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Abstract 
Kinematics of the foot during static and dynamic tasks are technically challenging to 
accurately measure, making it difficult to evaluate their contribution to running-related 
injuries.  Motion capture can detect changes in running mechanics, such as with differing 
footwear. Habitual barefoot runners and/habitual minimalist shoe runners underwent a 
biomechanical evaluation of their foot movement during running using reflective markers 
and optical motion capture. A five-segment foot model was used to compare motions 
between the different parts of the foot while running barefoot and wearing Vibram Five 
Fingers™ (VFF) barefoot mimicking shoes. Supination/pronation in the forefoot was larger 
but not significant between habitual shod and habitual VFF runners. In contrast, the other 
foot motions (forefoot spreading/rising, hindfoot pronation/supination and hindfoot 
adduction/abduction) were not significantly different between the groups of runners. 
Therefore it could be possible that transitioning from a regular running shoe to a barefoot 
mimicking minimalist shoe would cause the foot to adopt a more supinated gait cycle.  
 
Lay Summary 
Movement of the foot due to it's complexity during still and moving tasks are challenging to 
measure. This makes it difficult to compare movements to running related injuries. This 
study took a look at Vibram Five Fingers and shod runners using a segmented foot model to 
see if differences were evident. The study used reflective markers and motion caption 
cameras to compare motion between the two groups of runners. There were no differences 
seen between the two groups of runners. 
 
Keywords 
Foot, biomechanics, multi-segment analysis, motion analysis, kinematics, shoe, motion 
capture. 
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Glossary & Nomenclature 
 
abduction (ABD) movement towards the midline 
adduction (ADD) movement away from the midline 
axis of rotation straight line going through fixed points of a rotating rigid 

body 
BF barefoot 
distal  further away from a point of attachment or origin 
dorsiflexion (DF) flexion of the ankle towards the body 
eversion abduction of the ankle 
extension increasing the angle of the joint 
flexion decreasing the angle of the joint 
frontal plane defined as separating the body into front and back 
forefoot strike (FFS) 
 
gait 

characterized by initial ground contact on the forefoot (first 
1/3 of the foot) proceeded by transferring weight to the heel 
manner of walking or running  

inversion (inv) when the ankle supinates and the foot rolls towards the 
midline 

kinematics study of motion of the body without regard to the forces that 
are producing the motion 

kinetics study of forces that cause motion 
lateral away from the midline of the body 
Matlab software used to write code to read and analyse data 
medial situated towards the midline of the body or attachment or 

origin 
medial longitudinal arch 
(MLA) 

arch formed at the bottom of the foot 

midfoot strike (MFS) 
 
mm 

characterized by initial ground contact on the midfoot 
(middle 1/3 of the foot) 
millimetre 

proximal closer to the point of reference 
plantar flexion movement where the toes are pointed downwards towards 

the sole 
posterior towards the back of the body 
pronation combination movement of eversion, dorsiflexion and 

abduction 
rearfoot strike (RFS) 
 
midsagittal plane 

characterized as initial ground contact on the rearfoot (rear 
1/3 of the foot) 
anatomical plane that runs through the midline and divides 
the body into left and right 

superior higher when referring to a point of reference 
supination combination movement of inversion, plantar flexion and 

adduction 
tendon tissue connecting muscle to bone 
transverse plane separating the body into an upper half and a lower half 
valgus a deformity in which an anatomical part is turned outward 

away from the midline of the body to an abnormal degree 
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varus a deformity in which an anatomical part is turned inward 
toward the midline of the body to an abnormal degree 

VFF Vibram Five Fingers running shoes 
WOBL  Wolf Orthopaedic Biomechanics Laboratory 
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Chapter 1: Background & Introduction 
 

1.1 Statement of purpose 
The purpose of this research was to quantify the relative motion between the forefoot and 
hindfoot in participants with healthy, non injured feet during running.  Participants were 
divided into two groups. One group habitually ran in traditional running shoes (more than 
10 kilometers per week), and the second group habitually ran in Vibram Five Fingers™ or 
barefoot (more than 10 kilometers per week).   
 
This study used optical motion capture and a multi-segment foot model to individually 
track the segments of the hindfoot, midfoot, medial forefoot, lateral forefoot and hallux.  The 
optical motion capture system used skin-mounted auto-reflective markers organized into 
rigid triad clusters.  At least one cluster was attached to each foot segment.  The multi-
segment foot model and optical motion capture system have been previously validated in 
our laboratory (Jenkyn & Nicol, 2007).  The multi-segment foot model measures the degrees 
of freedom motion between the five foot segments so that the function of the foot can be 
compared between subject types and footwear conditions. 
 
This study had two hypotheses. The first hypothesis was that the kinematics of habitually 
shod runners are significantly different than habitual Vibram Five Fingers™ runners when 
running barefoot. The second hypothesis was that the kinematics of habitually shod 
runners are significantly different than habitual Vibram Five Fingers™ when running in 
Vibram Five Fingers™. 
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1.2 Introduction 
For several centuries, shoes have been used to provide protection for the soles of the feet, 
traction between the feet and the ground, for motion control and stability, and for 
dispersion of ground reaction forces (Mcpoil, 2000). Runners typically strike the ground 
600 times per kilometer (Milner, Ferber, Pollard, Hamill, & Davis, 2006; Pohl, Hamill, & 
Davis, 2009; van Gent et al., 2007). Each time the foot strikes the biomechanical loading is 
approximately 1.25 times body weight during walking and 2 to 3 times body weight during 
running (Lieberman et al., 2010; Waetjen, Parker, & Wilken, 2012). Thus, due to the 
repetitive nature of these foot strikes, any imbalance in foot and gait mechanics may result 
in a running related injury.  
 
The high loads associated with running, and the associated risk of injury, catalyzed research 
studies looking into barefoot and shod running. The article by Lieberman et al. (2010) was 
one of the first published studies that compared the differences between habitually 
barefoot and shod runners. It sparked a lot of controversy in the running community. In a 
2014 Runner’s World interview, Dr Lieberman stated that changing your running 
mechanics affects more than just your footstrike; it can also change your joint moments, the 
cadence and tissue loading (Lovett, 2014). He goes on to say that there is a need for future 
studies examining different aspects of running.  
 
Incidences of running related injuries and overuse injuries such as plantar fasciitis, stress 
fractures, tendonitis and shin splints have increased over time as the number of runners in 
Canada have also increased (van Gent et al., 2007) with the incidence of running related 
injuries range from 19-79% in any given year (van Gent et al., 2007). Despite advancements 
in running shoe technology and design (increases in cushioning, alterations to materials, 
changes flexibility and stability) rates of repetitive strain injuries vary little from year to 
year (Richards, Magin, & Callister, 2008; Van Mechelen, 1992) and therefore perhaps 
variations in shoe material are not the sole contributor to overuse injuries.  
 
There are many different types of shoes that will attract the attention of various runners 
(Klettler, 2005). These include a variety of colours, styles, types, foams, gels, cushioning, air 
pockets, lacing, etc. Running shoe prices range from $50-$225 with features varying in the 
addition of motion control (midsole stabilization), cushioning systems (gels and air 
pockets), and differing lacing techniques (Klettler, 2005). Although there are a lot of 
features to choose from, mileage is another factor (Mcpoil, 2000). Mileage affects how shoes 
can function over time, during inclimate weather and over varying distances and thus, it is 
important to regularly change your shoes (Mcpoil, 2000; Taunton et al., 2002).  
 
The heel of a stability running shoe is compromised of the outsole and the midsole. Modern 
stability running shoes commonly have the heel-toe offset, with the heel/hindfoot raised 
higher than the forefoot. This is thought to encourage a heel strike during running. Recent 
evidence suggests that wearing a stability shoe during running has led to the weakening of 
the intrinsic muscles of the foot and increasing the risk for running related injury (Sinclair, 
2015). There have also been studies examining the effects of various surfaces on foot 
kinematics. A study by Gantz & Derrick, (2018), showed that when running on an irregular 
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surface, the forefoot has a decreased amount of inversion. Another study determined that 
there was an increase in variability in footstrike patterns between hard and soft surfaces 
(Lieberman et al., 2015). The hard surface was described as a dirt field with compacted soil 
and a soft surface was the same dirt field that was disrupted 10 cm down to loosen up the 
terrain (Lieberman et al., 2015). Habitually barefoot runners were more likely to rearfoot 
strike on soft surfaces, and habitually shod runners were more likely to forefoot strike on 
soft surfaces (Lieberman et al., 2015). Barefoot runners were significantly more likely to 
use more than one foot strike type on varying terrain (72%), compared to shod runners 
(32%) (Lieberman et al., 2015). The difference in footstrike patterns between hard and soft 
surfaces were not significantly different between habitually shod and barefoot runners, 
however, there was a significant difference in the variability of foot strike on the soft 
surface between all the runners. 
  
Running shoes that have a decreased heel-toe offset are thought to encourage more of a 
midfoot strike or even a forefoot strike (Mcpoil, 2000).  Barefoot mimicking or minimalist 
running shoes were introduced in an effort to achieve a forefoot strike (Altman & Davis, 
2012; Curran & Tozer, 2010; Nunns, House, Fallowfield, Allsopp, & Dixon, 2013; Warne & 
Gruber, 2017; Zhang, Paquette, & Zhang, 2013). Barefoot mimicking running shoes are a 
technology that entered the market in 2005. This barefoot running trend started with the 
introduction of barefoot mimicking running shoes such as the Nike Free (Nike, Inc., 
Beaverton, Oregon) and most notably, the Vibram Five Fingers™ (Vibram, Albizzate, Italy).  
A lawsuit was launched against Vibram in 2012 as they claimed that the shoes prevented 
common injuries and worked to strengthen the feet (Tucker, 2014). Vibram settled this 
claim and refunded their customers between $20-$50 per pair as their claims could not be 
supported by science (Tucker, 2014).  
 
In contrast, true barefoot running would consist of running with nothing on the soles of the 
feet (Murphy, Curry, & Matzkin, 2013). The goal of a minimalistic shoe is to mimic barefoot 
running via little-to-no cushioning, no support on the upper mesh portion, no heel-toe 
offset on the sole, and little-to-no laces that constrain forefoot spreading (Bonacci et al., 
2013; Willy & Davis, 2013) .  
 
Runners are likely to run in barefoot if they have grown up barefoot running such as 
tribesmen in remote locations in the world, those who have transitioned from minimalist 
shoes into full barefoot running, and those who believe it is better for the feet. Many 
runners currently wear or have tried training in minimalist shoes. Therefore, in theory, the 
use of barefoot mimicking shoes such as the Vibram Five Fingers™ (VFF), should yield 
similar outcomes in foot strength and movement to an individual running truly barefoot. 
 

1.3 Foot anatomy 

1.3.1 Bones of the foot  
The bones of the foot consist of the bones distal to the ankle (Nordin & Frankel, 2001). The 
foot consists of 28 bones (including sesamoids), 33 synovial joints, 34 muscles and more 
than 100 ligaments (Nordin & Frankel, 2001). The foot structure is made up of the 
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phalanges (14), metatarsals (5), cuboid, cuneiforms (3), sesamoids (2), navicular, talus and 
calcaneus (Figure 1.1). The sesamoid bones of the foot are oval shaped bones (two on each 
foot) that lie under head of the first metatarsal and are embedded within the tendons 
(Martin & McFerran, 2014). They act to bear weight from the first metatarsal and also act as 
a pulley during the toe off phase of the gait cycle, creating leverage during walking and 
running (Martin & McFerran, 2014). This is important when considering barefoot running, 
as this mechanism is what propels the body forwards. There are 3 phalanges in each toe 
except for the hallux, which has two. The phalanges act to stabilize the foot (Nordin & 
Frankel, 2001). Of the metatarsal bones, the hallux is the shortest and thickest and acts to 
propel the body forward, thus bearing the most body weight during walking, running and 
barefoot running (Nordin & Frankel, 2001). The phalanges are connected to the midfoot via 
the metatarsals. The metatarsals form the forefoot and connect the tarsals to the toes 
(Nordin & Frankel, 2001). Five of seven tarsals are found in the midfoot via the cuneiforms 
(3), the navicular and the cuboid.  
 
The hindfoot consists of the remaining two tarsal bones: the talus and the calcaneus. The 
calcaneus is the largest tarsal bone and forms the heel of the foot (Nordin & Frankel, 2001). 
The talus is located directly above the calcaneus and forms the pivot point of the ankle joint 
(Nordin & Frankel, 2001). It enables the movements of inversion and eversion of the ankle. 
The calcaneal tuberosity is located at the rear of the calcaneus and serves as the attachment 
of the Achilles tendon (Nordin & Frankel, 2001). This area is covered by a fat pad makes 
contact with the ground during weight bearing activity (Nordin & Frankel, 2001).  
Sometimes, the bones of the midfoot and hindfoot (7) are call the tarsus. Their irregular 
shapes allows them to interlock to allow for a highly stable weight bearing structure 
(Nordin & Frankel, 2001). Since this mechanism is highly weight bearing, the tarsus take on 
a lot of the body weight and ground reaction forces during shod running and barefoot 
running (Cavanagh, Williams, & Clarke, 1981). 
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Figure 1.1: The 26 bones of the foot and ankle (shown in the transverse plane from 

above) (adapted from Nordin & Frankel, 2012). 

 
The talus articulates superiorly with the tibia and fibula (talocrural joint) and inferiorly 
with the calcaneus and navicular (subtalar joint). The cuboid articulates with the navicular 
and lateral cuneiform medially, the calcaneus proximally and the base of the 4th and 5th 
metatarsal bases distally.  
 
The articular surface of the navicular can be divided into three facets. Each facet articulates 
with the intermediate, medial and lateral cuneiform. The intermediate cuneiform 
articulates with the medial cuneiform medially, and the base of the 2nd metatarsal distally 
and lateral cuneiform laterally. The medial cuneiform articulates with the base of the 1st 
and 2nd metatarsals distally and the intermediate cuneiform laterally. The lateral cuneiform 
articulates with the 3rd metatarsal distally, the 2nd metatarsal medially and the 4th 
metatarsal laterally.  
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Interphalangeal joints are formed between the proximal and middle articulating surfaces of 
the phalanges as well as between the middle and the distal articulating surfaces of the 
phalanges. All articulating surfaces are covered in hyaline cartilage, which provides a 
smooth, lubricated surface to allow of joint and relatively friction-free movements. This 
cartilage compresses when loaded, which allows for the articular surfaces to spread out 
forces acting within the joints (Nordin & Frankel, 2001). Articulations between the 
cuneiforms, navicular and cuboid are gliding joints where small amounts of rotation can 
occur (Nordin & Frankel, 2001). Between the cuneiforms, there is a small amount of vertical 
motion that can alter the shape of the transverse arch. The medial longitudinal arch (MLA) 
consists of the calcaneus, talus, navicular, cuneiforms and the first three metatarsals 
(Nordin & Frankel, 2001). The MLA is the highest arch of the foot (Nordin & Frankel, 2001). 
The MLA is supported via tibialis anterior and posterior, flexor hallucis longus and flexor 
digitorum longus.  The lateral longitudinal arch is lower than the MLA and consists of the 
calcaneus, cuboid, 4th and 5th metatarsals (Nordin & Frankel, 2001). The lateral longitudinal 
arch is supported by peroneus brevis and longus and some parts of flexor digitorum longus. 
The transverse arch is located perpendicular to the longitudinal arches and consists of the 
cuneiforms, cuboid and all five metatarsals (Nordin & Frankel, 2001). The transverse arch is 
supported via peroneus longus. The phalangeal joints are located internally between the 
proximal and middle phalanges and the middle and distal phalanges. They are uniaxial and 
thus allow only for flexion and extension. The proximal phalange is concave whereas the 
distal phalange is convex.  
 

1.3.2 Functional units of the foot 
The forefoot acts to propel the body forward (Nordin & Frankel, 2001). This is done via the 
hallux and the attached sesamoids as this spring like structure creates the forward motion 
of the body during gait (Nordin & Frankel, 2001).  The tibialis anterior acts to dorsiflex the 
ankle and assists with foot inversion (Nordin & Frankel, 2001). Peroneus longus acts to 
evert the foot and assist to plantarflex the ankle (Nordin & Frankel, 2001).  
 
The fifth metatarsal provides the attachment for the peroneus brevis (Nordin & Frankel, 
2001). There are two sesamoid bones located under the 1st metatarsal on the medial and 
lateral side (Nordin & Frankel, 2001). These are located between the 1st metatarsal and the 
tendon of flexor hallucis brevis (Nordin & Frankel, 2001).  Peroneus brevis acts to evert the 
foot and assists in ankle plantar flexion (Nordin & Frankel, 2001). Flexior hallucis brevis 
acts to plantarflex the hallux during propulsion (Nordin & Frankel, 2001). 
 
The midfoot which consists of the cuneiforms (3), navicular and cuboid serves to invert and 
evert the foot as well as plantarflex the ankle (Nordin & Frankel, 2001). Inversion occurs via 
tension on the attachment of tibialis posterior to the navicular, and eversion occurs via the 
tension in the peronus longus that passes over the cuboid (Nordin & Frankel, 2001).  
 
The hindfoot consists of the calcaneus and talus. The hindfoot enables ankle plantar flexion 
via tension in the gastrocnemius, soleus and thus, the Achilles tendon (Nordin & Frankel, 
2001). The flexor hallucis longus is located deep inside the calf and acts to plantarflex the 
hallux and ankle as well as foot inversion (Nordin & Frankel, 2001).  
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1.3.3 Major joints of the foot and ankle 
The foot connects to the rest of the body at the ankle joint (talocrural joint) and the subtalar 
joints (talocalcanealnavicular joint).  The ankle joint is the articulation between the tibia 
and fibula with the talus below. The fibula forms the lateral malleolus (bony point on lateral 
side of ankle) and the tibia forms the medial malleolus. The bony protrusions articulate 
with the medial and lateral sides of the talus which allows the talus to pivot (Nordin & 
Frankel, 2001).  
 
The subtalar joint is the articulation between the talus and the calcaneus (Figure 1.1). The 
hindfoot and midfoot allow for movements of inversion and eversion. The ankle or 
talocrural joint has allows the movements of plantar flexion and dorsiflexion (Figure 1.2). 
Plantar flexion is as the motion of pointing the foot downwards. Dorsiflexion is the motion 
of lifting the foot upwards (Nordin & Frankel, 2001) (Figure 1.2). 
 

 
Figure 1.2: The movements of dorsiflexion and plantar flexion. Dorsiflexion involves 
lifting the foot up towards the anterior shin and plantar flexion involves pointing the 
toe downwards. This motion is fundamental throughout the gait cycle, used in order 

to propel the body forward during each swing phase 

 
The talus articulates superiorly with the tibia and fibula at the talocrural joint forming the 
ankle.  
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Figure 1.3: Movements of the talocrural joint; plantar flexion and dorsiflexion 

(adapted from Nordin & Frankel, 2012). 

 
The axis of the ankle joint is oriented between the malleoli (Nordin & Frankel, 2001), and 
cab be located by palpation. Movement about the ankle joint determines the plantar flexion 
and dorsiflexion of the ankle. Movement occurs in all three planes and occurs about the 
oblique axis (Nordin & Frankel, 2001). 
 
The subtalar joint is the articulation between the talus and calcaneus (Figure 1.4). Here the 
talus articulates inferiorly with the calcaneus and navicular at the subtalar joint. It has one 
degree of freedom and has motions that consist of a combination of adduction/abduction 
and inversion/eversion during both walking and running (Nordin & Frankel, 2001)(Figure 
1.4). Due to the nature of having one degree of freedom, movement within one action 
occurs simultaneously in the other (Nordin & Frankel, 2001). 



 9 

 
Figure 1.4: Movement of the subtalar joint; adduction and abduction, inversion and 

eversion (adapted from Nordin & Frankel, 2012). The subtalar joint is made up of the 
talus and the calcaneus. The subtalar joint allows for pronation and supination of the 

foot. 

The transverse tarsal joint consists of movement between two pairs of bones. The first pair 
being movement between the talus and the navicular and the second pair being movement 
between the calcaneus to the cuboid (Nordin & Frankel, 2001).  This joint is very important 
to the overall function and movement of the foot as it allows for inversion and eversion of 
the midfoot relative to the hindfoot (Nordin & Frankel, 2001).  The calcaneocuboid joint is 
located on the lateral side and the talonavicular joint is located on the medial side.  
 
