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Abstract

In this thesis, we consider a framework under which three correlated factors, namely, finan-
cial, mortality and lapse risks, are modelled in an integrated way. This modelling framework
supports the valuation of a guaranteed minimum accumulation benefit (GMAB). The change-
of-measure approach is employed to come up with a compact and implementable valuation
expressions. We provide a numerical demonstration to confirm the efficiency and accuracy of
our proposed pricing methodology. In particular, our approach on average takes only 0.07% of
the computing time entailed by the Monte-Carlo (MC) simulation technique. Furthermore, the
standard errors of our approach’s results are lower than those obtained from MC-based com-
putations. When there are no renewal options in a GMAB contract, we get the special case of

a guaranteed minimum maturity benefit for which a closed-form pricing solution is derived.

Keywords: Variable annuities, investment guarantee, stochastic model, change of proba-

bility measures
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Lay Summary

When a customer comes to an insurance company to learn something about one specific in-
surance product, the insurer will be asked to provide the corresponding purchase price. After
obtaining the customer’s essential information, they start to calculate the price. However, if
they can’t give a response within a short time, they would provide a negative customer ser-
vice experience, which consequently might force the customer to switch to another company.
Therefore, it is important for the insurer to have a quick-response evaluation system in order to
get an edge over the competition. This thesis will provide such an evaluation framework in the
valuation of a specific insurance product, called the guaranteed minimum accumulation benefit

(GMAB).
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Chapter 1

Introduction

With a population expected to live much longer into the future, the popularity of a variable
annuity has grown rapidly over the years. According to the First-Quarter 2019 U.S. Retail An-
nuity Sales Survey conducted by the LIMRA Secure Retirement Institute (LIMRA SRI) [12],
variable annuity (VA) sales from January-March 2019 totaled $22.8 billion. These represent
37.5% of overall annuity sales; it is the highest figure for a first-quarter total annuity sales
going back for a decade.

A variable annuity is a tax-deferred contract between a policyholder and an insurance com-
pany. The benefits to the policyholder will depend on the performance of the investment funds
provided by the insurance company; typically, the benefit is the greater of the account value and
the guaranteed amount. Contracts typically contain certain guarantee riders offered by the in-
surance company in order to afford different types of financial protection. There are two major
types of guarantee riders: guaranteed minimum death benefits (GMDB) and guaranteed min-
imum living benefits (GMLB). The GMLB consists of three main subcategories: guaranteed
minimum accumulation benefits (GMAB), guaranteed minimum income benefits (GMIB), and
guaranteed mnimum withdrawl benefits (GMWB). A detailed overview of a variable annuity
is given in Gan [6].

Even though GMAB is a simple living benefit, it differs from the other living benefit riders
in terms of the risk posed to the insurance company. It is crucial for an insurance company to
scrutinise the contracts with a GMAB rider. This is because there is a need to follow up the

detailed fund performance information, reset the guarantee amounts, and pay the difference
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amounts to the segregated fund at renewal dates.

Bauer et al. [2] provided a comprehensive mathematical model for modelling and valua-
tion of many types of variable annuity riders. A unifying framework is proposed in Bacinello
et al. [1] for valuing variable annuity guarantees using a Monte-Carlo (MC) method. In Doyle
and Groendyke [5], the use of neural networks is explored to price variable annuity guaran-
tees. Nonetheless, many papers dealing with this problem do not take into consideration the
correlation between interest and mortality rates, and they do not consider lapsation as a risk
factor as well. Although this paper employs the modelling framework in Zhao and Mamon
[21], which synthesises interest, mortality and lapse rates altogether for a guaranteed annuity
option pricing, the efficient valuation of GMAB has its own peculiarity and challenges, which
requires a separate and focused analysis being addressed by this methodological and empirical
study.

The remainder of this paper is organised as follows. Chapter 2 presents the modelling
framework for the valuation of GMAB. The detailed description of the GMAB contract is laid
out in Chapter 3. In Chapter 4, we introduce a sequence of probability-measure changes to fa-
cilitate the proposed pricing methodology. More specifically, certain mathematical techniques
are applied to obtain analytical pricing solutions. We demonstrate a numerical implementa-
tion in Chapter 5 illustrating the advantages of our proposed approach. Finally, Chapter 6

concludes.



Chapter 2

Modelling framework

We assume that our valuation framework is supported by a filtered probability space (Q, F, {F;}, Q).
Here, {¥} is the joint filtration generated by the interest rate r;, force of mortality y, and lapse

rate /,, and Q is a risk-neutral probability measure.

2.1 Interest rate model

As specified above, it is supposed that Q exists and the dynamics of r, is given by the Vasicek

model

dr; = a(b — r)dt + o1dX;, 2.1

where a, b and o are positive constants, and X; is a standard Brownian motion (BM) under Q.
Such a Q is equivalent to an objective measure P, under which the realisations or some proxies

for the realisations of our underlying variables are observed.

Apparently, this model can generate negative interest rate values; nonetheless this feature
accommodates the occurrence of negative rates in situation when monetary authorities have
to combat deflation by encouraging people and businesses to spend money rather than keep it
safe in the banks. For instance, the European Central Bank introduced a negative interest-rate
policy in 2014 whilst the Bank of Japan did the same in 2016 to stimulate its economy and

overcome persistent deflationary pressures in its economy. The price B(z,T) of a T-maturity
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zero-coupon bond at time # < 7 (cf Mamon [18]) is given by

B(t’ T) _ EQ [e_ J;T rudu ?’t:I — e—A(t,T)r,+D(t,T)’ (22)
where
1= e—a(T—t)
A, T) =

and

- AW T)

Dt,T)y=|b-—|[AG,T)- (T -1)] - ———.
2a? 4a

2.2 Mortality model

The force of mortality u,, at time ¢ for an individual aged x at time O is governed by a non-mean

reverting OU process, as proposed to Luciano and Vigna [17], and it has dynamics
du, = cu,dt + £d4Y,, (2.3)

where ¢ and & are positive constants, and Y, is a standard BM. Noting that our emphasis is the
dynamics with respect to the passage of time, we shall simply use y, to represent u,, in the

succeeding discussion to avoid clutter of notation. Then, we recall the survival function

S(t,7) = BO e

7|

2.3 Lapse rate model

Lapse risk is the possibility that policyholders terminate their policies that arises from surren-
dering or stopping to pay premiums, which could cause huge losses and liquidity problem to
the insurers. Therefore, it is another essential factor in pricing insurance products. Let /, be the
lapse rate at time ¢, and assume that it evolves as a mean-reverting process similar to the setting

in Zhao and Mamon [21]. That is,
dlt = ]’Z(I’I’H-pr, - lt)dt + {dZt, (2.4)

where h, m, p and { are positive constants, and Z; is a standard BM.
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2.4 Model dependence

The works by Liu et al. [15] argued that the correlation between interest rate and mortality rate
has significant effect in pricing annuity products, thus it must be incorporated in our valuation
framework. In particular, as noted in the findings of Dhaene et al. [4], dependence modelling
in a risk-neutral pricing world is necessary to give allowance to correlated financial and acturial
risks despite their being independent in the real world. Secondly, Kuo et al. [14] used the co-
integration technique in the investigation of the contending-lapse-rate hypotheses that tackles
the tension between the emergency fund hypothesis and the interest rate hypothesis. It was
found that the interest rate has a statistically significant power in explaining the long-term
behaviour of the lapse rate as over the long run, it causes lapse rate’s variations. Hence, the
correlation between interest rate and lapse rate must be considered. Thirdly, a contract policy’s
lapsation could be linked to mortality or morbidity-adverse selection. This means that policy
holders who are in adverse health or have other insurability problems tend not to lapse their
policies; this is because they will have difficulty finding comparable insurance coverage at
the same premium level. Thus, we need to take into consideration the interaction between
mortality rate and lapse rate. Simply put, decisions on whether to continue life insurance
policies are influenced by the insureds’ perceived likelihood of survival.

We assume that X;, Y, and Z, are correlated and their dependence is modelled as
dx,dy, = plzdf, dX,dz, = plgdl' and dY,dZ, = p23dl.

Their explicit specifications are as follows:

dx, = dw/,
dY, = ppdW, + /1 - pdW?,
dZ, = pusdW, +pydW? + (1 = p}; = phdW;,

where W!, W? and W? are independent standard BMs and
;P23 = P12P13
Py =
v 1= py,

Note that we need to choose proper correlation values for p12, p13, and p,3 such that [p),| < 1.

(2.5)



Chapter 3

Contract description

In this chapter, we present the detailed contract description of a GMAB.

3.1 Guaranteed Minimum Accumulation Benefit

Denote by M(t, T) the fair value at time ¢ of a $1 pure endowment payable at maturity 7' under
a two-decrement model (both mortality and lapse rates are considered). From the risk-neutral
pricing principle,

M(t, T) = EQ e f,T rudue— f{Ty,,due— flT I, du

?7]. 3.1

The value of M(¢,T) is needed in our succeeding analysis of a GMAB, which is a contract
that guarantees the policyholder a specific monetary amount at maturity, provided that the
policyholder is still alive at the contract’s maturity. Moreover, the policyholder has the option
to renew the contract at some renewal dates, at a new guarantee level. Further descriptions on
the design of a GMAB can be found in [9].

In this thesis, we assume two renewals at 7 and 7>, and the maturity at T3 (clearly this can
be adapted to more renewals). The guaranteed value G, is assumed to have a roll-up feature,
1.e.,

ot
Gt:POe ’

where Py is the contract’s initial single premium, and ¢ is a predetermined roll-up rate; when

6 = 0 we are in the situation called return of premium. The segregated fund F; is linked to the
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performance of a stock index S, and this is expressed as

F, = F()&e_m
t SO s

where « is the constant continuously compounded management charge rate, and Fp = S = P,.

The stock index S, follows a geometric BM; so
dS[ = I}S,dl + UZS[dW?,

where o, is a positive constant, and W is a standard BM independent of W', W? and W>.

