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Abstract 

This dissertation investigates the use of dental anthropological methods for estimating 

chronological age-at-death in ancient Egypt, and determines whether these methods can be 

improved. Tooth calcification, emergence and eruption standards are time honoured in their 

ability to accurately age subadults though they are compromised by the fact that populations 

and the sexes vary in their developmental timing. Determining sex in subadults, particularly 

in the infant and child cohorts, in all populations is not possible, though advances in ancient 

DNA methods hold promise. This dissertation provides a feasible and ethical model for 

developing a sex-and region-specific standard for age estimation of subadults for use on 

ancient Egyptian samples.This method rectifies methodological errors affecting the accuracy 

of pre-existing standards; and thus, demonstrates that macroscopic subadult dental age 

estimation methods can be improved.  

Moreover, using a photographic sample of occlusal dentition from the Kellis 2 cemetery 

population in Roman Period Egypt, a new method for adult dental age estimation is designed 

and tested. To this end, the percentages of exposed occlusal dentine in first and second 

molars were calculated through photogrammetry, in a technique shown to have little intra- 

and inter-observer error. These data showed a strong linear correlation with skeletal age 

estimates, and varied significantly from the popular Brothwell (1963a) standard for age 

estimation based on dental wear. Dental caries and antemortem tooth loss were similarly 

tested for correlation with skeletal age, with only antemortem tooth loss showing a strong 

correlation. As a result, linear regression models were designed and tested for quantified first 

and second molar wear as well as antemortem tooth loss. Multiple regression models for all 

combinations of these dental indicators of age were also designed and tested. Although it is 

also recommended that these models are revised with expanded reference samples, these 

standards improve the ability to estimate age in individuals from the Kellis 2 cemetery 

population. It is recommended that these standards are tested and modified for use on 

geographically- and temporally-diverse populations to determine the boundaries of its 

application beyond a single population sample. 

In summary, this study rejects the null hypothesis (Ho): ‘Current dental age estimation 

standards cannot be improved’. Consequently, this dissertation serves to encourage the 

creation of more accurate and precise subadult and adult macroscopic dental age estimation 

standards. 

Keywords 

Age estimation, senescence, dental age estimation, dental development, dental attrition, dental 

wear, primary and permanent teeth, subadult, adult, public oral health, Egypt, North Africa, 

Middle East, physical anthropology, forensics, archaeology, dentistry, orthodontics, 

population studies. 
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Lay Abstract 

This dissertation investigates the use of dental anthropological methods for estimating age-at-

death in subadult and adult ancient Egyptians, and their potential for improvement. Dental 

developmental standards are time honoured in their ability to accurately age subadults. 

Unfortunately, they are compromised by the fact that developmental timing can vary among 

populations and between the sexes. This dissertation presents an improved method for 

developing a region- and sex-specific standard for age estimation of subadult Egyptians. This 

feasible and ethical method rectifies methodological errors affecting the accuracy of pre-

existing subadult dental aging standards. This demonstrates potential for improved age 

estimation in subadults. 

Using a photographic sample of occlusal dentition from the Roman Period Kellis 2 cemetery 

in Egypt, a new method for adult dental age estimation is also designed and tested. To this 

end, dental wear is quantified through photogrammetry in first and second molars. These data 

were used to create linear regression models that can be used to predict age based on dental 

wear. These models vary significantly from the popular Brothwell (1963a) standard for age 

estimation based on dental wear. Dental caries and antemortem tooth loss were similarly 

tested for correlation with skeletal age, with only antemortem tooth loss showing a strong 

correlation. Consequently, linear regression models were also designed and tested for 

antemortem tooth loss. Multiple regression models were also created to incorporate all 

combinations of these dental indicators of age in an effort to increase accuracy. 

Unfortunately, in some cases, the small sample sizes applicable to multiple regression models 

indicate that these models should be revised with expanded reference samples. Nevertheless, 

these standards improve the ability to age adults from Kellis 2 cemetery population. In future, 

it is recommended that these standards are tested and modified for use on geographically- 

and temporally-diverse populations to test its applicability beyond a single cemetery 

population. 

In summary, this dissertation rejects the null hypothesis (Ho): ‘Current dental age estimation 

standards cannot be improved’. Consequently, this dissertation serves to encourage the 

creation of more accurate and precise user-friendly subadult and adult macroscopic dental 

age estimation standards.   
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Epigraph 

 

 

 

 

 

 

 

“While we agree that the current status of age estimation in paleodemography is largely that 

of an “art,” we see no apparent reason why we should not strive to make it a science.” 

~ Lyle Konigsberg and Susan Frankenberg (1992: 253) ~ 
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Dedication 

For those who give me strength. 
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Selected Definitions 

 

Age: For the purpose of this dissertation, it should be kept in mind that age can be attributed 

as a result of cultural factors (e.g. the cultural definition of adulthood), chronology (e.g. 

based on an accepted chronological measure, such as Gregorian calendar years), or biology 

(e.g. the chronological age estimated through the use of biological indicators such as dental 

development). This dissertation is focused on the relationship between biological age and 

chronological age, and the potential for improved estimates of chronological age through the 

observation of biological age indicators. However, it must be noted that biological age can be 

affected by many factors and thus, cannot be equated to chronological age.  

Population-specific standards: For the purpose of this dissertation, “population-specific 

standards” refers to methods of age estimation based on, and intended for use on, a specific 

population within a specific archaeological site. In some cases, population-specific and site-

specific can be interchangeable terms. 

Universal standards: For the purpose of this dissertation, “universal standards” refers to 

standards that have been used indiscriminately throughout the world, regardless of whether 

the original author intended this widespread usage.  

Region-specific standards: For the purpose of this dissertation, “region-specific standards” 

refers to standards created and tested for use on more than one archaeological site or 

population, but not for universal use. The boundaries of the “region” must be defined through 

testing of the accuracy of the standard across geographically- and temporally-diverse 

populations. The intended benefit of “region-specific standards” is that they may be more 

accurate and precise than “universal standards” but they do not require the creation of new 

standards for each site, like “population-specific standards”. 
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Preface 

Historically, humans have pondered the meaning and processes of aging and death. 

Philosophers, alchemists, scientists, medical professionals, and religious scholars are among 

the many that have contributed hypotheses to explain the processes of growth and senescence. 

Common themes, historically, have also included attempts to slow the biological clock and 

prolong life (Hayflick 1994). Although medical advances have enabled an increase in average 

life expectancy and the development of several hypotheses regarding the biological 

mechanisms of aging, a truly comprehensive understanding of the human aging process 

remains elusive. In addition to modern scientific views on growth and senescence, there are 

innumerable non-scientific beliefs regarding the topic of birth, growth, senescence and death. 

Although an in-depth cross-cultural meta-analysis of perceptions regarding these topics is far 

beyond the scope of this study, it is worth noting that ancient and modern, religious and secular, 

scientific and pseudoscientific writings on human aging tend to exclude discussion of the 

effects of time on the dentition.  

A brief survey of the tables of contents of popular anti-aging books reveals a near absence of 

discussions of the dentition as a whole. This is perplexing, considering the importance of 

dentition in quality of life and the increased susceptibility to dental disease and tooth loss in 

older age. This is particularly interesting when considering that some of these age-related 

dental conditions can contribute to serious illness and possible death. Generally, anti-aging 

books provide lip service to holistic health care and they largely focus on diets, medications 

and lifestyle changes that are said to slow systemic aging processes. Unfortunately, these books 

largely ignore mechanical wear and tear, and other age-related factors that may contribute to 

the degradation of the dentition. Occasionally, authors briefly discuss issues regarding the 

impairment of the salivary glands in old age, a relatively easily treated condition that leads to 

dry mouth and several related dental health problems. Nevertheless, the authors often still 

manage to avoid in-depth discussion of age-related changes to the dentition itself! This 

omission of dental aging may be attributed to authors’ recognition of the futility in their own 

anti-aging schemes, as a method for the prevention of dental aging has yet to (and perhaps 

never will) be discovered!  
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Knowledge of the relationship between dental development, dental wear, and chronological 

age has been common for ages. Perhaps since the beginning of pastoralism, farmers have 

estimated the age of animals by looking at their teeth. This long-held knowledge is evident in 

the proverb “Don’t look a gift horse in the mouth” (meaning: accept gifts gratefully and without 

judgement), which refers to the ungrateful act of assessing the age (and thus value) of a freely 

given horse through the observation of its teeth. The earliest evidence of this proverb appears 

in Latin as 'Noli equi dentes inspicere donati' (Never inspect the teeth of a given horse), in St. 

Jerome’s Latin text, The Letter to the Ephesians, circa AD 400 (Cryer 2010: 195). Similarly, 

it is believed that because older horses appear to have longer incisors as a result of gum 

recession, the correlation between equine dentition and chronological age also gave way to the 

phrase “to look long in the tooth” (meaning: to look aged) (CollinsDictionary.com 2017). 

Dental age estimation is still the preferred method for determining the age of animals, 

particularly horses and cattle, and although the aforementioned sayings are related to the dental 

age estimation of horses, various dental age estimation methods are applicable to animals and 

humans alike. The first widespread application of dental age estimation in humans may have 

been used in the determination of fitness for service in the ancient Roman army. In this case, 

individuals had to have their second molars fully erupted in order to be eligible for military 

service (Müller 1990; Willershausen et al. 2001; Manjunatha and Soni 2014).  

Coincidentally, the second permanent molar was also used for age determination centuries 

later. Near the end of the Industrial Revolution, the English government passed the Factory 

Act of 1833, which restricted child labor to those above 9 years of age, and limited the number 

of hours children were allowed to work per day.  Factories required age certificates for child 

employees from approved certifying surgeons, and four factory inspectors were responsible 

for enforcing these laws. Since the Factory Act (1833) was established prior to the Births and 

Deaths Registration Act (1836), there was no official documentation of the age of child 

laborers. Instead, the certifying surgeons estimated the age of children through the observation 

of the developmental stage of the second permanent molars, or so-called ‘factory teeth’. These 

teeth tend to complete eruption between 12-14 years of age, depending whether they are upper 

or lower molars (AlQahtani 2009) and thus, were used as an indicator that factory workers 

were of legal working age in England during the 19th century (Saunders 1837).  
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Since then, much more accurate and specific methods of dental age estimation have been 

developed for use in humans. However, as you will see in the following dissertation, the work 

to improve these methods is far from complete. As such, this doctoral research is designed to 

expand our understanding of the strengths and weaknesses of current methods while suggesting 

methods for improvement.  
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Chapter 1  

1.1 Introduction 

Biological age estimation is central to every study of human remains, and it can be used in 

sociocultural studies or immigration investigations of living subadults with missing, or 

suspect, birth data (El-Nofely and İşcan 1989; Maber et al. 2006; Liversidge 2008). In 

many historic and forensic cases, the estimated age-at-death is a key to identifying 

individuals (Acsádi and Nemeskéri 1970). Consequently, the accuracy with which we can 

produce age estimates for the deceased is of supreme importance. Age estimation is also 

fundamental for reconstructing aspects of individuals’ life- and medical- histories, and 

assembling knowledge of age-related cultural practices and demographics of past 

populations. It is particularly important for the differential diagnosis of skeletal disease, as 

age is often used to determine the probability of specific diagnoses. Since teeth can be 

studied in living patients and are resistant to post-mortem decomposition (Miles 1963; 

Hillson 1996; Beach et al. 2010; Hollund et al. 2015), they are often used for age estimation 

in ancient populations and have been shown to have a relatively high accuracy in estimating 

ages when compared with other age estimation indicators (Lovejoy et al. 1985).  

Due to relatively low rates of bias and inaccuracy and little need for specialized equipment, 

the age of subadults is generally estimated through the use of standards based on the 

macroscopic analysis of dental development. These standards, relating chronological age 

to the timing and sequence of dental development, have also served as important indicators 

of pediatric health, growth and development in the fields of dentistry, orthodontics, and 

pediatric medicine. Despite the importance of these standards, all of the existing standards 

were created using North American or European reference populations, with particular 

emphasis on North American and British reference populations, usually without distinction 

between male and female developmental timing (cf. Schour and Massler 1940a,b, 1941; 

Moorrees et al. 1963a,b; Haavikko 1970; Fanning & Brown 1971; Demirjian et al. 1973; 

Gustafson and Koch 1974; Anderson et al. 1976; Demirjian and Goldstein 1976; Ubelaker 

1978; Smith 1991a; AlQahtani et al. 2010b; AlQahtani 2012).  
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Acsádi and Nemeskéri (1970) noted that the order and chronology of tooth eruption varied 

slightly between different ethnic groups but dismissed these differences as not significant 

enough to affect age estimation methods. A recent study, however, revealed statistically 

significant differences in the timing of dental eruption between males and females and 

between Egyptian and non-Egyptian subjects (Soliman et al. 2011). El-Nofely and İşcan 

(1989) also showed that there were variations in dental emergence patterns between 

Egyptians and North American and European populations. This indicates the possibility 

for improvement in the estimation of age in Egyptians through region-specific standards. 

Furthermore, since dental development is still heavily influenced by genetics and many 

environmental aspects and traditions have long persisted in Egypt, it is probable that 

modern Egyptian dental developmental standards would produce better estimates of age in 

ancient Egyptians.  

The population specificity of dental development is further indicated by Demirjian et al.’s 

(1973) study, which demonstrates that French-Canadian children mature more slowly than 

children in several other parts of the world (e.g. Prahl-Anderson et al. 1979; Proy et al. 

1981; Loevy 1983; Nichols et al. 1983; Nystrom et al. 1986, 1988; Kataja et al. 1989; 

Ocholla 1990; Davis and Hagg 1994; Liversidge et al. 1998). Loevy (1983) and Davis and 

Hagg (1994) also observed differences in developmental timing between ethnic groups and 

Molnar (2015) noted that Europeans and Euro-Americans have later eruption times than 

many other ethnic groups. Harris and McKee (1990) documented the differences in 

developmental timing between black and white children and, more recently, Blenkin and 

Taylor (2012) emphasized the need for region-specific dental age estimation standards by 

presenting a method for the modification of existing standards to render them more suitable 

for specific populations (in their case, Australians). Moreover, Miles (1962, 1963, 1978) 

demonstrated that adult dental age estimates could be improved through the consideration 

of population-specific dental eruption patterns and their effect on dental wear.  

In addition to their contributions to the discussion of differences in dental development 

across populations, Harris and McKee (1990) and Blenken and Taylor (2012) identified 

significant differences in developmental timing between the sexes. Dental developmental 

patterns are known to differ between males and females; however, Harris and McKee 
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(1990) demonstrated that these differences vary significantly across populations, as they 

found that the average difference between black females and males was twice as large as 

the average difference between white females and males. Pavlovic et al. (2017) also 

recently showed that there were sex-specific variations in the accuracy of the relatively 

new Atlas of Tooth Development and Eruption (AlQahtani et al. 2010b; AlQahtani 2012) 

when tested on a Portuguese reference sample, and recommended the creation of sex-

specific charts.  

In addition to subadult dental age estimation methods, several methods have been 

developed to estimate the age-at-death for adults. The Miles (1962) method is the only 

existing method which requires the creation of population-specific, or archaeological site-

specific, standards for dental age estimation. It creates adult age estimation standards 

through the observation of dental attrition in the molars, which is calibrated against 

subadult dental development patterns. Although the Miles method has proven to be one of 

the most reliable single indicator methods of age estimation (Lovejoy et al. 1985), it is not 

widely used because of its complexity, reference sample requirements, and time 

obligations. Consequently, many biological anthropologists disregard the Miles (1962) 

site-specific method in favour of using Brothwell’s (1963a) dental wear atlas.  Brothwell’s 

(1963a) atlas standard was based on a study of dental wear in ancient British individuals, 

however, his methods for its development were never published (Brothwell 1989; Hillson 

1996). Brothwell intended for his standard to be used for the estimation of age-at-death in 

prehistoric to early medieval British specimens. However, this user-friendly atlas-type 

standard has been adopted for use throughout the world as ‘universal’ standards (Hillson 

1996).  

Since rates of dental attrition are highly dependent on environmental and dietary factors, 

and the Miles (1962) method has proven to be at least as effective as Brothwell’s method 

(Nowell 1978; Lovejoy 1985; Kieser et al. 1983; Lovejoy et al. 1985; Hillson 1996), it is 

surprising that there has been mass acceptance of universal aging standards based on dental 

attrition among physical anthropologists.  It seems logical to question the accuracy and 

universality of these ‘universal’ standards and to test the efficacy of these standards under 
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the influence of different variables such as genetic proximity, geographic proximity, 

environment, diet, health, dental morphology, dental hygiene etc.  

Theoretically, region-, time-, and sex-specific standards should better represent 

environmental and genetic variation age-related dental changes than ‘universal’ dental 

aging standards, while eliminating the need for repetitive and time-consuming work 

required for the development of site-specific aging standards. I hypothesize that the 

development of (time-,) region- and sex-specific dental aging standards developed through 

the use of innovative methods for data collection and statistical analysis will provide more 

accurate and specific, though still user-friendly, methods for estimating age-at-death.  

This dissertation focuses on age estimation in Egyptian dentition because of my familiarity 

with the region, its history, and the local dialect. This region was also selected as a result 

of the popularity of bioarchaeological work in Egypt, and thus the need for accurate 

methods for age estimation. This dissertation delves into the question of whether 

macroscopic dental age estimation standards can be improved. Following the declaration 

of this study’s Research Objectives and Hypotheses, this dissertation is organized in four 

chapters:  

Chapter II: The Significance of Dental Age Estimation 

This chapter begins with a brief overview of the techniques used within the field of dental 

anthropology and examples of their significant contributions to our collective knowledge 

in fields such as bioarchaeology, paleoanthropology, forensic anthropology, and human 

biology. This is followed by an abbreviated preliminary meta-analysis of the relative 

accuracy and bias of some of selected skeletal and dental age estimation methods. Results 

show the significance of dental age estimation methods among some of the most popular 

macroscopic age estimate indicators.  

 

Chapter III: Creating an Improved Subadult Age Estimation Standard Based on Dental 

Development 

In this chapter, following a review of the existing macroscopic subadult dental age 

estimation standards, a new method for the creation of subadult dental age estimation 
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standards is presented and demonstrated to be feasible. This method integrates 

bioarchaeological and public oral health research methods, allowing for much more 

specific and accurate reference material. The demonstrable gaps in previous dental age 

estimation methods, and the newly recommended use of Bayesian statistics, indicate that 

there are significant improvements to be made in the development of subadult dental age 

estimation standards, and thus in the accuracy and specificity of dental age estimates. A 

meta-analysis comparing the methodological errors of all existing macroscopic subadult 

dental age estimation standards and the newly proposed method further demonstrates the 

possibility for improved standards.  

Chapter IV: Creating an Improved Adult Age Estimation Standard Based on Dental 

Attrition  

This chapter presents a new macroscopic dental age estimation standard based on 

photogrammetrically quantified dental attrition in Egyptian adults from the Kellis 2 

cemetery, Dakhleh Oasis, Egypt. The “FIJI (is just ImageJ)” image analysis software is 

used to quantify the area of the occlusal surface and areas of exposed dentine. The 

percentages of exposed dentine to the associated area of the occlusal surface were then 

calculated for first and second molars in the Kellis 2 cemetery population. This method of 

quantification is tested for intra- and inter-observer error and reveals a very high intra-class 

correlation for both tests.  

Following these tests, comparisons are made between dental wear in first molar isomeres 

and antimeres. These data indicate that there is more severe wear in the lower dentition and 

a statistically significant asymmetry in first molar antimeres. Dental pathology is 

investigated in the individuals with the largest differences in wear between antimeres. 

Perhaps due in part to the small sample size, there is no observable correlation between 

asymmetrical dental wear and one-sided dental pathology. 

Caries and antemortem tooth loss are then investigated in relation to skeletal age, revealing 

a positive correlation only between antemortem tooth loss and skeletal age. Consequently, 

linear and polynomial regression models are designed and tested for age estimation in 
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males, females, and individuals with unknown sex. These tests reveal strong predictive 

value in all models.   

The quantified dental wear data for first and second molars are then determined to have a 

strong positive correlation with skeletal age, and linear regression models are similarly 

designed and tested. These models show relatively high predictive value and small 

confidence intervals. As a result, multiple regression models were designed for all 

combinations of antemortem tooth loss and first and second molar wear. Although small 

reference sample sizes appear to have an effect on the accuracy of the models that 

incorporate male first molar wear data, all other multiple regression models demonstrate 

the potential for significant improvement in age estimation based on dental wear. A 

comparison of the Brothwell standard to the new linear regression models for first and 

second molar wear confirms that the linear regression models are more specific and 

accurate than the Brothwell standard. 

Chapter V: Dissertation Summary 

This chapter summarizes the conclusions of the previous sections and draws upon them to 

make an argument for the continued improvement of macroscopic dental age estimation 

standards, with a particular focus on the development of sex-, region, and time-specific 

standards. Ultimately, I conclude that the null hypothesis: “Current dental age estimation 

standards cannot be improved” can be rejected given the proven potential for improvement 

in subadult standards and the presentation of new and improved adult standards.  

 

1.2 Research Objectives and Null Hypothesis 

The objectives of this study are to re-evaluate macroscopic dental age estimation standards 

and the methods used in their development. To this end, new and improved methods are 

presented for the creation of (time-,) sex- and region-specific dental age estimation 

standards through the use of innovative techniques for data collection and statistical 

analysis. This research project aims to test the null hypothesis (Ho): “Current dental age 

estimation standards cannot be improved”. The results of this study can also be used to 
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address the related research questions: “Is there room for improvement in macroscopic 

dental age estimation methods?” and “How can macroscopic dental age estimation methods 

be improved?” 

This study includes critical reviews of the different macroscopic dental age estimation 

standards, their methodologies, and the reference collections used in their creation. New 

methods for the creation of (time-,) sex- and region-specific dental age estimation standards 

are presented for subadults (based on the macroscopic analysis of dental development) and 

adults (based on the macroscopic photogrammetric analysis of dental attrition). Theoretical 

and practical discussions of the potential for improved subadult dental age estimation 

standards are considered in this study; and results from tests of a newly created sex-, region-

, and time-specific adult age estimation standard are presented and compared to those of 

the most popular ‘universal’ age estimation standard based on dental wear (Brothwell 

1963a).   

This project tests whether the current universal dental aging standards can be improved 

through the development of (time-,) sex- and region-specific dental age estimation 

standards. It is important to continually re-evaluate and test all age estimation methods so 

that we may improve accuracy and decrease bias of all age estimates. Improved methods 

for dental age estimation contribute to the accuracy of all subsequently related studies of 

ancient or modern people. 
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Chapter 2  

2 The Significance of Dental Age Estimation  

2.1 The Significance of Dental Anthropology  

The study of dental anthropology, bioarchaeology and paleoanthropology are inextricably 

linked through their coevolution within the broader field of biological anthropology and 

their mutual contributions to our collective knowledge of the past. The term “dental 

anthropology” first appeared in the title of an article published in 1900 by George Buschan 

(Scott and Turner 1988). However, the growth of the field really began during the first half 

of the 20th century with dental studies being published by pioneers in physical anthropology 

such as Hooton, Hrdlicka, and Dahlberg. It was not until 1953 that Klatsky and Fisher 

published a formal introduction to the study of dental anthropology. The term was later 

solidified in the professional vernacular through its use by Don Brothwell during a meeting 

held in London, England in 1958 (Brothwell 1963b). Dental anthropology is now defined 

as the “study of people (and their close relatives) from the evidence provided by teeth” 

(Hillson 1996: 1). As indicated in this definition, dental anthropology continues to have 

applications in the fields of paleoanthropology and primatology, in addition to the study of 

populations of anatomically modern Homo sapiens.  

Dental anthropology is an essential and important contributor to the understanding of 

human and hominid evolution, behaviour and adaptation. Teeth are an especially important 

source of information about the past, in part, because they often survive better than bones 

in the archaeological record (Hollund et al. 2015). As such, dental analyses have played a 

large role in the study of extinct hominoids and tooth bearing vertebrates. The following 

are just some examples of the contributions that dental anthropological methods have made 

in a variety of fields of research, including dentistry, forensic anthropology, bioarcheology, 

primatology, and paleoanthropology.  Given the vastness of the collection of literature 

related to the following topics, references are limited in selection with preference given to 

seminal articles, recent publications, and publications that have made significant impacts. 
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2.1.1 Comparative Anatomy 

Comparative anatomical studies can be used to identify different species, as well as 

differences in tooth use, in archaeological contexts. Beginning with the broad strokes, most 

mammals, including humans, are diphyodonts, meaning that they have two sets of teeth 

(deciduous and permanent) in their lifetime. This is in contrast to monophyodonts, who 

have only one set of teeth (e.g. beluga whales), and polyphyodonts, whose teeth are 

continually replaced (e.g. sharks) (Irish 2016). In addition to being diphyodonts, most 

mammals including humans are also heterodonts, meaning that they have a variety of tooth 

types or classes within their dentition. This category is differentiated from homodonts, such 

as many fish and reptiles, who have similarly shaped teeth throughout their dentition (Irish 

2016). Heterodonty is believed to have initially evolved from the more primitive reptilian 

conical teeth in Tertiary Period mammals with the tritubercular molar (Osborn 1888; 

MacCord 2017).   

Despite this shared morphological change, which eventually led to most mammals being 

heterodontic diphyodonts, there is still significant variety in the number and types of teeth 

included in mammalian dentition. Dental formulae (counts of tooth types within a single 

quadrant of the dentition) vary widely across different species. In hominids, the deciduous 

dental formula is made up of two incisors, one canine, and two premolars (2/1/2/0), and 

the dental formula for the permanent dentition consists of two incisors, one canine, two 

premolars, and three molars (2/1/2/3). Although these formulae are applied to Homo 

sapiens as a group, there is variation among individuals due to anomalous agenesis or 

supernumerary dental development. Third molars have the highest prevalence of agenesis 

or impaction in modern humans, which has been hypothesized to be a recent biological 

change on an evolutionary time scale, although the mechanisms driving this change are 

debatable (Carter and Worthington 2015; Brothwell 1963b; Lavelle and Moore 1973; 

Bermudez de Castro 1989). Proponents of this hypothesis compare trends in 3rd molar 

agenesis to the loss of the first two premolars in the Catarrhini branch of the primate 

evolutionary tree from the primitive mammalian dental formula in which there are 4 

premolars in each dental quadrant (Swindler 2002).  Thus, the two premolars noted in the 

human dental formulae are actually the retained third and fourth mammalian premolars. 
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Consequently, dental anthropologists variably refer to these teeth as P1 and P2, or P3 and 

P4 (Hillson 1996; Irish 2016).  

The variety in the expression of tooth types seen in primates, and the associated cranial 

morphology, is a reflection of the wide range of dietary niches occupied by different 

primate species. Related cranial traits such as the shape of the dental arcade, TMJ 

morphology, and masticatory musculature can also be used to identify dietary preferences 

and help differentiate between species. In fact, studies of comparative cranial and dental 

anatomy in primates have a demonstrated ability to distinguish between fruit, nectar, or 

exudate eating primates with relative accuracy (Dumont 1997). The dentition of primate 

species that are primarily insectivorous or folivorous are also readily identifiable. 

Through the observation of dental and related cranial traits, extrapolated patterns of diet 

and behaviour in hominoids may also give a better idea of how, and from where and from 

when, modern humans evolved. More specifically, the reconstruction of ancient diets 

enables a limited reconstruction of the ancient ecology, with regard to the history of 

consumed flora and fauna (Dupras 1999). For example, some early middle Miocene 

hominoids are characterized by thickened molar enamel, enlarged incisors and massive 

jaws, which is said to reflect a shift from a predominantly frugivorous diet to a diet with 

more variety and harder foods. (Andrews and Martin 1991; Alba et al. 2010).  

A comparison of dentition in early and modern Homo sapiens indicates a marked difference 

in the size of the dental arch, teeth and masticatory muscles, with the larger teeth of early 

humans being well-adapted for heavy attrition resulting from the consumption of fibrous, 

uncooked foods (y’Edynak 1992; Brace 1991). The strong mandibular muscles developed 

through the mastication of tough foods caused increased gonial eversion, wide zygomatic 

arches and defined temporal ridges in early Homo sapiens (Loth and Henneberg 2000). 

The temporalis muscles are so robust in some great apes and early hominins that the 

attachment sites are significantly higher on the skull and more pronounced, resulting in the 

development of a mid-sagittal crest (Cartmill and Smith 2009). These characteristics differ 

greatly from the relatively gracile bones, muscles, and teeth of modern Homo sapiens, who 
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have become accustomed to softer foods following the advent of various food processing 

methods, including cooking (Wragham et al. 1999). 

2.1.2 Odontometrics 

Odontometry, the study of tooth size and dimensions, has frequently been used in research 

regarding human evolution.  Data are usually generated through the use of needle point 

sliding calipers. Dental crown diameters have been recorded widely and compared across 

all types of hominins. Through the use of dental crown metrics, a trend toward permanent 

molar crown reduction over time has been documented, as seen in comparative studies of 

early Homo, through H. erectus, archaic H. sapiens, and H. neanderthalensis to modern H. 

sapiens (Brace and Mahler 1971; LeBlanc and Black 1974; y'Edynak 1989; Frayer 1978; 

Brace et al. 1987; Calcagno 1986; Quam et al. 2009). This trend toward permanent molar 

crown reduction is also seen throughout the history of H. sapiens as seen above (See 

Section 2.1.1). Despite the thorough documentation of this phenomenon, the evolutionary 

reason for this trend in molar crown reduction remains debatable. One hypothesis suggests 

that tooth size decreased in association with a decrease in body size resulting from 

increased population density (Macchiarelli and Bondioli 1986). Another attributes the 

dental reduction to the advent of advanced hunting technology, as energy efficiency of the 

body would have become more desirable than robustness (Frayer 1978, 1980, 1984). 

Alternative hypotheses have focused on the jaws and dentition alone, specifically relating 

to the effect of jaw and dental arcade size on dental crown size. One such hypothesis posits 

that jaw size reduced as a result of decreased functional stress following the introduction 

of softer foods, resulting in decreased tooth size (Carlson and van Gerven 1977). A 

variation of this hypothesis suggests that malocclusion and dental disease may have 

increased following this reduction in jaw size, which resulted in selective pressure for 

smaller tooth crown size (y’Edynak 1978, 1989, 1992; y’Edynak and Fleisch 1983). 

Perhaps the most controversial hypothesis attempting to explain the trend toward dental 

crown reduction is the “Probable Mutation Effect” (Brace 1964, 1987; Brace and Mahler 

1971; Brace and Ryan 1980). This hypothesis posits that in earlier hominids there was 

selective pressure for large tooth size, which was de-emphasized with increased tool use 

and food preparation techniques, leaving the dentition vulnerable to changes resulting from 
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random mutations. Of course, this hypothesis is improbable as the evolutionary model 

assumes that all characteristics are subject to selective pressure and that selective pressure, 

not the lack thereof, is the driving factor in directional evolutionary changes on a large 

scale (Bailit and Friedlander 1966; Hillson 1996).  

More recently, Bermudez de Castro and Nicolas (1995) have challenged these hypotheses 

in their odontometric study of the Atapuercan hominids, who had smaller molar sizes 

comparable to anatomically modern humans, despite being older than Neanderthals on an 

evolutionary scale. Given the lack of evidence for cooking, reduced body size, reduced jaw 

space, malocclusion or dental disease in this population, arguments were made against all 

of the aforementioned hypotheses on dental size reduction. The authors instead proposed a 

new hypothesis in which Middle Pleistocene European hominids differed with regard to 

dental size as a result of long periods of isolation and genetic drift. They note that there is 

evidence that a decrease in the rate of cell proliferation over time in individuals with longer 

developmental periods could result in crown size reduction, particularly in the later-

forming molars, as seen in the Atapuercan hominids. As hominid periods of growth and 

development have extended over the last two million years (Bromage and Dean 1985; 

Bromage 1987; Smith 1986, 1991b; Dean 1987), this would account for the reduction in 

molar crown size on an evolutionary scale. Assuming that the Atapuercan hominins are 

ancestral to modern humans, this decreased rate of cell proliferation over time may even 

help to explain third molar agenesis in anatomically modern humans (Bermudez de Castro 

and Nicolas 1995).  

Although net tooth size has been used to identify and distinguish between different human 

populations (Peck and Peck 1975; Brace and Hinton 1981; Brace et al. 1987), it has been 

shown to be a poor indicator in this regard (Hanihara 1977, 1979; Harris and Nweeia 1980; 

Kirveskari 1978; Moorrees 1957; Perzigian 1984; Hillson 1996). Perzigian (1984) 

demonstrated the lack of correlation between net tooth size and different populations in a 

large scale odontometric study. In this study, he created a dendrogram based on size 

distances, which showed clusters of geographically and genetically distant individuals and 

the wide dispersal of some closely related individuals. Nevertheless, Harris and Rathbun 

(1991) have since demonstrated that through the use of discriminant analysis, it was 
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possible to classify half of the 90 studied individuals from around the world correctly. In a 

study of Pakistani and Indian individuals using three odontometric methods, Hemphill 

(2015) found that more than 50% of individuals could be correctly associated with their 

locality and more than 80% could be attributed to a region. He also found that principle 

components analysis was more useful for the analysis of within-group variation, while 

canonical variates analysis was more useful for the assessment of variation between groups.  

In addition to variation across populations, differences in tooth size have also been 

attributed to sexual dimorphism in humans (Garn et al. 1964), although human sexual 

dimorphism is far less than that observed in some non-human primates (Swindler 2002; 

Hillson 2005). Nevertheless, dental size has been used with population-specific 

discriminant function formulae to estimate sex in modern (Garn et al. 1964, 1977; Margetts 

and Brown 1978; Potter et al. 1981; Garcia Godoy et al. 1985; Kieser et al. 1985a,b; De 

Vito and Saunders 1990) and archaeological populations (Lunt 1969; Ditch and Rose 1972; 

Owsley and Webb 1983; Beyer-Olsen and Alexanderson 1995; Teschler-Nicola and 

Prossinger 1998). However, it has been argued that discriminate functions, because they 

are population- or site-specific, are more descriptive of the population than predictive in 

nature (Feeney 2005). Consequently, the resulting data are not well suited for age 

estimation. Furthermore, dental attrition impedes accurate dental measurement (Teschler-

Nicola and Prossinger 1998) and there is little size differentiation between the sexes 

relative to the rates of observer error (Hillson 1996: 82). Thus, traditional odontometric 

analysis is not recommended as a sole indicator of sex, but can be useful as one of multiple 

indicators for sex in human remains (Joseph et al. 2013; Angadi et al. 2013). However, in 

cases where bones have succumbed to taphonomic processes and the teeth are the only 

remaining indicator of sex, odontometrics may present the only clue to the sex of the 

individual (Joseph et al. 2013; Banerjee et al. 2016).  

Beyond species-, population-, and sex-specific differences in tooth size, odontometry is 

also used in the observation of differences in tooth size resulting from environmental stress. 

Fluctuating odontometric asymmetry is the variation in size of dental antimeres (tooth pairs 

on opposing sides of the dentition). Under ideal conditions, dental antimeres develop at the 

same rate and have very similar measurements upon completion of growth. However, this 
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metric symmetry is based on epigenetics, and is thus vulnerable to environmental and 

genetic factors such as prenatal exposure to teratogens, inbreeding, and malnutrition 

(Groeneveld and Kieser 1991). Consequently, some researchers have used the asymmetry 

between dental antimeres to try to identify differences in environmental stress and 

developmental stability among populations (Groeneveld and Kieser 1991).   

In addition to the aforementioned post-mortem applications of odontometry, it also has 

value in the field of orthodontics. In modern humans, there is a demonstrated correlation 

between tooth size and malocclusion,  particularly with regard to tooth spacing or crowding 

(Puri et al. 2007; Bugaighis and Elorfi 2013). Accordingly, tooth size is often compared to 

arch length to help plan orthodontic treatments (Bugaighis and Elorfi 2013). It is important 

that clinical intervention in orthodontics includes the assessment of the potential changes 

in dental growth. 

Although there are many practical uses for the study of odontometry, it is complicated by 

issues of unspecified nomenclature, the inability to standardize datum points and the effects 

of anthropogenic and unintentional dental modification of the size of the tooth (Foley and 

Cruwys 1986). Consequently, odontometrics are often used only as supporting evidence or 

in cases with few other options for analysis. Nevertheless, the benefits of odontometric 

study still outweigh the associated challenges and dental anthropologists continue to work 

toward mitigating these limitations.  

2.1.3 Odontoscopic Morphology 

Odontoscopic morphology refers to the observation and analysis of genetically-linked 

nonmetric dental variations. Morphological traits within the dentition are known to be 

inherited, and their study reveals important information about familial and ancestral 

relations. The first publication relating to dental morphology was that describing 

Carabelli’s tubercle in 1842 (Hoffman-Axthelm 1981), however, it was not until the early 

20th century that morphological research began in earnest (Campbell 1925; Weidenreich 

1937; Pedersen 1949; Robinson 1956; Moorrees 1957). These studies only noted the 

presence or absence of discrete non-metric traits until Hrdlicka (1920) introduced a 

standardized gradient for scoring shovel shaped incisors while also demonstrating 
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geographically distinct variation in the expression of this trait. Prior to the discovery of 

DNA, traits that showed strong links to specific ancestral lineages, like shovel shaped 

incisors in Native Americans and Asians, acted as proof of the heritability of these traits 

and spurred further investigations into dental morphology. This genetic link could not be 

independently established until the introduction of dental genetic studies in the second half 

of the 20th century, which also clarified the significant role of environment in the 

epigenetics of dental morphology (cf. Goose and Lee 1971; Harris 1977; Harris and Bailit 

1980; Scott 1973; Paynter and Grainger 1956; Kruger 1966). As is now well known, the 

heritability coefficients developed through the study of these traits can now inform us about 

how much the variation in nonmetric traits is under genetic control not the presence of the 

trait per se (Sjøvold 1984). 

Starting in the 1940s, Dahlberg expanded upon Hrdlicka’s idea to standardize the 

documentation of dental trait variants by creating the first standardized dental morphology 

reference plaques for 16 traits (Dahlberg 1956). This prompted Hanihara (1963) to develop 

a similar set for deciduous dental morphological variants, and Turner (1970) later 

developed the first two plaques for the adult crown and root morphological grading system, 

which would eventually be called The Arizona State University Dental Anthropology 

System (ASUDAS). Through the efforts of Dr. G. Richard Scott, Dr. Christy Turner II and 

colleagues, 42 non-metric adult dental traits have been identified to date. Only 29 of these 

traits are included in the ASUDAS, chosen because of their relative independence from 

each other and their lower vulnerability to dental wear (Scott and Irish 2017). The 

ASUDAS plaques were revised and re-released by Scott and colleagues in 2018 and a 

related web-based application, called rASUDAS, has also been released to facilitate the 

ancestry estimation for individuals (Scott et al. 2018).   

In Egyptological research, Greene (1972) and Berry (1976) utilized many of the ASUDAS 

variants in their investigations into the origins and biological relationships of the ancient 

Egyptians. More recently, Haddow (2012) has used the ASUDAS variants to examine the 

biological relationships and affinities of the Kellis 2 population sample from Dakhleh 

Egypt. A large part of the photographic sample of occlusal dentition used in this 

dissertation was derived from Haddow’s study.   



16 

 

In addition to the ASUDAS variants, an alternate method was developed in Russia and is 

called the odontoglyphic method (cf. Zubov 1977; Hillson 1996). This method concentrates 

on “reading” the molar furrows on the occlusal surface. This odontoglyphic research has 

had little use outside of Russia but can be compared to studies based on the ASUDAS 

through equivalence systems (cf. Haeussler et al. 1988; Haeussler and Turner 1992).   

In addition to these two methods of dental morphological analysis, some research has been 

done regarding the measurement of these genetically linked traits. Early studies were based 

on macroscopic (cf. Corruccini 1977a,b; Aas 1983), microscopic (cf. Suwa 1986; Suwa et 

al. 1994), or photogrammetric (cf. Biggerstaff 1969, 1975, 1976) measurement of 

morphological traits. While these methods continue to be used, more recent advances in 

imaging technology have allowed for some interesting metric analysis of morphological 

traits through the use of computed tomography (e.g. Zhang et al. 2011), micro CT (e.g. 

Plotino et al. 2006), laser scanning (e.g. Ungar 2004), and geographic information systems 

(e.g. Zucotti et al. 1998; Ungar 2004). 

Regardless of the methods used, dental morphology has been fundamental to research in 

dental anthropology. Given the strong genetic association of dental traits, morphological 

studies have contributed significantly to the phylogenetics of Hominidae, as in Irish’s 

(2013) study on the dental morphology of Australopithecus sediba. This study resulted in 

the assertion that A. sediba is distinct from east African australopiths, but is close to A. 

africanus, resulting in the formation of a southern African australopith clade with links to 

the genus Homo. Dental morphology has also made a significant impact on the debate 

regarding the peopling of the Americas. In this case, Turner (1971) noted the differences 

in 3 rooted mandibular first molar frequency throughout the Americas and presented the 

“Three wave” model of human migration from the Old World. In more recent 

archaeological studies, dental morphology has been used to identify the ancestry of human 

remains and track migration and, on a smaller scale, familial relationships for individuals 

buried at a particular site. In addition to these applications, teeth can also be used to indicate 

a minimum number of individuals in a mass burial, or dental morphology and spacing can 

be compared to dental records and radiographs, for the individuation of human remains 
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(Pretty and Sweet 2001). This last application for comparative morphological analysis is 

also considered to be a forensic odontological method (See Section 2.1.9). 

2.1.4 Enamel Thickness and Microstructure 

Expanding on the previous discussion of phylogenetics in the family Hominidae, the 

relative thickness of enamel is considered to be a defining characteristic of the family 

Hominidae with the exception of Pan and Gorilla (Pilbeam 1979; Schwartz 2000a). 

Following comparative studies of living and extinct hominoids, Martin (1983, 1985) 

asserted that thin, fast-formed enamel was the ancestral form of the taxonomic superfamily 

Hominoidea, and that through evolution, slower-formed thick enamel was the primitive 

form for the taxonomic family Hominidae and the fossil hominoid, Sivapithecus. In this 

study, he argued that thin enameled hominoids had fast-forming ‘pattern 3’ enamel prism 

microstructures, while thin enameled African apes had the slower-forming ‘pattern 1’ 

enamel prism microstructure. Since the thick enameled hominids also showed a ‘pattern 3’ 

enamel prism microstructure, Martin (1983, 1985) argued that the thin enamel found in 

African apes represented a secondary decline in the rate of enamel secretion. A more recent 

study by Beynon et al (1991) rejected Martin’s (1983, 1985) hypothesis. Their study posits 

that fast-formed thin enamel may have been the primitive condition for hominoids and 

hominids, from which the relatively thick enamel seen in humans and Sivapithecus is 

derived, having evolved independently on more than one occasion (Beynon et al. 1991). 

Schwartz (2000a) has also hypothesized that enamel thickness in Homo and Pongo may be 

independently derived, though further research is needed. 

Furthermore, although enamel prism microstructure was once used to identify members of 

the Hominidae family, as they were believed to have a ‘keyhole’, or ‘pattern 3’, prismatic 

enamel microstructure (Gantt et al. 1977), it was later discovered that prismatic patterns 

differ within individuals and even within teeth, depending on the depth of the sample taken 

within the enamel (Vrba and Grine 1978; Boyde and Martin 1984). It is now known that 

enamel prism patterns 1, 2, and 3 may be found in any human or ape tooth crown, and that 

irregularities and intermediate forms of prismatic patterns can also be observed (Hillson 

1996). Nevertheless, there remain differences in the thickness of the outer layer of prism-
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free and Pattern 1 enamel between the hominids, gibbons, and Sivapithecus (10% of dental 

enamel), orangutans (20%), and gorillas and chimpanzees (>40%) (Boyde and Martin 

1984; Martin and Boyde 1984; Martin 1985; Martin et al. 1988). In addition to the 

differences in enamel prism patterns, the orientation of enamel surface in relation to the 

tooth’s surface prisms is indicative of the area of the tooth from which the sample is 

derived.  

Spacing of the brown striae of Retzius, another enamel microstructure, can also be used to 

determine the area of the tooth from which a sample is derived. These growth-related 

microstructures, as well as perikymata and enamel prism cross-striations are, however, 

detailed in Section 2.1.11 on age determination methods. Perikymata are also discussed 

briefly in the following section on enamel defects.  

2.1.5 Enamel Defects 

Enamel defects can be used to identify pathological conditions, periods of biological stress, 

and for the consumption of some specific chemicals. For example, the excess consumption 

of tetracycline or doxycycline is known to result in dental staining in developing teeth 

(Sanchez et al. 2004) as well as fluorochrome labelling, which is detectable in the 

archaeological record (cf. Bassett et al. 1980; Cook et al. 1989). The evidence of 

tetracycline labelling has been identified in individuals interred in the Ain Tirghi (Cook et 

al. 1989) and Kellis 2 (Maggiano et al. 2003) cemeteries in Dakhleh Oasis, Egypt. The 

source of the tetracycline is hypothesized to originate from streptomycetes bacteria 

growing within grain stores, as hypothesized in an earlier study of Nubian individuals 

(Bassett et al. 1980). Based on the incremental nature of the fluorochrome labelling in the 

teeth and bones from Dakhleh Oasis, it was determined that tetracycline was consumed 

occasionally; perhaps seasonally as grain stores ran low, and more of the Streptomycetes 

infested grains were collected from the bottom of the store. In addition to revealing 

information about grain storage and consumption, the discovery of fluorochrome labelling 

at Dakhleh Oasis also presented a possible reason for the relatively low rates of infection 

seen in the cemetery population (Cook et al. 1989).  
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Excessive consumption of fluoride, otherwise known as fluorosis, is also known to produce 

enamel mottling and discolouration, and has been seen in archaeological populations (cf. 

Yoshimura et al. 2006; Petrone et al. 2013). Since fluoride concentrations differ 

geographically, an individual with evidence of fluorosis found within an area without 

endemic fluorosis may indicate that the affected individual was a migrant.  

Mercury is another chemical that left lasting effects on the dentition of past peoples. 

Mercurial defects are identifiable as “large expanses of deficient enamel that [are] rugged 

and pitted, ultimately producing an appearance of a dirty grey honeycombed tooth” 

(Iaonnou et al. 2016: 617), at times with large areas of occlusal enamel entirely missing, 

exposing the dentine (Iaonnou et al. 2016). Mercurial defects are often seen in association 

with dental defects pathognomonic for congenital syphilis (i.e. Hutchinson’s incisors, 

Moon’s molars, and Fournier’s molars); the ailment most commonly treated with mercury 

in the past. Since syphilis does not always present with dental abnormalities and mercury 

was rarely used in significant amounts for any other infant ailment, it has been proposed 

that in some circumstances dental deformities attributable to mercury may be interpreted 

as a sign of treatment for syphilis in skeletal remains even without paleopathological 

evidence of treponemal infection (Iaonnou et al. 2016).  

Congenital syphilis is not the only disease to result in the development of dental enamel 

defects. Some congenital malformations and genetic disorders can also result in abnormal 

dental appearance. For example, congenital erythropoietic porphyria can produce red-

purple discolouration of the dentition (Brown et al. 2014). Amelogenesis imperfecta is a 

collection of congenital conditions that affect the structure and/or appearance of dental 

enamel in all, or almost all, of the teeth (Aldred et al. 2003).  