The calcaneocuboid joint is consists of the calcaneus and the cuboid. The anterior calcaneal 
surface is saddle shaped (convex transversely and concave vertically), and the articular 
surface of the cuboid is also saddle shaped, however it is convex vertically and concave 
transversely. 
 
The longitudinal movement at the midtarsal joint occurs along an axis that passes through 
the postero-lateral calcaneus and the top of the cuboid. Movement here can be classified as 
pronation-abduction and supination-adduction when the calcaneus is fixed. The transverse 
axis consists of movement of dorsiflexion-abduction and plantar flexion-adduction when 
the talus and calcaneus are fixed.  
 
Movement at the midtarsal joint depends on the position of the subtalar joint. When the 
subtalar joint is pronated, the axes are parallel, essentially unlocking the joint and creating 
greater flexibility. This greater flexibility is what allows for shock absorption and perhaps 
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more importantly, the ability to adapt to uneven surfaces when running or walking. In 
contrast, when the subtalar joint is supinated, the midtarsal joint is locked, which creates 
rigidity. This rigidity is what allows the foot to propel the body forward during locomotion. 
 
Medial longitudinal arch (MLA) 
The medial longitudinal arch consists of the calcaneus, talus, navicular, cuneiforms and the 
first three metatarsals. It is supported via the calcaneonavicular ligament, plantar fascia and 
the plantar ligament. The MLA dampens the ground reaction forces through arch deflection. 
In specific, the plantar fascia and associated ligaments contract and expand with unloading 
and loading to take the foot from a load bearing platform to a rigid lever for propulsion 
(Kindred, Trubey, & Simons, 2011). 
 
During the loading phase of stance, the MLA deflects interiorly, allowing muscles 
surrounding the arch to store energy and be used during push off (Fukano & Fukubayashi, 
2009). The windlass effect involves tightening of the plantar fascia, which is a thick band of 
connective tissue that spans the calcaneus to the metatarsal heads (Figure 1.5). The plantar 
fascia originates on the medial tuberosity of the calcaneus and inserts on the 
metatarsophalangeal plantar plates (Dugan & Bhat, 2005; Nordin & Frankel, 2001). The 
windlass mechanism describes tightening the plantar fascia due to the extension of the 
hallux and pulling calcaneus and metatarsals closer, creating a structural support to propel 
the body forward. The midfoot is locked via the internal rotation of the lower leg segment 
driving the head of the talus medially and the cuboid and navicular subtly change their 
relative positions. It is also thought that the windlass mechanism aids in transferring 
energy and momentum from the gastrocnemius and soleus to the foot to propel the body 
forward on toe off (Kindred et al., 2011). 
 
The lateral longitudinal arch 
The lateral longitudinal arch is formed by the calcaneus, cuboid, and metatarsals four and 
five. This arch runs parallel and laterally to the MLA. This arch is very shallow and for 
people with a high arch (or pes cavus) foot type, this arch may touch the ground. This arch 
is not as flexible as the MLA and it transmits weight during locomotion. 
 
Transverse arch 
The transverse arch is formed by the tarsals and the base of the metatarsals. This arch will 
flatten during weight bearing, resulting in the forefoot to spread. This spreading allows the 
forefoot to support the body weight as it prepares for toe off.  
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Figure 1.5 The Windlass Mechanism. The toe extends, causing tension in the plantar 

fascia, resulting in a raised arch.  

MLA height to length ratio 
The most appropriate way to measure the MLA position has been debated. A simple method 
uses the length and the height of the MLA to characterize its shape via the truncated foot 
length.  The truncated foot length is measured by the length from the heel to the first 
metatarsal head. This has been shown to be a valid approximation of MLA structure 
compared to radiographic images of the bones of the arch (Saltzman, Nawoczenski, & 
Talbot, 1995). The arch height to arch length ratio is commonly reported (Saltzman et al., 
1995)(Figure 1.6). This ratio was used in the model validation study by Jenkyn & Nicol 
(2007).  
 
As the arch goes up, the height to length ratio increases (narrows) and as the arch goes 
down, the height to length ratio decreases (widens). In both walking and running gait, as 
the foot reaches toe off, the arch narrows (height to length ratio increases).  Researchers 
and clinicians find that the height to length ratio of the MLA is an important measure and it 
is often used in the determination and classification of foot pathologies and biomechanical 
gait analyses (Caravaggi et al., 2018). 
 
The main function of the arch is to aid in spreading ground reaction forces upon contact 
with the ground. By absorbing some of the force, the foot is protected from repeated strains 



 12 

and potential damage to soft tissues (Nachbauer & Nigg, 1992). Typically, arch height 
determines susceptibility to injury (Mei-Dan et al., 2005). Pes planus or flat footed people 
are more likely to pronate; over time this can lead to foot pain, heel pain and plantar 
fasciitis (Mei-Dan et al., 2005). Mei-Dan et al., (2005) found that those with low arches are 
more likely to have a higher rate of ankle sprains than in normal arched patients (55% to 
39%). High arched or pes cavus people are more likely to stand supinated which can also 
lead to plantar fasciitis (Mei-Dan et al., 2005).  

 
Figure 1.6 Medial Longitudinal Arch (MLA) height to length ratio (height/length) 

(Adapted from (Saltzman et al., 1995)). Here, height was the distance from floor to 
the inferior aspect of the talar head. Length was the distance from the posterior 

surface of the calcaneus to the anterior surface of the first metatarsal head (Saltzman 
et al., 1995). 

 

1.3.4 Ligaments of the ankle and foot 
Ligaments are a form of connective tissue which hold bones together. Each of the joints and 
articulations previously defined are held together via ligaments. There are several 
ligaments that hold the ankle together. The anterior and posterior talofibular ligament 
connect the talus to the fibula in the front and back via the fibular malleolus to the talus at 
the front of the lateral articular facet. The talofibular ligaments prevent the foot from 
excessively sliding forward relative to the tibia. In reference to injury, this is the most 
commonly injured ligament (Oae, Takao, Uchio, & Ochi, 2010). 
 
The calcaneofibular ligament connects the calcaneus to the fibula via the apex of the fibular 
malleolus down and back to a lateral facet of the calcaneus. This ligament limits inversion. 
The talocalcaneal ligament connects the talus to the calcaneus via the articular surface of 
the talus to a depression on the upper articulating surface of the calcaneus. 
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The deltoid ligament is made up of the tibiocalcaneal ligament, the anterior and posterior 
tibiotalar ligaments and the tibionavicular ligaments. The tibionavicular ligament connects 
the tibia to the navicular via the navicular tuberosity to the medial malleolus and the 
tibiocalcaneal ligament connects the tibia to the calcaneus via the sustentaculum tali on the 
calcaneus to the medial malleolus. The deltoid ligament provides stability to the hindfoot. 
 
The spring ligament is attached to the anterior sustentaculum tali of the calcaneus to the 
plantar surface of the navicular. The function of the spring ligament is to hold up the bones 
of the MLA. 

 
 

Figure 1.7 Medial view of the tendons and ligaments of the foot and ankle. 

 

Within the midtarsal joint, there are five supporting ligaments (Figure 1.7). Stability for the 
calcaneocuboid joint comes from the plantar calcaneocuboid joint, the bifurcate ligament 
and the dorsal calcaneocuboid ligament. The talonavicular joint receives stability solely 
from the talonavicular ligament, and the cuboidnavicular joint is stabilized solely by the 
cuboidnavicular joint. 
 
Metatarsophalangeal joints are supported and stabilized via metatarsophalangeal collateral 
ligaments. These ligaments limit plantar and dorsiflexion. The 1st metatarsal is also 
stabilized via the medial and lateral metatarsosesamoid ligaments. The 2nd to 5th 
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metatarsals are stabilized on the medial and lateral sides via the metatarsoglenoid 
ligaments. Interphalangeal joints are stabilized both medially and laterally via 
interphalangeal collateral ligaments. 

1.4 Gait cycle 
Walking and running are cyclic activities where the legs and feet repeat specific movement 
patterns (Nordin & Frankel, 2001). The gait cycle is the repeating pattern of gait, such as from 

initial ground contact with one leg to the subsequent ground contact with the same leg. There are 
different gait cycles that characterize walking and running. However, for both walking and 
running, one leg moves forward and strikes the ground, the body moves forward over top 
and then that leg is swung forward while the other leg is on the ground. Walking and 
running are characterized by the relative proportion of time that each leg spends on the 
ground (Nordin & Frankel, 2001). During running, both legs will spend less time on the 
ground, and there are two phases of double limb no support. In contrast, at least one leg is 
always on the ground during the gait cycle of walking.  

1.4.1 Biomechanics of gait 
The components of gait and the gait cycle require coordination of many movements of the 
legs including the hip, knee and ankle and foot (Nordin & Frankel, 2001).  At initial contact, 
it is essential for the lower limb to be stable to allow for proper force absorption (Dugan & 
Bhat, 2005).  This is provided by the hip adductors that remain contracted through the 
whole gait cycle (Dugan & Bhat, 2005). 
 
In order for heel off to occur in the stance phase, controlled movement of the tibia occurs 
which allows dorsiflexion (Dugan & Bhat, 2005).  It is during this phase that pelvic rotation 
occurs in order to create some external rotation of the stance limb (Dugan & Bhat, 2005). It 
is this external rotation that inverts the calcaneus and supinates the foot (Dugan & Bhat, 
2005).  
 
Toe off is caused by the contraction of the gastrocnemius and soleus to create supination in 
heel off that creates the rigid subtalar joint (Dugan & Bhat, 2005).  In combination with the 
tightening of the plantar fascia, the intrinsic muscles of the foot play a large role, such as the 
abductor hallucis, flexor hallucis brevis, abductor digiti minimi and flexor digiti minimi 
(Dugan & Bhat, 2005). Muscles that cross the transverse tarsal joint also act to stabilize and 
solidify this joint (Dugan & Bhat, 2005). If knee flexion at this stage is not enough for the 
foot to clear the ground, the quadriceps muscle is activated to ensure the knee has enough 
flexion (Dugan & Bhat, 2005). 
 
During initial swing, as the knee is flexed and the body is propelled forward, the iliopsoas is 
activated in order to create hip flexion (Dugan & Bhat, 2005). This is what allows the entire 
limb to swing forward. The hip abductors are the muscles creating pelvic stability during 
the swing phases (Dugan & Bhat, 2005).  During the terminal part of the swing, hip flexion 
slows down to prepare for leg contact (Dugan & Bhat, 2005). Hip adductors are recruited 
here to bring the thigh closer to midline further stabilizing the leg (Dugan & Bhat, 2005). 
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1.4.2 Walking gait cycle 
For each leg, walking and running are both made up of a stance phase and the swing phase  
(Dugan & Bhat, 2005).  For walking, the stance phase accounts for 60-65% of the walking 
cycle while the swing phase accounts for the remaining 35-40% of the cycle (Dugan & Bhat, 
2005; Nordin & Frankel, 2001) (Figure 1.8). Since each leg and foot spends more time in 
stance phase than in swing phase, there are two portions of the walking gait cycle where 
both feet are on the ground and are impacted by the opposing ground forces (Nordin & 
Frankel, 2001).  This is called double limb support (Nordin & Frankel, 2001) and it accounts 
for approximately 24% of the gait cycle (12% for each instance).  The rest of the gait cycle is 
therefore single leg support with only one foot on the ground. 
 
The stance phase for each leg begins at initial foot contact (heel strike) followed weight 
acceptance (Perry, Thorofare & Davids, 1992).  Of these two events, weight acceptance is 
more demanding on the foot (Perry et al., 1992) and would be considered the foot strike, 
causing the most demand on the foot and thus, the shoe. These first two events of stance 
phase occur during double limb support.  Single limb support consists of the next two 
events of stance phase: mid-stance and terminal stance events.   
 
Midstance phase consists of the single limb support that happens after double limb support 
(Perry et al., 1992). One foot remains planted firmly on the ground as the other foot 
prepares for the swing phase (Perry et al., 1992). The swing phase consists of the pre swing, 
initial swing, mid swing and finally, terminal swing. Terminal stance is what propels the 
body forwards (Perry et al., 1992). After terminal stance, there is another occurrence of 
double limb support (Perry et al., 1992). The limb advances and prepares the body for the 
next gait cycle. 
 

 
Figure 1.8: Gait cycle break down into stance and swing. The stance phase is broken 

down into weight acceptance and single limb support and the swing phase is also 
known as limb advancement (adapted from Perry et al., 1992). 

 
During walking, the initial contact occurs at 0-2% of the gait cycle and is characterized by 
heel strike with the ankle at 90° (Perry et al., 1992). After initial contact shock absorption 
occurs. This is known as the loading response and occurs from 2-10% of the gait cycle and 
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commences right after initial contact and continues until the foot is flat (Perry et al., 1992). 
This is characterized by controlled ankle plantar flexion, knee flexion and hip stabilization 
(Perry et al., 1992). Shock absorbing in this stage creates stability and allows for the 
continuation of forward movement (Perry et al., 1992).  There is approximately 10° of ankle 
plantar flexion and subtalar valgus rolling the heel to flat foot (Perry et al., 1992).  
 
The next stage of the gait cycle is from 10-30% of the gait cycle where the ankle is in 
dorsiflexion, knee extension and hip stabilization (Perry et al., 1992). This is where the 
body weight goes over the planted foot and contributes to limb and trunk stability (Perry et 
al., 1992).  Midstance phase is defined as the other foot is lifted and continues until the body 
weight is aligned over the forefoot (Perry et al., 1992). Both the heel and forefoot remain on 
the ground however the tibia rotates above the ankle rocker. 
 
After midstance, from 30-50% of gait cycle and begins with a heel rise and a free forward 
roll of the body forward (Perry et al., 1992). This phase continues until body weight is 
transferred over to the other foot or until heel strike of the other foot (Perry et al., 1992). 
The forefoot will be the only body weight support as the heel rises and the ankle is now in 
5-10° of dorsiflexion.  
 
Pre-swing occurs at 50-60% of the gait cycle and is defined with knee flexion (Perry et al., 
1992).  It begins with initial contact on the opposite foot and ends with toe off (Perry et al., 
1992). The weight transfer is the cause of the high heel rise seen (Perry et al., 1992). 
 
Initial swing occurs from 60-73% of the gait cycle and is defined by knee and hip flexion 
(Perry et al., 1992). The purpose of this stage is for foot clearance and subsequent limb 
advancement (Perry et al., 1992). The stage begins with the foot lifting off the floor and 
ends with the opposite foot swinging (Perry et al., 1992).  
 
Mid swing occurs from 73-87% and has the purpose of limb advancement and foot 
clearance from hip flexion and ankle dorsiflexion (Perry et al., 1992). This phase starts with 
the swinging limb in line with the planted limb and ends with the tibia vertical on the stance 
leg (Perry et al., 1992).  
 
Terminal stance occurs from 87-100% and are defined by hip and knee deceleration, knee 
extension and ankle dorsiflexion (Perry et al., 1992). Here, the limb advances and prepare 
the limb for stance (Perry et al., 1992). This phase is characterized by the vertical tibia and 
ends with the foot striking (Perry et al., 1992).  All of these phases would be consistent 
regardless if running in shoes or barefoot.  
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Figure 1.9: One complete gait cycle during walking shown in percentage as A) the 

stance phase and B) the swing phase for one foot (adapted from Nordin & Frankel, 
1992). 

1.4.3 Running gait cycle 
The running gait cycle is different from the walking gait cycle. The stance phase has a 
decreased duration, accounting for 40% of the running cycle, while the swing phase takes 
up more of the gait cycle, accounting for 30% (Nordin & Frankel, 2001). In comparison to 
walking, there is another distinct component. Between the stance and the swing phase are 
two series of float phases, each encompassing 15% of the gait cycle (Nordin & Frankel, 
2001) (Figure 1.9). The float phase is the time during running when both feet are off the 
ground (Nordin & Frankel, 2001).  
 
Furthermore, the running gait cycle can be broken down past the stance phase, float phase 
and swing phase. Between initial contact and midstance, there are peak forces acting on the 
feet and lower legs. Weight is then transferred to the forefoot between midstance and toe 
off by the way of propulsion through pronation. Pronation of the foot during running is 
essential to gain the power needed to propel the body forward using the strength of the 1st 
metatarsal, also known as the big toe (Nordin & Frankel, 2001).  



 18 

 
Toe off allows the body to go into it’s first phase of floating. This is where both legs are off of 
the ground using momentum from the big toe to still move forwards followed by the other 
leg on the ground, starting the gait cycle again. After mid swing comes terminal swing and 
lastly, initial contact occurs once again. Terminal swing is the follow through forward of the 
swing that allows the foot to touch the ground again and start the gait cycle again.  
 
More specifically, during the initial contact to midstance (Figure 1.9), the foot is supinated 
(Bates, Osternig, Mason, & James, 1978; R. A. Mann, Baxter, & Lutter, 1981).  Compared to 
walking, after heel strike there is no plantar flexion at the ankle as the ankle immediately 
goes into dorsiflexion which is what allows the foot to move into pronation (R. Mann & 
Inman, 1964). Proper absorption during this initial contact is attributed to a conjunction of 
cartilage compression, joint motion and muscle contraction (Dickinson, Cook, & Leinhardt, 
1985). At this stage hip and knee flexion play a large role in the absorption of ground 
reaction forces (R. A. Mann et al., 1981). For those who consistently run in running shoes, 
the initial peak force or impact peak occurs at around 10% of the stance and lasts less than 
30ms (Hreljac, 2004). Also known as a braking force, this is the initial force used to slow the 
body down upon heel strike (Goss & Gross, 2012). In the ankle, movement of the subtalar 
joint allows for the ankle to absorb and dissipate many forces during running. As the 
subtalar joint pronates within the first 20% of the stance phase, the transverse tarsal joint 
axes become parallel. Accordingly the forefoot and thus the forefoot is now more mobile 
and can adjust to uneven terrain (Rodgers, 1988). 
 
During the period from midstance to toe off, or the propulsion part of the stance phase, 
dorsiflexion occurs as the foot is now fixed to the ground (Dugan & Bhat, 2005). A 
maximum in dorsiflexion is seen here as soon as the tibia has gone past the ankle (Dugan & 
Bhat, 2005). It is also important to note that as maximum dorsiflexion and thus pronation is 
reached, there are many forces acting on the knee (Dugan & Bhat, 2005). As these forces 
come to their maximum the quadriceps and hamstrings will contract thus stabilizing the 
knee (Dugan & Bhat, 2005). Heel lift can occur after maximum pronation as the pelvis is 
forced to rotate causing the tibia to rotate externally, the calcaneus to rotate internally and 
supination occurs forcing the heel off of the ground (Dugan & Bhat, 2005). 
 
Acceleration of the stance leg is initiated as the foot is now in plantar flexion (Adelaar, 
1986). This plantar flexion causes the foot to go into supination, locking the transverse 
tarsal joint and creating a rigid base for propulsion (Dugan & Bhat, 2005). This propulsion 
is where the second maximum in ground reaction force occurs (Dugan & Bhat, 2005) 
(Figure 1.8). 
 
Initial swing occurs as the body is propelled forward and the ground reaction forces pass 
posterior to the knee, forcing the knee to flex (Dugan & Bhat, 2005). Knee flexion that 
occurs here cancels out the need for the ankle to become dorsiflexed in order for the foot to 
clear the ground (Dugan & Bhat, 2005).  
 
The second float phase occurs as the swinging leg is preparing to once again strike the 
ground. Ground reaction forces on the knee are at a maximum here and force the knee to 
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flex, thus the need for contraction of the quadriceps to protect the knee joint (Dugan & Bhat, 
2005). The second peak force known as the active peak occurs at about 0-75% of the stance 
phase and lasts considerably longer (up to 200ms) (Hreljac, 2004). This is due to the 
amount of force used to propel the body forward into the float phase, where both feet are 
off of the ground (Goss & Gross, 2012). Once the foot has touched the ground the body is 
prepared to commence another gait cycle. 

 
Figure 1.10 Running gait cycle as adapted from Onupuu, 1994. During running there 

are two series of float phases seen where both feet are off of the ground in 
comparison to walking where there are none. There is also an increase of time spent 

in the swing phase and a decrease of time spent in the stance phase. 