Applying 1t6’s lemma, it can be shown that the dynamics of the fund value F; satisfies
dF, = (r, — @)F,dt + o F,dW}. (3.2)

At renewal T, if the fund value F, is more than the guarantee Gr,, then the guarantee
is reset to equal the fund value at 7. On the other hand, if the guarantee is greater than
the fund value, then the insurance company pays the difference into the fund so that the next
period starts with the fund value and guarantee being equal. This process is repeated at time
T,. At the contract maturity 73, the insurance company must pay the difference between Gr,
and Fr, if the guarantee exceeds the fund value at time 75. Since the segregated fund may
increase at the renewal dates, we distinguish between the fund before and after the payout by
the insurance company; we denote by Fr- the fund immediately before renewal and by F7; the

fund immediately after renewal. That is, if Hy, is the payout at renewal T}, then
Fry = Fr- + Hy,.
Therefore the fair value of a GMAB at time 0 is
Poviag =E2| e 1 rudu o o pudu o o udu Hy +e 7 rudu o o pudu o o2 ludu Hr,

_ (73 _ (73 _ (73
+e fO rudue fo uudue J(; l”duHT3

%]. (3.3)

3.2 Guaranteed Minimum Maturity Benefit

In addition, if the GMAB policyholder wishes not to renew the contract before maturity 73,

then this contract is simplified into a guaranteed minimum maturity benefit (GMMB), with
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only one payoff of max (G, — F'r,,0) at maturity 75. The fair value of GMMB at time 0 is

T3

Paxnap = B [e k"t 6t (710 max (G, — Fr,, 0[5 (3.4)



Chapter 4

Derivation of valuation formula

Probability measure changes are employed to carry out the evaluation of the expected dis-
counted benefit. The forward measure, survival measure and endowment risk-adjusted measure

are introduced in the context of GMAB.

4.1 The forward measure

We choose the bond price B(t, T') as a numéraire (where 7 is an arbitrary number), and then we
define the forward measure Q equivalent to the risk-neutral measure Q via the Radon-Nikodym

derivative _
do
dQ Fr .

By the Bayes’ rule for conditional expectation,

. e~ b 7 BT, T
B B(0,T)

M([, T) = EQ [e— f,T rudue— ftTyudue— f’T I, du

Ti| = B 7m0 e { e I b

95] . 4.1)

Following the generalised results given in Mamon [ | 8], the respective 0 dynamics of r;, y;

and [, are given by
dr, =[ab — 2A(t, T) — ar,)dt + o dW],
du, =[—p1201EA(L, T) + cu,ldt + f(plzdwtl + 4/1 —pfzdﬁ/tz) ,
dl, =[hm + pr, — pi30CA(t, T) — hl,]dt + {(pgdﬁ/} + phdW? + \J1 - s —p%de),

where W!, W2 and W? are standard BMs under Q.
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From Liu et al. [16], we have

S(LT) = 50 [e‘ I 7:;] — e—ﬂ,é(t,T)+ﬁ(I,T)’ (4.2)
where
~ c(T-1) _ 1
G, T) =<
and
A1) = (2228 - (G0, 7) - (7 - 0] + 22D (4, T) - 666, 7] + =G, T
ac 2c2 ac 4¢
with

1 - e—(a—c)(T—t)

¢, T) =

—-C

4.2 The survival measure

In order to obtain an explicit solution to equation (4.1), we define a new measure Q equivalent
to the forward measure Q with S (¢, T') as the associated numéraire, by considering

, e hmaug(r,T)
B S0, T)

do
do

By the Bayes’ rule for conditional expectation,

- T
Fr

~ T T
EQ €_ff 'u“d“e_f/ l,du

7—?] = S(t, T)E? [e—sz hude 7—7] : (4.3)

Linking equations (4.1) and (4.3), we have

M@, T) = EC [e- [ = [ = [ 95] = B(t,T)S (t, T)E2 [e_frT ludu ?—',] . (4.4)
Following the results given in Zhao and Mamon [2 1], we have
E@ [e_ f;T I,du 9&;] — e—7(:,T)1,—E(r,T)r,ﬁ(r,T)’ (4.5)
where
_ _ 1-— ~h(T—t) _ h _
I1.T) = 50 = ———, K(.T) = ——(A(.T) - 1(1.T)),
h h—a

and J(z, T) satisfies the differential equation
o7

i Im, — Kb, + (§272 + o-%f2 + 2p13§o-lﬁ() =0

1
2
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with
m, = hm — p13o LA T) — p3élG(t, T) and b, = ab — a*A(t, T) — pioo1€G(t, T).

Combining equations (2.2), (4.2), (4.4) and (4.5) together, we get

M@, T) = e—((A(t,T)+E(t,T))r,+5(t,T)y,+7(t,T)l,)+D(t,T)+ﬁ(t,T)+7(t,T). (4.6)

4.3 The endowment-risk-adjusted measure

In order to determine the Pgmag and Pgvmvp Values, another measure called the endowment-

risk-adjusted measure Qk will be defined, with M(t, T}) as the associated numéraire, through

40

o bt nug= [ i~ [ b pg (7, T
do ) |

IR M0, Ty)

— AW ._

F,
By the Bayes’ rule for conditional expectation, equation (3.3) can be rewritten as

_ M _ M _ M _ M _ (M _ (2
PGMAB :EQ[e j;) rudue fo ,uudue f() l"duHTl +e f() r,,due fo ,uudue f() l,,duI_IT2

T3 T3 T3
+ e—fo r,,due—f0 y,,due—fo l”duHT3

7

=M(0, T\)E?' [Hy,|Fo] + M(0, T))E® [Hp, [Fo] + MO, T)E® [Hy|Fo] . (4.7)
Equation (3.4) can be rewritten as

T T T
Povms = E2 [e_fo Prudu g [ du = l“d"maX(Gn - Fr,, 0)‘%]

= M(0, T5)E% [(max(Gr, — Fr,, 0)|Fo] . (4.8)
Calculations leading to the dynamics of A’* under Q show

dA® = —AfW[(o—lA(t, To) + péG(t, To) + pisl1(t, Ty) + o K(1, Ty)) W}
+ (6. T 1 = 9%, + piadT6, T ) AW} + T, T 1 - 3, - p2AWE s (49)

see Appendix A for more details.
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By the Girsanov’s Theorem,

dwzl(k) = dw/ + (0'114(1, To) + p1aéG(t, Ty) + pial (1, Ty) + o K (2, Tk)) dr,

AW, = dWE (60, T 1 -, + T T

dW)® = dW? + ZI1(t, Ty) |1 - p5 — p2dt,

W' = aw?,

where W, W W’® and W,® are Q;—standard BMs.

So, the respective Qk dynamics of r,, y;, [, and F, are

dr, = (ab — 7AW TY) = po1€G(t, To) = pr3oid1(t, T) = oK (1, T) = ar,) di + 0 d W, ™,
du, = (=pro iAW Ty) = £G(t. To) - pélI(t. Ty) - proi Kt Ty) + cpy) dt + £p1pd W, ©
+&3J1 = p2,dW,

dl, = (=131 AW, T) = 1, To) = prsél G, To) = prsoi K, To) + hpr, = hi) de

Tl 12 15530
+ Zp13dW, " + Lo dW ™ + ¢ mdwt “,

dF, =(r, - m)F,dt + o, F, AW,

4.4 Valuation formula

The Qk dynamics of 7, in the previous section has the representation

O_Ze—aTk h
r,=e ry + 12a2 (1 + _p )(e‘” —e™ ™)
o7 ppoié ppol  oihp op
+|b— =+ - -1 + 1 1—e™
( a’ ac ah (h—a)a* (h- a)a) (1=e)
—hTy
e pi3{ o1p ) h _-at
+ J— —_
a+h ( e )

cTy !
_ 1012(0' 156) (€ —e ) +oe™ f e“”dWi(“. (4.10)
cla-c 0
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Furthermore,

t> e,ml _ €7m2 O'%e_“Tk hp eatz _ eatl e*all _ efatz
rudu =ry + — (1 + -
" a 2a h—a a a

N b_‘f_%+P120'1§_P130'1§_ oihp N Tip
a? ac ah (h—a)a*> (h-a)a

e—al‘l _ e—al‘z
X ((fz —t)— —)
a

N O.le—th (p13§ ~ op )(ehl‘Q _ ehtl ~ e—al‘l _ e—atg
h

a+h h h-a a
o eCTk e—Ctl _ e—ctz e—atl _ e—atz 5] u .

_ puoié ( - )+0'1 f f e e dW Y du.  (4.11)
cla—-rc) c a n Jo

By Fubini’s Theorem, the last integral in equation (4.11) can be rewritten as

%) U —~1 151 %) —~1 153 %) —~1
f f e e dW,Ydu = f f e e dudW,* + f f e e dudW,®
1 0 0 1] 1 K
11 153 ~1 15 %) —~1
— f eas (f e—audu)dWS (k) + f eas (f €_a”dl/t)dWs (k)
0 1 1 s
11 —aty —an 5] —as —at
| € —e — e —e —
[l [ o[
0 a 131 a
e—an _ e—atz 11 1. 5] 1 _ e—a(tz—s) —~1
(— AW + | | ————— |aW,”,
a 0 f a

We see that under ék, ft fz r,du follows a normal distribution with the following moments:

_ 153 —aty —aty 2 ,—aT} aty aty —at) —aty
e —¢ oie h e — e e —¢
B f r.du| =rg + 1+ 2P -
" a 242 h-a a a

N b_U_%+P120'1§_P130'1§_ othp N oip
a? ac ah (h—-a)a*> (h-a)a

e—atl _ e—atz
X ((fz - 1) - —)
a

N O.le—th (plS{ O-IP ) ehl‘Q _ ehtl e—al‘l _ e—atz
a+h h h—a h a

p]20-1§€CTk e—ctl _ e—ctg e—atl _ e—atg
- - s
C a

cla—c)
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_ r _ e — pman\ (h — 2] - a7\
Var& f r,du| =Var® |0 (— f e dW, " + oy f (— dw,
| a 0 3 a
- e—atl _ e—atz 11 —~1
=Var& [0'1 (—)f e“dw, "
a 0
. 5] 1_e—a(tz—s) —~
+ Var& [0’1 f (—)dws“‘)]
N a
) e—atl _ e—atz 2 ezan _ 1
=0
! a 2a

