to be defined using multidimensional arrays and compatible
operations. This kind of representation is highly compatible with vector-based encodings typ-
ically used in machine learning, and with strategies for accelerated parallel linear algebraic
computation. Each of these tools can exploit multiple such strategies.

The flexibility that these and similar tools provide is perhaps more interesting than any
single neural network architecture. They are simple enough to use that non-experts can design
ANN models featuring state-of-the-art layer types and training algorithms very easily. They
are also extensible and provide a viable avenue for automated architecture generation — such
as with Monte-Carlo tree search [13] or with genetic algorithms [4].

Altogether, tensor-based frameworks provide an invaluable interface for deep learning that
abstracts away implementation details about training and optimization algorithms as well as
basic linear algebra subroutines.

2.3 Genetic Algorithms
The idea to simulate evolutionary principles using computers can be attributed at least as far
back as 1950, when Turing famously proposed the imitation game [20]. Evolutionary compu-
tation has since become a fruitful method for combinatorial optimization and machine learning
with many successes.

A genetic algorithm (GA) is a randomized, population-based algorithm that applies evolu-
tionary principles to explore a search space. Typically, a search space describes the set of all
possible or valid solutions to a problem, and in the most simple approaches, each individual in
a GA population encodes a single solution. Such simple GAs are often used for combinatorial
optimization problems. In this framework, a GA finds solutions by applying selection pressure
and genetic operations to traverse subspaces of the search space. Selection pressure, or fitness,
is usually defined in terms of an objective function — often to find a globally optimal solu-
tion to the given problem. Genetic operations are used to modify the genetic representation of
individuals, usually through mutation or recombination, so that new areas of the search space
may be evaluated. Together, selection pressure and genetic operations determine how the GA
will explore the search space while exploiting the evaluated quality of previously considered
solutions.

Genetic algorithms and related methods in the broader field of evolutionary computation
have also been applied to machine learning with artificial neural networks.

2.4 Evolutionary Neural Networks
The use of genetic algorithms and, in particular, genetic programming (GP) for evolving neural
networks began in the early 1990s with Koza and Rice [8]. GP is an application of genetic
algorithms to a search space consisting of valid, executable computer programs. Koza and Rice
demonstrated that a population of LISP-like S-expressions could be evolved to generate both
the architecture and connection weights of a simple ANN implementing a 1-bit adder. In 1999,
Yao showed that contemporary neuroevolutionary algorithms that evolved both architecture

2.4. Evolutionary Neural Networks 15

and connection weights simultaneously outperformed other strategies [23]. GAs and GP have
both contributed significantly to progress in evolutionary machine learning using ANNs. In
the early 2000s, this strategy was developed further, and importantly, indirect encodings were
introduced.

NEAT and HyperNEAT

Neuroevolution of augmenting topologies (NEAT) [18] and Hypercube-based NEAT (Hyper-
NEAT) [16] each represent significant contributions to neuroevolutionary methods developed
by K. O. Stanley. The NEAT algorithm is based on a refined evolutionary strategy that imple-
ments speciation — a means to encourage diversity in the population. It uses a direct encoding
or mapping between genotype and phenotype and prioritizes smaller, simpler network archi-
tectures before applying complexification to consider larger, more complex networks. Hyper-
NEAT uses a hypercube-based indirect encoding to represent compositional pattern producing
networks (CPPNs). The motivation for CPPNs stems from the natural relationship between
genotype and phenotype, which is necessarily developmental. Stanley cites the relatively small
number of genes in the human genome, roughly 30,000, compared to the trillions of connec-
tions in the human brain as evidence. CPPNs can be used to define the geometry of the input
space for a particular problem. For example, a CPPN can be used to define retinotopy for visual
problem spaces by specifying geometric parameters for neuron placement.

2.4.1 Descriptive Encodings for Neural Networks

The inspiration for exploring the e↵ectiveness of indirect representational encodings for ANNs
is clear. As Stanley points out, the number of connections in the human brain exceeds the
number of genes in the human genome by a factor of roughly 108 [16]. While many ANN
models and frameworks use an adjacency-based representation (e.g. NEAT [18], CGPANN
[7]), many indirect encodings have been researched. For example, HyperNEAT uses the afore-
mentioned hypercube based encoding, and TensorFlow, PyTorch, and Keras allow entire layers
to be generated using a very small set of parameters.

In each of the previously mentioned frameworks, network descriptions are limited to con-
nections between computational units at a fixed level of organization or abstraction. They
are either organized at the level of individual neurons (NEAT, CGPANN) or at the level of a
collection of neurons (e.g. HyperNEAT, TensorFlow, PyTorch, Keras).

In response, recursively-defined neural network modules have been proposed and imple-
mented. A recursive description language for modular neural networks was proposed by Jung
and Reggia in 2004 [6]. Their descriptive language allows a network to be defined in terms
of subnetworks, and the language is well suited for manipulation using genetic programming.
Another example is IBM’s Corelet programming language for the TrueNorth architecture [1].
In this framework, networks of spiking neurons may be arbitrarily built up as modules of mod-
ules. Both of these descriptive languages provide a strong basis for further research on indirect,
modular encodings for ANNs. Chapter 3 aims to capitalize on this progress with the help of
algebraic structures.

16 Chapter 2. Background

2.5 Reinforcement Learning
Reinforcement learning (RL) is the application of machine learning to developing policies that
agents apply in response to environment observations such that some objective function is
optimized. Q-learning [22] is framework for reinforcement learning problems in which the
objective is to learn optimal state/action mappings (Q function) over a Markovian decision
process. The idealized optimal Q function would yield a policy that, given the current state
(observation) and a set of possible actions, the optimal action with respect to the current and
all subsequent states is known.

2.5.1 Reinforcement Learning for Games
Video games are commonly used as RL benchmarks as they are a good fit for the learning
framework. Observations, agents, and actions are easy to characterize in this context. Ob-
servations are most commonly some representation of the visual aspect of the game, such as
the colour intensities of pixels. Agents represent the entity or entities playing the game, who
make successive observations of the environment, and according to a policy, select actions. An
important feature of RL problems is that agent actions a↵ect subsequent observations of the en-
vironment. For example, an action may cause an avatar to change positions in the environment.
As such, there is temporal dependency between actions and observations.

The goal of RL in the context of a game is to learn a policy that agents can apply to be
successful. Measures of success are typically the same used for human players: scoring the
most points, reaching an end goal, defeating all enemies, etc. For RL to be applied to games,
the objective function is usually characterized in terms of reward, such that the choice of action
maximizes potential reward. For optimal policies to be learned, algorithms must be able to
consider the result of every possible state/action pair, that in all but the simplest games is
combinatorially explosive. For this reason, the Q function is commonly approximated.

2.5.2 Deep Q-Learning
In 2013, Mnih et al. introduced a state-of-the-art model and method for Q-Learning called
DQN for deep Q-Learning [11]. DQN uses a deep convolutional neural network [9] as a model
for approximating the Q function in RL benchmarks. Using gradient-based optimization, the
DQN model learns to associate a stack of 4 consecutive game observations with predicted
state/action pairs. By learning to predict not only actions, but also the e↵ects of actions on
subsequent environment states, DQN was one of the first RL models and methods to reach
human-level performance in the majority of games in the popular Atari 2600 benchmark, which
is part of the OpenAI Gym benchmark collection [12; 2].

2.5.3 Highly Scalable Deep Neuroevolution
In 2017, Such et al. introduced a stricly gradient-free method for learning e↵ective parameter-
izations of the DQN model for deep RL [19]. The method is a very simple GA that exploits
a compact, indirect encoding to enable unprecendented scalability for deep neuroevolutionary
algorithms. Instead of encoding the network weights directly, each individual in the GA is a list

2.6. Summary 17

of pseudo-random number generator seeds that is decoded into a network instance. This sig-
nificantly reduces communication bottlenecks, since thousands, rather than millions, of values
are used to encode each individual.

Chapters 4 and 5 of this thesis make use of Such et al.’s method for highly scalable deep
neuroevolution as both a baseline method for comparison, and as an extensible platform for
new methods.

2.6 Summary
The state-of-the-art for ANNs is currently dominated by deep learning models, and is increas-
ingly being advanced by automated search and optimization strategies. Field experts such as
Chollet have commented that future progress in machine learning and artificial intelligence
using ANNs will rely partly on modularity and the ability to integrate arbitrary computational
units. Some descriptive languages for modular neural networks already exist and, with con-
tinued development, will be well-suited for next-generation automated architectural search.
Furthermore, model description languages for computational neuroscience provide leverage-
able examples of mathematical tools that have been useful for generating biologically plausible
neural networks.

Bibliography
[1] Amir, A., Datta, P., Risk, W. P., Cassidy, A. S., Kusnitz, J. A., Esser, S. K., Andreopou-
los, A., Wong, T. M., Flickner, M., Alvarez-Icaza, R., and Others. Cognitive comput-
ing programming paradigm: a corelet language for composing networks of neurosynaptic
cores. In Neural Networks (IJCNN), The 2013 International Joint Conference on (2013),
IEEE, pp. 1–10.

[2] Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., and
Zaremba, W. Openai gym. arXiv preprint arXiv:1606.01540 (2016).

[3] Chollet, F. Keras, 2017.

[4] Davison, J. Genetic convnet architecture search with keras, 2017.

[5] Freyd, P., and Scedrov, A. Categories, Allegories. North-Holland, 1990.

[6] Jung, J.-Y., and Reggia, J. A. A Descriptive Encoding Language for Evolving Modular
Neural Networks. In GECCO (2004).

[7] Khan, M. M., Ahmad, A. M., Khan, G. M., andMiller, J. F. Fast learning neural networks
using Cartesian genetic programming. Neurocomputing 121 (2013), 274–289.

[8] Koza, J. R., and Rice, J. P. Genetic generation of both the weights and architecture
for a neural network. In Neural Networks, 1991., IJCNN-91-Seattle International Joint
Conference on (1991), vol. 2, IEEE, pp. 397–404.

18 Chapter 2. Background

[9] Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing systems
(2012), pp. 1097–1105.

[10] LeCun, Y., Bengio, Y., andHinton, G. Deep learning. Nature 521, 7553 (2015), 436–444.

[11] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D.,
and Riedmiller, M. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602 (2013).

[12] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G.,
Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., and Others. Human-level
control through deep reinforcement learning. Nature 518, 7540 (2015), 529–533.

[13] Negrinho, R., and Gordon, G. DeepArchitect: Automatically Designing and Training
Deep Architectures. arXiv preprint arXiv:1704.08792 (2017).

[14] Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison,
A., Antiga, L., and Lerer, A. Automatic di↵erentiation in pytorch. In NIPS-W (2017).

[15] Staats, K., Pantridge, E., Cavaglia, M., Milovanov, I., and Aniyan, A. TensorFlow en-
abled genetic programming. In Proceedings of the Genetic and Evolutionary Computa-
tion Conference Companion (2017), ACM, pp. 1872–1879.

[16] Stanley, K. O. Compositional Pattern Producing Networks: A Novel Abstraction of
Development. Genetic Programming and Evolvable Machines 8, 2 (jun 2007), 131–162.

[17] Stanley, K. O., and Lehman, J. Why Greatness Cannot Be Planned. Springer, 2015.

[18] Stanley, K. O., and Miikkulainen, R. Evolving neural networks through augmenting
topologies. Evolutionary computation 10, 2 (2002), 99–127.

[19] Such, F. P., Madhavan, V., Conti, E., Lehman, J., Stanley, K. O., and Clune, J. Deep
Neuroevolution: Genetic Algorithms Are a Competitive Alternative for Training Deep
Neural Networks for Reinforcement Learning. arXiv preprint arXiv:1712.06567 (2017).

[20] Turing, A. M. Computing machinery and intelligence. Mind 59, 236 (1950), 433–460.

[21] van den Oord, A., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., Kalch-
brenner, N., Senior, A., and Kavukcuoglu, K. WaveNet: A Generative Model for Raw
Audio. In Arxiv (2016).

[22] Watkins, C. J., and Dayan, P. Q-learning. Machine learning 8, 3-4 (1992), 279–292.

[23] Yao, X. Evolving artificial neural networks. Proceedings of the IEEE 87, 9 (1999),
1423–1447.

Chapter 3

An Algebraic Generalization for Graph
and Tensor-Based Neural Networks

3.1 Introduction

Algebraic methods provide symbolic representations and simple reasoning tools to a variety
of scientific fields. In computer science, algebraic frameworks have been successfully applied
in many application domains including computer algebra, high performance computing opti-
mization, computer-assisted reasoning, and more recently in artificial neural networks. In the
latter, modern frameworks such as TensorFlow[1] and PyTorch [11] use tensors as important
abstractions for making deep learning more accessible. Tensors can be interpreted as multidi-
mensional arrays, and are highly compatible with computational linear algebra. Researchers in
computational neuroscience have also appealed to algebraic methods to find representational
frameworks for neural networks, for example with Connection Set Algebra (CSA)[3].

More formal applications of algebraic methods in neural network modelling include a de-
scription of a classical neural network algebra as a subalgebra of image algebra [12], and a
recent compositional framework based on activation functions over an arbitrary ring that for-
mally defines some important operations for both network architecture and computation [2].

While respecting the contributions each of these projects have made to their respective
fields, there is still no common formal framework for symbolically representing neural net-
works or their underlying generative processes [9]. CSA attempts to deliver a formal represen-
tational framework for biological neural networks, but it falls short by failing to take advantage
of its similarity to existing mathematical frameworks. This makes it di�cult to extend using
existing mathematics. While the relationship between image algebra and neural networks is
interesting and useful, it lacks the generality of a less constrained algebraic formalism. And
while we agree that a general, ring-based, compositional framework is well-suited for mod-
elling and computing with neural networks, we suggest that extensibility and compatibility
with existing tools are necessary features for adoption.

In response, we worked to find an algebraic generalization for graph and tensor-based repre-
sentations first for artificial neural networks. In such a framework, one should be able to define
the connectivity of a neural network algebraically, either abstractly as an algebraic expression
with place-holder terms or concretely using fully defined connectivity matrices. All instances

19

20 Chapter 3. Algebraic Generalization for Neural Networks

should be easily portable to any graph or tensor-based format used for machine learning.
Specifically, the focus of this chapter is on exploiting the known relationship between lin-

ear and relational algebras to deliver a set of very useful operations for building networks by
composition. In particular, we make heavy use of objects called relational sums to define op-
erations for combining matrices of di↵erent sizes using a typed notation. In the next section,
we give specific details about the relationship between relations, linear algebra, and matrices
that are useful in this work. It should be noted that the known relationship between relations
and matrices is much more general than what is presented here, but the focus of this work is on
practical tools rather than abstraction.

The approach we present could be used as a model for further generalization. With that,
the scope of this work is decidedly narrow. We are not making any assertions about the merits
of the machine learning approaches used in the systems mentioned, nor are we making claims
about the e↵ectiveness of transfer learning. We are providing an example of how algebraic
methods can be used to generalize di↵erent notations and systems. As results, this will lead
to the development of useful, generic tools, and provide a new perspective for studying neural
networks as mathematical objects that other work has so far been unable to provide.

3.2 Mathematical Preliminaries
The purpose of this section is to demonstrate that 1) classical relations can be interpreted as the
subset of matrices over R with entries from {0, 1}, 2) with few additional steps, all elementary
relational operations can be defined using elementary matrix operations, and 3) the category
theoretic interpretations of relations and matrices both have common biproducts, which allow
certain relation operations to be applied directly to arbitrary matrices. Altogether, these math-
ematical preliminaries provide a convenient framework in which neural network connectivity
can be described using matrices and manipulated using straightforward linear and relation al-
gebraic operations. Note that the category theoretic aspects of this chapter are presented for
completeness and rigour, and that their application can be understood intuitively via the exam-
ples in Section 3.3.

3.2.1 Matrix Notation
We use the following notation for matrices and operations. An n by m matrix is denoted by
Anm and indexing on A is denoted by A[i, j] where 1 i n and 1 j m. For arbitrary
matrices Anm,Bnm, and Cmp we denote the transpose of A by A|, the matrix product of A and
C by A · C, the component-wise sum of A and B by A + B, the component-wise di↵erence of
A and B by A�B, the component-wise product of A and B by A ⇤B, and the scalar product of
a scalar ↵ and A by ↵ ⇤ A.

3.2.2 Relations
We now give a formal definition of (classical) relations and explain the interpretation of finite
relations using matrices.

3.2. Mathematical Preliminaries 21

Definition Formally, a relation R between a source set A and a target set B is a subset of
ordered pairs from A ⇥ B, i.e. R ✓ A ⇥ B. For x 2 A and y 2 B we say that x is in relation to y
via R if and only if (x, y) 2 R.

We denote a relation R with source A and target B by R : A ! B or RA!B. Finite re-
lations can be interpreted by {0, 1}-valued matrices. These are called relational matrices, or
just relations, henceforth. In this interpretation, the source elements are enumerated along
the rows and the target elements along the columns. We use Ai to denote the ith element
of A according to the same enumeration. The matrix interpretation R|A||B| of R is defined by
R[i, j] = 1 () (ai, bj) 2 R and R[i, j] = 0 () (ai, bj) < R. Since we are only concerned
with finite relations, every relation R : A ! B can be interpreted as a matrix R|A||B|, though we
use relational notation wherever possible.