 
With increasing running speeds, the forces caused by the feet and lower body during 
running during different phases of the gait cycle will also change (Nordin & Frankel, 2001). 
During a higher speed, it is common that there are two peaks of force, one at the beginning 
of stance phase and one at the end of approximately three to five times the body weight of 
the runner (Nordin & Frankel, 2001) (Figure 1.11). During lower speeds, it is common that 
there is only one peak force found of approximately five times body weight, and is reached 
near the end of the stance phase (Nordin & Frankel, 2001).  Excessive impact forces, such as 
those found in running, can lead to injury over time such as mechanisms behind many 
injuries such as tibial stress fractures and plantar fasciitis and have been found to show 
differences between groups of injured and non-injured runners (Hreljac, Marshall, & Hume, 
2000; Milner et al., 2006; Pohl et al., 2009; van Gent et al., 2007). 
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Figure 1.11 Vertical ground reaction forces seen during one gait cycle (adapted from 

Nordin, 2012). There are two instances were GRFs peak, once on impact and the 
second towards the end of stance phase, as the body is propelling forwards. 

 

1.5 Running   

1.5.1 Running patterns 
There are three distinct running patterns. The first is a forefoot strike, which can be 
characterized by initially striking on the forefoot, followed by rocking and transferring 
weight to the heel (Lieberman et al., 2010).  As the foot approaches the ground the ankle is 
plantarflexed, just like hindfoot or heel strike runners, however forefoot strikers will 
generally land on the outer edge of the foot landing under the 4th and 5th metatarsals. The 
hip and knees will remain flexed. After the initial strike, the ankle will naturally begin to 
dorsiflex as the weight and load are dispersed throughout the foot. This loading will force 
the foot to flatten and thus the arch begins to stretch. As the foot and ankle prepare to toe 
off, the foot will start to evert and pronation begins. Pronation is a combination of eversion, 
dorsiflexion and arch flattening (Dugan & Bhat, 2005). The ankle will then plantarflex as a 
result of the contraction of the calf muscles and the toes flex propelling the body into float 
phase. 
 
The second pattern is a heel strike or hindfoot strike. This involves the last third of the foot 
hitting the ground upon initial contact and transferring weight to the toes (Lieberman et al., 
2010). Heel striking patterns are the least commonly seen pattern among experienced 
barefoot and minimalist shoe runners (Lieberman et al., 2010). During a heel strike, the hip 
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and knees are still in a flexed position, the ankle is dorsiflexed and runners typically land on 
the heel or just below the ankle joint. Once the initial contact has taken place the ankle will 
plantarflex however the arch remains unloaded as the forefoot comes down with the help of 
the muscles of the anterior shin.  The foot will then evert and the foot finally comes to a 
flattened position, loading the arch. The foot is now in pronation so that the Achilles and 
calf muscles can now plantarflex the ankle, flex the toes and propel the body into the air 
into float phase. 
 
The third running pattern is a midfoot strike. It is characterized by the foot landing flat or 
the midfoot hitting the ground upon initial contact followed by transferring weight to the 
heel (Lieberman et al., 2010).   Midfoot strikers have the same amount of hip and knee 
flexion as both forefoot and hindfoot strikers. In regards to the initial contact, contact is 
going to take place when both the heel and forefoot land simultaneously. As the initial strike 
happens, the foot is already flattened so the arch is loaded immediately and the ankle goes 
into plantar flexion and propels the body forwards into float phase and prepares the body 
for another gait cycle. 
  
It is also important to note that there is a decreased ground contact time seen in runners 
with a forefoot strike and midfoot strike (De Wit, De Clercq, & Aerts, 2000; C Divert et al., 
2008; Nunns et al., 2013). Forefoot striking also increases pressure put on the metatarsal 
heads (Altman & Davis, 2012).  This decrease in ground contact time can be attributed to 
the fact that during forefoot striking and midfoot striking there is less dorsiflexion at the 
ankle. With less dorsiflexion occurring, the ankle becomes flattened quicker and thus the 
arch becomes loaded sooner. This means that the foot is able to plantarflex and propel the 
body forward sooner preparing the legs for the next gait cycle. 
 
Although, characterizations in strike patterns have been studied in relation to energy 
expenditure and injury rates, some studies have shown that there is no direct benefit from 
transitioning a strike pattern either from forefoot to rearfoot, or from rearfoot to forefoot 
(Hamill & Gruber, 2017). Perhaps, changing footstrike pattern can actually lead to injuries 
sustained from stressing the feet (Hamill & Gruber, 2017). This study identifies that foot 
strike pattern appears to depend on the type of run, as running longer distances may cause 
a rearfoot strike and faster, shorter runs may cause a forefoot strike (Hamill & Gruber, 
2017). On a harder surface, runners were less likely to rearfoot strike, have a higher step 
cadence and thus, were able to run faster (Lieberman et al., 2015).  

1.5.2 Barefoot runner’s patterns 
Experienced long distance barefoot runners most often have similar forefoot running 
patterns (Lieberman et al., 2010). Forefoot runners will exhibit a flatter foot placement (ie. 
more plantar flexion, less dorsiflexion) and the flatter the foot, the smaller pressure on the 
heel (De Wit et al., 2000).   The ankle is more plantarflexed at landing (Squadrone & 
Gallozzi, 2009) and there is an increase in vertical arch height during stance (ie. more 
positive MLA height-to-length ratio) during ground contact (Perl, Daoud, & Lieberman, 
2012). For forefoot runners, rearfoot eversion was lower than that of rearfoot strikers (Pohl 
& Buckley, 2008).  where they land on the ball of the foot before transitioning to the heel 
(Lieberman et al., 2015) or the heel never touches the ground (Hamill & Gruber, 2017). It 
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has also been shown that barefoot runners exhibit a higher cadence or stride rate compared 
to traditional shod runners (Moody, Hunter, Ridge, & Myrer, 2018).  
 
Runners are likely to run barefoot if they have grown up barefoot running such as 
tribesmen in remote locations in the world, those who have transitioned from minimalist 
shoes into full barefoot running, and those who believe it is better for their feet. Many 
runners currently wear or have tried training in minimalist shoes. This has motivated the 
purpose of this study: to see whether barefoot mimicking shoes are significantly different 
than running in regular cushioned running shoes. 

1.5.3 Shod Runner’s patterns 
Shod runners are runners that wear running shoes that are typically cushioned. They often 
initially strike the ground with the hindfoot, followed by the ball of the foot (Lieberman et 
al., 2010). Research suggests the reason that shod runners rearfoot strike is that this may 
have a lower metabolic cost associated for longer distances (Hamill & Gruber, 2017).  
 
Rearfoot runners strike the ground in inversion and change to eversion at midstance 
(Stackhouse, Davis, & Hamill, 2004). At heel contact, the heel and forefoot will be slightly 
supinated, that is, inversion, dorsiflexion of the ankle and flattening of the arch (Rodgers, 
1988). At midstance, the foot will be pronated from 55-85% of support phase and the foot 
will supinate and return to neutral around 70-90% of support (Rodgers, 1988).  The foot 
will be supinated for push-off (Rodgers, 1988) and the ankle is more dorsiflexed upon 
landing (Squadrone & Gallozzi, 2009).  

1.5.4 Impact force & injury 
Impact forces upon initial contact cause sudden, large forces to travel up the body (Milner 
et al., 2006; Pohl et al., 2009; van Gent et al., 2007) (Figure 1.11). Repetitive high loading on 
the joints and tissues are thought to explain many injuries such as tibial stress fractures and 
plantar fasciitis. The ground reaction force experienced during running can be nearly 
double that of walking, such as 1.5-2 times body weight during running (Milner et al., 2006). 
This initial peak force is seen in the first 50ms of the heel strike (Bobbert, Schamhardt, & 
Nigg, 1991). During the strike phase, the internal leg muscles are lengthened, creating 
forces and stress (Bobbert et al., 1991).   
 
Although there is a decreased force associated with barefoot running, shorter strides leads 
to an increased cadence or frequency of foot strike, so any potential decreases in force upon 
impact associated with barefoot running could be counteracted by the increased frequency 
of foot strike and thus, potential injury (Collier, 2011). A study by Shih et al., (2013), found 
that barefoot runners had a significantly higher cadence than shod runners. 

1.6 Injury 
Approximately 24-65% of runners are injured annually between training errors, slips, falls 
and repeated strain (Macera et al., 1989). Injured tissues include bone, connective tissue, 
ligaments and muscles of the foot and leg (Macera et al., 1989). These injuries include, but 
are not limited to, stress fractures, plantar fasciitis, tendonitis, iliotibial band syndrome and 
knee tracking problems.   
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One study, described 2002 running injuries and determined that the four most common 
sites of injury ranked from highest to lowest were the knee (42.1%), foot and ankle 
(16.9%), lower leg (12.8%), hip and pelvis (10.9%) with the top three injuries in this study 
were patellar femoral pain syndrome, iliotibial band friction syndrome, and plantar fasciitis 
(Taunton et al., 2002). As the feet are exposed to approximately 10,000 steps an hour, poor 
biomechanics, such as excessive pronation or supination during heel strike, can lead to 
injury over time (Macera et al., 1989). 
 
In a study done by Messier et al., 2018, 300 runners were studied over the course of a 12 
month training period. The findings were that at least one injury occurred to 66% of the 
runners within the initial 12 months and more interestingly, more women than men were 
injured (Messier et al., 2018). The most common sites for injuries were the knee and foot 
(Messier et al., 2018). 

1.6.1 Training errors 
Training errors play a large role in injury occurrence (Shorten, 2000). These are most 
acknowledged as anything that causes an increase load being placed on the body, such as 
sudden increases in duration and intensity, constant intense training, a single intense 
training day or race and/or sudden return (Shorten, 2000). Training errors can be 
attributed to many running injuries, specifically repetitive strain injuries (Shorten, 2000).  
Cross training, small mileage increases (of about 10% per week) and most importantly rest 
can help to prevent overtraining, training errors and repetitive strain injuries (Shorten, 
2000). A study by Altman & Davis (2016), was one of the first scientific study to look at 
habitually shod and barefoot runners over the course of a year and track rates of injury. The 
study noted that there was a significantly lower number of injuries in the barefoot group, 
although when normalized for distance, there was no significant difference between the 
two groups (Altman & Davis, 2016).  

1.6.2 Intrinsic & extrinsic factors to injury 
Running injuries can be caused by a variety of intrinsic and extrinsic factors (Taunton et al., 
2002). Intrinsic factors are those that are concerned with the runner themselves, such as 
experience or anatomical limitations, while external factors are training errors, old shoes 
and unpredictable running terrains (Taunton et al., 2002).  
 
Intrinsic factors arise due to repetitive strain from overloading or due to poor running 
biomechanics (Richards et al., 2008). Poor biomechanics may include over pronation and 
supination, pes planus or flat footedness, pes cavus or high arches. Pes cavus can change 
movements of the hindfoot and forefoot as it is typically caused by a muscle imbalance of 
the leg and foot causing the foot to plantarflex and become more inverted (Wapner, 2000). 
Pes planus, or flat footedness is characterized by having a low medial longitudinal arch. It is 
thought that those who have flat feet are prone to having less transverse plane forefoot 
motion, less adduction at toe off and plantar flexion of the hindfoot instead of dorsiflexion 
(Taunton et al., 2002). 
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Extrinsic factors are those that are concerned with the environment, such as running 
terrain, type (i.e. long distance, sprinting, racing, etc.), and age of shoe (Taunton et al., 
2002).  Running terrain includes running on trails, sand, concrete and asphalt. If the terrain 
is bumpy or sloped to one side for a large part of a run, over a prolonged period of time the 
hips could be uneven, causing repetitive stress on one side of the knee, causing pain such as 
iliotibial band syndrome (Taunton et al., 2002). Running on sand inhibits the ability to 
effectively arch the foot required to propel the body forward (Taunton et al., 2002). This is 
because as the body is arching the foot trying to pronate to excel forward, the sand 
underneath starts to give, causing the arch to work harder to propel. Concrete is going to be 
harder to run on for the body, as there is very little give and therefore any force put on the 
concrete will come right back up into the lower limbs (Taunton et al., 2002). This repetitive 
stress can cause things such as shin splints, iliotibial band syndrome, etc. Asphalt has a little 
more give to it as it is not as dense. This means that as the body exerts force, some of it can 
be dissipated into the ground and less comes back to the lower limbs (Taunton et al., 2002). 

1.6.3 Mechanisms behind injury 
High instantaneous loading, (during heel strike and toe off), high ground reaction forces 
and lower medial longitudinal arch heights were shown to be some key factors in the 
development of plantar fasciitis (Pohl et al., 2009). As ground reaction forces and loading 
increases, so does the strain placed on the plantar fascia, potentially resulting in plantar 
fasciitis over time (Pohl et al., 2009). 
 
Excessive varus and valgus movements, eversion, and tibial rotation have been suggested to 
cause injury in long distance runners (James, Bates, & Osternig, 1978; B. M. Nigg, 2001). 
Excessive movements can occur in any form; shod, barefoot or in barefoot mimicking shoes 
can lead to repetitive strain injuries (B. M. Nigg, 2001).  Correcting alignment of the lower 
limb and ankle through proper running shoe design, orthotics or other inserts could correct 
these risk factors (B. M. Nigg, 2001). Having correct alignment of the body can reduce or 
eliminate excessive movements (B. M. Nigg, 2001).  
 
As the majority of the population does run shod, studies concentrate on this group of 
runners. Within the past few years as barefoot and minimalist running becomes more 
popular, more studies have emerged that looked into barefoot running and minimalist 
running. One study by Decker, Torry, Wyland, Sterett, & Steadman, 2003, has shown that 
barefoot running and minimalist shoes cause a decrease in hip and knee flexion which have 
been linked to increases seen in ACL injuries. This decrease in hip and knee flexion can be 
attributed to the decrease in stride length, suggesting that the lower leg is more centred 
beneath the body on foot strike (Soares et al., 2018). Another study by Sinclair, Butters, & 
Stainton, 2018, found that running in barefoot and minimalist shoes cause an increase in 
knee adduction on instantaneous loading. This medial knee compartment loading is a 
strong predictor for knee osteoarthrits (Sinclair et al., 2018). 

1.7 Anatomy of the running shoe  
Athletic shoes typically consist of a leather upper portion, but other fabrics such as nylons 
or microfiber may also be used (Mcpoil, 2000). The upper portion may also consist of a 
combination of different materials to create various effects of stability, flexibility and 
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motion control. The cushioned midsoles are made of EVA foam with inserts of gels, dual 
density foam, air or fluids in attempts to increase cushioning (Mcpoil, 2000). These are seen 
is models such as the Nike Air. The use of cushioning systems in modern day running shoes, 
help to attenuate impact and ground reaction forces acting on the foot (Mcpoil, 2000). 
However, cushioning systems do not completely absorb forces causing the body to bear the 
remaining impact repeatedly over the course of a bout (Mcpoil, 2000).  
 
Heel wedges are made up of polymeric foam and the outsole is made of hard rubber 
(Frederick, 1984).  Reinforcements are common throughout the rest of the shoe, mostly in 
places such as the toe, heel and midsole (Mcpoil, 2000). This helps lengthen the longevity of 
the shoe and thus, the time to replace is also lengthened. Running shoe design has the 
ability to affect both speed and energetics based on factors of age, model, materials and 
quality of the shoe (Frederick, 1984). 

 

 
1.12 Anatomy of the standard running shoe. A strong shank of a shoe can increase 

torsional strength and aide in motion control. 

1.7.1 Heel counter & wedge 
Most running shoes are designed with a high wedge at the heel, located underneath the 
midsole (Lieberman et al., 2010) (Figure 1.12). This forces the runner to have a rear foot 
strike (Lieberman et al., 2010). The heel strike is forced as there is a heel-toe offset whereas 
the heel is higher than the forefoot, naturally guiding the runner to heel striking. Many 
shoes have arch supports and/or stiff soles that decrease the runner’s ability to strengthen 
the intrinsic muscles of the foot (Lieberman et al., 2010). This potentially leads to injuries 
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such as plantar fasciitis (Lieberman et al., 2010). Although heel wedges are shown to 
potentially be the cause of some injuries, shoes have a heel wedge as this is where shock 
absorbing materials are found, providing cushioning to the heel. This cushioning is vital as 
repeated impacts such as those found in exercise and more specifically running help protect 
the heel.  
 
The heel counter supports the back of the ankle and Achilles during running and activity 
and is located between the heel tab and the midsole (Figure 1.12). The heel counter aids in 
ensuring a good fit between the shoe and the foot, preventing excessive motion during 
dorsiflexion of the foot at heel strike also known as motion control (Mcpoil, 2000).  

1.7.2 Motion control 
Both anti pronation and motion control has been a factor in running shoe design since the 
early 1980’s (Shorten, 2000). It was originally incorporated into shoes via heel wedging or 
flaring the heel (Stacoff, Nigg, Reinschmidt, van denBogert, & Lundberg, 2000). Motion 
control aids in preventing the foot from excess supination or pronation of the foot during 
ground contact.  The foot needs a level of pronation in order to propel the body forward as 
the heel strikes, the foot pronates, and then supinates along the outside edge and ends in 
pronation by pushing off of the big toe. This motion control is accomplished by adding 
stiffer cushioning, heel counters, insoles and wedges (Shorten, 2000). Repeated and 
excessive pronation or supination of the foot during running can result in repetitive strain 
injuries such as plantar fasciitis and iliotibial band syndrome (Shorten, 2000). Individuals 
with pes planus, or flat feet are more likely to over pronate, requiring a stabilizing shoe, 
while individuals with pes cavus, or high arches are more likely to have reduced pronation 
requiring a cushioned shoe (Shorten, 2000).   
 
Another form of motion control comes from traction of the outersole (Mcpoil, 2000). 
Without traction, activities performed could be dangerous especially over difficult terrains 
(Mcpoil, 2000). This suggests the idea that shoes should be monitored on a regular basis for 
wear, as treads will degrade over use, time, and frequency, thus signalling to the user to 
replace them.   
 
Another motion control factor is the motion control over the rear and midfoot (Mcpoil, 
2000). This is because foot pronation is controlled by heel stabilization and midfoot 
support (Cheung, 2009; Mcpoil, 2000). The forefoot region has to be stabilized because side 
to side motion can lead to instability as well as stretching the upper portion of the shoe 
potentially causing excessive shear and compressive forces which affects the medial and 
lateral aspects of the foot and the balls of the foot (Mcpoil, 2000). Cushioning is used in the 
midsole to decrease impact forces however, they do not decrease the magnitude of the 
forces (Cheung, 2009; Mcpoil, 2000). Cushioning for overpronators is typically softer on the 
lateral sides, and harder on the medial aspect of the midsole. This aims to attenuate and 
dampen some of the initial ground contact force and control over pronation (Cheung, 
2009).  
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1.7.3 Shoe use 
Mcpoil, (2000) suggests that runners be vigilant about recording shoe usage. Under each 
step, the midsole of the shoe undergoes stress and compression (Mcpoil, 2000). Over the 
course of a run, the compression can decrease midsole shock effectiveness by 25-30% 
(Mcpoil, 2000).  
 
Many people are not aware of the miles they run, weather they train in or surfaces trained 
on (Mcpoil, 2000). All of these factors have an impact on shoe durability and lifespan 
(Mcpoil, 2000). Wearing shoes that have had too many miles run on them mean that the 
cushioning systems may be ineffective at helping to dissipate ground reaction forces, thus 
more force is acting on the joints (Mcpoil, 2000). This could have implications for injury so 
runners should be vigilant about recording mileage to help decrease the likelihood of injury. 

1.7.4 Lacing design of running shoes 
The way that shoes are laced and the placement of the lacing eyelets are an important 
design of all running shoes (Hong, Wang, Li, & Zhou, 2011). Most importantly, laces allow 
the foot to be secured into the foot bed or the sole of the shoe and against the heel counter 
(Hong et al., 2011). This also allows the individual user to create a custom fit to the shoe 
and increases comfort (Frey, 2000).  
 
It has been suggested the purpose of laces are to create a better fit and more importantly, 
distribute stress evenly over the dorsum of the foot (Hong et al., 2011). Hong et al. (2000), 
also found that lacing conditions have a significant influence on shoe-foot coupling during 
running. That is, the better laced they are for a specific foot type, the better the shoe will fit. 
The same goes for the more the lacing technique does not match a foot type, the worse the 
shoe will fit.  