2 2 (1 _ e—a(fz—ll)) (1 _ 6—2!1(12—!1))} |

0
+ — (fz - l‘l) — P + 2a

From the Qk dynamics of F;, we have

12 1 —~
f (r - 50'2)(” +0, (WA(“ Wi(k))].
n

Let Y, = I\ :2 ( -—a- —o-z)dt + 0 (W4“’ W%) It may be verified that Y, is normally

F, = F; exp

distributed, whose mean and variance under Qk can be expressed as follows:

—~ —~ 12 1
,Ug() , =E% [Yt(llf),z] = E% [f ( —a- Eo'z)dt + 03 ( Wi WA(“)]
3|

—~ ) 1
B [f rtdl‘] —a(t, — 1) — 50’%(12 —t). (4.12)
1

(0’5{‘) )2 =Var [Y,(Ik ),2] = Var® [ f ’ ( -—a- %O'Z)dt + 03 (WA(“ Wi(k))]
1

— 15}
=Var [ f rdt
151
— 15}
=Var% [ f rdt
N

In addition, the probability density function (pdf) of Y,(]'f) ,, 18 given by

+ Vil [y (0 - )]

5]

+05(t, — 1y). (4.13)

(y ,Ug() tz)z

FP0) = = exp| - ;
2(ons)

4.14)
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= (k)
Lemma 4.4.1. Let E®(t),1,) := B [max(e(s(tz‘“) — e, 0)'7’0] . The analytic representation

for the conditional expectation E®(t,,t,) is

(k) ® )
0(ta— 1) =y 4, — (O'tl, tz)
)

h, n

2
® — M. f2+%(0-f1, fz) (0]

h, i

_ _,,® )
E®, 1) = L2 e F‘n»&] e

(o (o

Proof We examine and evaluate one by one the two terms in E®(z,, 1,).

- (k) y (k)
E¥(1,12) =E% [max(@:) = e, )7 | = B (7 — e 1y e
=T, 1

7

_m0k | ,8(t2-11) =1 Yz(k,)
=B [6 ﬂ{aaz-mszf?Q]’%] E [e 2 s per® )| Fol -

The first term can then be expressed as

- o(tr—t1)
0O, o(tr—t1) _ o(tr—t1)
E¥ e IL{(S(tz—tl)ZYt(1k.) tz}‘%] _j: e lf(y)dy
2
O(tr—11) —_ %
_ =1 A1) 1 ex _(y My, tz) d
Varo® P w V|
oo 2ro,” 2 (O-tl, tz)
_y—uﬁf? " 5(tz—r,)—;4§’1‘? "

FTm —_— 2
0 f (rgllcf n 65(12—11) 1 exp (—Z—)dZ
oo V2r 2
PR
:eé(tz—ll)q) (6(t2 tl) lurh L ] )

(k)

0-11, 15}

where @(x) is the standard normal cumulative density function. The second term can be ex-
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pressed as

(2—11)

Py (k)
E% eytl’tzﬂ{é(zz—n)ZYff? ,2]‘770] :f e’ fO(y)dy

_ ® \?
SN (v—uis)
= & ———exp|—— |dy
k k
oo V2rol? 20,2

k
y oty —tq )—yglf 1

T f o ( *) ®) ) 1 z
= TR exp )y, + 207, )= eXp (__)dz
1, 2 n, n \/2— 2
—oo T

sty 1y

(k) 1 k) 2 o) 1 (Z - O-Ef) 12)2
1, t ’
= eXp l’tll, 1) + " (O-ll, [2) f e eXp - A5 dZ

ok

2 Vo 2
® . oy o) | P | .
u:Z_Z;I, 1 k) *) 2 0.; " u
= ©Xp (/Jtl, nt B (O-tl, zz) . 2 \/?r exp ) du
(k) ® \?
— (k) 1 * \? ® oty = 1) = Mo n — (O-h, tz)
=exXp iy, + E(O-tl,lz) ® .
O-tl, 5]
Hence, E®(t,, 1,) has the explicit form, as desired . ]

4.4.1 Guaranteed Minimum Maturity Benefit

With equation (4.6), it only remains to calculate EOs [max(Gr, — Fr,, 0)|%] in order to evaluate

equation (4.8) fully.

—~ —~ T 1 T43)
B2 [max(Gr, - Fr., Off0] =B | max(Poe — Foel” (0300201 g)

7

= (3)
=P,E®: [max(e‘m o, 0)'%] = PoED(0, T). (4.15)
Plugging in (4.15) into (4.8) with the aid of Lemma 4.4.1 gives the following result.

Theorem 4.4.2. The price of a GMMB at time 0 is

5Ty — u®
Peymp =PoM(0,T3) |7 @ Tw

0o, 15

) 3 )
013 — g, Ty (0'0, T3)

(3)
0-0, T3

2
1,3
MO, T +7(0' )
e AR NV ()

(4.16)
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4.4.2 Guaranteed Minimum Accumulation Benefit

What remains to be done to implement equation (4.7) is the evaluation of E2 [Hr, |7:0], E2: [Hr, |7:0]
and B [HT3|770].
The first expectation can be expressed as
B9 [Hy, |75] =22 |max (G, — Fy.,0)|73)]

~ Ty (. 12 A
=E [max(Poe‘ST1 - Foefo (n-a=303)dre vy, ,0)

7
= (1)
—p,E2 [max(e‘m o, 0)]%] = PED(O, T). 4.17)
Furthermore, the second expectation can be expressed as

B [Hy,|75] =E2 |max (G, — Fy;,0)|3)

—~ Ty 12 ) A4<2>)
_ r—Q@—5 0" dz+0'2(W -W.
_EQz maX(GT;eé(Tz T1) FTl*efT] (’ 2 2) T, T ’())

7

—E2: >F 7+ max (eé(Tz_T” - eY(Tzl)’ T2, 0)
1

7

=~ I (2)
=E% (Fr; + Hr,) max (eé(Tz_T” — e, 0)

7

=~ T (2)
=E2 |max (GT;, FT]—) max (ed(TZ_T” — e, 0) %]

(2)

= Y _ Y(2)
=P,E?? |max (e‘m, e*n ) max (eé(T2 T _e'ni 1y O)

7—'0] . (4.18)

Note that the last expectation in (4.18) depends only on the the value of Y and Y. ;21) r,- This

0, Ty

tells us that the simulated pair (Y((),2)T1’ Y(Tzl) r,) completes the calculation of E2 [HT2|%]. It may

be verified that under Qz, this pair (Yé’z)T1 , Y@

I Tz) is a bivariate normal random variable, with

the following moments:

E@ [Y((),Z)Tl] = ’UE)Z,)TI; E@ [Y;?l) Tz] = 'u(Tzl), Tz; (419)
Varf Yor | = (o'g)n)z; Var [Yr 2| = (o7 Tz)z; (4.20)
and Cov® [y, v, ]= ;—; (e =) (e + e —2). 4.21)

The accompanying details of the calculation for the covariance in (4.21) are given in Ap-

pendix B.
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Finally, the last expectation can be expressed as

E® [Hy,|Fo] =E® [max (Gr, — Fr,0)|F0]

—E© 7maX(GT2+ AT _ T;efTT; (r'_a_%gg)dtm(wi?_‘TV;(;)), 0) %]
—E%: -FT2+ max (66(T3T2) _ ’ O) 770]
=E2 >(F r; + Hr,) max (65(T3_T2) R ; 0) %]
=E2> :maX (GT; F Tg) max (66(T3 T _ Mty ; O) 770]
—E: 7FT1+ max (6‘5<T2_T1>, ¢ ) max (66(T3_T2) - e, O) /@0]
—E: _maX (GT]' F T]‘) max (eé(Tz_Tl), €Y(T3‘)' " ) max (96(T3_T2) N eY(TSZ)’ " 0) 7:0]
:POE§3 max (eéT' , ey((f)rl )maX (ea(Tz_Tl) , €Y(T31)’ Tz)
% max (eé(T3—Tz) _ eY(f;, Ta,O) 7:0]_ 4.22)

Again we can see that the last expectation in (4.22) depends only on the the value of Yé’3 )Tl ,

(3) (3) : . (3) (3) 3) N .
YTI’ T and YTz’ Ty therefore we just need to simulate (YO, . le, Ty YTZ’ TS), which is a multi-

variate normal random variable, under §3, with the following moments:

o [yv® 1,03 . 0; [y(3) _, 03 . 0; [y(3) _, 03 .
E [YO, Tl] = Ho, 1,5 E% [YTI, Tz] = Hr, 150 E% [YTZ, T3] = Hr,, 150 (4.23)

Tar® (1, | = (VT [ = (0 e [ ] (o a2

Cov® [vg, v | = ;—; (e = ™) (e + e - 2); (4.25)
o 1 ] = g (e e ) e ) o
and Cov® [Y(T?) Ty Y(TZ) T}] = ;—; (e_“T2 - e‘““) (e“T2 +e T i _ e“’Tl) ) 4.27)

See Appendix B for the calculation details of the covariances in (4.25), (4.26) and (4.27).
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Plugging in (4.17), (4.18) and (4.22) into (4.7) with the help of Lemma 4.4.1 gives the

following result.

Theorem 4.4.3. The value of a GMAB at time 0 is

66T1 )

Peuap =PoM(0,T)) D D
0,7 9o, 1,

n (1) M \?
5T1 - MO, T, ] _ e'“O, T|+%(0'§)],)T1)2(D (6T1 _ 'uo’ T (0'0’ Tl) ]}

y®

+ PoM(0, To)E® [max (e‘m ,e 01 ) max (e‘S(TZ‘T') — e, 0)

g
. (3) 3)
+ PyM(0, T3)E? [ max (e‘m el ) max (e‘S(TZ_T‘), el Tz)

_ yd
X max (e‘S(T3 ) _e'n1s ()

7—'0]. (4.28)



Chapter 5

Numerical illustration

In this chapter, a numerical experiment is included to showcase the efficiency of our proposed

methodology.