More commonly, enamel defects are seen in the form of enamel hypoplasia, which is the 

result of a disruption of the development of enamel matrix by ameloblasts resulting from 

systemic stress, such as febrile illness or starvation (Antoine 2000). These defects can be 

manifest in the form of isolated pits, rows of pits, furrows, prominent steps, or plane-like 

defects. In the case of plane-like defects, also known as linear enamel hypoplasia (LEH), 

the production of the perikymata (the microscopic lines on the surface of dental enamel 
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resulting from the layers of enamel that are deposited to form a tooth, also known as striae 

of Retzius) become varied in spacing and prominence and the result is an enamel surface 

which appears wavy (Hillson and Bond 1997). These defects can be caused by hereditary 

factors, trauma or any periods of severe (Selyean) physiological stress, such as febrile 

illness or starvation during the formation of the tooth (Selye 1956). Enamel hypoplasias 

are also sometimes attributed to physiological stress associated with birth and weaning 

(Blakey et al. 1994; Goodman and Martin 2002; Seow 2015). Consequently, enamel 

defects can provide a host of information about the lives of past peoples, particularly with 

regard to their early years during dental development. However, caution must be taken in 

making conclusions from macroscopic analysis of enamel hypoplasia alone as some 

hypoplastic defects can only be seen microscopically (which is not necessarily a reflection 

of the severity of physiological stress) and the enamel surface can be affected by dental 

erosion and microwear (Hillson and Bond 1997).  

2.1.6 Oral Pathology 

Just as the study of enamel defects can provide information about aspects of subadult 

disease and diet, the study of oral pathology can provide information about dietary norms 

in past populations. The population prevalence of dental caries lesions, commonly known 

as dental cavities, is a good indicator of dietary norms. Carious decay is the result of 

demineralization of the dental tissue from organic acids released through the bacterial 

fermentation of dietary carbohydrates (Sheiham and James 2015). Increases in 

carbohydrate consumption (like that resulting from the switch to intensive agriculturalism) 

are reflected in higher rates of dental caries (Armelagos 1969; Turner 1979; Cohen and 

Armelagos 1984; Milner 1984; Patterson 1984; Larsen et al. 1991; Lukacs 1992; Larsen 

1995). This increase in caries associated with the introduction of agriculturalism may also 

be attributable to the fact that the grains of domesticated cereals such as wheat and maize 

contain more carbohydrate and relatively less protein than those of wild grasses (Tayles et 

al. 2000). Despite this high carbohydrate ratio, it has been revealed that, for reasons that 

remain unclear, this rise in dental caries rates does not appear to be associated with the 

introduction of rice-based agriculture (Tayles et al. 2000, 2009; Temple and Larsen 2007; 

Halcrow et al. 2013). 



21 

 

An increased prevalence of dental caries may also be attributable to the introduction of 

cooking, which occurred prior to the introduction of agriculture, as it allowed various 

fibrous foods to be rendered softer and more prone to sticking to the dentition, allowing 

carbohydrates to remain in contact with cariogenic bacteria for longer periods of time 

(Powell 1985). Furthermore, cooking reduces the abrasiveness of fibrous foods. In the 

absence of regular dental hygiene, high rates of dental abrasion resulting from the 

consumption of abrasive foods or dental attrition from tooth-on-tooth contact can create a 

hostile environment for the growth of caries, sweeping away adherent food particles and 

grinding down sites of decay before they can spread (Maat and Van der Velde 1987; Milner 

1984; Powell 1985). However, Meiklejohn et al. (1992) advocate for caution in the 

negative correlation of dental wear and caries as they argue that they are independent 

factors and, as can be seen in some populations, are not mutually exclusive. 

In addition to dental wear, other factors that should be considered in the study of population 

caries rates include: fluoride consumption, dental hygiene, anthropogenic dental 

modification, antemortem tooth loss or extraction, post-mortem tooth loss, host resistance, 

hormones (sometimes related to sex), salivary excretion (sometimes related to age), and 

cariogenic bacterial load (Goodman and Martin 2002; Larsen 1995; Lukacs 1995, 1996; 

Lukacs et al. 2006). Despite these complicating factors, studies of worldwide prevalence 

of caries have demonstrated that hunters and gatherers usually have a caries rate of less 

than 2%, mixed economies generally have a caries rate around 5%, and agricultural 

economies have a caries rate from 2% to 25%, usually resting around 10% or more (Scott 

and Turner 1988; Goodman and Martin 2002). A study of a Greenlandic Inuit society with 

a diet based predominantly on meat and fish, with practically no carbohydrates, also 

showed less than 5% of individuals, and 0.3-0.6% of permanent teeth, affected by carious 

lesions (Pedersen 1938, 1947; Davies and Pedersen 1955; Hillson 2001). Consequently, it 

may be possible to estimate the subsistence strategies of past populations through an 

examination of their dentition and consideration of their oral pathology. This strategy was 

applied in the current author’s Master’s thesis in which it was determined that the caries 

rates observed in the paleolithic population from Site 117 (widely considered to be the 

world’s earliest evidence of mass violence and the earliest Nubian cemetery) were 

consistent with rates usually observed in populations subsisting on a traditional hunter-



22 

 

gatherer diet (cf. Kirkpatrick 2009). Although population studies of caries can be 

informative, it must also be considered that differences in subsistence between the sexes 

and/or different socioeconomic groups may also be reflected in intra-population variations 

of dental caries prevalence (e.g. Lukacs and Largaespada 2006; Stranska et al. 2015). 

Consequently, it is important that oral pathology is considered in relation to age, sex, and 

socioeconomic status, wherever possible.  

In addition to its consideration in the study of dental caries, dental wear can be informative 

in its own right. Dental wear is a term that encompasses dental attrition, abrasion, 

abfraction, and erosion; all of which can be affected by diet (See Section 4.2 for detailed 

information on the biomechanics of dental wear and its contributing factors). Macroscopic 

studies of occlusal dental wear are widely used for adult age estimation (See Section 4.3 

for more information on age estimation methods based on dental attrition) and severe wear 

can result in alveolar bone loss and be a contributing factor in the development of 

periodontal infection, abscess and/or antemortem tooth loss. Anthropogenic dental wear 

can also provide information about: the use of teeth as tools, early dental interventions, 

toothpicking, pipe use, oral jewelry, and culturally prescribed practices (such as dental 

filing). Both macroscopic and microscopic studies of dental wear are also useful for 

reconstructing chewing cycles, jaw movements, and dental biotribology in primates (e.g. 

Ryan 1979; Gordon 1984; Walker 1984). These methods may be of particular interest to 

those researching evolutionary changes in the orofacial skeleton and dentition.  

More specific dietary information can be gleaned from the microscopic study of dietary-

derived pits and scratches on enamel surfaces, also known as abrasion, though this 

microwear, particularly on the occlusal surfaces, may only truly represent abrasion from a 

short period of time before death (Grine 1986; Teaford and Oyen 1989; Perez-Perez et al. 

1994). Microwear textural analysis based on factors such as anisotropy, complexity, 

textural fill volume, and heterogeneity can contribute to dietary inferences for modern and 

ancient species with preserved enamel (Scott et al. 2005; Scott et al. 2012; Schmidt et al. 

2015). Furthermore, microwear may also be useful in the identification of specific foods in 

the diet as different phytoliths may create differently shaped microscopic grooves on the 

tooth surface (Gugel et al. 2001). Silica phytoliths (Lucas et al. 2013), calcium oxylate 
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phytoliths (Danielson and Reinhard 1998) and spheres of amorphous silicon dioxide (Xia 

et al. 2015) are all known to leave microscopically visible grooves on enamel. In some 

cases, these phytoliths have even been found embedded in the enamel at the end of these 

grooves (See Section 4.2 for further details on the biomechanics of dental wear and its 

contributing factors; Ciochon et al. 1990; Lalueza-Fox et al. 1994, 1996).  

Both attrition and abrasion may be affected by a third form of dental wear: enamel erosion 

(Barbour and Rees 2006). This type of wear involves the acidic softening or dissolution of 

enamel surfaces, usually associated with a diet that is high in acidity, though it may also 

be affected by chemical, behavioural, or biological factors (Lussi et al. 2004). Certain 

medical conditions, such as acid reflux, bulimia, or pregnancy-related ‘morning sickness’, 

can also be positively correlated with enamel erosion on the lingual surface of the anterior 

teeth, as these conditions cause this dental enamel to be coated by regurgitated stomach 

acids (See Section 4.2.4 for further details on the biomechanics of dental erosion and its 

contributing factors; Valena and Young 2002). Enamel erosion has had a variable impact 

on past populations, however indicators of enamel erosion are still debated and knowledge 

of erosive factors are needed to support physical evidence (Coupal and Soltysiak 2017; See 

section 4.4.1 for discussion of the impact of erosion on ancient Egyptian dental wear). 

Just as dental attrition can be affected by, and altered by, caries and vice versa, both dental 

wear and dental caries may also affect the prevalence of abscesses and/or antemortem tooth 

loss. Periapical abscesses are strongly linked to dental infection, which often results from 

the exposure of the dental pulp through large carious lesions or severe attrition, and 

periapical abscesses can, in turn, result in the loss of the associated tooth (Molnar 2008; 

Grant et al. 1988; Alt et al. 1998). If periapical abscesses are left unresolved, particularly 

in the maxillary dentition, then it may become a threat to the life of the individual as the 

infection may spread, in some cases to the brain (Li et al. 1999). Lingual tooth dislocation 

(or tilting) can also result from a combination of dental wear, continual eruption, and 

destruction of the buccal alveolar bone resulting from periodontitis, periapical abscess, or 

alveolar fenestration (Clarke and Hirsch 1991). Dental abfraction has also been associated 

with high bite forces, dental attrition and dental erosion (See Section 4.2.3 for more on 

abfracture; Rees 2002). Many of the aforementioned conditions, as well as osteoarthritis of 
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the temporomandibular joint, are positively correlated with chronological age. Other 

pathological conditions (e.g. cleft palate, oral cysts, granuloma, tumors, etc.) may 

contribute to an understanding of the life history of an individual.   

Periodontitis is another oral pathology that is regularly documented in the study of dental 

anthropology as it can lead to painful infections, alveolar abscess and ante-mortem tooth 

loss (Podzorski 1990). In skeletal materials it is characterized by alveolar bone loss as 

indicated more than 1.5mm space between the tooth’s crown and the alveolar bone 

(Lavigne and Molto 1995). This disease can be localized or widespread throughout the 

dentition and is often a result of poor hygiene, localized infection, embedded foreign 

materials, excessive attrition (Greene et al. 1967), compromised immunity (Hajishengallis 

2015), and/or the build-up of calculus along the gum-line (White 1997). Severe 

periodontitis can result in antemortem tooth loss and can make dental roots more vulnerable 

to caries and infection through exposure (Ravald and Johansson 2012).  

Dental calculus can, in itself, provide information about the diet of an individual through 

microscopic analysis of dental calculus inclusions such as phytoliths or starch granules 

(e.g. Fox et al. 1996; Hardy et al. 2009). As further discussed in section 2.1.7, dental 

calculus can also preserve information about the oral microbiome of the individual. In an 

effort to document any correlations between dental calculus and diet or other oral pathology 

(e.g. caries, attrition, or periodontitis), dental calculus is often reported in terms of the 

amount of buildup found on teeth in the archaeological record. These recordings are also 

useful for identifying significant calculus samples for biomolecular study. With all of these 

pathological conditions in mind, it is clear that the study of oral pathology can inform our 

collective understanding of: dietary links to oral pathology, co-morbidity in the oral cavity, 

dietary customs in past populations, and aspects of individual life histories that may have 

affected behaviour and quality of life.   

2.1.7 Biomolecular Analysis 

Samples of dental calculus and whole teeth are often collected for the biomolecular analysis 

of archaeological remains as they tend to preserve well, are easy to collect in small samples, 

and provide a certain amount of protection from contamination to the interior of the sample. 
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As a result, a growing number of biomolecular methods have been used in the analysis of 

teeth and dental calculus.  For example, ancient DNA (aDNA) extracted from dental 

materials has enabled the reconstruction of some familial, social and evolutionary 

relationships (e.g. Cappellini et al. 2004; Simon et al. 2011). The sex of individuals has 

also been determined through DNA analysis (e.g. Cappellini et al. 2004; Vaňharová and 

Drozdová 2008). The complete human mitochondrial DNA (mtDNA) genome has also 

been reconstructed from dental calculus, providing a method for mtDNA extraction that is 

not destructive to the human remains (Black et al. 2011; Ozga et al. 2016). Genetic analysis 

of dental calculus can also help to identify starch granules or plant microfossils, enabling 

the collection of important information on heritage plant species (Weyrich et al. 2015). 

Furthermore, aDNA analysis from tooth and calculus materials can help to identify some 

pathological conditions, though this research is still blossoming (e.g. Drancourt et al. 1998; 

Raoult et al. 2000; Drancourt et al. 2005; Papagrigorakis et al. 2006; Bedarida et al. 2011). 

Bacterial aDNA derived from dental calculus can also provide information about past oral 

microbiomes and microbiotic changes within a population perhaps resulting from dietary 

and/or environmental changes (e.g. Eisenhofer et al. 2017; Adler et al. 2013; Warinner et 

al. 2015). Scanning electron microscopy, fluorescence microscopy and transmission 

electron microscopy have similarly been used to identify bacteria in ancient dental calculus 

(Linossier et al. 1996; Preus et al. 2011). These methods of detection, and particularly 

genetic analyses, of these pathogens can contribute to the evolutionary understanding of 

these pathogenic species and their co-evolution with early hominins and humans (Harkins 

and Stone 2015).  

Ancient pathogens and host immunological responses can also be detected through 

paleoproteomic analysis of dental pulp (e.g. Barbieri et al. 2017; Drancourt et al. 2018; 

Wasinger et al. 2019). Paleoproteomic methods represent a tremendous potential for 

improved understandings of disease and host co-evolution that can inform the field of 

evolutionary medicine. Proteomic analysis can also be used for dietary research as it has 

revealed the whey protein, β-lactoglobulin, in the dental calculus of Greenlanders from the 

Bronze Age until the present, indicating their consumption of milk (Warinner et al. 2014). 
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More popularly used for dietary research is stable isotope analysis. In this respect, isotopic 

analysis can serve to determine the types of foods consumed by an individual, and in what 

relative quantities (e.g. Van der Merwe et al. 2003; Beaumont and Montgomery 2016; Scott 

and Poulson 2012), giving a better idea of the lifestyle of studied populations. In 

bioarchaeological studies, differences in diet within a population can also indicate 

economic and social inequalities or ‘structural violence’ (Klaus 2012). Less wealthy 

individuals or those belonging to marginalized groups often have reduced access to prized 

nutritional resources, resulting in observable differences in health in the archaeological 

record (Reitsema and Vercellotti 2012). Differences in food consumption may also be 

related to cultural beliefs about food, or food taboos. As Foster and Anderson stated, “No 

group, even under conditions of extreme starvation, utilizes all available nutritional 

substances as food” (Foster and Anderson 1978, as cited in Helman 2000: 33). Isotopic 

analyses of dental tissues and dental calculus have also contributed to our understanding 

of individual migration by indicating the range of ecologies occupied by an individual (e.g. 

Schweissing and Grupe 2003; Budd et al. 2004; Schroeder et al. 2009; Shaw et al. 2016). 

In an innovative approach, isotopic studies of dentine have even been used to narrow down 

samples to specific time periods within an individual’s life, opening up great potential for 

the observation of isotopic changes through an individual’s life relating to dietary changes 

such as those related to weaning, famine, or migration (e.g. Beaumont et al. 2013; Sandberg 

et al. 2014; Beaumont and Montgomery 2016). 

In addition to the analysis of isotopes, elemental analysis through methods such as mass 

spectrometry, gas chromatography, X-ray Fluorescence (XRF), and x-ray micro-

fluorescence using synchrotron radiation have been used to detect tooth labeling from 

materials as diverse as lead (e.g. Budd et al. 2000), coca (e.g. Ubelaker and Stothert 2006), 

and betel nut (e.g. Hocart and Frankhauser 1996). These methods can also be used to detect 

normal dietary elements and isotopes (e.g. Dolphin et al. 2005; Anjos et al. 2004). All of 

these studies further inform our understanding of the diets, environment, pathology and 

lifestyles of past people. 
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2.1.8 Anthropogenic Dental Modification 

At times, it can be difficult to distinguish between pathological changes (e.g. caries, 

attrition, tooth loss), developmental defects, and anthropogenic modifications of the 

dentition. Anthropogenic dental modification may be done intentionally (for reasons of 

status, ethnicity, identification or aesthetics) or unintentionally (through the use of the teeth 

as tools, or the use of pipes, toothpicks, labrets, etc.). Both types of modification can reveal 

information about the individual and sometimes about their society.   

Intentional dental modifications found in archaeological remains include dental ablation, 

dental filing, drilling and shaping, medical intervention, the use of dental appliances, the 

placement of inlays, and staining (Hillson 1996; Alt and Pichler 1998; Barnes 2010; 

Burnett and Irish 2017). Many of these modifications are done as a point of pride, marking 

life milestones or identifying the individual’s cultural affiliation or social status. However, 

some modifications are done solely for aesthetic purposes and may be limited to higher 

socio-economic strata. An example of aesthetic modification that is also linked with gender 

and marital status is a practice called ohaguro, in which early- to pre-20th century married 

Japanese women stained their teeth black, using an acidic mixture containing iron 

compounds (Ai et al. 1965; Oyamada et al. 2017).  

In addition to the staining of teeth, there exist more destructive intentional dental 

modifications such as dental filing, drilling, breaking, chipping, shaping, piercing, 

movement and ablation. Germectomy, or surgical removal of the tooth germ, has also been 

documented in some populations (Benedix 1998; Alt and Pichler 1998; Barnes 2010; 

Gonzalez et al. 2010). These methods of dental modification can be a result of aesthetic 

preference, a sign of status or social belonging, or have religious or ritual meaning 

(Gonzalez et al. 2010). As such, these elements of the dentition can be critical to 

individuation. The placement of inlays may have similar reasoning; however, inlays may 

also be used in medical interventions of dental decay. For example, Mayans have been 

discovered with jade, turquoise, or pyrite inlays (Vukovic 2009). Modern examples of 

medical inlays include the use of amalgam or composite material fillings. Similarly, the 

use of dental appliances such as crowns, bridges, braces, or dentures may also be 
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considered as intentional dental modifications and can provide information about the status 

of an individual and the dental expertise in a society (Alt and Pichler 1998). In modern 

contexts, these interventions can be compared to dental records for forensic odontology 

(See Section 2.1.9 for more information on forensic odontology). 

Unintentional dental modifications can inform dental anthropologists of the use of teeth as 

tools, such as in the case of sinew or leather processing methods (e.g. Brown and Molnar 

1990; Lous 1970). Lingual and transversal occlusal grooves have also been attributed to 

the use of the teeth as tools in the processing of cordage for cordage or basketry (Larsen 

1985; Alt and Pichler 1998). Wood shaping and the gripping of hard objects (e.g. nails, 

needles, torches) can also leave characteristic dental wear (Hylander 1977a; Alt and Pichler 

1998) Another abnormal pattern of dental wear, known as lingual surface attrition of the 

maxillary anterior teeth (LSAMAT) has been attributed to the processing and/or 

consumption of manioc or tubers, or the chewing of sugar cane (Turner and Machado 1983; 

Irish and Turner 1987, 1997; Turner et al. 1991; Berbesque et al. 2012). Many of these 

examples of unintended dental modification have shown differences in wear prevalence 

according to sex, reflecting differences in occupations or habits between the sexes. A more 

recent example of unintentional occupation-related dental modification would be the 

development of “phossy jaw” (a deadly affliction involving dental infections, fistulae, 

abscesses, tooth loss, and bone necrosis) in early industrial era matchstick factory workers 

exposed to white phosphorous vapour (Roberts et al. 2016). Discoloured dentition can also 

be associated with some occupations—most notably workers in the metal industry, where 

a variety of staining has been reported (Schour and Sarnat 1942; Gupta 1990; Brown et al. 

2014). The recreational chewing of the psychostimulant, betel nut, has also led to tooth 

staining in populations in the Western Pacific Basin and South Asia (Fitzpatrick et al. 2003; 

Gupta and Ray 2004; Zumbroich 2008; Brown et al. 2014).  

Unusual dental wear patterns can also indicate if the individual was adorned with labrets 

(e.g. Cybulski 2010) or if they habitually used pipes (e.g. Ubelaker 1996). Habits of dental 

hygiene, such as tooth brushing and the use of chewing sticks, have also been suspected in 

the unintentional modification of teeth though these effects are still debated and can be 

difficult to distinguish from dental erosion or dental abfraction (Slop 1986; Turp 1990; 
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Grippo et al. 2004; Oginni et al. 2003; Michael et al. 2009; Senna et al. 2012). It has also 

been argued that some dental grooving seen in ancient dentition is the result of the use of 

flossing with abrasive materials or probes for picking between teeth (Formicola, 1988; 

Turner 1988; Brown and Molnar 1990). This may have been for hygienic reasons but it is 

more likely that it was done to relieve discomfort from interproximal caries or other 

pathological irritations (Formicola, 1988). In any case, all of these anthropogenic dental 

modifications give us clues to the life histories of past people.  

2.1.9 Forensic Odontology 

Just as some forms of anthropogenic dental modification can be used as identifiers, modern 

forensic odontology can be used to individuate unknown persons. Although forensic 

odontology represents an overlap between the dental and legal professions (Pretty and 

Sweet 2001), it is still a study of human dentition and can be categorized as a form of dental 

anthropology. Forensic odontology is usually used in cases where it is necessary to identify 

otherwise unrecognizable individuals, often from mass disasters or forensic cases. When 

possible in these cases, the dentition of the human remains and their radiographs are 

compared to modern dental records of the missing people in order to find a match. These 

matches are usually reliant on dental developmental stage, dental morphology, dental 

pathology, dental appliances, or dental interventions (Pretty and Sweet 2001). Bite marks, 

lip prints (cheiloscopy), and palatal rugae (palatoscopy) have also been used in the 

identification of both victims and perpetrators (Rai and Kaur 2013).  Despite its role in 

bringing the infamous Ted Bundy to justice, bite mark analysis has proven to be unreliable 

in proficiency testing with error rates as high as 64% (Saks and Koehler 2005). In addition 

to these applications, forensic odontology can be used to build legal cases for abuse and 

neglect, or dental malpractice and negligence (Rai and Kaur 2013). In addition to the 

aforementioned goals, forensic odontologists may also create a post-mortem dental profile 

for the individual that may include age and sex estimates, information on dental 

morphological indicators of ancestry, as well as indicators of socio-economic status, 

diet, occupation, habitual behaviour and pathology (Pretty and Sweet 2001). Many of 

the methods used in the creation of a post-mortem dental profile are also used in 

bioarchaeology, however, there are some methods that, so far, have only proven useful 
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in the recently deceased. An example of this is sex determination through the 

observation of sex chromatin Barr bodies and F bodies in pulp tissues; elements that 

have been deemed reliable only up to a year after death, depending on circumstances 

(Duffy et al. 1991; Rai and Kaur 2013). This information can be used to build a profile 

of an individual that cannot be matched through dental records. Forensic odontology can 

play an important part in civil and criminal law cases, bringing justice to the guilty and 

closure to the victims and/or their families.  

2.1.10 Dental Sex Estimation 

For purposes ranging from the identification of missing people to reconstruction of ancient 

population demographics, sex estimation is a crucial part of the study of human remains. 

Although sex estimation is usually conducted through the examination of selected bones, 

sexual dimorphism in the dentition can also be considered, particularly in cases of limited 

preservation. In these cases, odontometric analysis of the mandibular canines is often used 

due to their relatively high level of sexual dimorphism (e.g. Rao et al. 1989; Khangura et 

al. 2011; Tardivo et al. 2011; Acharya and Mainali 2007). However, studies of bucco-

lingual and mesio-distal measurements of other teeth have also proven useful (e.g. Ditch 

and Rose 1972; Acharya and Mainali 2008; Narang et al. 2015). Although these methods 

have shown great success in some studies, odontometrics are not commonly consulted for 

the estimation of sex due to their vulnerability to change resulting from dental wear or 

breakage, and the differences in odontometrics and sexual dimorphism between 

populations (Teschler-Nicola and Prossinger 1998; Prossinger 1998; Zorba et al. 2011). 

However, relative area or volume measurements of dental crown tissues have shown some 

promise for the estimation of sex in teeth subjected to significant dental wear (Schwartz 

and Dean 2005; Saunders et al. 2007; Tardivo et al. 2011, 2015; De Angelis et al. 2015; 

Garcia-Campos et al. 2018). Sexual dimorphism in dental root length, dimensions and 

relative measurements have also been studied and have shown potential for sex estimation 

in human remains (Zorba et al. 2014; Kazzazi and Kranioti 2017; Gouveia et al. 2017). 

Differences in dental developmental timing have also been suggested for use in sex 

estimation in subadults (Hunt and Gleiser 1955). However, this method assumes accurate 
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knowledge of the age of the individual, which is not usually possible in bioarchaeological 

contexts (Teschler-Nicola and Prossinger 1998).  

In addition to sexual dimorphism in the dentition, some skeletal elements relating to the 

oral cavity have been used in the estimation of sex. For example, mandibular morphology 

can differ between adult males and females. The prominence of the mental eminence is one 

such characteristic which is commonly considered along with other cranial elements in the 

estimation of sex according to the Buikstra and Ubelaker standards (1994). Multiple 

elements of mandibular morphometrics have also been observed to differ in relation to sex 

in some populations (e.g. Loth and Henneberg 1996; Hu et al. 2006; Franklin et al. 2007; 

Indira et al. 2012; Vinay et al. 2013; de Oliveira Gamba et al. 2014). Investigations in the 

patterns of palatal rugae have also been conducted with a view to distinguish between male 

and female (e.g. Bharath et al. 2011; Thabitha et al. 2015). Although this method may have 

some utility in forensic odontology, its usefulness has not yet been demonstrated in 

mummified human remains where the connective tissues of the palatal rugae may be 

preserved but almost certainly altered.  

In addition to the above, teeth are remarkable storage units for aDNA and proteins. 

Analysis of sex-linked DNA sequences amplified from dental pulp have shown utility in 

the determination of sex (Hanaoka and Minaguchi 1996; Rai and Kaur 2013). For example, 

in cases of significant deterioration of DNA, sex-linked amelogenin genes, located on the 

X- and Y- chromosomes, may be useful in the determination of sex (Hanaoka and 

Minaguchi 1996; Rai and Kaur 2013). A major problem for this method is the fact that it 

is a nuclear DNA locus and does not have the mitochondrial advantage of high copy 

numbers per cell (Chahal et al. 2007). Thus, it is more likely to suffer from taphonomic 

influences. X- and Y-chromatins can also be identified through immunocytochemical 

staining of cells from the dental pulp, depending on the time since death and the diagenesis 

of the pulp tissues (Duffy 1989; Galdames et al. 2010; Muñoz et al. 2012). 

The numerous methods available for the estimation of sex in dental remains reinforces the 

importance of dental anthropology in the study of human remains. Since teeth are often the 

best preserved tissue, many studies have been conducted to identify reliable methods for 
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sex estimation using teeth. From these studies, several promising methods have shown 

potential for future use and, as a result, dental sex estimation may be used in the 

identification of persons in modern forensic cases or in bioarchaeological contexts. Sex 

estimation in bioarchaeology is of extreme importance as it contributes to the individuation 

of unknown remains, the reconstruction of paleodemographics and family structure, and 

the identification of sex-specific dietary differences, occupations, socio-economic statuses 

and burial treatments. It also helps in the construction of differential diagnoses for 

paleopathology as some conditions are more or less prevalent according to sex. Although 

some methods of dental sex estimation require further research and refinement, they still 

represent an important contribution to forensics, bioarchaeology, and paleopathology. With 

the ongoing advances and movement toward affordability in biomolecular methods and the 

significance of teeth as units of storage for uncontaminated aDNA, the importance of dental 

sex estimation will likely continue to increase with time.   

2.1.11 Dental Age Estimation 

Just as sex estimation is crucial to the study of human remains, the same can be said for 

age estimation. Like sex estimates, age estimates are invaluable for the identification or 

individuation of unknown persons, the analysis of paleodemography and 

paleoepidemiology, the differential diagnosis of paleopathology, and the reconstruction of 

life histories.  

Life history studies include the estimation of age with respect to biological, environmental, 

dietary, pathological, cultural, and social changes or events. For example, infant weaning 

is a life history event that can be tracked relative to chronological age, as determined 

through dental analysis. The change in diet can be recognized through isotopic, elemental 

or chemical analyses of dental tissues from teeth with different developmental timing (e.g. 

Wright and Schwarcz 1998; Dupras and Tocheri 2007; Prowse et al. 2008). Not only can 

these biomolecular changes be tracked through sequentially developing teeth, they can be 

identified throughout life in accordance with incrementally growing dental structures found 

in cementum, enamel, or dentine (e.g. Smith and Tafforeau 2008; Beaumont et al. 2013; 

Austin et al. 2013). The study of biomolecular changes across incremental dental structures 
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is particularly powerful as the incremental microstructures of enamel and dentine reflect 

circadian (enamel prism cross-striations and Von Ebner’s lines in dentine) and approximate 

circaseptan (Andresen lines in dentine and striae of Retzius and perikymata in enamel) 

rhythms and are thus extremely accurate in the estimation of age (Dean et al. 1993a; Dean 

2000a; Antoine 2000; Wittwer-Backofen et al. 2004; Antoine et al. 2009; Huffman and 

Antoine 2010; Gupta et al. 2014). The physiological stress of birth and the related 

environmental change is also recorded in neonatal lines in the enamel and dentine, 

providing solid reference points for age estimation and allowing for comparison of pre- 

and post-parturition biomolecular changes resulting from environmental, biological and 

dietary changes (e.g. Arora et al 2006; Goodman et al. 2003; Humphrey et al. 2007; Austin 

et al. 2013). With these histological methods of dental age estimation, isotopic analysis can 

also be used to identify migration events throughout life (e.g. Schweissing and Grupe 2003; 

Evans et al. 2006; Prowse et al. 2007). This process can provide information about travel 

habits, marriage patterns, ethnicity, trade, pilgrimage, exile, and many other topics relating 

to life history and sociocultural norms. In addition to the analysis of common dietary 

molecules, elemental analysis across incremental structures (or across sequentially 

erupting teeth) may reveal exposure to other elements, such as heavy metals, in relation to 

the individual’s age(s) of exposure (e.g. Montgomery 2002; Arora et al. 2014; Martin et al. 

2004).  

Of course, the analysis of dental incremental structures is not limited in function to the 

study of biomolecular changes. These methods have proven to be useful in the 

determination of age-at-death in forensic cases, primate studies and bioarchaeological 

studies. Determination of age-at-death in bioarchaeological studies is often used in the 

differential diagnosis of paleopathology as well as the study of paleo-epidemiology and 

paleodemography (Hoppa and Vaupel 2002; Dewitte 2010; Milner and Boldsen 2012). 

Dental age estimation methods are extremely important for the development of differential 

diagnoses in individuals, since many illnesses are more prevalent in, or limited to, certain 

age groups and some illnesses are strongly correlated with age (Ortner 2003; Hillson 2005; 

Milner and Boldsen 2012). Consequently, all paleopathological and pathological analyses 

for humans and non-humans should be conducted in relation to known or estimated age 

(Hillson 2005).  
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Linear enamel hypoplasia (LEH) has also been used to identify periods of physiological 

stress in relation to normal incrementally formed perikymata. It has been argued that the 

use of LEH for this purpose is flawed unless conducted through microscopy as many 

hypoplastic enamel defects are not visible to the human eye and dental erosion can further 

complicate macroscopic analyses (Hillson and Bond 1997). The study of LEH is also 

challenged by its imprecise aetiology and misunderstandings of the nature of physiological 

stress (Hillson, personal communication). Furthermore, it has not yet been determined how 

quickly an aetiological event will be reflected in LEH, nor how long the hypoplasia takes 

to stop following the event. Moreover, enamel furrows will differ significantly in size based 

on their location on the crown (Hillson and Bond 1997). Lastly, it is not yet known if there 

are differences in the size of the LEH or the bodily reactions resulting in hypoplasia among 

individuals or according to different biological events. Nevertheless, LEH may still be 

useful in indicating periods of hypoplastic dental growth in the imbricational zone and may 

be associated with chronological age through the microscopic study of perikymata or striae 

of Retzius, bearing the aforementioned caveats in mind.  

Despite the high accuracy and precision of subadult age estimates produced through dental 

incremental structure analysis, these methods are not regularly used as they are very time-

, resource-, and work-intensive, not to mention destructive in nature. As such, subadult 

dental age estimation is usually reliant on standards relating chronological age to 

macroscopic characteristics of dental development and eruption. In addition to providing 

an easy and accessible method of age estimation in subadults, the macroscopic study of 

dental development on an evolutionary scale has been revealing in itself, as different 

primates and early hominins have demonstrated differences in their time to maturation (e.g. 

Simpson et al. 1990; Tompkins 1996; Dean 2000b). This information is significant in the 

understanding of reproductive strategy, birth spacing, subadult dependency, family 

structure and life span (e.g. grandmother hypothesis, Williams 1957), and the evolutionary 

adaptations responsible for the development of the long period of human life we know as 

childhood.  

Knowledge of these developmental differences across species has also been applied to 

correct age estimates in paleoanthropological research. For example, early researchers 
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applied subadult dental aging standards derived from modern human and non-human 

primates to fossil hominins, in an attempt to estimate their age-at-death (Dart 1925; Mann 

1975). The type specimen for Australopithecus africanus, also known as the ‘Taung child’, 

was estimated to be six years of age using a human dental aging standard (Dart 1925). It 

was later shown that most early hominids have a more ape-like pattern of dental 

development, apart from Australopithecus robustus, who differed significantly from apes 

and humans (Smith 1986). Smith’s (1986) study led to a lengthy dispute regarding the 

nature of dental development in early hominids. Consequently, Dean et al. (1993b) 

estimated the age of one of the disputed Australopithecus robustus specimens through the 

histological analysis of enamel prism cross-striations. As previously mentioned, these 

cross-striations are known for their circadian rhythm of amelogenesis which provides an 

extremely accurate and precise indicator of age in subadult remains (Antoine 2000; 

Antoine et al. 2009). Dean et al. (1993b) concluded that the cross-striation analysis 

indicated a pattern of development that most closely resembled the developmental timing 

of ape dentition. It should be noted that the correlation demonstrated by Dean et al. (1993b) 

does not necessarily indicate that dental age estimation standards derived from apes should 

be used for Australopithecus robustus. Furthermore, the Australopithecus robustus 

specimen observed represents only a moment within the long developmental schedule of a 

single individual and growth rates and developmental sequence are known to vary in extant 

species (cf. Winkler 1996; Godfrey et al. 2005; Braga and Heuze 2007). As such, 

macroscopic dental aging standards are not an ideal tool for age estimation for individuals 

from extinct species although they do confer the benefit of being non-destructive in nature 

and may be useful for relative aging or biological aging, rather than chronological age 

estimation. Although the destructive processes involved in dental histology are generally 

avoided for rare and important specimens, it remains the most accurate and specific method 

of age estimation applicable to extinct hominins (Hillson 2005). 

Besides its use in subadult dental age estimation in ancient individuals, dental development 

has played an important part in the biological study of growth in modern populations 

(Hillson 1996) and growth studies have recently seen a new surge of interest since it has 

been shown that conditions of early life may affect health later in life, called the 

‘developmental origins of health and disease (DOHaD)’ (Gluckman et. al. 2007). As 
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previously mentioned, dental age estimation is also extremely important in cases of 

forensic identification in modern populations. This is particularly true for subadults, as 

dental development is among the fastest and most accurate indicators for skeletal 

individuation through macroscopic analysis. Another use for dental aging methods in 

modern populations is to estimate the age of immigrants, young offenders, and orphans up 

for adoption, where birth data are suspect or missing (Maber et al. 2006; Cameriere et al. 

2012). Similarly, dental age estimation methods may be used by socio-cultural 

anthropologists to estimate the ages of their study participants when alternative information 

about birth data are unavailable or unreliable. As a result, subadult dental age estimation 

plays extremely important, sometimes crucial, roles in the study of past and present humans 

and our primate relatives.  

Just as teeth can be used to estimate age in subadult remains, they can be used for age 

estimation in older individuals. Of course, beyond the point of dental maturity, the 

aforementioned methods based on odontogenesis are not applicable. However, there are a 

number of other methods for estimating age from mature dentition. Perhaps the most 

popular dental indicator of adult age is dental wear, though there are many alternative 

methods (See Section 4.3 for more information on age estimation through dental wear). 

For example, the histological count of the concentric annular lines of Salter in root 

cementum can reflect the number of years since dental root formation. This enables 

relatively reliable year-by-year age estimates in biologically mature individuals (e.g. Stott 

et al. 1982; Naylor et al. 1985; Condon et al. 1986; Charles et al. 1986; Kvaal and Solheim 

1995; Kagerer and Grupe 2001; Hillson and Antoine 2003; Wittwer-Backofen et al. 2004; 

Aggarwal et al. 2008; Avadhani et al. 2009; Gupta et al. 2014). However, difficulties in 

differentiating cementum lines or reproducing line counts throughout the root have cast 

some doubt on this method (Renz and Radlanski 2006; Huffman and Antoine 2010; Le 

Cabec et al. 2019), particularly as diagenesis can sometimes mimic cementum lines (Stutz 

2002). Irregular cementum apposition and calcification, pathology and/or trauma can result 

in the resorption of areas of the root cementum. As these areas accumulate over time, it 

results in an increase in root surface roughness. This change in root surface roughness, 

however, has shown little promise as an independent indicator of age (Solheim and Kvaal 

1993; Rosing and Kvaal 1998).  
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In addition to these root surface changes, the colour of the root surface is known to change 

at a rate that is positively correlated with chronological age (Solheim 1993; Pudil and Pilin 

2000; Lackovic and Wood 2000; Laskarin et al. 2006; Pilin et al. 2007; Devos et al. 2009), 

perhaps as a result of the cementum apposition or changes in the underlying dentine (Ten 

Cate et al. 1977; Mincer et al. 1993; Laskarin et al. 2006). However, applicability of this 

method is limited in archaeological contexts as a result of taphonomic change. Dental 

enamel has also shown age-related changes in colouration and translucency (Solheim 1998; 

Odioso and Reno 2001; Devos et al. 2009), however, the colour of dental enamel may be 

affected by staining, acid erosion, enamel water loss, and absorption of trace elements, 

complicating attempts to correlate age with tooth shades (Solheim 1998). Tooth colour 

correlates with changes on a deeper level as blue and red fluorescence is known to increase 

in dentine with age (Kvaal and Solheim 1989; Solheim 1998). 

Following closure of the dental root apex, secondary dentine begins to line the pulp 

chamber at a fairly stable rate, allowing for the measurement of the secondary dentine or 

pulp cavity to estimate age (e.g. Drusini et al. 1997; Cameriere et al. 2007; Paewinsky et 

al. 2005; Someda et al. 2009; Singaraju and Sharada 2009). Peritubular dentine similarly 

grows inward over time, narrowing the dentine tubules and changing the refractive index 

of the dentine, resulting in increasing translucency, at a regular rate that can be used to 

predict age at death (Gustafson 1950; Nalbandian et al. 1960; Bang and Ramm 1970; 

Solheim 1989, 1998; Lamendin et al. 1992; Prince and Ubelaker 2002; Prince 2004; 

Singhal et al. 2010). Unfortunately, diagenetic changes in dental tissues recovered from 

archaeological contexts can reduce the accuracy of all of these methods of age estimation 

(Lucy et al. 1995; Chandler and Fyfe 1997; Sengupta et al. 1999; Vlcek and Mrklas 1975). 

In addition to these age-related physiological changes in dentition, periodontal recession 

(e.g. Loe et al. 1992; Grossi et al. 1995), number of teeth (e.g. Hoefig 1964; Endris 1979; 

Lindemaier et al. 1989; Rosing and Kvaal 1998), and dental wear (see Sections 4.2 and 4.3 

for a detailed description of dental wear and its related standards for age estimation) have 

all shown correlations with chronological age. Biomolecular analyses of dental tissues have 

also shown promise for the estimation of age-at-death. For example, amino acid 

racemization (changes from L- to D-aspartic acid) in dentine has been proven to be highly 
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correlated with chronological age (Ohtani and Yamamoto 1991; Yekkala et al. 2006; 

Meissner and Ritz-Timme 2010). However, use of this method is restricted to living 

individuals and some forensic cases as changes in temperature and pH affect the rate of 

racemization (Masters 1986; Ohtani 1995; Torres et al. 2014). Advanced glycation 

endproducts (AGE) have also been investigated in relation to age estimation and have 

demonstrated very accurate age estimates from pentosidine or furosine levels in dentine 

from non-diabetic individuals (e.g. Greis et al. 2018; Valenzuela et al. 2018). However, 

these studies are vulnerable to biases resulting from heat exposure or chemical changes 

related to caries or diabetes mellitus (Greis et al. 2018). DNA analyses are also vulnerable 

to taphonomic variables such as heat. Nevertheless, aDNA analytical methods continue to 

improve. Recently, some attention has turned to the relationship between chronological age 

and the shortening of telomeres recovered from dental pulp DNA (e.g. Takasaki et al. 2003; 

Marquez-Ruiz et al. 2018). Although telomere shortening was shown to correlate with 

chronological age, Marquez-Ruiz and colleagues (2018) noted inaccuracy in age estimates 

based on this biomolecular indicator and recommended its use only in a complementary 

role in a multifactorial age estimation method. Lastly, DNA methylation and epigenetic 

analysis of DNA from dental tissues are also beginning to show potential as indicators of 

age (Bekaert et al. 2015; Giuliani et al. 2016; Hanghøj and Orlando 2018). Many of the 

aforementioned biomolecular methods are still in their infancy and require further research 

to determine their true value with regard to age estimation, particularly in dental specimens 

recovered from archaeological contexts.  

Like subadult dental age estimation, adult dental age estimation methods are essential for 

the placement of life events within a chronological context. For example, dental aging 

methods can be used to determine the minimum and maximum age-at-death for soldiers 

interred at a military cemetery. This would give an idea of the socially acceptable ages for 

people to serve in the military. A study like this may give an indication of the target 

population’s ideas about childhood and adulthood, since the definition of childhood varies 

greatly among populations and it is not necessarily dependent on biological factors 

(Helman 2000). Furthermore, the incremental apposition of cementum may even allow for 

the identification of migration, dietary change, or elemental exposure during adulthood 
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(e.g. Martin et al. 2004; Martin et al. 2007; Martin et al. 2010; Lefever 2010; Dean et al. 

2018). 

On a larger scale, dental age estimation is useful for reconstructing population 

paleodemographics and conducting paleoepidemiologic analyses involving the mapping of 

disease transmission and the identification of at-risk demographic groups within the 

population. Keeping the osteological paradox (Wood et al. 1992) in mind, 

paleopathologists must also calibrate their pathological findings against their population 

age distribution when comparing their data to pathological findings at another site 

(Waldron 2009). Comparisons of pathological distribution in different populations may 

also give indications about possible aetiologies for the disease that are biologically or 

culturally linked to chronological age. As such, the ongoing advancement of dental age 

estimation methods are of the utmost importance.  

2.1.12 Conclusion 

Since dental tissues resist taphonomic processes more than bone, teeth have contributed 

immensely to our current understanding of the evolutionary history of hominins, 

hominoids, primates, mammals, and all other living things with teeth. On a narrower scale, 

dental anthropology has made a significant impact on a variety of disciplines including (but 

not limited to): human and primate biology, evolutionary biology, biological anthropology, 

anatomy, comparative anatomy, physiology, pathology, paleopathology, 

paleoepidemiology, odontology, dentistry, orthodontics, forensics, law, archaeology, and 

socio-cultural anthropology. Dental anthropology embraces techniques spanning from 

macroscopic to biomolecular analysis and provides invaluable information about topics 

such as ancestry, migration, familial structure, disease, development, senescence, diet, 

evolution, and social structure in past and present populations.   

Dental age estimation methods are perhaps the most significant contribution that dental 

anthropology has made due to its broad applicability and usefulness in living and deceased 

individuals. Age estimation is one of the most important elements considered in the 

forensic identification of unknown persons, the creation of osteobiographies, the 

differential diagnosis of (paleo)pathology, and the study of paleodemography or 
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paleoepidemiology. Dental age estimation methods are often used for these purposes due 

to their relative accuracy. Also, since teeth are more resistant to taphonomic change than 

soft tissues or bone, in many cases researchers must rely on the dentition for estimates of 

age. Given the supreme importance of dental age estimation, it is incumbent on dental 

anthropologists to regularly evaluate and improve the existing methods while investigating 

and integrating new techniques and technologies. 

 

2.2 The Significance of Dental Age Estimation 
Methods: A Preliminary Meta-analysis 

2.2.1 Introduction 

Age estimates determined from dental analysis are widely considered to be the best 

macroscopic means for determining the age of a skeleton (White et al. 2011; Senn and 

Weems 2013; Schmidt 2016). The accuracy and reliability of dental age estimation 

methods have been tested and compared to other skeletal age indicators by several 

researchers, however, none have included both dental wear methods and dental 

development methods in the same study. In an effort to fill this gap, and to explore the 

value of dental age estimation standards, a preliminary meta-analysis was conducted to 

compare selected tests of the accuracy of skeletal and dental age estimation standards. 

Although this meta-analysis is used here to provide an idea of the relative accuracy and 

bias of popular macroscopic age estimation methods, it is not comprehensive and a more 

thorough study comparing these methods is recommended. 

2.2.2 Materials and Methods 

This exploratory meta-analysis focused on a selection of popular macroscopic dental and 

skeletal age estimation methods for subadults and adults. More specifically, it is a 

comparison of tests of the accuracy and bias of: 1) subadult age estimates based on dental 

development, and 2) adult age estimates based on the pubic symphysis and auricular 

surface morphology, suture fusion, and dental wear. Articles were primarily selected for 

inclusion based on their experimental and statistical methods. All of the included studies 
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examined known age individuals from populations not used for the development of the 

standard being tested, and the level of accuracy was determined through the comparison of 

the estimated age with the known age. In all of the articles, results were presented in the 

form of inaccuracy, bias, correlation with known age using Pearson’s r, or a combination 

of more than one of these statistical forms. These parameters for sample selection ensured 

that the data were methodologically and statistically comparable. Finally, the articles 

selected for inclusion in this meta-analysis were limited to studies that compared accuracy 

tests for multiple methods of age estimation. This selection criterion was used to minimize 

inter-observer error and systematic bias due to minor differences in methodology. From 

this defined pool of studies, three articles were chosen for inclusion in this meta-analysis 

due to their tests of the multiple methods of interest with limited overlap. This meta-

analysis was limited in size due to the vast quantity of published age estimation accuracy 

studies and the limited scope of this dissertation, within which this meta-analysis is 

tangential to the main arguments. Given that the studies selected for inclusion in this meta-

analysis represent a fraction of the published tests of skeletal and dental age estimation 

standards, this meta-analysis should be considered a preliminary assessment of the relative 

reliability of the selected age estimation methods. As such, a much larger meta-analysis is 

recommended for a broader understanding of the relative reliability of age estimation 

methods.  

Returning to sample selection, data from the selected studies included in this meta-analysis 

were restricted to tests of age estimation methods used to recognize a range of ages. As 

such, tests of single age threshold indicators (e.g. accuracy tests based on an epiphyseal 

point of fusion associated with a single age of completion) were excluded from this meta-

analysis. In an effort to minimize bias due to small sample size, data based on studies of 

less than 50 individuals were also excluded from this analysis.  

The first article from which data were extracted is Aiello and Molleson’s (1993) Are 

Microscopic Aging Techniques more Accurate than Macroscopic Aging Techniques? This 

article compares rates of inaccuracy for histological aging methods to methods of age 

estimation through macroscopic analyses of the pubic symphysis, which is said to be the 

most reliable macroscopic skeletal aging indicator particularly for individuals under the 
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age of 40 (Aiello and Molleson 1993). In this study, cortical histological aging techniques 

were compared to the Todd/Brooks (T/B) (Todd 1920, 1921; Brooks 1955), McKern, 

Stewart and Gilbert (M/S/G) (McKern and Stewart 1957; Gilbert and McKern 1973), and 

Acsádi and Nemeskéri (A/N) (1970) techniques for aging the pubic symphysis in 387 

individuals with known sex and age from the crypt of Christ Church, Spitalfields, London.  