1.8 Barefoot simulation shoes  

1.8.1 Pressure and ground reaction force during barefoot running 
Ground reaction force is the force the body exerts when the foot strikes the ground. 
Barefoot running can be characterized as having increased loading rates due to minimal 
external protection and shock absorption as compared to running shoes (De Wit et al., 
2000). The flatter the foot is upon impact, the smaller the pressure on the heel as the foot 
better dissipates forces upon impact (De Wit et al., 2000). This suggests that perhaps 
barefoot runners aim to flatten their feet as they run to diminish heel impact (De Wit et al., 
2000). There is also evidence that barefoot running creates the highest vertical ground 
reaction forces (De Wit et al., 2000). These high vertical ground reaction forces repeated 
over time can be a leading cause of injury for both barefoot runners and minimalist 
runners. 

1.8.2 Stride frequency and impulse 
Barefoot running was shown to increase stride frequency, lower contact on the ground, 
decreased flight time, and quicken braking time (C Divert et al., 2008). Stride length was 
shorter and stride frequency was increased with barefoot running (Squadrone & Gallozzi, 
2009). This was found to be immediately assumed when either barefoot or minimalist 
shoes were worn (Soares et al., 2018). 
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Pressure under the toes was significantly higher with VFF compared to barefoot running 
(Squadrone & Gallozzi, 2009).  Perhaps this can be attributed to the fact that the VFF have a 
thick rubber sole, limiting it’s ability to dissipate pressure compared to running barefoot. 
This could have injury implications for the metatarsals, as increases in pressure over time 
can be a factor in the development of a repeated strain injury. 

1.8.3 Characterization of a barefoot running shoe 
Barefoot running shoes or minimalist shoes or barefoot mimicking shoes seek to create a 
thinner, more flexible rubber sole (Lieberman et al., 2010). This sole acts to protect the foot 
from any abrasions from the ground (Figure 1.13). Bonaccini, et al. (2013), classify 
minimalist shoes as having a low profile, increased sole flexibility, reduced offset between 
the heel and forefoot (<4 mm), little motion control, lightweight and the minimalist part 
really coming from having very little cushioning and motion control (Bonacci et al., 2013; 
Cauthon, Langer, & Coniglione, 2013).  This small heel-toe offset results in runners adopting 
a forefoot strike pattern. Other characteristics a light outer sole and little or no heel counter 
(Mcpoil, 2000).  VFF do have an upper, however it acts solely to hold the foot to the foot 
bed, as does the Velcro strap. The Velcro strap also holds the heel to the back of the shoe so 
the toes do not slide forward during running. 
 

 
Figure 1.13 VFF barefoot mimicking minimalist shoes. These shoes typically contain 

little to no support however offer a protective barrier between the sole of the foot 
and the ground. 
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Nigg, (2009), suggests that there is indirect evidence that barefoot running strengthens 
various muscles crossing at the ankle joint as well as big muscle groups (i.e. quadriceps and 
hamstrings) and small muscle groups (i.e. peroneus longus and soleus)(B. Nigg, 2009).  
Running shoes use more energy as the acceleration and deceleration power required with 
the weight of a shoe, energy used to deform the shoe during running, energy used to rotate 
the shoe on ground contact, energy absorbed in the midsole and energy lost in stiffness of 
the joints of the foot (B. M. Nigg, 2001; Warburton, 2001).   

1.8.4 Hazards of barefoot running 
The largest external hazard of running barefoot (and in barefoot simulated (i.e. minimalist) 
running shoes) is the potential of injury caused by debris (Murphy et al., 2013). This 
includes nails, glass, wood chips (slivers) and stones (Squadrone & Gallozzi, 2009). A study 
by Lieberman et al., (2016) found that habitually barefoot runners exhibit significantly 
more injuries to the plantar surface of the foot. 
 
In general, it is thought that those transitioning from a cushioned midsole to either barefoot 
running or barefoot simulated running shoes may take a longer time than those simply 
transitioning from a minimalist shoe to barefoot running (Murphy et al., 2013). In order to 
properly transition to barefoot running, barefoot or minimalist shoes should slowly be 
integrated into the workout, just as a new exercise would be (Murphy et al., 2013).  
 
1.8.5 Why transition to barefoot running?  
Barefoot enthusiasts and historical barefoot runners claim that running barefoot 
strengthens the intrinsic muscles of the feet and that shod running makes the intrinsic 
muscles of the feet potentially weaker (Rossi, 1999; Wikler, 1961). It is thought that even 
with greater improvements in cushioning and motion control, injury rates are not declining 
(Lieberman et al., 2010).  
 
Theories behind advantages of barefoot running include; a reduction in impact forces (C 
Divert, Mornieux, Baur, Mayer, & Belli, 2005; Caroline Divert, Baur, Mornieux, Mayer, & 
Belli, 2005; Squadrone & Gallozzi, 2009), reduced oxygen consumption (Burkett, Kohrt, & 
Buchbinder, 1985; Catlin & Dressendorfer, 1979), increased proprioception (Lieberman et 
al., 2010), and increased intrinsic muscles (Rao & Joseph, 1992). 
 

1.9 Studies and kinematic outcomes 

1.9.1 Previous studies 
Previous barefoot and shoe testing methods have used external markers on the shoe 
(Morio, Lake, Gueguen, Rao, & Baly, 2009; Stacoff et al., 2000). This has been shown to 
overestimate skeletal movements within the shank and foot (Cappozzo, Catani, Leardini, 
Benedetti, & Della Croce, 1996; Reinschmidt et al., 1997). Two dimensional studies have 
also been conducted, by utilizing reflective markers and simply taking pictures in different 
planes (Areblad, Nigg, Ekstrand, Olsson, & Ekström, 1990). This is affected by the alignment 
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of the foot relative to the camera position as there is very little consistency between 
subjects (Areblad et al., 1990). 
 
Another study was conducted with intracortical Hofmann pins (Stryker Howmedica AB 
Sweden, 3.2 mm diameter, #5038-5-80) with reflective markers attached to the ends. These 
pins were inserted in the calcaneus (Morio et al., 2009). This invasive and painful study 
required surgical intervention, allowing for accurate results but few subjects. This study 
suggests that various shod conditions alter the foot motion pattern during the push off 
phase of gait (Morio et al., 2009). However, this study only compared the differences 
between shod and barefoot conditions (Morio et al., 2009). This model simply used 17 
markers that were placed over various anatomical landmarks, to create two segments 
(Morio et al., 2009). It was found that shoes constrained eversion/inversion and abduction 
and adduction of the foot (frontal and horizontal planes respectively) (Morio et al., 2009). 
These findings are aligned with Wolf, et al. (2008) that found footwear constrained foot 
motion in forefoot spreading and foot pronation during push off. They concluded that 
having room for the forefoot to spread was crucial to mimic barefoot gait (Morio et al., 
2009). 

1.9.2 Current testing methods 
Currently according to Fong, et al. (2013), there is a gap within the literature surrounding 
shod and barefoot running. They have suggested that barefoot running be compared to 
shod conditions to attribute potential differences in motions of the foot, running patterns or 
injury rates (Fong, Sinclair, Hiller, Wegener, & Smith, 2013). There is also little literature to 
support the claims that minimalist shoes are different from traditional running shoes and 
that they mimic barefoot running (Bonacci et al., 2013). Bonaccini, et al. (2013), did find 
however, that barefoot running increases the work done at the ankle and that minimalist 
shoes may not mimic barefoot running (Bonacci et al., 2013). It is important to note that 
shoes for this mentioned study were not qualified barefoot mimicking shoes-they contained 
elevated heels and cushioning. The same study did confirm that barefoot running does 
change biomechanics of traditionally shod runners (Bonacci et al., 2013).  
 
Literature has studied females and VFF (McCarthy, Fleming, Donne, & Blanksby, 2014). This 
study showed that it is possible to change motor patterns in running over a 12 week 
training period (McCarthy et al., 2014). This study however, did not measure kinematics of 
the MLA of hindfoot/forefoot pronation/supination (McCarthy et al., 2014). 
 
A study looking at midsole thickness and running patterns found that angles in the sagittal 
plane between the ankle and the foot is lower in barefoot versus shod conditions 
(Chambon, Delattre, Gueguen, Berton, & Rao, 2014). The shod shoes studied were of various 
midsole thicknesses however, they all had a 0 mm heel-toe offset (Chambon et al., 2014). 
Knee and ankle flexion range of motion was also lower in the barefoot conditions which 
could be a factor in developing shin splints or plantar fasciitis (Chambon et al., 2014; 
Taunton et al., 2002).  
 
Another study looking at kinematic and kinetics between shod and minimalist shoes, found 
that minimalist shoes had greater knee flexion and dorsiflexion upon foot strike during 



 31 

running (Willy & Davis, 2013). Impact peaks and vertical loading rates were also greater 
while wearing minimalist shoes, thus suggesting an increased rate of overall loading while 
running in minimalist shoes vs shod which could lead to stress fractures, shin splints, etc.  
(Taunton et al., 2002; Willy & Davis, 2013). 
 
In terms of increasing the likelihood of injury, (Ryan, Elashi, Newsham-West, & Taunton, 
2013) found that semi minimalist shoes (Nike Free 3.0 V2) and full minimalist shoes 
(Vibram Bikila) to cause more injury than regular shod running shoes. More specifically, the 
Vibram Fivefingers caused more shin and calf pain in runners training over a 12 week 
period (Ryan et al., 2013). 
 
When running in shoes with heel-toe offsets of less than 6 mm, it is recommended that 
there is a gradual introduction of minimalist or barefoot shoes as well as gradually 
increasing mileage as an injury prevention mechanism (Cauthon et al., 2013).   

1.9.3 Vibram Five Fingers & Barefoot running 
Only one study has compared the VFF (classic model) and barefoot running (Sqaudrone, 
2009). This study was the first to use habitual barefoot runners and looked at sagittal plane 
kinematics using a treadmill (Sqaudrone, 2009). Measuring only sagittal plane kinematics 
possibly misses the majority of the motion of the foot as many motions of the foot such as 
pronation, involves eversion (located in the frontal plane), abduction (located in the 
transverse plane), and dorsiflexion (located in the sagittal plane). This study also analyzed 
pressure distribution between Vibrams and barefoot conditions (Sqaudrone, 2009). Data 
was collected at 60 Hz, however markers used for digitization were simply mounted on the 
lateral condyles of the knees, head of fibula, lateral malleoli, tuber calcaneum and 5th 
metatarsal (Sqaudrone, 2009). The same study found that 60 Hz was sufficient when 
collecting kinematic running data at 12 km/h (Squadrone, 2009; Van Gheluwe, 1995). The 
study by Squadrone (2009), calculated angles between the foot and ground, knee and ankle 
joints, peak knee flexion and ankle plantar flexion. No specifics between the MLA angles and 
forefoot and hindfoot pronation/supination were studied.  Contact time was significantly 
decreased in Vibrams than shod running, and the magnitude of impact peak forces were 
significantly higher in shod than Vibram or barefoot conditions (Squadrone, 2009). 

1.9.4 Summary of kinematic outcomes 
Many studies have tried to measure and quantify foot strike patterns during running and 
walking. Few have been able to quantify movements between segments of the foot in order 
to determine hindfoot/forefoot movement and pronation/supination.  
 
Studies done by Lieberman et al. (2010), studied the effect of strike type on GRF impacts by 
using an infrared camera system with skin-mounted markers. They found that habitually 
shod runners adopt a flatter foot on impact between barefoot and shod runners. They did 
not look at forefoot, hindfoot or midfoot movement between the two groups. 
 
A study by Morio et al. (2009) used a two segment foot model (forefoot and rearfoot) and 
compared barefoot and shod runners running in barefoot, shoes and sandals. They found 
that barefoot runners adopt more eversion of the forefoot and that running in sandals 
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decreased the amount of eversion. They concluded that the soles of standard running shoes 
affect and constrain inversion, eversion and adduction during impact and throughout 
stance phase. They also saw that shoes constrain natural foot movement compared to 
barefoot running.  Studies done by Morio et al. (2009) and Wolf et al. (2008) both 
supported the idea that shoes affect the amount of forefoot spreading and pronation during 
toe off. 
 
A two dimensional study done by Bates et al. (1978) determined that there was a longer 
time spent in pronation, and that pronation began sooner and finished later, in the stance 
phase during barefoot running. Another two dimensional study by De Wit et al. (2000) used 
video tape and skin mounted markers determined that during barefoot running, there is a 
significantly smaller initial eversion at impact, a higher step frequency and a flatter foot at 
touchdown. 
 
See Appendix D for a table summarizing the kinematic outcomes of the various studies.  
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Chapter 2:  Kinematic Models 
 
Kinematics of the foot and ankle are simply concerned with the movements that are 
occurring without paying attention to the loads or forces causing movement. Kinematic 
studies are useful for collecting information about complex anatomy.  

2.1 Kinematic models 

2.1.1 Fluoroscopy and X-ray 
Radiographic images or x-rays are produced via film and are typically static in nature. 
These images show any bone or boney fragments within the scope of view. Fluoroscopic 
images are produced via a live feed, thus able to film video and also show bone or boney 
fragments.  In both x-ray and fluoroscopy, depending on the angle, field of view and/or 
location, it may be difficult to locate specific bones or landmarks accurately. Fluoroscopes 
can be combined to create 3D video via bi-planar fluoroscopes. One of the best advantages 
of this method are instant feedback in the form of video or pictures. Video and static 
pictures can be digitized at the time of capture and there is no film used. Anatomical 
landmarks are tracked with digitized markers and can be compared to skin mounted 
markers. Bi-planar fluoroscopes can track 3D images therefore, this method of kinematic 
analysis is extremely accurate as specific landmarks can be seen quite easily and compared 
from trial to trial to see differences. The lack of markers required decreases placement 
error and leads to more accurate data collection and analysis. Exposing subjects to 
radiation is an issue with this method, as many trials are required to get specific landmarks 
to appear in the field of view as the field of view is quite limited. Post processing time is 
time intensive, as bone models must be created via CAT scans and matched to static images 
from trials. Bones hidden from the field of view or stacked bones may be difficult to see. 

2.1.2 Optical motion capture 
Optical motion capture requires the use of multiple motion capture cameras mounted on 
the wall to track 3D movements and static images. They use reflective or light based 
markers to locate landmarks on the body. Using infrared or visible red light, markers are 
located within the field of view. Markers must be seen by at least 2 cameras in order for the 
marker to appear as images appear in 3D. Using specialized software, 2D views or static 
images use direct linear transformation to integrate and create a 3D view or views available 
in the x, y and z planes of movement. This 3D transformation allows markers to be 
identified in 3D space and thus movements can be compared between trials. Optical motion 
capture systems are capable of collecting at rates of up to 500Hz. They also have many 
benefits including the use of analog data to capture other information simultaneously such 
as EMG or force plate data. Accuracy with this system is dependent on the size of the area, 
number of markers, field of view and the number of cameras being used. This is overall an 
accurate way of collecting kinematic data. There are many advantages to using an optical 
motion capture system. Firstly, there is no wire interference as passive markers are used. 
This allows for faster and more complex motions such as running and jumping to occur 
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with no concern over interference from equipment. There is no electromagnetic 
interference as seen in other optical motion capture and cameras are not influenced by 
light. One of the disadvantages of this method is there can be too many markers in one area 
and the camera may not pick up on all them in a cluster and a long post processing time 
associated with data analysis. Markers must be manually located if they are in a cluster or 
frames must be deleted if too many markers are missing from the field of view.  If all the 
markers are visible this method is accurate in comparing any differences present. 

2.1.3 Video analysis 
Singular or multiple video cameras can be set up at varying heights and angles to capture 
kinematic data with or without markers. Speeds and landmarks are typically tracked with 
video analysis. Video is typically captured at 60Hz. Once captured, still frames are digitized 
using software used to locate each of those markers in space. This process is lengthy 
compared to that of optical motion capture. Similar to option motion capture, linear 
transformations are used to take multiple 2D images and convert them into 3D marker 
positions. Advantages and disadvantages are the same as optical motion capture, however 
two advantages of video analysis are that it is a more portable method, allowing data to be 
collected anywhere a camera would fit and secondly, video capture is a cost effective way to 
capture kinematic data. This allows less constraint compared to a lab setting and data can 
also be collected at competitions, practice, etc. 

2.1.4 Electromagnetic tracking 
Electromagnetic tracking uses a low frequency electromagnetic field to measure and locate 
positions of segments. A static transmitter is fixed to a lab frame of reference and is 
required to be relatively close to the area being studied. Receivers are required to be 
attached to the segments of interest. Interactions between the electromagnetic fields allow 
the 3D position of segments to be determined within a field of view. The positions are 
determined by the interaction of the electromagnetic field and the receiver, compared to 
the 3D orientation of the transmitter with the receiver. This system requires no markers 
and no markers need to be seen to collect data. Lighting within the data collection room 
does not interfere and data collection is relatively quick. There is great resolution with this 
system allowing for a more accurate digitization process as guessing landmarks is greatly 
reduced with a higher resolution. There is a large interference with any metallic objects as 
well as interference with the subject as there are wires connecting markers to the body. 
Complex calibrations are required at the beginning of each data collection and limitations 
on the space between the transmitter and receivers. 

2.1.5 Bone pins 
All of the data collection methods so far can benefit from utilizing skin mounted markers of 
some form. The issues with skin mounted markers is there will always be some movement 
between the skin to which the marker is attached and the underlying bone. One way to 
decrease this error is by surgically inserting metallic pins into desired locations on the 
bones that protrude through the skin.  Pins such as Hoffman pins (Stryker Howmedica AB 
Sweden, 3.2 mm diameter, #5038-5-80) are typically used. These stick out of an incision 
point and insert into the bony landmark to be studied. These bone pins landmarks points to 
be studied in order to reduce error in capturing data and during post processing. Beads can 
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also be implanted into the bones during surgery to be studied in the future. Once pins or 
metal beads are inserted, methods such as fluoroscopy and x-ray can be utilized to get an 
extremely accurate comparison of movement of bones underlying the skin. This is the gold 
standard in terms of motion comparison. However, this method is extremely invasive and 
potentially painful. Complications such as infection and loose beads in joint spaces as beads 
can be smaller than 1 mm can be detrimental to patients.  

2.1.6 Skin motion artifact 
Skin motion artifact is when markers mounted on the skin move differently compared to 
their underlying landmarks. This is one of the greatest sources of error in motion capture 
(Andriacchi, Alexander, Toney, Dyrby, & Sum, 1998; Cappozzo, 1991). There are a few 
sources of error due to skin motion artifact. The first being misplacement of markers on 
anatomical landmarks.  
 
Palpation of landmarks to place skin mounted markers creates a lot of error. If the markers 
are placed incorrectly over landmarks, all data collected with that landmark as a result will 
be inaccurate. Inertial effects or landmarks moving around during trials affects accuracy of 
data collection. Most markers protrude and bounce during kinematic trials and thus, can be 
knocked with other body parts. Bouncing of markers will falsify resulting landmark 
movement under the skin, Skin deformation over anatomical landmarks can also create a 
false sense of landmark movement as skin can become taut or reverse, relaxed and sag 
down. Sliding often occurs close to joints and skin has more movement here and muscle 
contraction forces markers to draw in different direction (Cappozzo et al., 1996; Leardini, 
Chiari, Croce, & Cappozzo, 2005).   
 
Skin motion artifact is going to occur in any studies of motion besides that where 
intracortical bone pins or beads are inserted into specific landmarks. This further 
emphasizes the need to keep the markers in exact locations between trials. Skin motion 
artifact cannot be reduced with skin mounted markers, however there are ways to reduce 
added error. This is a drawback of using a multi segment foot model to analyze movements 
of the feet during running. In order to reduce error, each segment of the multi segment foot 
model has it’s own coordinate system to compare between trials. This model was validated 
using bi-planar fluoroscopy in comparison to the multi segment foot model used by Jenkyn 
et al. 2007, and determined no significant differences in fluoroscopy landmarks to multi 
segment foot model landmarks. 
 