5.1 Numerical scheme

Direct computation, which refers to the brute-force implementation of the MC method, of
Pgmag and Poyvvs by using equations (3.3) and (3.4), respectively, entails the the evolutions of
1y, s, I and F; over the time period [0, 7)]. We subdivide each year into N = 252 subintervals
of same length Ar = %, and let #; = iAt fori = 0,...,NT). Based on the Euler-Maruyama
discretisation scheme, the respective sample paths of r,, u,, [, and F,, under measure Q, are

generated by the discretisations:

r, =t +alb—r, )At+ o0 \/Estli,
i, =fy,  + g (At + €& \/E(plzstli + /1 - pfzsi) ,

I, =l,_, + h(m+pr,_, —1,_)At+ {‘/Kt(plgslli +p§38,2i + /1 - p1; —p’2238t3i),

‘[ 4
Ft,' :Ftifl + (r,H - a’)FtHAl‘ + O_2FI,',1 Atstl_,

where {g;}, {¢]}, {¢]} and {&]} are four independent sequences of standard normal random
variables. Recall that we must reset the fund value F, at renewal dates, that is, F'r, and Fp,,

before generating the next step values.

20
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The integrals in equations (3.3) and (3.4) can be approximated using the trapezoidal rule

over the interval [0, ], which is partitioned into 4 subintervals. Hence,

! At
fo fldu =2

.. . _ (T _ Tk _ (T . . .
giving numerical values for the product e Jo* rudu g Jy* pudu = o ude iy f. denoting a generic

h-1
Jo+ fut Zka},
=1

notation for r,, u, and .

Under our proposed approach, we calculate Pgyyp using equation (4.16), which is a pricing
solution in closed form. The Pgvmap value will be determined by equation (4.28), which only
requires the simulation of two multivariate normal random variables, but not the trajectory of
e Uy I and F,.

Yy ) and (¥

(3) (3)
0, Ty’ YTl, T>° Y

These two multivariate normal random variables (Y, ) T T3)

0, T)°
can be generated through equations (4.19)-(4.21) and equations (4.23)-(4.27). Our numerical
results are based on 100,000 sample paths generated through the MC method in RStudio. A
parallel-simulation technique is employed with the machine (17-6820HK CPU @ 2.70 GHz, 8
Cores). The parameters used for equations (2.1), (2.3), (2.4) and (3.2) are depicted in Table 5.1.

In Table 5.2, we display the price of a GMAB based on a cohort aged 50 at + = 0 and
assuming a GMAB’s maturity at age 65, with the first and second renewals at ages 55 and 60,
respectively. The codes for the results in Table 5.2 are given in Appendix C.

The prices of a GMMB based on the same cohort with same 15-year maturity are given in
Table 5.3. The codes for generating the values in Table 5.3 can be found in Appendix D. Both
GMAB and GMMB contracts are evaluated at t = 0 (age 50), and a wide range of correlation
values p1,, p13 and p,3 are tested to see their influence on GMAB and GMMB prices.

In Table 5.2 and Table 5.3, the prices calculated under the direct approach and our proposed
method are shown in the second and third columns, respectively. Standard errors for the simu-
lated values are given in parentheses. We see that the prices from our proposed methodology
are very close to those obtained from the direct approach; i.e., the absolute differences are very
small. Moreover, it is worth noting that our proposed approach has lower standard errors than
those from the direct approach. This confirms the greater accuracy of our results than those
given by the MC method. A significant highlight is the fact that the average computing time

using our proposed methodology is only 0.07% and 0.002% of the computing times using the
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direct approach for the GMAB and GMMB, respectively; this establishes the efficiency of our
measure-change method. It can also be observed that under the same maturity 75 = 15 years
and correlation values (012, p13, 023), the GMAB is more expensive than the GMMB; the price
difference is solely attributed to the cost of the additional renewal options embedded in the

GMAB contract.

Table 5.1: Parameter values

GMAB contract specification
T,=5 7, =10 T =15 60=005 Py=1

GMMB contract specification
T, =15 ¢6=0.05 Py=1

Interest rate model

a=0.15 b=0.045 o0,=0.03 1ry=0.045

Mortality model
c=0.1 ¢=0.0003 po=-0.006

Lapse rate model

h=0.12 m=0.02 {=0.01 lh=002 p=05

Segregated fund model

a=001 o0,=005 Fo=1
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Table 5.2: GMAB prices calculated using equations (3.3) and (4.28)

(P12, P13> P23)

Direct approach

using equation (3.3)

Our proposed approach

using equation (4.28)

(=0.9,-0.9,0.81) 0.32564 (0.00106) 0.32466 (0.00046)
(-0.6,-0.6,0.36) 0.33812 (0.00116) 0.33874 (0.00048)
(-0.3,-0.3,0.09) 0.35347 (0.00128) 0.35401 (0.00049)

(0.0,0.0,0.0) 0.36988 (0.00140) 0.37044 (0.00051)

(0.3,0.3,0.3) 0.38595 (0.00154) 0.38755 (0.00053)

(0.6,0.6,0.6) 0.40835 (0.00172) 0.40712 (0.00055)

(0.9,0.9,0.9) 0.42611 (0.00188) 0.42591 (0.00056)
(=0.9,0.81,-0.9) 0.40849 (0.00171) 0.41059 (0.00055)
(=0.6,0.36,-0.6) 0.38673 (0.00156) 0.38739 (0.00053)
(—=0.3,0.09,-0.3) 0.37224 (0.00143) 0.37419 (0.00051)
(0.81,-0.9,-0.9) 0.32615 (0.00108) 0.32324 (0.00046)
(0.36,-0.6,-0.6) 0.34417 (0.00120) 0.34063 (0.00048)
(0.09,-0.3,-0.3) 0.35413 (0.00129) 0.35507 (0.00050)

average computing time 1102.18 secs 0.84 secs

23



CHAPTER 5. NUMERICAL ILLUSTRATION 24

Table 5.3: GMMB prices calculated utilising equations (3.4) and (4.16)

Direct approach Our proposed approach
(P12, P13, P23)

using equation (3.4)  using equation (4.16)

(=0.9,-0.9,0.81) 0.21148 (0.00086) 0.21028 (0)
(-0.6,-0.6,0.36) 0.22722 (0.00098) 0.22720 (0)
(-0.3,-0.3,0.09) 0.24488 (0.00113) 0.24529 (0)

(0.0,0.0,0.0) 0.26543 (0.00130) 0.26460 (0)

(0.3,0.3,0.3) 0.28561 (0.00147) 0.28543 (0)

(0.6,0.6,0.6) 0.31016 (0.00168) 0.30748 (0)

(0.9,0.9,0.9) 0.32697 (0.00185) 0.33081 (0)
(=0.9,0.81,-0.9) 0.30924 (0.00166) 0.31031 (0)
(=0.6,0.36,-0.6) 0.28316 (0.00144) 0.28281 (0)
(—=0.3,0.09,-0.3) 0.26827 (0.00132) 0.26804 (0)
(0.81,-0.9,-0.9) 0.21694 (0.00090) 0.21753 (0)
(0.36,-0.6,-0.6) 0.23331 (0.00102) 0.23149 (0)
(0.09,-0.3,-0.3) 0.24579 (0.00113) 0.24712 (0)

average computing time 1002.39 secs 0.03 secs

5.2 Price-sensitivity analyses

We perform a price-sensitivity analysis for the GMAB under some parameter-scenario settings.
The results are exhibited in Figure 5.1 and Figure 5.2 and they reveal the impact of individual
model parameters on the GMAB price. All plots are based on the correlations (012, P13, p23) =
(0, 0, 0). Appendix E.1 and Appendix E.2 contain the algorithms in coming up with Figure 5.1
and Figure 5.2.

In the upper panel of Figure 5.1, the parameter b is negatively related to the GMAB price.
Note that b is the mean-reverting level of the interest rate model, and a higher mean-reverting
level implies a higher average of interest rate. Therefore, the higher the mean-reverting level,

the greater the effect of the discounting factor exp (— fot rudu) and consequently, the lower the
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price. The right plot in the upper panel shows that the volatility o, of the interest rate is posi-
tively related to the GMAB price. This outcome is consistent with the view that the higher the
risk, the higher the associated potential yield. A similar pattern follows in the lower panel of
Figure 5.1, where m is the mean-reverting level of the lapse rate model and ¢ is the correspond-

ing volatility.

Figure 5.1: GMAB prices under different parameter values
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Figure 5.2: GMAB prices under different parameter values
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In Figure 5.2, when the roll-up rate ¢ increases, the GMAB price increases; this is because a
higher roll-up rate implies a higher guaranteed value, hence a higher payoff leading to a higher
price. Another observation is that the GMAB price increases as the segregated fund’s volatility
0, increases. Again, this is consistent with the notion that the higher the uncertainty in the
performance of the segregated fund, the higher the potential return. Therefore, the GMAB

price would have to increase enough to match the corresponding return level.

Figure 5.3: GMMB prices with various values of maturity 7
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The price-sensitivity analysis of a GMMB is similar to that of the GMAB. Our investiga-

tion of the relationship between the GMMB price and the maturity 7’5 discloses an inverted-U
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pattern; see Figure 5.3. This relationship pattern conveys that the price increases as the uncer-
tainty increases, but after some time the discounting factor has the commanding effect, making
the price to decline. Appendix E.3 depicts the codes in generating Figure 5.3.

In Figure 5.4, we display the GMAB prices, with 75 = 15 years, as a function of both T}
and T, where the first renewal is assumed to be between year 2 and year 7 whilst the second
renewal is assumed to be between year 8 and year 13. The codes used to produce the results in

Figure 5.4 are shown in Appendix E.4.

Figure 5.4: GMAB prices versus varying 7 and T,
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Chapter 6

Conclusion

Actuarial practice needs a valuation approach that is sophisticated to capture the salient features
of the underlying variables yet it must be easily implementable and adaptable to industry’s pric-
ing platform. This research responds to this need and constructs a framework whose flexibility
could extend to the pricing of other contracts with investment guarantees.

More specifically, we developed an integrated framework for the valuation of a GMAB,
where three interrelated risk factors (i.e., interest, mortality, and lapse rates were considered).
The change of measure technique was employed to obtain an explicit solution for the pure en-
dowment, and therefore aiding the evaluation of risk-neutral conditional expectation for pric-
ing. In particular, we utilised the forward measure and the survival measure to decompose
the pure endowment into the product of the bond price, likelihood of survival, and lapsation
probability. The streamlined valuation of a GMAB is finally achieved through the utility of
the endowment-risk-adjusted measure. When the option to renew is not present, we success-
fully derived an analytic solution for the so-called the GMMB contract. Numerical illustrations
show that we created a computationally time-saving method with highly significant calculating
speed and accuracy when compared to the benchmark chosen, which is the MC simulation
method.