Although histological methods are not included in the following meta-analysis, Aiello and 

Molleson (1993) found that cortical histological methods were significantly more effective 

than deep tissue histological methods, and histological aging techniques provided similar 

levels of inaccuracy as aging techniques based on the morphology of the pubic symphysis. 

Although the A/N technique based on pubic morphology provided the most accurate results 

among the tested methods, it was noted that the accuracy of the A/N method may be a 

result of the demographic similarity between the Spitalfields sample and the British 

reference sample on which the A/N technique was developed (Aiello and Molleson 1993).  

The second article selected for inclusion in the meta-analysis is Lovejoy et al.’s (1985) 

Multifactorial Determination of Skeletal Age at Death: A Method and Blind Tests of its 

Accuracy. This article tested several single-indicator macroscopic aging methods and 

compared them to multifactorial summary methods with regard to their rates of inaccuracy 

and bias. The independent indicators included in Lovejoy et al.’s (1985) study are: the 

auricular surface, the pubic symphyseal surface, radiographs of the proximal femur, suture 

closure and dental wear. The multifactorial summary method incorporated all of these 

independent factors to develop an age estimate. Lovejoy et al. (1985) also included a 

“clinical” method in which a selection of single indicator aging methods were added to the 

multifactorial summary method in an effort to improve accuracy. Two tests were conducted 

on known age individuals from the Hamann-Todd Skeletal Collection; Test I used the 

original techniques, and Test II used revised versions of the original techniques for all 

methods except the dental wear and proximal femur aging techniques.  

The results of this study showed that the multifactorial “clinical” and summary methods 

produced age estimates that most strongly correlated with the known ages. The auricular 

surface standards and the dental wear standards followed closely with low rates of 
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inaccuracy and bias. Moreover, the Miles (1962) dental wear standard showed significantly 

lower bias than all single-indicator and multifactorial methods in test I. On a subsequent 

test of the methods on the Libben archaeological skeletal population, the dental wear 

method also showed the highest correlation with the multifactorial summary age estimates, 

which have been shown to have the highest rates of accuracy and lowest rates of bias 

(Lovejoy et al. 1985). These results prompted Lovejoy et al. (1985) to declare the Miles 

(1962) dental wear aging method to be the most accurate and unbiased single macroscopic 

indicator of age-at-death tested in the archaeological population. Despite the inherent value 

of the data gleaned from the “clinical” method, these data were not included in the meta-

analysis because there was no clear indication of the specific methods used for age 

estimation. 

The third article considered in the following meta-analysis is Smith’s (2005) A Test of 

Ubelaker’s Method of Estimating Subadult Age from the Dentition. This thesis tested the 

accuracy of the Schour and Massler (1944) and Ubelaker (1989) methods for determining 

subadult age through the analysis of dental development on modern individuals of known 

age and sex from European ancestry. It was found that both methods had low rates of 

inaccuracy and bias, however, the Schour and Massler (1944) confidence intervals were 

found to be too narrow and some later developmental stages showed significant differences 

between the sexes (Smith 2005). Since the standards were already widely distributed and 

used prior to Smith’s (2005) study, it was recommended that instead of revising the 

development charts, wider confidence intervals could be used along with the original charts 

for the affected developmental stages. However, it was also noted that the new confidence 

intervals suggested by Smith may not be applicable to populations from different time 

periods or genetic backgrounds and, consequently, should be used with caution (Smith 

2005). 
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2.2.3 Results 

Table 2.1. Inaccuracy and Bias in Skeletal and Dental Age Estimation Methods 

Indicator N Correlation 

between Known 

and Estimated 

Ages 

(Pearson’s r) 

Inaccuracy 

(Mean Difference 

between Known 

and Estimated 

Ages) 

Bias 

A/N P.S. 64  10.8  

T/B P.S. 64  18.2  

M/S/G P.S. 65  22.5  

T/B/MS. P.S.* 96 0.57 10.5 -7.5 

Rev. T. P.S.** 109 0.78 6.5 -0.4 

Aur. S.* 98 0.72 7.8 -3.7 

Rev. Aur. S.** 108 0.71 7.3 -0.5 

Suture* 118 0.65 10.1 -5.9 

Rev. Suture** 117 0.53 9.9 -4.8 

Summ. Age* 130 0.83 7.5 -5.4 

Rev. Summ. Age** 131 0.80 5.2 1.7 

Miles Dent. Wear* 114 0.70 9.5 -3.6 

Miles Dent. Wear** 117 0.71 7.9  1.0 

U. Dent. Dev. 419  1.05 -0.71 

S/M. Dent. Dev. 419  1.03 -0.66 

Legend: 

*Lovejoy et al. (1985) Test I  ** Lovejoy et al. (1985) Test II 

A/N – Acsádi and Nemeskéri (1970); T/B – Todd (1920, 1921)/Brooks (1955); M/S/G – 

McKern & Stewart (1957)/Gilbert & McKern (1973); T/B/MS – Todd (1920, 

1921)/Brooks (1955)/McKern & Stewart (1957); U. – Ubelaker (1978, 1989); S/M – 

Schour/Massler (1944); P.S. – Pubic Symphysis; Aur. S. – Auricular Surface; Rev. – 

Revised; Summ. – Summary; Dent. – Dental; Dev. - Development 

 

Through this preliminary meta-analysis, it is clear that the most accurate methods for aging 

individuals are those based on the assessment of dental development. They also rank 

among the lowest for bias. Smith’s (2005) study showed that Schour and Massler’s (S/M. 

Dent. Dev.) (1944) standards performed slightly better than Ubelaker’s (U. Dent. Dev.) 

(1978; 1989) standards, which is surprising given that the Ubelaker standards were derived 

from the Schour and Massler standards. Unfortunately, these age estimation methods based 

on dental development could not be compared to a skeletal standard that assesses age over 
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the span of the subadult age range since most macroscopic subadult aging methods are 

based on single age threshold indicators. Nevertheless, the results of this meta-analysis 

indicate that the tested standards for age estimation based on dental development far 

outperform skeletal and dental age estimation standards for adults.  

Aiello and Molleson’s (1993) tests for aging of the pubic symphysis [A/N – Acsádi and 

Nemeskéri (1970), T/B – Todd (1920, 1921) and Brooks (1955), M/S/G – McKern and 

Stewart (1957) and Gilbert and McKern (1973)] revealed the highest rates of inaccuracy in 

the meta-analysis. The remaining data were derived from two separate tests by Lovejoy et 

al. (1985) on two independent skeletal samples from the Hamann-Todd Collection. For this 

meta-analysis, results for the Miles (1962) dental wear method were compared to results 

for other methods using the median of the test results for each skeletal indicator (i.e. pubic 

symphysis, auricular surface, cranial sutures, multifactorial summary), due to the small 

sample sizes. Comparisons of bias were made using the absolute values of the bias results 

in order to emphasize the distance from the real age, rather than the directionality.  

It is evident from the Lovejoy et al. (1985) tests that age estimates from multifactorial 

summary aging methods (Summ. Age; Rev. Summ. Age) have the strongest correlation 

with the known age of adult individuals.  Results also showed significant differences 

between tests I and II. In the first test, the Miles (1962) dental wear method had the median 

rate of inaccuracy among all Test I methods, surpassed only by the summary age method 

and the auricular surface method. The Miles (1962) dental wear method did, however, 

present the lowest absolute rate of bias among all of the methods in Test I. In Test II, 

although the dental wear method showed improvement in accuracy and bias, its accuracy 

fell below the median of the test results for all skeletal and multifactorial indicators and its 

rate of bias rose to the median. In this test, dental wear was also tied with the revised 

auricular surface method for the second weakest correlation between known and estimated 

ages.  

2.2.4 Discussion 

The pubic symphyseal age estimation standards tested by Aiello and Molleson (1993) 

presented the highest rates of inaccuracy in the meta-analysis. These results highly conflict 
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with Aiello and Molleson’s claims that analyses of pubic symphyseal morphology provide 

the most accurate indicator of age in skeletal samples for individuals less than 40 years of 

age (Aiello and Molleson 1993). Through comparative study, it becomes apparent that 

almost all of the adult age estimation methods tested by Lovejoy et al. (1985) present lower 

rates of inaccuracy than those tested by Aiello and Molleson (1993). While questions of 

inter-observer bias may arise as a result of this discrepancy, the original Todd pubic 

symphyseal age estimation standards tested by Lovejoy et al. (1985) also presented 

relatively high levels of inaccuracy in comparison with the other methods tested. 

Nevertheless, the mean difference between known and estimated ages presented by Aiello 

and Molleson (1993) for the Todd-Brooks pubic symphyseal method remains almost 8 

years higher than Lovejoy et al.’s (1985) test of the similar Todd method. These data 

indicate that there may be a significant inter-observer error between the Aiello and 

Molleson (1993) and Lovejoy et al. (1985) studies, though this difference may be a result 

of differences between the Todd and Todd-Brooks methods tested.  

In this study, the Miles (1962) method for age estimation based on dental wear followed 

closely behind the multifactorial summary age estimation method and the auricular surface 

indicator with relatively low rates of inaccuracy. Furthermore, in Lovejoy et al.’s (1985) 

test I, this dental wear method presented a significantly lower rate of bias than any of the 

age estimation methods. Despite these statistics, Lovejoy et al. (1985) suspected that mixed 

ancestries, nationalities and individual histories of the Hamann-Todd collection, the lack 

of subadults for scaling reference, the differences in dental health and tooth loss, and the 

lower rates of tooth wear in the modern skeletons may have posed an inordinate challenge 

for dental wear analysis (Lovejoy et al. 1985). Consequently, they conducted another test 

on an archaeological population from the Libben site in Ohio. Although these results could 

not be included in the meta-analysis due to differences in experimental and statistical 

methods, it was apparent that the accuracy of the Miles (1962) method may have improved 

greatly in an archaeological context, as it had the highest correlation with the summary 

method, which in the previous tests had proven to be the most accurate method. It can, 

therefore, be suggested that the Miles (1962) dental wear method for estimating age in 

adult human skeletal remains is among the most accurate macroscopic single indicator 

methods for the analysis of the Libben archaeological population. Consequently, it may be 
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hypothesized that the Miles (1962) dental wear aging method may be particularly well-

suited for skeletal age estimation in other archaeological populations, although this would 

require further testing.  

Unfortunately, there are currently no tests of the accuracy and bias of the Brothwell (1963a) 

standard for age estimation through dental wear based on a known age population. 

Nevertheless, this atlas-style method is believed to be less accurate and more biased than 

the Miles method based on the subjectivity of its atlas style and its generalized use despite 

being developed, and intended for use, on an ancient British population. Ubelaker has 

discouraged the universal use of the Brothwell standard, stating that it is specific to the diet 

and culture of the reference population (Rose and Ungar 1998) – the details of which were 

never published. The Brothwell (1963a) method is also less specific than the Miles (1962) 

method, due to the relatively large age ranges provided in the atlas-style standard. Despite 

these facts, the Brothwell (1963a) method is the most commonly used standard for age 

estimation based on dental wear due to its user-friendly nature. Encouragingly, this 

comparison of the attributes of these dental wear age estimation standards suggests that a 

middle ground may be found in a new method that is more user-friendly than the Miles 

(1962) method and more accurate and specific than the Brothwell (1963a) method.  

The age estimation methods that showed the lowest rates of inaccuracy and bias in the 

meta-analysis overall were those based on dental development in subadults. Although these 

methods seem to present little room for improvement, it may be possible to improve 

accuracy by developing dental age estimation standards that are sex- and region-specific, 

since: 1) epigenetic factors may impact the timing and sequence of dental development 

and, 2) there are known differences in dental development between the sexes in later dental 

stages (Smith 2005). These standards would need to be developed using a sample of known 

age individuals since sex cannot be determined in archaeological subadult specimens. The 

resulting standards would give two possible age ranges depending on whether the subadult 

was male or female. Aside from improving the accuracy of the age ranges, sex-specific age 

estimations may become very useful if there are further improvements to sex determination 

methods through the analysis of ancient DNA (Smith 2005). Regarding dental 

developmental age estimation techniques, it is interesting to note that Schour and Massler’s 
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(1944) original standards provided slightly lower rates of inaccuracy and bias than the 

revised version of this dental development standard by Ubelaker (1978, 1989, 1999).  This 

may support the hypothesis that the accuracy of these universally-applied age estimation 

standards may differ depending on the similarity between the reference population and the 

population being analyzed. Smith (2005) noted that evidence has been found for 

differences in the rates of tooth eruption dependent on socioeconomic conditions, 

nutritional status and ancestral groups. Consequently, the results of this meta-analysis may 

lend further credence to the hypothesis that dental development may differ slightly in 

accordance with epigenetics. This conclusion may support the development of sex- and 

region-specific age estimation standards based on dental development instead of making 

new attempts to improve universal standards. Similarly, the dental wear age estimation 

methods would also benefit from revision, especially with regards to the development of 

time-, sex-, and region-specific standards since dental attrition is largely dependent on the 

food types and preparation methods available for use by a population.  

2.2.5 Conclusion 

This preliminary meta-analysis demonstrates the great value of dental age estimation 

techniques and their reliability in comparison with other macroscopic age estimation 

techniques. Subadult age estimation through the analysis of dental development was shown 

to have significantly lower rates of inaccuracy than all of the adult age estimation 

techniques in this meta-analysis. They also had among the lowest absolute rates of bias. 

The Miles (1962) dental wear aging method rested at, or slightly below, the median rate 

for accuracy among the adult aging methods in this study, and its rate of bias varied from 

the lowest rate to the median rate within the same group of results. Nevertheless, it was 

determined that dental wear may actually be the best single adult age indicator for 

archaeological skeletal populations. This conclusion was reached as a result of Miles’ 

(1962) age estimates having the highest correlation with the summary age estimates in 

Lovejoy et al.’s (1985) analysis of the Libben archaeological population. Unfortunately, 

there were no suitable known-age accuracy tests for the atlas-style Brothwell (1963a) 

standard for age estimation through dental wear. Nevertheless, a comparison of the 

characteristics of the Miles (1962) and Brothwell (1963a) standards indicates that the 
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Brothwell (1963a) method is less accurate, less specific and more biased than the Miles 

(1962) method. Despite this, the Brothwell (1963a) method is the most commonly used 

standard for age estimation based on dental wear due to its user-friendly nature. As such, 

the creation of a new method that is more user-friendly than the Miles (1962) method and 

more accurate and specific than the Brothwell (1963a) method is recommended. Although 

it still remains favourable to use multifactorial summary age estimation techniques in adult 

archaeological skeletons when possible, the analysis of dental wear will remain important 

due to its inclusion in these multifactorial methods and the relatively high survivorship of 

dental tissues compared to bone as a result of dental resistance to taphonomic processes.  

Since the value of dental age estimation standards has been clearly demonstrated through 

this study and little work has been done to revise these methods, it is suggested that 

regional, sex-specific standards are developed and tested in an attempt to further improve 

the accuracy of these important macroscopic single indicator age estimation methods. With 

regard to the future testing of age estimation techniques, it is also recommended that the 

presentation of results be standardized in order to facilitate further cross-comparisons and 

meta-analyses. An extension of this meta-analysis is also recommended for a broader 

comparison of the accuracy and bias of macroscopic skeletal and dental age estimation 

methods and to verify these preliminary results. 

 



50 

 

Chapter 3  

3 Creating an Improved Subadult Age Estimation Standard 
Based on Dental Development  

3.1 Research Objectives and Null Hypotheses 

Given the paramount importance of dental age estimation, it is surprising that macroscopic 

age estimation methods based on dental development have not been tested on more 

populations.  Perhaps this is a result of the relatively small rates of inaccuracy and bias 

reported in the published tests of these methods; however, given that age estimates are not 

100% accurate, there may still be room for improvement. To investigate this possibility, in 

reflection of the broader scope of this project, the original null hypotheses must be revisited 

with a focus on dental development for this section. Thus, the null hypothesis for this part 

of the dissertation is (Ho): “Current dental age estimation standards based on dental 

development cannot be improved”. 

In an effort to test this null hypothesis, research was conducted to investigate the methods 

used to create the existing age estimation standards based on dental development, enabling 

the identification of areas of weakness that may be contributing to inaccuracy and bias in 

subadult dental age estimates. These weaknesses are addressed in a thought experiment 

and feasibility study in which it is demonstrated that it is possible to ethically create new 

sex- and region-specific subadult dental age estimation standards using more rigorous 

methods. Time-specificity in dental developmental age estimation standards would require 

a large scale histological study of dental microstructures to determine if dental 

developmental timing has changed over time. Since this type of study would require a 

significant amoung of time and may face many practical challenges (e.g. equipment 

accessibility/affordability, destructive sampling permissions), it has not been included in 

this feasibility study.  

This feasibility study is composed of the preparations taken to organize a research project 

originally meant to be carried out by the author, but unforeseen circumstances prevented 

the planned data collection. As a result, details within the research plan are specific to the 

permissions and resources available in Egypt and the ethical considerations required by the 
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University of Western Ontario. Of course, this plan may be adapted for use in other regions. 

It is still hoped that the originally proposed project will be completed in Egypt in the future. 

3.2 Literature Review: The biology of dental 
development 

3.2.1 The Biology of Dental Development 

Development of the human oral cavity commences at approximately 4 weeks gestational 

age in the formation of a lacuna lined with epithelium over an ectomesenchymal layer. The 

primary epithelial band is formed around a week later when the epithelial layer thickens 

along the maxillary and mandibular processes in the shape of horseshoes (Osborn and Ten 

Cate 1983; Ten Cate 1998; Hillson 2014). Soon thereafter, the dental lamina is formed as 

the primary epithelial band grows into the underlying ectomesenchyme. This dental lamina 

persists until after the permanent teeth are fully erupted, at which point the dental lamina 

breaks down and regresses (Buchtova et al. 2012).  

Tooth germs are created within the dental lamina as the epithelium thickens at intervals, 

proceeding from the midline to the distal ends of the arches. Creation of these tooth germs 

is the ‘bud stage’, and the first step in the development of the deciduous dentition through 

the primary dental lamina. Vestibular lamina for eventual permanent tooth development 

are formed alongside the dental lamina for deciduous teeth. Tooth germs for the permanent 

molars, however, are created through the same thickening of the primary dental lamina at 

14 weeks gestational age. The permanent molars also have vestibular lamina, but they are 

absorbed. These differences in the formation of the permanent molars indicate that they are 

actually a part of the primary dentition, but that they simply develop later in life (Hillson 

2014).  

Each tooth germ transitions into the ‘cap stage’ when an indentation alters its surface. 

Upon growth of the edges of this ‘cap’, development of an apical point or multiple cusp 

apices, and deepening of the indentation, the tooth germ enters the ‘bell stage’. In the 

‘bell stage’, the tooth germ begins to resemble teeth as we know them. The tooth germ 

develops a dental, or enamel, organ as the apical cells on the internal surface stop 

dividing, layer by layer from the apex to the edge, and the enamel epithelium folds in on 
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itself, creating the tooth germ’s bell shape. Ectomesenchyme fills the bell-shaped tooth 

germ, becoming the dental papilla, and surrounds the tooth germ, becoming the dental 

follicle (Hillson 2014).  

Later in the ‘bell stage’, the enamel epithelial cells are differentiated into ameloblasts, 

which trigger the differentiation of the superficial cells of the dental papilla into 

odontoblasts. The odontoblasts then secrete the first layer of dentine matrix, which 

triggers the ameloblasts to begin amelogenesis (Hillson 2014).  

For simplicity, the following steps of odontogenesis will be described with regard to the 

formation of the hard tissues of a single cusped tooth (e.g. the canine). The formation of 

enamel within the tooth germ begins with a small group of ameloblast cells in the internal 

enamel epithelium at the superior point of the conical layer, which is the foundation for 

the formation of the cusp tip. These ameloblasts secrete proteins that contribute to the 

formation of the enamel matrix. Successively, more ameloblasts are differentiated and 

begin protein secretion in subjacent concentric rings following the structure of the inner 

enamel epithelium toward the cervical loops. In teeth with multiple cusps, this process 

begins at the tip of each cusp and continues on the occlusal surface until the cusps are 

joined (Hillson 2014).  

Apart from areas of more complex structures of gnarled enamel, enamel prisms grow from 

the dentino-enamel junction (DEJ) toward the eventual coronal surface. Within each prism, 

daily incremental secretion is recorded in enamel prism cross-striations. Preliminary 

crystal formation within the enamel matrix occurs shortly after matrix secretion (Fincham 

et al. 1999). Brown striae of Retzius are formed at 6-12 day intervals, dividing groups of 

ameloblasts into bands. These bands of ameloblasts cease amelogenesis at the same time 

resulting in the creation of perikymata, the microscopic furrows on the enamel surface at 

the ends of the striae of Retzius. Given that cuspal enamel is gnarled and not linear toward 

the enamel surface, perikymata do not appear at the occlusal point of the cusp (Hillson 

2014).  Following completion of the secretory phase of amelogenesis, the enamel matrix 

undergoes maturation in which the organic tissues are further resorbed and mineralization 

is completed (Fincham et al. 1999). When amelogenesis reaches the cervical loop, the 
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enamel organ develops a tapering tube-like extension known as Hertwig’s sheath, which 

acts as a template for root shape (Hillson 1996, 2014).  

As previously mentioned, the differentiation of enamel epithelial cells into ameloblasts 

triggers the differentiation of dental papilla cells lining the newly formed ameloblasts into 

odontoblasts. These odontoblasts immediately begin secreting predentine (unmineralized 

dentine matrix) which is later mineralized, forming true dentine. The first layer of dentine 

does not have dentine tubules and is known as mantle dentine. Following the secretion of 

the mantle dentine, Tomes’ fibers develop in odontoblasts and anchor themselves in the 

mantle dentine. As the odontoblasts continue to form predentine, the Tomes’ fibers grow, 

providing a structure around which dentinal tubules are formed. Odontoblasts lay down 

dentine matrix while moving toward the eventual pulp chamber border where they come 

to rest (Hillson 2014).  

Although the specifics of radicular development are controversial and the development of 

dental roots varies according to tooth type and area within the tooth, the following is a basic 

summary of the developmental process according to Li and colleagues (2017). In the 

development of root dentine, Hertwig’s sheath sends induction signals to differentiate 

odontoblasts from the ectomesenchymal cells lining the sheath. These newly formed 

radicular odontoblasts form a layer of radicular mantle dentine before again forming 

Tomes’ fibers and secreting tubule-containing circumpulpal dentine (Li et al. 2017). As 

Hertwig’s sheath extends apically, it becomes perforated through localized apoptosis or an 

epithelial-to-mesenchyme process. The latter may result in the formation of cementoblasts 

and the former allows the apical mantle dentine to interact with the dental follicle, which 

also induces the differentiation and migration of cementoblasts and fibroblasts to the root 

surface. Fibroblasts then secrete collagen fibers, extending from the root surface to the 

surrounding bone wherein these fibers thicken and become organized to form periodontal 

ligaments. The cementoblasts secrete cementum surrounding these fibers. These 

cementoblasts remain embedded in the matrix at the apical region of the root, forming 

cellular cementum, while the remaining cementum becomes acellular (Li et al. 2017).  
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Generally, dental development occurs at around the same time in antimeres, and 

mandibular teeth develop slightly earlier than maxillary teeth. Although some teeth take 

longer than others to develop, dental eruption sequence is relatively predictable. Deciduous 

teeth commonly emerge in the following order: I1, I2, M1, C, M2 (Hillson 2014; 

Liversidge 2016). Later, the permanent mandibular teeth generally emerge as follows: M1, 

I1, I2, C, P1, P2, M2, M3. Meanwhile, permanent maxillary teeth usually emerge in a slightly 

different order: M1, I1, I2, P1, C, P2, M2, M3 (Smith and Garn 1987). Developmental timing 

is also fairly predictable but it does vary in response to a number of factors.  

3.2.2 Factors affecting dental developmental timing 

Although dental development is normally characterized by specific developmental 

sequences and timing, variants are far from rare. In fact, there are two sequential variants 

that occur just as often as the traditionally accepted developmental sequence (Smith and 

Garn 1987). These variants are the eruption of I1 (often in the mandible) prior to the 

eruption of M1, and the eruption of the mandibular canine after the eruption of P1 (Smith 

and Garn 1987). Although these developmental sequential variants are the most common, 

there exist a number of other possible variations from the accepted developmental sequence 

(Schmidt 2016). Given that a difference in canine eruption sequence has been found to be 

linked to ancestry (Schmidt 2016), it is likely that these differences in developmental and 

eruption sequence are related to genetics.  

Although the genetics and molecular signaling factors contributing to variation in dental 

developmental timing are not well understood, it is clear that dental developmental timing 

is influenced by environmental factors as well as genes. The genetic component of dental 

developmental timing is illustrated by the amelogenin gene locus on the sex chromosomes 

and the gene’s tendency to differ in sequence depending on their association with X or Y 

chromosomes. The amplicon sizes on the Y and X chromosomes are respectively 112 and 

106 bases (Sullivan et al. 1993). Amplifying this gene for sex determination is a standard 

procedure in forensic DNA analysis (Butler 2009). Its use in ancient DNA research has 

been limited because it is a nuclear DNA variant with large amplicon sizes which presents 

problems in amplification (Hildebrandt 2003). However, recent ancient DNA research  
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using next generation sequencing (NGS) has resulted in the complete amplification of the 

mtDNA genome from a Roman period bone sample from the Kellis 2 cemetery in Roman 

Period Egypt, which shows promise for the amplification and study of nuclear DNA (Molto 

et al. 2017). This would greatly enhance sex determination in subadults as we know there 

are significant differences in developmental timing noted between the sexes in many 

populations (e.g. Schour and Massler 1941; Gleiser and Hunt 1955; Garn et al. 1958, 1973; 

Lewis and Garn 1960; Glister et al. 1964; Hillson 1996, 2014; Ubelaker 1978; Liversidge 

et al. 1998; Smith 1991a,b, 2005, 2010). 

Although differences in dental developmental timing might be attributed to sex-linked 

hormonal differences, they begin far before puberty and show no evidence of significantly 

increased differences in dental development during puberty as might be expected (Garn et 

al. 1958). Moreover, the genetic role in dental developmental timing may also be evident 

in the earlier development of mandibular dentition than the maxillary dentition (Gaur et al. 

2011). As Sperber (2004) noted, different genetic codes are responsible for dental 

morphogenesis in the upper and lower dentition. Thus, it might be reasonable to assume 

that the timing of odontogenesis in the upper and lower dentition may also be controlled 

by separate genes. Further demonstrating the role of genetics in developmental timing are 

congenital pathologies that are linked to delayed dental development, such as Down 

syndrome (Diz et al. 2011).  

Although sexual hormones may not play a large role in human dental developmental 

timing, hormones may still have a regulatory role in the process. This is evident in an 

experimental study in which methyl testosterone injections in a castrated rhesus monkey 

significantly accelerated canine eruption (Garn et al. 1958). The abnormally low levels of 

specific hormones resulting from hypopituitarism or hypothyroidism in children also result 

in delayed dental development (Garn et al. 1965; Edler 1977). Furthermore, children with 

Type-I diabetes, a disorder characterized by a reduction or lack of insulin hormone, have 

accelerated dental development in early childhood and decelerated dental development in 

later years (Adler 1973). Although it is clear that hormones can impact dental 

developmental timing, more research must be done to ascertain their specific roles.  
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Environmental factors also have an impact on dental developmental timing. In particular, 

Selyean stress, resulting from febrile illness or severe malnutrition, is known to interfere 

with amelogenesis during crown formation. Selyean stress is also known to affect hormonal 

secretion. Although little is known about the hormones related to dental development, it 

may be reasonable to assume that some hormones may be repressed during the exhaustion 

phase of Selye’s general adaptation syndrome (Selye 1946), given that the body must 

conserve energy. Furthermore, it may be a function of environmental factors that dental 

developmental timing becomes more variable in teeth developed later in life. Dental 

eruption timing and sequence have also been known to vary in relation to malocclusion, 

premature loss or extended retention of deciduous teeth, dental ankyloses, or even dental 

caries (Sierra 1987; Diz et al. 2011).  

Multiple factors may contribute to dental developmental timing. It is perhaps for this reason 

that it continues to be difficult to untangle the relationships between epigenetic factors and 

the developmental process. Nevertheless, it is clear that dental developmental timing and 

sequence are variable given its possible vulnerability to genetic, hormonal, and 

environmental factors. As such, it follows that dental developmental timing differs between 

some populations (e.g. Garn et al 1973; Owsley and Jantz 1983; Tompkins 1996).  

3.3  Literature Review:  Subadult Age Estimation 
through the Macroscopic Assessment of Dental 
Development and Eruption 

The relationship between gingival emergence and chronological age was most famously 

noted by Saunders (1837) in his publication urging the use of second permanent molar 

eruption as an age estimation method for the prevention of illegal child labour. The 

examination of childrens’ ‘factory molars’, as they became known, was used extensively 

following the Industrial Revolution in Britain as factory inspectors were required to verify 

that individuals were of legal age to work, often without documentation (Althorp’s Act 

1833).  

Thomas Dwight, the father of forensic anthropology in the United States, was the first to 

popularize skeletal and dental age estimation methods for forensic identification (Stewart 
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1979; Ubelaker 2010). Although Dwight (1878) did not provide a dental age estimation 

standard, he cautioned against the use of third molars for age estimation due to their 

variable timing, and encouraged the study of large samples to identify possible correlations 

between dental emergence and chronological age. Following Dwight’s lead, several 

macroscopic studies of dental eruption and emergence were completed (Peirce 1887; 

Legros and Magitot 1880, 1893; Black 1908; Bean 1914; Spier 1918). After these efforts 

to demonstrate the association between chronological and dental age, forensic 

anthropologists Wilder and Wentworth (1918) encouraged further advances in age 

estimation based on dental eruption. This led to numerous macroscopic, histologic and 

radiographic studies of subadult dental growth and development (e.g. Brady 1924; Boas 

1927; Orban 1928; Cohen 1928; Cattell 1928).  

In the late 1920s, William H.G. Logan, an Oral Surgeon, was interested in the repair of 

cleft palates and attempted to gain a more thorough understanding of dental development 

in subadults as an aid in the planning of reconstructive surgeries and the assessment of 

recovery. Logan teamed up with Rudolph Kronfeld to develop a dental age estimation 

standard based on dental calcification and eruption (Logan and Kronfeld 1933). Their 

dental age estimation standard was the first to be developed through detailed observations 

using radiographic and histological methods.  The standard showed a significant difference 

in developmental timing and sequence when compared to the previous standards of Peirce 

(1887), Legros and Magitot (1893), Black (1908), and Brady (1924). Kronfeld also 

published a related study of the resorption of deciduous teeth (Kronfeld 1932) prior to the 

joint publication (Logan and Kronfeld 1933).  

Since Logan and Kronfeld’s research, innumerable studies have incorporated age estimates 

based on the observation of dental development. The Logan and Kronfeld (1933) method 

has also been revised or incorporated into new age estimation standards by Kronfeld 

(1935), Kronfeld and Schour (1939), Schour and Massler (1940a,b, 1941, 1944, 1958), 

Lysell et al. (1962), Nomata (1964), Kraus and Jordan (1965), Lunt and Law (1974) and 

Ubelaker (1978, 1989, 1999). Adaptations of the Logan-Kronfeld (1933) standard, first 

published after 1991, also include modifications of the calcification and eruption schedules 

that reflect the findings of Smith (1991a) (Chandra et al. 2004). 
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Moorrees et al. (1963a,b) created dental developmental timing standards via observation 

of radiographic data collected through longitudinal studies of modern subadults in Yellow 

Springs, Ohio (Fels Institute study directed by Dr. Stanley M. Garn) and Boston, 

Massachusetts (Forsyth Dental Infirmary and Harvard University study directed by Dr. 

Harold C. Stuart and radiographed by Dr. Arthur B. Lewis). This study is also known as 

the MFH standard.  Data were gathered from the permanent mandibular canines, premolars 

and molars from healthy middle-class Caucasian subadults in Ohio (the biannual 

radiographs of 136 boys and 110 girls were selected for this study). Maxillary cheek teeth 

could not be studied due to overlap in lateral radiographs (Moorrees et al. 1963a,b). Data 

for the permanent incisors were gathered from the radiographs of subadults in Boston (from 

a sample of 134 children, the radiographs of 48 males and 51 females were selected for this 

study due to radiographic quality) (Moorrees et al. 1963a,b). Moorrees et al. (1963a,b) did 

not discuss the frequency with which radiographs were taken in the Boston study. 

However, Gleiser and Hunt (1955), who had used the same radiographic data for their study 

of the permanent first molar, indicated that, in most cases, radiographs were taken every 3 

months for the first 18 months of life, and every 6 months between the ages of 18 months 

and 10 years old. There is no indication that either radiographic study made an effort to 

collect radiographs in close proximity to the patients’ birthdays, nor were the participant 

recruitment and selection processes discussed beyond stating the age range and ethnic 

background of participants.  

In the Moorees et al. (1963a,b) study, teeth were scored according to stages of development 

modified by Fanning (1961) from those used by Gleiser and Hunt (1955), Demisch and 

Wartmann (1956), Garn et al. (1959), and Nolla (1960).  For each developmental stage, 

children were divided by sex and a cumulative percentage frequency was calculated by 

dividing the number of children that reached or passed each developmental stage by the 

total number of children studied within the sex-specific group. The mean ages for each 

developmental stage were then derived and, in units of logarithmic conceptional age, were 

transformed into chronologic age to create the existing dental age estimation standard 

(Moorrees et al. 1963a,b). This method for finding correlations between continuous dental 

development and discontinuous age ranges through the use of cumulative distribution 

functions is believed to be the best suited for the creation of age estimation standards 



59 

 

without checking developmental progress at more specific intervals aligned with date of 

birth (Smith 1991a; Hillson 1996), though Bayesian statistical methods had yet to be tested.  

All existing subadult dental age estimation standards, including the Moorrees et al. 

(1963a,b) standard, have been based on individuals of known age. However, most of the 

existing subadult dental age estimation standards fail to include information regarding the 

methods and statistics used to determine the developmental stages said to be representative 

of specific age groups. Dental growth is continuous and growth rates are variable within 

the growth period. Consequently, maximum accuracy cannot be attained through 

retroactive calculations that reduce an entire year of growth to a single, static dental 

development stage, as this would equate a child one day away from their birthday to a child 

364 days younger than them (Molto, personal communication). Systemic error can be 

reduced, and accuracy and precision increased, by limiting age attribution to subadults 

within one month of their birthdate. This will result in systematic error rates of less than 

10% and it will reduce bias. The proposed method for the creation of a sex- and region-

specific subadult dental age estimation standard is the first to use this method for limiting 

age attribution to a specific time period around the patient’s birthday.  

Despite the possibility for methodological improvements, the Moorrees et al. (1963a,b) 

method consistently produced error rates of half a year when tested for accuracy on 

individuals of known age (Liversidge 1994; Saunders et al. 1993). Saunders et al. (1993) 

attribute what they consider to be a relatively small error rate to the comparable 

developmental schedules of the white North American MFH reference population and the 

North American test subjects with known British, Irish, and Western European ancestry. 

Since Liversidge (1994) also tested the MFH method on a British population of known age, 

similarities in genetic ancestry might also explain the concordant error rates seen in her 

study. Although Saunders et al. (1993) consider error rates of a half year to be low, it can 

be argued that this error rate is substantive for age estimation in infants, toddlers and young 

adults, resulting in relatively unreliable age estimates.  

Smith (1991a) statistically reworked the Moorrees et al. (1963a,b) data to create charts for 

“Mean Age of Attainment of Developmental Stages (Permanent Mandibular Teeth)” 
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(Smith 1991a: 160) and “Values for Predicting Age from Stages of Permanent Mandibular 

Tooth Formation” (Smith 1991a: 161). Smith indicated that the charts were limited to 

mandibular teeth because, as noted, only mandibular teeth were used. In fact, data for 

maxillary teeth are rare in all dental developmental studies (Smith 1991a) because 

maxillary cheek teeth are often obscured by overlap in lateral x-rays (Moorrees et al. 

1963a,b), a problem that can be avoided through the use of panoramic x-rays.  

Smith (1991a) produced separate charts for males and females but recommended the 

average estimation of male and female estimates when working with subadult human 

remains of unknown sex. Through testing, it was shown that Smith’s (1991a) standard was 

more accurate in age prediction than the Anderson et al. (1976) standard when applied to 

the reference collection on which Anderson et al.’s (1976) method was based. This 

improvement was attributed to the use of cumulative distribution functions in the creation 

of the Smith standards (Smith 1991a). As a result, this statistical method has since been 

recommended for the development of any new age estimation standards (Hillson 1996; 

Smith 1991a). Although Smith’s (1991a) standard has gained acceptance in the 

bioarchaeological community, like the MFH method, it still lacks data for maxillary teeth 

(Smith 1991a) and the time of dental eruption, or alveolar emergence. The inclusion of 

dental eruption timing in dental age estimation standards is very important to 

bioarchaeologists conducting macroscopic assessments of human remains without access 

to radiographic equipment (which includes the majority of bioarchaeologists, especially 

those in the field).  

Two widely accepted age estimation standards have been developed with indicators for the 

timing of dental eruption. The first standard was developed by Schour and Massler 

(1940a,b). This standard was actually created prior to the MFH (1963) standard. Although 

Schour and Massler (1940a,b) give no indication of the origin of the data, Kraus (1959) 

suggests that the chart may be partly based on observations of partial jaws of 30 

chronically-ill subadults (ages 0-15yrs) studied by Logan and Kronfeld (1933) and 

Kronfeld (1935). Smith (1991a) proposes that Schour and Massler combined their own 

data with data from Logan and Kronfeld (1933), Kronfeld (1935), and Kronfeld and Schour 

(1939) and possibly from other older sources since fetal development is included in the 
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Kronfeld (1935) standard despite Kronfeld never having previously described fetal 

dentition. Hillson (1996) notes that there is still some confusion and debate over the origin 

of the reference data but says that academics generally agree that the data were based on a 

small sample of known-age, terminally ill children. Aside from problems stemming from 

small sample sizes, ongoing biological stress associated with chronic illness may affect 

dental developmental timing in deceased subadults, especially if the illnesses were febrile 

(Garn et al. 1959; Miles 1963; Ubelaker 1987). This is further complicated by the 

‘Osteological Paradox’ (Wood et al. 1992), as most subadults succumbed to acute disease 

in the past, which would not have significantly affected dental development.  

Schour and Massler (1941, 1944) modified their original standard twice in an effort to 

improve accuracy, and despite the methodological problems and the potential for 

inaccuracy, the 1944 standard, the only version that included error ranges, was adopted by 

the American Dental Association for use as a wall-sized chart. It is now found in dental 

offices internationally (Smith 1991a; Smith 2010). Unfortunately, the calculations used to 

create the error ranges are still unknown (Smith 2010). Schour and Massler released a final 

modified version in 1958, which was also published by the American Dental Association, 

but it was never fully embraced by academics (Smith 2010). 

Many years later, Ubelaker (1978, 1989, 1999) revised the Schour and Massler (1944) 

dental age estimation standard for the analysis of Native American human remains. During 

this revision, Ubelaker also incorporated data from Robinow et al. (1942), Steggerda and 

Hill (1942), Meredith (1946), Hurme (1948), Demisch and Wartmann (1956), Dahlberg 

and Menegaz-Bock (1958), Kraus (1959), Nolla (1960), Moorrees et al. (1963a,b), Glister 

et al. (1964), Moorrees (1965), Banerjee and Christensen and Kraus (1965), Coughlin and 

Christensen (1966), Mukherjee (1967), Lunt and Law (1974), Anderson et al. (1976)  

(Hillson 1996, 2014; Smith 2010; Ubelaker 2018). In addition to revising the standard, 

Ubelaker also provided different error ranges than the Schour and Massler (1944) standard. 

The error ranges produced by Ubelaker represent an expression of variability found in the 

pre-existing literature but he notes that they may be inaccurate by as much as 5 years, 

especially in older cohorts (Ubelaker 1978, 1989, 1999). 
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Ubelaker modified Schour and Massler’s (1944) standard because it constantly 

overestimated age-at-death for Native Americans (Merchant and Ubelaker 1977). Despite 

indications that there are differences in rates of dental development, eruption and 

emergence between Native Americans and North Americans of European ancestry 

(Dahlberg and Menegaz-Bock 1958; Mayhall et al. 1978; Trodden 1982), the Ubelaker 

(1978, 1989, 1999) standards were quickly embraced by academics for the analysis of all 

ancestral groups (Smith 2010). In his last version, Ubelaker (1999) stated that his standards 

are most effectively applied to the analysis of non-white, prehistoric and contemporary 

subadults. 

Although the Schour and Massler (1940a,b, 1941, 1944, 1958) and Ubelaker (1978, 1989, 

1999) standards indicate eruption times for both mandibular and maxillary teeth, neither is 

sex-specific. There are significant differences between the dentition of males and females 

in particular developmental stages (Schour and Massler 1941; Gleiser and Hunt 1955; Garn 

et al. 1958, 1973; Lewis and Garn 1960; Glister et al. 1964; Hillson 1996, 2014; Ubelaker 

1978; Liversidge et al. 1998; Smith 1991a,b, 2005, 2010), so it is preferable to calculate 

male and female age estimations separately. Smith (1991a) recommends taking the mean 

of the male and female values for age determination in subadults of unknown sex, but it 

may be prudent for academics to also provide both male and female age estimates for 

subadults. As noted, advances in the determination of sex in subadults from archaeological 

samples may provide more accurate sex estimates in the future, in which case it may be 

useful to have the sex-specific age estimates in addition to the age estimates for unknown 

sex. 

A comparative investigation of the rates of inaccuracy and bias in the Schour and Massler 

(1941) and Ubelaker (1978) standards showed that the original Schour and Massler (1941) 

standards were more accurate and less biased than Ubelaker’s (1978) standard (Smith 2005, 

2010). This may have been a result of the test population (North Americans of European 

ancestry) more closely resembling the Schour and Massler (1941) reference population. If 

so, this lends further support for the use of Ubelaker’s standards on specified populations 

and indicates the potential for improved accuracy through the use of region-specific dental 

age estimation standards. 
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Another subadult dental age estimation standard was published by Demirjian et al. (1973). 

This sex-specific panoramic radiographic analysis was conducted on a large sample of 

French-Canadian children aged 3 to 17. Despite access to the entire dentition through the 

panoramic radiographs, this study focused only on 7 left mandibular teeth (M3 was 

excluded). In this study, one of eight developmental stages was assigned to each tooth 

according to the amount of root growth, pulp chamber changes, and crown calcification. 

Inter-observer error associated with the assignment of these scores was estimated to affect 

up to 10% of tooth scores (Demirjian et al. 1973) and the method has shown relatively low 

rates of intra- and inter-observer error when compared to other scoring methods for dental 

development (Hagg and Matsson 1985). Scores for the seven teeth were then summed and 

the resulting dental maturity score was converted to a chronological age through the use of 

a table of standards (Demirjian et al. 1973). This table of standards for age estimation was 

later revised to incorporate a larger sample size and age range, 2.5 to 17 years, and to give 

two alternative standards based on differing combinations of 4 teeth (Demirjian and 

Goldstein 1976). These standards have been widely used and tested and have been 

incorporated into other studies of sex-specific dental development (e.g. Demirjian and 

Levesque 1980) and the relationship between dental age and physiologic age (e.g. 

Demirjian et al. 1985). Subsequently, software (CD ROM) incorporating the Demirjian 

data was developed (Demirjian 1994). All of these standards have been subjected to 

numerous tests for accuracy (e.g. Chaillet and Demirjian 2004; Liversidge et al. 1999, 

2006; Nykanen et al. 1998; Willems et al. 2001), often showing inconsistent results in 

unrelated populations, further supporting the need for region-specific standards.   

In 1974, Gustafson and Koch published a dental developmental age estimation standard 

based on data gathered from previous publications (i.e. Rose 1909; Cohen 1928; Logan 

and Kronfeld 1933; Klein et al. 1937; Schour and Massler 1941; Robinow et al. 1942; 

Kranz 1946; Dahlberg and Maunsbach 1948; Stones et al. 1951; Clements et al. 1953; 

Godeny 1955; Orban 1957; Tegzes 1959; Nolla 1960; Fanning 1961; Sjoberg 1961; Carr 

1962; Moyers 1963; Lysell et al. 1964; Haavikko 1970). In this standard each tooth is 

assigned one of four developmental scores indicating the commencement of 

mineralization, the completion of crown calcification, gingival emergence, or the 

completion of root growth (Gustafson and Koch 1974). The distance between these stages 
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allows for a lower chance of observational error, but it does so while sacrificing specificity. 

Perhaps as a result of this scoring method in conjunction with the merging of data from 

different sexes and ethnic backgrounds, gathered using various observational techniques, 

the age ranges presented by Gustafson and Koch (1974) are fairly accurate but not very 

specific.  

While developing her sex-specific subadult dental age estimation standard for Inuits and 

North American Indians, Trodden (1982) attempted to improve accuracy and precision 

through the development of a new scoring system. Trodden’s (1982) scoring system is 

based on a combination of the scoring systems of Nolla (1960), Nevile (1973), Schour and 

Massler (1941), Fanning (1961), Gleiser and Hunt (1955) and Moorrees et al. (1963a,b).  

This scoring system is well-defined, presenting scores for stages of crypt formation, 

calcification, resorption, and eruption as well as scores for unobservable or abnormal teeth. 

Trodden’s (1982) scoring method was tested to ensure low rates of inter- and intra-observer 

error, however, it relied on relative tooth measurements, which are necessarily subjective 

as researchers must approximate the final length of the crown and root. The statistical 

treatment employed by Trodden for estimation of age may have also led to biased age 

estimates, as demonstrated through relatively late achievement of developmental 

milestones in the Inuit and North American data when compared to those of Europeans 

(Smith 1991a,b). This comparison indicated a bias in the standard because stages of dental 

development in Inuits and North American Indians are actually known to be reached earlier 

than in whites (Dahlberg and Menegaz-Bock 1958; Mayhall et al. 1978; Smith 1991a,b). 

This bias was later attributed to the age structure of the reference population used by 

Trodden (Smith 1991a).  It has been demonstrated that the estimated age of crown 

completion in the first molar (for example) is highly correlated with the age of the youngest 

child in the reference sample (Smith 1991a). Age distribution within reference samples 

can, therefore, have a significant impact on the efficacy of a dental age estimation standard 

when applied to independent populations with a different age distribution pattern (Smith 

1991a; Hoppa and Vaupel 2002; Holman et al. 2002). However, this type of statistical bias 

can be mitigated through the use of Bayesian statistics (See Section 3.4.10). 
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The most recent atlas connecting dental development to chronological age was designed 

by AlQahtani (2012; AlQahtani et al. 2010b). This online reference tool was created 

through a cross-sectional study of dental development and alveolar eruption in dental 

radiographs from living individuals and known age-at-death skeletal remains. The resulting 

atlas presents developmental stages for children from 28 weeks in utero to 23 years of age. 

Although developmental data for the ages 2 to 23 years were based on uniform age and sex 

distribution within the sample, age attribution was not restricted to a specific time frame 

within the year, creating the potential for significant bias in the data, especially with regards 

to the youngest age categories. 

For the creation of the London Atlas (AlQahtani et al. 2010b; AlQahtani 2012), data were 

collected from developing teeth from 72 prenatal and 104 postnatal skeletal remains of 

known age-at-death white individuals (Males: 91, Females: 72, Unknown sex: 13) in the 

Royal College of Surgeons of England’s skeletal collection and the Christ Church 

Spitalfields Skeletal Collection at the Natural History Museum in London (AlQahtani 

2012; AlQahtani et al. 2010a). Additional data for ages 2 to 23 were collected from an 

archive of dental radiographs taken on living individuals (Males: 264, Females: 264), 

around half of which were ‘White’ and half ‘Bangladeshi’ children living in England 

(AlQahtani et al. 2010a). Tooth development was scored according to the system of 

Moorrees, Fanning and Hunt (1963a,b).  The median stage for tooth development and 

eruption for all age categories was then used to construct the atlas (AlQahtani 2012; 

AlQahtani et al. 2010a). 