There is a higher rate of error in skin motion artifact during running than walking (Leardini 
et al., 2005). Errors seen can cause marker displacement of up to 20 mm relative to the 
underlying bone (Leardini et al., 2005). Mean displacements seen between anatomical bone 
landmarks and skin markers can vary from 2.7 to 14.9 mm during running with malleoli 
having the largest artifact as found by via xray (Maslen & Ackland, 1994). Error is reduced 
by keeping markers consistent between trials and never moving them from static to 
running trials. This way, if placed consistently differences between trials and conditions can 
be seen. 
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2.2 Multi-segment foot model 
There are many segmented foot models that track various segments and movements of the 
foot. This particular model allows for tracking and study of clinically important movements, 
including the medial longitudinal arch and the windlass mechanism of the hallux. This 
model has to be compatible with the optical motion analysis system currently in place at the 
Wolf Orthopedic Biomechanics Laboratory (WOBL) in the Fowler-Kennedy Sports Medicine 
Center. A system with too many markers to define key bones would clutter the foot but too 
few markers mean risking missing some crucial movements of the foot. The markers used 
were chosen as they represent critical movements of the foot as well as it is clinically 
applicable for many different shoe sizes, even children.  
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Figure 2.1 Multi segment foot model developed by Jenkyn, et al (2007) used to track 

five segments of the foot. This model is broken down into the hallux, the medial 
forefoot, the lateral forefoot, midfoot and hindfoot. 
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Figure 2.2 Illustration of the three multi segment foot models used for 3D gait 
analysis. Markers, illustrated with red circles, were singular and reflective. All  

studies did not break down markers into clusters or the foot into segments. On the 
left, a multi segment foot model as utilized by Milner, et al (2006). In the middle, a 

multi segment foot model used by Pohl, et al. (2005) and Morio, et al. (2009). On the 
right, a model used by Lieberman, et al. (2009). 
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The multi-segment foot model is one developed by Jenkyn & Nicol 2007, which tracks five 
segments of the foot separately using optical motion capture (Table 1). The segments are 
the hindfoot (calcaneous), talus, midfoot (cuneiforms I-III, navicular, cuboid), medial 
forefoot (metatarsal I and II), and lateral forefoot (Figure 2.1)(metatarsal III-V) (T R Jenkyn 
& Nicol, 2007; T R Jenkyn, Shultz, Giffin, & Birmingham, 2010; Thomas R Jenkyn & Anas, 
2009). There are many different versions of the multi-segment food models that track 
different segments of the foot (Table 1).  

 
Table 1 Cluster names and locations of the multi-segment foot model 

Cluster Cluster Location 
Hindfoot Posterio-lateral calcaneus, lateral to Achilles tendon 
Midfoot Dorso-medial foot over the navicular tuberosity 
Medial forefoot Medial-dorsal foot over midshaft of first metatarsal 
Lateral forefoot Lateral-dorsal foot over midshaft of fifth metatarsal 
Hallux  Dorsal over the proximal phalangeal of the hallux 
 
To track all 26 bones of the feet, bone pins would need to be used. Thus, the reasoning for 
segmenting the foot into five sections that can be assumed to be rigid. Defined segments 
needed to be large enough to attach a cluster marker and have enough distance in between 
as to be seen by motion capture cameras. Markers located in close proximity would result in 
missing, merged and lost clusters. Clusters of three markers are used to track the three-
dimensional position and orientation of each segment (T R Jenkyn & Nicol, 2007; Thomas R 
Jenkyn & Anas, 2009).  
 
Within this study, the current kinematic model represents four joint motions: medial 
longitudinal arch ratio, hallux-medial forefoot, forefoot-midfoot and hindfoot-midfoot. The 
markers are custom made, spherical 8 mm diameter, covered in reflective tape (3M, 
Minneapolis, MN) attached by 3 mm carbon fiber rods to a 20 mm polyethylene base 
(Figure 2.3) (T R Jenkyn & Nicol, 2007; T R Jenkyn et al., 2010; Thomas R Jenkyn & Anas, 
2009). Typically markers used in other studies consist of singular reflective spheres 
attached to the body (Figure 2.2). 
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Figure 2.3 Custom made clusters of spherical markers used in the multi-segment foot 

model. 

The kinematic model of the foot is reported with three motions: the medial longitudinal 
arch ratio, forefoot-midfoot and midfoot-hindfoot. The MLA was described as a height to 
length ratio. It was defined by the position of the segments of the hindfoot, midfoot and 
medial forefoot. Both forefoot segments represented motions of the midfoot as a compound 
twisting motion in the midfoot frontal and transverse planes. The hindfoot segment was 
compared to the midfoot segment and represented as orthogonal rotations in the midfoot 
frontal and transverse planes. 
 
Bony landmarks are the identical landmarks used by Jenkyn et al. (2009) & Jenkyn & Nichol 
(2007) and can be seen in the following table as reproduced with permission (Table 2).  The 
x, y, z coordinates of each landmark was located in a lab frame of reference. One vector was 
created using the points on the stylus and averaged over 1 second at 60Hz in order to 
define the orientation of the stylus. This was then used to calculate the coordinates of the 
metal end in the lab frame of reference, which represents the anatomical landmark. 

  
Table 2 Bony landmarks digitized for each segment used to define segment fixed 

axes. Note that the medial and lateral forefoot segments share landmarks 
(Jenkyn, et al. 2009; Jenkyn & Nichol, 2007). 

Segment Tracked landmarks 
Thigh FLE: lateral epicondyle (most lateral point) 
 FGT: greater trochanter (most lateral point) 
 FME: medial epicondyle (most medial point) 
Lower leg LLM: lateral malleolus (most lateral point) 
 LFH: fibular head (most lateral point) 
 LMM: medial malleolus (most medial point) 
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Hindfoot CAER: eminentia retrotrochlearis (greatest lateral elevation) 
 CALT: lateral tuberosity (lateral to the achilles tendon 

attachment) 
 CAMT: medial tuberosity (medial to achilles tendon 

attachment) 
Midfoot MCI: first cuneiform (distal dorsal crest) 
 MNT: navicular tuberosity (most medial point) 
 MCU: cuboid (lateral dorsal edge at joint with calcaneous) 
Medial forefoot MIH: first metatarsal head (most dorsal point) 
 MIB: first metatarsal base (most dorsal point) 
Lateral 
forefoot 

MVH: fifth metatarsal head (most dorsal point) 

 MVB: fifth metatarsal base (most dorsal point) 
 
Landmarks are palpated during quiet standing (T R Jenkyn & Nicol, 2007; T R Jenkyn et al., 
2010; Thomas R Jenkyn & Anas, 2009). Once landmarks were located a stylus instrumented 
with three auto-reflective markers was used to establish measure its three dimensional 
position with respect to the corresponding segment reference frame (Table 2) (Figure 2.4) 
(T R Jenkyn et al., 2010; Thomas R Jenkyn & Anas, 2009). This is the same method as used 
by Jenkyn et al. (2010). Defining the landmarks during quiet standing allows these static 
bone-fixed reference frames to be considered as the weight bearing neutral positions and 
thus, the measurements made can be compared to movement trials (T R Jenkyn et al., 
2010).  
 
The stylus is 26.4 cm in length, made up of a metal rod, 5 mm in diameter, with 1 cm 
spherical balls covered in reflective tape (3M, Minneapolis, MN). Distance between distal 
and middle markers was 6.4 cm, distance between the middle and proximal markers was 
8.3 cm and distance between the proximal marker and the end of the stylus was 11.1 cm 
(Figure 2.4). 
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Figure 2.4 Custom made stylus, used in locating underlying bones and landmarks. 

 

2.3 Windowing shoes 
In order for the multi-segment foot model to work with any type of running shoes, the 
cluster markers must be visible to the optical motion tracking system, thus holes or 
windows must be created within the shoe (Shultz & Jenkyn, 2012). Windowing shoes 
decreases the amount of motion artifact that occurs when foot motion is measured using 
markers applied to shoes. These windows must be large enough to allow the cluster 
markers to fit, as well as the shoe should not interfere with any movement of the foot 
(Shultz & Jenkyn, 2012). More importantly, the windows cannot affect the structural 
integrity of the shoe itself (i.e. cut too large) (Shultz & Jenkyn, 2012).  
 
It was found by Schultz & Jenkyn (2011), that the maximum size of a hole cannot exceed 1.7 
cm x 2.5 cm (Shultz & Jenkyn, 2012). Larger holes will affect the integrity of the shoe (Shultz 
& Jenkyn, 2012). Any size smaller than 2.7 cm x 2.3 cm will not change the structural 
integrity or performance of the shoe (Shultz & Jenkyn, 2012). 
 
Although there is very limited research, studies conducted on shoe windowing have been 
focused on the integrity and support of solely windowing on motion control shoes (Shultz & 
Jenkyn, 2012). This should not present itself as a great concern, as the VFF shoes do not 
contain stability or motion control measures that will affect the integrity of the shoe. Holes 
were cut on areas where there was no structural support, such as on the upper that is 
simply made of a synthetic stretchy material.  
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The aim of this study was to see if differences exist between VFF and barefoot running in 
habitually shod and VFF runners. Currently, there is a gap in literature within this topic, 
with little kinematic data available.  
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Chapter 3: Methods 

3.1 Experimental equipment 
All kinematic data collection and testing was done at the Wolf Orthopaedic Biomechanics 
Laboratory (WOBL) at the Fowler-Kennedy Sports Medicine Clinic at The University of 
Western Ontario in London, Ontario, Canada. This study was approved by the Health 
Science Research and Ethics Board (HSREB #104830) at the University of Western Ontario.  
 
Prior to each subject participating in this study, subjects gave written consent after reading 
information on the data collection process, goals and methods (Appendix A). Subjects then 
completed a Physical Activity Readiness Questionnaire (PAR-Q) regarding basic 
information on their health and exercise status (Appendix E). If subjects answered ‘yes’ to 
any of the physical activity questions, they were not eligible to participate in the study. 
 
Three groups of participants were studied: habitual shod runners, habitual VFF runners and 
habitual barefoot runners. The habitual shod runners comprised four individuals (2 female, 
29 ± 8.5 years and 2 male, 26 ± 4.2 years) who ran for an average of 23.8 ±11 km per week 
over the past 2 years. The habitual VFF runners comprised three (males, 24.3 ± 0.6 years), 
who ran for an average of 13.3 ±7.6 km per week over the previous 2 years. The habitual 
barefoot runner comprised one (male) age 22, who ran for an average of 100-120 km per 
week over the past 2 years. 
 
Subjects were recruited from the Fowler Kennedy Sport Medicine Clinic and the local 
community. Participants did not have any musculoskeletal disorders or current diagnosed 
injuries. Individuals were excluded if they had a current musculoskeletal disorder such as 
osteoporosis or muscular dystrophy, were under 18 years of age, were not habitual runners 
(< 2 years and < 10 km/week), or had current lower body injuries such as broken bones, 
sprains or strains. 
 
Subjects were assigned a random participant ID, using a random number generator 
between numbers 1-100. Names of participants were not used during analyses, they were 
referred to their ID numbers. Anthropometric data of sex, weekly running mileage, age, 
weight, height, knee widths, ankle widths, feet widths and feet lengths were collected and 
measured prior to testing.  

 
Table 3.1 Demographic data of eight subjects of the study describing group, 

average running mileage per week, sex, age at time of data collection, weight and 
height. 

Subject Group Km/week Sex Age Weight 
(lb) 

Height 
(in) 

27 Shod 30  F 23 120 66.5 
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55 Shod 20 M 23 155 68 
3 Shod 35 F 35 230 66 
87 Shod 10 M 29 175 72 
90 Vibram 10 M 24 180 70 
50 Vibram 20 M 25 210 73 
7 Vibram 10 M 24 190 69 
31 Barefoot 100-120 M 22 140 69 

 

3.2 Motion analysis equipment 
WOBL is equipped with real-time 3D optical motion capture cameras from Motion Analysis 
Corporation (Santa Rosa, USA). Kinematic data was collected using 8 Hawk motion-capture 
cameras (Motion Analysis Corp, Santa Rosa, USA) and 4 Eagle motion-capture cameras 
(Motion Analysis Corp, Santa Rosa, USA) at a sample rate of 120 Hz, using infrared 
technology.  
 
The frame reference origin was established as the northwest corner of the force plate. Axes 
were established during the calibration process, with the x axis (long axis of the lab (North) 
and y-axis laying perpendicular to the x axis (East). Both x and y-axes were parallel to the 
ground. The z-axis was pointed vertically and perpendicular to the x and y axes (Figure 3.1). 
 

 
Figure 3.1 Lab coordinates are based off of the NW corner of the force plate (as 

defined by the corner with the red arrows). The x axis is pointing south, the y axis is 
pointing east and the z axis is perpendicular to both the x and y axes. 

The system allows for the capture of movements in real-time. Templates are created in 
Cortex 2.6.8 (Motion Analysis Corp, Santa Rosa, USA) to allow quick and easy viewing of 
movements of the body. 
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Figure 3.2 Triad cluster markers used in the multi-segment foot model. All trial 
clusters were custom made at the University of Western Ontario (London, ON, 

Canada) and markers were covered in reflective tape (3M, Minneapolis, MN, USA). 

 
 

Figure 3.3 MSFM markers and Helen Hayes modified body marker sets identified in 
Cortex 2.6.8 during a running trial (Motion Analysis Corp, Santa Rosa, USA). 
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The 3D optical motion capture cameras used infrared light to record reflection from the 
markers. In order to be seen and recorded by the cameras, a marker must appear to a 
minimum of two cameras to decrease positional errors. Each camera in Cortex located the 
markers in 2D views and used an algorithm to triangulate 3D coordinates.  
 
Feet were carefully marked at the commencement of data collection to ensure that markers 
were reattached to the correct locations between trials. Prior to dynamic movement trials, 
marker placement was carefully studied in 3D view to ensure optimal placement 

3.3 Experimental procedures  

3.3.1 Calibration 
Prior to the commencement of testing each day, the cameras were calibrated using Cortex 
2.6.8 (Motion Analysis, Santa Rosa, USA).  The calibration allows for an accurate location of 
each marker by creating a relationship between the markers attached to the subject and 
each of the markers location within the lab frame of reference. 
 
First, the calibration frame (i.e. the seed frame) was placed onto the NW corner of the force 
plate (Figure 3.3). This L shaped frame comprises of four fixed reflective markers and gives 
the optimal position for the four markers to be seen by the 12 cameras.  
 

 
 

Figure 3.4 L-shaped calibration frame (seed frame) creating the axes of the lab. The 
four fixed markers help create a lab frame of reference. 
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A dynamic calibration wand with three markers was ‘waved’ through the lab for two 
minutes. This expands the calibrated seed area and allows for a more accurate marker 
location, according to the recommendations by the manufacturer. 
 

 
Figure 3.5 Calibration wand fitted with three fixed reflective markers used to 

calibrate the data collection area.  
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3.3.2 Helen Hayes marker set 
Additional individual markers were arranged in a modified Helen Hayes marker 
configuration as seen in Table 3.2. 
 

 
Table 3.2 Positions of reflective markers based off of the Helen Hayes marker set.  

Description Placement 
Left shoulder Tip of acromion process 
Right shoulder Tip of acromion process 
Right scapula Superior angle 
Left elbow Lateral epicondyle of the humerus 
Right elbow Lateral epicondyle of the humerus 
Left wrist Centered between the styloid processes of the 

radius and ulna 
Right wrist Centered between the styloid processes of the 

radius and ulna 
Left superior iliac spine Top of crest 
Right superior iliac spine Top of crest 
Sacrum Superior aspect at the L5-sacral interface 
Left lateral knee Along the flexion/extension axis of rotation at 

lateral femoral condyle 
Right lateral knee Along the flexion/extension axis of rotation at 

lateral femoral condyle 
Left lateral ankle Along the flexion/extension axis of rotation at 

lateral malleolus 
Right lateral knee Along the flexion/extension axis of rotation at 

lateral malleolus 
Left top of foot Centre of the foot between the 2nd and 3rd 

metatarsals 
Right top of foot Centre of the foot between the 2nd and 3rd 

metatarsals 
Left heel of shoe Posterior calcaneus at same height from floor as toe 

marker 
Right heel of shoe Posterior calcaneus at same height from floor as toe 

marker 
Left thigh wand Mid lateral thigh 
Right thigh wand Mid lateral thigh 
Left shank wand Mid lateral shank 
Right shank wand Mid lateral shank 
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3.3.3 Cluster marker setup 
The feet were tracked with an additional ‘Multi-segment Foot Model’ marker set.  Clusters 
of three markers were placed on the hallux, first metatarsal, fifth metatarsal, the heel and 
navicular (Table 3.3).  
 

Table 3.3 Multi-segment foot model marker set and their respective locations. 
The same marker locations were used for each subject and for each condition.  

Cluster Cluster Location 
Hindfoot Posterio-lateral calcaneus, lateral to Achilles tendon 
Midfoot Dorso-medial foot over the navicular tuberosity 
Medial forefoot Medial-dorsal foot over midshaft of first metatarsal 
Lateral forefoot Lateral-dorsal foot over midshaft of fifth metatarsal 
Hallux  Dorsal over the proximal phalangeal of the hallux 

 

Figure 3.6 Cluster marker configuration of the multi-segment foot model. 5 triads 
consisting of 15 reflective markers represent 5 segments of the foot; hallux, midfoot, 

medial forefoot, lateral forefoot and calcaneus. 
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3.4 Static trial 
Prior to dynamic trials, a static trial of 10 seconds was collected. This static trial is used to 
create a template for each subject. The static trial was used to determine the position 
underlying bones of the foot and allowed for anatomical frames of reference to be created. 
 
After collection, the static trial was studied to ensure all 22 of the modified Helen Hayes 
markers and the 15 multi-segment foot model markers were visible. This was essential, as 
virtual markers need to be created in post-processing. For each subject, virtual markers 
were created using the location of an origin marker, a long axis marker and a plane marker. 
‘Snap-to’ markers used the virtual marker to be created to ensure a proper triangulation 
between the three reference markers to find a location accurately. 
 
Origin markers were always chosen as another marker attached the same cluster. Long axis 
markers were chosen based on markers most consistently viewed over a trial. Plane 
markers were chosen based on an adjacent marker or a marker of the same height of 
another triad (i.e. long marker on a triad with another long marker on a triad). No data 
could be missing in any of these definitions or the virtual marker could not be created.  
 
In some instances where markers were missing for a significant number of frames (>10 
frames), trials were discarded. Clusters were named in the same sequence for each of the 
static and dynamic trials.  
 
Having all markers present during the static trial ensured virtual marker placement to be 
accurate. Each subject had identical virtual marker definitions to ensure consistency 
throughout dynamic trials (Table 3.4).  
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Table 3.4 Virtual marker definitions of 5 MSFM triad clusters; Hallux, 1st 
metatarsal (midfoot), navicular (medial forefoot), 5th metatarsal (lateral 

forefoot) and calcaneus. Origin markers, long axis markers and plane markers 
were used consistently through each subject using static trials to define virtual 

marker locations. 

Marker name Origin marker Long axis 
marker 

Plane marker ‘Snap-to’ 
marker 

Hallux Long Hallux Medial Navicular 
Lateral 

1st Lateral Hallux Long 

Hallux Lateral Hallux Medial 1st Lateral Hallux Long Hallux Lateral 
Hallux Medial Hallux Long Navicular 

Lateral 
1st Medial Hallux Medial 

1st Long 
(Midfoot) 

1st Lateral Navicular 
Lateral 

Hallux Long 1st Long 

1st Lateral 
(Midfoot) 

1st Medial Hallux Medial Hallux Long 1st Lateral 

1st Medial 
(Midfoot) 

1st Lateral Hallux Long Navicular 
Lateral 

1st Medial 

Navicular Long 
(Medial 
Forefoot) 

Navicular 
Lateral 

Hallux Long 1st Long Navicular Long 

Navicular Lateral  
(Medial 
Forefoot) 

Navicular Medial Hallux Long Navicular 
Long 

Navicular 
Lateral 

Navicular Medial 
(Medal Forefoot) 

Navicular 
Lateral 

Hallux Long 1st Medial Navicular Medial 

Calcaneus Long Calcaneus 
Lateral 

5th Long 5th Medial Calcaneus Long 

Calcaneus 
Lateral 

Calcaneus 
Medial 

5th Long 5th Lateral Calcaneus 
Lateral 

Calcaneus Medial Calcaneus Long 5th Long 5th Medial Calcaneus 
Medial 

5th Long (Lateral 
Forefoot) 

5th Medial Calcaneus Long Navicular 
Long 

5th Long 

5th Lateral 
(Lateral 
Forefoot) 

5th Long Calcaneus Long Calcaneus 
Medial 

5th Lateral 

5th Medial 
(Lateral 
Forefoot) 

5th Long Calcaneus 
Medial 

Calcaneus 
Lateral 

5th Medial 
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Table 3.5 Cluster markers used in creating two vectors for each foot segment. 
Each set of vectors allows for a separate coordinate system to be defined.  