There are several possible natural avenues for future research. We may adopt the two-factor
Hull-White model [ 0] instead of the Vasi¢ek model, which is noted for its ability to fit today’s
term structure of interest rates. Note that the mortality model we adopted ignores the age

pattern; so, it may be worthwile to consider the Cairns-Blake-Dowd model [3] in which both

28
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age and year factors are taken into account. Moreover, we may include the analysis of a ratchet
feature in the guarantee as well as a withdrawal feature in the segregated fund. Lastly, the use
of regime-switching set ups (e.g. Gao et al. [7, §], Zhao and Mamon [20], Xi and Mamon [19],
Zhou and Mamon [2?], Jalen and Mamon [ ]3], and Ignatieva et al. [! | ], amongst others) will

definitely enrich the methodology in GMAB valuation.
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Appendix A

Calculation details for the dynamics of

3
A" under Q

This appendix provides calculation details to support the validity of equation (4.9).

Using equation (4.6), we can rewrite A?(’” as

(k) y(k) 3 g(k)
A3(k) — Ht Y, t Mt
' M, Ty) °

where

1

H,(") —e o rudu e~ AT+ DTy
. _ _

Yt(k) —e Jo #udue e—G(r,Tk)y,+H(t,Tk)’

M® o= b lndu yTTOU=K (. TOr+T(1T0)
) .
For any 0 < s < t < T}, we have

E¢ [HY

7. ] _RC [ =k rudu y=AGTOR+DGT)

7_2] — EQ [e— fot ruduEQ [e— f[Tk rydu

7

7|

:EQ EQ [6_ fot rudue— ftTk r,du

7o

[ T S T,
:EQ e_fo k "ud”'ﬁ] — e—fo ruduEQ |:€_fx kr,du

7

7|

7|

—o~ Jo rudit p=AGTOr+D(s.Te) _ pr(k)
=e I) T Me NYSSIE S, [ — HS .
So, ka) is a Q-martingale, and the drift coefficient in the Q dynamics of H,(k) must be 0.
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Using It6’s Lemma, we have

d Hz(k) o Jo rudu de~ACTOrDTY) | p=ACTOr+D(TY) Jo rudu + deACTOr+DTY) 4 Jo rudu

= — 0 A(t, TOHYaw!,

Similar arguments show that

dr® = - £G(t, THY" (P120'1A(f, Tdr + pr2dW, + V1 _p%ZdW’z)

and

dM® = - Mz(k)[ (913{70, Ty + o1 K(t, Tk)) (0'114(% To) +péG, Tk))

+ (I, Tk)p,zgé:g(t’ T)+J1 - P%z]dt

= MO (sl To) + R, T) AW, + T, Tl dW?

+ I, Ty) A1 = P2y — p%de].

By It6’s Lemma, we have

dHPY® = yOaH® + HPay® + dH®ay®
= —0A(t, TOHP YR dw!
- £GU TOHOY® (pracri A, T + pidW, + |1 = piaw?)
+ oA, TOEG(H, THHP YV dr

= —H®y® [(alA(t, Ti) + proéG(t, T)) AW, + £G(1, T A1 - p?ZdWE] :
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Furthermore,
dHOYO MO =pmPaHPY® + HOYOapm® + aHOYOdm®
= — HPy® py® [(O'IA(t, Ti) + péG(t, Ty)) AW, + EG(1, T) A1 - pfzdwf]
- HPYPMP| (0151, T) + o K (1, To) (1A, To) + préG e, Ti))

+ Pl THEG(L, Ty) AJ1 — pfz]dz

— HPY®Opm® (P13§7(f, T + oK(1, Tk)) AW, + pb1(t, T)dW;
+ 211, T) A1 = p2, - p'zgdwf]
; Hf’”Yf")Mfk)[ (111, T + K1, T0) (1A, Ti) + p1oé G, T)

+ T8, TOEG(, To) A1 - pfz]dt

= - H;k)Yt(k)Mt(k)[ (O’]A(I, Tk) +p12§5(f, Tk) +p13£;i(l‘, Tk) + O']E(l’, Tk)) thl

; (gé(t, To1 = 02, + Pl Tk)) AW? + (1, Ty) A1 - 2, — pgdwf].

Thus, the dynamics of A’® under Q is given by

dAf(k) = —A?(k)[ (0'114(7?, T + p1oéG(t, Ty) + pislI(t, To)+o K(t, Tk)) dw,

+ (gé(z, ToA1 = 02, + P, Tk)) AW? + (1, T) A1 - 2, — p'zgdwf].



Appendix B

Calculation details for the covariances in

Chapter 4

This appendix provides the computational details to support the validity of equations (4.21),
(4.25), (4.26) and (4.27).

We examine and evaluate one by one the four terms in equation (4.21).

_ Ty T> 1
0 (2) (2) _ e ae) 2 ot e
Cov*? [YO’ Ty YTI, Tz] —Cov [) ( —a - —o'z)dt + o'zWTl , (r, —a - Eo'z)dt + 0, (WT2 -Ww )]

T,
T,
T, T>
—Cov2 f rdt + o5 W to) rdt + o (W4(22) W;ﬁz))]
0 T
T, T
—Cov2 f r.dt, f r,dt f r,dt, o (WA(Z) ;ﬁz))]
0 0
. P
+ Cov? [0'2WT‘12), f r,dt
Ty

+ Cov® [0, 12, oy (W2 — 29

1

+ Cov2:

T T,
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Using equation (4.11), the first term can be expressed as

Ty T> T 7>
Cov?: [ f rdt, f V;dt} =Cov [0’1 f f “ae AW, ? du, oy f f a “dWI@dM]

—COV

S

—a(Tl s)
a
1 e—a(Tz s)

e

a
—a(T-s)

T <
c.—° Covaz[fl(l_e
a 0

a

) e“’ds

—a(T-s)

a
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)dW1<2> o1 (e € )f deI(Z)
a 0
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)dWShz) f eadeShz)]
0

0_2 T
1( - - —
:—(6 aTy —e aTz)f (eas —e aTleZas)ds
a2
0
2 s=T
o 1 1
1( - - _
—_1 (6 aT e aTz) (_eas _ 2—6 aTleZas)
a a a $=0
2
(o
— 13<e—aT1 eaTz)(aT1+e T1_2).
2a

Moreover, the second term can be expressed as
T e . N T ” _, ., .
f rdt, o) (W‘T‘;m _ W%z))] —Cov® [0'1 f f S AW O du, o, (WT(;) _ W;(.Z))]
0 0o Jo
—a(T-s) 1 . .
2) 2) (2)
)dWs Lo Wy = Wi )]

— Ty _ -
=Cov [01 f (—1 ‘
0

a
0.

Cové2 [

Futhermore, the third term can be expressed as

— - T2 - . Tz
Cov® [0'2W;(12), f l’tdt] =Cov? [02W4<2> o f f e ‘”dW“”du]
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Finally, the last term can be expressed as

Cov? I:O-ZW;?), o (W;f) - W;ﬁ”)] =
Therefore we have
o2
S 1 5 = e = ) 7 )
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as desired.

Similar arguments show that

= (oA

0: [v® v ] _ Y91 ( —am
Cov [YO’ oY | = 7 (e

0 [y 3 ol

03 _ —al>
Cov [YO, T’ YTz, Ts] - 243 (6

and

2
Y(3) ] _ oy (e—aTz _ e—aTg) (eaT2 + e—aT2 _ eaTl _ e—aTl)

0; [y®3)
Cov [YT.,TZ’ R ey

_ e—aT3) (eaTl + e—aTl _ 2) ,
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Appendix C

Codes for GMAB evaluation

This appendix provides the R codes used to produce the results in Table 5.2.

C.1 Codes for the direct approach in the GMAB evaluation

it |# Set the parameter values
> |a=0.15

3 |b=0.045

4 |sigmal=0.03
s |10=0.045

6 |c=0.1

7 1 x1=0.0003

s |u0=0.006

9 |h=0.12

0 |m=0.02
n|zeta=0.01
2 |p=0.5

13 110=0.02

14 | sigma2=0.05
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# initial premium

premium=1

# mc is the management charge, which is denoted by alpha in
the thesis.

mc=0.01

library (MASS)
library (parallel)

# Generate sample path
path<—function(v,en,ri ,ui,li, fi){
tem=matrix (rep (0,4 (252«v+1)) ,(252=xv+1) ,4)
tem[1,1]=r1
tem[1,2]=ui
tem[1,3]=11
tem[1,4]=f1
for (k in 2:(1+252x%v)){
tem[k,l]=tem[k—-1,1]+a*(b-tem[k—-1,1])*(1/252)+sigmal *
sqrt(1/252)«en[k—-1,1]
tem[k,2]=tem[k—-1,2]+cxtem[k—1,2]*(1/252)+xi*phol2*sqrt
(1/252)xen[k—-1,1]+xi*xsqrt(l —(phol2)”"2)*sqrt(1/252)=*
en[k—-1,2]
tem[k,3]=tem[k—-1,3]+h*(m+pxtem[k—-1,1]—-tem[k—-1,3])=(1/
252)+zetasphol3xsqrt(1/252)xen[k—-1,1]+zetaxpho23t=*
sqrt(1/252)«en[k—-1,2]+zetasxsqrt (1l —-(phol3)"2—-(pho23t)
"2)xsqrt(1/252)xen[k—-1,3]
tem[k,4]=tem[k—-1,4]+(tem[k—-1,1]-mc)«tem[k—-1,4]«(1/252)+
sigma2stem[k—1,4]*sqrt(1/252)*en[k—1,4]

return (tem)
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set.seed(201903)

# GMAB price function

fl<—function (j){

t1=5 #first renewal date
t2=10 #second renewal date
t3=15 #maturity
delta=0.05

ans=0

e=mvrnorm ((252«t1),c(0,0,0,0),diag(1,4.,4))

tel=path(tl ,e,r0,u0,10,premium)

discountl=exp(—(1/504)«(2+«sum(tel [,1])—tel [1,1]—-tel
[14+252xt]1 ,1]) )*exp(—(1/504)*(2+sum(tel [,2])—tel
[1,2]—tel [1+252xt1 ,2]))*exp(—(1/504)*(2*sum(tel [,3])
—tel [1,3]-tel [1+252«t1 ,3]))

ans=ans+discountl smax(premiumx*exp(deltastl)—tel [1+252x«
tl1 ,41,0)