3.2.3 Relational Operations
Next we define a set of operations allowing us to interpret any matrix over R as a relation. To
do this, we must first define element-wise operations mapping arbitrary elements of R to the
relational coe�cients {0, 1}.

Definition For all x 2 R, the flattening operation is defined by

x0 :=

8>><
>>:

1 () x , 0
0 () x = 0.

Other maps from real-valued to relational coe�cients can be defined, but the flattening
operation is fundamental among those operations due to properties of elementary semirings
used to generalize relations [8]. Next we need element-wise Boolean operations.

Definition For all x, y 2 R we define join, meet, and negation respectively by

x t y := (x0 + y0) � (x0 ⇤ y0) x u y := (x ⇤ y)0 ¬x := 1 � x0

With these we can now define fundamental relations and operations. Note that the relational
operations are defined for all matrices. In other words, the relational operations are matrix op-
erations that always produce {0, 1}-valued matrices and satisfy the axioms of a relation algebra.
For more details we refer again to [8].

Definition Given a source set A, target set B, and matrices R|A||B|, S|A||B|, and T |B||C| we define
the following operations and relations

(R [S)A!B[i, j] := R[i, j] t S[i, j] (union)

(R \ S)A!B[i, j] := R[i, j] u S[i, j] (intersection)

(R; T)A!C[i, k] :=
F

j2B(R[i, j] ⇤ T[j, k]) (composition)

IA!A := Id|A||A| (identity relation)

22 Chapter 3. Algebraic Generalization for Neural Networks

R`
B!A := R|; IA!A (converse)

RA!B[i, j] := ¬(R[i, j]) (complement)

(R � S)[i, j] := R[i, j] ⇤ ¬S[i, j] (di↵erence)

??A!B[i, j] := 0 (null relation)

>>A!B[i, j] := 1 (universal relation)

In the definition of converse, note that composition with the identity relation e↵ectively
applies the flattening operation so that a relation, as opposed to a matrix, is produced. A
detailed account of the algebraic properties satisfied by these operations can be found in [13],
a standard text on relational mathematics. An abundance of additional operations compatible
with this framework can also be found therein. Altogether, the set of operations presented
in this section forms the mathematical foundation that allows us to work with relations as a
special kind of matrix.

3.2.4 Relational Sums
With the elementary relational operations now defined, we now look to operations for building
algebraic descriptions of networks by composition. Of particular importance is the ability to,
based on type, keep track the set to which a node in such a network belongs. Luckily, such
operations already exist and have been extensively studied in category theory. For more details,
see [5].

Let Mat denote the category of all matrices, and let Rel denote the subclass of relations
among those matrices. Since Mat is an Abelian category it has biproducts. For matrices,
biproducts are defined using special matrices ◆, , ⇡ and ⇢ together with matrix multiplication
and component-wise addition. Biproducts in Mat are defined as follows.

Definition Let A and B be sets. Then biproducts in Mat consist of a set A � B together with
matrices ◆|A||A�B|, |B||A�B|, ⇡|A�B||A| and ⇢|A�B||B| such that

◆ · ⇡ = Id|A| · ⇢ = Id|B| · ⇡ = 0|B||A|
⇡ · ◆ + ⇢ · = Id|A�B| ◆ · ⇢ = 0|A||B|

Due to the inclusion and properties of the relational operations converse, intersection, and
union, the subclass Rel forms a distributive allegory [5]. In Rel, the relational sum can be
defined in terms of ◆ and together with the relational operations. It was then shown in [8]
that the relational sum is also a biproduct in Mat. As a result, the relational sum can be
applied directly to combine arbitrary matrices or relations. Notice that the definitions for matrix
biproducts and relational sums are very similar but use di↵erent operations.

Definition Let A and B be sets. Then the relational sum of A and B is a set A�B together with
injection relations ◆ : A! A � B and : B! A � B such that

◆; ◆` = IA ; ` = IB

; ◆` = ??B!A ◆`; ◆ [`; = IA�B

3.3. Extended Algebraic Operations 23

���
N

N R
���)

������

N B

N R 0
A 0 0

������

Figure 3.1: Matrix interpretations of R (left) and iT L(R, A, B) (right) where R is an |N | by |N|
matrix and A, B are finite sets.

The correspondence between the matrix and relational versions of biproducts e↵ectively
provides us with operations that can be used build neural adjacency matrices by composed
expressions that include both arbitrary matrices and special relational matrices. Informally,
these operations are very useful for building algebraic expressions for networks with nodes
belonging to di↵erent sets. To make it even easier to build such expressions, we denote ◆` by
⇡ and ` by ⇢, and we define four additional convenience functions as follows.

Definition Let A, B, and N be sets, and R be an |N| by |N | matrix. The injection functions
iT L, iTR, iBL, iBR are defined by

iTL(R, A, B)|N�A||N�B| := ⇡N�A!N · R · ◆N!N�B

iTR(R, A, B)|N�A||B�N| := ⇡N�A!N · R · N!B�N

iBL(R, A, B)|A�N||N�B| := ⇢A�N!N · R · ◆N!N�B

iBR(R, A, B)|A�N||B�N| := ⇢A�N!N · R · N!B�N

Informally, these injection functions enable ‘gluing matrices together’ in such a way that
the intended network connections can be established or retained. For example, iT L(R, A, B)
can be read as: ‘inject R into the top-left of a matrix with |A| rows and |B| columns added’.
This is visualized by Figure 3.1. Note that if A or B are the empty set, the operation behaves
as expected and adds zero rows or columns, respectively.

Altogether, the core algebraic framework presented in this chapter is an extension of linear
algebra that includes relational matrices, relational operations, and relational sums. And since
each of these can be defined strictly in terms of linear algebraic operations, the framework can
be implemented as an extension of any software package for linear algebra. For the remainder
of this chapter, we assert that relations and real-valued matrices may be used interchangeably
in expressions, and apply this in situations where relational notation is more convenient.

3.3 Extended Algebraic Operations
In this section we introduce three new algebraic operations as extensions of the basic frame-
work outlined in Section 3.2. For each operation, we give an overview with example and an
algebraic formulation with properties. The details in this section are meant to demonstrate
how new operations can be designed using matrices, defined as algebraic expressions, and how
important properties can be proven using algebraic reasoning.

24 Chapter 3. Algebraic Generalization for Neural Networks

a) In :=

��������

H1 H2

A1 1 0
A2 0 1
A3 1 1

��������
Hid :=

������

H1 H2

H1 1 1
H2 1 1

������

Out :=
������

B1

H1 1
H2 1

������

b)

A1

A2

A3

H1

H2

B1

Figure 3.2: a) Relations In : A! H, Hid : H ! H, and Out : H ! B defined by matrices. b)
A graph visualizing the connected relations.

3.3.1 Connect
The first extension is an operation to connect three subnetworks. Though we generalize connect
later with the Total Network Matrix, this serves as an example of how simple operations can
be designed using an algebraic approach. To keep the presentation and discussion simple, we
will only use relational notation in this section. Note that real-valued matrices could be used
interchangeably.

This simple operation takes three relations In : A ! H, Hid : H ! H, and Out : H ! B
and produces a relation A � H � B ! A � H � B such that all connectivity is preserved. The
main application for this operation is to modify input or output connectivity without a↵ecting
the hidden layers.

Example

Suppose we have three relations In : A ! H, Hid : H ! H, and Out : H ! B defined by the
matrices in Figure 3.2a. A graph interpretation of their connection is shown in Figure 3.2b.

Before defining the algebraic formulation of this operation, consider the intended result in
matrix form, as visualized in Figure 3.3. We can define the connect operation by observing the
positions of In, Hid, and Out in a connectivity matrix A � H � B! A � H � B.

Algebraic Formulation

The algebraic formulation of the connect function is given by Definition 3.3.1.

3.3. Extended Algebraic Operations 25

�����������������

A1 A2 A3 H1 H2 B1

A1 1 0
A2 0 1
A3 1 1
H1 1 1 1
H2 1 1 1
B1

�����������������

Figure 3.3: The result of applying connect to relations In, Hid, and Out. The position of
coe�cients in this matrix identify the source and target sets to which they originally belonged.

Definition Let A, B, and H be finite sets and In : A! H, Hid : H ! H, and Out : H ! B be
relations. The connect operation is defined by:

connect(In,Hid,Out) :=
iT L(iTR(In,H, A) + iBR(Hid, A, A), B, B) +
iBR(iTR(Out, B, A � H), A, ;)

It is easy to check that the type of relation produced by connect is indeed A � H � B !
A � H � B. Preservation of connectivity follows from a more general property (Lemma 3.3.2)
and so its discussion is omitted here.

3.3.2 Substitution
The substitution operation (subst) enables the substitution of one connection by an arbitrary
connectivity pattern. In connectomics, self-similar or fractal-like organization has been ob-
served at multiple levels of neural organization. For example, the structure of cortical columns
in primate brains is reported to be highly regular and self-similar ([14], [15]). Like connect,
subst is defined using relational notation, though real-valued matrices could be used inter-
changeably.

Example

Suppose we have a very small network with just three nodes, and that this network describes the
high-level organization of a neural network. We can use subst to replace individual connections
by more detailed connectivity patterns. Let Net : N ! N and S : C ! C be relations where
N = {N1,N2,N3} and C = {C1, . . . ,C5} as defined by the graphs in Figure 3.4a and 3.4b,
respectively.

In this example, the result of using subst to replace each connection in Net by the pattern
in S is visualized by Figure 3.4c. Since the number of nodes in the network is increasing, the
corresponding relation must be expanded by this operation. Where Net is a relation N ! N,
the network in Figure 3.4c can be interpreted as a relation N � S � S � S ! N � S � S � S .

To see how new nodes and connections are added by the substitution operation, consider
first the expansion via substitution from Net : N ! N to NetS : N � S ! N � S as visualized
by Figure 3.5.

26 Chapter 3. Algebraic Generalization for Neural Networks

a)

b) c)

Figure 3.4: Substitution of connections by a repeating pattern. a) A high-level network Net. b)
A substitution connectivity pattern S . c) The result of substituting each connection in Net by
S . Notice that Net is necessarily a graph minor of this graph.

Figure 3.5: Replacing the connection (N1,N2) in Net by the relation S . The crossed out entry
indicates removal; underlined entries indicate new connections between nodes in N and C.
Each quadrant in the matrix represents connectivity between di↵erent sets, as indicated by the
row and column labels.

The relation NetS can be interpreted as a matrix with four submatrices, each describing a
di↵erent part of the corresponding network. In the top left are the remaining connections from
the original network Net. In the top right is a relation N ! C describing new connections
between the original nodes in N and the newly added nodes in C. In the bottom left is a similar
relation C ! N describing connections between the newly added nodes in C and the original
nodes in N. Finally in the bottom right is the relation S : C ! C describing the substituted
connectivity pattern.

Algebraic Formulation

The general algebraic formulation of the substitution operation is given by Definition 3.3.2.

Definition Let N and C be finite sets, Net : N ! N and S : C ! C be relations, and
(Nx,Ny) 2 Net. The substitution operation is defined by:

subst(Net, S , (Nx,Ny)) :=
iT L(Net � {(Nx,Ny)},C,C) [
iBR(S ,N,N) [{(Nx,C1), (Cn,Ny)}

3.3. Extended Algebraic Operations 27

The usefulness of this algebraic operation depends on its correctness. As an example, we
may wish to prove that this operation preserves connectivity after substitutions. Interpreted
as graphs, the substitution of a connection (Nx,Ny) by an arbitrary connectivity pattern should
always preserve the existence of a path between Nx and Ny in the resulting graph. In strictly
relational terms, we can express this more formally.

Lemma 3.3.1 Let N and C be finite sets, Net : N ! N and S : C ! C be relations, and
(Nx,Ny) be an element in Net. If (C1,Cn) 2 S + then (Nx,Ny) 2 NetS +, the transitive closure of
NetS , where NetS = subst(Net, S , (Nx,Ny)).

Proof (C1,Cn) 2 S + implies that (C1,Cn) 2 NetS +, since S + ✓ iBR(S ,N,N)+ ✓ NetS +. Then
since {(Nx,C1), (Cn,Ny)} ✓ NetS (by union), we have that {(Nx,C1), (Cn,Ny)} ✓ NetS +. Finally
since {(Nx,C1), (C1,Cn), (Cn,Ny)} ✓ NetS +, we have that (Nx,Ny) 2 NetS + by transitivity.

Informally, if the first and last elements of C are transitively connected in the relation S ,
then the substitution operation with S applied to any connection (Nx,Ny) 2 Net will result in
(Nx,Ny) being included in the transitive closure of the resulting relation. In other words, this
operation preserves connectivity in networks.

3.3.3 Total Network Matrix
A currently popular approach for working with artificial neural networks involves ‘hand craft-
ing’ network architectures such as convolutional neural networks. The Total Network Matrix
(TNM) operation generalizes the connect operation and allows any combination of connectivity
matrices over finite, non-intersecting sets of neurons to be combined into a single matrix. For
this operation we proceed first with the algebraic formulation. A detailed example of its use is
given throughout Section 3.5.

Algebraic Formulation

The algebraic formulation of TNM requires a map between source and target sets and a corre-
sponding connectivity matrix. Given S = {S 1, S 2, . . . S n}, a set of sets, let S � denote the set
S 1 � S 2 � · · · � S n.

Definition Let S = {S 1, S 2, . . . , S n} be a finite set where each S i 2 S is a finite set of neurons
such that for all S x, S y 2 S , S x \ S y = ;. The enumeration of elements in S is assumed to be
S 1, S 2, . . . , S n�1, S n consistently. Then letM : (S x, S y) 2 S ⇥ S) M|S x ||S y | be map between
pairs of sets of neurons and a corresponding connectivity matrix. Then the Total Network
Matrix is defined by:

TNM(S ,M) :=
X

(S x,S y)2S⇥S

⇢ · ⇡ · M((S x, S y)) · ◆ ·

⇢ : S � ! S x � S x+1 � · · · � S n

⇡ : S x � S x+1 � · · · � S n ! S x

◆ : S y ! S y � S y+1 � · · · � S n

 : S y � S y+1 � · · · � S n ! S �

28 Chapter 3. Algebraic Generalization for Neural Networks

It is easy to check that the TNM operation always produces a connectivity matrix with the
correct dimensions. This is determined by the source and target sets used in the relations ⇢,
⇡, ◆, and , which are fixed. Similar to subst, it is perhaps most important to prove that this
operation also preserves connectivity.

Using the relational interpretation of matrices makes such a proof more straightforward and
no less general because of the correspondence between relational and matrix biproducts in the
case of matrices over R. Informally, we need to show that pairs of neurons that are connected
according to a connectivity matrix are still connected after TNM is applied to a map containing
that matrix. A formal proof is given in Lemma 3.3.2.

Lemma 3.3.2 For all (S x, S y) 2 S ⇥S andM : (S x, S y)) M|S x ||S y |, (S xa , S yb) 2M(S x, S y); IS y

�! (S xa , S yb) 2 TNM(S ,M); IS � .

Proof For any R : X ! Y , R ✓ (⇢; ⇡; R; ◆;); I with ⇢A�B�C!B�C, ⇡B�C!X, ◆Y!B�C, B�C!A�B�C,
and IA�B�C. This follows from the definition of relational sums. Then because ⇢; ⇡; R; ◆; =
⇢ · ⇡ · R · ◆ · ; I we have that R ✓ SRx2R(⇢ · ⇡ · Rx · ◆ · ; I) where Rx denotes an arbitrary relation
from a set of relations to which R also belongs, denoted by R. Then because of the abstract
correspondence between union and sum for relations and matrices, respectively, we have that
R ✓ (

P
Rx2R ⇢ · ⇡ ·Rx · ◆ ·); I. Finally, since (u, v) 2 R �! (u, v) 2 (

P
Rx2R ⇢ · ⇡ ·Rx · ◆ ·); I by the

definition of relational inclusion, we can conclude that indeed (S xa , S yb) 2 M(S x, S y); IS y �!
(S xa , S yb) 2 TNM(S ,M); IS � .

In other words, it follows from the definition of relational sums that no connections are lost
when these operations are applied in additive expressions using union or sum.

In summary, this section describes the exploitation of relational sums to define useful new
operations that are fully compatible with linear algebra and with existing proof techniques for
sets, relations, and matrices. As a result, the framework and operations presented here are
demonstrated to be extensible, flexible, and formal. All of these points are in sharp contrast to
similar work, such as CSA.

3.4 Implementation
The version of our framework presented in this chapter is fully compatible with linear algebra,
by design. As a result, we can exploit any existing software for linear algebra to serve as the
foundation for an implementation. In an e↵ort to make this framework widely accessible, we
used the Python packages NumPy[10] and SciPy[7] to provide such a foundation. From there
we implemented the relational sums, injection functions, and each of the extended operations
introduced in Section 3.3 as sparse matrix operations.