Using only the right side of the dentition, dental scores were determined “for males, 

females, and combined sex for each of the following age groups: the seventh, eighth, and 

ninth month of gestation; birth at midpoint of 2 weeks; the first, second, third, and fourth 

3 months of life; and for each chronological year over the age of 1 up to the age of 23 

years.” (AlQahtani et al. 2010a: 482). This atlas does not include gingival emergence but 

the author suggests that “[allowances] should be made for gingival eruption when using 

this atlas in the presence of oral soft tissues” (AlQahtani et al. 2010a: 490). Unfortunately, 

as no amendment is given, the reader is pointed to median ages of alveolar eruption in 

relation to clinical/gingival emergence for each tooth type (AlQahtani et al. 2010a). These 
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comparisons are of limited use, since the clinical data regarding gingival emergence were 

collected from separate populations than the data collected for alveolar eruption and full 

eruption. Furthermore, the recommended references are for separate unrelated studies of 

deciduous and permanent eruption and emergence (i.e. Lysell et al. 1962 for deciduous 

teeth; Haavikko 1970 for permanent teeth).  

The London Atlas assumes universal applicability without comparison to a region-specific 

standard and assumes that the ‘White’ and Bangladeshi reference population is 

developmentally diverse enough to account for global variation in dental development. 

This assumption may be especially questionable as the Bangladeshi participants also lived 

in London, England and, therefore, may not have been exposed to significantly different 

environmental factors that may affect dental development. The reliability of the London 

Atlas is further compromised by its rigidity and reliance on subjective identification of the 

stage deemed to be closest to the dentition of the individual in question. Nevertheless, this 

atlas has gained popularity, in part because it is sex-specific and because it is available 

through online open-access and user-friendly interactive software.  

 

3.4 Feasibility Study for the Ethical Creation of Region-
specific Subadult Dental Age Estimation Standards 

As previously mentioned, this research plan was originally meant to be carried out by the 

author, but unforeseen circumstances prevented the planned data collection. As a result, 

details within the research plan are specific to the permissions and equipment available in 

Egypt and the ethical considerations required by the University of Western Ontario. It is 

presented here as a thought experiment and feasibility study for the ethical development of 

region-specific subadult dental age estimation standards using more rigorous methods. As 

such, it is written as a hypothetical research proposal, outlining the methods that would be 

used in the creation of a region-specific and sex-specific macroscopic subadult dental age 

estimation standard. Although it is designed around details specific to research in Egypt, it 

may be adapted for use in other regions. It is still hoped that this proposed project will be 

completed in Egypt in the future. 
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Data Collection Methods: Procedural Overview 

During the participant recruitment process for the proposed project, potential participants 

would be given letters of information, consent and assent forms, and a participant 

questionnaire (See Appendix 1) to be completed by the participants and/or their guardians. 

Following the return of the completed consent and assent forms and the verification of the 

participants’ birthdates, appointments would be made for dental examinations and x-rays 

of qualifying participants on study dates at the Radwania Scan Radiological Laboratory in 

Luxor. At this facility, volunteering participants would receive a dental panoramic x-ray 

and be examined by one of two dentists. Small children awaiting an x-ray will be 

educationally entertained about teeth and toothbrushing by a research assistant who will 

introduce the children to the freezing game, which may be used during the x-ray procedure 

to help the child stay still. Following clinical data collection, panoramic x-rays will be 

scored to collect additional data on dental development. Following this procedure, patients 

will be given a copy of their panoramic x-ray and an educational pamphlet on preventative 

oral health care on which the dentist can include patient notes (Appendix 4). Details 

regarding participant recruitment, the questionnaire, dental examinations, radiographic 

examination and radiographic data collection can be found below, followed by a feasibility 

statement. 

Sample Selection 

The proposed research would be conducted on volunteering subadult participants from 

rural public schools on the west bank of Luxor; a location chosen, in part, due to the 

primary investigator’s intimate knowledge of the area, culture, and history, though this 

study model can be applied elsewhere. This location was also chosen because of its 

proximity to a laboratory equipped with a panoramic dental x-ray machine, and 

experienced dentists and radiologists who expressed an interest in participating in this 

study. Additionally, this population was chosen because it would provide insight into the 

standard of dental health and hygiene in a population with a low socioeconomic status, 

which may help to identify dental health inequalities and opportunities for the improvement 

of dental health care within Egypt. The lower socioeconomic status and traditional diets 
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and lifestyles generally characteristic of this rural population would also more closely 

approximate environmental factors that may have affected dental developmental timing 

and sequence in ancient populations, than a city-dwelling population with a higher 

socioeconomic status. Participation in this study would not be restricted according to socio-

economic status or diet, so comparisons would be made between the developmental 

patterns of participants associated with the lowest and highest socio-economic statuses, as 

indicated by information provided in the participant questionnaire. Depending on the scope 

of socio-economic variation in the reference sample, this comparison may allow for the 

preliminary identification of socio-economic class-related differences in dental 

development and oral health. For a broader scope of public health research and a deeper 

understanding of epigenetic effects on the dentition, a follow-up study of dental health and 

development in Lower Egypt (northern Egypt) would be appropriate for further comparison 

of dental development and oral health across geographical locations and socio-economic 

classes.   

For this study, 30 Egyptian males and 30 Egyptian females would be accepted to form 

representative samples for each year of age (from 1 to 17 years old). In total, 1020 voluntary 

participants would take part in this study. Although a sample of at least 30 individuals per 

cohort is the gold standard, for this research design, it must be noted that an increased 

sample size would help to avoid issues of sample size when cohorts are broken down during 

epidemiological analysis. However, since the primary goal of this study is to develop age 

estimation standards, samples of 30 individuals per cohort will suffice. Participants 

accepted for this study would necessarily have birthdates within one month of the available 

study dates, with preference given to participants with birthdates closer to the study dates, 

in order to minimize systemic error. Previous studies of dental development have attributed 

children to an annual age cohort until the day before the transition to the next annual age 

cohort (typically on their birthday). This contributes to systemic bias and inaccuracy in the 

resulting standards since children one day away from their birthday are still considered to 

be the same age as children that are a full 364 days younger. The recording of dental 

development based on birth month should give a “sufficient number [of stages] to quantify 

variability, while maintaining reliability [since] too many stages decrease reliability, while 

too few compromise sensitivity” (Liversidge 2008: 237). Participants’ birthdates would be 
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verified through each participant’s school or official documents with the understanding 

that official documents in Egypt do not always record the actual date of birth. 

3.4.1 Participant Recruitment 

Participants would be recruited through school meetings and the distribution of 

'information, consent and assent' forms, and ‘participant questionnaires’ at public schools 

on the west bank of Luxor (See Appendix 1 and Appendix 2) Within these small villages 

from which participants would be recruited, teachers are very familiar with students' 

families and they would be asked to inform recruiters if assistance might be needed for the 

explanation and completion of forms for students with families not proficient in reading 

and/or writing, to ensure that guardians have been properly informed about the study. 

Arabic speaking volunteers would assist in these explanations and in filling out the 

questionnaire. Through the cooperation of the participating schools, eligibility for 

participation in this study would also be verified through the use of school records 

indicating students' birthdates.  

Participating dentists would be allowed to invite qualifying patients in his/her practice that 

do not attend school to participate in this study using the translated version of the adapted 

school recruitment script (Appendix 3). Referrals would be allowed since the participating 

dentists would not benefit financially and the patients would benefit from the services that 

this study offers (i.e. coverage of costs for a dental examination and a panoramic x-ray, 

dental health and hygiene advice, etc.). Participants (and their guardians) would also be 

welcome to inform the dentists, researcher or research assistants of any eligible out-of-

school individuals that might be interested in participating in this study. 

3.4.2 Inclusion Criteria 

Egyptian subadults ranging in age from two to 17 years old living on the west bank of 

Luxor would be included in this study. All volunteers would require consent from their 

mother, father, or primary guardian prior to participation in this study, along with a 

completed and returned questionnaire. Participation would be limited to individuals with 

birthdates within one month of the available study dates. Birthdates would be verified 
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through each participant’s school or official documents with the understanding that official 

documents in Egypt do not always record the actual date of birth.  

If demand for participation is high, qualified applicants would be accepted following a 

lottery for each age/sex cohort. Otherwise, participants would be accepted upon 

verification of their birthdate and eligibility, following receipt of their completed 

questionnaire and consent/assent forms, until the number of participants necessary for each 

cohort is satisfied. 

3.4.3 Exclusion Criteria 

Applicants would be excluded from this study if they had significant prior exposure to 

ionizing radiation or if they were pregnant. Participants would also be excluded from this 

study if their birthdates could not be verified to fall within one month of the available study 

dates, or if all positions within the age/sex cohort relevant to the applicant were filled. 

Applicants would be excluded from this study if they had any dental interventions that 

significantly affected normal dental development. Alternatively, participants with naturally 

abnormal dental development would be examined for comparison with normal dentition 

and additional participants would be accepted to fill the relevant age/sex cohort with 

children representing relatively normal dental development. In this case the Health Science 

Research Ethics Board would be consulted regarding the change in number of participants 

3.4.4 Consent and Assent 

All participants would require the completion of a consent form (See Appendix 1) by a 

parent or legal guardian following the reading, or oral explanation, of the letter of 

information (See Appendix 1). Children aged 13-17 would also be required to sign a 

consent form (See Appendix 1) at their own free will for eligibility, following a reading 

and/or oral explanation of the letter of information. Children aged 7-12 would be required 

to complete the assent form (See Appendix 1) following an oral reading and/or explanation 

of the form. It would be made clear to all participants and guardians that consent and/or 

assent can be withdrawn at any point. The necessary forms in AppendicesAppendix 1 and 

Appendix 2 were translated by a volunteering Egyptian law school graduate, Ahmed 

Mokhtar, and are available upon request. Indications of participants’ unwillingness to 
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participate in this study, demonstrated by verbal and/or physical cues, would also be 

respected and the examination or procedure would be discontinued immediately.   

3.4.5 Feasibility of the Proposed Participant Recruitment Process 

During this feasibility study, Dr. Tarek El Mokkadem, the Head of the Department of 

Dentistry in the Egyptian Ministry of Health and Population, and Dr. Safah Abu el Fadl, 

the Superintendent for Schools in Luxor, pledged their intention to respectively support 

and assist in the recruitment of participants for the proposed project. Three local native 

Arabic speaking colleagues also agreed to help with the participant recruitment process by 

assisting with information dissemination and helping those not proficient in reading and 

writing with form comprehension and completion. The Superintendent for Schools in 

Luxor also confirmed that the birthdates of students could be provided from the school 

records, although caution would need to be taken as Egyptian birth records are sometimes 

inaccurate. As a result, it was determined that the proposed plan for patient/participant 

recruitment was feasible, however a limitation was identified with regard to the 

consultation of Egyptian birth records. 

3.4.6 Data Collection: Questionnaire 

3.4.6.1 Equipment 

The questionnaire designed for this study had a primary goal to collect data relevant to the 

creation of an age estimation standard based on dental development, and information that 

might give further insight into epigenetic factors leading to differences in dental 

developmental timing and sequence (Appendix 1). The questionnaire also includes the 

WHO Oral Health Assessment Form for Children (2013) to collect health and hygiene data 

for inclusion in a public dental health report and the WHO/Malmo University Oral Health 

Country/Area Profile Database (WHO/Malmo 2011). Given the large scale of the proposed 

study, it is important to embrace the opportunity to collect data relevant to public oral health 

as studies of this type are costly and rare in Egypt, despite their obvious benefit to the 

population. Questions regarding respondents’ opinions on issues of dental health and 

hygiene were also included in the questionnaire in an effort to give the public some input 
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regarding future dental health promotion programs, as recommended by Scutchfield et al. 

(2004). 

Quantitative and qualitative data collected from participant questionnaires would be 

compared to data collected from dental examinations and radiographs in an effort to 

identify factors that might have significantly affected dental development and dental 

health. Information collected through the questionnaire would also be used to give a broad 

description of the reference population in this study.  

This questionnaire was designed for participant understanding and interviewer follow-

ability (Sanchez 1992) to ensure comprehension regardless of whether the participant 

completed the questionnaire independently or accepted assistance from a local research 

assistant. The conversational dynamics within the questionnaire were scrutinized and 

improved in order to identify and avoid systematic biases resulting from the wording, order, 

format or answer options of the questionnaire (Knauper and Turner 2003). Following 

translation to Arabic by an Egyptian law school graduate, Ahmed Mokhtar, the 

questionnaire was also reviewed by local individuals to ensure cultural sensitivity and 

comprehensibility in the local dialect.  

3.4.6.2 Procedure 

Questionnaires would be distributed at participating schools for children to take home, and 

explanatory meetings for parents would be hosted. It would be requested that the 

applicant’s mother, father or primary guardian complete the questionnaire along with the 

consent form, following the reading and comprehension of the letter of information about 

the proposed study. Assistance in understanding and completing these forms would be 

offered to any family desiring assistance so that all eligible individuals would have an 

opportunity to participate in this study. Upon collection of the required forms, qualifying 

applicant birthdates would be verified through school records before booking eligible 

children for dental x-ray and examination appointments. 
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3.4.7 Data Collection: Clinical Dental Examination 

3.4.7.1 Training and Calibration of Examiners (Determining Inter- 
and Intra-Observer Error) 

Participating dentists would be trained by the primary investigator and/or World Health 

Organization personnel to identify and record oral health indicator data according to the 

World Health Organization’s standards. These dentists would also be trained to accurately 

identify and record dental development scores in accordance with the given scoring system 

(See section 3.4.9). Methods for educating children and their guardians regarding pediatric 

health and hygiene would also be reviewed along with techniques for conducting trauma-

free pediatric dental examinations. World Health Organization affiliates may help in the 

training and calibration of the examining dentists, though photographic indices and written 

descriptions for each scoring system are provided for reference during dental examinations 

(See Appendix 4).  

As recommended by the World Health Organization (WHO 2013a), following training, the 

dental examiners would be required to independently examine the same 25 individuals. 

Results of these examinations would be immediately compared so that discrepancies in 

scoring could be discussed and reviewed in the patient before agreeing on a score. This 

exercise would serve to determine inter-observer error while allowing for calibration in 

diagnostics. This exercise would also be repeated near the middle of the study to ensure 

that the dental examiners’ diagnostic methods have remained consistent and calibrated 

throughout the study.   

As recommended by the World Health Organization (WHO 2013a), another two groups of 

25 individuals would be examined on two separate occasions. These participants would be 

asked to return within a week of the initial examination to be re-examined by the same 

dentist. The examining dentist would not be informed that they would be conducting a 

duplicate exam until the duplicate exams were complete. At this point, duplicate data would 

be compared and discussed with the examining dentist. This exercise would serve to 

determine the rate of intra-observer error. If the intra-observer error rate was not 

satisfactory according to the World Health Organization’s standards (i.e. between 85-95%) 
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(WHO 2013a), options for improvement would be discussed with the dental examiner and 

this exercise would be repeated.  

3.4.7.2 Equipment 

The clinical examination portion of this study would require the use of dental plane mirrors, 

periodontal probes matching the WHO specifications, gauze, tweezers, cleaning solution, 

an autoclave and recording materials. These materials were found to be readily available 

in medical supply stores in Luxor and Cairo, and an autoclave could be borrowed from the 

practice of a participating dentist.  

The clinical examination forms are made up of an expanded version of the World Health 

Organization (WHO) Child Oral Health Assessment Form (WHO 2013b) and a dental 

development data collection form designed specifically for this study (See Appendix 4).  

The decision to use the WHO Child Oral Health Assessment Form was based on its ability 

to collect data that would be comparable to data collected from both modern and ancient 

populations. The ability to contribute the collected data to the WHO/Malmo University 

Oral Health Country/Area Profile Database (WHO/Malmo 2011), and the widely accepted 

and standardized methods associated with the WHO, ensure that the data collected would 

benefit the local population.  The coding system used in the WHO Child Oral Health 

Assessment Form (WHO 2013b) also enables quick and easy data entry and analysis, for 

which the WHO also offers support and guidance. Additional benefits include the 

willingness of the WHO to sometimes offer financial, material and academic support to 

researchers conducting oral health surveys, and their occasional willingness to train and 

calibrate the study’s dental examiners. This training would leave the local community’s 

specialists better equipped to conduct their own oral health surveys while ensuring the 

academic excellence of the proposed study.  

A minor adjustment was made to the WHO Child Oral Health Assessment Form (WHO 

2013b) as further data were desired for the purpose of comparing the dental disease 

prevalence with prevalence rates observed in ancient populations. As a result, the 

instructions were modified so that if a deciduous tooth and an erupted permanent tooth 



75 

 

occupy the same space on the dental arcade, both teeth would be scored and recorded in 

the same box, as opposed to just the permanent tooth (See Appendix 4). 

The examining dentists would also be required to include detailed documentation of dental 

decay, missing teeth due to dental caries and carious lesions resolved through the 

application of fillings. This information would be analyzed in relation to variations in 

dental developmental timing and sequence within the sample. Documentation of decay, 

missing teeth due to decay, and fillings make up a standardized “DMF” documentation 

method for oral health analysis in a population (dental caries frequency in a population), 

allowing for the comparison of epidemiological profiles with others throughout the world 

(WHO 2013a). With the collection of detailed DMF data, comparisons might also be made 

with less detailed “point prevalence” studies, which indicate the number of individuals in 

a sample population that are, or have been, affected by dental caries (WHO 2013a).  In 

accordance with the WHO recommendations for the standardization of dental health 

surveys, dental caries would only be identified if there were a macroscopically visible 

cavity. Pre-carious lesions would not be included in this study due to the difficulties 

associated with inter- and intra-observer error, and the possibility that these pre-carious 

lesions might be resolved before a cavity is formed.  

The dental development data collection form (Appendix 4) was created using permanent 

and deciduous dental diagrams derived from the standardized forms used by Canadian 

Dentist, Dr. Henry Choi DDS (the author’s former employer), with scoring boxes placed 

adjacent to each tooth. Examiners would use these forms to draw in any carious lesions or 

developmental anomalies, such as dental enamel defects. A legend is provided in the form 

with the choices of developmental scores (from Trodden 1982) that examiners would use 

to fill out every box adjacent to the dental diagrams. Following this, the form includes two 

questions requiring: 1) the description of any macroscopically visible developmental or 

pathological anomalies; and 2) the description of any conditions that were observable 

through the dental radiograph that were not initially observed through the clinical 

examination.  
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An additional form was created for the examination of children aged 15 and over to assess 

oral hygiene. This form was created for the observation of dental plaque and dental calculus 

buildup, along with periodontal loss of attachment (See Appendix 4). All of these analyses 

would be completed only on selected index teeth for the sake of brevity. Data would be 

collected in accordance with the instructions given by the World Health Organization 

(WHO 2013a) for the periodontal loss of attachment indicator. For this score, the first and 

second molars in each quadrant would be paired for recording and, if one was missing, 

there would be no replacement. If no index tooth was present in a participant qualifying for 

examination, all the teeth that were present in that participant would be examined and the 

highest score recorded as the score for the individual (WHO 2013a).   

The Simplified Oral Hygiene Index (OHI-S, Greene and Vermillion 1964) instructions 

would be followed for the documentation methods for plaque and calculus health 

indicators. If one of the four first molars could not be observed due to absence, the adjacent 

(second) molar would be scored in its place. If the second molar was also missing, no score 

would be assigned to cheek teeth in this quadrant of the dental arcade. If either of the 

anterior indicatory teeth were missing, a score would not be recorded for that tooth and an 

alternative would not be observed. 

A study of dental morphology in the older cohorts of the study participants might also be 

considered for a preliminary comparison of ancient and modern Upper Egyptian dental 

morphology. This type of study could provide insight into the genetic relationships between 

modern and ancient populations in Egypt. Furthermore, the examination of dental 

morphology in relation to dental developmental timing and sequence would also be 

interesting, as it may reveal a relationship between certain morphological aspects and the 

timing of dental development, alveolar eruption, and/or gingival emergence. However, for 

the purposes of this study, it was determined that the analysis of dental morphology by 

examining dentists who are not familiar with the identification of dental morphological 

traits could present inter- and intra-observer bias and inaccuracy in the documentation of 

dental morphology. Additionally, it would significantly prolong the clinical dental 

examinations and introduce the possibility of patient discomfort while the dentist attempts 
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to identify all of the dental characteristics using only a dental mirror. As such, dental 

morphological study was not deemed feasible for this specific study.  

3.4.7.3 Procedure 

All participants would recieve a standard pain-free and non-invasive dental examination, 

designed to avoid stress and trauma. During the dental examination, all procedures would 

be explained using the ‘show and tell’ (Iannucci and Howerton 2012) method, where the 

procedures are explained in child-friendly terms, demonstrated and then completed on the 

participant. This method would ensure that the participant understands the procedure and 

would dissuade any fears, enabling the patient to stay calm and still for the procedure 

(Iannucci and Howerton 2012). In the dental examination of young children, the 

participating dentist would observe the teeth and enthusiastically count them out loud while 

touching them with a periodontal probe, introduced to young children as a ‘tooth tickler’. 

This procedure is meant to give the child a friendly (and somewhat entertaining) 

introduction to the dental office and it would allow the child to become comfortable with 

the dentist and the use of dental instruments. Dentists would document all participants' 

gingival emergence status, oral health and hygiene, and anything that might seem pertinent 

to the study of dental development using a standardized clinical dental form (See Appendix 

4). Standard health, safety and sterilization precautions would be taken and enforced 

during, and between, all examinations. 

During the examination, the dentist would also educate the volunteering patient, and their 

guardian (in the cases of the youngest participants), about the importance of dental health 

and hygiene in both the deciduous and permanent dentition. The panoramic radiograph 

would be used as an educational tool to show the participant their current state of dental 

development and dental health. The dentist would also briefly teach all volunteering 

patients ideal techniques and habits for dental flossing and toothbrushing. Following the 

dental examination, all participating children would be given a small package including 

dental floss, a toothbrush and toothpaste and an informative dental health and hygiene 

brochure filled out with the dentist’s notes on the results of the dental examination. The 

provision of dental examination notes and a copy of the panoramic dental x-ray is important 

as it would ensure that parents and/or guardians are informed of the child’s dental health 
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and hygiene status and the dentist’s recommendations. The provision of the dental notes 

and the dental x-ray might also save the patient from having to endure (and pay for) a 

second dental examination and x-ray if a follow-up appointment and/or dental intervention 

were required. Furthermore, in Egypt it is common for patients to maintain their own 

medical records and bring them to dental appointments. 

3.4.8 Data Collection: Panoramic Dental Radiography 

3.4.8.1 Why Panoramic Radiography? 

The use of panoramic x-rays and clinical examination of living patients allows for the 

recording of both left and right sides of the maxillary and mandibular dentition, as well as 

both alveolar eruption and gingival emergence. As noted, several methods have been used 

to create dental age estimation standards in the past, such as macroscopic observation, 

histological analyses and dental radiography. Macroscopic observation of gingival 

emergence timing and sequence is a popular method of study because it is an inexpensive 

method that can be used on living populations without the need for special equipment. As 

this method is based on the presence or absence of erupted teeth and their stage of eruption, 

it is vulnerable to inaccuracies due to dental agenesis, dental impaction, variation in 

developmental timing, premature tooth loss, extraction, or post-mortem tooth loss. It has 

also been shown that gingival emergence is significantly more variable than alveolar 

eruption (Demirjian et al. 1973), complicating comparisons between living and deceased 

population studies, as gingival emergence cannot be accurately assessed in human remains 

(Haavikko 1970).  

Histological analyses of dental calcification and eruption have played a large role in the 

understanding of dental development. These studies allow for the observation of dental 

growth, rather than just dental eruption and emergence. Histological analyses are also more 

accurate than radiographic analyses because they enable observation of newly formed 

structures that have not been sufficiently mineralized to appear on radiographs (Logan and 

Kronfeld 1933). Unfortunately, histological research is very tedious, time consuming and 

destructive, and are thus usually limited to small reference samples made up of extracted 

teeth or the teeth of deceased individuals. Additionally, these destructive methods are not 
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applicable to living or, in many cases, ancient individuals and standards of dental growth 

based on these histological analysis of mineralized and unmineralized tooth structures will 

produce biased age estimates if applied to radiographic analyses of mineralized tooth 

structures alone.  

Radiographic methods are ideal for the creation of age estimation standards based on dental 

development because they can be conducted on a living reference population, allowing for 

a large reference sample of known age and sex individuals. Age estimation standards based 

on radiography are also applicable to living individuals as well as individuals recovered 

from forensic or archaeological contexts.  

Panoramic dental radiography is essential for the development of a new macroscopic 

subadult dental age estimation standard. Several of the existing standards are based on 

lateral x-rays, which obscure the view of maxillary cheek teeth due to overlap within the 

x-rays (e.g. Moorrees et al. 1963a,b). Consequently, these standards must assume similar 

patterns in maxillary and mandibular eruption timing, an assumption which has been 

proven to be false in Logan and Kronfeld’s (1933) pioneering study of dental eruption 

patterns. Alternatively, the resulting standard must be based only on the mandibular teeth, 

making age estimation for a specimen with an incomplete dentition difficult, if not 

impossible. 

Panoramic dental radiography allows dentists and researchers to see an individual’s entire 

dentition at one glance. It is often used to monitor growth and development in subadults 

because erupted teeth and their occlusion can be seen, in addition to any un-erupted teeth 

in the mandibular and maxillary bones. Other options for capturing the entire dentition 

through dental radiography include the collection of a full mouth series of bite-wing and 

periapical x-rays (18-21 x-rays per series), lateral cephalometric radiography (e.g. 

Moorrees et al. 1963a,b; Demirjian et al. 1973), or CT scanning (e.g. Graham et al. 2010; 

Maret et al. 2011). There are obvious organizational, practical, ethical, and analytical 

difficulties involved with the collection of up to 21 x-rays per patient for a study of growth 

and development. Bite-wing x-rays do not show the complete roots of each tooth and show 

a limited number of teeth in occlusion. Periapical x-rays show the entire tooth root but they 
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show even fewer teeth and do not show the details of the dental occlusion. Panoramic x-

rays enable the dentist or researcher to see the relationships between teeth clearly without 

the difficulties involved in piecing together a series of 18 to 21 x-rays. They are also less 

costly and more accessible than lateral cephalometric radiography and computed 

tomography (CT), and they expose patients to significantly less radiation than all of the 

other radiological methods (Iannucci and Howerton 2012). 

As previously mentioned, it might be argued that radiographs present a source of error in 

dental age estimation standards due to their inability to show enamel or dentine prior to 

sufficient mineralization (Logan and Kronfeld 1933). Although the actual developmental 

stage will always be slightly ahead of the developmental stage seen through radiographs, 

dental radiography continues to be the best method of monitoring growth and development 

in subadults, particularly in situations where destructive analysis of a large sample of 

known age skeletal remains is not possible (Hillson 1996, 2005). Furthermore, limitations 

regarding the invisibility of unmineralized dental tissues in radiographs are only relevant 

if radiographic standards are applied to non-radiographic studies. If, however, radiography 

is used to analyze the dentition, the radiographic standards will accurately represent the 

state of mineralized dental development for unbiased age estimation.  

Another challenge associated with radiography is that all radiographs are magnified to 

some extent due to the nature of the x-ray beam and the position of the specimen in relation 

to the x-ray tube and plate or film (Iannucci and Howerton 2012). For this reason it may 

be advisable to use relative measurements of dental structures rather than actual 

measurements, though actual measurements have been used in prior studies (e.g. Mays et 

al. 1995; Liversidge and Molleson 1999a,b; Liversidge et al. 1993, 2003). Inaccuracy and 

bias may also be avoided through the use of an appropriate scoring system that has a 

“sufficient number [of stages] to quantify variability, while maintaining reliability. Too 

many stages [will] decrease reliability, while too few [will] compromise sensitivity” 

(Liversidge 2008: 237). Despite the known magnification issue inherent in radiographic 

methods, it should be noted that panoramic x-rays present the most standardized 

visualizations of the dentition due to their positioning method (Sassouni 1963). However, 

it is important to know the specifics of a panoramic radiographic machine, particularly if 
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actual measurements are used, since different machines have different focal troughs that 

approximate the elliptical shape of the dental arch through the use of different centres of 

rotation (e.g. 2 centres, 3 centres, a continually moving centre, or a combination of 3 

stationary centres and a moving centre) (Whaites and Drage 2013). As a result, not all 

panoramic radiographs are created equally, nor do they all represent the same degree of 

magnification between radiographic methods and within each radiograph: a fact that has 

not been taken into account in prior panoramic radiographic metric studies. In an effort to 

avoid these complications of metric radiographic analysis, the proposed study would score 

dental calcification according to the scoring methods of Trodden (1982) and Demirjian 

(1973) (See Table 3.1). Dental eruption would be scored according to the standards 

presented by Trodden (1982; See Table 3.2). 

3.4.8.2 Equipment 

The radiographic equipment that was investigated for use in the proposed study was owned 

and operated by Radwania Scan Medical Center on El-Mostafa Street in Luxor, Egypt. 

This medical center operates a digital panoramic dental radiography machine which 

typically takes 45 seconds to complete the x-ray procedure. Digital panoramic x-ray 

machines typically emit less radiation than the older analog machines and all panoramic 

machines emit significantly less radiation than the alternative full mouth series of bitewing 

and periapical x-rays. The x-ray machine was located in an enclosed room with a window 

for the operator to observe the patient (who would wear a protective lead apron) and the 

progress of the machine. The radiologist in charge was consulted regarding machine 

maintenance, safety precautions, facility layout, interest in participating in the proposed 

study, and cost for the proposed number of radiographs. It was determined that the machine 

maintenance procedures, safety precautions, and facility layout were ideal to host the 

proposed study. The chief radiologist was eager to have the business participate in the study 

and offered a significant discount on the proposed number of panoramic radiographs. As a 

result, this aspect of the study was determined to be feasible. 
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3.4.8.3 Procedure 

Pediatric radiography requires special skills to keep young children calm, happy and still. 

In the clinical examination, patients would have all procedures, including the x-ray, 

explained using the ‘show and tell’ method (Iannucci and Howerton 2012). In this method, 

the procedure is explained in child-friendly terms, demonstrated (without radiation or by 

viewing a prior patient from the observatory), and then completed on the patient. During 

this demonstration, young participants that seem receptive to game-playing might be 

encouraged to stay still by playing the “freeze” game, where the child pretends that they 

are frozen in place during the x-ray. These methods would ensure that each participant 

understands the procedure and that their fears are dissuaded, enabling the participant to 

stay calm and still for the procedure (Iannucci and Howerton 2012). The panoramic x-ray 

machine investigated for the proposed study operates quite quickly with a 45 second run, 

which would minimize the risk of x-ray blurring caused by patient movement (Iannucci 

and Howerton 2012). If it were necessary and feasible in the radiographic laboratory, a 

proven distraction method such as a television (Alexander 2012), or a tablet playing 

cartoons, might also be used to keep young patients still during the radiographic procedure.  

Upon completion of scanning, x-rays would be immediately saved onto a CD for data 

collection. The provision of a film copy of the x-ray would also be provided for the 

participant at no additional cost or increase in radiation exposure.   

If it was determined that the resulting radiograph was not clear enough for the purposes of 

the proposed study, it would be decided if another radiograph should be taken or whether 

the child and their guardian would like to postpone the x-ray for another day (as 

recommended by Iannucci and Howerton 2012). If deemed necessary, the x-ray procedure 

would be repeated only once on a given patient, regardless of the clarity of the final x-ray. 

If it was decided that repetition of the x-ray procedure was not advisable, a new patient 

would be chosen to fill the data void in the relevant age group.  

3.4.9 Data Collection: Scoring Dental Developmental 

There are several methods for the scoring of dental calcification from radiographs and each 

has benefits and challenges (cf. Hess et al. 1932; Gleiser and Hunt 1955; Garn et al. 1958; 
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Nolla 1960; Moorrees et al. 1963a,b; Fanning 1971; Liliequist and Lundberg 1971; 

Demirjian et al. 1973; Gustafson and Koch 1974; Trodden 1982). For the proposed study, 

a composite scoring method is presented using elements from the scoring standards of 

Trodden (1982) and Demirjian et al. (1973), both of which were created for use on 

panoramic radiographs (See Table 3.1. A composite dental calcification scoring method 

merging Trodden’s (1982) numerical standard and Demirjian et al.’s (1973) alphabetical 

standard).  

The dental developmental scoring method presented by Demirjian et al. (1973) is based on 

developmental criteria visible through panoramic radiography. This method limits 

subjectivity as it does not rely on the prediction of crown or root lengths, which can vary 

significantly between individuals and tooth types (Demirjian et al. 1973; Demirjian 1978). 

Consequently, the Demirjian et al. (1973) scoring method has been demonstrated to have 

relatively low rates of inter- and intra-observer error when compared to other scoring 

methods for dental development (Hagg and Matsson 1985). This scoring system was 

originally developed in association with a weighted scale for age estimation. These 

calculations were created through a study of a French Canadian population sample and 

require the presence of seven teeth (I1 to M2). Although this study would not use the 

weighted age estimation function of the Demirjian et al. (1973) method, the original 

alphabetical scores would be retained for ease of comparison with other studies of dental 

development using the Demirjian et al. (1973) method. Retention of these alphabetical 

scores also enables reference to the Demirjian et al. (1973) pictorial and radiographic 

representations of developmental stages in each tooth type.  

Trodden’s (1982) scoring system is based on a combination of the calcification scoring 

systems created by Nolla (1960), Nevile (1973) and Fanning (1961), and the dental 

eruption scoring system of Schour and Massler (1941). Trodden’s system has demonstrated 

relatively low inter- and intra-observer error, even in the face of patient positioning errors 

of up to 20 degrees vertically and/or horizontally (Trodden 1982). However, its reliance on 

relative measurements based on predicted crown and root lengths makes this scoring 

method quite subjective. Nevertheless, unlike Demirjian et al. (1973), Trodden’s (1982) 

scoring system includes stages for no bony changes, development of the crypt, and missing 
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data as a result of abnormal tooth inclination or faulty film, and gives a basic notation 

method for cleft formation. It also includes scores for missing teeth through stages such as: 

tooth exfoliation, premature extraction, tooth agenesis, and teeth that are missing for 

unknown reasons. The documentation of missing teeth is important due to the impact that 

missing teeth can have on the timing of subsequent dental growth (Ruiz-Mealin et al. 

2012). Although Trodden (1982) did not account for this interaction, the relationship 

between missing teeth and the timing of subsequent dental growth would be considered 

during the proposed study. Questions regarding missing teeth and extraction were 

incorporated into the patient intake/health history information collection stage of the dental 

checkup for this purpose.  Given the value of these elements of Trodden’s (1982) dental 

calcification scoring method, they have been combined with scores from Demirjian and 

colleagues’ (1973) standard for use in the proposed study (See Table 3.1).  

Table 3.1. A composite dental calcification scoring method merging Trodden’s 

(1982) numerical standard and Demirjian et al.’s (1973) alphabetical standard 

Score Definition 

0 No change in bone density, and no crypt visible. This category is the same as that 

used by Nolla. (1960) 

1 The crypt is clearly visible, but there is no evidence of calcification. This category 

is the same as that used by several authors.  

A In both uniradicular and multiradicular teeth, a beginning of calcification is seen at 

the superior level of the crypt in the form of an inverted cone or cones. There is no 

fusion of these calcified points. 

B Fusion of the calcified points forms one or several cusps which unite to give a 

regularly outlined occlusal surface 

C a. Enamel formation is complete at the occlusal surface. Its extension and 

convergence towards the cervical region is seen.  

b. The beginning of a dentinal deposit is seen.  

c. The outline of the pulp chamber has a curved shape at the occlusal border 

D a. The crown formation is completed down to the cementoenamel junction.  

b. The superior border of the pulp chamber in the uniradicular teeth has a definite 

curved form, being concave towards the cervical region. The projection of the pulp 

horns if present, gives an outline shaped like an umbrella top. In molars the pulp 

chamber has a trapezoidal form,  

c. Beginning of root formation is seen in the form of a spicule 

E Uniradicular teeth:  

a. The walls of the pulp chamber now form straight lines, whose continuity is broken 

by the presence of the pulp horn, which is larger than in the previous stage.  

b. The root length is less than the crown height.  

Molars:  

a. Initial formation of the radicular bifurcation is seen in the form of either a calcified 

point or a semi-lunar shape.  
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b. The root length is still less than the crown height 

F Uniradicular teeth:  

a. The walls of the pulp chamber now more or less form an isosceles triangle. The 

apex ends in a funnel shape.  

b. The root length is equal to or greater than the crown height.  

Molars:  

a. The calcified region of the bifurcation has developed further down from its semi-

lunar stage to give the roots a more definite and distinct outline with funnel shaped 

endings.  

b. The root length is equal to or greater than the crown height. 

G a. The walls of the root canal are now parallel and its apical end is still partially open 

(Distal root in molars) 

H a. The apical end of the root canal is completely closed. (Distal root in molars). 

b. The periodontal membrane has a uniform width around the root and the apex. 

17 Extraction of the permanent or deciduous tooth. This category is used when 

evidence exists that the deciduous or permanent tooth has been extracted 

prematurely.  

18 This category is used when evidence exists that a tooth is congenitally missing. 

Third molars are scored as “0” unless the child is over the age of 12 years, by which 

time the third molars should have begun calcification.  

19 This category is used for missing permanent teeth where the reason is unknown. The 

tooth may have been extracted or is congenitally missing.  

98 This category is used if the tooth is obviously present but an accurate determination 

of development is not possible due to an abnormal inclination of the tooth.  

99 This category is used if the film is faulty, so that the presence or absence of the tooth 

was unknown.  

V Cleft formation is recorded separately for the permanent molars.  

When using this scoring method, each tooth is assigned a score, and if a tooth’s 

developmental stage falls between two scores, the earlier/lower stage will be recorded. In 

cases where scores have more than one defining character (listed as a,b,c), one out of two, 

or two out of three characteristics must be met to qualify for the relevant stage (Demirjian 

et al. 1973; Demirjian 1978). 

Like the Demirjian et al. (1973) method, the proposed study would not include third molars 

in the age estimation standard because they vary greatly in their developmental timing and 

the reference sample would be limited to individuals that have not attained full occlusion 

of the third molars. However, if this reference population was extended to include older 

individuals and the study of third molars, Trodden (1982) noted that population distribution 

bias could be avoided by excluding third molar scores of ‘0’.  

In addition to the aforementioned dental calcification scoring system, Trodden (1982) 

provided a second scoring system specifically for dental eruption, including initial 
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eruption, alveolar eruption, gingival emergence, and occlusion (See Table 3.2). The 

division of alveolar eruption into two stages is beneficial because it helps to clear up the 

definition of alveolar ‘eruption’ and it distinguishes between two events during the eruption 

period that are often used as sole indicators of alveolar eruption. The age of alveolar 

eruption is important for archaeologists who often do not have access to radiographic 

technology in the field.  

Similarly, the inclusion of gingival eruption is beneficial for age estimation in living 

subadults and the recently deceased seen in forensic cases. Gingival emergence timing does 

not benefit archaeologists unless soft tissue has been preserved (and even then, tissue 

shrinkage and post-mortem damage may prevent an accurate analysis). Unfortunately, soft 

tissue is not always visible in radiographs. In an attempt to circumvent this problem in the 

creation of the new standard, clinical analysis of gingival emergence will be documented 

during the dental checkup on each patient. This will ensure that the new dental age 

estimation standard includes accurate soft tissue data, enabling specific age estimations in 

a broad range of circumstances. The last stage included in Trodden’s (1982) eruption 

scoring system is “attainment of occlusal level” (Trodden 1982: 43). Unfortunately, during 

panoramic x-rays, the patient’s position must be stabilized by holding a bite block between 

their teeth. Given that the maxillary and mandibular teeth are held slightly apart by the bite-

block, it may be difficult to differentiate between teeth that are approaching occlusion or 

have recently attained first occlusal contact through the x-ray, particularly if adjacent teeth 

are missing or malaligned (Trodden 1982). Consequently, the occlusal status of teeth would 

also be noted during the proposed dental examination to ensure precision when creating 

the new standard.  
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Table 3.2. Trodden’s (1982: 41-43, 131) Eruption Stages 

Score Definition 

0 Not erupted: Tooth is congenitally missing or has not reached the calcification 

score of 6 

I Initial eruption (Schour and Massler (1941), Stages I and II): Initial stages 

of tooth movement. Every tooth that has reached the calcification score of 6 

but has not pierced the alveolar crypt. The crypt margin (lamina dura) appears 

unbroken, or there is evidence of the crypt occlusal to the tooth crown.  

II Alveolar emergence: The elevation of the cusps, or incisal ridge, about the 

margin of the alveolar crypt, and if the occlusal margin of the crypt appears to 

be broken.  

III Gingival emergence (Schour and Massler (1941), Stage III): The 

emergence of any portion of the tooth crown through the gingiva. No evidence 

of soft tissue occlusal to the tooth crown.  

IV Attainment of the occlusal level (Schour and Massler (1941), Stage V): Full 

occlusal contact as determined by the overall line of occlusion (Curve of Spee), 

and the approximation of the contact areas through macroscopic and 

radiographic observation. If a tooth is malaligned, only a portion of the 

occlusal (incisal) surface must be in occlusion.  

V Missing teeth: If the tooth has been exfoliated (score 16), extracted (score 17), 

probably extracted (score 19), or if the presence of absence of the tooth is 

unknown (score 99).  

It is imperative that scoring methods are reproducible, particularly for application of an age 

estimation standard. As such, during the proposed study, inter- and intra-observer tests 

would be conducted to determine the reliability of the dental calcification and dental 

eruption scoring methods.  

3.4.10 Data Analysis: Statistical Analysis 

The search for an accurate, specific, and unbiased dental age estimation method has led 

some paleodemographers and bioarchaeologists to scrutinize more closely the statistical 

methods being applied to the reference data when creating new standards. Smith (1991a) 

notes that eight categories of methods have been used in the association of chronological 
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age and dental age in past studies. The categories that Smith (1991a) identified are: 

cumulative distribution functions, average age at first appearance less half an interval 

between examinations, mean age of subject in a stage, alternative methods, mean formation 

stage for subject age group, maturity scales, pictorial charts and atlases, and miscellaneous 

methods. For age estimation standards, the use of ‘cumulative distribution functions’, 

which are loosely defined as “several methods (probit analysis, other methods of locating 

the mean or median in a cumulative distribution function)” (Smith 1991a: 151), was 

recommended.  

In 1999, a paleodemography workshop was hosted in Rostock, Germany, where statistical 

methods for age estimation were evaluated, which resulted in the acceptance of a 

theoretical approach, aptly named the ‘Rostock Manifesto’ (Hoppa and Vaupel 2002). This 

manifesto calls for better reference collections with validated reports of chronological age, 

better osteological methods (i.e. improved observation and scoring systems for age-related 

changes), assessments of age distribution in target populations, and the use of Bayes’ 

theorem (Hoppa and Vaupel 2002).  The Bayes theorem is a statistical tool that allows one 

to estimate the probability of age [a] conditional on developmental stage [c] with regards 

to the prior distribution of that age in the target population [fT(a)], when the probability of 

the developmental stage [c] occurring at age [a] with relation to the prior age distribution 

of the reference population [fR(a)] is known. In other words, Bayes’ theorem allows for the 

determination of P(a│c), when P(c│a) and the reference [fR(a)] and target [fT(a)] 

population age distribution patterns are known (Hoppa and Vaupel 2002). 

In the proposed study, if 30 radiographs are collected for each sex-specific age category, 

as planned, the target sample age distribution should be estimated independent of the 

reference (Konigsberg and Frankenberg 1992; Bocquet-Appel 1986). However, since the 

reference sample would not begin when the first tooth begins to develop, age estimates 

might still be biased by the truncation of the age distribution pattern resulting in ‘age 

mimicry’ (Mensforth 1990; Smith 1991a; Konigsberg and Frankenberg 1992; Hoppa and 

Vaupel 2002). Furthermore, despite the narrowing of age attribution to within one month 

of patients’ birthdates in the reference population, there would still be some variability in 

age attribution that might cause bias.  
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Several methods have been proposed to eliminate the biases inherent in age estimations 

calculated with Bayes’ theorem. Konigsberg and Frankenberg (1992) demonstrated the 

efficacy of a multivariate probit method (also known as the maximum likelihood of the age 

distribution), a dependent Bayesian method (Heuze and Cardoso 2008), for use with a small 

number of age indicators. This method requires a large sample and is very numerically 

intensive, requiring the calculation of means, variances, and covariances between 

indicators. It has been stated that “multivariate integration over more than about five 

dimensions takes a great deal of computing time, even using very fast computers… If we 

wanted to use 20 indicators (for example, by observing the emergence of all the deciduous 

teeth), we would need to estimate 230 parameters!” (Holman et al. 2002: 16-17). To get 

around this difficulty, one of several methods of stochastic integration could be used, such 

as the Gibbs sampler or the Markov Chain Monte Carlo (MCMC) method (cf. Konigsberg 

and Holman 1999; Konigsberg and Hermann 2002). These methods make it feasible to 

integrate multivariate integrals to fairly high dimensions” (Holman et al. 2002: 16). 

However, the requirement for a large sample size grows with the number of indicators used 

because age predictions can only be made for developmental mineralization sequences 

found within the reference population (Heuze and Cardoso 2008). This means that if 48 

indicators were used (one for each deciduous and permanent tooth excluding the wisdom 

teeth) with multiple ordinal categories of growth, the required reference population size 

would exceed the sample being collected in this study.  

Boldsen et al. (2002) proposed the transition analysis method, an independent Bayesian 

method, which requires fewer calculations and does not require a large reference sample, 

because it assesses the developmental stages of teeth independently, rather than as blocks 

of dental mineralization sequences (Heuze and Cardoso 2008). This method is also ideal 

for its ability to assess dentitions with missing teeth (Heuze and Cardoso 2008). It does, 

however, require the assumption of independence between indicators once conditioned on 

chronological age (Holman et al. 2002). This assumption of independence between teeth is 

not entirely reflective of reality since teeth are “topographically, developmentally, and 

functionally associated to each other, and essentially grow as a unit (Heuze 2004; Braga et 

al. 2005)” (Heuze and Cardoso 2008: 277).  
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The latent trait method, proposed by Holman et al. (2002), can also assess incomplete 

dentition and is perhaps the most suitable for application to developmental dental age 

estimation standards. It does not require a very large sample size, it does not require the 

assumption of independence between indicators, and the calculations are more manageable 

for a study using a large number of indicators (i.e. 48 teeth) (Holman et al. 2002). The 

latent (or concealed) trait method assumes that each child has an individual unknown 

growth rate (z) which affects the time required to meet each developmental stage (Holman 

et al. 2002). Lower growth rates result in the passing of more time between developmental 

stages, while higher growth rates will result in faster development (Holman et al. 2002). 

Growth rates (z) can be different for each tooth and the strength of the effect of ‘z’ on the 

age indicator ‘i’ is variable (Holman et al. 2002). The strength of association between the 

growth rate (or latent trait) ‘z’, and the age indicator ‘i’ can be described parametrically 

‘βzi’ as it is assumed that the distribution of the growth rate (z) follows an unknown 

parametric distribution within the population (Holman et al. 2002). The effects of ‘z’ can 

be estimated using proportional hazards models, assuming that ‘z’ “increases or decreases 

the hazard of making the [developmental] transition at each age” (Holman et al. 2002: 212). 

The new parameter ‘βzi’ showing the strength of association between the growth rate ‘z’ 

and age indicator ‘i’ is then incorporated into the distribution formulae for each age 

indicator. These formulae and the assumed function describing the variation of ‘z’ among 

individuals is then incorporated into an independent multivariate Bayesian equation for 

estimation of the parameters of the reference distribution (Holman et al. 2002).  The 

equation for the estimation of age-at-death distribution in the target population is similarly 

integrated over the distribution of ‘z’ (Holman et al. 2002). This statistical method can 

sometimes result in relatively large standard errors despite the similarities found between 

estimated and known age-at-death distributions. These standard errors may be reduced 

through the use of stochastic methods of integration, such as the Markov Chain Monte 

Carlo method (Holman et al. 2002). The transition analysis method is a promising method 

for the application of dental developmental age estimation standards.  