GTl=max(tel [1+252%t] ,4],premium=*exp(deltaxtl))

e=mvrnorm ((252*(t2-t1)),c(0,0,0,0) ,diag(1.,4.,4))

te2=path ((t2—-tl),e,tel [1+252«t1 ,1],tel [1+252x*t1 ,2],tel
[1+252«t1 ,3],GTl)

discount2=discountl xexp(—(1/504)*(2+sum(te2[,1])—te2
[1,1]—te2[1+252%(t2—-tl) ,1]))*xexp(—(1/504)*(2+sum(te2
[,2])—te2[1,2]—te2[1+252*(t2—-t1) ,2]))*exp(—(1/504)=
(2«sum(te2[,3])—te2[1,3]-te2[1+252(t2—-t1) ,3]))

ans=ans+discount2*max(GTlxexp(deltas(t2—-tl))—te2[1+252x
(t2—-tl1) ,4]1,0)

GT2=max(te2 [1+252*(t2—-t1) ,4] ,GTl*exp(deltax(t2—-tl)))
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e=mvrnorm ((252*(t3-t2)),c(0,0,0,0) ,diag(1.,4,4))

te3=path ((t3-t2),e,te2 [1+252(t2—-t1) ,1],te2[1+252(t2—
tl),2],te2[1+252«(t2—-t1) ,3],GT2)

ans=ans+discount2sxexp(—(1/504)*(2*sum(te3 [,1])—te3
[1,1]—te3[1+252(t3—-t2) ,1]))*exp(—(1/504)*(2*sum(te3
[,2])—-te3[1,2] —te3[1+252%(t3—-t2) ,2]))*exp(—(1/504)=«
(2+«sum(te3[,3])—-te3[1,3]-te3[1+252(t3-t2) ,3]))*max(
GT2xexp(deltax(t3—-t2))—te3[1+252%(t3-t2) ,4],0)

return (ans)

# Set the correlation values

phol12=-0.9
phol13=-0.9
pho23=0.81

pho23t=(pho23—-phol2*phol3)/sqrt(l1—-phol272)

# Parallel simulation

set.seed(201903)

detectCores ()

cl <— makeCluster (4)

clusterExport(cl=cl, varlist=c(”’mvrnorm”, path”,”r0”, u0”,”
107, ”premium”,”a”,”b”,”sigmal ”,”c”,”xi”,”h”,”m”,” zeta”,”

p”,7sigma2”,”mc”,”phol2”,”phol3”,”pho23”,”pho23t”))
ans=rep (0,100000)

ptm<—proc . time ()
ans=parSapply (cl,1:100000,FUN = f1)
mean ( ans)

sd(ans)/sqrt(100000)
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st | proc.time ()—ptm
82

s3 | stopCluster (cl)

C.2 Codes for our proposed method in the evaluation of GMAB

1 |# Set the parameter values
> |b=0.045

3 |r0=0.045

4 1c=0.1

s |u0=0.006

¢ |h=0.12

7 |p=0.5

s 110=0.02

9 | premium=1

n | library (MASS)

3 |[A<—function (t,v,a){

14 return ((1 —exp((—a)=(v—-t)))/a)

7 |D<—function(t,v,a,b,sigmal) {
18 return ((b—(sigmal)”"2/(2*a"2))*(A(t,v,a)—(v—t))—(sigmal)”2
x*(A(t,v,a))"2/(4=*a))

20

a |G<—function (t,v){
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return ((exp(cx(v—t))—-1)/c)

H<—function(t,v,a,sigmal , xi) {
result=(phol2xsigmal=*xi/(axc)—(xi)"2/(2%xc"2))*(G(t,v)—(v—
t))+phol2xsigmal*xi/(axc)*(A(t,v,a)—phi(t,v,a))+(x1)"2
*(G(t,v)) 2/ (4xc)

return(result)

phi<—function(t,v,a){

return ((1 —exp(—(a—c)=*(v—-t)))/(a-c))

I<—function(t,v){

return (((1 —exp((=h)*(v=t)))/h))

K<—function(t,v,a){

return ((hxp*(A(t,v,a)-I(t,v))/(h-a)))

mbar<—function(t,v,a,sigmal ,xi,m, zeta) {
return ((h*m-phol3xsigmal*zeta*A(t,v,a)—pho23xxixzeta*G(t,
v)))

bbar<—function(t,v,a,b,sigmal , xi){

return ((axb—(sigmal ) "2«A(t,v,a)—phol2xsigmal *xi*G(t,v)))
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# Numerical methods for the ordinary differential equation
J<—function(t,v,a,b,sigmal ,xi,m, zeta) {
u=rep (0,(1+100«(v—-t)))
u[1]=0
for (1 in 2:(1+100%(v=t))){
ul[i]=u[i-1]-0.01%(I(v—=(i—=1)%x0.01,v)*mbar(v—(i—-1)%x0.01,v
,a,sigmal , xi,m, zeta)+K(v—-(i—-1)%x0.01,v,a)sbbar(v—-(i
-1)%x0.01,v,a,b,sigmal ,xi)—-0.5%x((zeta) " 2«xI(v—-(i—-1)=*
0.01,v)"2+(sigmal) " 2«K(v—=(i-1)%*0.01,v,a)"2+2xphol3=
zetaxsigmal«I(v—(i—-1)%x0.01,v)*K(v—-(i-1)%x0.01,v,a)))
}
return (u[100«(v—=t)+1])

# Pure enowment value
M<—function(v,a,b,sigmal , xi,m, zeta) {
ans=exp(—((A(0,v,a)+K(0,v,a))*r0+G(0,v)*(u0)+I(0,v)*10)+D
(0,v,a,b,sigmal )+H(O,v,a,sigmal ,xi)+J(0,v,a,b,sigmal,
Xi,m, zeta))

return (ans)

# Mean
miuT<—function (u,v, maturity ,mc,sigma2,a,b,sigmal ,xi,zeta) {
ans=—mc* (v—u) —0.5%(sigma2) "2« (v-u)+r0=(exp(—axu)—exp(—axv
))/a+(b—((sigmal)”2)/(a"2)+phol2*sigmal*xi/(axc)—phol3
xsigmalxzeta/(axh) —((sigmal)"2)*p/(a”"2))*((v—u)—(exp(—
axu)—exp(—axv))/a)+(sigmal)"2/(2«a"2)*exp(—axmaturity)

*(1+hxp/(h-a))* ((exp(axv)—exp(a*u))/a—(exp(-a*xu)—exp(-
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axv))/a)+sigmal/(a+h)*exp(—hsmaturity )*(phol3xzeta/h—

sigmal*p/(h-a))=*((exp(hsv)—exp(hxu))/h—(exp(—axu)—exp

(-axv))/a)—(phol2xsigmal*xi/(c*x(a—c)))*exp(c*maturity )
*((exp(—cxu)—exp(—c*v))/c—(exp(—-axu)—exp(-axv))/a)

return (ans)

# Variance
sigmaT<—function (u,v, maturity ,sigma2 ,a,sigmal) {
ans=sigmal "2x* ((exp(—a*xu)—exp(—axv))/a) " 2x(exp(2*axu)—-1)/
(2xa)+((sigmal)”"2/(a"2))*((v—u)-2%(l—-exp(—ax(v-u)))/a
+(l—exp(—2xax(v-u)))/(2*a))+(sigma2) "2x(v—-u)

return (ans)

# Covariance
cov2<—function (tl ,t2 , maturity ,a,sigmal) {
return (sigmal "2/ (2xa"3)*(exp(—axtl )—exp(—axt2))=*(exp(axtl
)+exp(—axtl)-=2))

cov3l2<—function (tl ,t2 , maturity ,a,sigmal) {
return (sigmal "2/ (2xa"3)x(exp(—axtl )—exp(—a=t2))=*(exp(axtl
)+exp(—axtl)—-2))

cov313<—function(tl ,t2 , maturity ,a,sigmal) {
return (sigmal "2/ (2xa"3)*(exp(—axt2)—exp(—asmaturity ) )x*(

exp(axtl)+exp(—axtl)-=2))
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cov323<—function (tl ,t2 , maturity ,a,sigmal) {
return (sigmal "2/ (2xa"3)*(exp(—axt2)—exp(—a*maturity ) )x*(

exp(axt2)+exp(—axt2)—exp(axtl)—exp(—axtl)))

pricel<—function (tl ,t2 , maturity ,mc,sigma2, delta ,a,b,sigmal,

Xi,zeta){

ans=premiums=(—exp (miuT (0,tl ,tl ,mc,sigma2,a,b,sigmal ,xi,
zeta)+0.5+sigmaT (0,tl ,tl ,sigma2,a,sigmal))spnorm ((
deltaxtl —-miuT(0,tl ,tl ,mc,sigma2,a,b,sigmal ,xi,zeta)-
sigmaT (0,tl ,tl ,sigma2,a,sigmal))/sqrt(sigmaT(0,tl , tl,
sigma2 ,a,sigmal)) ,mean=0,sd=1)+exp(deltaxtl)*pnorm ((
delta*tl —-miuT(0,tl ,tl ,mc,sigma2,a,b,sigmal ,xi,zeta))/
sqrt (sigmaT (0,tl ,tl ,sigma2,a,sigmal)) ,mean=0,sd=1))

return (ans)

price2<—function (tl ,t2 , maturity ,delta ,el) {
result=premiums*max(exp(deltaxtl),exp(el[1]))s*max(exp(
deltax(t2—-tl))—exp(el[2]) ,0)

return(result)

price3<—function (tl ,t2 , maturity ,delta ,e2) {
result=premiumsmax(exp(deltaxtl),exp(e2[1]))smax(exp(
deltax(t2—-tl)),exp(e2[2]))*max(exp(deltas(maturity —t2
[31))—exp(e2),0)

return(result)

48




109

110

111

112

113

114

115

116

117

118

119

120

121

CHAPTER C. CobpEs FOR GMAB EVALUATION

set.seed(2019045)