The Python implementations of operations follow almost directly from their algebraic
counterparts. Compare for example the Python listing in Figure 3.6 to Definition 3.3.3. Imple-
mentations of all operations presented in this chapter are included in a digital appendix found at
https://github.com/ethancjackson/SparseNALG-0.1/. Collectively, the Python im-
plementation is called SparseNALG for “Sparse Neural Algebra”.

3.5. Applications 29

def TNM(S ,M) :
S r e l s u m = np . sum (S . v a l u e s ())
m a t r i x = c s c m a t r i x ((S re l sum , S r e l s u m))
f o r (s r c , t r g) in M:

x i d x = l i s t (S) . i n d e x (s r c)
y i d x = l i s t (S) . i n d e x (t r g)
x e x t r a = np . sum (S . v a l u e s () [x i d x + 1 :])
y e x t r a = np . sum (S . v a l u e s () [y i d x + 1 :])
R = M[(s r c , t r g)]
x = S [s r c]
y = S [t r g]
r = rho (S re l sum , x + x e x t r a)
p = p i (x + x e x t r a , x)
i = i o t a (y , y + y e x t r a)
k = kappa (y + y e x t r a , S r e l s u m)
m a t r i x += r ⇤p⇤R⇤ i ⇤k

re turn m a t r i x

Figure 3.6: Python implementation of the TNM operation. Scipy’s sparse matrices (csc matrix)
are used to improve e�ciency. Rather than considering each (S x, S y) 2 S ⇥ S , only those pairs
present in the map M implemented as a dictionary are considered. All other pairs are assumed
to be zero matrices.

3.5 Applications
One of the main motivations for formalizing the algebra of neural networks is to identify and
exploit the commonalities between existing representations. Frameworks such as TensorFlow
or Theano use tensor-based expressions to evaluate a neural network given inputs. This repre-
sentation is highly optimized for linear algebraic computation, but is not directly compatible
with many other neural network representations. HyperNEAT for example, uses graph-based
representations for networks. In computational neuroscience, there exists no dominant rep-
resentation for neural networks, and none of the popular representations are compatible with
frameworks developed for the CI community.

To demonstrate the flexibility of the approach taken in our work, the following exam-
ple shows how neural network connectivity can be defined algebraically, and translated to
two common representations used in computational intelligence and machine learning. We
‘hand-crafted’ a neural network, algebraically, and translated it to both a HyperNEAT network
genome and to a tensor expression.

3.5.1 Constructing a Connectivity Matrix
In this example we are designing a simple network inspired by the structure of a feed-forward
convolutional neural network. Since this example is being used only to define connectivity,
we use relations to describe connectivity between sets of neurons. Note again, though, that
matrices of real-valued weights can be used interchangeably.

30 Chapter 3. Algebraic Generalization for Neural Networks

��������������������������

In F1 F2 A1 A2 B1 B2 C Out

In R1 R2

F1 R3

F2 R5

A1 R4

A2 R7

B1 R6

B2 R8

C R9

Out

��������������������������

Figure 3.7: A matrix interpretation of the connectivity between pairs of sets in S ⇥ S . With
no relations on or below the diagonal of this matrix, we can assert that all instances of such a
network will be feed-forward.

The first step is to declare a set of finite, non-intersecting sets of neurons and connectivity
relations between them. Suppose we have the following set of 9 sets: S = {In, F1, F2, A1, A2, B1, B2,C,Out}.
Abstractly, the number of neurons in each set is not important. Neural connectivity may be de-
fined as a subset of connectivity matrices among the 81 possible pairs of sets in S ⇥ S . In this
example, we define only 9 such matrices as relations with the following types:

R1 : In! F1 R2 : In! F2 R3 : F1 ! A1

R4 : A1 ! A2 R5 : F2 ! B1 R6 : B1 ! B2

R7 : A2 ! C R8 : B2 ! C R9 : C ! Out

The abstract connectivity between these sets is visualized by Figure 3.7. Instances of net-
works can now be specified by defining 1) the number of neurons in each set, and 2) concrete
relations for each of R1, . . . ,R9. The remaining relations are assumed to be ;.

Assuming instances of R1 . . .R9 as defined in the digital appendix and omitted here, Figure
3.8 visualizes the application of TNM to build a single connectivity matrix TotalNet over all
neurons. Notice that TotalNet is a concrete connectivity matrix that matches the abstract pat-
tern visualized by Figure 3.7. Figure 3.9 visualizes TotalNet as a graph. As an algebraically
constructed connectivity matrix, TotalNet can be manipulated arbitrarily by the operations pre-
sented in this chapter and by other linear or relation algebraic operations. For example, we may
apply the subst operation to substitute each connection in TotalNet by an arbitrary connectivity
pattern to obtain a more complex network. An example of this is visualized by Figure 3.10.

3.5.2 Connectivity Matrix as a HyperNEAT Genome
A HyperNEAT genome is an XML-formatted list of nodes and edges that defines artificial neu-
ral network connectivity for an individual in the underlying evolutionary algorithm. Though a
genome can be seeded into an experiment, HyperNEAT does not provide any tools for assist-
ing with manual network construction or importing other formats. The algebraic framework

3.5. Applications 31

Figure 3.8: Matrix visualization of TotalNet — the result of TNM applied to S and a map
M : S ⇥ S =) {R1 . . .R9} using the Python implementation.

Figure 3.9: A graph visualization of TotalNet.

32 Chapter 3. Algebraic Generalization for Neural Networks

Figure 3.10: Example of subst being applied to substitute all connections in TotalNet with the
connectivity pattern defined by Figure 3.4b.

presented in this chapter fills a gap by providing a set of tools that can be used to ‘hand-craft’
a HyperNEAT genome that could not easily be done otherwise.

Consider TotalNet as presented in the last section. Since this connectivity matrix denotes
a network over a single set of neurons, it can easily be translated into a graph or by exten-
sion a HyperNEAT genome. The digital appendix includes a Python script to do this. The
HyperNEAT interpretation of TotalNet is visualized by Figure 3.11.

3.5.3 Connectivity Matrix as a Tensor Operation

In tensor-based systems, neural network connectivity and evaluation strategy are defined si-
multaneously by tensor expressions. Since any matrix in linear algebra can be represented as
a 2D tensor, little work needs to be done to translate an algebraic expression in our framework
to a tensor operation. The neural network described by TotalNet can be translated to a tensor
operation by reorganizing and evaluating its non-zero submatrices R1 . . .R9 as follows:

3.6. Conclusions and FutureWork 33

Figure 3.11: TotalNet exported as a HyperNEAT genome and visualized as a seed network for
HyperSharpNEAT — a C# implementation of HyperNEAT.

eval(R1 . . .R9) : In! Out := T1 · T2 · T3 · T4 · T5

T1 = R1 · ◆F1!F1�F2 + R2 · F2!F1�F2

T2 = ⇡F1�F2!F1 · R3 · ◆A1!A1�B1

+ ⇢F1�F2!F2 · R5 · B1!A1�B1

T3 = ⇡A1�B1!A1 · R4 · ◆A2!A2�B2

+ ⇢A1�B1!B1 · R6 · B2!A2�B2

T4 = ⇡A2�B2!A2 · R7 + ⇢A2�B2!B2 · R8

T5 = R9

Assuming the above instances, the expression T1 · T2 · T3 · T4 · T5 is an algebraic expression
that can be interpreted without modification as a 2D tensor expression. Consistent with each
example in this section, the sizes of the sets and connectivity matrices involved are arbitrary.
As a result, this tensor expression is valid for any instance of the network described by Figure
3.7.

3.6 Conclusions and Future Work
The applications discussed in Section 3.5 serve as a proof of concept that a framework com-
bining relation and linear algebraic operations provides a generalization for graph and tensor
based neural networks. The main products of this work are the algebraic framework and an
example of its implementation as SparseNALG. The approach used in this chapter serves as an
example of how applied algebraic methods can contribute significantly to formalization e↵orts
and to the development of practical tools for the CI and computational neuroscience commu-

34 Chapter 3. Algebraic Generalization for Neural Networks

nities. This work has two major avenues for future work, the first being more formal and the
second being practical.

The matrices in this chapter are always assumed to contain elements from the field R with
relations being interpreted as a subset of those matrices. We did this to keep the presentation
relatively simple and to ensure all objects and operations are compatible with linear algebra for
implementations.

However, the connection between matrices and relations is in fact much more general. In-
stead of using matrices over R, which we used to denote either Boolean-valued or weighted
connectivity between neurons, a much more general semiring can be used to provide matrix el-
ements and elementary operations. These could be, for example, complex functions that model
biological neural dynamics. Conveniently, none of the operations presented in this chapter
need to be redefined to build connectivity matrices that use semiring elements instead of real
numbers. In future work we will show this explicitly and provide an algebraic framework that
supports complex neuron models.

For computational neuroscientists, this will provide a formal algebraic framework for mod-
elling both network connectivity and neural dynamics. Such a formal language for describing
and reasoning about biological neural networks does not currently exist. For the artificial in-
telligence community, this will provide not only a formal language and reasoning tools, but
also software that will enable computational algebraic methods to be applied to neural net-
works with complex neural dynamics. Practical benefits include the type of optimization made
possible by basic linear algebra subroutine (BLAS) systems such as those used by Spiral [4].

The framework presented in this chapter has two immediately possible applications of in-
terest to both computational neuroscientists and the artificial intelligence community. First,
this framework immediately enables the transfer of neural networks between systems. For ex-
ample, a TensorFlow neural network can now be easily converted to a HyperNEAT genome.
In future work, we will develop a set of software tools to seamlessly translate neural network
models between any popular formats based on graphs or tensors, including CSA, NeuroML[6],
HyperNEAT, TensorFlow, and PyTorch. Finally, the symbolic representation this framework
provides for neural networks seems well-suited for symbolic evolutionary computation. Fu-
ture work will explore the e↵ectiveness of applying genetic programming to evolve algebraic
expressions for neural networks in machine learning experiments.

Bibliography
[1] Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S.,

Irving, G., Isard, M., et al. Tensorflow: a system for large-scale machine learning. In
OSDI (2016), vol. 16, pp. 265–283.

[2] Curto, C., Itskov, V., Veliz-Cuba, A., and Youngs, N. The Neural Ring: An Algebraic
Tool for Analyzing the Intrinsic Structure of Neural Codes. Bulletin of Mathematical
Biology 75, 9 (2013), 1571–1611.

[3] Djurfeldt, M. The Connection-set Algebra—A Novel Formalism for the Representation
of Connectivity Structure in Neuronal Network Models. Neuroinformatics 10(3) (2012).

BIBLIOGRAPHY 35

[4] Franchetti, F., Low, T. M., Popovici, D. T., Veras, R. M., Spampinato, D. G., Johnson,
J. R., Püschel, M., Hoe, J. C., andMoura, J. M. Spiral: Extreme performance portability.
Proceedings of the IEEE 106, 11 (2018), 1935–1968.

[5] Freyd, P., and Scedrov, A. Categories, Allegories. North-Holland, 1990.

[6] Gleeson, P., Crook, S., Cannon, R. C., Hines, M. L., and Billings, G. O. NeuroML:
A Language for Describing Data Driven Models of Neurons and Networks with a High
Degree of Biological Detail. PLoS Computational Biology 6(6) (2010).

[7] Jones, E., Oliphant, T., Peterson, P., et al. SciPy: Open source scientific tools for Python,
2001–.

[8] Killingbeck, D., Teixeira, M. S., and Winter, M. Relations among Matrices over a
Semiring. Relational and Algebraic Methods in Computer Science (RAMiCS 15) (2015),
Killingbeck, D., Santos Teixeira, M., Winter, M.

[9] Menezes, T., and Roth, C. Symbolic regression of generative network models. Scientific
reports 4 (2014).

[10] Oliphant, T. E. A guide to NumPy, vol. 1. Trelgol Publishing USA, 2006.

[11] Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison,
A., Antiga, L., and Lerer, A. Automatic di↵erentiation in pytorch. In NIPS-W (2017).

[12] Ritter, G. X., Li, D., and Wilson, J. N. Image algebra and its relationship to neural
networks. In 1989 Orlando Symposium (1989), International Society for Optics and Pho-
tonics, pp. 90–101.

[13] Schmidt, G. Relational Mathematics. Encyplopedia of Mathematics and Its Applications,
2011.

[14] Sporns, O. Small-world connectivity, motif composition, and complexity of fractal neu-
ronal connections. Biosystems 85, 1 (2006), 55–64.

[15] Sporns, O. Contributions and challenges for network models in cognitive neuroscience.
Nature neuroscience 17, 5 (2014), 652–660.

Chapter 4

Novelty Search for Deep Reinforcement
Learning Policy Network Weights by
Action Sequence Edit Metric Distance

4.1 Introduction

Reinforcement learning (RL) [26] problems often feature sparse or infrequently accessible re-
ward, and deceptive local optima that impose di�cult challenges to many learning algorithms.
These can be characterized as environment features that cause short-term reward seeking be-
haviour to learned much more easily than long-term, higher value reward. Algorithms that op-
timize strictly for reward often produce degenerate policies that cause agents to under-explore
their environments or under-develop strategies for increasing reward. Deceptive local optima
have proved to be equally challenging for both gradient-based RL algorithms, including DQN
[16], and gradient-free algorithms including genetic algorithms (GAs) [25].

Deceptive local optima in reinforcement learning have long been studied by the evolu-
tionary algorithms community — with concepts including novelty search being introduced in
response [12]. The deep RL community has responded with similar ideas and tools, but in
purely gradient-based learning frameworks. A good example is given by recent work from
Google Brain and DeepMind that promotes episodic curiosity in deep RL benchmarks [21].
These methods were both designed to address deceptive local optima by substituting or sup-
plementing reward signal with some measure of behavioural novelty. In practice, an agent’s
behaviour has usually been defined in terms of its environment. Behaviour is often quantified
using information contained in environment observations. For example, agents that reach new
locations [25], or that reach the same location using an alternate route[21], can be rewarded for
their novel behaviour.

In this chapter, we investigate whether agent behaviour can be quantified more generally
and leveraged more directly. We investigate the following question: “Can the history of actions
performed by agents be used to promote innovative behaviour in benchmark RL problems?’
Towards answering this, we implemented two novel methods for incorporating behavioural
history in an evolutionary algorithm designed to e↵ectively train deep RL networks. The base
algorithm is an approximate replication of Such et al.’s genetic algorithm (GA) for learning

36

4.1. Introduction 37

DQN network [16] weights. This is a very simple yet e↵ective gradient-free approach for
learning DQN policies that are competitive with those produced by Deep Q-learning [25].

Both methods are GA extensions based on Lehman and Stanley’s novelty search [12] —
an evolutionary algorithm designed to avoid deceptive local optima by defining selection pres-
sure in terms of behaviour instead of conventional optimization criteria such as reward signal.
Novelty search has been shown to be an e↵ective tool for promoting innovation in RL [25]. In
this chapter, we introduce the use of Levenshtein distance [13] — a form of string edit met-
ric distance — as the behavioural distance function in a novelty search for deep RL network
weights.

The first method (Method I) is an implementation of novelty search in which, during train-
ing, the reward signal is completely substituted by a novelty score based on the Levenshtein
distance between sequences of game actions. In a novelty search, behaviour characteristics
are stored in an archive for a randomly-selected subset of individuals in each generation. We
define the behaviour characteristic as the sequence of actions performed by an agent during the
training episode. Selection pressure is then determined by computing the behavioural distance
between individuals in the current population and those in the archive — which we define as
Levenshtein distance.

The second method (Method II) is not a novelty search, but rather a modification to the Base
GA that incorporates elements of novelty search to avoid population convergence to locally-
optimal behaviours. The modified algorithm detects slowing learning progress as measured
using game scores in validation episodes. When validation scores are non-increasing for a
fixed number of episodes, the population is regenerated by sampling the archive for individuals
whose behaviours were most novel compared to the current population — a concept related to
restarting and recentering in evolutionary algorithms [9].

Using two sets of experiments, we evaluated each method’s e↵ectiveness for learning RL
policies for four Atari 2600 games, namely Assault, Asteroids, MsPacman, and Space In-
vaders. We found that while Method I is less e↵ective than the Base GA for learning high-
scoring policies, it returns policies that are behaviourally distinct. For example, we observed
greater uses of obstacles or greater agent lifespans in some games. Method II was more e↵ec-
tive than Method I for learning high-scoring policies. In two out of four games, it produced
better-scoring policies than the Base GA, and in one out of four, it produced better-scoring
policies than the original DQN learning method.

Importantly, and in contrast to previous uses of novelty search for deep RL, the behaviour
characteristic and behavioural distance function used here do not require or use environment-
specific knowledge. While such a requirement is not inherently a hindrance, it is convenient to
have tools that work in more general contexts. Compared to related methods that use memories
of observations (usually environment observations) to return to previous states [4] or to re-
experience or re-visit under-explored areas [21], archives of action sequences are relatively
compact, easy to store, and e�cient to compare. As such, the methods presented in this chapter
can either be used as stand-alone frameworks, or as extensions to existing methods that use
environmental memory to improve learning.