Following data collection for the proposed study, the Akaike Information Criterion (AIC) 

(Akaike 1973, 1998; Anderson and Burnham 1998) would be used to determine the relative 

dependence of age indicators to determine whether to use the Multivariate Independent 



91 

 

Bayesian Method or the Latent-Trait Method for the most accurate results (Holman et al. 

2002).  A recent statistical analysis of the permanent molars in a large sample of panoramic 

x-rays scored according to Moorrees et al.’s (1963a,b) method indicated that assumptions 

of conditional independence or complete dependence of molar development are not 

warranted (Liversidge and Konigsberg 2016).  

3.4.11 Data Application: Statistical Software for Age Estimation 

With respect to the method of application for the new standard, it has been determined that 

statistical formulae are more specific and accurate than atlas and graph methods. This is 

because statistical formulae prevent the observer error that may result from trying to match 

the dentition of an individual to figures of average developmental stages shown in atlases 

and graphs. So, rather than creating another dental atlas, the proposed study would integrate 

the collected data and the selected Bayesian statistical method into a computer software 

program to facilitate the calculation of age estimates upon entry of an individual’s dental 

developmental data. Following in the footsteps of Demirjian (1994) and AlQahtani et al. 

(2010b), this software would be made available to download from the internet, enabling 

people working in a laboratory or in the field to easily calculate estimated age based on an 

Egyptian dental development standard. 

3.4.12 Data Application: Public Dental Health Report and WHO 
Global Oral Health Database 

Data collected from the proposed study that are relevant to public dental health would be 

contributed to the WHO Global Oral Health Database and included in a public dental health 

report. This report would be published and presented to the Egyptian Ministry of Health 

and the World Health Organization. Copies of the report would also be provided to the 

principals of each participating school for inclusion in the school library. Dental public 

health researchers have a social responsibility to advocate for the improvement and 

equality of the dental health and hygiene in the studied population (WHO 2013a). This 

study would highlight issues of dental health, hygiene, and service accessibility in a 

generally lower socioeconomic class of subadults in Upper Egypt. The report would also 

be used to argue for better preventative oral health care and public oral health education, 
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which has the potential to affect change on a larger scale if reparative health care costs and 

illness-related loss of labour hours can be minimized. At the time of this feasibility study, 

the proposed research was embraced by Dr. Tarek El Mokkadem, the Head of the 

Department of Dentistry in the Egyptian Ministry of Health and Population, as the Egyptian 

government was renewing efforts to improve social, educational and medical programs.  

3.4.13 Testing the new Standards 

The subadult age estimation standard(s) developed through this study would be tested on 

populations that are independent of the reference population to explore its applicability to 

Egyptians outside of the reference population. The newly created region-specific subadult 

dental age estimation standards would be tested against the existing ‘universal’ dental age 

estimation standards on independent samples of radiographs from known sex and age 

Egyptian subadults from a variety of locations in Egypt. Pre-existing panoramic 

radiographs with information regarding sex and date of birth could be used in the testing 

stage for ease of access and reduced cost. Alternatively, the new dental age estimation 

standard could be tested on data collected through dental examinations of new population 

samples or, if necessary, on the original data through a statistical bootstrapping method 

without replacement. These tests would help to determine the applicability of the new 

standard to modern subadults throughout Egypt. 

Provided the appropriate permissions are granted, a preliminary study of this standard’s 

applicability to ancient human remains would also be conducted. The new region-specific 

standard and the ‘universal’ standards would be applied to excavated human remains from 

the early Roman Period in Upper and Lower Egypt (Kellis 2 and Fag El-Gamous 

cemeteries, respectively). With permission from the Egyptian Ministry of State for 

Antiquities (MSA) and the Supreme Council of Antiquities (SCA), the Dakhleh Oasis 

collection would be made accessible through Dr. El Molto, Dr. Peter Sheldrick and the 

Dakhleh Oasis Project, and the Fag El-Gamous collection would be made accessible 

through Dr. Kerry Muhlestein and the Brigham Young University Egypt Excavation 

Project. By using two geographically distinct archaeological samples from the same time 

period, it is hoped that the effects of time and space could be assessed in relation to the 

efficacy of the age estimation standard. A multifactorial skeletal age estimation method, 
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shown to be the most accurate and unbiased (Lovejoy et al. 1985), would also be applied 

to the selected subadult remains to determine relative rates of accuracy and bias for the old 

and new subadult dental age estimation standards.  

Another possible method for testing the new standard in ancient populations would be to 

compare age estimates from the new standard to age estimates derived from the histological 

analysis of dental tissues (e.g. counts of enamel cross-striations, striae of Retzius, 

perikymata, Von Ebner lines, Anderson lines, or cementum annulation; root translucency; 

relative pulp width). These methods are known to be particularly specific and accurate 

indicators of age (Antoine 2000; Antoine et al. 2009). As such, a comparison of age 

estimates from the new region-specific standards to age estimates obtained through 

histological analysis would be especially powerful for the determination of accuracy, bias, 

and specificity of the new standard. 

Although dental morphology has remained fairly constant in Neolithic to Post-dynastic 

Egyptians (Irish 2006), and there is evidence of little change in diet since the Pharaonic 

Period in rural areas of Egypt (Wood 1988), a recent study has demonstrated secular change 

in the dental development of Dutch children over only four decades (Vucic et al. 2014). 

Secular change can be attributed to changes in environment, diet, health, hygiene, 

socioeconomic status, and/or lifestyle (Eveleth 2001). Consequently, further testing would 

be required to determine the accuracy and specificity of the new standard to other ancient 

populations. Ideally tests of the new region-specific subadult dental age estimation 

standards would be conducted at a wide variety of geographically and temporally diverse 

archaeological sites throughout Egypt to ascertain the scope of its applicability and, if 

necessary, create correction intervals for improvement. These tests could also be extended 

to other countries in the Middle East and Africa to determine the regional boundaries for 

this ‘region-specific’ standard. 

3.4.14 Feasibility of the Proposed Methods 

During this feasibility study, several dentists, a radiological laboratory, and multiple local 

volunteer research assistants were contacted and recruited for participating in this study. 

Through an investigation of the Radwania Scan Radiological Laboratory, it was 
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determined that the facilities were an appropriate location for the clinical dental 

examinations as well as the radiographic exams. The owner and chief radiologist at 

Radwania Scan also indicated that the facility could be made available in its entirety during 

the daytime and offered a discounted price for the proposed number of panoramic x-rays. 

The interested dentists volunteered to bring dental mirrors and periodontal probes and one 

of the dentists volunteered to bring their autoclave for use in sterilizing dental instruments. 

A medical supplies store with the needed disposable instruments was also located. The 

questionnaire and an educational brochure were also designed for use in the proposed 

study. In addition to the medical professionals and research assistants contacted, Dr. Tarek 

El Mokkadem, the Head of the Department for Dentistry in the Egyptian Ministry of Health 

and Population, and Dr. Safah Abu el Fadl, the Superintendent for all schools in Luxor also 

expressed interest in the proposed study, further lending credence to the feasibility of the 

proposed study. Moreover, as the proposed test for the new method at the Kellis 2 and Seila 

archaeological sites does not require any special permissions beyond the normal 

bioarchaeological study permissions, the proposed tests for the new method are also 

feasible when provided access to the sites. 

3.4.15 Limitations 

This proposed method for the development of sex- and region-specific subadult dental age 

estimation standards may be limited by the ability to accurately determine the date of birth 

of participants. In Egypt, where and for whom this plan was developed, it is not uncommon 

for families and/or delivery doctors to register the birth after the actual birth date. Since it 

is illegal to retroactively register a birth, official records will often indicate a later birthdate 

than the actual date of birth. In some cases, this discrepancy is only a matter of days, but 

in my research I have found cases in which rural families delayed travel to register the 

births of their children until after all planned children were born, causing a delay of several 

years in the birth registration of a number of individuals. Although this situation is far from 

ideal for research purposes, it may be prevalent in developing countries. As such, it is 

necessary to consider this as a possible limitation in developing a more accurate age 

estimation standard. Furthermore, it would be prudent to inquire about local norms for birth 
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registration and, when necessary, ask patients or their caregivers if official documents 

reflect their true date of birth.   

Another consideration and possible limitation in the implementation of this proposed study 

relates to cost and accessibility of dental professionals. In the original planning of this 

project, this challenge was circumvented by attaining grant funding, utilising the current 

author’s familiarity with Egypt and Arabic to make arrangements with dentists and the 

Egyptian Ministry of Health, and using the current author’s professional skills as a dental 

assistant to reduce costs. Given the clear benefit to the participating medical professionals 

and patients as well as the Egyptian economy, there was overwhelming support from the 

Egyptian Ministry of Health, the dentists, and the radiologist approached for participation 

in the proposed study.  

3.4.16 Research Ethics         

In the development of the proposed study, all possible precautions were taken to ensure 

that volunteers would understand the potential risks of taking part in the study and provide 

informed consent; that they were not coerced into participating in the study; and that the 

risks associated with the study were minimized and justified by the potential knowledge 

gained and benefits to the patient and society. Research ethics board approval would be 

required prior to the launch of the proposed study; however, this project has been designed 

to comply with modern medical ethical standards. 

3.4.16.1 Ionising Radiation Dosimetry and Biomedical Ethics 

Although there is a greater chance of developing cancer spontaneously (3300 in 1 million) 

than from dental radiographs (3 in 1 million) (Iannucci and Howerton 2012), it must be 

acknowledged that x-radiation can cause some biologic damage (Iannucci and Howerton 

2012; ADA/FDA 2012). It is for this reason that conventional precautions would be taken 

to protect the patient and the radiographer from unnecessary radiation, or radiation scatter 

(ADA/FDA 2012).  

It is recommended that x-rays are only taken if the benefit to the patient outweighs the risk, 

or if the taking of an x-ray will have a likely effect on the course of treatment (Iannucci 
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and Howerton 2012). Panoramic x-rays can help to diagnose occult diseases in patients and 

assess their oral health as well as dental development (Sassouni 1963; Iannucci and 

Howerton 2012; ADA/FDA 2012). In addition to assessing growth and development and 

identifying dental and skeletal abnormalities, in the proposed study the panoramic 

radiograph would be used for educational purposes while teaching children and their 

guardians about dental hygiene. This education is a necessary part of preventative care and 

it is a recommended function of panoramic x-rays (Iannucci and Howerton 2012).  

Young children in Upper Egypt are at a high-risk for dental disease due to their 

socioeconomic status, their diet and a lack of dental health resources, including fluoridated 

water (ADA 2011; ADA/FDA 2012). Participants in the proposed study would benefit by 

receiving a copy and analysis of their x-ray, dental hygiene/health education and a clinical 

dental checkup, a routine service which is unaffordable to many in Egypt. The benefits and 

risks associated with participation in this study would be explained completely and clearly 

to patients and their guardians, and written consent would be required before participation 

in this study.  

The amount of radiation received from a digital panoramic dental x-ray machine is 

extremely small (0.01mSv in 200 film speed model) and equivalent to a little over half a 

day of the average daily individual effective dose from natural sources worldwide 

(2.4mSv/year) (Cohnen et al. 2002; nuclearsafety.gc.ca  2014). Since the proposed study 

is cross-sectional, it would require only one panoramic x-ray per patient (with the 

possibility of one retake, if absolutely necessary for x-ray interpretation); thus requiring 

minimal radiation exposure. Given the terrible oral health and hygiene problems and 

limited access to diagnostic dentistry (some government subsidized programs will only 

offer free or discounted dental extraction) in some developing nations such as Egypt, it is 

believed that the benefits to the participants of the proposed study would far outweigh the 

risks.  

3.4.16.2 Benefits to Participants and Society 

The proposed research project would challenge and test the efficacy of current age 

estimation standards based on dental development in subadults. This project would also 
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result in the creation of a sex- and region-specific dental age estimation standard based on 

the most controlled and statistically sound methods used for the creation of macroscopic 

dental age estimation standards to date. If proven effective, the proposed model for the 

creation of age estimation standards would be useful for the creation of other sex- and 

region-specific dental age estimation standards. These dental age estimation standards have 

applications to dentistry, orthodontics, forensics, archaeology, sociocultural studies, law 

and immigration.  

The education of participating children and their parents regarding dental hygiene, dental 

health and dental disease prevention would raise public awareness and lower rates of dental 

disease in the target population. The population investigated in this feasibility study has a 

high risk of developing caries due to socioeconomic status, unfluoridated water, a high 

carbohydrate diet and irregular access to dental professionals, making it both an ideal 

population for the proposed study and a population that would most benefit from dental 

examinations and oral health education. If permitted by the Egyptian Ministry of Health, 

the collected data would also be used for the creation of a public dental health report that 

would attempt to identify areas for improvement of access to dental services and education 

about oral health and hygiene in rural Egypt. 

Participants would benefit from this study by receiving a free dental examination from a 

local dentist. Much of the Egyptian population cannot afford regular dental examinations 

and many Egyptians are at high risk for developing dental caries for the aforementioned 

reasons. Government subsidized dental health programs in Luxor generally focus on dental 

extraction rather than diagnosis, prevention, or repairs. In addition to the free dental 

examination, participants would receive free education regarding dental hygiene 

techniques, and would gain a better understanding of the importance of dental hygiene. 

Participants would also receive a free panoramic dental x-ray to be used as an educational 

and diagnostic tool during the examination. A copy will be provided to participants, which 

may be useful for follow-up appointments. Young participants would have a child-friendly 

introduction to the dentist. All participants would receive dental hygiene products such as 

toothbrushes, floss and toothpaste samples, and young children would receive a small toy 

or treat, which is common practice in pediatric dental offices. These giveaways would not 
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be advertised or mentioned prior to participation as they are not meant to act as incentives 

to participate, but are meant to encourage oral health care at home and to provide a lasting 

positive impression of the dentist for young children. 

3.4.16.3 Possible Risks or Inconveniences to Participants 

Participants would be exposed to a small amount of ionizing radiation, which in large 

amounts has been known to contribute to the development of cancer. However, as 

previously mentioned, the amount of radiation received from a digital panoramic dental x-

ray machine is extremely small compared to other radiological procedures as the effective 

dose of an older model with a film speed of 200 is 0.01mSv (Cohnen et al. 2002). This is 

equivalent to a little over half a day of the average daily individual effective dose from 

natural sources worldwide according to the 2.4mSv/year estimate reported by the Canadian 

Nuclear Safety Commission (nuclearsafety.gc.ca 2014). The proposed study is cross-

sectional and so it would require only one panoramic x-ray per patient (with the possibility 

of one retake, if absolutely necessary for x-ray interpretation); thus requiring minimal 

radiation exposure.  

All dental instruments would be sterilized and disposables would be discarded safely. 

Standard precautions would be used to protect participants from receiving unnecessary 

radiation and the panoramic x-ray machine will be set to minimize radiation exposure 

without sacrificing the quality of the radiograph. The proposed study would adhere to the 

golden rule of medical ethics: namely, the benefits to the participants must outweigh the 

risks to participants.  

With parental and school permission, older children participating in the proposed study 

may be required to attend a dental appointment with chaperones during school hours for 

which transportation would be provided (and parents invited). This is due to the fact that 

dental offices and radiological laboratories in Egypt are usually open after regular working 

hours, so it is preferable to conduct this study during the daytime in an effort to avoid 

negatively affecting access to dental health care for the general population during normal 

clinic hours. As a result, a missed day (or less) of school is a possible, and likely, 

inconvenience to participants in this study. However, this minor inconvenience would be 
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mitigated by the benefits to the participants. Younger children participating in the study 

would be required to attend an appointment with a parent or legal guardian. These 

appointments would be scheduled to fit with the guardian’s schedule with preference given 

to daytime appointments. 

Some participants may also be asked to return for a follow-up examination to ensure that 

dentists are maintaining consistent recording methods. During these follow-up 

examinations, x-rays would not be taken as they would not provide any additional benefit 

to the participant.  

3.4.16.4 Project Funding 

All expenses associated with the implementation of the proposed research would 

necessarily be covered without a conflict of interest.  

3.4.16.5 Data Security and Confidentiality 

For the proposed study, all participants would be assigned a participant number, which 

would appear on every document relevant to that participant (i.e. consent forms, 

questionnaires, clinical dental records, x-rays). X-ray technicians would use the participant 

number in place of the patient name on the x-ray. An encrypted master list would be created 

to link participant numbers to individuals and their contact information. This master list 

and the consent forms containing identifying data would remain confidential and accessible 

only to the primary researcher. 

The assigned participant numbers, birthdates and sex of the participants would be included 

on the clinical dental reports, questionnaires, and x-rays. Data would be uploaded (i.e. 

digital x-rays) or scanned (i.e. consent forms, questionnaires, clinical dental records), then 

encrypted and saved onto a laptop and redundantly on an external hard drive. All 

documents would be encrypted on the laptop and on the external hard drive using Windows 

7 Encrypting File System (EFS). EFS scrambles the contents of encrypted files so that they 

can be read only by someone who has the appropriate encryption key to unscramble it. 

Original documents would be shredded and discarded securely, apart from the original x-
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rays, which would be given to participants for their personal records. Unidentifiable data 

would be made available for academic study through a digital archive at a later date. 

Data resulting from this research would be stored in an online database or archive. The 

online archive would be password protected (with periodic changes to the password to 

ensure security) and it would be made available to scholars upon approval of a research 

proposal. The home page for the digital archive would describe the types of data contained 

within the archive and the data collection methods so that scholars could assess the 

suitability of the collection for their proposed topic of study, or adjust their topic of study 

to suit the available data. Unidentifiable data collected using the World Health 

Organization’s standardized methods would also be posted on the World Health 

Organization’s database for public health research, if permitted by the Egyptian Ministry 

of Health.   

The primary researcher for the proposed study would keep the collected data indefinitely 

and make it available for future study through an open access digital archive. It is important 

to make these data available to the public as it would be the first panoramic radiographic 

collection in the world with such narrow age attributions and well-planned and documented 

collection methods. This radiographic archive would provide important information for 

scholars interested in the study of growth and development, dental disease, occult dental 

and skeletal disease, dental health and oral hygiene in Upper Egypt, and the relationship of 

all these things (and more) with the environmental, cultural, familial and dietary data 

provided in the digital data archive. 

3.4.16.6 Proposal for Research Dissemination and Participant 
Feedback 

Participants and their guardians would receive immediate verbal feedback regarding their 

oral health and hygiene, as is customary during a dental examination, and a brief written 

oral health report from the examining dentist. Participants and guardians would also be 

educated about oral health care and would be given a copy of their panoramic x-ray.  

Contact information for the primary researcher would be provided in the letter of 

information so that participants can request a copy of the final results of the study. 
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Participants demonstrating interest in seeing the final product of this study would be 

directed to a copy of the study in a local library or sent a link to an online copy via email. 

Results from the proposed study would be publicized through a monograph, peer-reviewed 

publications, and academic presentations. Any age estimation software resulting from this 

study would also be made available to academics upon completion.  

As per the World Health Organization’s (WHO 2013a) recommendations, a report of the 

study’s public health results would be given to the principal of each participating school 

for viewing in the school library. The data regarding public health would be also be 

submitted for inclusion in the WHO Global Oral Health Database, if permitted, and a public 

dental health report would be published and presented to the Egyptian Ministry of Health 

and the World Health Organization. 

3.4.17 Discussion and Conclusion  

This thought experiment resulted in the development of a new method for the creation of 

macroscopic subadult dental age estimation standards based on dental development. The 

proposed method was developed in a manner that was deemed to be feasible in a practical 

sense. All elements of the proposed method were investigated, including the availability 

and affordability of necessary facilities, equipment, and professional services, the 

cooperation of all necessary Egyptian authorities and professionals, and public interest in 

participation. This method was also created in accordance with biomedical ethical 

standards, with all possible ethical issues having been addressed through the detailed 

planning for: fair and responsible participant recruitment, informed assent/consent, a 

standardized ethically sound questionnaire, examination and radiographic protocols, 

equipment safety and hygiene protocols, public health education and advocacy, knowledge 

dissemination, and data security protocols. As a result of this planning and the paucity of 

affordable dental services in the selected population, the benefits to participants far 

outweigh any risks associated with the proposed study, satisfying the golden rule of 

medical research ethics.  

In future, it is hoped that the proposed plan for the creation of a region-specific, sex-specific 

subadult macroscopic dental age estimation method will be implemented in Egypt as it 
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would contribute significantly to the collective understanding of dental development and 

its variability worldwide, as well as to many aspects of oral health and hygiene in Egypt. 

This project would be beneficial to the local community by providing dental health care 

and oral health education and the data would be used to advocate for improved public 

dental health strategies in Egypt. Additionally, the information gleaned through the 

proposed study and the resulting subadult dental age estimation standard would have 

applications for dentistry, orthodontics, biology, health sciences, public health policy, 

pediatric medicine, evolutionary medicine, socio-cultural studies, forensics, immigration, 

law, and bioarchaeology in Egypt  

The proposed method for the creation of a new macroscopic subadult dental age estimation 

standard was compared to the methods used in the creation of pre-existing subadult dental 

standards. The resulting meta-analysis revealed that all of the identified methodological 

errors that may contribute to inaccuracy or bias in the pre-existing standards can be 

resolved through the use of the proposed method (See Table 3.3). Consequently, it is 

probable that the use of the proposed method for creating a new subadult dental aging 

standard would further limit sources of inaccuracy and bias, while increasing specificity. 

As a result, it can be deduced that there is room for improvement in macroscopic methods 

of subadult dental age estimation. Given that all aspects of the proposed method for the 

creation of enhanced macroscopic subadult dental age estimation standards were 

determined to be feasible and ethically sound, the null hypothesis for this part of the 

dissertation, (Ho): “Current dental age estimation standards based on dental development 

cannot be improved”, can be rejected.  
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Table 3.3. Comparison of methodological errors in dental developmental age 

estimation standards 
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Chapter 4  

4 Creating an Improved Adult Age Estimation Standard 
Based on Dental Attrition  

4.1 Introduction 

This chapter details the complex intrinsic and extrinsic factors that result in dental wear in 

human dentition. These factors are overviewed both to illustrate the multiplicity of 

interacting etiological agents in dental attrition and to provide a detailed resource for future 

researchers considering this aspect of dental bioanthropology. Following this, a study of 

dental wear in Roman Period Egyptians from the Kellis 2 cemetery is described and a new 

method and region-specific standard for adult age estimation is presented. 

4.2 Literature Review: Dental Wear in Human 
Permanent Molar Crowns 

The term ‘dental wear’ was first coined in 1778 by the preeminent Scottish anatomist, 

surgeon, and dental scientist, John Hunter (Hunter 1778; Grippo et al. 2004; Zhou and 

Zheng 2008), who recognized three mechanisms of wear: attrition, abrasion and erosion. 

Since this definition of dental wear, another mechanism of wear has been identified: 

namely, abfraction (Grippo 1991). Grippo (1991) describes abfraction as a type of non-

carious cervical lesion caused by high occlusal loading, which causes flexure and failure 

of enamel and dentine, and ultimately tissue loss, usually in the labial or buccal cervical 

region of the tooth. These processes are interdependent in “an extremely complex process 

that involves mechanical, thermal, and chemical reactions” (Zhou et al. 2013: 43), 

ultimately resulting in dental tissue loss. Here I describe these mechanisms, their 

expressions in permanent coronal dental tissues, and the many factors that can affect dental 

wear rates and patterns in human permanent molar crowns. 

4.2.1  Dental Attrition (Two-body Abrasion) 

Dental attrition, also known as two-body abrasion in tribology, is the gradual wear of a 

tooth’s surface as a result of tooth-on-tooth contact, whether it is a result of mastication or 

bruxism (Hillson 1996). Dental attrition results in the formation of distinct facets at the 
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area of contact as well as tensile stress-related microscopic subsurface fracture 

(Arsecularatne and Hoffman 2012). Although they are often overlooked, interproximal 

dental wear facets are a type of dental attrition, resulting from the mesial tilting of teeth 

accommodating tough occlusal loads (Wolpoff 1971). Although interproximal wear has 

shown little potential for use in age estimation, particularly among individuals with high 

rates of occlusal wear, occlusal attrition (in reality, occlusal wear as a whole) has become 

a staple of adult age estimation methods (Sarig et al., 2015; Deter 2012; See section 4.3).  

In the case of occlusal attrition, and in the absence of other mechanisms of wear, these 

facets continue to grow as the enamel surface is worn down until they are joined together 

forming a flat occlusal surface with no dentine cupping (Kaidonis 2008). Through focused 

ion beam (FIB) and field emission scanning electron microscope (FESEM) analysis, 

Arsecularatne and Hoffman (2010) have demonstrated that subsurface cracking occurs 

during wear of enamel under nominally elastic contact conditions. They likened the process 

to that of abrasion in ceramics as the surface roughness and specific wear rate in severe 

dental attrition is similar to those in ceramics. In this model of dental wear, occlusal forces 

perpendicular to the surface create or exacerbate surface cracking, while tensile stress from 

the movement of the occluding surface produces microfractures parallel to the surface, 

resulting in the separation of microfragments (See Figure 4.1).  

Zhou et al. (2013) have proposed that there are two stages in the attrition of the occlusal 

surface. The first (running-in) stage involves significant delamination of the surface 

enamel, resulting in a rough surface which is quickly ground down to produce a wear-

particle layer between the occluding teeth. This stage generally lasts for approximately two 

years based on clinical observations. Further dental wear with this wear-particle layer 

advances more slowly and steadily, representing the second (steady-state) stage of dental 

attrition. In this model of dental wear, Zhou et al. (2013) hypothesize that even two-body 

abrasion (aka attrition) turns into three-body abrasion (aka abrasion) as a result of the 

formation of a layer microscopic dental particles that coat the occluding surface. 
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Figure 4.1. Subsurface cracking from enamel wear under nominally elastic contact 

conditions [modified from Kato and Adachi 2001] 

 

4.2.2 Dental Abrasion (Three-body Abrasion) 

Dental abrasion (or ‘three-body abrasion’ in tribology; Zhou et al. 2013) is the wear 

produced by foreign objects and particles forced across the dental surface. This mechanism 

of wear can result in the progressive creation of occlusal facets, fine polishing of dental 

crown surfaces, the dulling of perikymata (external manifestations of Lines of Retzius 

resulting in microscopic grooves), the creation of microscopic scratches and pits, and 

microscopic surface fragmentation (Arsecularatne and Hoffman 2012; Kaidonis 2008). 

More obvious examples of dental abrasion seen in the archaeological record can include 

interproximal grooving, deliberate dental mutilation, and abnormal wear resulting from 

regular contact with foreign materials (e.g. labrets, pipe stems, coarse plant fibers or 

sinews, etc.). Although the latter types of dental abrasion can produce fascinating 
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information about diet and habitual tooth use, they are much less common than the regular 

dental abrasion resulting from mastication.  

Human mastication has two cycles (Krueger et al. 2008). The first is a puncture/crushing 

process in which there is no interdental contact and a larger bolus or hard food is broken 

down into smaller fragments. The puncture/crushing action typically results in dental wear 

at the tips of cups (Krueger et al. 2008). The second cycle, commonly called the shearing 

or power stroke, is a movement in two phases which is designed to grind foods into a slurry 

of fine particles and saliva, and results in phase-specific wear facets with differing 

microwear textures. Phase II facet microwear texture has been shown to better distinguish 

between diets of different primate taxa than microwear texture on phase I facets (Krueger 

et al. 2008). Fine particles in these slurries include substances like sand, dirt, grit, bone, 

exoskeleton fragments, and perhaps most interestingly, siliceous orcalcium oxalate 

particles (otherwise known as plant phytoliths). Although it has been argued that phytoliths 

are not hard enough to cause dental tissue loss (Lucas et al. 2013), there is evidence to 

indicate that the mastication of phytoliths causes true dental tissue loss, and thus dental 

wear. In addition to finding phytoliths embedded in the enamel at the end of microwear 

grooves (Fox et al. 1994), in vitro nanoscale and microscale studies conducted by Xia et 

al. (2015) have demonstrated enamel loss through friction with amorphous silicon dioxide 

(SiO2) and other particles softer than enamel (aluminum and brass spheres). Given this, 

Xia et al. (2015) concluded that enamel wear results from exceeding the binding force of 

the proteins holding together enamel hydroxyapatite crystallites rather than being directly 

related to relative material hardness. This concept is supported by a tribological study of 

various materials which demonstrated that “hardness of the wearing material affects the 

penetration depth of abrasive particles but… it fails in predicting abrasive wear resistance 

of different materials” (Zum Gahr 1998: 589). 

Dental microwear texture analysis (DMTA) of dental surfaces has provided significant 

information regarding the nature of individuals’ and species’ diets as differences in the 

enamel pit-to-scratch ratio will indicate differences in the hardness and fibrous nature of 

consumed foods (e.g. Merceron et al. 2010; Scott et al. 2012; Karriger et al. 2016).  Patterns 

of microwear have also been used in the study of masticatory jaw movement, leading to a 
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better understanding of the ways in which foods are orally processed (e.g. Gordon 1984; 

Morel et al. 1991; Teaford 1994; Mahoney 2006; Krueger et al. 2008; Hua et al. 2015).  

Behavioural inferences, such as incisal preparation or non-dietary tooth use, have also been 

made and verified through the use of dental microwear analysis (e.g. Puech and Albertini 

1984; Krueger and Ungar 2012). More recently, Gugel et al. (2001) have demonstrated the 

potential for identifying specific plant phytolith consumption through the examination of 

morphologically characteristic enamel pitting, though further research is required.  Of 

course, it must be noted that microwear analyses are limited by the processes of enamel 

remineralization and acid erosion that can dull these markings, as well as the continuous 

obliteration of old microwear with new microwear, termed the “Last Supper Effect” (Grine 

1986). As such, it has been suggested that occlusal microwear analysis may only reliably 

reveal information about tooth use and meals consumed in the weeks, days, hours, or even 

minutes before death, depending on conditions (Grine 1986; Teaford and Oyen 1989; 

Teaford and Lytle 1996). Although this is a limiting factor, this high turnover rate may be 

useful in the identification of seasonal dietary changes, and the slower microwear turnover 

seen in buccal tooth surfaces may help preserve evidence of earlier consumption of more 

abrasive foods (Romero et al. 2012; Sanchez-Hernandez et al. 2016).  

4.2.3 Dental Abfraction (or Fatigue Wear) 

As noted, dental abfraction is a type of non-carious cervical lesion caused by high occlusal 

loading, which causes flexure and failure of enamel and dentine, and ultimately tissue loss, 

usually in the labial or buccal cervical region of the tooth. Abfractions typically present as 

sharp-edged wedge-shaped lesions at or near the CEJ. Maxillary and mandibular first and 

second premolars are most frequently affected by abfraction (Bernhardt et al. 2006) and 

the size, depth, and number of abfraction lesions are positively correlated with age (Levitch 

et al. 1994). It is believed that abfraction is a result of the lateral flexure of tooth cusps by 

way of lateral bulging resulting from vertical pressures and lateral loading from horizontal 

grinding pressures (Rees 2006). Oblique forces exerted on the inner inclines of buccal or 

lingual cusps in second premolars have also been shown to result in abfraction (Rees 2002). 

Through these biomechanical pressures, it is believed that the repeated subjection to large 

shear and tensile stresses at the occlusal surface results in a breakdown of the bonds 
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between enamel crystallites in a structurally vulnerable region of the tooth (Bernhardt et 

al. 2006; Rees 2006). Although the biomechanics of abfraction are still debated, the 

contribution of occlusal loading to abfraction has been supported by several studies, 

including the study of German soldiers in high stress and low stress conditions, which 

demonstrated five times more abfraction in conditions of high stress, likely related to 

stress-related bruxism (Dawid et al. 1994; Bernhardt et al. 2006).  

Although occlusal load certainly contributes significantly to abfraction, there is ample 

evidence to support a multifactorial aetiology, especially as abfracture predominantly 

occurs on the labial/buccal surfaces despite seemingly equal vestibular and lingual occlusal 

loads (Rees 2006). Some of these proposed aetiological factors include erosion, abrasion, 

salivary flow, and dental morphology (Bader et al. 1996; Lussi and Schaffner 2000; Rees 

2006). Stress corrosion, the interaction of acid erosion and mechanical stress resulting in 

significantly higher wear rates than either of these mechanisms alone, may also contribute 

to abfraction or abfraction-like lesions, as indicated in a study by (Grippo and Masi 1991). 

However, more research is necessary regarding the distinction between different non-

carious cervical lesions as their similarities in appearance make it difficult to tease apart 

these lesions, their mechanisms of development and their aetiologies (Sarode and Sarode 

2013).  

4.2.4 Dental Erosion (or Corrosion) 

Dental erosion (or ‘corrosion’ in biotribology; Grippo et al. 2004; Zhou et al. 2013) is a 

chemical mechanism of dental wear resulting from an acidic oral environment that 

dissolves the mineral aspect of the tooth resulting in tissue loss. Acid erosion of the teeth 

will progress more quickly if the teeth are continually subjected to acidic foods and drinks 

without time for recovery and in the absence of dietary phosphate and calcium. These 

elements have been shown to prevent or limit dental erosion, as in the case of low pH, high 

calcium and phosphate yogurt (Lussi and Jaeggi 2006). If the dentition is given a significant 

break from acidic ingestibles after a limited time in acidic conditions, the saliva will also 

help the oral environment return to neutral pH balance and minerals in the saliva may help 

to remineralize the enamel and restore some of its hardness (Zhou et al. 2013). Erosive 

changes in the absence of dietary phosphate and calcium have been reported to reach depths 
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up to 3µm from the surface of the enamel, resulting in both enamel softening and tissue 

loss (Amaechi and Higham 2001; Eisenburger et al. 2001; Wiegand et al. 2007; Cheng et 

al. 2009; Lussi et al. 2011). Following softening of the dental enamel, the tooth is more 

vulnerable to abrasion and attrition, contributing to more severe dental wear (Zheng et al. 

2011; Zhou et al. 2013). Acid erosion usually results in the creation of smooth, shiny 

enamel surfaces with rounded cusps, smoothed edges and the scooped out/cupped 

appearance of exposed dentine (Lussi et al. 2011). This dentine cupping results from a 

lower tolerance of, or resistance to, acid attack in dentine than in enamel. Dental abrasion 

can also result in dentine cupping but it is usually shallower than dentine cupping caused 

by erosion. As a result, depth-to-breadth ratios of dentine exposures have been used to 

identify dental abrasion and acid erosion in archaeological teeth (Bell et al. 1998). In a 

study of this method compared to SEM methods of identifying erosion vs. abrasion, Kieser 

et al. (2001) determined that Bell’s depth-to-breadth method was relatively accurate. 

However, it is still preferable to conduct SEM analysis, as erosion can be positively 

identified by the honeycomb-like pattern resulting from the faster dissolution of enamel 

rods than interrod enamel or the observation of “a mat of erosion products together with 

exposed dentinal tubules” (Kieser et al. 2001: 208). A new method for identifying dental 

erosion by quantifying shifts in the microstructure of the tooth surface through laser speckle 

image estimation analysis has also been proposed by Koshoji et al. (2015), though it has 

not yet been tested on archaeological remains. 

4.2.5 Physiological Factors Affecting Dental Wear 

As a result of the various mechanisms at work on dental surfaces, occlusal dental wear is a 

complex process that requires further investigation. This is particularly true with regard to 

factors that may affect rates of wear as they may impact the accuracy of related age 

estimates. Here I discuss the anatomy of the permanent molar crowns and the many 

physiological factors that have the potential to affect dental wear rates and pattern in human 

teeth, from macroscopic- to nanoscale-levels.  

On a macroscopic-level, patterns of dental occlusion can have a significant impact on 

macroscopic dental wear patterns. Differences in dental occlusion can be seen early in life 

as a result of genetic, epigenetic, environmental and individual ontogenetic differences in 
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orofacial and dental development. This may be apparent in populations such as the 

Yuenmendu Aboriginal people of Australia, whose occlusal pattern has a tendency toward 

‘alternating intercuspation’, often starting early in life. This occlusal relationship is 

considered to be a form of malocclusion in orthodontics as the maxillary arch is wider than 

the mandibular arch, preventing alignment in a manner that allows maximal intercuspation 

simultaneously on both sides of the dentition (Barrett 1953; Molnar and Molnar 1990; 

Brown et al. 1987; Oxilia et al. 2018). This pattern of occlusion requires broader lateral 

chewing motions to most efficiently break down foods, resulting in a horizontal wear 

pattern (Brown et al. 1987; Molnar and Molnar 1990). This horizontal wear pattern is also 

said to be associated with hypsiloid-shaped maxillae, which similarly require broad lateral 

motions for efficient mastication against parabola-shaped mandibulae (Molnar and Molnar 

1990). Alternatively, it may result in the use of a preferred side for mastication, thus 

resulting in asymmetrical dental wear across the dental arches (Oxilia et al. 2018). In 

contrast, hyperbolic- or parabolic-shaped maxillae more closely match the shape of the 

parabolic mandible and thus tend to result in oblique wear patterns (Molnar and Molnar 

1990). However, as previously mentioned, the occlusal relationship between maxilla and 

mandible is governed by more than just genes, and is still poorly understood. This is evident 

in studies of the transition from edge-to-edge bite to overbite seen across a single 

generation in Australian Aboriginal and Inuit families who switched to softer, less abrasive 

diets (D’Amico 1961; Molnar and Molnar 1990). However, genetic and environmental 

influence on dental occlusion likely varies across populations, as Boyd (1972) reported the 

retention of an edge-to-edge bite in New Guinea Eastern Highlanders who subsist on a soft 

diet.  

Dental occlusion can be characterized as group function type (where there are multiple 

contacts between the upper and lower during lateral movement) or canine-guided type 

(where the overlap of the canine teeth disengages the posterior teeth during lateral 

movement) (Abduo et al. 2015). In addition to the aforementioned differences in wear 

associated with dental occlusion, a clinical study has also shown a six-fold increased risk 

for abfraction in dentitions with a group function type of occlusion, as opposed to a canine-

guided occlusion in which the posterior teeth do not occlude during the lateral excursion 

of the masticatory power stroke (Heymann 1998; Rees 2006). Increased risk of abfraction 
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is also demonstrably correlated with tooth tilting or positional change, occlusal change, 

and inlay restorations, which may represent further evidence of the role of occlusal forces 

in abfraction (Braem et al. 1992; Rees 2002, 2006; Bernhardt et al. 2006).  

It should be noted that despite their strong genetic links, dental occlusion patterns are not 

static. In fact, the size and shape of dental arches, as well as the inclination of the teeth, are 

known to change over time as a result of multiple forces from various masticatory muscles. 

For example, mandibular molars erupt with a mesiolingual tilt, which becomes more 

vertical over time (Van der Linden 1986; Kasai and Kawamura 2001). This change in 

inclination has been attributed to the effects of occlusal bite force and significant 

masticatory pressure on the buccal side of mandibular molars resulting from normal 

occlusion (Ishida and Soma 1993; Kasai and Kawamura 2001). Kasai and Kawamura 

(2001) have demonstrated that differences in diet, and thus bite force, can result in 

population-scale changes in dental inclination, which would affect dental wear pattern on 

a large scale. Tongue posture and movement have also been implicated in the change in 

dental inclination over time. It has been proposed that mandibular molars become tilted 

more vertically through lingual forces (tongue muscles), buccal forces (buccinator and 

masseter muscles), and occlusal forces (aka bite force) (Koc et al. 2010; Masumoto et al. 

2001; Janson et al. 2004; Oxilia et al. 2018). Lingual tipping of the mandibular and 

maxillary incisors has also been observed in association with age and dental wear and has 

been attributed by some to be a result of asymmetrical forces exerted by the lips against 

the teeth (Selmer-Olsen 1937; Lysell 1958; Hylander 1977b; d’Incau et al. 2012). 

Similarly, it has been suggested that pressure exerted on the palate by the tongue may result 

in morphological change of the maxillary, vomer and sphenoid bones and thus changes in 

maxillary dental inclination (Brodie 1946; Fishman 1969; Kapoor et al. 1979; Rakosi 1978; 

Proffit 1978; Oxilia et al. 2018). All of these muscular pressures can result in either 

relatively symmetrical or asymmetrical changes in teeth and in bone, which in turn affect 

the pattern of dental occlusion and the dental wear plane, consequently changing patterns 

of dental macrowear (Oxilia et al. 2018; Kasai & Kawamura 2001).  

In addition to changes in dental inclination, incorrect tongue posture or pressure (e.g. 

pathological tongue thrust [a common orofacial myofunctional disorder]), can cause tooth 
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migration, prevent dental eruption, produce orofacial bone asymmetry, and/or result in 

occlusal loading asymmetry, further affecting dental wear patterns (Alghadir et al. 2015; 

Hiiemae and Palmer 2003; Hori et al. 2013; Palmer et al. 1997; Matsuo and Palmer 2008; 

Van Dyck et al. 2016; Oxilia et al. 2018). Bite force has also been shown to affect the 

dental occlusion in other ways, particularly with regard to dental arch form (Lundstrom 

1925). In an experimental study of animals, Beecher and Corruccini (1981) observed a 

decrease in dental arch width in conditions of reduced masticatory function. In humans, 

Murphy (1964) described a positive correlation between dental arch width and dental wear 

over time, which was echoed by Smith and Bailit (1977) who noted the greatest increases 

in arch width at the molar teeth. Harris (1997) confirmed these findings and observed that 

the arch length decreased as the arch width increased. As previously mentioned, these 

changes and variations in arch shape, size and occlusion are associated with differing 

macroscopic wear patterns (Molnar and Molnar 1990; Kasia and Kawamura 2001; Oxilia 

et al. 2018). Other morphological variants and normal physiological forces acting on the 

dental occlusion patterns, and by extension on dental wear patterns, include: dental 

agenesis, hypodontia, supernumerary teeth, antemortem tooth loss, dental impaction, 

dental ankylosis, retention of primary teeth, orofacial morphology, diastema, continuous 

eruption, mesial shifting of the teeth, and dental crowding/spacing.  

Dental crowding is associated with cumulative mesiodistal tooth dimensions exceeding the 

dental arch length.  Efforts to pinpoint the morphological cause of this relative change have 

been inconclusive; some studies pointing to a shortened dental arch (e.g. Howe et al. 1983; 

Radnzic 1988; Niedzielska 2005), some pointing to larger mesiodistal tooth size (e.g. Puri 

et al. 2007; Poosti and Jalali 2007; Agenter 2008), and others indicating both tooth and 

arch size differentials between dentitions with and without dental crowding (e.g. Chang et 

al. 1986; Melo et al. 2001). Dental size discrepancy between the mandible and maxilla, 

otherwise known as the Bolton tooth size discrepancy, has also been hypothesized to have 

a role in malocclusion (Bolton 1958). However, these discrepancies have been seen to vary 

between the anterior dentition and the total dentition, and increased discrepancies are not 

always associated with malocclusion (e.g. Agenter 2008; Paredes et al. 2006; Fattahi et al. 

2006). Tooth size discrepancies are still not well understood and have also shown 
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differences between sexes and populations, further complicating matters (e.g. Uysal et al. 

2005).   

The contribution of dental metrics to dental wear rate and pattern extends beyond the 

aforementioned impacts on dental occlusion. Walker et al. (1991) argue that teeth with 

larger occlusal surfaces wear more slowly than those with smaller occlusal surfaces. 

Odontometric studies have shown significant differences in occlusal surface size between 

some populations and sometimes between males and females of the same population (cf. 

Schwartz and Dean 2005; Hanihara and Ishida 2005). Population-scale differences in tooth 

size have been attributed to genetic differences as well as environmental factors and 

functional morphology (Dempsey and Townsend 2001). Sex-linked genes and the resulting 

hormonal differences have similarly been indicated as possible factors affecting variation 

in tooth size between the sexes (Schwartz and Dean 2005; Guatelli-Steinberg et al. 2008). 

Generally, male permanent molars and canines are larger than their female counterparts in 

modern human populations (e.g., Garn et al. 1964, 1967; Alvesalo 1971; Townsend 1979; 

Harris and Bailit 1987; Harris and Hicks 1998; Mayhall and Kanazawa 1989; Kieser 1990). 

This difference in tooth size has been variously attributed to larger proportions of dentine 

(Harris and Hicks 1998; Stroud et al. 1994, 1998) or enamel (Moss and Moss-Salentijn 

1977; Moss 1978; Alvesalo et al. 1987).  

The first line of defence against dental attrition is the enamel cap, which protects the 

dentine and, ultimately, the pulp. Humans are known to have relatively thick enamel 

compared to other non-hominin primates (Molnar and Gantt 1977; Martin 1985; Shellis et 

al. 1998). Observations of modern and fossil H. sapiens dentitions show that a reduction 

of dental size over time has resulted in a greater reduction of the coronal dentine compared 

with the enamel. As a result, modern H. sapiens have relatively thicker enamel than fossil 

H. sapiens (Martin 1985; Olejniczak et al. 2008; Suwa et al. 2009; Smith et al. 2012). This 

disproportionate reduction of coronal dentine along with tooth size can also be used to 

explain the increasing enamel thickness from first to the third maxillary molars in humans 

(Grine 2002, 2005; Smith et al. 2005, 2006, 2012), although some researchers believe it to 

be a result of functional morphology accommodating for increasing bite force toward the 

posterior of the dental arcade (Mansour and Reynick 1975a,b; Molnar and Gantt 1977; 
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Molnar and Ward 1977; Ward and Molnar 1980; Osborn and Baragar 1985; Koolstra et al. 

1988; Macho and Berner 1993, 1994; Schwartz 2000a; Smith et al. 2008, 2012; Mahoney 

2010, 2013). However, this hypothesis has been called into question since mandibular 

molars do not show the same significant increase in enamel thickness from M1 to M3 

(Schwartz 2000a; Kono et al. 2002). Following the observation that enamel thickness 

appears to correlate with the developmental timing of molar cusps and DEJ shape (which 

is related to the timing of cusp initiation), it has been argued that differences in enamel 

thickness across the molar crown are affected both by morphogenetics and functional 

morphology (Kono et al. 2002).  

The effects of functional morphology can perhaps be seen in differences in enamel 

thickness related to dietary differences among extant hominoids (Molnar and Gantt 1977; 

Martin 1985; Schwartz 2000a; Smith et al. 2008, 2012). Several researchers have noted 

that thin enamel tends to be associated with diets composed of relatively soft foods, while 

thicker enamel tends to be associated with diets made up of more abrasive, hard or fibrous 

foods (Jolly 1970; Molnar and Gantt 1977; Dumont 1995; Lucas et al. 2008; Pampush et 

al. 2013). However, like the aforementioned aetiology of differences in enamel thickness 

across molar positions, the relationship between diet and enamel thickness is complex and 

not yet fully understood (Dumont 1995; Maas and Dumont 1999; Schwartz 2000a,b; 

Teaford 2007; Le Luyer et al. 2014). Consequently, observed differences in enamel 

thickness between populations and between sexes within populations are likely a product 

of epigenetic factors, though these specific factors and their relative effects are still under 

investigation. Differences in enamel thickness have also been observed between 

individuals’ upper and lower molars with greater enamel thickness usually seen in the 

maxillary molars (Grine 2002; Smith et al. 2006). 

In addition to variations across species, dental arches, and molar positions, variations in 

enamel thickness across individual dental crowns have also been found to positively 

correlate with the mechanical forces to which they are subject. Given the intercuspal 

occlusal pattern often seen in the centric position of the dentition, it is not surprising that 

lingual maxillary molar cusps generally have thicker enamel than buccal maxillary cusps, 

and lateral mandibular cusps generally have thicker enamel than buccal mandibular cusps 



116 

 

(Molnar and Gantt 1977; Molnar and Ward 1977; Macho and Thackeray 1992; Beynon 

and Wood 1986; Macho and Berner 1993, 1994; Schwartz 2000a,b; Grine 2005; Mahoney 

2010; Shillingburg and Grace 1973; Martin 1983; Kono et al. 2002). It is hypothesized that 

this variation in enamel thickness across the dental surface is an adaptation to severe dental 

wear on an evolutionary scale, allowing for further protection of the dental pulp in positions 

of maximum occlusal contact and force (Hlusko et al. 2004; Kelley and Swanson 2008; 

Pampush et al. 2013; Le Luyer et al. 2014). 