 
Segment Vectors Example 
Hallux V1=H1-H3 

V2=H3-H2 
O=H3 

 
5th Metatarsal 
(Lateral 
Forefoot) 

V1=LFF2-LFF1 
V2=LFF1-LFF3 
O=LFF1 

 
1st Metatarsal 
(Medial 
Forefoot) 

V1=MFF2-MFF1 
V2=MFF1-MFF3 
O=MFF1 

 
Navicular 
(Midfoot) 

V1=MF2-MF1 
V2=MF1-MF3 
O=MF1 

 
Calcaneus 
(Hindfoot) 

V1=HF2-HF1 
V2=HF1-HF3 
O=HF1 
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Trials of one second were taken at 120 Hz with the stylus pointing at each of the landmarks 
(Table 3.6). These landmarks were used to calculate the transformation matrix that showed 
the cluster motion in the segment frame of reference.  

 
Table 3.6 Stylus landmarks used to calculate bone locations. 

Segment Description Placement 

Hindfoot CAER Eminentia retrotrochlearis (greatest lateral elevation) 

 CALT Lateral tuberosity (lateral to achilles tendon 
attachment) 

 CAMT Medial tuberosity (medial to achilles tendon 
attachment) 

Midfoot MCI First cuneiform (distal dorsal crest) 

 MNT Navicular tuberosity (most medial point) 

 MCU Cuboid (lateral dorsal edge at joint with calcaneus) 

Medial 
forefoot 

MIH First metatarsal head (most dorsal point) 

 MIB First metatarsal base (most dorsal point) 

Lateral 
forefoot 

MVH Fifth metatarsal head (most dorsal point) 

 MVB Fifth metatarsal base (most dorsal point) 

Ankle JCS LMM Medial malleolus (most medial point) 

 LLM Lateral malleolus (most lateral point) 

Hallux DH Most distal point of the hallux  

 LPH Lateral head of the hallux 

 MPH Medial head of the hallux 

 

3.5 Vibram Five Finger Shoes 
Vibram Five Fingers Bikila shoes (Vibram Inc., Albizzate, Italy) were used for all subjects. 
The shoes were chosen based on minimalism of straps, laces and constraints over the top of 
the foot, allowing the foot to move as naturally as possible. This model was chosen because 
of accessibility to purchase to the general public, as they are available at many local 
sporting goods locations. 
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This model is a marketed as a running-specific model and is also promoted as providing a 
barefoot running experience (i.e. enhancing natural gait and forefoot striking). The shoe is 
supposed to fit snug to avoid blisters and the sole is designed to allow for optimal flexibility 
for simulating barefoot running. The sole is a 4 mm TC1 performance rubber, which is 
thickest under the ball of the foot and has a 0 mm heel-toe offset. 
 
According to the manufacturer, Vibram Five Finger shoes do not require a break in period 
and the top materials are designed to stretch and fit most foot shapes. Sizing of the shoes 
are said to be true to size and were worn without socks. 

 
Figure 3.8 Vibram Five Fingers Bikila without holes for the multi segment foot model. 

Reflective patterns on the shoes were covered with athletic tape as to avoid 
interference with infrared lighting and marker recognition. 

 3.6 Dynamic trials 
Once all landmarks were captured and the template was formed, dynamic trials of both 
running and walking were conducted. Four each of walking, running barefoot and running 
in VFF were captured. 
 
During the dynamic trials, one of the researchers was responsible for keeping track of 
dynamic trial type and ensuring all markers remained on the body between trials. The other 
researcher was responsible for operating the computer software, ensuring trials were being 
captured correctly and ensuring all markers were visible for each trial. 
 
For both the walking and running trials (barefoot and VFF), subjects were walking and 
running at a self-selected pace. The 10m path in the WOBL lab was similar to a study done 
by  Hashish et al., (2015), who had subjects run at a self-selected speed across a 9 m path. 
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Time allowed for a warm up before the running trials. Participants were instructed to run at 
a pace comfortable for them. As shown by Bates, (1978), there are no differences in rearfoot 
motion for running speeds between 3.3 and 4.5 m/s. 
 
For conditions wearing shoes, double sided adhesive tape was applied to the foot. The front 
of the triad cluster markers were identified by drawing their locations on the foot. These 
identified locations allowed the markers to be removed between shoe conditions as shoes 
cannot be changed without removing the markers.  
 
No randomization of the order of conditions was performed as this would necessitate 
removing and replacing cluster markers on the feet between trial conditions, which would 
introduce a source of error. The trails were not fatiguing, so the order of conditions should 
not have an effect. A study by Hreljac et al., (2000), had participants run at a testing speed 
of 4m/s, which, was greater than the training speed of most participants in their study. The 
study analyzed biomechanical factors that contribute to injury using a four marker system 
to identify the leg and rearfoot. Their subjects were tested at a variety of running speeds, 
and upon analysis of these preliminary tests, data was similar in all speeds tested (Hreljac 
et al., 2000). This is why speed was not measured in this study. 

3.7 Kinematic Analysis 
Kinematic data was analyzed for each frame for each trial, and trials of barefoot running 
and VFF were compared. Every stance phase was normalized over 100 data points. The 100 
data points represents the stance phase from initial ground contact to toe off. Changing 
each gait cycle to 100 points allowed for a direct comparison to be made between each trial 
since data was collected at 120Hz and subjects were running at a self-selected pace, 
therefore having a varied number of frames both between trials and between subjects. 
 
The five kinematic measures output by the multi-segment foot model were: the medial 
longitudinal arch height to length ratio (MLA), forefoot angle (FFA-F) in the frontal plane 
(pronation/supination of the forefoot with respect to the hindfoot), forefoot angle (FFA-T) 
in the transverse plane (narrowing and widening of the MLA), hindfoot angle (HF-F) in the 
frontal plane (pronation/supination with respect to the lower leg) and hindfoot angle (HF-
T) in the transverse plane (adduction/abduction with respect to the lower leg). 

3.7.1 Medial Longitudinal Arch (MLA) 
Kinematics of the MLA is defined as the height to length ratio. For each frame the length of 
the arch was defined as the distance between the medial tuberosity of the calcaneus 
(CAMT) to the head of the first metatarsal (MIH). The height of the MLA is determined by 
the vertical vector stopping at the navicular tuberosity (NT), located perpendicularly to the 
vector between the CAMT and MIH. 
 
The height to length ratio was compared between trials of barefoot running and trials of 
VFF running between subjects. Positive values indicate narrowing of the MLA, while 
negative values represent widening. 
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Figure 3.9 Length of the MLA is defined as the medial tuberosity of the calcaneus (1) 

to the head of the first metatarsal (2), and the height is determined by a 
perpendicular vector to the navicular tuberosity (3). 

3.7.2 Forefoot pronation/supination 
The forefoot angle is important in quantifying the angle of pronation and supination 
between trials of barefoot running and VFF running. The angle is quantified by the motion 
of the vector between the metatarsal heads of the 1st (MIH) and 5th (MVH) (1) and a second 
vector between the metatarsal bases of the 1st (MIB) and the 5th (MVB) (2). 
 
Angles were developed as the twisting between the metatarsal heads and bases as 
compared to the midfoot. The angle was therefore reported as the angle of movement of the 
midfoot segment. In the frontal plane, positive angle values suggested pronation of the 
forefoot, while negative angle values suggested supination of the forefoot.  
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Figure 3.10 Two forefoot angle vectors as defined by the distance between the head 
of the 5th metatarsal (MVH) to the head of the 1st metatarsal (MIH) and the second 
vector defined as the distance between the base of the 5th metatarsal (MVB) to the 

base of the 1st metatarsal (MIB). 

3.7.3 Hindfoot pronation/supination 
Movement of the hindfoot (calcaneus) was defined compared to the midfoot. Analyzing this 
movement used floating axis angles (Grood & Suntay, 1983) in Matlab (Mathworks, Natick, 
USA). These angles allow for 3D angles to be studied in three planes of motion using 
rotation and translation matrices between two rigid bodies (Grood & Suntay, 1983).   
 
Comparing angles of the hindfoot relative to the midfoot used the orientation of the 
hindfoot (distal) with respect to the midfoot (proximal) by creating a floating axis 
perpendicular to the primary axis of both the distal and proximal segments. Positive angles 
reflect supination of the hindfoot segment and negative angles reflect pronation of the 
hindfoot segment. 
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3.11 Calcaneus (hindfoot) and  navicular (midfoot) markers and their vectors used to 

determine supination and pronation of the hindfoot segment. 

 

3.7.4 Kinematic Variables 
Kinematic variables used in this study are those of the MLA height to length ratio, forefoot 
movement and hindfoot movement. Positive values of the MLA height to length ratio (i.e. 
higher/shorter arch) suggests supination and a negative value of the MLA height to length 
ratio (i.e. lower/long) arch suggests pronation of the hindfoot. The overall size of the foot 
does not matter due to the ratio used.  
 
With respect to the forefoot, motion here consists of twisting between the heads with 
respect to the bases at the midfoot. With respect to the frontal plane, a positive angle 
reflects pronation and a negative angle reflects supination. The angle in the sagittal plane 
was not quantified. In the transverse plane, a positive angle reflects spreading of the MLA as 
well as flattening of the 1st metatarsal and a negative angle reflects a rise in the MLA. 
 
The hindfoot segment is described relative to the midfoot. In the transverse plane, a 
positive angle reflects adduction of the hindfoot and a negative angle reflects abduction of 
the hindfoot. With respect to the frontal plane, any movement here is considered rotation. A 
positive angle suggests supination and a negative angle suggest pronation. 

3.8 Post Processing 
A static trial captured the reference landmarks of the lower body with external surface 
markers. This was later used to link all virtual landmarks and build the coordinate frame of 
reference. To ensure that a full gait cycle was visible, the initial foot strike was located. The 
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gait cycle for each subject was started ten frames prior to the initial foot strike and ended 5 
frames after the subsequent toe off.  
 
In the case of frames missing markers (i.e. when the marker could not be seen by a 
minimum of two cameras), virtual markers created in the static trials were used to identify 
those missing. Virtual joins were used when markers were missing from three consecutive 
frames. This most often happened when markers were too close together and the cameras 
simply picked up overlapping markers as one or when the swing leg passed by the stance 
leg, blocking markers from the field of view. 
 
Virtual joins are an effective way of determining another markers position in the field of 
reference by taking an origin and the long and plane axis. The origin is the marker most 
rigidly attached to the body, the long and plane axes were chosen as markers known 
nearby. Without these three known markers, virtual joins are not possible. Once all the 
markers were identified for each trial, .trc files containing the x, y, z coordinates for each 
marker were exported. Files were compiled for consistency to be used in Matlab 
(Mathworks, Natick, USA). 
 
Cluster markers were named in the same order for every trial. Attention was paid to 
naming these markers, as the importance for correctly identifying each location determines 
the underlying bone’s position in the frame of reference (Table 3.5).  
 
Matlab (Mathworks, Natick, USA) was used to process the marker data. Once markers were 
digitized, data was put into Matlab (Mathworks, Natick, USA) in order to be processed 
through a multi segment foot model developed by Shultz, et al. (2006). Each trial was low 
pass filtered with a fourth-order Butterworth filter with a cutoff of 6 Hz as used in previous 
research (Jenkyn T. A., 2009). This removed the vibration movement artifacts from the triad 
marker clusters and from the marker positions (Jenkyn et al., 2010). 
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Chapter 4: Results 
 
A total of nine subjects successfully completed the testing sessions with the testing session 
lasting an average of 35 minutes.  
 
The five segment foot model was successfully tracked for eight of the nine subjects. The 
data of one subject (subject 029) was removed from the analysis since the static wand 
landmark data of the CAER landmark was not properly collected. The missing CAER 
landmark meant that the hindfoot could not be tracked and so this subject was removed.  Of 
these eight test subjects, 4 runners trained habitually with running shoes, 3 trained with 
VFF and 1 trained barefooted.  All test subjects were tested wearing VFF shoes and in 
barefoot.   
 
To test the hypotheses, two subjects groups were created.  Data from the habitual shod 
runners (n=4) formed the habitual shod group.  Data from the habitual VFF runners (n=3) 
plus the habitual barefoot runner (n=1) were combined and formed the habitual VFF group 
(n=4).  The five kinematic measures from the multi-segment foot model were reported 
comparing the trials wearing VFF and barefoot.   Differences were compared for 
significance using independent samples t-tests. None of the findings were significantly 
different. 
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4.1 Habitual shod and habitual VFF running barefoot 

4.1.1. MLA (barefoot) 
The motion of the medial longitudinal arch for the habitual shod runners was not 
significantly different from the habitual VFF runners when running barefoot, as shown by 
the averaged MLA height to length ratios (p > 0.05; Figure 4.1). From heel strike to 
midstance (0-50% of stance), the habitual shod runners had negative ratios meaning the 
MLA was lower and they had a wider arch.  The habitual VFF and barefoot runners had 
higher ratios and therefore their MLA was higher and they had a narrowed arch.  
 
The shapes of the two averaged curves tended to mirror each other, with the shod runners 
not peaking during the stance phase and the VFF runners peaking soon after heel strike. 
The largest positive ratio for VFF runners occurred at midstance (0.024) and the largest 
negative ratio for shod runners occurred at heel strike (0% of stance; -0.12) for their 
respective average curves. 
 

 
 

Figure 4.1 MLA data as represented by the height to length ratio during the stance 
phase of running barefoot. Positive ratios reflect a narrowing of the arch and 

negative ratios reflect a widening of the arch. The light blue and navy traces illustrate 
the VFF and shod conditions respectively. MLA is defined as a dimensionless ratio of 

arch height to length. 
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4.1.2 Forefoot in the frontal plane (barefoot) 
The motion of the forefoot for the habitual shod runners showed no significant differences 
from the habitual VFF runners when running barefoot, as shown by the averaged pronation 
and supination (p > 0.05; Figure 4.2).  Throughout the stance phase both the habitual shod 
runners and the habitual VFF runners had negative angles, thus the forefoot was supinated.  
 

The shapes of the two averaged curves do follow the same pattern, however, the habitual 
shod runners are more consistently supinated throughout the stance phase and the habitual 
VFF runners are the most supinated at foot strike  (0% of stance; -10.19°).   
 

  
 

Figure 4.2 Frontal plane forefoot angle with respect to the midfoot during the stance 
phase of running in the barefoot condition. Positive angles reflect pronation and 

negative angles reflect supination. The navy and light blue represent the shod and 
VFF conditions respectively.  
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4.1.3 Forefoot in the transverse plane (barefoot)  
The motion of the forefoot for the habitual shod runners was not significantly different 
from the habitual VFF runners when running barefoot, as shown by the rise and spread of 
the MLA (p > 0.05; Figure 4.3). From foot strike to toe off (0-100% of stance), the habitual 
barefoot runners and the habitual VFF runners had positive transverse plane forefoot 
angles with respect to the midfoot. However, the shod runners have a greater spread of the 
MLA (smaller positive transverse plane forefoot angles with respect to the midfoot). 
 
The shapes of the two averaged curves do not follow the same pattern towards toe off. At 
foot strike (0% stance), both VFF and shod runners had their peak in MLA with shod 
runners totalling 18.2° and VFF runners totalling 26.5°.  
 

 
 

Figure 4.3 Transverse plane forefoot angle with respect to the midfoot during the 
stance phase of running in the barefoot condition. Positive angles reflect a narrowing 

in the MLA and negative angles are seen as the widening of the MLA. The navy and 
light blue represent the shod and VFF conditions respectively.  
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4.1.4 Hindfoot in the frontal plane (barefoot) 
The motion of the hindfoot for the habitual shod runners was not significantly different 
from the habitual VFF runners when running barefoot, as shown by pronation and 
supination (p > 0.05; Figure 4.4). 
 
At foot strike, the VFF runners supinated at the calcaneus and habitual shod runners 
pronated at the calcaneus. At the end of toe off (100% of stance), both the habitual shod 
runners and the habitual VFF runners both decreased their pronation and supination 
respectively. The habitual shod peaked at 3.2° of supination and habitual VFF peaked at 
11.3° of supination. 
 

  
 

Figure 4.4 Frontal plane hindfoot angle with respect to the midfoot during the stance 
phase of running in the barefoot condition. Positive angles reflect supination and 

negative angles reflect pronation. The navy and light blue represent the shod and VFF 
conditions respectively. 
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4.1.5 Hindfoot in the transverse plane (barefoot) 
The motion of the hindfoot for the habitual shod runners was not significantly different 
from the habitual VFF runners when running barefoot, as shown by the adduction and 
abduction (p > 0.05; Figure 4.5). The habitual shod runners peaked at -6.4° abduction and 
habitual VFF runners peaking at 4.1° adduction. 
 
The shapes of the two averaged curves do follow a similar pattern, however the VFF 
runners were mostly adducted throughout the stance phase while the shod runners were 
abducted. 
 

  
 

Figure 4.5 Transverse plane hindfoot angle with respect to the midfoot during the 
stance phase of running in the barefoot condition. Positive angles reflect adduction 

and negative angles reflect abduction. The navy and light blue represent the shod and 
VFF conditions respectively.
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4.2 Habitual shod and habitual VFF running in VFF 

4.2.1 MLA (VFF) 
The motion of the medial longitudinal arch for the habitual shod runners were not 
significantly different from the habitual VFF runners when running in VFF, as shown by the 
averaged MLA height to length ratios (p > 0.05; Figure 4.6). From foot strike to midstance 
(0-50% of stance), the habitual shod runners had negative ratios and arches were widened. 
Habitual VFF runners had higher positive ratios, thus arches were narrowed.   
 
The shapes of the two averaged curves are opposing, as the VFF runners do not peak until 
the end of toe off, whereas the shod runners peak soon towards midstance. The largest 
positive ratio for VFF runners occurred at toe off (100% of stance; 0.19) and the largest 
negative ratio for shod runners occurred soon after foot strike (-0.24) for their respective 
average curves. 
 

 
 

Figure 4.6 MLA data as represented by the height to length ratio during the stance 
phase of running in VFF. Positive ratios reflect a narrowing of the arch and negative 
ratios reflect a widening of the arch. The light blue and navy traces illustrate the VFF 

and shod conditions respectively. MLA is defined as a dimensionless ratio of arch 
height to length. 
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4.2.2 Forefoot in the frontal plane (VFF) 
The motion of the forefoot for the habitual shod runners was not significantly different 
from the habitual VFF runners when running in VFF, as shown by the averaged pronation 
and supination (p >0.05; Figure 4.7). From foot strike to toe off (0-100% of stance), the 
habitual shod runners maintained a pronated stance or a positive angle and the habitual 
VFF runners maintained a supinated stance or a negative angle. 
 
The shapes of the two averaged curves do follow the same pattern, with the habitual shod 
runners peaking their pronation at 0% stance or foot strike (7.6°) and habitual VFF runners 
peaking their supination at foot strike (0% of stance; -13°). 
 

 
 

Figure 4.7 Frontal plane forefoot angle with respect to the midfoot during the stance 
phase of running in the VFF condition. Positive angles reflect pronation and negative 

angles reflect supination. The navy and light blue represent the shod and VFF 
conditions respectively.  
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4.2.3 Forefoot in the transverse plane (VFF) 
The motion of the forefoot for the habitual shod runners was not significantly different 
from the habitual VFF runners when running in VFF, as shown by the rise and spread of the 
MLA (p > 0.05; Figure 4.8). From foot strike to toe off (0-100% of stance), the habitual shod 
runners had negative outcomes (widening of the MLA) and the habitual VFF runners had 
positive outcomes (narrowing of the MLA). 
 
The shapes of the two averaged curves do not follow the same pattern. The VFF runners 
have a rise in the MLA and then a slight decrease and then the MLA peaks at toe off (100% 
of stance) at 14.7°. The habitual shod runners tend to maintain a widened MLA and 
throughout all of stance phase (0-100% of stance).  
 