In the next section, we give an overview of the Base GA and architecture, the Atari bench-
mark problem, and our experimental setup. In Section 4.3 we provide a full definition of
novelty search and details of our implementation based on action sequences and Levenshtein
distance (Method I). In Section 4.4 we provide further details for Method II. Section 4.5 de-

38 Chapter 4. Novelty Search for Deep RL NetworkWeights By EditMetric Distance

scribes experiments and results, and is followed by discussion in Section 4.6.

4.2 Highly-Scalable Genetic Algorithms for Deep Reinforce-
ment Learning

The conventional objective in RL is to produce an optimal policy — a function that maps states
to actions such that reward, or gain in reward, is optimized. The methods introduced in this
chapter are extensions of a replicated state-of-the-art GA for learning deep RL policy network
weights introduced by Such et al. in [25].

4.2.1 DQN Architecture and Preprocessing

A RL policy network is an instance of a neural network that implements a RL policy. A Q
network uses a neural network to approximate a Q function. For comparability to related work
that uses evolutionary algorithms [25], we used the DQN neural network architecture [16] to
implement a policy network in all experiments. This means that the role of the neural network
is simply to map an environment observation to an action. Like the original DQN architecture,
this network consists of three convolutional layers with 32, 64, and 64 filters, respectively,
followed by one dense layer with 512 units. The convolutional filter sizes are 8 ⇥ 8, 4 ⇥ 4, and
3⇥ 3, respectively. The strides are 4, 2, and 1, respectively. All network weights are initialized
using Glorot normal initialization. All network layer outputs use rectified linear unit (ReLU)
activation. All game observations (frames) are downsampled to 84 ⇥ 84 ⇥ 4 arrays. The third
dimension reflects separate intensity channels for red, green, blue, and luminosity. Consecutive
game observations are summed to rectify sprite flickering.

4.2.2 Seed-Based Genetic Algorithm

Perhaps surprisingly, very simple genetic algorithms have been shown to be competitive with
Deep Q-learning for learning DQN architecture parameterizations [25]. In their paper, Such
et al. introduced an e�cient seed-based encoding that enables very large network parameter-
izations to be indirectly encoded by a list of deterministic pseudo-random number generator
(PRNG) seeds. This, in contrast to a direct encoding, scales with the number of evolutionary
generations (typically thousands) rather than the number of network connections (typically mil-
lions or more). This encoding enables GAs to work at unprecedented scales for tuning neural
network weights. It thus enables, more generally, a new wave of exploration for evolutionary
algorithms and deep learning.

For the present work, we implemented a GA and encoding approximately as described in
[25] using Keras [3], a high-level interface for Tensorflow [1], and NumPy [19]. An individual
in the GA’s population is encoded by a list of seeds for both Keras’ and NumPy’s deterministic
PRNGs. The first seed is used to initialize network weights. Subsequent seeds are used to
produce additive mutation noise. A constant scaling factor (mutation power) is used to scale
down the intensity of noise added per generation.

4.2. Highly-Scalable Genetic Algorithms for Deep Reinforcement Learning 39

A network parameterization is thus defined by:

⇥n = ⇥n�1 + �✏(⌧n) (4.1)
⇥0 = �(⌧0) (4.2)

where ⇥n denotes network weights at generation n, ⌧ denotes the encoding of ⇥n as a list
of seeds, � denotes a seeded, deterministic initialization function, ✏(⌧n) ⇠ N(0, 1) denotes a
seeded, deterministic, normally-distributed PRNG seeded with ⌧n and � denotes a constant
scaling factor (mutation power).

As in its introductory paper, the GA does not implement crossover, and mutation simply
appends a randomly-generated seed to an individual’s list ⌧. The GA performs truncated se-
lection — a process whereby the top T individuals are selected as reproduction candidates
(parents) for the next generation. From these T parents, the next generation’s population is
uniformly, randomly sampled with replacement, and mutated.

The GA also implements a form of elitism — a commonly used tactic to ensure that the
best performing individual is preserved in the next generation without mutation. A separate
set of validation episodes is used to help determine the elite individual during training. This
has the e↵ect of adding secondary selection pressure for generalizability and helps to reduce
overfitting. More details are given in Section 4.5.

It is important to note that this encoding imposes network reconstruction costs that would
not be needed using a direct encoding. The compact representation, though, enables a high
degree of scalability that would not be practical using a direct encoding. Algorithm descriptions
and source code for the Base GA, Method I, and Method II are provided in the Appendix and
Digital Appendix, respectively. For further details on the Base GA, refer to [25].

4.2.3 Atari 2600 Benchmark
The Atari 2600 Benchmark is provided as part of OpenAIGym [2] — an open-source platform
for experimenting with a variety of reinforcement learning problems. Work by Mnih et al. [15]
introduced a novel method and architecture for learning to play games directly from pixels —
a challenge that remains di�cult [8]. Though many enhancements and extensions have been
developed for DQN, no single learning method has emerged as being generally dominant [8],
[4].

The games included in the Atari 2600 benchmark provide a diverse set of control problems.
In particular, the games vary greatly in both gameplay and logic. In MsPacman, for example,
part of the challenge comes from the fact that the rules for success change once MsPacman
consumes a pill. To achieve a high score, the player or agent must shift strategies from escape
to pursuit. This is quite di↵erent from Breakout for example — a game in which the optimal
paddle position can be computed as a function of consecutive ball observations. The variety of
problems provided by this benchmark makes it an interesting set to study.

Before designing experiments, it is important to ask whether the chosen methods are plau-
sibly capable of learning high quality policies. In games like MsPacman, is it reasonable to
expect that a strictly feed-forward network architecture like DQN should be capable of pro-
ducing high-quality policies? Though we do not investigate this question in the experiments
presented in this chapter, we comment on it in Section 4.6.

40 Chapter 4. Novelty Search for Deep RL NetworkWeights By EditMetric Distance

Figure 4.1: Example of a simple game stage with a deceptive local optimum. Assuming the
goal is for the player to earn points by collecting as many diamonds as possible before using
a door to exit the stage, a globally suboptimal policy may never learn to scale the wall to the
player’s left and collect three additional diamonds.

4.2.4 Experimental Setup

The Base GA and encoding for our experiments is an approximate replication of the GA and
encoding introduced by Such et al. in [25]. All code was written in Python and uses Keras
and TensorFlow for network evaluation. All experiments were run on a CPU-only 32-core
Microsoft Azure cloud-based virtual machine (Standard F32s v2). The code is scalable to any
number of threads and could be adapted to run on a distributed system. A single run of a
Method II experiment (see Table 4.1) required roughly 120 wall-hours of compute time using
this system.

4.3 Novelty Search Over Action Sequences

Reinforcement learning problems often feature deceptive local optima or sparse reward signals.
For example, consider a simple platform game in which the player navigates the environment
to collect rewards. Environmental obstacles, such as walls and stacked platforms, increase
gameplay complexity and introduce latent optimization criteria. A simple example of such a
game is visualized by Figure 4.1.

To overcome such challenges, agents may need to develop behavioural or strategic inno-
vations that are not exhibited by any agent in the initial population. While it is possible for
innovations to appear strictly as a result of mutations using the Base GA, these innovations are
only promoted to the next generation if they immediately yield a positive return in terms of
reward signal. Introduced by Lehman and Stanley in [12], novelty search addresses environ-
mental challenges in RL by redefining optimization criteria in terms of behavioural innovation.
In the context of evolutionary algorithms, including GAs, a pure novelty search defines fit-
ness in terms of novelty rather than reward. Novelty search requires the following additional
components over a typical genetic algorithm: 1) a behaviour characteristic, 2) a behavioural
distance function, and 3) an archive of stored behaviour characteristics.

4.3. Novelty Search Over Action Sequences 41

4.3.1 Behaviour Characteristic
The behaviour characteristic of a policy ⇡, denoted by BC(⇡), is a description of some be-
havioural aspect of ⇡ with respect to its environment. For example, the behaviour characteris-
tic of a policy for controlling an agent in a 2D navigation environment could be the coordinate
pair of the agent’s location at the end of an episode. The behavioural distance between two
behaviour characteristics is the output of a suitable distance metric function d applied to two
behaviour characteristics BC(⇡i) and BC(⇡ j). For example, assuming that BC(⇡) maps a policy
⇡ to the final resting coordinates of an agent in 2D space, the behavioural distance function d
could be Euclidean distance in R2. Continuing with this example, an archive would consist of
a randomly-selected subset of final resting coordinates reached by agents throughout training.

In previous work, both behaviour characteristics and behavioural distance functions were
assumed to be domain-specific: they would not usually generalize to other environments. In
this chapter, we introduce a generalized formulation of novelty that applies to any game in the
Atari 2600 benchmark, and that generalizes to many more control problems.

We define the behaviour characteristic of a policy to be the sequence of discrete actions
performed by an agent in response to consecutive environment observations. These action
sequences are encoded as strings of length F, where F is the maximum number of frames
available during training. Characters are either elements of a game’s action space (distinct
symbols that encode a button press) or the character x, which is reserved to encode a death
action or non-consumed frame.

4.3.2 Behavioural Distance Function
We define the behavioural distance function as an approximation of the Levenshtein distance
[13] between action sequences encoded by strings. Note that other string edit distance metrics,
such as Hamming distance [7], or distributional distance metrics, such as Kullback-Leibler
divergence [11] could also be used as behavioural distance functions. We chose to base our be-
havioural distance function on Levenshtein distance because it captures temporal relationships
between action sequences that the other metrics do not.

For example, two action sequences encoded by x12345 and 12345x are much closer in
Levenshtein space (two edits: one deletion and one insertion) than in Hamming space (six edits:
one substitution at each position). The Kullback-Leibler divergence between the distribution
of actions in these two strings is zero since each action occurs exactly once, thus failing to
discriminate the two policies by their statistics.

The additional descriptive power of Levenshtein distance comes with higher computational
costs. The time complexity of computing the Levenshtein distance between two strings of
length n is O(n2). For large enough n, Levenshtein distance computations will impose a bottle-
neck on learning – a problem we encountered in preliminary experiments.

To remedy this, we simply restrict the size of n by splitting action sequences into fixed-
length segments and compute the cumulative Levenshtein distance between corresponding
segments. All experiments reported in this chapter use n = 500 for computing segmented
Levenshtein distance. While some information is lost using this approach, the practical reduc-
tion in runtime necessitates the choice. The behavioural distance function d which computes
segmented Levenshtein distance is defined by Equation 4.3:

42 Chapter 4. Novelty Search for Deep RL NetworkWeights By EditMetric Distance

d(A, B) =
S�1X

s=0

L(Asn···sn+n�1, Bsn···sn+n�1) (4.3)

where A and B are two action sequences encoded by strings, S is the number of segments, n is
the length of each segment, and L computes the Levenshtein distance between two strings. The
number of segments n is determined by computing dF/se, where F is the number of characters
in A and B, equal to the maximum number of frames available during training. In experiments,
L is computed using the Python package python-Levenshtein [6].

4.3.3 Hybrid Algorithm
In a pure novelty search, fitness in the GA would be defined entirely by novelty scores. The
experiments reported in this chapter for Method I use a hybrid algorithm in which, like for
a pure novelty search, selection pressure during training is solely determined using novelty
scores. To identify the generation elite, however, we use the validation game score instead
of a novelty score. This is due to the episodic nature of our chosen behaviour characteristic.
Action sequences archived during training are specific to the training episode. To be consistent
with other experiments using novelty search, we avoided the introduction of validation-specific
archives for additional episodes. And so while novelty is the dominant component of selection
pressure, we make this distinction clear to di↵erentiate it from a pure novelty search. Experi-
ments using Method I are discussed in Section 4.5.1.

4.4 Novelty-Based Population Resampling in Genetic Algo-
rithms

Reward sparsity is highly variable between RL problems. The Atari 2600 game Montezuma’s
Revenge, for example, is a complex platform game that requires significant exploration, puzzle-
solving, and other strategies to complete. Until very recently, it has proved challenging to de-
velop high-performing policies for this game without human-generated playthrough examples.
A new method called Go-Explore was recently introduced as the state-of-the-art for produc-
ing Montezuma’s Revenge policies [4]. Though it is not based on evolutionary algorithms or
the DQN architecture, Go-Explore borrows ideas from novelty search – namely the use of an
archive to store and recall states over the course of policy search.

Motivated by this result, we designed Method II as an extension to the Base GA that adds
features inspired by Go-Explore. In particular, we designed experiments to test whether an
archive of action-sequences recorded throughout evolution could be e↵ectively used for pro-
moting innovation. Over the course of evolution, a randomly selected subset of individuals
together with their action sequences are archived. This archive gradually collects individuals
that could potentially lead to better policies than those that were selected for reproduction.
Since the Base GA’s selection pressure is based entirely on game score, it is still susceptible to
converge around locally optimal policies and to discard innovations that do not yield immediate
returns.

4.5. Experiments 43

Hyperparameter Method I Method II
Population Size (N) 100 + 1 1,000 + 1
Generations 500 1000
Truncation Size (T) 20 20
Mutation Power (�) 0.002 0.002
Archive Probability 0.1 0.01
Max Frames Per Episode (F) 20,000 20,000
Training Episodes 1 1
Validation Episodes 5 30
Improvement Generations (IG) 10

Table 4.1: Hyperparameters for Method I and Method II experiments. Note that the Improve-
ment Generations hyperparameter is only used in Method II experiments, and that baseline
results do not use archiving. Population sizes are incremented to account for elites.

Since novelty scores are not computed to determine primary selection pressure, Method II
is not a novelty search. Instead, novelty scores are only computed when the algorithm detects
that policy generalizability has stagnated over some number of generations. In such cases, the
algorithm generates a new population by sampling the archive for individuals whose behaviour
characteristics are most distant from the current population. These sampled individuals are
used as parents for the next generation and the GA proceeds otherwise identically as the Base
GA.

As expected given DQN’s prior ine↵ectiveness for learning Montezuma’s Revenge, both
Methods I and II were also unsuccessful in preliminary experiments. As a result we excluded
it from main experiments, which are discussed in the next Section.

4.5 Experiments

All experiments use the same four games: Assault, Asteroids, MsPacman, and Space Invaders.
These games were chosen because they each feature gameplay that falls into one of two cat-
egories: games with one- or two-dimensional navigation. Assault and Space Invaders both
allow the player or agent to move an avatar across a one-dimensional axis at the bottom of
the game screen, while Asteroids and MsPacman allow a much greater range of exploration.
Experiments using these four games also provide new results for the Base GA’s e↵ectiveness
for learning to play Atari using the DQN architecture.

In all experiments, we provide a baseline result using our replication of the GA described
by Such et al. in [25]. The purpose of this baseline is to provide a replicated benchmark for
using GAs to learn DQN architecture weights. While we acknowledge that many modified
versions of the DQN architecture have been developed [8], we use the original architecture to
ensure comparability to a wide variety of existing results, thereby controlling for di↵erences
between algorithms rather than architectures. Video comparisons of the Base GA and Methods
I and II are included in the Digital Appendix.

44 Chapter 4. Novelty Search for Deep RL NetworkWeights By EditMetric Distance

Mean St. Dev.
Game Base GA Method I DQN Base GA Method I DQN
Assault 812 488 3359 228 158 775
Asteroids 1321 736 1629 503 426 542
MsPacman 2325 1437 2311 351 527 525
Space Invaders 500 474 1976 303 195 893

Table 4.2: Comparison of Base GA and Method I testing results over 30 episodes not used
in training or validation. Means and standard deviations are measured in game score units.
Bolded means denote significantly better testing performance (p < 0.05 in a two-tailed t-test).
The Base GA outperforms Method I in all but one game.

4.5.1 Method I

Method I was designed to test the merits of using novelty search over agent action sequences
in the Atari 2600 benchmark. This method substitutes reward signal with a measure of be-
havioural novelty as the selection pressure in an evolutionary search for DQN architecture
weights. For comparability with existing gradient-based [16] and gradient-free [25] methods,
we evaluated Method I against the Base GA. Due to compute time constraints, these exper-
iments were run at a smaller scale than for Method II. Hyperparameters are summarized by
Table 4.1.

Method I training progress is visualized by Figure 4.2 and testing evaluation of Method I
policies is summarized by Table 4.2. Overall, Method I does not produce policies that score
better than either DQN or the Base GA. On the other hand, it is interesting to evaluate the
behaviours of policies generated by (almost) completely ignoring the reward signal during
training.

Results for Method I experiments suggest that novelty search indeed creates selection pres-
sure for innovation. For example in Space Invaders, we observed more regular uses of obstacles
by agents trained using Method I than the Base GA. And in MsPacman, we observed that agents
trained using Method I tended to explore more paths than their Base GA-trained counterparts.
In two out of four games (Assault and Space Invaders), agents trained by Method I had signifi-
cantly longer lifespans than those trained by the Base GA (see Table 4.3). This could either be
due to the behavioural distance function’s sensitivity to di↵erences in lifespan, or to defensive
innovations that increase agent lifespan.