As crown surfaces are not flat, dental morphology or topography may also be considered 

in relation to dental wear rates and patterns. On basic inspection, it is obvious that dental 

crown morphology will affect the pattern of occlusion and mastication early in life or in 

individuals with low levels of wear. This is apparent in the development of different dental 

wear facets for phases I and II of the masticatory power stroke, which show distinct 

differences in microtexture (Krueger et al. 2008). Given that the puncture and crushing 

process of mastication results in wear of the cusp tips (Krueger et al. 2008), the pattern of 

wear resulting from this type of mastication will also be dependent on crown morphology. 

The structural integrity of the tooth is also affected by dental morphology as the various 

cusps and grooves and fissures help to dissipate occlusal loads and tensile stress (Benazzi 

et al. 2013).  This was demonstrated by Benazzi et al. (2013) as they found that the 

inclination of cusps fragmented and distributed occlusal forces, creating tensile stress in 

the concave regions between the cusps and reducing tensile stress at the thin-enamelled 

cervix. They also observed that the protostylid played a disproportionately significant role 

in this process and hypothesized that the expression of the protostylid would have a direct 

effect on the distribution of forces within the tooth, and thus the tooth’s vulnerability to 

fracture (Benazzi et al. 2013). The direction of occlusal force on cusps has also been shown 

to produce differences in stress distribution throughout the tooth, as oblique forces acting 

on cusps result in significantly higher tensile stress at the CEJ than vertical forces, and are 

likely linked to abfracture (Rees 2006). 

One of the more complex patterns of dental wear often observed with severe attrition and/or 

abrasion, is the so-called helicoidal wear pattern (Ackerman 1953; Richards and Brown 

1986). This pattern is characterized by a change in the slope of dental wear from M1 to 
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M3. Differences in occlusal alignment at each molar have been suggested as contributors 

to helicoidal wear (Campbell 1925; Richards and Brown 1986), as well as the axial tilt of 

the molars (Smith 1986). Dental developmental pattern has also been indicated as a factor 

that may contribute to helicoidal wear as the first molar is worn severely in a direction 

opposite to the natural curve of Monson, the second molar is less severely worn resulting 

in a flat plane of wear, and the third molars retain their natural curve of Monson (Macho 

and Berner 1994). Of course, dental developmental timing and sequence can vary between 

sexes and populations, and consequently may cause variation in dental wear patterns (Miles 

1962). Differences in enamel thickness across the dental arches and across dental crowns 

have also been implicated in the aetiology of the helicoidal pattern of wear (Macho and 

Berner 1994; Schwartz 2000b).  

Another macroscopic physiological factor that affects dental wear is salivary flow. Salivary 

flow has been demonstrated to have an extremely important role in dental wear as a liquid 

lubricant. In experimental studies comparing simulated mastication with and without a 

liquid lubricant, dental wear was shown to progress at a greatly increased speed even at 

low occlusal loading forces without liquid lubricant (Li and Zhou 2001; Zhou et al. 2013). 

This liquid lubricant is said to have a role in both friction reduction as well as 

thermoregulation at the dental surface, and it is also known to regulate the oral pH level 

(Li and Zhou 2001; Zhou et al. 2013). As such, the amount of saliva produced by an 

individual, which is known to vary throughout the day and across the dentition, may have 

an impact on dental wear rates and patterns. In fact, the lower salivary flow associated with 

nighttime (or specifically during sleep) is believed to contribute to the significant wear seen 

in nocturnal bruxists (Li and Zhou 2001; Zhou et al. 2013).  

Moving from the macroscale to the microscale and nanoscale, it is necessary to consider 

the wear-resistance of dental microstructures and their potential impact on dental wear rates 

and patterns. Beginning with the basic microstructure of dental enamel, we first consider 

the orientation of enamel rods (or prisms) on dental wear resistance. Although enamel rods 

tend to abut the dentino-enamel junction approximately perpendicularly, this relationship 

varies slightly in relation to their proximity to the cervico-enamel junction, as the angle 

between rods and the DEJ become more acute as they approach the CEJ (Simmons et al. 
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2011). Apart from this gradient in dental rod orientation across the crown, the ends of the 

rods at the DEJ and the enamel surface are generally perpendicular to these respective 

surfaces and provide wear resistance through this orientation. The middle of each rod, 

however, varies greatly as most rods take on wave-like patterns. The most complex rod 

morphology is seen in so-called ‘gnarled enamel’ in cuspal areas, where enamel rods 

seemingly intertwine, resulting in higher wear resistance (Simmons et al. 2011; Zhou et al. 

2013). In contrast to the strong cusp enamel, subsurface enamel at the DEJ has been 

observed to have poorly organized, shortened rod structures contributing to very little 

gnarled enamel (Poole et al. 1981; Rees 2002). This enamel also generally has a lower 

mineral content, larger pores, and higher protein content, resulting in lower wear resistance 

compared to occlusal enamel. Subsurface enamel within 0.4mm of the CEJ has also been 

shown to be lacking enamel rods, and instead made up with morphologically indistinct 

crystallites (Kodaka et al. 1991; Poole et al. 1981; Rees 2006). Furthermore, the DEJ is 

poorly developed and weakened by a paucity of scalloping in the area of the CEJ (Spir 

1988; Rees 2006). As such, enamel approaching the CEJ is distinctly less resistant to wear 

and fracture, as seen in abfracture, while enamel near the occlusal surface, particularly in 

cusps, is known to be more wear-resistant. However, minor differences in the positional 

relationship between dental wear and enamel rod orientation can result in differences in 

wear resistance as well as surface friction, and thus wear behaviour (Kaidonis 1995; Cuy 

et al. 2002; Zhou et al. 2013). Hypomineralized areas of enamel, such as enamel tufts or 

enamel lamellae, represent areas of less wear-resistant enamel (Cuy et al. 2002). These 

areas may be more vulnerable to microfracture under stress and erosion when exposed 

(Amizuka et al. 1992; Cuy et al. 2002). They may also contribute to additional surface 

friction potential, once exposed through dental wear, if not covered by secondary dentine.  

The aforementioned enamel rods are long keyhole-shaped collections of tens of thousands 

of crystallites divided by interstitial (multiple) grain boundaries (Gordon and Joester 2015). 

The circular part of the keyhole, known as the ‘head’, is composed of the most densely 

packed highly organized crystallites, while the adjacent trapezoid-like ‘tail’ of the enamel 

rod is composed similarly but with less densely packed crystallites that rest at an 

approximately 60 degree angle to the head of the rod (Habelitz et al. 2001; Fincham et al. 

1999). Surrounding these enamel rod structures is the enamel rod sheath, which is 
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composed of slightly more disorganized crystallites (Habelitz et al. 2001; Fincham et al. 

1999).  Finally, these enamel rod sheaths are separated by interrod enamel with the most 

disorganized crystallites and more organic matter compared to the enamel rod (Habelitz et 

al. 2001; Fincham et al. 1999). Since dental erosion largely results in the dissolution of 

inorganic matter, differences in the rate of erosion are observed between enamel rods and 

interrod enamel. Specifically, the enamel rods erode at a faster rate, leaving a microscopic 

honeycomb-like structure of interred enamel on the enamel surface. This characteristic 

pattern of wear is perhaps the most reliable indicator of dental erosion (Meurman and Ten 

Cate 1996; Imfeld 1996). 

Looking even closer at the composition of dental enamel, it is well understood that enamel 

is made up of 98% hydroxyapatite by weight, with the remaining 2% made up of organic 

molecules and water (Eastoe, 1960; Gordon and Joester 2015). The typical formula for 

hydroxyapatite is Ca10(PO4)6(OH)2, however, this formula is vulnerable to elemental 

substitutions; particularly substitutions of Na+ and Mg2+ for Ca2+ , Cl− and F− for OH− , 

and (CO2−3) for hydroxyl or phosphate ions (Pan and Fleet, 2002; Gordon and Joester 

2015). All of these elemental substitutions, apart from fluoride, result in increased enamel 

solubility and there is variability in enamel composition throughout the dentition. For 

example, in one study, it was found that the surface enamel contained over 96% mineral, 

while enamel abutting the DEJ contained less than 84% mineral (Robinson et al. 1995). As 

such, the enamel’s elastic modulus and hardness values also exist on a gradient with the 

highest values at the enamel surface and the lowest values at the dentino-enamel junction 

(DEJ; Meredith et al. 1996). These variations in the organic content of enamel rods have 

been shown to affect the fracture-resistance of the enamel (Simmons et al. 2011). 

Through atom probe tomography (APT) on mouse incisors, Gordon and Joester (2015) 

have found that elemental substitutions of Mg, in particular, tend to accumulate at 

significantly higher concentrations within some multiple grain boundaries (aka the 

intersections of tissues separating crystallites within enamel rods). Gordon and Joester 

(2015) hypothesized that the elevated organic and carbonate content within this tissue, as 

well as the water that may allow for proton transport and removal of dissolved ions, may 

also contribute to an increase in solubility in the multiple boundaries. This finding explains 

https://www.frontiersin.org/articles/10.3389/fphys.2015.00057/full#B9
https://www.frontiersin.org/articles/10.3389/fphys.2015.00057/full#B31


120 

 

the observed higher rate of erosion of multiple grain boundaries compared to that of 

crystallites in enamel rods (Gordon et al. 2015). Although the implications of this finding 

with regard to dental wear remains to be fully discovered or replicated in human dentition, 

many researchers have noted the importance of  the interfaces between crystallites with 

regard to the mechanical and wear properties of enamel at the nanoscale (He and Swain 

2008; Ang et al. 2010; Arsecularatne and Hoffman 2012; Yilmaz et al. 2013; Gordon and 

Joester 2015).  

The composition, structure, and biomechanics of dental enamel have received most of the 

attention, because it is the first line of defense against dental wear and is assumed to set the 

pace of tooth wear due to its relative hardness. However, existing information about the 

dentino-enamel junction (DEJ) and dentine wear resistance suggests that the relationship 

between dentine and enamel is more complex than is obvious. The DEJ is a narrow but 

complex interface separating the enamel from the dentine with a multi-level microstructure 

made up of 25–100 µm scallops with 2–5 µm micro-scallops located within each scallop, 

and another nanoscale structure found within each micro-scallop (Hayashi 1992; Lin et al. 

1993; Marshall Jr. et al. 2001; Marshall et al. 2003; Chan et al. 2011). Along this interface, 

collagen I fibres from dentine penetrate into enamel (Lin et al. 1993; Marshall et al. 2003; 

White et al. 2000; Chan et al. 2011). Likewise, amelogenins from enamel cross the DEJ to 

penetrate the dentine (Nanci et al. 1994; Chan et al. 2011). This interaction between enamel 

and dentine at the DEJ provides reinforcement for the junction and prevents the 

delamination of enamel from dentine on a nanoscale (Chan et al. 2011). It also results in a 

higher flexural strength of the DEJ than that in dentine, and only slightly lower than the 

flexural strength of the adjacent enamel (Chan et al 2011). Consequently, the DEJ provides 

an enamel-like protective barrier for the dentine that absorbs and redistributes occlusal 

forces (White et al. 2000; Chan et al. 2011; Rees 2006). The slight difference between the 

flexural strength of the DEJ and enamel, however, sometimes results in the initiation of 

microfractures spreading from the DEJ through the enamel (Bai et al. 2007). However, 

both DEJ and dentine fracture resistance are highly related to the hydration of the collagen, 

with experimental studies showing that well-hydrated collagen often stops the spread of 

fractures within the DEJ and dentine (Chan et al. 2011). Dentino-enamel junction (DEJ) 

shape has demonstrated significant variation among populations, particularly with regard 

https://www.frontiersin.org/articles/10.3389/fphys.2015.00057/full#B14
https://www.frontiersin.org/articles/10.3389/fphys.2015.00057/full#B17
https://www.frontiersin.org/articles/10.3389/fphys.2015.00057/full#B17
https://www.frontiersin.org/articles/10.3389/fphys.2015.00057/full#B1
https://www.frontiersin.org/articles/10.3389/fphys.2015.00057/full#B2
https://www.frontiersin.org/articles/10.3389/fphys.2015.00057/full#B43
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to dentine horn height (Smith et al. 2006). These differences may significantly impact the 

structural stability of the tooth and could result in differences in the timing of dentine 

exposure through dental wear, if enamel thickness of the cusps is not proportionate to the 

height of the dentine horns.  

Dentine is composed of around 70% mineral, 20% organic matrix and 10% water by weight 

on average (Xu and Wang 2012). The mineral content largely consists of carbonate-

substituted hydroxylapatite. The organic matrix is made up of around 90% fibrous proteins 

(mostly type I collagen) and the remaining 10% is comprised of lipids and non-collagenous 

matrix proteins (Nanci 2003; Xu and Wang 2012). The layer of dentine adjacent to the DEJ 

is known as the mantle dentine and is characterized by the (near) perpendicular relationship 

between the dentine tubules and the DEJ, the relatively lower number of dentine tubules 

compared to the remaining dentine, and the high prevalence of canalicular branching from 

tubules (Mjor and Nordahl 1996; Goldberg et al. 2011). These branches fall into three 

categories. The terminal ends of the dentine tubule and acutely angled offshoots are 

considered to be major branches. Fine branches extend from the dentine tubule at a 45 

degree angle at 1-2 μm spacing along the tubule. Finally, the smallest branches, 

microtubules, meet dentine tubules at a 90 degree angle (Mjor and Nordahl 1996; Goldberg 

et al. 2011). The mantle dentine is also characterized by lower mineral content, and is 

therefore more elastic in nature than the remaining dentine, facilitating the absorption and 

dissipation of occlusal forces and reducing the risk of enamel fracture and/or delamination 

from the DEJ (White et al. 2000; Marshall et al. 2001, 2003; Goldberg et al. 2011). 

Separating the mantle dentine and the circumpulpal dentine is the globular layer of dentine, 

which is the result of primary and secondary mineralization of dentine with complete 

crystalline fusion. This layer of dentine is peppered with interglobular dentine; arc-shaped 

areas of incompletely fused dentine that were only subject to primary mineralization (Chan 

et al. 2011; Goldberg et al. 2011). The effect of this layer of dentine on dental structure and 

wear, if any, has yet to be explored.  

Circumpulpal dentine comprises the bulk of human tooth dentine and is characterized by a 

highly-organized structure and a higher mineral content than the mantle dentine or the 

predentine.  The basic microscopic structures of coronal circumpulpal dentine are the s-
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curved dentine tubules, the surrounding peritubular dentine and the interstitial intertubular 

dentine. Coronal dentine tubules extend into the mantle dentine layer as less mineralized 

branches and into the predentine layer as newly-formed, more densely packed 

unmineralized structures with only microtubule branches (Fosse et al. 1992; Garberoglio 

and Brannstrom 1976; Ten Cate 1998). Root dentine tubules vary from coronal dentine 

tubules as they are less densely packed, terminate in a loop adjacent to the cementum and 

are associated with copious branches of all kinds throughout the diameter of the dentine. 

These differences in branch prevalence between root and coronal dentine dissipate near the 

CEJ as coronal circumpulpal dentine presents with significantly more fine branches in this 

transitional area (Mjor and Nordahl 1996). 

Peritubular dentine is composed of carbonate apatite crystals and a small amount of 

collagen (Xu and Wang 2012). This highly-mineralized matrix is believed to materialize 

through the aid of an odontoblast process (a cytoplasmic extension of an odontoblast that 

remains at the boundary of the dental pulp) and dentinal fluid containing albumin, 

transferrin, tenascin, and proteoglycans (Linde and Goldberg 1993). As peritubular dentine 

is deposited along the internal surface of the tubule it results in the progressive decrease, 

and sometimes complete obliteration, of the tubule diameter over time (Nalbandian et al. 

1960; Weber 1974). This age-related change in the structure of dentine tubules has not yet 

been investigated in relation to dental attrition or abrasion.  

Intertubular dentine is composed of a dense network of collagen fibrils coated by non-

collagenous proteins and plate-like crystallites, which align parallel to the collagen fibril 

axis. Crystallites are also found unattached to collagen fibrils with no preferred orientation 

(Wang and Weiner 1998; Goldberg et al. 2011). The elemental composition of intertubular 

dentine is believed to be similar to peritubular dentine but with a larger percentage of 

collagen and the association of carbonate apatite crystals with the collagen matrix (Weiner 

et al. 1999; Xu and Wang 2012). Given the higher mineral content of peritubular dentine, 

it is known to be extremely vulnerable to acid erosion. As such, acid erosion results in the 

dissolution of the peritubular dentine and restoration of the original diameter of the dentine 

tubule, while the intertubular dentine maintains its network of collagen fibrils (Kvaal et al. 

1994; Wiegand et al. 2007; Xu and Wang 2012). Given the higher prevalence of tubules, 
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and thus peritubular dentine, approaching the pulp, dentine closer to the pulp is more 

vulnerable to erosion than dentine near the DEJ.  

Although peritubular dentine hardness has been found to be independent of location within 

the tooth, the hardness of intertubular dentine varies, with decreasing hardness approaching 

the dental pulp. Despite this gradient of hardness, intertubular dentine is consistently softer 

than peritubular dentine (Kinney et al. 1996). Studies of dentine stiffness have, however, 

produced varying results, but show that dentine generally has more flexural strength than 

enamel (Angker and Swain 2006; Chan et al. 2011; Ryou et al. 2011).  

With regard to dental wear in dentine, an experimental study by Burak et al. (1999) 

demonstrated that although attrition/abrasion results in faster dentine loss than enamel loss 

at low occlusal loads, the rates of dentine loss are similar to enamel loss under higher 

occlusal loads. It is believed that the higher organic content and relative softness of dentine 

compared to enamel contributes to the difference in rates of wear at low occlusal loads, 

while the brittle nature of enamel results in disproportionately higher tissue loss through 

fracture at higher occlusal loads, more closely matching the tissue loss seen in dentine 

(Boyde 1984; Beynon et al. 1991; Khera et al. 1990; Macho and Berner 1993; Burak et al. 

1999).  

In addition to differences in attritive, abrasive and erosive tissue loss, Braden and 

colleagues (1966) have demonstrated piezoelectric properties in dentine resulting from 

dentine’s high collagen content. This pressure induced electric charge is not seen in enamel. 

Grippo and Masi (1991) found a surface voltage of 0.4 on exposed dentine, which is enough 

to cause enamel mineralization, in an individual with severe bruxism. Although this 

phenomenon is not clearly understood, it has been hypothesized that organic acids may be 

attracted to, and repelled from, the surface, perhaps resulting in erosion of the dentine, if 

this voltage is found to cyclically increase and decrease (Rees 2006).  

Following establishment of occlusion, secondary dentine is produced in the predentine 

layer by odontoblasts at the boundary of the pulp. Initially, a layer of 10 micrometers thick 

is deposited through continual secondary dentine production. Thereafter, production is 

reduced to 4 micrometers per day. This secondary dentine differs from primary dentine 
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only in the S-curve of the tubules, as these curves become more accentuated in the 

relatively cramped space available adjacent to the pulp. Over time, however, the deposition 

of this dentine slowly reduces the diameter of the pulp chamber (Goldberg et al. 2011), 

thus increasing the dentinal area subject to dental wear, and perhaps slightly affecting the 

rate of overall wear. Dental pulp is usually unmineralized and composed of soft connective 

tissues, nerves and a vascular network (Goldberg et al. 2011; Linde and Goldberg 1993). 

As such, despite the possibility for a slight increase in the rate of wear at tooth levels 

including the pulp, its effect on the rate and pattern of dental wear is likely considered to 

be negligible and has consequently not been studied in this respect.  

4.2.6 Pathological Factors Affecting Dental Wear 

There are a number of pathological conditions that can significantly impact dental wear 

rates. For example, congenital dental defects such as amelogenesis imperfecta or 

dentinogenesis imperfecta dramatically increase the vulnerability of teeth to any type of 

dental wear. Malocclusion and/or abnormal temporomandibular joint form may also 

produce differences in the rate and pattern of wear (Owen et al. 1991). Dental crowding, 

dental morphology and dental agenesis may also affect dental wear rates and patterns. 

Derived dental defects, such as mulberry molars, fluorosis or enamel hypoplasia, as well 

as dental defects resulting from medication (e.g. mercury), may also cause variations in the 

enamel structure, compromise the structural integrity, and provide more friction potential 

(e.g. Ioannou et al. 2016). Pain and discomfort derived from injury or disease in teeth, jaw 

bones, masticatory muscles, or the temporomandibular joint also have the potential to 

affect the pattern of wear and the rate of wear. Conditions sometimes resulting from dental 

wear, such as tooth tilting, dental dislocation, infection and abscess (resulting from dental 

wear at a rate higher than the production of tertiary dentine), periodontitis, and antemortem 

tooth loss,  may also contribute to changes in dental wear rate and pattern (Fiorenza and 

Kullmer 2013, 2015). Many of these conditions promote change in bite force or chewing 

side preference to avoid pain or discomfort, or to compensate for a loss of occlusal surface. 

Bruxism, also known as tooth clenching or grinding, may also be considered pathological 

and, although the aetiology is debated, may arise as a result of occlusal, physiological, 

genetic, or stress factors (Lavigne et al. 2008; Zhou et al. 2013; Deo et al. 2017). 
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Individuals with bruxism can apply mechanical loads of around 1000N for 30 minutes to 

3 hours a day, as opposed to normal biting loads of 100-500N for 10 minutes a day. As a 

result, individuals with bruxism can have up to three or four times the vertical dental loss 

as individuals without bruxism (Gregory-Head et al. 2000; Zhou et al. 2013). 

Gastrointestinal disturbances such as habitual vomiting and acid reflux can also produce 

acidic conditions in the oral cavity resulting in the softening and more rapid wear of the 

dentition (Bartlett et al. 1996; Robb et al. 1991). In addition to these conditions, xerostomia, 

a condition defined by a lack of salivary lubrication, significantly raises the friction 

potential during mastication and bruxism and resulting in rapid dental wear. Xerostomia is 

often found in individuals of advanced age as well as individuals with salivary gland 

tumors, or those undergoing radiation therapy (Zhou et al. 2013). Also in seniors, 

temporomandibular joint degeneration or osteoarthritis can result in complex differences 

in dental wear relating to pain during mastication and/or a change in the occlusion 

(Richards 1990). 

4.2.7 Other Factors Affecting Dental Wear 

In addition to physiological and pathological factors, it is necessary to consider the many 

environmental and sociocultural aspects that can have an impact on dental wear rates and 

patterns. These include socioeconomic and culturally-prescribed differences in food 

accessibility, including differences relating to individual sex, age, or status. Work-related 

dental wear may also be apparent in individuals specializing in work requiring use of the 

teeth as tools (e.g. processing of sinews, to hold pipes, etc.) or those exposed to chemicals 

that may erode dental tissues (e.g. Ubelaker 1996; Kim et al. 2006; Molnar 2011). 

Purposeful bodily modifications, such as the use of labrets, can result in characteristic 

patterns of dental wear (e.g.Torres-Rouff 2003; Cybulski 2010; Molnar 2011). Likewise, 

some culturally-prescribed dental modifications created through dental wear can provide 

information about social status or ethnicity (e.g. Romero 1958; Burnett and Irish 2017). Of 

course, some forms of medical dental intervention, such as palliative tooth picking, also 

result in forms of dental wear and/or can contribute to differing patterns and rates of wear 

(e.g. Siffre 1911; Formicola 1988; Lukacs and Pastoro 1988).  
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In addition to these culturally-linked forms of dental wear, differences in food processing 

methods can have a significant impact on the rates and patterns of wear seen in the dentition 

(e.g. Chattah and Smith 2006; Watson 2008; Fiorenza et al. 2018). Dietary composition, a 

large contributor to dental wear, is also subject to limitations imposed by the environment, 

socio-economic status, and cultural taboos. The grit and acidity of accessible processed 

foods can thus vary greatly within and between populations, resulting in differences in 

dental wear (Brace 1962; Dahlberg 1963; Greene et al. 1967; Molnar 1971; Molnar et al. 

1972; Turner 1979; Hinton 1982; Smith 1984; Macchiarelli 1989; El Zaatari 2008, 2010; 

Deter 2006, 2009; El Zaatari et al. 2011; Fiorenza et al. 2011; El Zaatari and Hublin 2014; 

Fiorenza 2015). Although oblique molar wear has been attributed to occlusal pattern 

(Molnar and Molnar 1990), early researchers related oblique molar wear to soft, less 

abrasive diets characteristic of agriculturalists (e.g., Brace 1962; Smith 1984; cf. 

Macchiarelli, 1989) and noted a paucity of this pattern of wear in hunter-gatherers with 

hard, abrasive diets (e.g., Dahlberg 1963; Molnar 1971; Smith 1984; Kaifu 1999; Deter 

2006, 2009). More recently, this difference has been explained as a difference between 

predominantly attrition-related dental wear (in the case of soft foods where there is more 

tooth-to-tooth contact while chewing), and predominantly abrasion-related dental wear 

during chewing (in the case of gritty, hard and abrasive foods (Kaidonis 2008; Burnett et 

al. 2013; Le Luyer et al. 2014). Additionally, as a consequence of dietary differences and 

related masticatory patterns and timing, agriculturalists tend to wear their molar crowns 

more rapidly than their anterior teeth while the opposite has been observed in hunter-

gatherers (Hinton 1981; Molnar and Molnar 1990). 

The use of masticatories such as betel nut or papyrus can also result in dental wear-related 

changes to the dentition, as can certain dental hygiene habits such as tooth brushing or 

tooth picking, which can produce characteristic signs of wear (Alt and Pichler 1998; 

Burnett and Irish 2017). Consumption of significant amounts of mercury, tetracycline or 

fluoride, either through purposeful ingestion or through naturally higher prevalence in 

accessible foods, can also manifest in dental defects, rendering teeth more prone to 

mechanical and chemical wear (Zhou and Zheng 2008). See Figure 4.2 for a summary list 

of factors that affect dental wear. This list is not exclusive since our collective 

understanding of dental wear processes and their aetiologies continues to advance.  
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Figure 4.2. Factors Affecting Dental Wear 
Physiological and Pathological Factors 

- age (time subjected to dental attrition, abrasion and erosion) 

- enamel thickness 

- enamel defects due to physiological stress 

- enamel defects due to congenital disease/disorder 

- tooth size 

- dental morphology 

- tooth inclination 

- elemental composition of enamel and dentine 

- enamel rod or dentinal tubule orientation 

- dentine tubule diameter, peritubular dentine thickness, open tubules 

- dental eruption timing, sequence, or abnormalities (e.g. impaction, ankyloses, retention of primary teeth) 

- hypodontia, dental agenesis or supernumerary teeth 

- continuous eruption 

- mesial shifting 

- tooth dislocation/tilting due to severe wear and/or abscess 

- (mal)occlusion 

- dental arch size and shape 

- dental crowding or spacing, including diastema 

- bruxism 

- paramasticatory functions 

- salivary flow (often decreases with age) 

- biteforce 

- TMJ size and shape? (Owen et al 1991) 

- TMJ degeneration? (Richards and Brown 1981a; Richards 1990) 

- orofacial morphology (e.g. gonial angle, palatal clefting) 

- position of the mental foramen in relation to the teeth? (Green and Darvell 1988) 

- antemortem tooth loss  

- dental/oral trauma 

- pain/discomfort/disease in the orofacial bones, muscles, or dentition 

- acid reflux, bulimia, pregnancy, or other conditions that lead to increased oral acidity 

- arbitrary preference for a chewing side 

 

Environmental and Dietary Factors 

- toughness of diet (e.g. phytoliths) 

- gritty inclusions from stone grinding grains 

- gritty non-organic inclusions used to facilitate grain grinding 

- wind-blown dust/sand 

- enamel erosion (due to acidic foods/drinks, contact with acidic materials, certain medications) 

- medications affecting salivary flow 

- enamel defects due to fluoride/mercury/tetracycline consumption 

 

Social and Behavioural Factors 

- use of teeth as tools 

- non-dietary masticatory habits (e.g. papyrus, betel nut, or tobacco chewing) 

- abrasive dental hygiene habits 

- medical interventions or use of prosthetics, implants, or inlays 

- dietary taboos (sometimes age- or sex-specific) 

- dietary differences according to socio-economic status and affordability  

- sex-specific work specializations affecting dental wear 

- structural violence 

- abnormal wear caused by labrets or other jewellery 

- abnormal wear caused by habitual pipe use 

- abnormal wear caused by tooth picking 

- abnormal wear caused by intentional filing, cutting, or drilling 
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4.3 Adult Age Estimation Methods through the 
Assessment of Dental Wear: Literature review 

In 1870, Mummery was the first to publish a manuscript noting a relationship between 

dental caries and dental wear. He also conducted a cross-cultural study of modern crania, 

concluding that sand and grit included in foods from processing and preparation methods 

positively corresponded with the amount of dental wear, and deduced that this was likely 

the reason for higher rates of dental wear in ancient and ‘primitive’ populations. 

Furthermore, he attributed oblique wear to particular hard dietary staples, which piqued 

academic interest in the possibility of dietary reconstruction from dental wear analysis 

(Mummery 1870).  Nine years after his seminal discussion of dental wear, Broca (1879) 

developed the first dental wear scoring protocol to facilitate and standardize further 

research into dental wear. This simple scale was embraced for the documentation of dental 

wear and used for comparative studies. Although he did not cite it, Ales Hrdlicka (1908, 

1909) used this standard for the documentation of dental wear in his osteological 

appendices on ancient Native Americans (Rose and Burke 2006; Rose and Ungar 1998). 

Throughout his studies, Hrdlicka paid little attention to the contributions of dental wear to 

oral pathology or dietary reconstruction. However, he was the first to consider dental wear 

in the estimation of age-at-death, publishing age estimates to match Broca’s dental wear 

levels in his laboratory guide (Hrdlicka 1939). He noted that this method of age estimation 

was only relevant to ancient Native Americans and recommended the use of recalibrated 

systems for other populations (Rose and Ungar 1998).  

In 1950, Gustafson’s (1950) multivariate dental method for adult age estimation was 

published. This method was developed through a study of a Swedish skeletal collection. It 

involved analysis of dental attrition, periodontal attachment, secondary dentine deposition 

within the pulp, apposition of cementum on the root surface, resorption of the root apex, 

and root transparency. It was critiqued for giving equal weight to each of the age indicators 

and many modifications of this method followed (e.g. Bang and Ramm 1970; Johanson 

1971; Vlcek and Mrklas 1975; Burns and Maples 1976; Maples and Rice 1979; Monzavi 

et al. 2003; Maples 1978; Lamendin et al. 1992; Singhal et al. 2010), including software, 
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called Dental Age Estimation (Willems 2000), which calculates many of the Gustafson-

related equations when data are entered. 

Through studies of dental wear in successive molars, Zuhrt (1955) was able to approximate 

the rate of occlusal wear in successive molars over a fixed period of time. Using these data, 

he created a standard for estimating age in a historic German skeletal collection and a 

Neolithic Nubian skeletal collection (Brothwell 1963a; Rose and Ungar 1998).  Zuhrt’s 

(1955) dental wear scoring method was published in German and received little attention 

despite providing the foundation for one of the most popular dental wear age estimation 

methods - the Miles method (1962, 1963, 1978). The latter method, originally developed 

for use on an Anglo-Saxon skeletal collection, is population-specific for age determination 

through the estimation of occlusal wear rate based on the calibration of occlusal dental 

wear against dental eruption timing. Although this method is recognized for its accuracy, 

it has not been fully embraced in practice because it requires a significant sample of 

subadults for reference, and it is time-intensive. Recently, however, Gilmore and Grote 

(2012) modified the Miles (1962) method by eliminating the need for subadult calibration. 

Despite the decreased limitations of the Gilmore and Grote (2012) method, in April of 2019 

Google Scholar reported only 22 citations of the Gilmore and Grote method.  

The success of the original Miles method may have been partially dampened by 

Brothwell’s (1963a) publication of a less complex dental wear age estimation standard only 

a year after Miles’ (1962) initial publication. This standard required only the comparison 

of patterns of dentine exposure to reference drawings in order to estimate age-at-death. It 

is now the most commonly used dental wear age estimation standard worldwide, despite 

the fact that it was originally created for the purpose of studying prehistoric to early 

medieval British human remains (Hillson 1996; Rose and Ungar 1998). Brothwell argued 

that there was little difference between Neolithic and Medieval periods, encouraging the 

use of this standard on all ancient British populations, but he cautioned against using it on 

non-British populations (Rose and Ungar 1998). Ubelaker, however, argues that this 

standard is diet- and culture-specific and therefore discourages its use on chronologically 

or geographically diverse populations (Rose and Ungar 1998).  Not only is this 

indiscriminate usage questionable, given that dental wear is known to be affected by many 
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biological and environmental factors (See Section 4.2), its use for prehistoric and early 

medieval British remains is arguable, given that the research on which this standard was 

based remains unpublished (Brothwell 1989; Hillson 1996).  

More recently, Kim et al. (2000) presented a new population-specific age estimation 

method based on the macroscopic observation of occlusal dental wear patterns in a modern 

population. This method assigns scores to first and second premolars and molars according 

to counts of point-like wear facets, linear wear facets, surface-like wear facets, and band-

like wear facets, and according to the ratio of worn to unworn occlusal surface, with further 

consideration of concavity of the worn surface. To calibrate a standard for age estimation, 

these scores must be taken on a large population sample and multiple linear regression 

analysis based on the method of least squares is used to evaluate the relationships between 

scores and known ages and an intercept. This culminates in the creation of sex-specific 

calculating tables for age estimation as well as calculation tables specific to certain age 

cohorts for cases in which the age can be estimated by other means. These calculating 

tables provide numerical values for each tooth wear score, which are then summed with 

the calculated intercept to provide an age estimate. Yun et al. (2007) later expanded this 

method to include scores for incisors and canines. Both the Kim et al. (2000) method and 

the modified method by Yun et al. (2007) have shown great accuracy and specificity, likely 

due to their population- and sex-specificity, as well as the multiple regression methods used 

in the creation of standards, however they are limited by their reliance on large samples 

and the need for observation of all teeth.  

Some researchers remained skeptical of dental wear age estimation methods because of 

their vulnerability to cultural, environmental, and dietary habits as well as differences in 

dental morphology. As a result, a significant number of researchers opted to record dental 

wear for comparative studies without age estimation. For example, between the publication 

of the works of Zurht (1955) and Miles (1962, 1963, 1978), Murphy (1959a) published a 

standard for recording dental wear based on a study of Australian aboriginal dentition 

housed in the University of Adelaide’s Department of Anatomy and the South Australian 

Museum. This standard utilized 8 attrition levels (labeled a to h) that grouped incremental 

patterns of dentine exposure without relating them to chronological age. In this same year, 



131 

 

Murphy (1959b) published the ‘modal forms’ of dental wear observed in this same 

collection of human remains, which illustrated variations in patterns of dentine exposure. 

Molnar (1971) later modified Murphy’s (1959a) scoring method by adding separate scores 

for facet orientation and the form of the worn surface relative to crown height, wear shapes, 

and wear planes. Although these methods have been used widely for the recording of dental 

wear, neither of them were designed for the estimation of age. Two more methods for the 

macroscopic documentation of dental wear, namely the Scott (1979) and Smith (1984) 

methods, have since gained popularity, having been included in Buikstra and Ubelaker’s 

(1994) Standards for data collection from human skeletal remains. Both of these dental 

wear scoring systems were also based on written descriptions of occlusal wear patterns, as 

in the Murphy (1959a) standard, but the stages of wear are more specific and are 

supplemented with reference drawings. The Scott (1979) system requires the recording of 

occlusal wear for each molar quadrant, resulting in dental wear scores between 0 and 40 

for each molar, with 0 being unobservable. The Smith (1984) method assigns scores from 

0 to 8 for each tooth using different scoring characteristics for incisors and canines, 

premolars, and molars, with variations in their appearance demonstrated in the provided 

reference drawings. These methods of macroscopically recording occlusal dental wear 

have been used extensively for the comparison of dental wear between individuals and 

populations, often in conjunction with dietary reconstruction studies. 

In addition to the aforementioned methods for documenting dental wear and estimating age 

through macroscopic observations of dental wear, several other more technologically 

advanced macroscopic methods have been presented for use. These include the 

measurement of cusp height (e.g. Tomenchuk and Mayhall 1979, Molnar et al. 1983a,b), 

crown height (e.g. Van Reenen 1982), and a combination of crown height and angle of 

wear (e.g. Walker et al. 1991). Unfortunately, these methods are somewhat subjective as 

they either assume a standard original cusp height or require the researcher to estimate the 

original crown or cusp height in order to contextualize their results. Another method that 

has received some attention is the measurement of occlusal tooth surface, wear facets or 

dentine exposures using a planimeter (e.g. LeBlanc and Black, 1974; Walker 1978). 

Richards and Brown (1981b) reported the percentage of exposed dentine in relation to the 

occlusal surface through the use of a digitizer that was programmed for use as a planimeter. 
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Digital photogrammetry was introduced to the 3 dimensional measurement of dental wear 

by Teaford (1983), who measured the area of exposed dentine based on the length, width 

and depth of the planes of dentine exposures in macaques and langurs. A variety of 2- and 

3-dimensional methods for the measurement of occlusal wear facets and dentine exposures 

have since been investigated, (e.g. Smith 1984; Richards 1984; van der Bijl et al. 1989; 

Lambrechts et al. 1989; Teaford and Oyen 1989; Richards 1990; Richards and Miller 1991; 

Kambe et al. 1991; Krejci et al. 1994; Mayhall and Kageyama 1997; Kaifu et al. 2003; 

Kullmer et al. 2009; Deter 2006, 2009). One promising method is a 2D photogrammetric 

method developed by Phillips-Conroy et al. (2000) for baboons and later applied to humans 

by Deter (2006, 2009). With a nod to Richards and Brown’s (1981b) calculations of relative 

area of exposed dentine, the method by Phillips-Conroy et al. (2000) uses the NIH-provided 

photogrammetry program, IMAGE v.1.5.7. to determine areas within outlines of the 

dentine exposures and occlusal surface, respectively, to determine the percentage of 

occlusal dentine exposure. Deter’s (2006, 2009) method similarly uses image analysis 

software to determine the relative area of dentine exposure in relation to occlusal surface 

through the precise measurement of pixels within these respective areas through the use of 

SigmaScan Pro 5. These methods were based on dentine exposure because they are more 

visible in photographs and amenable to quantification than wear facets (Hillson 1996). Due 

to the precision of this method and its applicability to the photographic dental occlusal data 

available from prior studies of the Kellis 2 population, the Deter (2006, 2009) method was 

chosen for use in the current study, however, the free online FIJI(is just imageJ) software 

was used instead of SigmaScan Pro 5.  

4.4 On the Aetiology of Dental Wear in Ancient Egypt: 
A History of Scholarly Viewpoints 

The development of dental wear in ancient Egyptian dentition has been noted in 

paleopathological contexts at least since the description of a mummy from Stuttgart in Dr. 

Storr’s (1780) tome on the classification of mammals, Prodromvs methodi mammalivm. 

Blumenbach (1794) later commented on his observation of this “extraordinary 

phenomenon” in several ancient Egyptian dentitions. Although Blumenbach described the 

dental attrition as “considerably worn away at that edge which is usually sharp” (1794: 
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184), Mummery (1870) claims that Blumenbach incorrectly believed the shape and size of 

the teeth affected by severe wear were morphological variants. Mummery posited that “[he 

has himself observed this condition] in many Egyptian skulls; recognizing it, however, as 

undoubtedly the result of severe attrition” (1870: 6) and states that he recorded the 

estimated age of individuals along with dental wear, perhaps according to the 4 stages of 

dental wear outlined by Broca (1879)1, though he does not provide further details. In any 

case, it seems that Mummery was correct in pointing out the tendency to misdiagnose 

severe attrition in ancient Egyptians, as Dr. William Rushton demonstrated at the end of 

his 1910 paper on a clinical case of severe attrition. In his last paragraph, he lamented the 

repeated misdiagnosis of severe attrition as caries in a collection of ancient Egyptian skulls 

on display at the Royal College of Surgeons Museum (Rushton 1910).   

In 1913, Turner and Bennett published their observations on 26th-30th dynasty ancient 

Egyptian remains excavated by Sir Flinders Petrie for Karl Pearson. In this study, Turner 

and Bennett noted that the rate of caries was three times lower than that in modern 

populations and attributed this paucity of decay to a higher rate of attrition from rough 

bread and lower consumption of refined carbohydrates (Rose and Burke, 2006).   

Not long after this, following Sir Marc Armand Ruffer’s death, his wife, Alice Ruffer, 

completed and published several of his unfinished papers, including “Study of 

Abnormalities and Pathology of Ancient Egyptian Teeth” (Ruffer 1920). This paper 

contains the first large-scale study of dental wear in ancient Egyptians. Within it, he 

describes the macroscopic process of dental wear in detail, referring to Broca’s (1879) 

levels of wear, and expanding this with descriptions of the shapes and locations of exposed 

dentine throughout the dental wear process, noting the gradient of wear’s accordance with 

the pattern of dental eruption. He discusses oblique and abnormal wear patterns and 

attributes differences in normal occlusal dental wear to 1) the nature of the food, 2) dental 

tissue density, and 3) the character of the bite. He refers to Smith and Wood-Jones’ (1910) 

                                                 

1
 Broca’s (1879) stages of wear: 1) wear without dentine exposure, 2) disappearance of cusps and some 

dentine exposure, 3) complete dentine exposure, 4) wear extends beyond the crown to the root 
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hypothesis regarding the perceived change in the shape of dental wear in Nubians over time 

– namely, that predynastic Nubian occlusal wear appeared to be level, while more modern 

Nubians tended to form a deep cavity in the center of the occlusal surface that they 

attributed to wear. In response, Ruffer stated that “the study of several hundreds of skulls 

did suggest that the teeth were ground down evenly in some cases, whereas in others 

attrition was characterized by the formation of deep cavities, surrounded by a ring of strong 

dentine” (Ruffer 1920: 352). This description sounds similar to dentine cupping, discussed 

further in section 4.2.4.   

Ruffer (1920) noted that dental wear severity differed greatly across populations with 

predynastic Upper Egyptians among the most severely affected and Greco-Roman Period 

Lower Egyptians among the least affected.  Referring back to dental wear in ancient 

Egyptians, he states that although there is great variation among individuals, “the 

impression gained from the examination of hundreds of skulls is that attrition in these 

people proceeded very rapidly up to the age of 25 or so, and then became almost completely 

arrested. This is not in accord with observations on other peoples” (Ruffer 1920: 353). 

Ruffer attributed this rapid dental wear to a mixed diet with plenty of vegetables and coarse 

bread, arguing that “to explain the attrition it is not necessary to assume, as has been done, 

that the Egyptians ate earth or that the food was contaminated with sand” (Ruffer 1920: 

356). As a result of this potential for variation in rates of dental wear, he cautioned against 

the early paleoanthropological attempts to estimate age based on unknown dental wear 

rates. 

Further investigation into the aetiology of the significant dental wear seen in ancient 

Egyptians was conducted by Leek (1972) in his examination of “Teeth and Bread in 

Ancient Egypt”. Leek’s focus on the role of bread in dental attrition was derived from the 

apparent importance of bread in the ancient Egyptian diet, as indicated by ancient Egyptian 

writing, accounting, iconography, and funerary customs. Leek (1972) questioned the 

accepted notion that fibrous foods were largely responsible for severe dental wear, 

highlighting the fact that there is great variability in dental wear among populations eating 

hard and fibrous foods. In an effort to examine the composition of the bread consumed 

regularly by ancient Egyptians for clues to the aetiology of dental wear, Leek conducted 
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petrographic and radiographic studies of inorganic residues from ancient Egyptian bread 

samples. These studies revealed a wide variety of rounded mineral and stone fragments, 

like those found in desert sand, as well as angular stone grains perhaps derived from food 

processing methods. Through archaeological research, Leek (1972) thus determined that 

gritty inclusions in bread may have included: 1) soil from harvesting, 2) fragments from 

harvesting tools, 3) wind-blown contaminants introduced during winnowing, 4) dirt or 

container fragments from storage, 5) fragments from grinding stones, 6) grit added to aid 

in the grinding of the grain, and 7) surface or near-surface inclusions obtained during 

baking, and 8) wind-blown sand contamination after baking or during consumption. He 

concluded that “it became quite evident that the abrasive particles found in these samples 

of bread would more than account for all the attrition to be seen on the teeth in ancient 

Egyptian skulls, so much so that further investigation was clearly unwarranted” (Leek 

1972:132). This hypothesis on the aetiology of ancient Egyptian dental wear has been time 

honoured.  

Puech et al. (1983) published the first attrition study using dental microscopy which 

supported Leek’s hypothesis. In it the authors posited that the microscopic proximal wear 

in the observed Egyptian sample was similar to that documented in European Homo erectus 

and Meganthropus, thus indicating that ancient Egyptian dental wear was likely a result of 

strong occlusal pressures and foods resistant to mastication. Unfortunately, it is unclear 

what, if any, other reference samples were included for comparison with these microscopic 

observations of ancient Egyptian dentition – an important consideration given the early 

stage of dental microwear studies at the time. In any case, following from Dixon’s (1972) 

paper on masticatories in ancient Egypt, Puech et al. (1983) pointed out that in addition to 

the consumption of fibrous or hard foods, habitual chewing of tough, fibrous, and 

phytolith-laden papyrus may have also contributed to dental wear rates. They also 

hypothesized that the preservation of foods in salt may potentially have contributed to some 

dental attrition (Puech et al. 1983).  
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4.4.1 But what about Dental Erosion? 

Although the significant dental wear in ancient Egyptians has long been attributed to 

increased attrition, little attention has been paid to the possible role of dental erosion in 

overall dental wear of the past, despite our modern understanding of the interaction 

between chemical and mechanical forces in dental wear (Coupal and Soltysiak 2017). For 

example, recent dental tribological analysis demonstrated significantly higher wear 

volumes in dental tissues immersed in citric acid solution (pH = 3.2) than those immersed 

in artificial saliva (pH = 7) under lower normal mechanical loading levels. It was 

determined that the enamel’s wear resistance decreased significantly in the citric acid 

solution and the wear mechanism changed to mainly adhesion delamination. The enamel 

wear in citric acid solution rose to around 2.5 times higher than that obtained in the artificial 

saliva under a mechanical load of 10 N, and this difference dissipated with increasing 

mechanical load (Zheng et al. 2011; Zhou et al. 2013). Since the normal mechanical load 

for human mastication ranges from 3-36 N (Dowson 1998), and there was a significant 

increase in dental wear in citric acid solution at 10N and 20N mechanical loads, with a 

non-significant increase in citric acid solution at a 40N mechanical load (Zheng et al. 2011; 

Zhou et al. 2013), it may be assumed that acid erosion will have a significant impact on 

dental wear in most human dentition. Given this, it is worth considering the impact of 

dental erosion on ancient Egyptian dental wear.  

In archaeological remains, erosive wear has been identified as “a shiny glazed surface with 

rounded edges, followed by crown height loss with flattening of occlusal enamel and 

‘cupping’ or ‘scooping’ of dentine, if exposed (Jager 2015)” (Coupal and Soltysiak 2017). 