# GMAB price function
# t1: first renewal date, t2: second renewal date, t3:
maturity .
# mc is the management charge, which is denoted by alpha in
the thesis.
priceall<—function (tl ,t2 ,t3 ,mc, delta ,sigma2,a,b,sigmal , xi,m
,zeta ,n) {
ans=rep(0,n)
el=mvrnorm (n,c(miuT(0,tl ,t2 ,mc, sigma2 ,a,b,sigmal ,xi, zeta)
,miuT (tl ,t2 ,t2 ,mc,sigma2 ,a,b,sigmal ,xi,zeta)),matrix(c
(sigmaT (0 ,tl ,t2 ,sigma2,a,sigmal),cov2(tl ,t2,t3 ,a,
sigmal) ,cov2(tl ,t2 ,t3 ,a,sigmal) ,sigmaT(tl ,t2,t2 ,sigma?2
,a,sigmal)) ,2,2,byrow = TRUE))
e2=mvrnorm (n,c(miuT(0,tl ,t3 ,mc, sigma2 ,a,b,sigmal ,xi, zeta)
,miuT (tl ,t2 ,t3 ,mc,sigma2,a,b,sigmal ,xi,zeta) ,miuT(t2,
t3 ,t3 ,mc,sigma2 ,a,b,sigmal ,xi,zeta)),matrix (c(sigmaT
(0,tl ,t3 ,sigma2,a,sigmal),cov312(tl ,t2,t3 ,a,sigmal),
cov313(tl ,t2 ,t3 ,a,sigmal),cov312(tl ,t2,t3 ,a,sigmal),
sigmaT (tl ,t2,t3 ,sigma2,a,sigmal),cov323(tl ,t2,t3 ,a,
sigmal) ,cov313(tl ,t2,t3,a,sigmal),cov323(tl ,t2,t3,a,
sigmal) ,sigmaT (t2,t3,t3 ,sigma2,a,sigmal)) 3,3, ,byrow =
TRUE) )
ml=M(tl ,a,b,sigmal ,xi,m, zeta)*pricel (t1 ,t2,t3 ,mc,sigma?2,
delta ,a,b,sigmal ,xi,zeta)
m2=M(t2 ,a,b,sigmal ,xi,m, zeta)
m3=M(t3 ,a,b,sigmal , xi ,m, zeta)
for(i in 1:n){
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ans [i]=ml+m2xpremium=+max(exp(deltaxtl) ,exp(el[i,1]))smax
(exp(deltax(t2—-tl))—exp(el[i,2]) ,0)+m3*premiumsxmax (
exp(deltaxtl),exp(e2[i,1]))*max(exp(deltax(t2—-tl)),
exp(e2[i,2]))*max(exp(deltax(t3—-t2))—exp(e2[i,3]) ,0)
}

return (c(mean(ans) ,sd(ans)/sqrt(n)))

# Set the correlation values

phol2=-0.9
phol13=-0.9
pho23=0.81

# priceall (tl,t2,t3 ,mc,delta ,sigma2,a,b,sigmal ,xi,m,zeta ,n)
# GMAB price using our proposed method

ptm<—proc.time ()

priceall

(5,10,15,0.01,0.05,0.05,0.15,0.045,0.03,0.0003,0.02,0.01,]

proc.time ()—ptm

100000)




Appendix D

Codes for GMMB evaluation

The results shown in Table 5.3 were generated utilising the codes in this Appendix.

D.1 Codes for the computation of GMMB value using the

direct approach

1 |# Set the parameter values
> |a=0.15

3 |b=0.045

4 |sigmal =0.03
s |r0=0.045

¢ |c=0.1

7 1 x1=0.0003

s |u0=0.006

9 |h=0.12

0o im=0.02
n|zeta=0.01
2 [p=0.5

i3 |10=0.02
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sigma2=0.05

premium=1

# mc is the management charge, which is denoted by alpha in
the thesis.

mc=0.01

library (MASS)
library (parallel)

# Generate the sample path
path<—function(v,en,ri ,ui,li, fi){
tem=matrix (rep (0,4 (252«v+1)) ,(252=xv+1) ,4)
tem[1,1]=r1
tem[1,2]=ui
tem[1,3]=11
tem[1,4]=f1
for (k in 2:(1+252x%v)){
tem[k,l]=tem[k—-1,1]+a*(b-tem[k—-1,1])*(1/252)+sigmal *
sqrt(1/252)«en[k—-1,1]
tem[k,2]=tem[k—-1,2]+cxtem[k—1,2]*(1/252)+xi*phol2*sqrt
(1/252)xen[k—-1,1]+xi*xsqrt(l —(phol2)”"2)*sqrt(1/252)=*
en[k—-1,2]
tem[k,3]=tem[k—-1,3]+h*(m+pxtem[k—-1,1]—-tem[k—-1,3])=(1/
252)+zetasphol3xsqrt(1/252)xen[k—-1,1]+zetaxpho23t=*
sqrt(1/252)«en[k—-1,2]+zetasxsqrt (1l —-(phol3)"2—-(pho23t)
"2)xsqrt(1/252)xen[k—-1,3]
tem[k,4]=tem[k—-1,4]+(tem[k—-1,1]-mc)«tem[k—-1,4]«(1/252)+
sigma2stem[k—1,4]*sqrt(1/252)*en[k—1,4]
}

return (tem)
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# GMMB price function
f<—function (1) {
t3=15
delta=0.05
e=mvrnorm ((252%t3),c(0,0,0,0) ,diag(1,4.4))
tel=path(t3 ,e,r0,u0,10, premium)
ans=exp(—(1/504)*(2«sum(tel [ ,1])—-tel[1,1]—tel [1+252%t3
,1]1))*exp(—(1/504)«(2«sum(tel [ ,2])—tel [1,2]—tel
[1+252%t3 ,2]) )*exp(—(1/504)«(2*«sum(tel [,3])—tel
[1,3]-tel [1+252%t3 ,3]) )s*max(premiums*exp(delta=*t3)—
tel [1+252%t3,4]1,0)

return (ans)

# Set the correlation values

phol12=-0.9
phol13=-0.9
pho23=0.81

pho23t=(pho23-phol2*phol3)/sqrt(l-phol272)

# Parallel simulation

set.seed(201903)

detectCores ()

cl <— makeCluster (4)

clusterExport(cl=cl, varlist=c(”’mvrnorm”, path”,”r0”,”7u0”,”
107, ”premium”,”a”,”b”,”sigmal ”,”c”,”xi”,”h”,”m”, " zeta”,”

2 2

p”, 7 sigma2”,”mec”, phol2”,”phol3”,”pho23”,”pho23t”))
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o |ptm<—proc.time ()

o |ans=parSapply(cl,1:100000,FUN = f)
e |mean(ans)

6 |sd(ans)/sqrt(100000)

& | proc.time ()—ptm
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o | stopCluster(cl)

D.2 Codes for the computation of the GMMB under our pro-
posed method

1 |# Set the parameter values
> |a=0.15

5 |b=0.045

4 |sigmal =0.03
s |r0=0.045

6 |c=0.1

7 1 x1=0.0003

s |u0=0.006

9 |h=0.12

0o |m=0.02
n|zeta=0.01
2 |p=0.5

13 110=0.02

4 [ sigma2=0.05

15 | premium=1
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# mc is the management charge, which is denoted by alpha in
the thesis.

mc=0.01

library (MASS)

A<—function (t,v){

return ((1 —exp((—a)x(v—-t)))/a)

D<—function (t,v){
return ((b—(sigmal)”"2/(2*xa"2))*(A(t,v)—(v—t))—(sigmal) "2 x(
A(t,v)) 2/ (4xa))

G<—function (t,v){

return ((exp(c*(v—-t))—-1)/c)

H<—function (t,v){
result=(phol2*sigmal*xi/(a*xc)—(xi1)"2/(2%xc"2))*(G(t,v)—(v-
t))+phol2s«sigmal=xi/(axc)*(A(t,v)—phi(t,v))+(xi)"2=(G(

t,v)) 2/(4x*c)

return(result)

phi<—function (t,v){
return ((1 —exp(—(a—-c)*(v-t)))/(a-c))
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I<—function(t,v){

return (((1 —exp((=h)*(v=t)))/h))

K<—function (t,v){

return ((hxp*(A(t,v)-I(t,v))/(h-a)))

mbar<—function (t,v) {
return ((h*m-phol3+sigmals*zeta*A(t,v)—pho23x«xi*xzetas*G(t,v)
))

bbar<—function (t,v) {

return ((axb—(sigmal ) "2«A(t,v)—phol2=«sigmal*xi*G(t,v)))

# Numerical methods for the ordinary differential equation
J<—function (t,v){
u=rep (0,(1+100«(v=t)))
u[1]=0
for (i in 2:(1+100%(v—-t))){
ul[i]=u[i-1]-0.01%(I(v=(i-1)%*0.01,v)*mbar(v—-(i—-1)*0.01,v
)+K(v—=(i-1)%x0.01,v)=*bbar(v—-(i—-1)*0.01,v) -0.5%((zeta)
"2x1(v—=(1-1)%0.01,v) "2+ (sigmal) " 2xK(v—-(i—-1)%x0.01,v)
"2+2«phol3xzetasxsigmal «x[(v—(i—-1)*0.01,v)*sK(v—-(i—-1)=*
0.01,v)))

}
return (u[100«(v-t)+1])
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# Pure endowment
M<—function (v) {
ans=exp (—((A(0,v)+K(0,v))*r0+G(0,v)*(u0)+I(0,v)*10)+D(0,v
)+H(O ,v)+J(0,v))

return (ans)

# Mean
miuT<—function (u,v, maturity ) {
ans=—mc* (v—u) —0.5*%(sigma2) "2« (v-u)+r0«(exp(—axu)—exp(—axv

))/a+(b—((sigmal)”2)/(a"2)+phol2xsigmal=xi/(axc)—phol3
xsigmalxzeta/(axh) —((sigmal ) "2)*p/(a”"2))*((v—u)—(exp(—
axu)—exp(—a*v))/a)+(sigmal)”"2/(2+«a"2)*exp(—a*maturity )
*(1+hxp/(h—a))*((exp(axv)—exp(axu))/a—(exp(—a*u)—exp(—
axv))/a)+sigmal/(a+h)*exp(—hsmaturity )*(phol3xzeta/h—
sigmal *p/(h-a))=*((exp(h*v)—exp(h*u))/h—-(exp(—axu)—exp
(—axv))/a)—(phol2«sigmal*xi/(c*x(a—c)))*exp(c*maturity )
*((exp(—c*u)—exp(—-c*v))/c—(exp(—-axu)—exp(-ax*v))/a)

return (ans)