To determine whether Levenshtein distance is e↵ectively di↵erent than lifespan as a be-
havioural distance function, we conducted an additional small-scale experiment using MsPac-
man (Method I-L). We observed that lifespan, measured by counting the number of frames an
agent survives in its environment, is not an equivalent behavioural distance function to Leven-
shtein distance. See Table 4.4 for hyperparameters and Figure 4.3 for results.

A problem with this approach is that by continually selecting for innovation, there may be
insu�cient evolutionary time for innovations to be optimized. Method II attempts to remedy
this by integrating secondary selection pressure for novelty into an otherwise standard search
for reward-optimizing policies.

4.5. Experiments 45

Mean St. Dev.
Game Base GA Method I Base GA Method I
Assault 3538 5242 995 1998
Asteroids 1263 1223 545 668
MsPacman 1112 931 137 142
Space Invaders 1264 1552 369 285

Table 4.3: Comparison of Base GA and Method I lifespans over 30 episodes not used in training
or validation. Means and standard deviations are shown in numbers of frames over which
agents survived. Bolded means denote significantly longer lifespans (p < 0.05 in a two-tailed
t-test). Method I produced agents with significantly longer mean lifespans in testing in Assault
and Space Invaders.

Hyperparameter Method I-L
Population Size (N) 100 + 1
Generations 500
Truncation Size (T) 10
Mutation Power (�) 0.004
Archive Probability 0.02
Max Frames Per Episode (F) 2,500
Training Episodes 2

Table 4.4: Hyperparameters for experiment on Method I-L. Validation episodes were not used
in this experiment – elites determined using highest game score in training over 2 episodes.

46 Chapter 4. Novelty Search for Deep RL NetworkWeights By EditMetric Distance

Method I Learning Progress
Mean High Validation

A
ss
au
lt

A
st
er
o
id
s

M
sP
ac
m
a
n

Sp
ac
e

In
va
d
er
s

Figure 4.2: Base GA and Method I learning progress.

4.5. Experiments 47

Figure 4.3: Population mean game score over generations during training on MsPacman. Mean
scores diverge after generation 160. Levenshtein distance (Method I) and lifespan are thus not
equivalent behavioural distance functions.

4.5.2 Method II

Method II was designed to help the GA avoid stagnation or premature convergence to locally
optimal solutions. This method adds two components to the Base GA: 1) stagnation detection,
and 2) population resampling. Stagnation is detected by examining the trend of validation
scores. In the Base GA, validation episodes are used solely to identify the elite individual of a
population. In Method II, learning progress is declared to be stagnant when validation scores
are non-increasing over 10 episodes. This is reflected by the hyperparameter Improvement
Generations (IG) in Table 4.1. Population resampling is achieved by sampling 2⇤T individuals
from the archive to be the next generation’s parents. For Method II, novelty scores are used
to select archived individuals whose policies were most di↵erent from the current population,
according to the behavioural distance metric.

As a baseline, we tested whether novelty-based population resampling is better than sam-
pling random individuals from the archive for learning MsPacman policies. Using the same
evaluation criteria and hyperparameters as for Method II (see Table 4.1) we found that, for
MsPacman, novelty-based population resampling is significantly better than random archive
sampling. This result is summarized by Table 4.5 and motivated further evaluation of the
method applied to other games.

We then evaluated Method 2 by comparing it to the Base GA. These experiments were run
using similar hyperparameters to previous related work [25] — (see Table 4.1). Method II
training progress is visualized by Figure 4.4 and testing evaluation of Method II is summarized
by Table 4.6. In testing, Method II yielded improved results over the Base GA in two out of
four games and no significant change in two out of four games. We also compared Method
II testing scores to those reported in [16] for Deep Q-learning — see Table 4.7. Method II
outperforms DQN methods in one game, and is outperformed by DQN methods in two games.
These mixed results are consistent with previous work [25].

48 Chapter 4. Novelty Search for Deep RL NetworkWeights By EditMetric Distance

Mean St. Dev.
Game Random Method II Random Method II
MsPacman 3377 3790 661 322

Table 4.5: Comparison of Method II (novelty-based population resampling) to random
population-resampling over 30 episodes not used in training or validation. In MsPacman,
Method II yielded better mean game scores in testing than random population resampling with
p < 0.05 in a two-tailed t-test.

Mean St. Dev.
Game Base GA Method II Base GA Method II
Assault 1219 1007 676 413
Asteroids 1263 1476 590 640
MsPacman 3385 3700 633 209
Space Invaders 615 1211 323 244

Table 4.6: Comparison of Base GA and Method II testing results over 30 episodes not used
in training or validation. Means and standard deviations are measured in game score units.
Bolded means denote significantly better testing performance (p < 0.05 in a two-tailed t-test).
Method II improves learning in 2 out of 4 games over the Base GA.

Mean St. Dev.
Game DQN Method II DQN Method II
Assault 3359 1007 775 413
Asteroids 1629 1476 542 640
MsPacman 2311 3700 525 209
Space Invaders 1976 1211 893 244

Table 4.7: Comparison of DQN and Method II using testing scores over 30 randomly-seeded
episodes reported in [16]. Means and standard deviations are measured in game score units.
Means and standard deviations are measured in game score units. Bolded means denote signifi-
cantly better testing performance (p < 0.05 in a two-tailed t-test). Method II outperforms DQN
in one game, performs similarly to DQN in one game, and is outperformed by DQN in two
games. These mixed results are consistent with previous comparisons between gradient-based
and gradient-free learning methods [25].

4.5. Experiments 49

Method II Learning Progress
Mean High Validation

A
ss
au
lt

A
st
er
o
id
s

M
sP
ac
m
a
n

Sp
ac
e

In
va
d
er
s

Figure 4.4: Base GA and Method II learning progress. Mean denotes population mean game
score over generations in training, high denotes score of top-performing individual over gener-
ations in training, and validation denotes the mean score of the best-generalizing individual to
30 di↵erently-seeded environments. In each generation, the best individual in validation is des-
ignated as the elite. In 3 out of 4 games, validation scores reach a higher maximum. Whereas
the Base GA seemingly failed to escape a local optima, Method II was particularly e↵ective
for improving performance in Space Invaders.

50 Chapter 4. Novelty Search for Deep RL NetworkWeights By EditMetric Distance

4.6 Discussion
The results presented in this chapter support recent work showing that GAs are e↵ective at
training deep neural networks for RL. We took advantage of this to explore whether the be-
haviour of agents could be e↵ectively used as selection pressure in an evolutionary search for
RL policies. While our implementation of novelty search based on Levenshtein distance was
not as e↵ective as the Base GA, we found that it produced potentially useful and informative
policies. In particular, we found that novelty search over Levenshtein distances is not equiv-
alent to a longevity search, and that the policies it produces may be more defensive than than
those produced by typical reward optimization.

The combination of reward signal and novelty scores in Method II resulted in a net im-
provement in testing scores over the Base GA in the four games tested. During Space Invaders
training it is particularly evident that, while the Base GA was showing signs of stagnation or
convergence in validation performance, Method II e↵ectively reoriented the search.

Method II yielded improved policies for MsPacman over both the Base GA and DQN
method. On closer inspection, however, it is clear that all of the compared policies su↵er
from limited complexity. In no cases did we observe a successful strategy shift from escape to
pursuit upon consumption of a pill. The lack of this emergent behaviour in any of the results
we considered, in addition to sub-human performance in the current state-of-the-art based on
a modified DQN architecture [8], leads us to suspect that the DQN architecture combined
with reward-signal optimization is not well-suited for e↵ectively learning situational policies
or discrete mode switching. In response, we think that emerging methods such as Di↵erentiable
Inductive Logic Programming [5], a learning framework that enables logical rules to be inferred
from large-scale data using neural networks, and a new wave of automated network architecture
construction algorithms could be especially useful.

More broadly, the production and storage of policies with varying behaviours, including
defensiveness, could have many applications in real-world control problems. In autonomous
transport, for example, it could be desirable to evaluate potential policies with a wide range
of behaviours in order to select the safest. Methods based on novelty search, like the ones
introduced in this chapter, could be used to purposefully learn diverse strategies for achieving
the same goals. This concept has recently been shown to be e↵ective in learning frameworks
based on a wide variety of methods — see [4] and [21], each of which use environment ob-
servations to help instil novelty, in addition to [17] and [20]. Methods that already implement
observationally-based storage and comparison methods could benefit from the relatively low-
cost inclusion of action sequences and string edit metric distances to diversify learned policies.

4.7 Future Work
The evolutionary algorithms community has developed and applied many methods for evolving
network architectures and related structures. NEAT [24] and HyperNEAT [23] are very popular
methods for simultaneously evolving network architectures and weights, and Cartesian Genetic
Programming [14] is a related method that uses more general basis functions than are typically
used in neural networks. All of these methods have been successfully applied in RL problems.

In future work, we will extend the methods detailed in this chapter to include automated

BIBLIOGRAPHY 51

network architecture search. A method inspired by NEAT and that uses a compact algebraic
approach to modular network representation [10] is currently in development. Given the scale
at which Such et al.’s method enables GAs to train deep neural networks, we are optimistic that
both existing and forthcoming methods for topology- and weight- evolving neural networks
(TWEANNs) will be e↵ective tools for solving increasingly complex problems in RL.

We are particularly eager to develop tools that combine the open-endedness of evolutionary
algorithms with the reliability and robustness of functional modules, which could range from
simple logical operators to convolutional network layers and beyond. Methods for search-
ing the complex search space of deep neural network architectures and hyperparameters have
recently been developed for gradient-based learning [18]. And though similar methods like
HyperNEAT are certainly able to learn high-quality RL policies [22], we think a method that
combines recent advances in both evolutionary algorithms and gradient-based deep reinforce-
ment learning could be even more e↵ective.

Bibliography
[1] Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S.,

Irving, G., Isard, M., et al. Tensorflow: a system for large-scale machine learning. In
OSDI (2016), vol. 16, pp. 265–283.

[2] Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., and
Zaremba, W. Openai gym. arXiv preprint arXiv:1606.01540 (2016).

[3] Chollet, F. Keras, 2017.

[4] Ecoffet, A., Huizinga, J., Lehman, J., Stanley, K. O., and Clune, J. Go-explore: a new
approach for hard-exploration problems. arXiv:1901.10995 (2019).

[5] Evans, R., and Grefenstette, E. Learning explanatory rules from noisy data. Journal of
Artificial Intelligence Research 61 (2018), 1–64.

[6] Haapala, A. python-levenshtein, 2018.

[7] Hamming, R. W. Error detecting and error correcting codes. Bell System technical journal
29, 2 (1950), 147–160.

[8] Hessel, M., Modayil, J., VanHasselt, H., Schaul, T., Ostrovski, G., Dabney, W., Horgan,
D., Piot, B., Azar, M., and Silver, D. Rainbow: Combining improvements in deep rein-
forcement learning. In Thirty-Second AAAI Conference on Artificial Intelligence (2018).

[9] Hughes, J., Houghten, S., and Ashlock, D. Recentering, reanchoring & restarting an
evolutionary algorithm. In Nature and Biologically Inspired Computing (NaBIC), 2013
World Congress on (2013), IEEE, pp. 76–83.

[10] Jackson, E. C., Hughes, J. A., Daley, M., andWinter, M. An algebraic generalization for
graph and tensor-based neural networks. In Computational Intelligence in Bioinformatics
and Computational Biology (CIBCB), 2017 IEEE Conference on (2017), IEEE, pp. 1–8.

52 Chapter 4. Novelty Search for Deep RL NetworkWeights By EditMetric Distance

[11] Kullback, S., and Leibler, R. A. On information and su�ciency. The annals of mathe-
matical statistics 22, 1 (1951), 79–86.

[12] Lehman, J., and Stanley, K. O. Abandoning objectives: Evolution through the search for
novelty alone. Evolutionary computation 19, 2 (2011), 189–223.

[13] Levenshtein, V. I. Binary codes capable of correcting deletions, insertions, and reversals.
In Soviet physics doklady (1966), vol. 10-8, pp. 707–710.

[14] Miller, J. F. Cartesian genetic programming. Cartesian Genetic Programming (2011),
17–34.

[15] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D.,
and Riedmiller, M. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602 (2013).

[16] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G.,
Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., and Others. Human-level
control through deep reinforcement learning. Nature 518, 7540 (2015), 529–533.

[17] Mouret, J.-B., and Clune, J. Illuminating search spaces by mapping elites. arXiv preprint
arXiv:1504.04909 (2015).

[18] Negrinho, R., and Gordon, G. DeepArchitect: Automatically Designing and Training
Deep Architectures. arXiv preprint arXiv:1704.08792 (2017).

[19] Oliphant, T. E. A guide to NumPy, vol. 1. Trelgol Publishing USA, 2006.

[20] Pugh, J. K., Soros, L. B., and Stanley, K. O. Quality diversity: A new frontier for
evolutionary computation. Frontiers in Robotics and AI 3 (2016), 40.

[21] Savinov, N., Raichuk, A., Marinier, R., Vincent, D., Pollefeys, M., Lillicrap, T., and
Gelly, S. Episodic curiosity through reachability. arXiv preprint arXiv:1810.02274
(2018).

[22] Shenton, C. Atari 2600 leaderboard, 2018.

[23] Stanley, K. O., D’Ambrosio, D. B., and Gauci, J. A hypercube-based encoding for evolv-
ing large-scale neural networks. Artificial life 15, 2 (2009), 185–212.

[24] Stanley, K. O., and Miikkulainen, R. Evolving neural networks through augmenting
topologies. Evolutionary computation 10, 2 (2002), 99–127.

[25] Such, F. P., Madhavan, V., Conti, E., Lehman, J., Stanley, K. O., and Clune, J. Deep
Neuroevolution: Genetic Algorithms Are a Competitive Alternative for Training Deep
Neural Networks for Reinforcement Learning. arXiv preprint arXiv:1712.06567 (2017).

[26] Sutton, R. S., and Barto, A. G. Introduction to reinforcement learning, vol. 135. MIT
press Cambridge, 1998.

Chapter 5

Generative, Mutable Network
Architectures for Deep Reinforcement
Learning via Genetic Algorithms

5.1 Introduction

A recent surge of progress has been made in reinforcement learning (RL) largely due to the
application of deep learning. Now-popular methods including DQN [12] and its many variants
[3] have broken and maintain records in many benchmarks [15]. The hallmark feature of
DQN is, perhaps, its ability to learn RL policies directly from pixels using convolutional neural
network layers [9]. In recent work by Uber AI Labs, it was shown that a strictly gradient-
free approach — a very simple but highly scalable genetic algorithm (GA) — can be used
to e↵ectively learn the weights of deep RL policy networks including DQN. This perhaps-
surprising result prompts us to revisit other evolutionary approaches to RL including topology
and weight evolving neural networks (TWEANNs).

TWEANNs have a long history of successful application in RL. Two of the most popu-
lar methods are neuroevolution of augmenting topologies (NEAT) [19] and hypercube NEAT
(HyperNEAT) [17]. In general, a TWEANN is an evolutionary framework in which neural
network architectures and their parameterizations are simultaneously evolved. In NEAT, ar-
chitectures are initially small, and networks gradually become larger and more complex over
evolutionary time. In RL problems with relatively small observation spaces — the spaces of
inputs made available to agents — NEAT has been very successful [18; 22]. In most of these
cases, observations are some transformation of the raw input space. For a video game, the raw
input space typically consists of the observable pixels for each game frame [11], [1]. An input
space transformation applies preprocessing steps to reduce the dimensionality and augment the
information content of the raw inputs. For example, object detection, classification, and track-
ing could be used to summarize attributes of on-screen objects as feature vectors to be used
as inputs instead of raw pixels. When such transformations are applied, NEAT has been more
successful [22], [18]. Learning directly from raw pixels, on the other hand, had remained very
challenging for RL researchers until the emergence of convolutional neural networks and, in
particular, DQN [12].

53

54 Chapter 5. Generative, Mutable Network Architectures for Deep RL via GAs

Given that NEAT has been shown to be highly e↵ective for learning RL policy networks
from transformed features, and that DQN e↵ectively learns such transformations via convo-
lutional network layers, we think an exploration of methods that combines these approaches
is well-warranted. In this chapter, we introduce a novel framework for RL that combines
tensor-based deep learning and sparse matrix-based TWEANNs that is enabled by recent de-
velopments in highly-scalable GAs.

We developed this framework as a simple extension of the highly-scalable GA introduced
by Such et al. in [20] that adds evolvable, generative network modules to densely-connected
layers. The generative network modules are inspired by the objects and operations of Sparse-
NALG — a highly general algebraic framework for representing and manipulating neural net-
work architectures introduced in [6]. Using this approach, and in contrast to existing TWEANN
frameworks like NEAT or HyperNEAT, a network’s architecture can be seamlessly defined as
a mix of layers with immutable and mutable architectures in any programming environment
that supports both tensors and sparse matrices.