These characteristics have been implicated in several archaeological studies worldwide 

(e.g. Cruwys & Duhig 1993; Kieser et al. 2001; Lanigan & Bartlett 2013; Richter and 

Eliasson 2016) and are commonly found within ancient Egyptian dentition. Although 

dentine cupping, or concavity of exposed dentine,  is common in ancient Egyptians, it is 

rarely noted  in relation to dental erosion as it has also been attributed to the effect of severe 

attrition on a material (dentine) that is less dense than enamel and higher in organic content 

(Coupal and Soltysiak 2017). The investigation of dental cupping deserves consideration 

as it is very prevalent in hunter-gatherers and fossil hominins who relied on abrasive food 
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staples and had a higher ratio of vertical-force mastication (for crushing) to horizontal force 

mastication (for grinding) than in modern populations (Deter 2006, 2009; Jungers and 

Kaifu 2011; Kaifu et al. 2005; Kieser et al. 2001; Scott et al. 2012; Smith 1984; Coupal 

and Soltysiak 2017). Similarly, Ganss et al. (2002) found that in a comparative study of 

populations with abrasive, acidic, and intermediate diets, dentine cupping was most 

prominent in the population with the abrasive diet, followed by the population with the 

acidic diet, with little dentine cupping in the population with the intermediate diet. As such, 

Coupal and Soltysiak (2017) recommend that occlusal dentine cupping should be used as 

an indicator of both mechanical and erosive wear, or mechanical wear alone, but not as a 

sole indicator of erosive wear. Furthermore, Ganss (2008) cautions against the use of 

dentine cupping alone as an indicator of dental erosion, as there may be significant 

variation in lesion shape as a result of dental erosion. Consequently, it is recommended that 

dental erosion is identified through a three-step protocol, which includes SEM analysis of 

occluding and non-occluding surfaces of the teeth, taphonomic studies of the associated 

bone and soil pH, and dietary research to investigate possible causative agents for erosive 

dental wear (Coupal and Soltysiak 2017). As SEM analysis and taphonomic studies are not 

possible within the scope of this study, the following research focuses on the ancient 

Egyptian dietary components that may have contributed to dental erosion.  

Dental enamel has a critical pH level of 4.5-5.5, depending on the slightly variable 

elemental composition of the hydroxyapatite, below which the enamel begins to 

demineralize and soften, enabling more severe attrition (West and Joiner 2014; Axelsson 

2000). It is, however, important to note that the acidity in the oral cavity is only changed 

for a few minutes following consumption of beverages, but generally remains acidic for 

longer when chewing acidic foods (Zhou et al. 2013). Of course, constant sipping of acidic 

beverages throughout the day may still result in higher rates of dental wear than that 

achieved through the consumption of acidic foods. Although it is difficult to ascertain the 

amount of each food or beverage consumed by individuals in ancient Egypt, which 

certainly differed relative to socioeconomic status, geography, time period, agricultural 

yield, and personal preference, we may begin to understand the erosive potential of the 

ancient Egyptian diet by analyzing the acid-base values in the available foods. Through a 

brief study of ancient Egyptian foods in literature, iconography and archaeology, the 
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following foods were identified as having erosive potential (i.e. their pH surpassed the 

critical pH for enamel): wine, grapes, raisins, vinegar, pomegranates, plums, honey, onions, 

pickled foods, fermented milk products,  and other fermented foods, such as beer.  Some 

modern types of breads (e.g. sourdough bread) also exceed the erosive threshold for enamel 

(cf. Wieschebrock et al. 2011; Yağmur et al. 2016), and thus further studies are 

recommended to determine whether ancient Egyptian bread should also be included in this 

list. 

Given the importance of bread and beer in ancient Egypt, it is perhaps reasonable to assume 

that most individuals, including older infants and children would regularly have consumed 

these dietary staples. Thus, it is important to understand the characteristics of these 

particular foods and their effects on the dentition. Although Coupal and Soltysiak (2017) 

state that “it is not possible to determine the concentration of erosive or non-erosive 

components from artefacts” (based on McGovern et al.’s [2004] inconclusive studies of 

pH, phosphate and calcium concentrations in wine vessels from Jiahu, China), a number of 

researchers have successfully extracted and/or analyzed the components of food from 

artefacts (e.g. Swift 1966; Copely et al. 2001; Evershed 2008). Biomolecular analyses of 

ancient foods may be particularly worthwhile in Egypt as ancient Egyptian funerary food 

offerings abound and are often exceptionally well preserved. Of course, challenges are 

inherent in the comparison of modern and ancient foods. For example, many ancient wines 

were likely more acidic than modern wines as a result of difficulties sealing ceramic 

vessels. Consequently, the storage of wine in an aerobic environment would enable the 

transformation of wine into vinegar, essentially introducing acetic acid to the wine 

(McGovern 2003). This revelation demonstrates that although many aspects of food 

production and storage may be assumed to be similar in modern and ancient foods, 

experimental archaeology has the potential to uncover unsuspected differences and to 

contextualize biomolecular findings. For example, in a study of archaeological samples, 

Swift (1966) determined that ancient Egyptian beer residue from the 18th dynasty tomb of 

Princess Meryet-Amun, daughter of Thutmoses III, had a pH of 3.4, and ancient Egyptian 

bread from the tomb of Mentuhotep II had a surprisingly low pH of 4.2. Of course, these 

pH levels are problematic as the presence of water and/or alcohol would have affected this 

pH level in the pre-desiccated products. Moreover, Swift (1966) determined that the 
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aforementioned beer residue that produced a pH level of 3.4 had experienced a secondary 

infection and became sour before desiccation, thus producing this low pH level. 

Unfortunately, the pH level of the comparative beer sample from the tomb of Wah was not 

disclosed.  

Although the pH of ancient Egyptian beer remains unknown, Swift (1966) conducted a 

productive experimental archaeological study in which his attempt to replicate ancient 

Egyptian bread revealed that ancient Egyptians had intentionally soured their bread before 

baking. Although Swift’s bread was not considered to be a perfect replica of ancient 

Egyptian bread, as it did not appear quite as raised and had more residual sugar than the 

originals (meaning that the replicas may not have been sour – or acidic - enough prior to 

baking), it still had a relatively acidic pH level of 4.9. Through further investigation of the 

ancient bread, revealing undetectable levels of yeast in the body of the bread, it was 

hypothesized that the bakers used a “white sour sponge to sour and give character to the 

finished bread”2 (Swift 1966: 218) as well as a small amount of wheat to maintain the sour 

culture. Although Swift (1966) did not report the pH levels for the two other ancient bread 

samples he examined, he noted that one of the 18th dynasty samples differed significantly 

from the others, as it was sweeter and more akin to a Danish pastry than bread. This 

observation is germane as pastry dough is considerably less acidic than sour bread and if 

the ancient Egyptians did not differentiate between sweet and sour “breads” as their staples, 

then the regularity of sour bread consumption, and thus the regularity of the consumption 

of breads that may cause dental erosion, may be further questioned.  

“Shamsy” bread (translated sun bread) is the type of bread most commonly baked in Upper 

Egyptian homes (El-Gendy 1983). According to El-Gendy (1983), it was a simple recipe 

with few ingredients made similarly to common Western sourdough breads. The dough is 

composed of a mixture of wheat flour and water with a sprinkle of salt and the addition of 

the ‘starter’. This ‘starter’ is a mixture of around 100g of dough from a finished batch of 

                                                 

2
 The final version of a sourdough starter is called a “mother sponge” (Corsetti 2012), thus shedding some 

light on Swift’s (1966) hypothesis. 
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bread with 2 kg of flour and 0.5L of water. It is left in a warm location overnight to ferment 

and sour (El-Gendy 1983). As in modern sour dough breads, the use of a naturally 

fermented ‘starter’ precludes the use of manufactured yeast, otherwise known as ‘bakers’ 

yeast’ (Corsetti 2013). This is reminiscent of the yeast-free body of the ancient Egyptian 

bread. In the morning, the starter is hand mixed with the other bread ingredients for about 

25 minutes before it is left for around 45 minutes to rest. It is then divided into loaves on 

boards covered with wheat bran, which is also reminiscent of the traces of wheat found in 

the ancient bread samples that Swift (1966) stated was necessary to maintain the sour 

culture. The loaves are again exposed to the sun for around an hour, depending on the 

strength of the sunshine, to further ferment and rise, after which they are flattened by hand 

to about 20 cm in diameter and placed back in the sun for around the same time. El-Gendy 

(1983) documented an additional phase: “After reversing the dough pieces, they are left in 

the shade for 30 min as a fourth fermentation period.” (El-Gendy 1983: 366). However, 

modern sources from Luxor indicate that the latter phase is omitted and that the dough is 

often left in the sun until baking. The final stage of the process is the baking of the dough 

in a clay oven. In its’ processing, shamsy bread is similar to modern sourdough bread, 

however it is not left to ferment as long as sourdough bread and is therefore not as sour or 

acidic as sourdough, which has an approximate pH level of 3.8-4.6 (Corsetti 2013). Given 

the low pH of the ancient Egyptian bread tested by Swift (1966), it is possible that ancient 

Egyptian bread more closely resembled sourdough bread. Although they would provide 

only a rough comparison, pH tests of popular Egyptian manufactures breads, shamsy bread, 

sourdough bread, and ancient Egyptian bread samples would be informative. Continued 

experimental research on this problem is to be encouraged as it may reveal information that 

could explain changes in dental wear patterns over time in Egypt.  For example, in El-

Gendy’s report, less than 10% of the Egyptian national bread consumption in 1983 was 

Shamsy. Most modern Egyptian manufactured breads are sweeter and less acidic due to 

their inclusion of manufactured yeast, thus having an approximate pH level of 5.3-5.8 

(Corsetti 2013). If we assume that ancient Egyptians predominantly consumed shamsy-like 

bread, or a more fermented sourdough-like bread, this decrease in the popularity of acidic 

breads, beer and wine over time may, at least partially, explain the differences in ancient 

and modern Egyptian dental wear. Of course, past populations may have also consumed 
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more bread than today’s population due to increased acculturation of food types 

internationally. 

Although studies of pH levels can provide a general idea of the erosive potential of foods, 

other elements present in foods and beverages, such as calcium (Ca), potassium (K), and 

fluorine (F), also affect the solubility of enamel’s hydroxyapatite (Larsen and Nyvad 1999). 

For example, in a study of the erosive potential of yogurt, Lussi et al. (2012) demonstrated 

that if the Ca, K and F concentration of a product is higher than that in plaque fluids, dental 

erosion is prevented. As such, future research on the composition of ancient Egyptian 

breads and beer residues are required to ascertain their true erosive potentials. Regardless, 

caution should be exercised in attributing any single mechanism of dental wear given the 

complexity of the interacting intrinsic and extrinsic variables previously discussed (see 

Johansson et al. 1993). Determination of causality of dental wear can be further 

complicated in older individuals as a result of antemortem tooth loss and severe dental 

wear.  

4.5 Materials and Methods 

4.5.1 Materials: Digital Dental Photos from Kellis 2 cemetery 

Dakhleh is one of five Oases or huge depressions, located in Egypt’s Western Desert 

(Tocheri et al. 2005). Studying the past human-environmental interactions in Dakhleh has 

been the research theme of the Dakhleh Oasis Project (D.O.P.) since its inception in the 

late 1970s (Molto 2001). Analysis of human skeletal remains is the domain of the 

Bioarchaeology Team which since the early 1990s has focused on cemeteries associated 

with the ancient centre of Kellis which is located in the central part of the Dakhleh Oasis. 

Kellis, was a small but important urban centre (Bagnall 1993), which was occupied from 

Ptolemaic to late Roman times. It was abandoned circa 450 A.D. (Hope 2001; Bowen 

2003). At its zenith in the late 3rd century A.D. Kellis may have housed over 2000 people 

(Molto 2001). In the 1st century A.D. the people of Kellis gradually endorsed Christianity 

and shifted their burial program from family crypts carved into the hills northwest of Kellis 

called Kellis 1, to a large cemetery slightly northeast of Kellis proper called Kellis 2 (Molto 
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2001). The K2 burials were single, extended interments, oriented east-west, with heads to 

the west; the Christian position. The exact orientation of the burials however varies slightly 

according to the seasonal solar alignment (Williams 2008). AMS radiocarbon dates (N 

=42) show that K2 was in use from AD 50-450 (Stewart et al. 2003), and was organized 

by family groups around superstructures (Molto 2001, Keron 2015). Since the beginnings 

of excavations in the early 1990s, over 700 usually well preserved skeletons have been 

excavated and analyzed, of the 3000-4000 burials estimated to be interred in K2 (Molto 

2001). The excellent preservation and representations of the skeletons is due to the 

hyperaridity of the climate, low soil acidity and the burial mode (Bleuze et al. 2014). 

Though generally the Kellis 2 burials had limited grave offerings many had been looted 

often involving the head-neck region (Wheeler 2009; Williams 2008). Approximately 35% 

of these individuals are adults, with the remaining 65% identified as juveniles (Wheeler 

2009). Given the extraordinary preservation at this site, due to the low acidity of the soil 

and the arid climate (Bleuze et al. 2014), and the observed paleodemographic pattern, it 

has been suggested that the mortality profile at Kellis 2 is similar to that expected in a 

natural mortality distribution in pre-industrial populations (Tocheri et al. 2005). The 

current climate in the Dakhleh Oasis has little rainfall (0.3mm/year) and moderately low 

humidity, and is believed to be similar to the climate endured by the Roman Period 

inhabitants of the Kellis townsite, though there was likely more precipitation at that time 

(Bleuze et al. 2014; Dupras and Schwarcz 2001; Sutton 1947; Giddy 1987; Stewart et al. 

2003). Isotopic and documentary studies indicate that the population interred at Kellis 2 

consumed an omnivorous diet that included animal proteins, C3 and C4 crops, garden 

vegetables, fruit, nuts, cow/goat dairy, honey, and various herbs/seasonings (See Table 4.1; 

Dupras 1999). Dietary differences were observed between males and females, with males 

consuming more millet or 13C enriched meat (specifically goat or cow) and females 

consuming relatively more C3 grains (such as wheat and barley) (Dupras 1999). Apart from 

dietary changes related to infant weaning, which occurred between the ages of 

approximately 6 months and 3 years (Dupras and Tocheri 2007), isotopic studies did not 

indicate any change in diet between age cohorts in the Kellis 2 population (Dupras 1999). 

As such, it may be assumed that diet remained relatively stable throughout the lives of 

Kellis inhabitants.  
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Table 4.1. Dietary Components at Roman Period Kellis According to Documentary 

and Isotopic Evidence. [Adapted from Dupras 1999: 104] 
Animal Protein Field Crops Garden 

Vegetables 

Fruits Nuts and Seeds Other 

Cows (milk and 

meat) 

Goats (milk and 

meat) 

Pigs 

Donkeys 

Camels 

Pigeons 

Geese 

Ducks 

Eggs 

Fish 

Gazelle 

Oryx 

Hartebeest 

Hare 

Chickens 

Wheat (C3) 

Barley (C3) 

Millet (C4) 

Sesame (C3) 

Turnips 

Garlic 

Legumes  

Onions 

Cucumber 

Gourds 

Artichokes 

Dates 

Doum Palm Nuts 

Figs 

Olives 

Pomegranates 

Jujubes 

Carob 

Apricots 

Peaches 

Pears 

Cherry 

Citron 

Apples 

Almonds 

Walnuts 

Pistachios 

Hazelnuts 

Pine nuts 

Honey 

Coriander 

Cumin 

Dill 

Fennel 

Marjoram 

Mint 

Rosemary 

Safflower 

Thyme 

Mustard 

Ami 

Anise 

Caper 

Laurel 

Pepper 

The large number of well-preserved burials from various age groups excavated from the 

Kellis 2 cemetery makes this site’s adult population an ideal sample for the examination of 

adult dental wear standards. Digital images of adult occlusal dentition were used for dental 

wear analysis. Many of the images analyzed in this project were provided via the internet 

by Dr. Scott Haddow and were taken at the Kellis 2 site in Dakhleh Oasis, Egypt under the 

supervision of Dr. El Molto. Additional photographs taken by Dr. El Molto and Dr. Peter 

Sheldrick were digitized from slide format for this project by slidestodigital.com. Skeletal 

sex and age estimates were determined through the independent and blind analysis of 

separate skeletal indicators by members of the Dakhleh Oasis Project’s Kellis 2 
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bioarchaeological team. For adult skeletons, factors considered in the estimation of age-at-

death included: iliac crest and medial clavicular epiphyseal fusion (Webb and Suchey 

1985), S1-S2 vertebral epiphyseal fusion (McKern and Stewart 1957), symphysis pubis 

morphology (Brooks and Suchey 1990; Suchey and Katz 1986), auricular surface (Lovejoy 

et al. 1985; Meindl and Lovejoy 1989), and rib morphology (İşcan and Loth 1986), cranial 

suture fusion (Buikstra and Ubelaker 1994), dental wear (independently calibrated against 

other skeletal age indicators), antemortem tooth loss, bone mineralization and degenerative 

joint disease. Factors contributing to the estimation of sex included: os coxae ventral arc, 

subpubic concavity, and ischiopubic ramus ridge morphology (Phenice 1969), as well as 

greater sciatic notch, preauricular sulcus morphology (Buikstra and Ubelaker 1994), and 

nuchal crest, mastoid process, supraorbital margin, glabella, and mental eminence 

morphology (Acsádi and Nemeskéri 1970; Buikstra and Ubelaker 1994). 

4.5.2 Sample Selection 

The original research design was planned for analysis of the Dakhleh dentitions housed in 

a regional storage magazine in Mut, Dakhleh Oasis, Egypt. This would have facilitated the 

analysis of the pattern of dental pathology and normal variation in tooth alignment that 

influence the pattern of attrition as discussed previously. However, following major 

political upheavals in Libya and Egypt, permissions for work in the Egyptian Western 

Desert were stopped, precluding this important research. Consequently, the population 

sample used in this study was limited to individuals whose occlusal dentition had been 

previously photographed and whose infra-cranial remains allowed for multifactorial age 

and sex estimation.  Accordingly, individuals included in this study were limited to those 

with skeletal age estimates above 17 years in order to ensure the possibility for skeletal sex 

estimation. Pathology was observed and documented from the available photographs, with 

caries noted as the number of teeth affected in an individual. Individuals with visible 

evidence of leprosy were excluded from this study as this disease is known to affect the 

dentition. Lastly, the sample used in this study was limited to photographs taken 

approximately perpendicular to the occlusal surface of the examined teeth with sufficient 

clarity of enamel-dentine borders.  



145 

 

As a result, the sex and age distribution of the sample was 45 males and 64 females, with 

a total of 109 individuals (see Table 4.2). In addition to these limitations, this study focused 

only on first and second molars, however, some of these molars were excluded due to 

malocclusion, dental caries, post-mortem breakage, or abnormal wear. Some of the molars 

of interest were also unobservable due to ante-mortem or post-mortem tooth loss. First and 

second molars were chosen for analysis due to their resistance to post-mortem tooth loss 

and breakage, their relatively consistent rate of wear, and their long period of wear 

throughout adulthood.  

Table 4.2. Age and Sex Distribution of the Population Sample 

 
17-25 26-35 36-45 >45 Total 

Female 16 15 9 24 64 

Male 12 12 10 11 45 

Total 28 27 19 35 109 

4.5.3 Data Collection Methods 

A new photogrammetric method for the quantification of exposed dentine, first introduced 

by Phillips-Conroy et al. (2000) in a study of Ethiopian and Tanzanian baboons and 

modified for use in humans by Deter (2006, 2009), was investigated in this study. Data 

were collected through the use of the digital image analysis program FIJI (is just ImageJ), 

which is free online. Within this program, there is a freehand selection tool that was used 

to outline the area of the occlusal surface. This area was then measured in pixels using the 

tool Analyze > Measure (See Figure 4.3: Screen shot illustrating the method for 

quantification of the occlusal and exposed dentine surfaces through (Fiji Is Just) ImageJ). 

Although it is possible to calibrate measurements to real scales included in the original 
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images, this was not necessary in this case as the data sought were percentages, and so 

measurements of pixels were sufficient. This method also reduced any challenges that 

might be associated with scales missing from photographs, illegible from glare, or 

positioned in a manner that might make calibration difficult.  

Figure 4.3: Screen shot illustrating the method for quantification of the occlusal and 

exposed dentine surfaces through (Fiji Is Just) ImageJ. Quantified areas are isolated with 

yellow thresholds.  

 

 

Following the measurement of the occlusal surface, this selection was deleted and areas of 

exposed dentine were similarly outlined and measured. Pressing the SHIFT key when 

making selections allowed for the selection of multiple areas at one time. Using the 

measurements produced through this method, the area of the occlusal surface and the 

summed areas of the exposed dentine were cut and pasted into adjacent columns in an 
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Excel sheet. In a third column, a formula was used to automatically calculate the percentage 

of the occlusal surface that is occupied by exposed dentine.  

For the purpose of this study, the lower left first molars (LLM1) were chosen as the 

preferred “primary M1” data since it is usually recommended that dental scores are derived 

from these molars, if possible. Data from the rest of the dentition (adjacent M2, isomere, 

antimere) were collected in direct relation to the selected “primary M1”. As such, unless 

otherwise indicated by tooth code and colour coded data cells in the Excel sheet, other data 

for the same individual was derived from the adjacent M2, the tooth in direct occlusion 

with the primary M1, and the tooth directly opposite the primary M1. In some cases data 

could not be collected from the lower left first molar due to caries, breakage, malocclusion, 

antemortem tooth loss, or post-mortem tooth loss. Following the recommended dental 

scoring methods, the “primary M1” data were collected from the LRM1, ULM1, or URM1 

(in order of preference) and this variation from the protocol was indicated in the Excel 

sheet with the code of the examined tooth (e.g. LRM1) in a colour coded data cell. The 

adjacent M2, isomere, and antimere were then selected according to their direct 

relationship with the “primary M1” variant (e.g. if the primary M1 variant = LRM1, then 

M2 = LRM2 and isomere = URM1). Variation from this pattern was also indicated by the 

inclusion of the examined tooth code and a colour coded data cell in the Excel sheet. Colour 

coding within Excel was done to facilitate identification of variations in data collection 

protocol and removal of selected data for specific calculations. The colours included in the 

Excel sheet include:  

Yellow – Lower left M1 not recordable, “primary M1” data collected from antimere 

(LRM1). 

Orange – “primary M1” data collected from maxilla (ULM1 or URM1). Unless otherwise 

indicated by red data cell, all secondary data (antimere, M2) are in direct relation to the 

new “primary M1”. 

Red – Relationship of tooth not ideal with “primary M1” data (e.g. isomere data collected 

from tooth not in direct occlusion with “primary M1”, or M2 data collected from opposite 

side of “primary M1”). 
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In addition to these data, the percentage of exposed dentine data were collected a second 

time from a randomly selected sample of lower left first molars to assess intra-observer 

error. Another sample of the population was examined by a volunteer, Diane Kirkpatrick, 

who was trained in the collection of the percentage of exposed dentine data to assess inter-

observer error. Given the perceived relationship between antemortem tooth loss and 

chronological age, wherever possible the number of teeth lost antemortem in the maxilla 

and mandible were also separately recorded. Descriptions of pathology were included in 

the Excel sheet and scores for the LLM1 and LLM2 were determined through the use of 

Brothwell (1963a) and Scott (1979) standards. Although the Scott (1979) standard for 

recording dental wear was not designed for age estimation, it is commonly used in the study 

of human dental remains due to its low intra- and inter-observer variability and relative 

precision (Cross et al. 1986). As such, Scott (1979) scores were documented in case of 

future comparative study. Following data collection, independently calculated 

multifactorial skeletal age and sex estimates for each individual were added to this Excel 

sheet to facilitate comparative statistical analysis and data were divided into two Excel 

sheets according to skeletal sex estimates (See Appendix 6). As previously mentioned, 

these skeletal sex and age estimates were determined through the independent and blind 

analysis of separate skeletal indicators by members of the Dakhleh Oasis Project’s Kellis 

2 bioarchaeological team. Factors considered in the estimation of age-at-death included: 

iliac crest and medial clavicular epiphyseal fusion (Webb and Suchey 1985), S1-S2 

vertebral epiphyseal fusion (McKern and Stewart 1957), symphysis pubis morphology 

(Brooks and Suchey 1990; Suchey and Katz 1986), auricular surface (Lovejoy et al. 1985; 

Meindl and Lovejoy 1989), and rib morphology (İşcan and Loth 1986), dental attrition 

(Brothwell 1963a), cranial suture fusion (Buikstra and Ubelaker 1994), antemortem tooth 

loss, bone mineralization and degenerative joint disease. Factors contributing to the 

estimation of sex included: os coxae ventral arc, subpubic concavity, and ischiopubic 

ramus ridge morphology (Phenice 1969), as well as greater sciatic notch, preauricular 

sulcus morphology (Buikstra and Ubelaker 1994), and nuchal crest, mastoid process, 

supraorbital margin, glabella, and mental eminence morphology (Acsádi and Nemeskéri 

1970; Buikstra and Ubelaker 1994). 
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4.5.4 Data Analysis 

Following data collection, using the R statistical program, intra-class correlation tests were 

conducted to assess intra- and inter-observer error for the data collection relating to the 

percentage of exposed dentine in first molars. Paired t-tests were then used to examine the 

differences between first molar antimeres and isomeres. In the case of the isomeres, whose 

t-test results showed statistically significant differences at a 90% confidence interval (as 

per the statistical reporting convention recommended by Dahiru 2008), a simple plot of 

differences was graphed to visualize the differences between isomeres. In the case of 

antimeres, a Tukey’s boxplot was created to identify outliers in the difference between 

antimeres. These outliers were then compared to their associated descriptions of pathology 

to determine if there was a clear pattern that might explain asymmetrical dental wear as a 

consequence of oral pathology. Oral pathology was further investigated through plots of: 

teeth with carious lesions vs. skeletal age and sex, percentage of observed teeth with 

carious lesions vs. skeletal age and sex, and the sum of teeth with carious lesions or 

antemortem tooth loss vs. skeletal age and sex. Pearson’s r correlation scores were 

calculated for each of these plots, demonstrating a linear correlation only between the sum 

of antemortem tooth loss vs. skeletal age and sex. In order to determine whether skeletal 

age was better correlated with antemortem tooth loss (AMTL) alone, another plot and 

Pearson’s r score was calculated for antemortem tooth loss vs. skeletal age and sex. Linear 

regression models were created for the two latter plots and regression diagnostics (i.e. 

Residual standard deviation [RSD], R-squared, F-statistic, Residuals vs. Fitted Values, 

Normal Q-Q, Scale-Location, and Residuals vs. Leverage graphs, Histogram of Residuals, 

and Akaike Information Criterion [AIC]) were conducted and compared. Since the AMTL 

linear regression diagnostics revealed skewed histograms of residuals, polynomial 

regression models were also graphed and they were determined to have a better goodness 

of fit than the linear models through a comparison of regression diagnostics. Pearson’s r, 

plots against skeletal age and sex, linear regression models, and regression diagnostics 

were similarly completed for the percentage of the occlusal surface occupied by exposed 

dentine in first and second molars. Regression diagnostics were used to identify outliers 

that were subsequently removed before creating new versions of the model which were 

compared to determine the most reasonable model.  These diagnostics were also used to 
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note any deviations from normality in residual analysis, as they may provide biased 

regression coefficient estimates. ANCOVA tests were applied to the final AMTL, M1 

wear, and M2 wear linear regression models, as well as the AMTL polynomial regression 

model, to determine the effects of age and sex on occlusal dentine exposure. For each 

regression model, algebraic equations were derived from the estimated coefficients 

provided through the “summary” output in RStudio. Confidence intervals of 95% were also 

calculated for these models by rounding the residual standard deviation to the nearest 0.5 

and doubling it. In accordance with Raschka (2018), Prabhakaran (2017), and Gagneja 

(2018), and due to the small sample size, an 80:20 bootstrapping technique without 

replacement was used to test these models by splitting the data (80:20) to create a new 

model and a test sample, respectively. The difference between the resulting skeletal age 

predictions and the actual skeletal ages was assessed using Pearson’s r and paired t-tests. 

These tests provided a general idea of the accuracy of the new models. In future, upon 

expansion of the reference data, a repetitive bootstrapping without replacement test is 

recommended. 

The percentages of the occlusal surface occupied by exposed dentine were 

photogrammetrically quantified from the Brothwell (1963a) dental wear atlas, in the same 

manner as first and second molar wear in the Kellis 2 population. These data were then 

graphed along with the M1 and M2 wear linear regression models for comparison. As the 

regression models were found to be more specific and perhaps more accurate than the 

Brothwell method of dental age estimation, multiple regression models for different 

combinations of AMTL, M1 wear, and M2 wear were created for males, females, and 

individuals of unknown sex. Once again, regression diagnostics were consulted and an 

80:20 bootstrapping method without replacement was applied, from which the predicted 

skeletal age estimates were compared to actual skeletal age through a paired t-test.  

4.6 Results 

4.6.1 Intra-observer error study of dentine quantification methods 

Google’s random number generator was used to select 30 individuals with quantified 

normal M1 wear from the available dataset for inclusion in a test for intra-observer error. 
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For this purpose, the percentage of exposed dentine was calculated a second time (n = 30) 

and recorded in an “intra-observer error” column for comparison with the original primary 

M1 data in the “% exposed dentine” column (See Appendix 6). Intra-class correlation 

(ICC) was then calculated in RStudio to assess the strength of the correlation between the 

original and secondary (intra-observer) data (See Appendix 5 for all R codes used in this 

dissertation). This test indicated that there is a very strong correlation (99%) between the 

original and intra-observer data at a statistically significant level of p<0.0001.  

4.6.2 Inter-observer error study of dentine quantification methods 

Similar to the above intra-observer test, Google’s random number generator was used to 

select 30 individuals with quantified normal M1 wear from the available data set for 

inclusion in a test for inter-observer error. For this purpose, a volunteer, Diane Kirkpatrick, 

was trained in the quantification method and the identification of exposed dentine. 

Following this training, the volunteer independently quantified and calculated the 

percentage of exposed dentine for the primary first molars from the selected sample of M1 

occlusal photographs (n = 30). These data were recorded in the “inter-observer error” 

column and were then compared to the primary M1 wear data in the “% exposed dentine” 

column (See Appendix 6).  Intra-class correlation (ICC) was then calculated in RStudio to 

assess the correlation between the original and intra-observer data (See Appendix 5 for all 

R codes used in this dissertation). These test results indicate that there is a very strong 

correlation (98%) between the original and intra-observer data at a statistically significant 

level of p<0.0001.  

4.6.3 Wear in Upper vs. Lower Left First Molars 

Paired t-tests were conducted on male, female, and combined isomere data (n = 14) in 

RStudio to determine if there was a significant difference in dental wear between opposing 

maxillary and mandibular first molars (See Appendix 5 for all R codes).  

t-test for Male Isomeres 

Mean of the differences: 6.21, t(6) = 1.59, p-value = 0.1626 

t-test for Female Isomeres 

Mean of the differences: 3.34, t(6) = 1.02, p-value = 0.345 



152 

 

t-test for Combined Male and Female Isomeres 

Mean of the differences: 4.78, t(13) =1.93, p-value = 0.07576 

These paired t-tests showed a statistically significant difference between isomeres in the 

male or female data at a 90% confidence interval (as per the statistical reporting convention 

recommended by Stern and Smith 2001 and Dahiru 2008). This difference was weighted 

toward heavier wear in the lower molars, with only three cases in which the upper molar 

had a higher percentage of exposed dentine (see Figure 4.4). 

Figure 4.4. Simple Plot of Differences between First Molar Isomeres (n = 14) 

 

4.6.4 Wear in Lower Left vs. Lower Right First Molars 

Paired t-tests were conducted on male, female, and combined antimere data (n = 31) to 

determine if there was a significant difference in dental wear between the left and right 

sides of the dentition (See Appendix 5 for all R codes).  

Male Antimeres Dental Wear 

Mean of the differences: 4.85, t(11) = 1.12, p-value = 0.2872 

Female Antimere Dental Wear  

Mean of the differences: 2.25, t(18) = 1.02, p-value = 0.3223 

Combined Male and Female Antimere Dental Wear 

Mean of the differences: 3.26, t(30) = 1.53, p-value = 0.136 
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Results of the above paired t-tests indicate that there is no evidence of a statistically 

significant directional difference between dental wear in lower left and right first molars in 

males, females, and combined samples at a 95% confidence interval. Following this test, 

the absolute difference between lower first molar antimeres was also subjected to a paired 

t-test.  

Absolute Differences between Combined Male and Female Antimere Dental Wear 

Mean of the differences: 6.16, t(30) = 3.24, p-value = 0.002919 

The results of this t-test of the absolute differences between antimeres indicate a 

statistically significant difference between left and right dental wear, independent of 

direction, at a 95% confidence interval. 

4.6.5 Asymmetrical dental wear and oral pathology 

Given that the previous results indicate significant differences in dental wear between 

antimeres, independent of direction, extreme examples of dental wear asymmetry were 

investigated in relation to oral pathology. Outliers of the differences between “Combined 

Male and Female Antimeres” were identified through Tukey’s (1977) rule, which defines 

outliers as data points below Q1-1.5(IQR) and above Q3+1.5(IQR), where Q1 is the data 

value greater than or equal to ¼ of the data points, Q3 is the value greater than or equal to 

¾ of the data points, and IQR is the difference between Q3 and Q1. These outliers are 

represented by singular data points in Tukey’s boxplot (See Figure 4.5). In this case, a 

boxplot of differences between dental wear of antimeres was plotted and the outliers of 

interest represented the largest differences between left and right lower first molars in a 

sample of both males and females. 
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Figure 4.5. Tukey's Boxplot of Differences in Dental Wear between First Molar 

Antimeres (n = 31) 

 

 

The identified outliers were investigated in relation to the associated descriptions of 

pathology (See Table 4.3) to determine whether these differences in wear were related to 

preferred-side mastication resulting from pathology-related pain. This study revealed that 

the outliers were made up of two females (ages 30+/-5 and 30+/-3) and two males (ages 

23+/-3 and 55+/-5).  
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Table 4.3. Dental Pathology and Tooth Loss in Individuals with the Greatest Dental 

Wear Asymmetry 

Only the 30 +/- 3 year old female had more wear in the LRM1 than the LLM1; all others 

had more significant wear in the LLM1. It must be noted though that the occlusal surface 

of the LRM1 was affected by caries; this required the estimation of boundaries for dentine 

exposure during photogrammetry. Consequently, this data point must be discarded. In the 

remaining individuals, the 55+/-5 year old male had abnormally severe wear on his LLM1, 

ULM1, and ULP2, compared to the surrounding teeth. This asymmetrical wear may have 

been the result of the use of teeth as tools in some capacity and cannot, therefore, be a 

consequence of the loss of dental surfaces or dental pain and discomfort. Additionally, the 

30 +/-5 year old female presented with gross caries on the same side of the mandible that 

had more severe dental wear, however, the maxilla was not available for analysis so it is 

unknown if there was also pathology on the opposite side of the dentition. Finally, the 23+/-

3 year old male had an abscess on the side of the mouth with more severe dental wear and 

a carious lesion on the opposite side. Both sides of the upper dentition were also affected 

by the antemortem loss of a tooth. Given that both sides of the dentition were equally 

affected by antemortem tooth loss and dental pathologies with the potential for pain or 

discomfort, a relationship between dental wear asymmetry and sided dental pathology or 

antemortem tooth loss was not observed. Nevertheless, any observed correlation between 

Burial Sex Skeletal 
Age 

Side 
with 
Greater 
Dental 
Wear 

Description of Dental Pathology 

52 F 30+/-3 Right caries LLM1, LRM1, URM1,URM3; abscess 
LRM1; agenesis URM3?; AMTL LM2-3 
(remodeling more complete in right side); 
CARIES ON OCCLUSAL SURFACES OF LLM1 and 
LRM1 

265 M 55+/-5 Left caries ULM1; AMTL LRM2, URM1; ABNORMAL 
WEAR LLM1, ULP2, ULM1 

268 M 23+/-3 Left caries LRM2; AMTL URM1, ULM2; abscess 
ULM2 

409 F 30+/-5 Left gross caries LLM2; NO MAXILLA 
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dental pathology and dental wear asymmetry in this individual would be statistically 

meaningless. As such, the results of this investigation into the relationship between dental 

wear asymmetry and sided dental pathology are inconclusive.  

4.6.6 Dental Pathology and Wear as Indicators of Age 

4.6.6.1 Caries and Antemortem Tooth Loss 

Some dental pathologies are known to increase in prevalence in association with 

chronological age. Two of the more common, observable and discretely quantifiable dental 

pathologies in bioarchaeological contexts are dental caries and antemortem tooth loss 

(AMTL). Given the progressive unidirectional nature of both conditions (i.e. the number 

of teeth affected can only increase over time), it was decided that evidence of these 

conditions would be investigated to test their potential for use in the estimation of age-at-

death. First, the number of teeth affected by carious lesions were plotted in relation to 

skeletal age and sex for each individual (n = 109). The jitter function in RStudio was used 

to introduce some random variation to the x-coordinates in the dataset in order to make 

overlapping data points visible; however, it is important to understand that all original data 

points actually rest on the nearest whole number of teeth with carious lesions.  

Figure 4.6. Number of Carious Teeth in Relation to Skeletal Age and Sex (n = 109) 
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From this graph, it is clear that there is no linear relationship between the number of carious 

teeth and age or sex. This lack of correlation is further confirmed by the calculated 

Pearson’s r scores as they are closer to 0 than to +1 or -1.  

Correlation of Caries and Skeletal Age in Females 

Pearson’s r:  -0.21, t(62) = -1.67, p-value = 0.1001 

Correlation of Caries and Skeletal Age in Males 

Pearson’s r:  0.10, t(43) = 0.67, p-value = 0.506 

Given that caries are known to increase in prevalence in relation to chronological age in 

living individuals, the observed lack of correlation is likely a result of the cross-sectional 

nature of this study and the deleterious effects of antemortem tooth loss. When left 

untreated, carious lesions often expand into the dental pulp and cause an infection, which 

sometimes results in the development of a periapical abscess and eventual antemortem 

tooth loss. Unfortunately, in bioarchaeological studies, the loss of the carious tooth results 

in a loss of information regarding the aetiology of this tooth loss and affects the perceived 

rate of dental caries. This loss of information can be further exacerbated by post-mortem 

tooth loss and/or missing maxillae or mandibulae. One method that has historically been 

used to mitigate these effects in bioarchaeology is to calculate the percentage of teeth with 

carious lesions from all observable teeth (Mummery 1870). For the purpose of this study, 

teeth were counted as “observable” if they had at least half of the crown and occlusal 

surface intact. Six individuals had no observable teeth and were thus excluded from these 

data. The following is a graph of the percentage of all observable teeth with evidence of 

caries in each individual with regard to skeletal age and sex (n = 103). Once again, the jitter 

function in RStudio was used to introduce random variation to x coordinates in the dataset 

in order to better visualize overlapping data points.  
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Figure 4.7. Percentage of Observed Teeth with Carious Lesions in Relation to Skeletal 

Age and Sex (n = 103) 

  

Despite the attempt to mitigate the effects of lost teeth on caries rates, this graph does not 

demonstrate a linear relationship between the percentage of observed teeth with carious 

lesions and age or sex. Again, this lack of correlation is reflected in Pearson’s r scores for 

the data as they are closer to 0 than to +1 or -1.  

Correlation of the Percentage of Observed Teeth with Carious Lesions and Skeletal Age 

in Females 

Pearson’s r:  0.01, t(57) = 0.09, p-value = 0.9285 

Correlation of the Percentage of Observed Teeth with Carious Lesions and Skeletal Age 

in Males 

Pearson’s r: 0.24, t(42) = 1.62, p-value = 0.1135 

Given the apparent lack of correlation between caries and skeletal age in the examined 

sample, it may be concluded that caries are not a useful indicator for the estimation of 

skeletal age at death. However, given that antemortem tooth loss (AMTL) is a known result 

of gross carious lesions, and can significantly affect the observable cases of carious teeth, 

it may be reasonable to investigate whether there is a relationship between skeletal age and 

the sum of teeth affected by AMTL or caries (AMTL+Caries). In fact, this combination of 
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carious teeth and antemortem tooth loss has been proposed as a post-mortem caries index 

(cf. Kelley 1991). For the current study, data were restricted to individuals with both upper 

and lower dental arches to reduce bias (n = 81). The data were tested using Pearson’s r, 

which revealed a strong linear correlation between AMTL+Caries and skeletal age for 

males and females.  

Correlation of Age and Teeth Affected by AMTL or Caries in Females 

Pearson’s r:  0.83, t(44) = 9.72, p-value = 1.599e-12 

Correlation of Age and Teeth Affected by AMTL or Caries in Males 

Pearson’s r:  0.78, t(33) = 7.12, p-value = 3.701e-08 

Given this correlation, linear regression models were graphed for males and females 

(Figure 4.8).  Regression diagnostics (i.e. RSD, MAE, estimated coefficients, R-squared, 

F-statistic, AIC, and Residuals vs. Fitted Values, Normal Q-Q, Scale-Location, and 

Residuals vs. Leverage graphs) were then performed to ensure the goodness of fit of the 

models as well as to assess the predictive strength of the models (See Figure 4.9 andFigure 

4.10). It should be noted that linear regression models assume multivariate normality, a 

linear relationship, little to no multicollinearity, no auto-correlation, and homoscedasticity.  

Figure 4.8. Teeth Affected by AMTL or Caries in Relation to Skeletal Age and Sex (n 

= 81) – Colour intensity of data points reflects number of overlapping points 
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Residual standard deviation: 9.201 on 77 degrees of freedom 

Mean Absolute Error: 7.02 years 

Multiple R-squared:  0.659  

Adjusted R-squared:  0.6457 

F-statistic: 49.6 on 3 and 77 DF, p-value: < 2.2e-16 

AIC: 479.9779 

 

Figure 4.9. Diagnostics for AMTL+Caries Linear Regression Model 

 

Figure 4.10. Histogram of Residuals for AMTL+Caries Linear Regression Model 
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These data indicate that the linear regression model for teeth affected by AMTL or caries 

according to age and sex has a good fit with the data, with a slightly skewed distribution 

of the residuals. This deviation from normality in residual analysis is likely a result of the 

small sample size; however, it is important to note as it may contribute to biased regression 

coefficient estimates. Of course, this model must be compared to a model based on 

antemortem tooth loss alone to determine if the inclusion of caries data improve model 

accuracy. Furthermore, as previously mentioned, antemortem tooth loss progresses over 

time and thus may be an indicator of chronological age on its own.  

Pearson’s r scores for the male and female models confirm that the number of teeth lost 

antemortem is positively correlated with skeletal age and may be a reasonable 

consideration when estimating age-at-death. In a comparison between the Pearson’s r 

scores for AMTL and AMTL+Caries datasets, slightly better correlation is observed 

between AMTL and skeletal age than between AMTL+Caries and skeletal age. As such, 

these data indicate that the inclusion of caries data, even when combined with antemortem 

tooth loss, would not positively contribute to estimations of skeletal age at death. This may 

be a result of the multifactorial aetiology of antemortem tooth loss or perhaps variations in 

dental caries rates within the population and throughout life. 

Correlation of Age and AMTL in Females 

Pearson’s r: 0.85, t(44) =10.89, p-value = 4.507e-14 

Correlation of Age and AMTL in Males 

Pearson’s r: 0.80, t(33) = 7.65, p-value = 8.408e-09 

Comparison of Pearson’s r Scores for Correlation of AMTL/Age and AMTL+Caries/Age 

Data 

Females: 0.85 (AMTL) > 0.83 (AMTL+Caries) 

Males: 0.80 (AMTL) > 0.78 (AMTL+Caries) 

Consequently, antemortem tooth loss was plotted in relation to skeletal age and sex, with 

a separate model created for unknown sex based on all male and female data combined. 

The unknown sex model was calculated based on the combined male and female sample 

because skeletal sex estimation methods are not always conclusive. In all cases, RStudio 

fitted the regression models with 95% confidence intervals for individual points within the 

regression line, resulting in differing confidence intervals along the length of the graph. 
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This was done to provide an alternative to the static confidence interval calculated for 

inclusion with the regression equations. Following creation of the models, regression 

diagnostics (i.e. RSD, MAE, R-squared, F-statistic, AIC, Residuals vs. Fitted Values, 

Normal Q-Q, Scale-Location, Residuals vs. Leverage graphs, and a Histogram of 

Residuals) were examined to ensure goodness of fit and prediction strength. Individuals 

with missing mandibulae or maxillae were excluded from this dataset to avoid bias (n = 

81).  

Linear regression equations were derived from the estimated coefficient output in RStudio 

(See Appendix 5 for R code). The confidence interval included with these equations was 

estimated by rounding the residual standard deviation to the nearest 0.5 and doubling it to 

two standard deviations (CI=95%). Although this confidence interval is uniform across 

both models, the linear regression model shows that the variation in antemortem tooth loss 

number incrementally increases as skeletal age increases; meaning that individuals with 

skeletal ages of 65(+/-5 years) and over show a greater range in the number of antemortem 

teeth lost than younger individuals. As in the previous model, further diagnostic tests were 

performed to determine the strength of correlation between the linear regression model and 

the dataset (Figure 4.12 andFigure 4.13).  
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Figure 4.11. Antemortem Tooth Loss in Relation to Skeletal Age and Sex (n = 81) – 

Colour intensity of data points reflects number of overlapping points 

 

Linear Regression Equations:   Female -> y = 1.68x + 27.55, CI = +/-18 years 

             Male -> y = 1.78x + 29.39, CI = +/-18 years 

 

Residual standard deviation: 8.618 on 77 degrees of freedom 

Mean Absolute Error: 6.61 years 

Multiple R-squared:  0.7009 

Adjusted R-squared: 0.6892 

F-statistic: 60.14 on 3 and 77 DF, p-value: < 2.2e-16 

AIC: 584.685 
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Figure 4.12. Diagnostics for Sex-specific AMTL Linear Regression Model 

 

Figure 4.13. Histogram of Residuals for Sex-specific AMTL Linear Regression Model 
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Figure 4.14. Linear Regression Model for AMTL vs. Skeletal Age for Unknown Sex 

(n = 81) - Colour intensity of data points reflects number of overlapping points 

 

Linear Regression Equation for Unknown Sex -> 

 y = 1.67x + 28.58, CI = +/-18 years 

 

Residual standard deviation: 8.598 on 79 degrees of freedom 

Mean Absolute Error: 6.66 

Multiple R-squared:  0.6945  

Adjusted R-squared:  0.6906  

F-statistic: 179.6 on 1 and 79 DF, p-value: < 2.2e-16 

AIC: 582.3884 
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Figure 4.15. Diagnostics for AMTL Linear Regression Model for Unknown Sex 

 

Figure 4.16. Histogram of Residuals for AMTL Linear Regression Model for 

Unknown Sex 

 

Results from these tests indicate the models are well fitted to the data, with a skewed 

distribution of residuals in both the sex-specific and unknown sex AMTL models (Figure 

4.13 andFigure 4.16). These imbalances of residual distribution indicate that non-linear 

regression models may be more appropriate for these data. Consequently, polynomial 

regression models were graphed (Figure 4.17 andFigure 4.20) and converted to algebraic 

equations, residual standard deviations were identified and converted to confidence 
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intervals, and regression model diagnostics were calculated for comparison with those of 

the linear regression models (Figures Figure 4.18, Figure 4.19, Figure 4.21, and Figure 

4.22). It should be noted that polynomial regression models assume multivariate normality, 

a linear or curvilinear relationship, and independence of variables. 