 
 

Figure 4.8 Transverse plane forefoot angle with respect to the midfoot during the 
stance phase of running in the VFF condition. Positive angles reflect a narrowing in 

the MLA and negative angles are seen as the widening of the MLA. The navy and light 
blue represent the shod and VFF conditions respectively.
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4.2.4 Hindfoot in the frontal plane (VFF) 
The motion of the hindfoot for the habitual shod runners was not significantly different 
from the habitual VFF runners when running in VFF, as shown by the pronation and 
supination (p > 0.05; Figure 4.9). From foot strike to toe off (0-100% of stance), the habitual 
shod runners peaked in supination at foot strike (0% stance; 7.4°) and the habitual VFF 
runners peaked in pronation at midstance (-5.9°). 
 
The shapes of the two averaged curves do not follow the same pattern. The habitual VFF 
runners are pronated at the calcaneus during foot strike, followed by supinated throughout 
the midstance phase and lastly, return to a pronated calcaneus upon toe off. The habitual 
shod runners have a supinated calcaneus followed by a pronated calcaneus up until toe off 
when it returns to being supinated.  
 

 
 

Figure 4.9 Frontal plane hindfoot angle with respect to the midfoot during the stance 
phase of running in the VFF condition. Positive angles reflect supination and negative 

angles reflect pronation. The navy and light blue represent the shod and VFF 
conditions respectively. 



 71 

4.2.5 Hindfoot in the transverse plan (VFF) 
The motion of the hindfoot for the habitual shod runners was not significantly different 
from the habitual VFF runners when running in VFF, as shown by the adduction and 
abduction (p > 0.05; Figure 4.10). The habitual shod runners peaked at -8.2° abduction and 
habitual VFF runners peaking at 1.9° adduction.  
 
The shapes of the two averaged curves do not follow the same pattern. The calcaneus of the 
habitual VFF runners was adducted throughout the stance phase until it abducted on toe off 
and the calcaneus of the habitual shod runners was abducted, with the calcaneus becoming 
increasingly abducted towards toe off.  
 

 
 

Figure 4.10 Transverse plane hindfoot angle with respect to the midfoot during the 
stance phase of running in the VFF condition. Positive angles reflect adduction and 

negative angles reflect abduction. The navy and light blue represent the shod and VFF 
conditions respectively.
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 Table 4.1 Habitual shod runner trials compared to habitual VFF runners in barefoot (BF) and VFF conditions. For 

the hypothesis agreement to occur, the habitual shod running gait should be significantly different from the 
habitual VFF running gait. 

 
 

Type Habitual Shod Habitual VFF Difference 95% CI for diff t p Hypothesis 
Agreement Mean SD Mean SD Mean SD Lower Upper 

MLA 
(dimensionless) 

BF -0.053 0.133 -0.049 0.328 -0.003 0.177 -0.50 0.49 -0.020 0.985 No 

Forefoot frontal (°) BF -0.624 1.24 -9.99 6.20 9.38 3.16 -0.27 19.0 2.97 0.054 No 
Forefoot transverse 
(°) 

BF 8.39 19.5 16.9 27.9 -8.50 17.0 -51.36 34.4 -0.499 0.637 No 

Hindfoot frontal (°) BF -4.73 17.6 1.97 8.21 -6.70 9.70 -33.0 19.6 -0.690 0.526 No 
Hindfoot transverse 
(°) 

BF -3.08 14.3 7.15 3.47 -10.2 7.33 -32.3 11.8 -1.39 0.249 No 

MLA 
(dimensionless) 

VFF -0.162 0.23 -0.054 0.24 -0.11 -0.11 -0.52 0.304 -0.643 0.643 No 

Forefoot frontal (°) VFF 5.57 14.9 -11.3 10.18 16.9 9.01 -5.87 39.7 1.88 0.116 No 
Forefoot transverse 
(°) 

VFF -13.6 20.4 9.54 29.1 -23.1 17.8 -67.8 21.6 -1.30 0.247 No 

Hindfoot frontal (°) VFF -4.89 19.4 0.64 10.6 -5.54 11.0 -34.5 23.5 -0.502 0.639 No 
Hindfoot transverse 
(°) 

VFF 0.49 19.3 -1.16 11.4 1.62 11.2 -27.5 30.7 0.144 0.891 No 
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Chapter 5: Discussion & Conclusions 

5.1 Discussion 
We have observed that there were trends towards significant differences in the forefoot 
kinematics when running barefoot between the habitual shod and VFF runners as exhibited 
by pronation and supination. There were no additional significant differences between 
habitual shod runners and VFF when running either in barefoot or VFF. These findings add 
to literature as injuries can be seen in any type of running and one type of running may not 
be associated with a higher risk of injury. This also supports findings that injury rates were 
not significantly different between VFF and shod running (Altman & Davis, 2016). 
 
Previous studies between barefoot and shod foot kinematics did not define movement of 
the forefoot and hindfoot relative to the midfoot (James et al., 1978; Wolf et al., 2008). One 
great benefit of our study was the specific definition of the midfoot, which, allowed for 
movements of the forefoot, hindfoot and subtalar joint to simultaneously be captured. Most 
importantly, splitting the forefoot into medial and lateral aspects allowed for 
pronation/supination to be quantified. There is little literature studying forefoot movement 
(Messier et al., 2018). 
 
A total of 23 kinematic variables were calculated, representing the motions of the five 
segments of the foot in three planes. These kinematic variables represent data to clinicians 
to better understand how segments of the foot move in relation to each other in various 
planes which could give insight into biomechanical causes of injury.  

5.2 MLA Kinematics 
The MLA height-to-length ratios of the shod and VFF runners do not follow a similar pattern 
during the stance phase when running in VFF or barefoot. Both the shod and VFF runners 
exhibited narrowed arches on initial ground contact. This means that they have a widened 
arch during initial contact followed by a narrowing of the arch during midstance. 
Approaching toe off, the shod runners widened their arches and the VFF runners narrowed 
their arches. 
 
The pattern of arch movement between the VFF runners and shod runners in VFF is 
different, suggesting that perhaps running in VFF are not the same for habitual shod and 
VFF runners. This could emphasize the need for the gradual implementation of VFF into 
training rather than abrupt changes in footwear. The results show that habitual VFF and 
shod runners should be cautious when barefoot running and this aligns with previous 
research (Warne & Gruber, 2017). 
 
The pattern of arch movement between the VFF runners and shod runners in barefoot is 
different, suggesting that perhaps running barefoot is not the same for habitual shod and 
VFF runners. This could emphasize the need for the slow implementation of barefoot 
running into training. 
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The MLA has implications for running as Robbins & Hanna (1987) suggest that MLA 
shortening or rising (i.e. positive magnitude) allows the foot to act as an impact absorber, 
decreasing force and impact and thus decreasing potential injury. The same study suggests 
that MLA shortening aids in the prevention of plantar fasciitis due to the increased shock 
absorption capabilities of the arch when shortened (Robbins & Hanna, 1987). Knowing that 
plantar fasciitis affects a large portion of runners (Macera et al., 1989; Taunton et al., 2002; 
van Gent et al., 2007), and that barefoot runners have a greater risk of fasciitis (Morales-
Orcajo et al., 2018), determining shoe mechanics which aid in MLA shortening may improve 
injury prevalence in long distance runners. 
 
Our results show that habitual VFF runners running in VFF and barefoot do not have the 
same patterns of MLA height to length ratio as habitual shod runners. The results of the 
habitual shod runners agree with the findings that forefoot striking during stance phase 
increases arch height, during ground contact or load acceptance during running (Perl et al., 
2012).  This increasing of the arch height seen could increase the risk of plantar fasciitis, 
knee and ankle pain (Robbins & Hanna, 1987; Pohl, 2009). Barefoot runners likely 
experience arch shortening or narrowing following 4 months of integrating barefoot 
training (Nachbauer & Nigg, 1992; Robbins & Hanna, 1987). This could have implications to 
responses to training as this may be a measure for preventing the development of plantar 
fasciitis (Robbins & Hanna, 1987; Nachbauer & Nigg, 1992).  
 
This study was in line with findings by Shroyer at al., (2011), there were no significant 
changes in arch height between VFF and shod running. This could allude to the idea that 
arches will not fail when wearing minimalist shoes. Therefore, runners trained in habitual 
shod and VFF are subjected to the same injury factors (Shroyer, Etheredge, & Weimar, 
2011). 
 
MLA arch height has implications as it seems that there are indications that habitual 
barefoot runners can train the MLA. This would be done via strengthening of the intrinsic 
foot muscles using VFF. This would cause the MLA to shorten during the stance phase. 
However, this preliminary result indicates that habitual barefoot runners can utilize VFF as 
a training modality for barefoot running, as the movement patterns of the MLA are not 
significantly different.  

5.3 Forefoot kinematics  
There was a trend towards significant differences between the habitual shod and VFF 
runners when running barefoot. Shod runners exhibited a neutral stance on ground contact 
and pronated their feet at toe off. VFF runners exhibited supination on ground contact and 
remained in supination on toe off. 
 
There was no significant difference between the habitual shod and VFF runners when 
running in VFF. However, shod runners exhibited a pronated forefoot on ground contact 
and remained pronated at toe off. VFF exhibited supination on ground contact and 
remained supinated on toe off. 
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With regards to forefoot kinematics, there is some information on forefoot movement 
during running (Morio et al., 2009), but less literature that specifically compares the 
forefoot movement of a heel striker and a forefoot striker (Soares et al., 2018; Takabayashi, 
Edama, Yokoyama, & Kanaya, 2018). The foot is often referred to as one rigid segment. This 
quantifies how the foot moves with respect to the shank rather than exploring the forefoot 
as a separate segment allowing for the exploration of pronation/supination and forefoot 
spreading. 
 
There is a decreased ground contact time seen in runners with a forefoot strike (i.e. VFF and 
barefoot runners), compared to those with a rearfoot or midfoot strike (Nunns et al., 2013), 
however, forefoot striking also increases pressure put on the metatarsal heads (Morales-
Orcajo et al., 2018). This increased pressure has shown to increase plantar connective 
tissue stress which can lead to plantar fasciitis (Chen, Wong, Wang, Lin, & Zhang, 2019).  
 
Pronation seen in shod running in both barefoot and VFF conditions emphasizes the need 
for shod runners to slowly integrate barefoot mimicking or barefoot running into training 
while switching to a forefoot or midfoot strike (Warne & Gruber, 2017) as it may alter their 
biomechanics and could lead to injury. 
 
These findings are not in alignment with (Kurup, Clark, & Dega, 2012), who stated that 
regular users of soled shoes tend to show more forefoot supination. Upon toe off, our 
results are mixed compared with previous research which stated that supination occurs to 
propel the body forwards (Dugan & Bhat, 2005; Rodgers, 1988).  
 
The habitual shod runners (i.e. rearfoot strikers), typically have slightly supinated forefoot 
(Rodgers, 1988), which was evident in barefoot but not in VFF running. Rearfoot strikers 
have an increased amount of forefoot pronation, which was evident with the habitual shod 
runners running barefoot and VFF (Stacoff, Kaelin, Stuessi, & Segesser, 1989). This is 
further supports the necessity for habitual shod runners to slowly implement barefoot 
running into training routines. 
 
There was no significant difference seen between the habitual shod and VFF runners when 
running barefoot. Shod and VFF runners exhibited similar patterns of arch widening on 
ground contact, followed by arch narrowing during midstance, and then were opposite on 
toe off. 
 
There was no significant difference seen between the habitual shod and VFF runners when 
running in VFF. Shod and VFF runners exhibited different patterns. The habitual shod 
runners showed arch widening on ground contact, which increased until midstance, before 
narrowing and then widening on toe off. The habitual VFF runners showed arch narrowing 
on ground contact and remained consistent until toe off. It appears as though VFF in all 
conditions changed the way that the MLA rises and falls during the stance phase and more 
specifically, during toe off. This is inconsistent with findings that barefoot runners exhibit a 
wider arch on foot strike (De Wit et al., 2000). 
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While the VFF runners raise the arch approaching toe off by tightening the windlass 
mechanism (i.e. extending the hallux), the habitual shod runners do the opposite in both 
barefoot and VFF. Shod runners exhibited an even flatter arch at toe off when running in 
VFF and barefoot. This is inconsistent with previous findings (De Wit et al., 2000), and is 
important as tightening and narrowing of the arch is necessary to propel the body forward 
into the swing phase of running gait. Our results indicate that the VFF runners effectively 
use the windlass mechanism, and that shod runners do not, both in running barefoot and in 
VFF. In both cases, the habitually shod runners had widened arches, which could suggest 
that intrinsic muscle training happens when habitually running in VFF that increases the 
propulsion caused by the windlass mechanism. The widening of the arch is also attributed 
to larger external loading rates and can be assumed that this is a mechanism to reduce 
initial pressure on ground contact (De Wit et al., 2000). This could have implications on 
injuries for habitual shod runners running barefooted or in VFF as they have not adopted 
this compensation strategy. 

5.4 Hindfoot Kinematics 
There was no significant difference between the habitual shod and VFF runners when 
running barefoot. Movement patterns were similar except on initial ground contact where 
VFF runners exhibited supination and habitual shod runners were pronated. 
There was no significant difference seen between the habitual shod and VFF runners when 
running in VFF. Movement patterns were similar except on initial ground contact where 
shod runners exhibited supination and habitual VFF runners were pronated. 
 
With regards to the hindfoot, it appears as though conditions peak in pronation around 
midstance. This data provides support that shod and VFF runners do not mimic hindfoot 
movement patterns of each other.  
 
Typically, movement of the foot while running follows the same pattern: supination during 
foot strike, followed by pronation halfway through stance and then supinates until toe off 
(Clark, Frederick, & Hamill, 1983). The pronation seen by shod runners running barefoot 
and the VFF running in VFF is a means of decreasing force upon ground contact and 
subsequently the force placed on the body (Clark, 1983; Dugan, 2005). Excessive pronation 
causes the tibia to rotate medially, and can be connected to increased rates of injuries of the 
lower body (Bates et al, 1978; James et al, 1978; Nigg & Luethin, 1980; Schuster, 1978; 
Subotnick, 1981; Clark, 1983). This could have implications for the VFF running barefoot 
and shod runners running in VFF as they were supinated on ground contact and suggest 
that they are not the same. This suggests and goes against findings that the body alters the 
foot strike to limit ground reaction forces as a mechanism to reduce injury (Clark et al., 
1983; Dugan & Bhat, 2005). 
 
It is important to note that research done by Pohl et al. (2006) found that there was a lack 
of coupling between rearfoot inversion/eversion and forefoot inversion/eversion while 
running barefoot. This means that the frontal plane motion of the forefoot has little to do 
with movements that occur in the frontal plane of the hindfoot. Anatomically during foot 
strike, the heel hits the ground and causes the foot to immediately supinate after which it 
pronates (Clarke, 1983). This was observed in the shod runners running in VFF only, but 
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was not consistent with results seen by the VFF runners running either barefoot or in VFF. 
This indicates that VFF do not mimic the natural movement pattern of the foot during 
running. This is congruent with findings stating that the more stiff a shoe, the more the 
natural movement of the foot was constrained (Stacoff, et al. 1989;1991). However, in 
comparison to what is stated above with respect to overall intersegmental foot movement 
over the stance phase, results do agree with work done by Nachbauer & Nigg (1992), 
stating that increased ankle supination is used to decrease force when runners are adapted 
to running barefoot. This study attributed this increased ankle supination to neuromuscular 
control mechanisms that work to keep the force at the same magnitude, thus injury rates 
should not be different (Nachbauer & Nigg, 1992). These mechanisms include larger knee 
flexion at initial ground contact, increased ankle supination at ground contact and larger 
pronation (Nachbauer & Nigg, 1992). This may lead towards VFF mimicking barefoot 
running as increased ankle supination is present. 
 
Motion patterns of rearfoot strikers show that the heel will be slightly supinated upon heel 
strike and at midstance, the foot will be pronated from 55-85% of the stance phase and the 
foot will supinate and return to neutral around 70-90% of the support phase (Rodgers, 
1988). This was seen in the habitual shod runners running in VFF which suggests that foot 
strike patterns did not change from rearfoot to forefoot and VFF do not mimic barefoot 
running. 
 
The pronation seen the conditions of the habitual shod runners running barefoot and the 
shod runners running in VFF could be a mechanism for injury as pronation is thought to 
cause knee pain and shin splits (Rodgers, 1988). Clark, et al. (1983) suggests that more than 
13 degrees of pronation is excessive and could lead to injury. There were some shod 
runners running barefoot that were close to 13 degrees of pronation who should be 
cautious when barefoot running. Differences seen in shod runners between the barefoot 
and VFF running suggest that these are not similar. 
 
Supination seen in the habitual shod runners running in VFF and the VFF running barefoot 
during the first half of stance phase is controlled by the tibialis posterior (Stackhouse, et al. 
2004). Reducing the supination upon the initial phases of stance could alleviate injuries 
such as posterior tibial tendonitis (Stackhouse, et al. 2004). 
 
The increases in hindfoot pronation seen with the habitual shod runners running barefoot, 
and the habitual shod and VFF runners running in VFF is similar to results found in a 
similar study and shown to be a factor in overuse injuries (Stacoff, et al. 1989; 1991). 
Movement of the forefoot has shown to impact pronation of the rearfoot and thus torsional 
stiffness needs to come from the foot and importantly, the shoe (Stacoff et al., 1989). Having 
a stiff shoe sole can decrease torsional movement, which, would lead to increased pronation 
and injuries (Stacoff et al., 1989). This suggests that habitual runners running barefoot or in 
VFF can be at risk for injury (Clark et al., 1983). 
 
There were no significant differences seen in the habitual shod and VFF runners running 
barefoot. Movement patterns opposed each other with the shod runner being more 
abducted throughout the stance phase and the VFF runners being more adducted.  
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There were no significant differences seen in the habitual shod and VFF runners running in 
VFF. Movement patterns mirrored each other in that both trended to be more adducted on 
initial ground contact and abducted on toe off. In hindfoot adduction/abduction, shod 
runners appeared to mimic that of the VFF runners when running in VFF especially during 
the last quarter of the stance phase. The hindfoot of the habitual VFF runners maintains 
adduction, while habitual shod runners maintain abduction in both the VFF and barefoot 
conditions, which could help prevent injuries (Morio et al., 2009). This study found that the 
sole of the shoe constrained adduction, which is interesting to note that the shod runners 
experienced this when running barefoot and in VFF.  
 
Results here disagree with that of Freychat et al., (1996), that there is less forefoot 
abduction and adduction when running barefoot. When comparing movement patterns 
during stance phase after initial impact, conditions were opposite in VFF and barefoot 
running. Opposite with results found by Morio et al., (2009), minimalist shoes seemed to 
interfere with the amount of abduction seen in this study with regards to habitual shod 
runners. These findings highlight that VFF may dampen the ability of the foot to abduct 
during the stance phase of running and suggesting that therefore there is may be an 
increased risk of injury from excessive adduction or abduction during running (Morio et al., 
2009).  

5.5 Limitations 
Our study findings were limited to looking at barefoot and VFF conditions but it would be 
interesting to compare the findings to that of habitual VFF running shod. Due to time 
constraints, trials of shod running were not analyzed. Analysis of this condition would 
provide interesting comparisons. 
 
There were limitations as we did not measure ground reaction force data. This data may 
provide insight in whether shod runners adapt a barefoot running pattern by decreasing 
force at time of impact. This would have relevance into the use of barefoot simulated shoes, 
as GRFs could be compared between shod, barefoot simulating shoes and barefoot running. 
The use of GRF data could add to integrating barefoot running into running plans based on 
injury studies.  
 
Skin motion artifact, movement of markers may not be an accurate description of 
movements of the underlying bones.  
 
There were limitations on current data that compared the movements of the forefoot 
separate to the hindfoot. Planes of motion are not usually studied. The lack of data should 
be further explored as the trend of barefoot running is becoming more prominent (Rodgers, 
1988). 
 
Camera placement affects the accuracy of motion capture and their ability to see and define 
markers that are in motion, small and close together. This was especially important on the 
medial side of the right foot. The MSFM requires a marker on the hallux, the shaft of the 1st 
metatarsal and the navicular, thus the three marker clusters appear in very close 
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proximities especially during running. Moving the 12 cameras towards the lower half of the 
body may have been more accurate for viewing the trajectory of the markers, however this 
lab and camera set up was created and is used for the purpose of clinical gait analysis using 
the whole body. Having more habitual barefoot runners would be beneficial to represent 
typical foot motions of that group.  
 