To evaluate the e↵ectiveness of this approach, we implemented an instance of the frame-
work that primarily uses PyTorch [14], NumPy [13], and Scipy [7] – all commonly-used Python
packages in the deep learning and RL communities. We used series of experiments to explore
the e↵ects of enabling mutability in post-convolutional network layers for four games in the
Atari 2600 benchmark [11] — a set of problems that remain challenging to most RL methods.
The games used in this work are Assault, Asteroids, MsPacman, and Space Invaders.

In short, we found that by enabling mutability in the last densely connected layer of the
DQN network, learning performance was significantly better in three out of four games tested.

In Section 5.2 we give a brief overview of SparseNALG (for Sparse Neural Algebra) as
an algebraic framework. Then in Section 5.3, we explain the limitations of employing Sparse-
NALG directly and motivate the use of a procedural interpretation instead. In Section 5.4 we
give an overview of Such et al.’s highly-scalable GA for deep RL on which our extension is
based, and in Section 5.5 we describe the extension itself. Section 5.6 gives details about ex-
periments and results using our implemented framework, Section 5.7 discusses the results, and
directions for future work are discussed in Section 5.8.

5.2 Overview of SparseNALG

SparseNALG was developed in response to the lack of a standard, general framework for rep-
resenting neural network architectures. It was inspired by Connection Set Algebra (CSA)
[2], a mathematical framework for expressing connectivity structures in computational neuro-
science, but provides an algebraic foundation that is much more general and extensible. Using
SparseNALG, a large neural network architecture can be built using substitution operations
that replace existing connections with arbitrary patterns. An example of such a substitution is
visualized by Figure 5.1.

The objects and operations developed for SparseNALG are very useful for designing and
reasoning about operations for manipulating the adjacency matrices of neural networks. How-
ever, we found that it would be di�cult to apply the algebra directly in neuroevolution.

5.3. Limitations of SparseNALG for Neuroevolution 55

a)

b) c)

Figure 5.1: Application of a substitution operation in SparseNALG. a) A network architecture
A. b) A connectivity pattern P. c) The result of substituting each connection in A by P. These
substitutions can be performed using a combination of injection and projection operations on
the adjacency matrix of A, which grows in size as new neurons are inserted.

5.3 Limitations of SparseNALG for Neuroevolution

SparseNALG is a formal algebra. Valid expressions must be composed of terms that satisfy
the basic rules of the algebra. Neuroevolutionary algorithms often work by simultaneously
searching the spaces of network topologies and weights. As such, an individual (genotype) in
the evolutionary algorithm must encode all information needed to generate the corresponding
phenotype. For TWEANNs, the genotype must then contain information that can be decoded
to produce both the topology and weights of an artificial neural network. The genotype must
also be mutable using genetic operations so that the search space can be explored.

Network topologies represented as algebraic expressions are compact, but not easily muta-
ble. For example, consider the following simple expression:

subst(A, src, trg, P)

where A is the adjacency matrix of a network architecture, src and trg are source and target
sets of neurons in the network represented by A, and P is a connectivity pattern that will be
injected into A.

Such an expression could certainly be used as part of the genotype, but this would intro-
duce added complexity, especially for genetic operators. A mutation operation, for example,
would need to be an operation that modifies an algebraic expression. This would introduce
added requirements of parsing the expression, representing it as an expression tree or graph,
and selecting a safe operation and its operands. This approach would drastically increase the
computational complexity of mutating the genotype because it would require the phenotype
(the network) to be instantiated in order to check the validity or safety of mutations.

Many evolutionary frameworks for genetic programming (GP) [8] are implemented this
way. For example, Hughes and Daley’s framework for symbolic regression via GP mutates
arithmetic expressions very similarly [4]. The key di↵erence is that while the genotypes in
[4] directly encode relatively small arithmetic expressions, the neural network topologies in-
directly encoded by expressions in SparseNALG could be arbitrarily large. This motivates the
use of genetic operations which explicitly do not require the phenotype to be instantiated for
validation.

56 Chapter 5. Generative, Mutable Network Architectures for Deep RL via GAs

5.4 Highly Scalable Genetic Algorithms for Deep Reinforce-
ment Learning

In [20], Such et al. introduced a compact, seed-based encoding for neural network weights
that is highly scalable to parallel computing platforms. Instead of encoding network connec-
tion weights directly, the genome consists of a list of deterministic pseudo random number
generator (PRNG) seeds. These seeds are used to generate vectors of mutation noise that are
additively applied to initial network weights during network reconstruction. As such, geno-
type size scales with the number of generations instead of the number of network nodes or
connections and greatly reduces communication overhead in a distributed implementation.

The compactness of this representation enables GAs to be applied to deep learning at very
large scales. In [20] a large-scale GA was used to train DQN network weights in roughly
4 hours (wall-time) on a 720-core distributed system. The DQN policies resulting from this
training were competitive with those learned using gradient-based algorithms that required
several days of computing time. These results enable and prompt a serious investigation of the
e↵ectiveness of evolutionary algorithms applied at deep learning scales.

The GAs used in [20] and [5] were used to learn only the weights of the DQN architecture.
In contrast, NEAT is a neuroevolutionary algorithm that also learns network topologies. It
gradually searches the space of increasingly complex or augmenting topologies between set
numbers of inputs and outputs via a process called complexification.

Using the GA and encoding introduced in [20] and objects and operations from Sparse-
NALG, we can seamlessly combine architectural mutability inspired by NEAT with tensor-
based deep learning. We call this framework EvoAlgNN for Evolving Algebraic Neural Net-
works.

5.5 EvoAlgNN
EvoAlgNN is an evolutionary framework based on SparseNALG, NEAT, and Such et al.’s GA
for deep RL. It combines the seed-based encoding for neural network weights introduced in
[20] with operations that enable arbitrary architecture mutability. EvoAlgNN is implemented
in Python using PyTorch, NumPy, and SciPy — making it easily extensible and integrable with
tensor-based deep learning, as is demonstrated in Section 5.6. The remainder of this section
desribes the framework and implementation.

5.5.1 Mutable Subnetworks
The core object of EvoAlgNN is the mutable subnetwork. Formally, all mutable subnetworks
are interpreted abstractly as relational matrices over the set Inputs �Outputs � Hidden where
Inputs and Outputs are non-empty, disjoint, ordered sets of neuron labels. The operator � is
the relational sum — similar to the union of ordered sets, except that certain injection and pro-
jection properties must hold for the resulting objects. These properties are explained in detail
in Chapter 3 and enable us to consistently organize adjacency matrices. Using this approach,
any set of neurons can be interpreted as the relational sum of two smaller sets. This enables,
for example, the set Hidden to be interpreted as the disjoint union of two smaller sets Hid1 and

5.5. EvoAlgNN 57

Hid2 and so on. Furthermore, this ensures that neural network inputs and outputs are consis-
tently interpretable between reconstructed instances. Figure 5.2 visualizes an adjacency matrix
over the relational sum of two sets.

�����������

a1 a2 b1 b2

a1 wa1,a1 wa1,a2 wa1,b1 wa1,b2

a2 wa2,a1 wa2,a2 wa2,b1 wa2,b2

b1 wb1,a1 wb1,a2 wb1,b1 wb1,b2

b2 wb2,a1 wb2,a2 wb2,b1 wb2,b2

�����������

Figure 5.2: Adjacency matrix over the set A � B, where A = {a1, b1} and B = {b1, b2} are
disjoint, ordered sets. The relative order of elements in A and B are preserved by the adjacency
matrix indices.

PyTorch does not currently support native matrix multiplication between sparse matrices.
As such, mutable subnetworks are implemented in EvoAlgNN using SciPy sparse matrices.
When a mutable subnetwork is reconstructed and ready to be evaluated, we refer to it as a
mutable layer of a PyTorch model.

5.5.2 Operations for Network Mutability
EvoAlgNN uses operations taken from SparseNALG to incrementally build neural network ar-
chitectures. In [20], Such et al. introduced the use of a list of seeds for a deterministic PRNG to
encode the weights of a deep neural network. In this work, we use the same encoding to addi-
tionally and simultaneously encode the architectural operations, together with their parameters,
which are applied to mutable network layers.

In this work, we investigate the e↵ectiveness of enabling single-connection mutability and
modular mutability in two separate experiments. During each generation of the evolutionary
search, between 0 and 10 architectural operations may be applied to mutable layers.

Single-connection mutability implements a NEAT-like approach to architecture modifica-
tion in which all substitutions replace single connections by two connections, which are con-
nected via one new hidden neuron. Single-connection mutability is visualized by Figure 5.3.

Modular mutability enables more flexible and larger scale substitutions. Connectivity pat-
terns available for substitution are called primitives. Primitives must be implemented as in-
stances of a mutable subnetwork. This enables us to use a unified interpretation for mutable
subnetworks at any level of organization.

In our experiments, we replaced the last layer of the DQN network with a mutable sub-
network. This network layer has 512 inputs and a variable number of outputs depending on
which game is used. Using a relational sum-based interpretation, such a layer is initially en-
coded by an adjacency matrix over the set Inputs � Outputs � Hidden, where |Inputs| = 512,
|Outputs| = # Game Actions, and Hidden = ;. As substitution operations are applied, the
Hidden set grows, and new connections may be established between any neurons over the en-
tire subnetwork. But because all primitives are also mutable subnetworks, the set Hidden can
be interpreted as the relational sum of all neurons added to the layer via substitutions. In other
words, projection operations can always be applied to retrieve or identify neurons that belong

58 Chapter 5. Generative, Mutable Network Architectures for Deep RL via GAs

to the same primitive instance. More practically, this enables the adjacency matrix of an en-
tire neural network layer to be stored as a single sparse matrix that supports arbitrary levels
of mutability and organization. And crucially, this means that mutable network layers can be
reconstructed using a sequence of operations applied to a single mutable subnetwork.

5.5.3 Network Reconstruction
The seed-based encoding used in EvoAlgNN requires network architectures and weights to be
reconstructed before evaluation. The costs associated with this are proportional to the number
of connections in the network instance at each of the generations elapsed in the evolutionary al-
gorithm. In this work, network reconstruction is performed in 3 phases. First, the architectures
of mutable network layers are reconstructed. For each seed in an individual’s list, the seed is
used to 1) determine whether architectural operations will be applied, 2) determine the number
of operations to apply, 3) select operations to apply, and 4) select values for each operation’s
parameters. Next, the list of seeds is used to apply additive mutation noise to the reconstructed
mutable layers. Lastly, the weights of immutable network layers (e.g. PyTorch convolutional
layers) are reconstructed. The second and third steps both use the same approach used in [5] to
apply additive mutation noise.

The architectural operations used in the first phase are directly taken from SparseNALG
as described in Chapter 3. They consist of operations to create new neurons, establish con-
nections between existing neurons, and substitute connections by patterns. Though the current
implementation supports substitution by arbitrary patterns, the experiments in this work use
single-connection substitution and one form of modular substitution. This is meant to provide
a baseline result for enabling NEAT-like mutability in DQN network layers. A small-scale
experiment using modular mutability is provided as a proof of concept.

Algorithm 1 Mutable Subnetwork Reconstruction
Input: Individual I, mutation power �, complexification probability PC, operations per
complexification OC, network initialization function initNetwork, deterministic PRNGs
{randomUniform, randomInteger, randomNormal}
mutableSubnetwork initNetwork(I.inputs, I.outputs, I.connectionRate, I.initialSeed)
Seed all PRNGs with I.initialSeed
for seed in I.generationSeeds do

if randomUniform() < PC then
for increment in [0 . . . randomInteger(OC)] do

Seed all PRNGs with I.initialSeed + increment
op Select architectural operation using randomInteger
params Select valid parameters for op using randomInteger
Apply op(params) to mutableSubnetwork

for seed in I.generationSeeds do
Seed all PRNGs with seed
noise Generate noise vector scaled by � using randomNormal
mutableSubnetwork.weights mutableSubnetwork.weights + noise

5.6. Experiments 59

5.5.4 Scalability

In contrast to other TWEANNs, EvoAlgNN genotypes scale in size with the number of gener-
ations as opposed to with the number of connections in the network. The compact, generative
encoding enables very high scalability without imposing architectural immutability.

5.6 Experiments
To investigate the potential e↵ectiveness of using combinations of immutable and mutable net-
work layers in evolutionary searches for RL policy networks, we conducted experiments using
four games from the Atari 2600 benchmark [11]. Using three variations of DQN learning [12],
we applied EvoAlgNN to Assault, Asteroids, MsPacman, and Space Invaders. The first vari-
ation (Control) is a control condition using the DQN architecture, unmodified. The second
(Single-Connection Mutability) replaces the last layer of the DQN architecture with a mutable
EvoAlgNN layer in which only single-connection or NEAT-like architectural changes are pos-
sible with each generation. The third variation (Modular Mutability) extends this by enabling
one additional substitution operation and one additional primitive or connectivity pattern.

5.6.1 Baseline and Architecture

All variations use an approximate replication of the GA introduced in [20] (Base GA). The
Control variation in this work uses an unmodified version of the Base GA. This GA does not
implement crossover and uses elitism to protect highly-generalizable individuals. The archi-
tecture in the Control experiment is an entirely immutable replication of the DQN architecture.
It consists of three convolutional layers with 32, 64, and 64 filters, respectively, followed by
one dense layer with 512 hidden units. The convolutional filter sizes are 8⇥ 8, 4⇥ 4, and 3⇥ 3,
respectively. The strides are 4, 2, and 1, respectively. Network weights were initialized us-
ing Glorot normal initialization. Rectified linear unit (ReLU) activation is applied to all neuron
outputs during evaluation. All game frames are downsampled to 84⇥84⇥4 arrays. The third di-
mension encodes separate intensity channels for red, green, blue, and luminosity. Consecutive
game observations are summed to address sprite flickering. Unlike the DQN method, no frame
stacking is performed here, and the network must learn temporal dependency by incorporating
recurrent connections.

5.6.2 Single-Connection Mutability

For the Single-Connection Mutability variation, we substituted the last layer of the DQN archi-
tecture with a mutable layer. Within this mutable layer, three architectural operations and one
primitive are enabled. The architectural operations are 1) create neuron, 2) create connection,
and 3) substitute and fully connect. The single primitive enabled consists of one input neuron,
one internal or hidden neuron, and one output neuron. Together, these operations and primi-
tive enable architectural mutations that are very similar to those in NEAT. Single-Connection
substitution is visualized by Figure 5.3.

60 Chapter 5. Generative, Mutable Network Architectures for Deep RL via GAs

Figure 5.3: Single-Connection substitutions enabled by defining a single operation (Substitute
and fully connect) and a single primitive (boxed). After this operation is applied, any of the
four connections in the resulting mutable subnetwork are eligible for subsequent substitution.

a) b)

Figure 5.4: Substitution operations and the substitution primitive (boxed) implemented for the
Modular Mutability experiment. Substitute and fully connect (a) and direct substitution (b)
are used to replace a connection (dashed) with a primitive in two di↵erent ways. Substitute
and fully connect connects the source node of the outgoing connection to all inputs of the
substitution primitive and connects the target note of the outgoing connection to all outputs
of the substitution primitive. Direct substitution replaces the source and target nodes of the
outgoing connection with the input and output nodes of the substitution primitive, respectively.
These operations and primitive were designed to demonstrate the flexibility that EvoAlgNN
provides for defining architectural modification operations and substitution primitives.

In an e↵ort to control for under- or over-parameterization compared to the Control varia-
tion, each run in the Single-Connection Mutability variation initializes the mutable subnetwork
layer with 500 fewer connections than in the Control variation. This is because, with the se-
lected hyperparameters, the expected number of connections that will be added by architectural
operations is 250. As such, it is unlikely that any observed di↵erences in performance will be
due to over-parameterizing the experimental condition.

5.6.3 Modular Mutability
For the Modular Mutability variation, we enabled one additional architectural operation (direct
substitution) and added one primitive featuring one input, one output, and three hidden neu-
rons. The substitutions enabled by this variation are visualized by Figure 5.4. Otherwise, the
experimental set-up and all hyperparameters are identical to the other two variants.

5.6. Experiments 61

Hyperparameter Value
Population Size (N) 100 + 1
Generations 500
Truncation Size (T) 20
Mutation Power (�) 0.002
Complexification Probability 0.1
Operations Per Complexification 1 – 10
Max Frames Per Episode (F) 20,000
Training Episodes 1
Validation Episodes 30

Table 5.1: GA hyperparameters used in all experiments.

5.6.4 Experimental Set-up
We used a Microsoft Azure virtual machine with 64 cores and 128 GB of memory (Standard
F64s v2) for experiments. Experiments use OpenAIGym’s implementation of the Atari 2600
benchmark. The DQN architecture and mutable subnetworks are implemented using a combi-
nation of modules from PyTorch, NumPy, and SciPy. Source code is available as part of the
Digital Appendix.

5.6.5 Hyperparameters
The hyperparameters used in all experiments are summarized by Table 5.1. The relatively small
population size and number of generations were chosen due to resource constraints. Despite
this, we obtained policies that are competitive with related work. In future work, we will
perform these experiments at larger scales.