# Variance
sigmaT<—function (u,v, maturity ) {
ans=sigmal "2x* ((exp(—a*xu)—exp(—ax*v))/a) 2«(exp(2*xaxu)—-1)/
(2xa)+((sigmal)”"2/(a"2))*x((v—u)-2%(l—-exp(—ax(v-u)))/a
+(1-exp(—2%ax(v-u)))/(2*xa))+(sigma2)” 2% (v—u)

return (ans)
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pricel<—function (tl ,delta){
ans=premium=(—exp (miuT (0, tl ,t1)+0.5%sigmaT (0,tl ,tl))=
pnorm ((deltaxtl —-miuT (0, tl ,tl)—sigmaT (0,tl ,tl1))/sqrt(
sigmaT (0,tl ,t1)) ,mean=0,sd=1)+exp(deltaxtl)*pnorm ((
deltaxtl —-miuT(0,tl ,tl))/sqrt(sigmaT(0,tl,tl)),mean=0,
sd=1))

return (ans)

# GMMB price function
pricegmmb<—function (maturity ,delta) {

return (M( maturity )xpricel (maturity ,0.05))

# Set the correlation values

phol12=-0.9
phol13=-0.9
pho23=0.81

# Calculate the GMMB price
ptm<—proc.time ()
pricegmmb (15,0.05)

proc.time ()—ptm
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Appendix E

Codes in conducting price-sensitivity

analyses

This appendix presents the R codes for the price-sensitivity analyses found in Section 5.2.

E.1 Codes for Figure 5.1

The following are the codes in producing the results displayed in Figure 5.1.

# GMAB price with different values of b
xb=seq (0.01,0.2,0.001)
yb=rep (0,191)
for (i in 1:191) {
yb[i]=priceall (5§,10,15,0.01,0.05,0.05,0.15,0.01+(1-1)/
1000,0.03,0.0003,0.02,0.01,100000)

# GMAB price with different values of sigmal
xsigmal=seq(0.01,0.1,0.001)
ysigmal=rep (0,91)
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for (i in 1:91) {
ysigmal [i]=priceall
(5,10,15,0.01,0.05,0.05,0.15,0.045,0.01+(i-1)/
1000,0.0003,0.02,0.01,100000)

# GMAB price with different values of m
xm=seq (0.01,0.2,0.001)
ym=rep (0,191)
for (i in 1:191) {
ym[i]=priceall
(5,10,15,0.01,0.05,0.05,0.15,0.045,0.03,0.0003,0.01+(1
-1)/1000,0.01,100000)

# GMAB price with different values of zeta
xzeta=seq(0.001,0.1,0.001)
yzeta=rep (0,100)
for (i in 1:100) ¢{
yzeta[i]=priceall
(5,10,15,0.01,0.05,0.05,0.15,0.045,0.03,0.0003,0.02,0.0
1—-1)/1000,100000)

# Plot

pdf ("figurel . pdf”,width = 8,height = 7)

par (mfcol=c(2,2))

par (mar=c(5,5,2,4),tcl =0.3)

plot(xb,yb,type = 71”7,xlab=expression(b),ylab="GMAB price”,

2 2

cex.lab=1.5,cex.axis=1.7,xaxt="n",yaxt="n")
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axis(1,at=seq(0.05,0.3,0.05))

axis(2,at=seq(0.1,0.8,0.1))

plot(xm,ym, type = 717 ,xlab=expression(m),ylab="GMAB price”,
cex.lab=1.5,cex.axis=1.7,xaxt="n",yaxt="n")

axis(1,at=seq(0.05,0.2,0.05))

axis(2,at=seq(0.1,0.4,0.05))

plot(xsigmal ,ysigmal ,type = 717,xlab=expression(sigmal[l]),
ylab="GMAB price”,cex.lab=1.5,cex.axis=1.7,xaxt="n",yaxt
="n")

axis(l,at=seq(0.02,0.1,0.02))

axis(2,at=seq(—-1,5,1))

plot(xzeta ,yzeta ,type = 717 ,xlab=expression(zeta),ylab="
GMAB price”,cex.lab=1.5,cex.axis=1.7,xaxt="n",yaxt="n")

axis(l,at=seq(0.01,0.12,0.02))

axis(2,at=seq(0.1,1.2,0.2))

dev.off ()
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E.2 Codes for Figure 5.2

The results shown in Figure 5.2 were generated utilising the following codes.

# GMAB price with different values of delta
xdelta=seq(0.01,0.1,0.0001)
ydelta=rep (0,901)
for (i in 1:901) {
ydelta[i]=priceall (5,10,15,0.01,0.01+(i-1)/
10000,0.05,0.15,0.045,0.03,0.0003,0.02,0.01,100000)
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# GMAB price with different values of sigma2
xsigma2=seq(0.01,0.3,0.0001)
ysigma2=rep(0,1901)
for (i in 1:1901) {
ysigma2[i]=priceall (5,10,15,0.01,0.05,0.01+(i—-1)/
10000,0.15,0.045,0.03,0.0003,0.02,0.01,50000)

# Plot

pdf ("figure2.pdf”,width = 9,height = 4)

par (mfcol=c(1,2))

par (mar=c(5,5,2,4),tcl1 =0.3)

plot(xdelta ,ydelta ,type = 71”7 ,xlab=expression(delta),ylab=
GMAB price”,cex.lab=1.5,cex.axis=1.7,xaxt="n",yaxt="n")

axis(1,at=seq(0.02,0.1,0.02))

axis(2,at=seq(0.2,1.8,0.2))

plot(xsigma2 ,ysigma2 ,type = 717,xlab=expression(sigmal[2]),
ylab="GMAB price”,cex.lab=1.5,cex.axis=1.7,xaxt="n",yaxt
="n")

axis(1,at=seq(0.01,0.2,0.03))

axis(2,at=seq(0.2,0.7,0.1))

dev.off ()
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E.3 Codes for Figure 5.3

The following are the codes in coming up with Figure 5.3.

# GMMB price with different values of maturity
xT=seq(1,40,0.1)
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3 |yT=rep (0,391)
4 [for(i in 1:391){
5 yT[i]=pricegmmb(1+(i—-1)/10,0.05)

s |[# Plot

o |pdf (7 figure3.pdf”,width = 5,height = 5)

o | par (mar=c(5,5,3,3),tcl=0.4)

n [plot(xT,yT, xlab = expression(T[3]),ylab = "GMMB price”,
type="1"7, cex.lab=1.6,cex.axis=2,xaxt="n",yaxt="n")
| axis(1,at=seq(5,40,5),cex.axis=1.3)

3 laxis(2,at=seq(0.05,0.35,0.1) ,cex.axis=1.3)

4 |dev.off ()
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E.4 Codes for Figure 5.4

The following depict the codes in generating Figure 5.4.

i [library (rsm)

3 |# GMAB price with different values of renewal dates Tl and
T2

4 |xXT1l=seq(2,7,0.05)

s | xT2=seq(8,13,0.05)

¢ |yT1T2=matrix (rep(0,101%x101),101,101)

7 | for (i in 1:101) {

8 for (j in 1:101) {

9 yT1T2[i,j]l=priceall (24+(i-1)/20,8+(j-1)/
20,15,0.01,0.05,0.05,0.15,0.045,0.03,0.0003,0.02,0.01

,50000)
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[1]

pdf (" figure4 .pdf”,width = 8,height = 6)

theta=79, phi=15,r=50,d=0.5,expand=0.5,1theta=90,
shade=0.75,ticktype="detailed ”,nticks =5, box =
TRUE)

dev.off ()

# Plot
persp (xT1,xT2,yT1T2,col = rainbow (25),xlab = "Renewal TI1",
ylab = "Renewal T2”, zlab = "GMAB price”,cex.lab=1.4,

64




Curriculum Vitae

Name:

Post-Secondary
Education and

Degrees:

Related Work

Experience:

Quantitative

Skills:

Yiming Huang

The University of Western Ontario
London, Ontario, Canada

2017 - 2019: Thesis Based - MSc in Actuarial Science

South China University of Technology

Guangzhou, Guangdong, China

GPA: 3.96 / 4.00 (Rank: 1st out of 63 students)

2013 - 2017: BSc in Mathematics and Applied Mathematics

4th year spent at The University of Western Ontario as 3+1+1 exchange student
Teaching Assistant
The University of Western Ontario

2017 - Present

Application software: Matlab, SPSS, Rstudio, Mathematics

Programming language: C, C++, C#, Python, R

65



	A computationally efficient methodology in pricing a guaranteed minimum accumulation benefit
	Recommended Citation

	Abstract
	Lay Summary
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Modelling framework
	Interest rate model
	Mortality model
	Lapse rate model
	Model dependence

	Contract description
	Guaranteed Minimum Accumulation Benefit
	Guaranteed Minimum Maturity Benefit

	Derivation of valuation formula
	The forward measure
	The survival measure
	The endowment-risk-adjusted measure
	Valuation formula
	Guaranteed Minimum Maturity Benefit
	Guaranteed Minimum Accumulation Benefit


	Numerical illustration
	Numerical scheme
	Price-sensitivity analyses

	Conclusion
	Bibliography
	Appendices
	Appendix Calculation details for the dynamics of t3(k) under Q
	Appendix Calculation details for the covariances in Chapter 4
	Appendix Codes for GMAB evaluation
	Codes for the direct approach in the GMAB evaluation
	Codes for our proposed method in the evaluation of GMAB

	Appendix Codes for GMMB evaluation
	Codes for the computation of GMMB value using the direct approach
	Codes for the computation of the GMMB under our proposed method

	Appendix Codes in conducting price-sensitivity analyses
	Codes for Figure 5.1 
	Codes for Figure 5.2 
	Codes for Figure 5.3 
	Codes for Figure 5.4 

	Curriculum Vitae