The relatively short running path (approximately 10 m) may have hindered the ability of 
the participants to achieve steady-state running mechanics. 
 
The last limitation was the small sample size and thus a low statistical power. Our two 
sample groups each contained four subjects. In addition to these statistical considerations, 
the small sample size likely makes it difficult to extrapolate the findings to the general 
running population. It would be difficult for any conclusions or suggestions to be made in 
regards to injury prevention based on these findings.  

5.6 Strengths 
This five segment foot model allowed for the separate description of movements of the 
hindfoot, forefoot and midfoot in habitual shod and VFF runners.  This model also allowed 
for transverse and frontal planes to be examined and specific movements to be studied. 
Thus we were able to explore movements in two planes and not simply a comparison of the 
forefoot relative to the hindfoot. This model also outputs 23 kinematic variables so a 
thorough comparison was achieved.  

5.7 Conclusion 
Overall, we observed altered movement patterns between the segments of the foot of 
habitual VFF runners compared to habitually shod runners.  This study shows that VFF may 
affect the movement on the foot. This is seen with the trend for significant difference in 
forefoot pronation/supination between the habitual barefoot runners and VFF runners 
running barefoot. This suggests that VFF may constrain the way the forefoot and hindfoot 
are able to move due to the reduced torsional movement caused by a stiff shoe sole (Stacoff 
et al., 1989). Possibly, the elastic nature and webbing of the VFF is enough to add this 
reduced torsional movement. Motion of the hindfoot was not significantly different when 
transitioning from a running shoe to either barefoot or VFF. Together, this reflects that 
there is almost immediate adaptation in response to switches between running shoes. 
Given the biomechanical challenges of running barefoot or wearing VFF, these rapid 
adaptations reinforce the necessity to slowly implement this training modality. The slow 
implementation should decrease potential injury as shown with altered movement 
patterns.  We suggest that habitual VFF and shod runners should be cautious when barefoot 
running. This recommendation aligns with previous research (Warne & Gruber, 2017). 
Runners should also be cautious when integrating VFF as a substitution to barefoot 
running.  
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Appendix A 
 

Letter of information (Participant): 
Barefoot running and barefoot-mimicking biomechanics study 

 
Principal Investigator: Dr. Tom Jenkyn 

Department of Mechanical and Materials Engineering, Western University 
Study site: WOBL Lab, Room 1215, 3M, Western University 

 
INTRODUCTION 
 

You are invited to participate in a research study looking at how barefoot-mimicking 
running shoes impact running kinematics and performance. The purpose of this letter is to 
provide you with the information you require to make an informed decision on whether 
you would like to participate in this research.  
 
This study is important as running related injuries are often associated with excessive 
motion of the segments of the foot. Despite advances in running shoe technology and 
design, the rates of repetitive injury are unchanged [1]. Barefoot running is a relative new 
technology and the science has become a popular topic in recent years with the 
introduction of shoes such as the Nike Free and VFF as some of the popular barefoot 
running simulating shoes. 
 
Barefoot running and barefoot running shoes aim to mimic the shape of the foot, mimic the 
movement of the foot during barefoot running or mimic the feeling of barefoot running [2]. 
It is thought that designing shoe types for specific types of feet will help decrease running 
injuries caused by excessive motion of the foot. A better understanding of how the foot 
moves and shoe’s motion control systems will decrease these injuries.  
 
This project is conducted by a Western University MSc candidate (Lisa Oikawa) under the 
supervision of Dr. Tom Jenkyn. 
 
 
SUMMARY EXPLANATION OF RESEARCH 
The aim of this study is to gain insight into barefoot running and barefoot running 
mimicking shoes. There will be 50 habitual barefoot adult runners that will perform various 
running tasks. To observe the movements we will use an optical motion capture system that 
uses 10 cameras and a series of markers that attach to land marks on your body.  
 
DESCRIPTION OF THE RESEARCH PROCEDURES 

The trials will involve recording body and shoe or foot kinematics while you perform a 

series of brief runs. Things that you need to bring to the testing session are your own shorts 

and a t-shirt. Reflective markers will be placed with hypoallergenic tape and will not 

interfere with your movements. There will also be markers located on the shoes. You will 
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be performing a series of 4 basic runs in an indoor facility. These short runs will be 

recorded using video and motion capture cameras. The video will assist in the analysis of 

barefoot running and barefoot running mimicking shoe kinematics. This experiment will 

require one session approximately 30 minutes in duration.  

 

MARKER PLACEMENT 
For each gait analysis, each subject will wear the modified Helen Hayes marker set 
(standard for motion analysis on humans) consisting of 22 passive reflective markers, 
which will allow the motion analysis system to record their movements. The markers are 
attached with double sided adhesive discs over the following landmarks: left and right 
shoulder, right scapula, left and right elbow, left and right wrist, left and right hips, sacrum, 
left and right knee, left and right lateral ankle, left and right toe of shoe, left and right heel of 
shoe, left and right thigh, and left and right shank wand.  The feet are tracked with an 
additional ‘Multi-segmented Foot Model’ marker set.  Clusters of three markers are placed 
on the hallux, first metatarsal, fifth metatarsal, and the heel.  A single marker is placed on 
the navicular.   These markers are attached with the same adhesive as all other markers. 
 
PUBLICATION OF RESULTS 
If you wish, sample data will be reviewed with you at the end of the session. You will have 
the opportunity to consent today to receive a copy of the final results of this study. If you 
indicate that you would like to receive the final results of this study, then we will send you 
this data via e-mail. Results of this research will be published in scientific journals and 
presented at conferences. 
 
BENEFITS 
You will not be compensated for your time. Your participation will help us obtain 
knowledge that may minimize future running injury through modifying running shoe and 
barefoot running mimicking shoe design. 
 
RISK/HARMS 
There is a minimal risk of injury when performing these experiments. There will be no 
obstacle or uneven terrain, and the number of repetitions is limited; therefore, the risk of 
injury is below that of an outdoor run.  
 
LOCATION 
The testing will take place in the Wolf Orthopaedic Biomechanics Lab (WOBL) at Western 
University  
 
PARTICIPATION 
Your participation is strictly voluntary. You may refuse to participate, refuse to answer any 
questions or withdraw from the study at any time with no effect on your athletic, academic 
or employment status. If you are participating in another study at this time, please inform 
the researchers right away to determine if it is appropriate for you to participate in this 
study. 
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CONFIDENTIALITY  
We hope to learn more about running biomechanics and begin to understand how barefoot 
mimicking equipment affects performance. You will not directly benefit from this study, but 
may receive insight on how shoes and running barefoot affect your performance. Kinematic 
and video data will be stored on an external hard drive and locked in a secure filing cabinet 
in the Joint Biomechanics Laboratory at Western University. You will not be identified in 
these files. Paper files containing your identity will also be stored in a locked filing cabinet. 
These data will be retained for five years so that we can use it for future analyses as well as 
for illustrations in scientific meetings, scientific manuscripts and potential teaching 
opportunities. We will obscure your face in these images in order to protect your 
confidentiality. Representatives of the Western University Health Sciences Research Ethics 
Board may contact you or require access to your study-related records to monitor the 
conduct of the research. There are two copies of this consent form; one which the 
researcher keeps, and one that you keep.  
 
The purpose of collecting your full name and partial date of birth is to give identifiers for 
future work. This study is the first of many observing barefoot running mimicking 
biomechanics; therefore, we request consent to use your data in future studies and to 
contact you for future research. If you choose to not give permission to use your data for 
future studies or to be contacted for future studies your data and personal information will 
be disposed of accordingly. Your decision on this matter has no effect on your athletic, 
academic or employment status 
 
NO WAIVER OF RIGHTS 
You do not waive any legal rights by signing the consent form.  
 
CONTACT PERSON  
If you have any questions or concerns about the study or about being a subject, you should 
contact the principal investigator, Dr. Tom Jenkyn, Department of Mechanical and Materials 
Engineering, Western University, _______. If you have any questions about your rights as a 
research participant or the conduct of the study you may contact the Office of Research 
Ethics ___________, email _________. 
 

This letter is for you to keep. 

You will be given a copy of this letter of information and consent form once it has 

been signed.



 90 

 

Consent Form: Barefoot running and barefoot-mimicking biomechanics study 
I have read the letter of information, have had the nature of the study explained to 
me and I agree to participate. All questions have been answered to my satisfaction. 
 
Participant’s Signature: __________________________________________________________ 
 
_______________________     _________________ 
Printed name     Date: 
 
 
Do you wish to receive a copy of the results of this study? 
 No  Yes 
 

If Yes, please provide your e-mail address: ____________________________ 
 

Do you consent to the use of video cameras during the testing session? 
 No  Yes 
 
Do you consent to using your data for future research projects? 
 No  Yes 
 
Can we contact you to participate in future studies? 
 No  Yes 
 
If Yes, you may change your mind and withdraw your data at a future time by contacting Dr. 
Tom Jenkyn at the above address. 
_______________________________________________________________ 
 
Do you consent to us using de-identified images from the video for scientific presentations, 
scientific manuscripts or for purposes of teaching? 
 No  Yes 
 
Person Obtaining Informed Consent: 
 
Signature: ____________________________________________________________ 
 
_______________________   _________________ 
Printed name     Date: 
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Appendix B 

Research Participant 
Recruitment 

 
 

THE WOLF ORTHOPAEDIC BIOMECHANICS 

LABORATORY IS LOOKING FOR PARTICIPANTS! 
 
THE STUDY:  
Looks at how the bones of ‘normal’ feet interact during barefoot running and 
within barefoot-mimicking running shoes.  Measures of the change in bone 
motion in the foot will be done by comparing the results from 'optical motion 
capture' using the multi-segment foot model. 
 

WHAT YOU HAVE TO DO: 
You will have to come in for half an hour where we will stick reflective 
markers on several locations on your foot and body with double-sided tape.  
You will be asked to stand still and run a series of indoor trials. 

 
WHO TO CONTACT: 
Send an email to _________ 
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Appendix C 
 
Telephone Script for Recruitment 
 
Hello, may I please speak with {insert the name of the potential participant here}. 
*If the potential participant is not home ask if there is a better time to call. Do not leave a 
message as it may be a confidential matter you are calling about that may not be apparent to 
you* 
*If they are home, continue with the conversation* 
 
Hi, {insert the name of the potential participant here} this is Lisa Oikawa calling from the 
Wolf Orthopaedic Biomechanics Laboratory at Western University.   
I am calling today to ask if you are interested in a research study that we are conducting.   
 
The study is being conducted by Dr. Thomas Jenkyn and will look at how the bones in the 
foot interact both during barefoot running and while wearing barefoot-mimicking running 
shoes.  This project is designed to accurately measure the change in bone motion in the foot 
by comparing the results from 'optical motion capture' using the multi-segment foot model.  
You will be required to come in for half an hour where we will stick reflective markers on 
several locations on your foot and body with double-sided tape.  You will be asked to stand 
still and run a series of indoor trials. Would you be interested in hearing more about this 
study? 
 
*If no, thank them for their time and say good-bye* 
*If yes, continue to explain the study details to them based on the letter of information* 
I am now going to read you the letter of information over the phone {Clearly read the letter 
of information the participant over the phone}  
Do you have any questions? 
{Answer any questions they may have} 
Do you agree to participate in this study?  
*If yes, continue with the study 
*If no, thank them for their time and say good-bye 
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Appendix D 

 
Summary of kinematic outcomes 
 
Author Model Running 

Conditions 
Variable 
Studied & 
Definition 

Outcome 

Bates, et al. 
(1978) 

Stop-action 
projector 
*2 dimensional 

Barefoot 
running & 
Nike shoes 
on 
treadmill 

-Pronation: 
eversion of the 
calcaneus 
relative to 
shank 
-Supination: 
inversion of 
calcaneus 
relative to 
shank 

-Pronation BF: began sooner 
and ended later (% stance 
phase) & time in pronation 
higher, max pronation occurs 
later 
-RF strike: upon contact heel 
is supinated, between heel 
strike and 20% stance phase 
the foot pronates until 85% 
-Max pronation occurs at 35-
40% stance phase 

De Wit, et 
al. (2000) 

Video tape & 
skin mounted 
markers (body, 
calcaneus, 
shank, Achilles, 
5th) 
*2 dimensional 

Barefoot & 
Shod 

-Sagittal plane: 
extension & 
flexion of 
calcaneus 
relative to 
shank 
-Frontal plane: 
posterior 
shank relative 
to Achilles and 
calcaneus 

-BF: significantly smaller 
initial eversion at impact, 
higher step frequency, flatter 
foot at touchdown (higher 
plantar flexion) 
-No differences seen at toe 
off 
-Sagittal plane: consistent 
-Frontal plane: not 
consistent (overall; hindfoot 
less inverted) 

Lieberman, 
et al. 
(2010) 

Infrared 
camera system 
with reflective 
skin mounted 
markers  
*3 dimensional 

Barefoot & 
Shod  

-GRF and 
impact 
transients 
-Strike type 

-Habitually shod adopt a 
flatter foot (dorsiflex 7-10 
degrees less) 
-BF: MLA stretches passively 
during first half of stance 
-Shod: MLA stretches 
passively later in stance 

Morio, et al. 
(2009) 

Two segment 
foot model 
using 17 
reflective 
markers 

Barefoot & 
Shod 
(rearfoot 
strikers) 

-Forefoot 
(metatarsals) 
to rearfoot 
(calcaneus) 
relative motion 
-Frontal plane: 
PF/DF 

-BF: more eversion of the 
forefoot and it occurred 
faster than shod, high 
variability between subjects 
at push-off, sig. higher add  
-Sandals: range of eversion 
reduced by 20% and 60% in 
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-Sagittal plane: 
inv/ev 
-Transverse 
plane: add/abd 
-Forefoot 
spreading 
(metatarsals) 

late stance, forefoot 
inversion during pushoff, 
eversion is reduced 
-Sole of shoes constrain 
inv/ev and adduction 
-Shoes constrain forefoot 
spreading & pronation 
during toe off 
-Sandals constrain add/abd 
and do not follow natural 
motion 

Wolf et al. 
(2008) 

   -Footwear constrains 
forefoot spreading, foot 
pronation during toe off 
-Forefoot to rearfoot 
add/abd may be dependent 
on flexibility of the upper 
covering of the shoe 

Nachbauer 
& Nigg, 
(1992) 

Video analysis 
of arch height 
with reflective 
markers 

Shod -MLA height 
-GRF 

-Flattening values between 
0.1 and 0.8 cm show 
evidence that foot structures 
change during stance phase 
in running 
-Rigidity of the foot due to 
low flattening could improve 
propulsion of the foot 
-Should be explored multi-
segmentally  

Nunns, et 
al. (2013) 

Active markers; 
greater 
trochanter, 
L&M 
epicondyle, 
shank, gastroc, 
L malleolus, 
posterior 
calcaneus (2), 
M cuneiform, 
3rd metatarsal, 
5th MP joint 

Habitually 
shod 
runners 
running 
barefoot 

-Barefoot foot 
strike modality 
and pressure 
patterns 

-Ground contact time is sig. 
shorter with a forefoot or toe 
strike 
-FFS & TS: ankle is 
plantarflexed at contact 
-HF & MF: ankle is 
dorsiflexed at contact 
-No differences in rearfoot 
kinematics 
-Runners did not adapt to 
barefoot running and simply 
used their typical running 
style 

Perl, et al.  
(2012) 

8 camera Oqus 
system: 
infrared 
markers; 1st 
met, navicular, 

Habitually 
barefoot or 
minimalist 
runners 
running BF 

-Arch strain -FFS: flattened arch from 
contact to midstance and 
heightened slightly before 
toe off 
-RFS: arch was slightly 
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M calcaneus, 
Achilles, L 
malleolus, L & 
M femoral 
epicondyle, 
fibula, greater 
trochanter 

higher at impact and 
flattened until midstance and 
heightened slightly at toe off 
-Minimalist shoes may allow 
more elastic energy storage 
in the MLA by having greater 
movement 

Pohl & 
Buckley, 
(2008) 

Seven 
ProReflex 
cameras; 17 
reflective 
markers-
forefoot, 
rearfoot and 
shank 

Habitually 
shod 
runners 

-BF running 
with either a 
toe strike, 
forefoot strike 
or rearfoot 
strike 

-Rearfoot strike: rearfoot 
eve, shank internal rotation, 
forefoot dorsiflexion, 
forefoot abduction sig. lower  
-RF eve/inv and forefoot 
abd/add are highly coupled 
-RF running: more inverted 
rearfoot during forefoot 
strike; magnitude HF-12°, 
FF-17.9° 
-RF running: eversion; 
magnitude HF-11.1° and FF-
9.1° 
-FF: abd and add coupled 
with RF inv/eve (particularly 
in HF strike). Less forefoot 
abd during early stance 
-FF transverse plane motions 
are coupled with rearfoot 
frontal plane 

Stackhouse, 
et al. 
(2004) 

Retro-reflective 
markers; 
greater 
trochanters, 
lumbo-sacral 
joint, L & M 
femoral 
condyles, M & L 
malleoli, M & L 
borders of 1st & 
5th, forefoot 

Shod 
running 

-Forefoot and 
rearfoot shod 
running 

-RF running: more inverted 
rearfoot during forefoot 
strike; magnitude HF-13.7°, 
FF-16.4° 
-RF running: eversion; 
magnitude HF-10.5° and FF-
8.8° 
-Tibialis posterior is 
responsible for control of 
inv/ev so orthotics may help 
prevent injuries 

Robbins & 
Hanna, 
(1987) 

Weight bearing 
platform & x-
ray 

BF running MLA -Shortening of the arch can 
only be attributed to 
activation of the intrinsic 
muscles of the arch 
-Skeletal muscular 
conditioning is a progressive 
change occurring over 2-3 
months 
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-Ability of the arch to change 
allows for dampening of 
impact and therefore 
decreases injury rates 

Squadrone 
& Gallozzi, 
(2009) 

Instrumented 
treadmill with 
preferred foot 
strike 
technique & 
video camera. 
Circular 
markers were 
used; 
acromion, 
greater 
trochanter, lat 
condyle, fibula, 
lat malleolus, 
calcaneus, 5th 
MP 
*2 dimensional 

Habitually 
barefoot 
runners 
running in 
VFF and 
barefoot 

-Foot angle 
relative to the 
ground 

-Ankle joint 
angle 

-Plantar 
flexion angle 

-When given 10 days  
-Sig. more ROM with VFF 
(total) 
-Values and results of VFF 
were closer aligned to shod 
running 
-Lower extremity kinematics 
did not change  
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Appendix F 
 
 

 
 

 
LISA OIKAWA 
______________________________________________________________________________ 
 
 

 
 

 
 
SUMMARY OF SKILLS 

• 5 years+ of professional working experience in a dynamic customer service environment 
• 3 years of working experience in a C2B sales environment 
• 2 years of working experience in a B2B sales environment 
• 5 years + of working experience in CRM systems such as Salesforce and Microsoft Dynamics 
• Highly proficient in the Microsoft suite 
• Highly professional and experienced in communicating with consultants, industry professionals, the public 

community as well as managing partnerships and relationships 
 

 
WORKING EXPERIENCE 
 

AEROTEK             May 2017 - Present 
Account Manager           June 2018 – Present 
• Responsible for business development in a B2B manner, gaining and maintaining client relationships 

within the professional services and engineering consulting field 
• High focus on customer service, working within the 1/24 rule, getting back to every inquiry within the 1 

hour mark and responding with a solution within 24 hours 
• Responsible for managing a team of up to 5 people, developing, leading, training and performance 

managing work 
• Responsible for multitasking and maintaining a high level of data integrity within Salesforce, updating 

account information, contact information and meeting notes 
• Responsible for keeping up with KPIs, such as making over 75+ outbound calls, meeting with a minimum 

of 14 new and prospective clients per week 
• Responsible for dealing with tough customer inquiries and quick decision making 
 

Recruiter                      May 2017 – May 2018 
• Responsible for creating relationships within the professional services, engineering and architecture 

community 
• High focus on customer service, working within the 1/24 rule, getting back to every inquiry within the 1 

hour mark and responding with a solution within 24 hours 
• Responsible for keeping up with KPIs, such as making over 100+ contacts, 25+ phone screens or intake 

calls, 5+ meetings per week and updating all information 
• Responsible for multitasking and maintaining a high level of data integrity within an internal CRM system 
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