Compared to the experiments in [5] and [20], this work introduces two new hyperparam-
eters: Complexification Probability and Operations Per Complexification. The former deter-
mines, for each generation at network reconstruction, whether architectural operations will be
applied. The latter then determines a range of possible numbers of operations to be applied
at each such step. This range is uniformly sampled using the same generational seeds used
in all other aspects of network reconstruction, thus ensuring deterministic, consistent network
reconstruction.

5.6.6 Results
Experiments were designed to test whether architectural mutability could lead to improved
learning performance using GAs over a static architecture. For comparability to other work
[12], [20], [5], the baseline experiment uses the DQN architecture as introduced in [12] and a
very simple and highly scalable GA introduced in [20]. The first experimental variation, Single-
Connection Mutability, enables NEAT-like [19] mutability in the last, densely connected layer
of the DQN network while the second variation, Modular Mutability, further enables a type

62 Chapter 5. Generative, Mutable Network Architectures for Deep RL via GAs

Game Base GA S-C Modular DQN
Assault 530 (±160) 623 (±175) 774 (±190)† 3359 (±775)
Asteroids 1146 (±609) 2470 (±1045)† 1493 (±533) 1629 (±542)
MsPacman 2750 (±889) 1821 (±734) 3225 (±668)† 2311 (±525)
Space Invaders 964 (±226) 924 (±356) 738 (±302) 1976 (±893)

Table 5.2: Comparison of all experimental variation testing results over 30 episodes not used in
training or validation. S-C denotes Single-Connection Mutability and Modular denoted Mod-
ular mutability. DQN results from 30 independent testing episodes are also reported directly
from [12]. Means and standard deviations (shown in parentheses) are measured in game score
units. Using two-tailed t-tests, experimental variations with mean testing scores higher than the
Base GA with p < 0.05 are denoted by †. The best overall method when DQN is also consid-
ered is bolded. In two out of four games (Asteroids and MsPacman), architectural mutability
leads to better testing performance than the Base GA and the DQN method.

of modular mutability via more complex substitutions. Training progress for all experimental
variations is visualized by Figure 5.5.

GAs with architectural mutability enabled achieved the highest testing scores in two out
of four games (Asteroids and MsPacman) when compared to both the Base GA and the DQN
method. In three out of four games (Assault, Asteroids, and MsPacman) at least one of the
methods with architectural mutability enabled achieved significantly better performance than
the Base GA. In the fourth game, Space Invaders, Single-Connection Mutability did not lead to
significantly worse results than the Base GA. These results are summarized by Table 5.2.

Particularly in Asteroids, Single-Connection Mutability led to impressive results, besting
DQN and the other GAs in testing. The highest training score achieved by the population
during training was 17450 points — higher than the top score of 13157 achieved by a profes-
sional (human) games tester as reported in [12] as a baseline. Though this performance did not
fully generalize to validation or testing episodes, the GA run still resulted in the best testing
performance among the compared methods.

Altogether, these results suggest that architectural mutability can significantly improve
deep reinforcement learning policy network training using GAs.

5.7 Discussion
Architectural mutability in the last layer of the DQN network appears to dramatically improve
learning over the Base GA and DQN Asteroids. Interestingly, the number of connections that
can possibly be added in the Single-Connection Mutability variation is directly proportional to
the number of generations used in the GA. This is orders of magnitude smaller than the number
of connections otherwise found in the densely connected layers of the DQN architecture. One
possible explanation for this disproportionate e↵ect is that recurrent connections may be estab-
lished by architectural operations. Because the number of inputs (512) is much greater than
the number of outputs in the last layer of the DQN architecture (e.g. 9), it is much more likely
that architectural operations add connections between layer inputs, rather than between inputs

5.7. Discussion 63

Comparative Learning Progress
Mean High Validation

A
ss
au
lt

A
st
er
o
id
s

M
sP
ac
m
a
n

Sp
ac
e

In
va
d
er
s

Figure 5.5: Comparative learning progress for the Base GA, Single-Connection Mutability, and
Modular Mutability experiments. Mean denotes population mean game score over generations
in training, high denotes score of top-performing individual over generations in training, and
validation denotes the mean score of the best-generalizing individual to 30 di↵erently-seeded
environments. In each generation, the best individual in validation is designated as the elite.
DQN testing results provided in [12] are shown against validation results as a dashed line.
In two out of four games (Asteroids and MsPacman, methods with architectural mutability
enabled achieve higher scores than DQN in validation. This is in spite of the using a relatively
small population (N=100+1). Single-Connection Mutability yielded a very large performance
increase in Asteroids over other methods.

64 Chapter 5. Generative, Mutable Network Architectures for Deep RL via GAs

and outputs. Recurrent connectivity, even at small scales, introduces temporal dependency that
does not exist in DQN.

The scale of our experiments was small compared to other work that applies GAs to train
deep neural networks. For example, in [20] and [5], population sizes were ten-times the size
and the algorithm ran for twice as long. Since the number of architectural operations is directly
proportional to the number of generations used in the GA, the number of possible architectures
considered by the GA was also relatively small. This influenced our decision to only experi-
ment with architectural mutability in the last densely connected layer of the DQN network. In
MsPacman, a game with 9 possible actions, the last layer has 512⇥9 = 4608 connections. Over
500 generations, the expected number of connections added by the Single-Connection Muta-
bility variant is 250. The results demonstrate that this relatively small number of modified
connections can significantly change the behaviour and quality of policies.

As we increase the number of possible operations and primitives, so increases the size of
the search space for the GA. Due to the scalability of the GA, however, it would be possible to
run experiments with much larger search spaces as long as su�cient computing resources are
available.

For the Modular Mutability variant, we designed a single primitive that featured three re-
current connections. There was otherwise no basis for the selection of this primitive. We also
did not control for the larger number of connections it could evolve to have over the Base GA.
Despite featuring possibly many more parameters, policies resulting from Modular Mutability
performed best in only one game — MsPacman.

We cannot understate how valuable it is to have well-documented, extensible tools for
working with tensors, including Tensorflow, Keras, PyTorch, and others. We found that Py-
Torch, in particular, provides a very convenient and intuitive interface for tensors without mak-
ing restrictive assumptions about how they should be used. As demonstrated by our implemen-
tation and with the right mathematical interpretation, it is very straightforward to re-purpose
PyTorch for gradient-free deep RL via a combination of architecturally immutable tensors and
mutable sparse layers.

Sparse matrices are a crucial component for enabling architectural flexibility in deep learn-
ing. As we explore the use of larger, more complex neural network architectures, it is increas-
ingly important that sparse matrix operations are e�cient. The PyTorch community is actively
developing improved support for sparse matrices with input from its users. High-performance
computing projects like GraphBLAS are also developing increasingly accessible frameworks
and interfaces for very general sparse matrices as a matter of priority.

In summary, we have presented a unified framework that combines conventionally opposed
RL methodologies: deep learning and GAs. This combination is enabled by a solid mathe-
matical interpretation of network architectures using a relation algebraic approach and a very
pragmatic approach to highly-scalable neuroevolution using GAs.

5.8 Future Work
Our results show that architectural mutability can improve GA-based learning. This supports
our initial hypothesis that TWEANNs could be combined with static convolutional layers to
improve learning. This prompts us to consider whether higher degrees of architectural mutabil-

BIBLIOGRAPHY 65

ity could further improve learning, or whether GAs and architectural mutability could be used
to improve policy networks trained using other methods, including DQN and its many variants
[3]. To better understand what kinds of architectural mutations may be most useful, we will use
a variety of tools to quantify the relationships between network architectures. Velez and Clune
introduced a method to identify functional modules within neural networks using a regression
model [23], and we think this could be applied to identify useful primitives.

In future work, we will extract pre-trained convolutional layers from DQN and similar pol-
icy gradient networks. As a network module, convolutional network layers trained on one or
possibly many games should learn to identify visual features that are relevant to achieving high
quality policies that are reachable using gradient-based methods. We could then experiment
with using GAs to learn the architecture and weights of post-convolutional network layers us-
ing the framework presented in this work. Going forward, we expect that combinations of
gradient-based and gradient-free learning will contribute to driving progress in RL and other
areas of machine learning. Evidence of likely success is demonstrated by recent results show-
ing that evolutionary methods can be used to improve neural language translation models via
evolutionary architecture search [16].

Looking ahead, we will also generalize this framework so that arbitrary functional mod-
ules can be used instead of only graph-like primitives. Existing methods including Cartesian
Genetic Programming [10] o↵er insight into the e↵ectiveness of using networks of intercon-
nected functions for solving a variety of problems. Genetic Programming [8] has also been
successfully applied to the design of convolutional neural networks [21]. We hypothesize that
a framework that enables architectures to be manipulated at multiple levels of abstraction (e.g.
single connections, network modules, functions, aggregate modules) could be both e↵ective
in machine learning applications and yield insight about the organization of more naturally-
plausible neural networks.

Finally, the framework for architectural mutability introduced in this work could be applied
in other contexts than RL. In future work, we will experiment with combinations of GA-based
architectural mutability and gradient-based deep learning layers in a variety of contexts.

Bibliography
[1] Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., and

Zaremba, W. Openai gym. arXiv preprint arXiv:1606.01540 (2016).

[2] Djurfeldt, M. The Connection-set Algebra—A Novel Formalism for the Representation
of Connectivity Structure in Neuronal Network Models. Neuroinformatics 10(3) (2012).

[3] Hessel, M., Modayil, J., VanHasselt, H., Schaul, T., Ostrovski, G., Dabney, W., Horgan,
D., Piot, B., Azar, M., and Silver, D. Rainbow: Combining improvements in deep rein-
forcement learning. In Thirty-Second AAAI Conference on Artificial Intelligence (2018).

[4] Hughes, J. A., and Daley, M. Finding nonlinear relationships in fmri time series with
symbolic regression. In Proceedings of the 2016 on Genetic and Evolutionary Computa-
tion Conference Companion (2016), ACM, pp. 101–102.

66 Chapter 5. Generative, Mutable Network Architectures for Deep RL via GAs

[5] Jackson, E. C., and Daley, M. Novelty search for deep reinforcement learning policy
network weights by action sequence edit metric distance. arXiv:1902.03142 (2019).

[6] Jackson, E. C., Hughes, J. A., Daley, M., and Winter, M. An algebraic generalization
for graph and tensor-based neural networks. In 2017 IEEE Conference on Computational
Intelligence in Bioinformatics and Computational Biology (CIBCB) (aug 2017), pp. 1–8.

[7] Jones, E., Oliphant, T., Peterson, P., et al. SciPy: Open source scientific tools for Python,
2001–.

[8] Koza, J. R. Genetic programming: on the programming of computers by means of natural
selection, vol. 1. MIT press, 1992.

[9] Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing systems
(2012), pp. 1097–1105.

[10] Miller, J. F. Cartesian genetic programming. Cartesian Genetic Programming (2011),
17–34.

[11] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D.,
and Riedmiller, M. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602 (2013).

[12] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G.,
Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., and Others. Human-level
control through deep reinforcement learning. Nature 518, 7540 (2015), 529–533.

[13] Oliphant, T. E. A guide to NumPy, vol. 1. Trelgol Publishing USA, 2006.

[14] Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison,
A., Antiga, L., and Lerer, A. Automatic di↵erentiation in pytorch. In NIPS-W (2017).

[15] Shenton, C. Atari 2600 leaderboard, 2018.

[16] So, D. R., Liang, C., and Le, Q. V. The evolved transformer. arXiv preprint
arXiv:1901.11117 (2019).

[17] Stanley, K. O., D’Ambrosio, D. B., and Gauci, J. A hypercube-based encoding for evolv-
ing large-scale neural networks. Artificial life 15, 2 (2009), 185–212.

[18] Stanley, K. O., and Miikkulainen, R. E�cient reinforcement learning through evolving
neural network topologies. In Proceedings of the 4th Annual Conference on Genetic and
Evolutionary Computation (2002), Morgan Kaufmann Publishers Inc., pp. 569–577.

[19] Stanley, K. O., and Miikkulainen, R. Evolving neural networks through augmenting
topologies. Evolutionary computation 10, 2 (2002), 99–127.

BIBLIOGRAPHY 67

[20] Such, F. P., Madhavan, V., Conti, E., Lehman, J., Stanley, K. O., and Clune, J. Deep
Neuroevolution: Genetic Algorithms Are a Competitive Alternative for Training Deep
Neural Networks for Reinforcement Learning. arXiv preprint arXiv:1712.06567 (2017).

[21] Suganuma, M., Shirakawa, S., and Nagao, T. A genetic programming approach to de-
signing convolutional neural network architectures. In Proceedings of the Genetic and
Evolutionary Computation Conference (2017), ACM, pp. 497–504.

[22] Togelius, J., Karakovskiy, S., Koutnı́k, J., and Schmidhuber, J. Super mario evolution. In
2009 IEEE symposium on computational intelligence and games (2009), IEEE, pp. 156–
161.

[23] Velez, R., and Clune, J. Identifying core functional networks and functional modules
within artificial neural networks via subsets regression. In Proceedings of the Genetic
and Evolutionary Computation Conference 2016 (2016), ACM, pp. 181–188.

Chapter 6

General Discussion and Conclusions

The work presented in this thesis provides useful ideas and tools that can be used to ex-
plore open-ended, modular learning with artificial neural networks and neuroevolutionary algo-
rithms. First, by providing a mathematical generalization for the expression of neural network
architectures, we have set the stage for more principled exploitation of the connectionist rela-
tionship between them in di↵erent contexts. We then put this into practice via the development
of a modular neuroevolution framework that supports substitution operations using arbitrary
connectivity patterns. Finally, in a related e↵ort to exploit the open-endedness that evolution-
ary algorithms can provide when combined with deep learning, we introduced an instance of
novelty search that is generally applicable to any game or control problem with a discrete action
space.

Each of these works provides a useful theoretical or practical result that can be extended or
adapted to a variety of ends. Over the remainder of this chapter, we discuss this results in the
context of past, present, and future endeavours in AI.

6.1 Interpretability and Modularity
Three decades later, we are still debating the same questions of interpretability that Hinton
elucidated in the late 1980’s and early 1990’s [5]. How important is the interpretability of
connectionist systems? Have we made much progress towards the interpretability of ANNs?
I argue that as our understanding of e↵ective modular network architectures has improved,
we have at least gained better understanding into the reliability of networks, and also their
functional organization.

In vision science, some computational neuroscientists have applied artificial convolutional
models to the discovery and validation of biological models for early visual processing [3] and
object recognition in the human brain [13]. These works add to the biological plausibility of
contemporary ANN organization, at least for computer vision. By working together, computa-
tional scientists and neuroscientists will continue to gain insight into the relationship between
artificial and biological computation or cognition.

The modularity of deep learning architectures has certainly helped to enable this line of
work. The ability to design neural networks using modular components that are directly in-
spired by natural computation is a powerful feature of deep learning. What else might we

68

6.1. Interpretability andModularity 69

discover by identifying and relating functional modules in other contexts than vision? And
what tools could we use to further our understanding of the relationship between biological
and artificial neural networks?

Neural connectivity and broader functional connectivity has been studied in the brain from
several perspectives. Sporns’ work on graph- and network-theoretic analysis of neural connec-
tivity patterns in the brain [14] could be applied to the same connectivity objects as Velez and
Clune’s methods for the identification of general functional modules in ANNs [16]. Neuro-
morphic computing projects such as SpiNNaker [6] or TrueNorth [1] could be used to define
biologically plausible constraints at the hardware level, and may help us to change the way we
think about machine learning algorithms.

More pragmatically, I think that our understanding of both biological and artificial neu-
ral network function will be driven by simulation and applications, respectively. The role of
convolutions, for example, in ANNs is much better understood today than when they were
beginning to be explored. As network modules, convolutions have been applied successfully
in computer vision [7], reinforcement learning [9], natural language processing [8], and cor-
responding generative applications. By exploring the many uses of these modules in di↵erent
application areas and under the constraints of di↵erent learning algorithms and complementing
architectures, we have gained a much better understanding of their general function. Still, al-
most any non-trivial deep learning architecture succeeds in applications by learning successive
non-linear transformations of inputs, thus creating representational spaces that are di�cult to
interpret — at least with respect to the raw inputs.

But is this really a problem? In situations where highly informative features are already
available, for example responses to an expert-designed survey, deep learning is not likely to
be a researcher or data scientist’s first approach to predictive modelling. In such cases, inter-
pretability with respect to the raw input space would likely be very important: we typically
want to know exactly how the raw features contribute to classification decisions, for example.
Conversely, when working with very granular input spaces such as those consisting of raw
pixels or audio samples, we should not expect such decisions to be interpretable with respect
to individual, isolated inputs. Instead, we gain much more information about the relationship
between a model and its outputs by understanding its intermediary transformations of raw data
into other representational spaces.

For the visual domain, we can easily visualize convolutional filters as images in an e↵ort to
interpret their function. More generally, the geometry of representational spaces can provide
useful insight into neural network function. For example with word embeddings, representa-
tional spaces can be interpreted by considering the distances between words or groups of words.
For images, representations of images after convolutional transformations have been applied
can be interpreted for similarity or dissimilarity using a variety of metrics, thus describing the
relationship between images with respect to learned transformations.

For reinforcement learning, we did not directly interpret the outputs of convolutionally
transformed game frames. Instead, we hypothesized that the resulting representational space
could be exploited by a neuroevolutionary algorithm to learn e↵ective policy-producing net-
work parameterizations. This is not fundamentally di↵erent from how we should expect DQN
to work. Its convolutional layers are intended to learn to see, and the densely-connected layers
that follow are intended to learn to play — by mapping points in a transformed representational
space to actions such that the reward gradient is maximized.

70 Chapter 6. General Discussion and Conclusions

By understanding the established, general function of convolutions as modules applied to
visual input spaces, we were able to focus our research e↵orts on methodologies for learning
to play. As we observed in Chapter 5, the application of a NEAT-like neuroevolutionary algo-
rithm to an input space induced by convolutional transformations led to impressive RL policies,
especially in Asteroids. From this work, we gain evidence that the densely connected layers
of the DQN architecture, in combination with reward gradient-based optimization, does not
optimally leverage the transformed representational space induced by its convolutional layers.
To conclude that this were the case, we should, in future work, fix the architecture and weights
for convolutional layers using the DQN method, and use another method such as EvoAlgNN to
find a better post-convolutional model than the one used in DQN. With new evidence that ef-
fectively random algorithms including GAs often result in better parameterizations of the same
network than gradient-based optimization, we should be open-minded to re-characterizing neu-
ral search spaces and the methods we use to traverse them. In particular, until we have as clear
an understanding of behavioural learning as we do for visual feature transformation, we should
embrace methods that enable modular architecture search.

6.2 Open-Endedness in RL
In RL, we can plainly see that in some cases there are benefits to abandoning conventional
objectives. Novelty search and related methods to promote behavioural diversity can help to
overcome the problems of sparse reward or deceptive local optima. One of the major benefits
of evolutionary algorithms are their open-endedness with respect to their objective functions.
It is possible that through experimentation with di↵erent notions of selection pressure or fit-
ness, we could discover new ways to train artificial agents in complex environments. Just as
biological organisms did not develop flight via an optimization process promoting it directly,
DQN and other gradient-based methods seem unable to learn truly complex behaviours in RL
by optimizing for a single reward signal. See DQNs performance on Montezumas Revenge,
for example [9].

In contrast, relatively straightforward gradients work well for training neural networks in
many domains. Convolutional network layers learn e↵ective transformations of their input
spaces by optimizing for compactness, mutual information, reproducibility, or other easily
expressible, di↵erentiable objective functions. The current dominance of deep convolutional
neural networks in the visual domain is staggering and inspires confidence that gradient-based
convolutional filters are highly e↵ective in computer vision.

The structures and algorithms that enable deep neural networks to develop visual acuity,
however, are not directly as powerful for learning complex behaviours. Again, learning to
see could rely on a di↵erent process than learning to play. From our own experiences as
humans, we know that we continue to learn new behaviours long after our visual acuity has
e↵ectively completed development, suggesting that di↵erent processes, or at least di↵erent
levels of plasticity, are involved.

With this in mind, the success of DQN in the Atari 2600 benchmark may be due more to the
relative logical simplicity of the games, and dually, to the close connection between successful
gameplay strategies and computable visual features. In Breakout, for example, an optimal
policy can be computed in terms of very few environment observations, and these are directly

6.3. Conclusions 71

provided by the transformations of convolutional layers. For more complex games, it could be
beneficial to learn visual processing and behaviour separately and with more of an open-ended
approach in mind.

In future work, we will combine gradient-based and gradient-free learning in a multi-phase
learning process. A convolutional autoencoder could be used, for example, to learn representa-
tions of the raw, visual input space. Alternatively, a block of convolutional modules pre-trained
by following locally-optimal gradients could be generated. Then, separately, deep neuroevo-
lution or other algorithms (e.g. Go-Explore) could be applied to learn a recurrent mapping
between compressed visual representations and actions. At this stage, we point to the work in
this thesis and the work on which it is based to support the claim that a series of two densely
connected, feed-forward network layers trained by reward gradient optimization is most likely
not capable of learning truly generalizable RL policies.

Though neuroevolutionary algorithms are not being proposed as a singular solution to this
problem, they do enable researchers to consider less constrained ways of traversing neural
search spaces. Novelty search is just one example of how a not-necessarily-di↵erentiable ob-
jective function can be used to learn useful policies. And with methods like EvoAlgNN and
related evolutionary neural architecture search more broadly being actively developed, we now
have the beginnings of tools in place for discovering e↵ective neural architectures for increas-
ingly complex problems.

6.3 Conclusions
Behaviour-influenced learning and neural architecture (NAS) search have shown to be very
promising in RL [4; 11; 15]. Chapters 4 and 5 further demonstrate that evolutionary algorithms
(EAs) can be used in conjunction with more conventional methods including tensor-based deep
learning. Chapter 5, in particular, shows that evolutionary NAS can occur at multiple levels of
organization or modularity.

With all of this progress, we are far from understanding a general theory of learning with
artificial neural networks. It is clear that while reward gradients lead to optimal policies in
some contexts, current RL algorithms do not encompass a complete theory of environmentally-
derived learning. In other words, it is clear that the reward sources and algorithms used in
contemporary benchmarks alone do not constitute a satisfying theory of learning, especially for
complex behaviours. We can plainly see this in cases where reward-seeking optimization fails
to overcome either sparse reward or deceptive local optima. The Atari 2600 game Montezuma’s
Revenge features both, and conventional RL methods, including neuroevolution, completely
fail to learn e↵ective policies for this game.

EAs might be used to directly or indirectly improve this situation. As explored in Chapter
4, EAs enable the use of nearly arbitrary, non-di↵erentiable objective functions to provide
fitness measures. This kind of open-endedness enables alternative formulations of reward in
RL contexts. Novelty search and related algorithms like episodic curiosity [11] and Go-Explore
[2] have helped to demonstrate that RL policies can often be improved by incorporating agent
behaviour into optimization criteria. More generally, by loosening the constraints on the kinds
of optimization criteria that can be used, we allow ourselves more flexibility and creativity in
designing algorithms. Go-Explore, in particular, is a great example of this.

72 Chapter 6. General Discussion and Conclusions

It is exciting to see that the application of evolutionary algorithms to the design of deep
learning architectures is becoming more popular — with research being published by world-
class research groups [10; 12]. In future work, we will continue to develop tools that enable
generative, modular neural networks to be combined with other deep learning objects. In a sim-
ilar spirit as the computational neuroscience community’s embrace of state-of-the-art methods
in AI [13; 3], we will work to integrate developing knowledge of brain organization into highly
modular, generative frameworks. Considering Sporns’ consistent, mathematically-derived ob-
servations of self-similar connectivity patterns at multiple levels of organization in the human
brain, we think it will be particularly important to support modularity at multiple levels of or-
ganization in AI as well. In light of the success of convolutional modules in computer vision,
we are optimistic that the architectures and objectives necessary to reach the same levels of ac-
complishment in behaviour learning might be discovered in part by evolutionary frameworks.

Bibliography
[1] Cassidy, A. S., Merolla, P., Arthur, J. V., Esser, S. K., Jackson, B., Alvarez-Icaza, R.,

Datta, P., Sawada, J., Wong, T. M., Feldman, V., and Modha, D. Cognitive computing
building block: A versatile and e�cient digital neuron model for neurosynaptic cores.
The 2013 International Joint Conference on Neural Networks (IJCNN) (2013).

[2] Ecoffet, A., Huizinga, J., Lehman, J., Stanley, K. O., and Clune, J. Go-explore: a new
approach for hard-exploration problems. arXiv:1901.10995 (2019).

[3] Eickenberg, M., Gramfort, A., Varoquaux, G., and Thirion, B. Seeing it all: Convo-
lutional network layers map the function of the human visual system. NeuroImage 152
(2017), 184–194.

[4] Hausknecht, M., Khandelwal, P., Miikkulainen, R., and Stone, P. Hyperneat-ggp: A
hyperneat-based atari general game player. In Proceedings of the 14th annual conference
on Genetic and evolutionary computation (2012), ACM, pp. 217–224.

[5] Hinton, G. E. Preface to the special issue on connectionist symbol processing. Artificial
Intelligence 46, 1-2 (1990), 1–4.

[6] Khan, M. M., Lester, D. R., Plana, L. A., Rast, A., Jin, X., Painkras, E., and Furber,
S. B. SpiNNaker: Mapping neural networks onto a massively-parallel chip multipro-
cessor. In 2008 IEEE International Joint Conference on Neural Networks (IEEE World
Congress on Computational Intelligence) (jun 2008), pp. 2849–2856.

[7] Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing systems
(2012), pp. 1097–1105.

[8] Mikolov, T., Chen, K., Corrado, G., and Dean, J. E�cient estimation of word represen-
tations in vector space. arXiv preprint arXiv:1301.3781 (2013).

BIBLIOGRAPHY 73

[9] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G.,
Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., and Others. Human-level
control through deep reinforcement learning. Nature 518, 7540 (2015), 529–533.

[10] Real, E., Aggarwal, A., Huang, Y., and Le, Q. V. Regularized evolution for image
classifier architecture search. arXiv preprint arXiv:1802.01548 (2018).

[11] Savinov, N., Raichuk, A., Marinier, R., Vincent, D., Pollefeys, M., Lillicrap, T., and
Gelly, S. Episodic curiosity through reachability. arXiv preprint arXiv:1810.02274
(2018).

[12] So, D. R., Liang, C., and Le, Q. V. The evolved transformer. arXiv preprint
arXiv:1901.11117 (2019).

[13] Spoerer, C. J., McClure, P., and Kriegeskorte, N. Recurrent convolutional neural net-
works: a better model of biological object recognition. Frontiers in psychology 8 (2017),
1551.

[14] Sporns, O. Small-world connectivity, motif composition, and complexity of fractal neu-
ronal connections. Biosystems 85, 1 (2006), 55–64.

[15] Such, F. P., Madhavan, V., Conti, E., Lehman, J., Stanley, K. O., and Clune, J. Deep
Neuroevolution: Genetic Algorithms Are a Competitive Alternative for Training Deep
Neural Networks for Reinforcement Learning. arXiv preprint arXiv:1712.06567 (2017).

[16] Velez, R., and Clune, J. Identifying core functional networks and functional modules
within artificial neural networks via subsets regression. In Proceedings of the Genetic
and Evolutionary Computation Conference 2016 (2016), ACM, pp. 181–188.

Appendix A

Genetic Algorithms Pseudocode

Algorithm 2 Base GA
Input: mutation function , population size N, number of generations G, truncation size
T , individual initializer �, individual decoder �, fitness function F, training episodes Et,
validation episodes Ev, deterministic uniform PRNG U.
population []
for i = 1, 2, . . . ,N do

Append �(U(0, 232 � 1)) to population
for g = 1, 2, . . . ,G do

policies map(�, population)
trainingResults F(Et, policies)
Sort trainingResults by game score
eliteCandidates 10 best in trainingResults
validationResults F(Ev, eliteCandidates)
Sort validationResults by game score
elite 1 best in validationResults
Save elite to disk
parents T best in trainingResults
if g < G � 1 then

newPopulation [elite]
for p = 1, 2, . . .N � 1 do

parent parents[U(0,T � 1)]
Append (parent) to newPopulation

population newPopulation

74

75

Algorithm 3 Method I - Novelty Search
Input: mutation function , population size N, number of generations G, truncation size T ,
individual initializer �, individual decoder �, fitness function F, training episodes Et, vali-
dation episodes Ev, deterministic uniform PRNG U, archive insertion probability p, novelty
function ⌘.
population []
for i = 1, 2, . . . ,N do

Append �(U(0, 232 � 1)) to population
A []
for g = 1, 2, . . . ,G do

policies map(�, population)
trainingResults F(Et, policies)
for (ind, gameS core, BC) in trainingResults do

Append BC to A with probability p
nScores map(⌘(A), trainingResults)
Sort trainingResults by novelty score
eliteCandidates 10 best in trainingResults
validationResults F(Ev, eliteCandidates)
Sort validationResults by game score
elite 1 best in validationResults
Save elite to disk
parents T most novel in trainingResults
if g < G � 1 then

newPopulation [elite]
for p = 1, 2, . . .N � 1 do

parent parents[U(0,T � 1)]
Append (parent) to newPopulation

population newPopulation

76 Chapter A. Genetic Algorithms Pseudocode

Algorithm 4 Method II - Stagnation Detection and Population Resampling
Input: mutation function , population size N, number of generations G, truncation size T ,
individual initializer �, individual decoder �, fitness function F, training episodes Et, vali-
dation episodes Ev, deterministic uniform PRNG U, archive insertion probability p, novelty
function ⌘, number of improvement generations IG
population []
for i = 1, 2, . . . ,N do

Append �(U(0, 232 � 1)) to population
vScores []
for g = 1, 2, . . . ,G do

policies map(�, population)
trainingResults F(Et, policies)
for (ind, gameS core, BC) in trainingResults do

Append BC to A with probability p
Sort trainingResults by game score
eliteCandidates 10 best in trainingResults
validationResults F(Ev, eliteCandidates)
Sort validationResults by game score
elite 1 best in validationResults
Save elite to disk
Append elite validation score to vScores
parents T best in trainingResults
if vS cores.length � IG then

progress []
for i = g � IG + 1, g � IG + 2, ...g do

Append vScores[i] - vScores[g � IG] to progress
if 8x in progress, x <= 0 then

noveltyResults map(⌘(trainingResults), A)
Sort noveltyResults by novelty score
parents T most novel in noveltyResults
vScores []

if g < G � 1 then
newPopulation [elite]
for p = 1, 2, . . .N � 1 do

parent parents[U(0,T � 1)]
Append (parent) to newPopulation

population newPopulation

Curriculum Vitae

Name: Ethan Jackson

Post-Secondary Honours BSc Computer Science and Mathematics
Education and Brock University
Degrees: 2008 – 2012

MSc Computer Science
Brock University
2012 – 2014

PhD Computer Science (candidate)
University of Western Ontario
2014 – Present

Honours and Ontario Graduate Scholarship
Awards: 2014, 2015, 2016, 2017

Vector Institute Postgraduate A�liate Fellowship
2018, 2019

Related Work Teaching and Research Assistant (Computer Science)
Experience: University of Western Ontario

2014 – Present

Limited Duties Faculty Lecturer
University of Western Ontario
2016 – 2018

Graduate Research Assistant (Neuroscience)
University of Western Ontario
2017 – Present

77

78 Chapter A. Genetic Algorithms Pseudocode

Publications:
2019 Jackson, E.C. and Daley, M. “Novelty Search for Deep Reinforcement Learn-

ing Policy Network Weights by Action Sequence Edit Metric Distance”, 2019
Genetic and Evolutionary Computation Conference (GECCO 2019, accepted)

2018 Jackson, E.C., Hughes, J.A., Daley, M. “On the Generalizability of Linear
and Non-Linear Region of Interest-Based Multivariate Regression Models for
fMRI Data”, IEEE International Conference on Computational Intelligence
in Bioinformatics and Computational Biology, Special Session on Neuroin-
formatics (IEEE CIBCB 2018), at St. Louis, USA.

MacCannell, A.D.V., Jackson, E.C., Mathers, K.E. and Staples, J.F. “An Im-
proved Method for Detecting Torpor Entrance and Arousal in a Mammalian
Hibernator Using Heart Rate Data”, Journal of Experimental Biology, jeb-
174508.

2017 Hughes, J.A., Jackson, E.C., Daley, M. “Modelling Intracranial Pressure
with Noninvasive Physiological Measures”, IEEE International Conference
on Computational Intelligence in Bioinformatics and Computational Biology
(IEEE CIBCB 2017), at Manchester, England.

Jackson, E.C., Hughes, J.A., Daley, M., Winter, M. “An Algebraic Gener-
alization for Graph and Tensor-Based Neural Networks”, IEEE International
Conference on Computational Intelligence in Bioinformatics and Computa-
tional Biology (IEEE CIBCB 2017), at Manchester, England.

2016 Winter, M., Jackson, E.C. “Categories of Relations for Variable-Basis Fuzzi-
ness”, Fuzzy Sets and Systems, Volume 298 Issue C, Pages 222–237.

2014 Jackson, E.C. “L-Fuzzy Relations in Coq”, M.Sc. Thesis, Brock University.

Winter, M., Jackson, E.C., Fujiwara, Y. “Type-2 Fuzzy Controllers in Arrow
Categories”, Relation and Algebraic Methods in Computer Science (RAM-
iCS 2014), at Marienstatt, Germany.

	Algebraic Neural Architecture Representation, Evolutionary Neural Architecture Search, and Novelty Search in Deep Reinforcement Learning
	Recommended Citation

	tmp.1568159403.pdf.xSwpJ