Figure 4.17. Polynomial Regression Model for AMTL in Relation to Skeletal Age and 

Sex (n = 81) - Colour intensity of data points reflects number of overlapping points 

 

Polynomial Regression Equations:   

Female -> y = 24.38 + 2.91x - 0.05x2, CI = +/- 16 years 

Male -> y = 26.38 + 3.64x - 0.10x2, CI = +/- 16 years 

 

Residual standard deviation: 7.762 on 75 degrees of freedom 

Mean Absolute Error: 5.58 years 

Multiple R-squared:  0.7636 

Adjusted R-squared:  0.7479  

F-statistic: 48.46 on 5 and 75 DF, p-value: < 2.2e-16 

AIC: 569.6164 
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Figure 4.18. Diagnostics for Sex-specific AMTL Polynomial Regression Model 

 

Figure 4.19. Histogram of Residuals for Sex-specific AMTL Polynomial Regression 

Model 
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Figure 4.20. Polynomial Regression Model for AMTL in Relation to Skeletal Age for 

Unknown Sex (n = 81) - Colour intensity of data points reflects number of overlapping 

points 

 

Polynomial Regression Equation for Unknown Sex: 

 y = 25.81 + 2.95x - 0.06x2, CI = +/- 16 years 
 

Residual standard deviation: 7.823 on 78 degrees of freedom 

Mean Absolute Error: 5.77 years 

Multiple R-squared:  0.7503  

Adjusted R-squared:  0.7439  

F-statistic: 117.2 on 2 and 78 DF, p-value: < 2.2e-16 

AIC: 568.0458 
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Figure 4.21. Diagnostics for AMTL Polynomial Regression Model for Unknown Sex 

 

Figure 4.22. Histogram of Residuals for AMTL Polynomial Regression Model for 

Unknown Sex 

 

Having ensured the goodness of fit for the polynomial regression models, the diagnostic 

data for the polynomial and linear regression models for AMTL were compared to 

determine the most suitable dental age predictor.  

Sex-specific Model Comparison: 
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Residual standard deviation: 7.76 (AMTL_polynomial) < 8.62 (AMTL_linear)  

Mean Absolute Error: 5.58 years (AMTL_polynomial) < 6.61 years (AMTL_linear) 

Multiple R-squared: 0.76 (AMTL_polynomial) > 0.70 (AMTL_linear)  

Adjusted R-squared:  0.75 (AMTL_polynomial)> 0.69 (AMTL_linear)  

AIC: 569.62 (AMTL_polynomial) < 584.69 (AMTL_linear)  

Unknown Sex Model Comparison: 

Residual standard deviation: 7.82 (AMTL_polynomial) < 8.60 (AMTL_linear) 

Mean Absolute Error: 5.77 (AMTL_polynomial) < 6.66 (AMTL_linear) 

Multiple R-squared:  0.75 (AMTL_polynomial) > 0.69(AMTL_linear)  

Adjusted R-squared:  0.74 (AMTL_polynomial) > 0.69(AMTL_linear) 

AIC: 568.05 (AMTL_polynomial) < 582.39(AMTL_linear) 

 

In both the sex-specific and unknown sex cases, the polynomial regression models 

outperformed the linear regression models in terms of the residual standard deviation, mean 

absolute error, multiple R-squared, adjusted R-squared, and the Akaike Information 

Criterion (AIC). All of these indicators show that the polynomial regression models have 

a stronger predictive strength than the linear regression models for AMTL and have a better 

fit among the data. As such, the polynomial regression models for AMTL may be the 

preferred sex-specific age estimation model based on an oral pathological indicator. 

Having said this, caution must be taken in using this model as there is a possibility that 

these models are slightly skewed by a paucity of AMTL data from older adults, as indicated 

by the slight skewing of the histogram of residuals. This paucity of data in the older cohorts 

may be particularly influential on the polynomial regression models as they run the risk of 

overfitting to the data. However, it should be noted that Rosing and Kvaal (1998) observed 

a similar polynomial relationship between the number of teeth and age in 1120 dentitions 

from a dental practice in Ulm, Germany. Nevertheless, all of these models should be 

revisited in the future when more data become available. Until then, it may be reasonable 

to use the polynomial regression models for individuals with only AMTL data, however, 

the linear regression models should not be discarded as they can be integrated into multiple 

regression methods with positive effects, as will be demonstrated later in this paper. In the 

meantime, it is worth noting that ANCOVA tests on the sex-specific models reveal that the 

linear regression model has a slightly stronger correlation between AMTL and skeletal age 

than the polynomial model, as the polynomial model is more closely associated to sex than 

the linear model. Nevertheless, in both linear and polynomial models, the correlation 
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between AMTL and skeletal age far outweighs the correlation between AMTL and sex 

(Table 4.4). 

Table 4.4. Analysis of Covariance Tables for AMTL linear and polynomial regression 

models (Skeletal Age vs. Sex and AMTL) 

*** = significant to <0.0001 

Following the above analyses, bootstrapping without replacement tests of the linear and 

polynomial AMTL models were conducted in RStudio using an 80:20 random data split 

for model creation and test data. Through this method, linear regression testing models 

were created from a random selection of 80% of the dataset. The remaining 20% of each 

dataset was input into respective modified regression testing models to predict skeletal 

ages, resulting in the following table of actual and predicted skeletal ages. This ratio was 

chosen because of its popularity in the literature (e.g. Raschka 2018; Prabhakaran 2017; 

Gagneja 2018), as well as the need for a relatively large training sample due to the small 

reference sample size. The dataset was split through the use of a random number generator 

set to select line numbers within the Excel datasheets containing the actual skeletal ages 

for sex-specific or combined sex datasets.  

 

 

 

 

 

 

 Df F value Pr(>F)  Df F value Pr(>F) 

Sex_linear 1 2.6919 0.1049     Sex_polynomial 1 3.318 0.07251 

AMTL_linear 1 177.587 < 2e-16 *** AMTL_polynomial 2 118.418 < 2e-16 *** 

Sex:AMTL_linear 1 0.1338 

  

0.7156     Sex:AMTL_polynomial 2 1.063 0.35056     

Residuals_linear 77   Residuals_polynomial 75   
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Table 4.5. Actual vs. Predicted Skeletal Age (Sex-specific AMTL Linear Regression) 

Line Actual Skeletal Age Predicted Skeletal Age 

1 22 27.29841 

2 55 60.45743 

3 72 82.77873 

12 28 27.29841 

17 40 35.96721 

22 45 37.99413 

26 30 28.63443 

27 40 28.63443 

34 20 28.63443 

36 55 51.57105 

51 45 43.60996 

57 23 28.63443 

66 30 29.03217 

67 55 48.10353 

73 45 51.09772 

76 30 39.43473 

80 50 34.25025 

Mean of the differences: 0.09, t(16) = 0.05, p-value = 0.96 

Table 4.6. Actual vs. Predicted Skeletal Age (AMTL Linear Regression for Unknown Sex) 

Line Actual Skeletal Age Predicted Skeletal Age 

1 22 28.01836 

2 55 57.71054 

3 72 83.90953 

12 28 28.01836 

17 40 36.75135 

22 45 36.75135 

26 30 28.01836 

27 40 28.01836 

34 20 28.01836 

36 55 52.47075 

51 45 41.99115 

57 23 28.01836 

66 30 29.76496 

67 55 48.97755 

73 45 48.97755 

76 30 40.24455 

80 50 33.25816 

Mean of the differences: 0.36, t(16) = 0.19, p-value = 0.85 
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Table 4.7. Actual vs. Predicted Skeletal Age (AMTL Female Polynomial Regressions) 

Line Actual Skeletal Age Predicted Skeletal Age 

1 22 24.45568 

2 72 56.26816 

6 19 24.45568 

28 23 24.45568 

30 70 61.46968 

35 30 27.6626 

39 50 60.33796 

41 23 24.45568 

43 30 43.90616 

45 40 41.5558 

Mean of the differences: -1.00, t(9) = -0.37, p-value = 0.72 

 

 

 

Table 4.8. Actual vs. Predicted Skeletal Age (AMTL Male Polynomial Regressions) 

Line Actual Skeletal Age Predicted Skeletal Age 

1 55 61.81492 

3 29 24.86593 

6 45 41.24788 

20 45 41.24788 

25 45 38.33913 

28 55 31.97017 

33 55 60.22528 

Mean of the differences: 4.18, t(6) = 1.13, p-value = 0.30 
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Table 4.9. Actual vs. Predicted Skeletal Age (AMTL Polynomial Regression for 

Unknown Sex) 

Line Actual Skeletal Age Predicted Skeletal Age 

1 22 24.38269 

2 55 60.73889 

3 72 52.67549 

12 28 24.38269 

17 40 40.09349 

22 45 40.09349 

26 30 24.38269 

27 40 24.38269 

34 20 24.38269 

36 55 57.83555 

51 45 47.51285 

57 23 24.38269 

66 30 27.85937 

67 55 55.06369 

73 45 55.06369 

76 30 45.20699 

80 50 34.31095 

Mean of the differences: 1.31, t(16) = 0.60, p-value = 0.56 

Paired t-tests of the actual and predicted skeletal ages estimated through the 80:20 

bootstrapping without replacement technique revealed relatively low means of differences 

in all of the linear and polynomial regression models. Unfortunately, due to the small 

sample sizes, all t-values were statistically insignificant. 

4.6.6.2 Dental Wear 

Following the above study of discrete oral pathologies in relation to skeletal sex and age, 

continuous data from dental wear was investigated in relation to skeletal age and sex 

through a study of the percentage of occlusal dentine exposure in first and second molars. 

The identified outliers from the study of asymmetrical dental wear among antimeres 

(Section 4.6.5) were excluded from the data used for these models. Pearson’s r scores 

indicate that there is a strong positive correlation between first and second molar wear and 

skeletal age.  
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Correlation of M1 Wear and Skeletal Age 

Pearson’s r: 0.84, t(55) = 11.33, p-value = 5.321e-16 

Correlation of M2 Wear and Skeletal Age 
Pearson’s r: 0.82, t(48) = 9.95, p-value = 2.967e-13 

Beginning with M1 wear, regression diagnostic tests (i.e. Residuals vs. Fitted Values, 

Normal Q-Q, Scale-Location, and Residuals vs. Leverage graphs, see Figure 4.24 and 

Figure 4.25) were used to identify three individuals with abnormally low dental wear for 

their skeletal age and one individual with abnormally high dental wear for her skeletal age. 

Linear regression models of M1 wear, with and without these outliers, were compared for 

goodness-of-fit resulting in final models (n = 57) based on linear regression that excluded 

the aforementioned outliers (Figure 4.23 and Figure 4.26). Linear regression equations and 

95% confidence intervals were calculated in the same manner as was described in the 

creation of the linear regression models for antemortem tooth loss. As previously 

mentioned, it should be noted that linear regression models assume multivariate normality, 

a linear relationship, little to no multicollinearity, no auto-correlation, and 

homoscedasticity. 

Figure 4.23. Percentage of Exposed Dentine in M1 in Relation to Skeletal Age and Sex 

(n = 57) - Colour intensity of data points reflects number of overlapping points 

 



177 

 

Linear Regression Equations: Female -> y = 0.36x + 22.29, CI = +/-13 years 

        Male -> y = 0.32x + 22.84, CI = +/-13 years 

 

Residual standard deviation: 6.079 on 53 degrees of freedom 

Mean Absolute Error: 4.14 years  

Multiple R-squared:  0.7019 

Adjusted R-squared:  0.685  

F-statistic: 41.59 on 3 and 53 DF, p-value: 5.859e-14 

AIC: 373.3698 

 

Figure 4.24. Diagnostics for Sex-specific M1 Linear Regression Model 

 

Figure 4.25. Histogram of Residuals for Sex-specific M1 Linear Regression Model 
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Figure 4.26. Percentage of Exposed Dentine in M1 in Relation to Skeletal Age for 

Unknown Sex (n = 57) - Colour intensity of data points reflects number of overlapping 

points 

 
Linear Regression Equation for Unknown Sex:  

 y = 0.34x + 22.58, CI = +/-12 years 

 

Residual standard deviation: 5.987 on 55 degrees of freedom 

Mean Absolute Error: 4.19 years 

Multiple R-squared: 0.7 

Adjusted R-squared: 0.6945  

F-statistic: 128.3 on 1 and 55 DF, p-value: 5.321e-16 

AIC: 369.7343 
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Figure 4.27. Diagnostics for M1 Linear Regression Model for Unknown Sex 

 

Figure 4.28. Histogram of Residuals for M1 Linear Regression Model for Unknown 

Sex 

 

These final models (Figure 4.23 and Figure 4.26) were found to be well fitted with the 

data and approaching normal distributions of residuals (Figure 4.25 and Figure 4.28). 

The slight skew in the residual analyses would likely be resolved through expansion of the 

reference dataset, however it may result in biased, and therefore problematic, regression 

coefficient estimates. Similar to the AMTL models, it should be noted that variation in the 
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percentage of exposed occlusal dentine in first molars increases with skeletal age. An 

Analysis of Covariance (ANCOVA) test was conducted on the sex-specific linear model 

of M1 wear to quantify the effects of the dependent variable (i.e. skeletal age) on the 

numeric independent variable (i.e. percentage dentine exposure) and the categorical 

independent variable (i.e. sex). 

Table 4.10. Analysis of Covariance Table (Skeletal Age vs. Sex and M1 Dental Wear)  

 df Sum Sq Mean Sq F value Pr(>F) Significance 

Sex 1 183.5    183.5    4.9640    0.03015 p<0.05 

M1 1 4416.7   4416.7   119.5056 3.404e-15 p<0.0001 

Sex:M1 1 11.6     11.6     0.3132    0.57806     p<1 

Residuals 53 1958.8     37.0                           

The results indicate that M1 dental wear is significantly affected by skeletal age 

(ANCOVA: F=119.5056, df=1, 53, p<0.0001). The effect of sex and skeletal age was also 

statistically significant at a 95% confidence interval (ANCOVA: F=4.9640, df=1, 53, 

p<0.05), confirming the need for sex-specific age estimation models. However, the 

interaction between sex and M1 dental wear did not show statistically significant effect on 

skeletal age (ANCOVA: F=0.57806, df=1, 53, p<1). 

As previously applied to the AMTL regression models, a bootstrapping without 

replacement technique was used to test the linear M1 wear models. Using RStudio, the 

dataset was randomly split 80:20 for model creation and test data, respectively (Raschka 

2018; Prabhakaran 2017; Gagneja 2018; See Appendix 5 for all R codes). Through this 

method, a sex-specific and unknown sex linear regression testing models were created from 

a random selection of 80% of the dataset. The remaining 20% of the dataset were input into 

the linear regression testing models, resulting in the following tables of actual skeletal age 

and skeletal age as predicted by the sex-specific and unknown sex M1 wear linear 

regression testing models.  
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Table 4.11. Actual vs. Predicted Skeletal Age According to the Sex-specific M1 Wear 

Model 

Line Actual Skeletal Age Predicted Skeletal Age 

1 22 24.99171 

2 55 37.71501 

5 45 42.91524 

7 20 22.98088 

10 45 36.64586 

11 40 39.98666 

17 40 39.74647 

21 20 25.02940 

22 28 27.97184 

34 45 42.58197 

44 30 26.54788 

55 23 25.31230 

Mean of the differences: 1.71, t(11) = 0.98, p-value = 0.35 

Table 4.12. Actual vs. Predicted Skeletal Age according to the M1 Wear Model for 

Unknown Sex 

Line Actual Skeletal Age Predicted Skeletal Age 

1 22 24.99227 

4 29 28.14803 

8 20 26.07502 

20 23 23.01548 

26 20 23.77414 

31 23 29.93029 

37 45 30.84617 

39 55 55.22186 

40 27 22.71237 

42 20 23.69070 

51 27 38.02530 

52 30 23.04306 

53 22 23.75838 

54 22 24.75029 

55 23 25.31762 

56 50 57.84854 

57 28 26.83005 

Mean of the differences: -1.29, t(16) = -0.90, p-value = 0.3816 
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A paired t-test comparing the actual and predicted skeletal ages according to the sex-

specific M1 wear model revealed a mean of the differences of 1.71, with a t-value of 0.98 

at 11DF and a p-value of 0.3481. The paired t-test comparing the actual and predicted 

skeletal ages according to the M1 wear model for unknown sex revealed a mean of the 

differences of -1.29, with a t-value of -0.90 at 16DF and a p-value of 0.3816. The high p-

values indicate that the t-value is not statistically significant, likely as a result of the small 

sample size.  

All of the processes applied to first molar dental wear were similarly applied to second 

molar dental wear. Through regression diagnostics, five outlying data points were 

identified and removed from the dataset to reduce bias (See Figure 4.30, Figure 4.31, 

Figure 4.33, and Figure 4.34 for diagnostics of final M2 models). All of these data points 

represented individuals with abnormally low dental wear on the M2 in relation to skeletal 

age. Linear regression models, with and without these outliers, were compared for 

goodness-of-fit resulting in final models (n = 50) that excluded the aforementioned outliers 

(Figure 4.29 and Figure 4.32). As in the other models, linear regression equations were 

determined through the estimated coefficient output in RStudio. Also the confidence 

interval included with these equations was estimated by rounding the residual standard 

deviation to the nearest whole number and doubling it to two standard deviations 

(CI=95%).  
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Figure 4.29. Percentage of Exposed Dentine in M2 in Relation to Skeletal Age and Sex 

(n = 50) - Colour intensity of data points reflects number of overlapping points 

 

 

Linear Regression Equations:        

 Female -> y= 2.57x + 23.55, CI = +/-10 years   

       Male -> y=0.28x + 26.12, CI = +/- 10 years 

 

Residual standard deviation: 4.579 on 46 degrees of freedom 

Mean Absolute Error: 3.53 years 

Multiple R-squared:  0.7053 

Adjusted R-squared:  0.6861  

F-statistic: 36.7 on 3 and 46 DF, p-value: 2.903e-12 

AIC: 299.8677 
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Figure 4.30. Diagnostics for Sex-specific M2 Linear Regression Model 

 

Figure 4.31. Histogram of Residuals for Sex-specific M2 Linear Regression Model 
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Figure 4.32. Percentage of Exposed Dentine in M2 in Relation to Skeletal Age for 

Unknown Sex (n = 50) - Colour intensity of data points reflects number of overlapping 

points 

 

 

Regression Equation for Unknown Sex: y = 0.27x + 24.93, CI = +/- 10 years 

 

Residual standard deviation: 4.718 on 48 degrees of freedom 

Mean Absolute Error: 3.76 years 

Multiple R-squared:  0.6735 

Adjusted R-squared:  0.6667  

F-statistic: 99.04 on 1 and 48 DF, p-value: 2.967e-13 

AIC: 300.9893 
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Figure 4.33. Diagnostics for M2 Linear Regression Model for Unknown Sex 

 

Figure 4.34. Histogram of Residuals for M2 Linear Regression Model for Unknown 

Sex 

 

Both models were found to be well fitted with a slightly skewed distribution of residuals 

(Figure 4.31 and Figure 4.34). This deviation from normality in residual analysis is likely 

a result of the small sample size; however, it is important to note as it may contribute to 

biased regression coefficient estimates. An Analysis of Covariance (ANCOVA) test was 
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conducted on the sex-specific model to quantify the effects of the dependent variable (i.e. 

skeletal age) on the numeric independent variable (i.e. percentage dentine exposure) and 

the categorical independent variable (i.e. sex). 

Table 4.13. Analysis of Covariance Table (Skeletal Age vs. Sex and M2 Dental Wear)  

 df Sum Sq Mean Sq F value Pr(>F) Significance 

Sex 1 176.87 176.87 8.4363 0.005635 p<0.01 

M2 1 2126.89 2126.89 101.4494 3.236e-13 p<0.0001 

Sex:M2 1 4.66 4.66 0.2224 0.639428 p<1 

Residuals 46 964.39 20.97    

These results indicate that sex (ANCOVA: F=8.4363, df=1, 46, p<0.01) and M2 wear 

(ANCOVA: F=101.4494, df=1, 46, p<0.0001) had statistically significant correlations with 

skeletal age. However, the interaction between sex and M2 wear was not found to be 

significantly correlated with skeletal age (ANCOVA: F=0.2224, df=1, 46, p<1).  

Following the ANCOVA test, bootstrapping without replacement was conducted on the 

linear M2 models in RStudio using the an 80:20 random data split for model creation and 

test data (Raschka 2018; Prabhakaran 2017; Gagneja 2018). Through this method, a linear 

regression testing model was created from a random selection of 80% of the dataset. The 

remaining 20% of the dataset were input into the linear regression testing models, resulting 

in the following tables of actual skeletal age and skeletal age as predicted by the sex-

specific and unknown sex M2 linear regression testing models.  

Table 4.14. Actual vs. Predicted Skeletal Age as per the Sex-Specific M2 Wear Model 

Line Actual Skeletal Age Predicted Skeletal Age 

1 22 23.38012 

4 29 26.77608 

8 28 25.06274 

20 20 26.77608 

26 23 23.38012 

31 25 29.20359 

37 20 26.77608 

39 30 26.12057 

40 23 23.38012 

42 23 23.38012 

Mean of the differences: -1.12, t(9) = -0.94, p-value = 0.3704 
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Table 4.15. Actual vs. Predicted Skeletal Age as per the M2 Wear Model for Unknown 

Sex 

Line Actual Skeletal Age Predicted Skeletal Age 

1 22 25.35979 

4 29 25.35979 

8 28 27.16989 

20 20 25.35979 

26 23 25.35979 

31 25 27.75874 

37 20 25.35979 

39 30 28.30785 

40 23 25.35979 

42 23 25.35979 
Mean of the differences: -1.78, t(9) = -1.90, p-value = 0.08945 

A paired t-test comparing the actual and predicted skeletal ages according to the sex-

specific model revealed a mean of the differences of -1.12, with a t-value of -0.94 at 9DF 

and a p-value of 0.3704. Meanwhile, the paired t-test comparing the actual and predicted 

skeletal ages according to the unknown sex model revealed a mean of the differences of -

1.78, with a t-value of -1.90 at 9DF and a p-value of 0.08945. The high p-values indicate 

that the t-value is not statistically significant, likely as a result of the small sample size.  

4.6.6.3 Comparing observed dental wear at Kellis 2 to the existing 
dental wear standards 

The quantified M1 and M2 wear models were compared to quantifications of the dental 

wear visualized in Brothwell’s (1963a) standard for adult dental age estimation. Since 

Brothwell’s standard provided multiple dental wear examples for each age cohort, the 

minimums and maximums of the age cohort and the quantified dental wear were used to 

graph the photogrammetrically quantified Brothwell standard (See green boxes in Figure 

4.35. A Photogrammetric Comparison of the Brothwell (1963a) Dental Age Estimation 

Standard and the New M1 Wear Linear Regression Modelsand Figure 4.36. A 

Photogrammetric Comparison of the Brothwell (1963a) Dental Age Estimation Standard 

and the New M2 Wear Linear Regression Models. The linear regression models for M1 

and M2 wear were graphed for a visual comparison (Figure 4.35 and Figure 4.36).  
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Figure 4.35. A Photogrammetric Comparison of the Brothwell (1963a) Dental Age 

Estimation Standard and the New M1 Wear Linear Regression Models (n = 57) 

 

 

Figure 4.36. A Photogrammetric Comparison of the Brothwell (1963a) Dental Age 

Estimation Standard and the New M2 Wear Linear Regression Models (n = 50) 

 

Through visualization of these data, it is apparent that there are gaps in Brothwell’s dental 

wear representation with regard to the percentage of occlusal dentine exposed. It is also 
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clear that the linear regression models are far more precise than the Brothwell standard and 

may be helpful in producing more sensitive estimations of age, particularly for older 

individuals. In the M1 graph, it is apparent that the same percentage of dentine exposure 

relates to slightly lower skeletal age estimates, on average, in the first three Brothwell age 

estimation ranges when compared to the linear regression models. In the M2 graph, the 

same percentage of dentine exposure relates to slightly lower skeletal age estimates in the 

youngest Brothwell cohort that transition to slightly higher skeletal age estimates in the 

oldest Brothwell age cohort in comparison with the associated linear regression models. 

Looking at the specific data points, this has translated to many underestimates of skeletal 

age from Brothwell’s M1 wear standard and a transition from underestimation to 

overestimation of skeletal age from Brothwell’s M2 wear standard. Given that the linear 

models were based on the data at hand, they are designed for goodness of fit with the data 

and therefore do not have such dramatic biases. Of course, it is possible that the linear 

regression models are slightly biased in relation to chronological age due to their reliance 

on skeletal age estimates. This complicates comparison with the Brothwell standard, which 

is presented as an estimator of chronological age. Unfortunately, modern Egyptian 

populations have dissimilar rates of dental wear from ancient Egyptian populations due to 

differences in diet and food preparation. As such, until age estimation methods for human 

remains significantly improve, particularly in the older cohorts, the accuracy of age 

estimation regression models for ancient Egyptians will continue to be based on skeletal 

age and therefore be at risk for systematic bias. Fortunately, skeletal age estimates based 

on methods not developed through the principles of the Rostock Manifesto (i.e. based on 

known age reference population and calculated using Bayesian statistics) are known to 

underestimate age in older cohorts as estimates tend toward the mean (Hoppa and Vaupel 

2002). Consequently, it may be inferred that the use of skeletal age estimates in the creation 

of the linear regression models may result in an underestimation of skeletal ages when 

using these regression models. If this is true, and the regression models for the 

chronological age of the Kellis 2 population can be assumed to be higher on the skeletal 

age scale than those depicted above, then the Brothwell method may actually underestimate 

chronological age in the 17-45 year cohorts for M1 wear in the Kellis 2 population to a 

greater degree than is depicted in Figure 4.35. Similarly, the Brothwell method may also 
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underestimate chronological age in the 17-25 year cohort for M2 wear in the Kellis 2 

population more significantly than is observable in Figure 4.36. 

4.6.6.4 Multiple Regression Models for the Estimation of Age  

 

In an attempt to refine the age estimation methods, multiple regression models were created 

for all combinations of first molar wear (M1), second molar wear (M2), and antemortem 

tooth loss (AMTL) for males, females, and individuals of unknown sex. Regression 

diagnostics (i.e. RSE, Mean Absolute Error, R-squared, F-statistic, AIC, histogram of 

residuals, Residuals vs. Fitted, Normal Q-Q, Scale-Location, and Residuals vs. Leverage) 

were performed to ensure goodness of fit and predictive value of each model. The results 

of the RSE, Mean Absolute Error, R-squared, F-statistic, and AIC are presented along with 

their associated multiple regression equations and calculated confidence intervals below. 

It should be noted that multiple regression models assume multivariate normality, a linear 

relationship, no multicollinearity, and homoscedasticity. As in the previous regression 

models, an 80:20 bootstrapping technique without replacement was then applied to each 

model (Raschka 2018; Prabhakaran 2017; Gagneja 2018). The predicted skeletal ages 

derived from the bootstrapped model were then compared to the actual skeletal age values 

through a paired t-test to demonstrate the predictive value of each model.  

 

The following multiple regression equation was developed for use with first and second 

molar dental wear data as well as antemortem tooth loss in males. A confidence interval of 

+/-9 years was calculated and a paired t-test of bootstrapped data gave results of t(6) = 1.34, 

p = 0.2296. These results are statistically insignificant; however, the mean of differences 

between actual and predicted skeletal age is 7.27 years, which is within the calculated 

confidence interval.  

 

M1+M2+AMTL (Males) ->  

y = 0.23(M1) + 0.03(M2) + 1.03(AMTL) + 21.70, CI = +/- 9 years     

Residual standard deviation: 4.054 on 13 degrees of freedom 

Mean Absolute Error: 3.25 years 

Multiple R-squared:  0.8307  
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Adjusted R-squared:  0.7916  

F-statistic: 21.26 on 3 and 13 DF, p-value: 2.72e-05 

AIC: 54.25035 

Table 4.16. Actual vs. Predicted Skeletal Age as per the M1+M2+AMTL Multiple 

Regression Model for Males 

Line Actual Skeletal Age Predicted Skeletal Age 

1 55 16.86195 

2 28 19.35500 

3 29 25.26267 

13 24 21.05431 

14 30 29.89427 

17 20 26.56549 

43 28 24.13897 

Mean of the differences: 7.27, t(6) = 1.34, p-value = 0.2296 

 

This next multiple regression equation was developed for use with first and second molar 

dental wear data as well as antemortem tooth loss in females. A confidence interval of +/-

4 years was calculated and a paired t-test of bootstrapped data gave results of t(6) = 0.51, 

p = 0.6294. These results do not show strong confidence in the t value due to the small 

sample size; however, the mean of differences between actual and predicted skeletal ages 

is 0.66 years. This is well within the calculated confidence interval.  

M1+M2+AMTL (Females) ->  

 y = -0.16(M1) + 1.01(M2) – 4.44(AMTL) + 22.11, CI = +/-4 years 

Residual standard deviation: 1.875 on 8 degrees of freedom 

Mean Absolute Error: 1.38 years    

Multiple R-squared:  0.7611 

Adjusted R-squared:  0.6715  

F-statistic: 8.494 on 3 and 8 DF, p-value: 0.00721 

AIC: 26.41295 

Table 4.17. Actual vs. Predicted Skeletal Age as per the M1+M2+AMTL Multiple 

Regression Model for Females 

Line Actual Skeletal Age Predicted Skeletal Age 

1 22 20.36403 

6 19 20.10966 

9 28 23.23229 

26 23 21.46454 

30 30 35.91823 

46 22 21.17345 

50 23 20.15060 

Mean of the differences: 0.66, t(6) = 0.51, p-value = 0.6294 
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The next multiple regression equation was developed for use with first and second molar 

dental wear data, as well as antemortem tooth loss data, in individuals of unknown sex. A 

confidence interval of +/-7 years was calculated and a paired t-test of bootstrapped data 

gave results of t(5) = 1.45, p = 0.2066. These results are statistically insignificant; however, 

the mean of differences between actual and predicted skeletal age is 6.45, which falls within 

the calculated confidence interval.  

M1+M2+AMTL (Unknown Sex) ->  

             y = 0.24(M1) + 0.03(M2) + 1.02(AMTL) + 21.07, CI = +/- 7 years 

 

Residual standard deviation: 3.294 on 25 degrees of freedom 

Mean Absolute Error:  2.68 years 

Multiple R-squared:  0.8278 

Adjusted R-squared:  0.8072  

F-statistic: 40.06 on 3 and 25 DF, p-value: 1.061e-09 

AIC: 114.1931 

Table 4.18. Actual vs. Predicted Skeletal Age as per the M1+M2+AMTL Multiple 

Regression Model for Unknown Sex 

Line Actual Skeletal Age Predicted Skeletal Age 

1 22 22.70786 

2 55 27.10125 

4 28 21.21721 

26 30 24.98119 

27 40 37.07117 

49 23 25.69477 

Mean of the differences: 6.54, t(5) = 1.45, p-value = 0.2066 

 

The following multiple regression equation was developed for use with first molar wear 

and antemortem tooth loss data in males. A confidence interval of +/-11 years was 

calculated and a paired t-test of bootstrapped data gave results of t(6) = 0.65, p = 0.5421. 

These results do not show confidence in the t value due to the small sample size; however, 

the mean of differences between actual and predicted skeletal ages is 2.19 years. This is 

well within the calculated confidence interval.  

M1+AMTL (Males) -> y = 23.24 + 0.21(M1) + 1.04(AMTL), CI = +/- 11 years 

 

Residual standard deviation: 5.176 on 21 degrees of freedom 

Mean Absolute Error: 3.92 years 

Multiple R-squared:  0.785  

Adjusted R-squared:  0.7645  

F-statistic: 38.33 on 2 and 21 DF, p-value: 9.802e-08 
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AIC: 151.819 

Table 4.19. Actual vs. Predicted Skeletal Age as per the M1+AMTL Multiple 

Regression Model for Males 

Line Actual Skeletal Age Predicted Skeletal Age 

1 55 42.11582 

2 28 22.73382 

5 40 43.75519 

27 25 28.35780 

32 45 29.88427 

40 45 52.42030 

42 50 53.42676 

Mean of the differences: 2.19, t(6) = 0.65, p-value = 0.5421 

 

The next multiple regression equation was developed for use with first molar dental wear 

and antemortem tooth loss data from females. A confidence interval of +/-6 years was 

calculated and a paired t-test of bootstrapped data gave results of t(5) = -0.82, p = 0.4497. 

These results are statistically insignificant; however, the mean of differences between 

actual and predicted skeletal age is -0,80, which falls within the calculated confidence 

interval.  

 

M1+AMTL (Females) ->  

y = 20.77 + 0.27(M1) + 1.30(AMTL), CI = +/- 6 years    

 

Residual standard deviation: 2.628 on 18 degrees of freedom 

Mean Absolute Error: 2.09 years 

Multiple R-squared:  0.952  

Adjusted R-squared:  0.9467  

F-statistic: 178.6 on 2 and 18 DF, p-value: 1.346e-12 

AIC: 104.9468 
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Table 4.20. Actual vs. Predicted Skeletal Age as per the M1+AMTL Multiple 

Regression Model for Females 
Line Actual Skeletal Age Predicted Skeletal Age 

1 22 22.91336 

6 19 23.21272 

9 28 26.04078 

26 23 21.61819 

30 30 32.85877 

50 23 23.16454 

Mean of the differences: -0.80, t(5) = -0.82, p-value = 0.4497 

 

The following multiple regression equation was developed for use with first molar wear 

and antemortem tooth loss data in individuals of unknown sex. A confidence interval of 

+/-9 years was calculated and a paired t-test of bootstrapped data gave results of t(8) = 0.38, 

p = 0.7109. These results do not show confidence in the t value due to the small sample 

size; however, the mean of differences between actual and predicted skeletal ages is 0.48 

years. This is well within the calculated confidence interval.  

M1+AMTL (Unknown Sex) ->  y = 22.10 + 0.23(M1) + 1.18(AMTL), CI = +/- 9 years 

 

Residual standard deviation: 4.238 on 42 degrees of freedom 

Mean Absolute Error: 3.15 years 

Multiple R-squared:  0.8564  

Adjusted R-squared:  0.8495  

F-statistic: 125.2 on 2 and 42 DF, p-value: < 2.2e-16 

AIC: 262.5721 

Table 4.21. Actual vs. Predicted Skeletal Age as per the M1+AMTL Multiple 

Regression Model for Unknown Sex 
Line Actual Skeletal Age Predicted Skeletal Age 

1 22 23.56684 

2 55 54.24015 

4 28 23.97497 

16 40 39.57663 

18 40 43.50033 

26 30 25.39849 

27 40 35.17079 

45 40 39.00589 

49 23 29.22075 

Mean of the differences: 0.48, t(8) = 0.38, p-value = 0.7109 
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The next multiple regression equation was developed for use with second molar dental 

wear and antemortem tooth loss data from males. A confidence interval of +/-11 years was 

calculated and a paired t-test of bootstrapped data gave results of t(4) = 2.21, p = 0.09186. 

These results are statistically insignificant; however, the mean of differences between 

actual and predicted skeletal age is 4.23 years, which falls within the calculated confidence 

interval.  

M2+AMTL (Males) -> y = 25.37 - 0.03(M2) + 1.90(AMTL), CI = +/-11 years 

Residual standard deviation: 5.338 on 18 degrees of freedom 

Mean Absolute Error: 3.91 years 

Multiple R-squared:  0.6529  

Adjusted R-squared:  0.6143 

F-statistic: 16.93 on 2 and 18 DF, p-value: 7.32e-05 

AIC: 134.6982 

Table 4.22. Actual vs. Predicted Skeletal Age as per the M2+AMTL Multiple 

Regression Model for Males 

 

 

 

 

 

 

 

Mean of the differences: 4.23, t(4) = 2.21, p-value = 0.09186 

 

The following multiple regression equation was developed for use with second molar wear 

and antemortem tooth loss data from females. A confidence interval of +/-5 years was 

calculated and a paired t-test of bootstrapped data gave results of t(6) = 1.07, p = 0.3241. 

These results do not show confidence in the t value due to the small sample size; however, 

the mean of differences between actual and predicted skeletal ages is 0.97 years. This is 

well within the calculated confidence interval.  

 

M2+AMTL (Females) -> y = 21.78 + 0.28(M2) + 0.91(AMTL), CI = +/-5 years      

 

Residual standard deviation: 2.074 on 11 degrees of freedom 

Mean Absolute Error: 1.55 years 

Multiple R-squared:  0.7164  

Adjusted R-squared:  0.6648  

Line Actual Skeletal Sex Predicted Skeletal Sex 

1 55 45.66686 

2 28 26.66192 

22 39 33.05085 

27 25 26.49539 

28 35 28.99278 
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F-statistic: 13.89 on 2 and 11 DF, p-value: 0.0009774 

AIC: 64.78183 

Table 4.23. Actual vs. Predicted Skeletal Age as per the M2+AMTL Multiple 

Regression Model for Females 

Line Actual Skeletal Age Predicted Skeletal Age 

1 22 21.20000 

6 19 21.20000 

9 28 23.43276 

26 23 21.20000 

30 30 31.96606 

36 30 28.03644 

50 23 21.20000 

Mean of the differences: 0.97, t(6) = 1.07, p-value = 0.3241 

 

The next multiple regression equation was developed for use with second molar wear and  

antemortem tooth loss data from individuals of unknown sex. A confidence interval of +/-

10 years was calculated and a paired t-test of bootstrapped data gave results of t(6) = 0.10, 

p = 0.9217. These results are statistically insignificant; however, the mean of differences 

between actual and predicted skeletal age is 0.39 years, which falls well within the 

calculated confidence interval.  

 

 

M2+AMTL (Unknown Sex) ->  

y = 23.93 + 0.002(M2) + 1.91(AMTL), CI = +/- 10 years 

 

Residual standard deviation: 4.544 on 32 degrees of freedom 

Mean Absolute Error: 3.34 years 

Multiple R-squared:  0.6468,  

Adjusted R-squared:  0.6247  

F-statistic:  29.3 on 2 and 32 DF, p-value: 5.876e-08 

AIC: 210.1538 
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Table 4.24. Actual vs. Predicted Skeletal Age as per the M2+AMTL Multiple 

Regression Model for Unknown Sex 

Line Actual Skeletal Age Predicted Skeletal Age 

1 22 22.81015 

2 55 69.27939 

4 28 25.55462 

26 30 22.80369 

27 40 22.78368 

49 23 28.29544 

74 30 33.76148 

Mean of the differences: 0.39, t(6) = 0.10, p-value = 0.9217 

 

The following multiple regression equation was developed for use with first and second  

molar wear in males. A confidence interval of +/-9 years was calculated and a paired t-test 

of bootstrapped data gave results of t(2) = 1.15, p = 0.3704. These results do not show 

confidence in the t value due to the small sample size; however, the mean of differences 

between actual and predicted skeletal ages is 8.01 years. This is within the calculated 

confidence interval.  

M1+M2 (Males) -> y = 21.21 + 0.28(M1) + 0.15(M2), CI = +/- 9 years            

Residual standard deviation: 4.401 on 18 degrees of freedom 

Mean Absolute Error: 3.35 years 

Multiple R-squared:  0.7438  

Adjusted R-squared:  0.7153 

F-statistic: 26.13 on 2 and 18 DF, p-value: 4.753e-06 

AIC: 126.5963 

Table 4.25. Actual vs. Predicted Skeletal Age as per the M1+M2 Multiple Regression 

Model for Males 

Line Actual Skeletal Age Predicted Skeletal Age 

1 55 33.71688 

2 28 22.80879 

27 25 27.43647 

Mean of the differences: 8.01, t(2) = 1.15, p-value = 0.3704 

 

The next multiple regression equation was developed for use with first and second molar 

dental wear in females. A confidence interval of +/-6 years was calculated and a paired t-
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test of bootstrapped data gave results of t(6) = 0.49, p = 0.6397. These results are 

statistically insignificant; however, the mean of differences between actual and predicted 

skeletal age is 0.65 years, which falls well within the calculated confidence interval.  

M1+M2 (Females) -> y = 22.18 + 0.06(M1) + 0.26(M2), CI = +/- 6 years      

Residual standard deviation: 2.816 on 13 degrees of freedom 

Mean Absolute Error: 1.78 years 

Multiple R-squared:  0.4274  

Adjusted R-squared:  0.3393  

F-statistic: 4.851 on 2 and 13 DF, p-value: 0.02668 

AIC: 83.21183 

Table 4.26. Actual vs. Predicted Skeletal Age as per the M1+M2 Multiple Regression 

Model for Females 

Line Actual Skeletal Age Predicted Skeletal Age 

1 22 23.10867 

6 19 23.22417 

9 28 23.84644 

26 23 22.60897 

30 30 23.69044 

46 22 22.74114 

50 23 23.20558 

Mean of the differences: 0.65, t(6) = 0.49, p-value = 0.6397 

 

Lastly, the following multiple regression equation was developed for use with first and 

second molar wear in individuals of unknown sex. A confidence interval of +/-8 years was 

calculated and a paired t-test of bootstrapped data gave results of t(6) = 1.57, p = 0.167. 

These results do not show confidence in the t value due to the small sample size; however, 

the mean of differences between actual and predicted skeletal ages is 4.95 years. This is 

within the calculated confidence interval.  

 

M1+M2 (Unknown Sex) -> y = 21.28 + 0.24(M1) + 0.16(M2), CI = +/-8 years     

Residual standard deviation: 3.898 on 34 degrees of freedom 

Mean Absolute Error: 2.97 years   

Multiple R-squared:  0.6999  

Adjusted R-squared:  0.6822  
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F-statistic: 39.64 on 2 and 34 DF, p-value: 1.302e-09 

AIC: 210.5422 

Table 4.27. Actual vs. Predicted Skeletal Age as per the M1+M2 Multiple Regression 

Model for Unknown Sex 

Line Actual Skeletal Age Predicted Skeletal Age 

1 22 23.26993 

2 55 32.91064 

4 28 22.48656 

26 30 25.04476 

27 40 34.51969 

49 23 26.39612 

81 23 21.73151 

Mean of the differences: 4.95, t(6) = 1.57, p-value = 0.167 

 

4.7 Discussion and Conclusion 

 

This study of dental age estimation in adults from Kellis 2, Dakhleh Oasis, Egypt 

demonstrated the usefulness of dental indicators in the estimation of age and, more 

importantly, the potential for improved adult dental age estimation methods in Egypt. To 

this end, a photogrammetric method for the quantification of occlusal dentine exposure in 

relation to the occlusal surface was identified and tested. This method, originally proposed 

by Phillips-Conroy et al. (2000) and modified by Deter (2006, 2009), was applied using 

the free online software FIJI (Is Just ImageJ). All subsequent calculations, plots, graphs 

and models were calculated in RStudio and the related R codes are accessible in Appendix 

5. For this study, FIJI (Is Just ImageJ) was used to quantify the percentage of exposed 

occlusal dentine in relation to the occlusal surface. These data were collected for lower left 

first molars from a photographic sample of human occlusal dentition from Kellis 2 

cemetery. When the lower left molar was missing, the lower right molar or the upper left 

molar was used as a substitute, in this order. This category of primary M1 data reflects the 

inclusion of these substitutions. In an effort to test the accuracy and repeatability of this 

method, primary M1s were quantified a second time by the author and a third time by a 

volunteer, who was briefly trained in this method. An intra-class comparison (ICC) of intra- 
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and inter-observer data to the original data demonstrated reasonably low intra- and inter-

observer error rates (intra: 99% correlation; inter: 98% correlation). These rates compare 

favourably to intra- and inter-observer error rates seen through the use of the Brothwell 

(1963a) atlas-style dental age estimation method (intra: 80% correlation; inter: 80% 

correlation) (Alayan 2018). 

Following these tests, the quantification method was used to collect data for second molars 

adjacent to the primary M1, primary M1 antimeres (i.e. lower right first molar), and 

primary M1 isomeres (i.e. upper left first molar). These data were used to compare the 

percentages of exposed occlusal dentine between primary M1 antimeres (opposing left and 

right pairs within individuals) and isomeres (occluding upper and lower teeth). The paired 

t-tests of these datasets revealed that there was a statistically significant difference between 

isomeres in the male or female data at a 90% confidence interval. A simple plot of 

differences demonstrated that most individuals had a higher percentage of exposed dentine 

in the lower molar than in the occluding upper molar. This tendency may be explained by 

greater bucco-lingual dimensions and enamel thickness in the upper molars compared to 

lower molars (Grine 2005; Smith et al. 2006). These results are congruent with findings 

from the dentition of prehistoric and contemporary Australian Aboriginals (Molnar et al. 

1983a,b), but are in contrast with a number of other populations which show a tendency 

toward higher dental wear in the maxillary teeth than the mandibular teeth (Molnar 1971). 

McKee (1986) hypothesized that differences in face form and premolar eruption pattern 

may account for these population-level differences in maxillary and mandibular wear, 

though the aetiology remains unclear (Molnar and Molnar 1990). In any case, given that 

most common age estimation standards based on dental wear rely on the observation of 

dentine exposure patterns, these data show that upper and lower molar wear patterns are 

not interchangeable. These data support the observations of Murphy (1959b) and Pal 

(1971) and are an important consideration when scoring dental wear.  

The comparison of percentages of occlusal dentine exposure in antimeres uncovered that 

although there was no directional difference in the severity of dental wear according to the 

side of the mouth, on average, there was a statistically significant absolute difference in the 

severity of dental wear between sides of the mouth. These findings stand in stark contrast 
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to the longstanding belief that there is little difference in wear between left and right sides 

of the dentition (Campbell 1925; Hillson 1996). Significant asymmetry in dental wear 

among antimeres may be a consequence of a number of factors, including differences in 

occlusal relationship, arbitrary preference for a chewing side, a tendency to sided chewing 

as a result of dental pain or discomfort, or a tendency to one-sided chewing to compensate 

for lost chewing surfaces through dental disease or antemortem tooth loss. The 

aforementioned pathological hypotheses were investigated on 4 individuals who 

demonstrated the largest differences in dentine exposure between antimeres. These 

individuals were identified as outliers via Tukey’s (1977) rule, which defines outliers as 

data points outside of the fences (or lines) on the whiskers of a Tukey’s boxplot (see Section 

4.6.5 for statistical details). The outliers included two females (ages 30+/-5 and 30+/-3) 

and two males (ages 23+/-3 and 55+/-5), with age and sex estimated by Dr. El Molto. Only 

the 30+/-3 year old female had more wear in the LRM1 than the LLM1; all others had more 

significant wear in the LLM1. It must be noted though that the occlusal surface of the 

LRM1 was affected by caries; this required the estimation of boundaries for dentine 

exposure during photogrammetry. Consequently, this data point was discarded. In the 

remaining individuals, the 55+/-5 year old male had abnormally severe wear on his LLM1, 

ULM1, and ULP2, compared to the surrounding teeth. As such, the observed asymmetry 

in left and right first molar wear may have been the result of the use of teeth as tools in 

some capacity and cannot, therefore, be a consequence of the loss of dental surfaces or 

dental pain and discomfort. Additionally, the 30 +/-5 year old female presented with gross 

caries on the same side of the mandible that had more severe dental wear; however, the 

maxilla was not available for analysis so it is unknown if there was also pathology on the 

opposite side of the dentition. Finally, the 23+/-3 year old male had an abscess on the side 

of the mouth with more severe dental wear and a carious lesion on the opposite side. Both 

sides of the upper dentition were also affected by the antemortem loss of a tooth. Given the 

small sample size (1 individual), and the fact that both sides of the dentition were equally 

affected by antemortem tooth loss and dental pathologies with the potential for pain or 

discomfort, a relationship between dental wear asymmetry and dental pathology or 

antemortem tooth loss was not observed. As such, a much larger study of dental pathology, 

AMTL, and asymmetrical dental wear is recommended to determine the relationship, if 
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any, between dental wear and dental pathology. Furthermore, since the caries data collected 

in this study were gleaned from available photographs, these data are considered to be 

preliminary in nature and insufficient for a dental pathological study. However, this avenue 

will be pursued in the future. 

Two of the more common, observable and discretely quantifiable dental pathologies in 

bioarchaeological contexts are dental caries and antemortem tooth loss (AMTL). Given the 

progressive unidirectional nature of both conditions (i.e. the number of teeth affected can 

only increase over time), it was decided that evidence of these conditions would be 

investigated to test their potential for use in the estimation of age-at-death. The relationship 

between dental caries and skeletal age was plotted and calculated using Pearson’s r. Neither 

Pearson’s r nor the visualization of the data revealed a linear relationship between the two 

variables. Since the number of teeth affected by dental caries is known to increase with 

chronological age in living populations (i.e. their number can only go up with time), these 

results were attributed to a loss of caries evidence through antemortem tooth loss. As a 

result, two variations on the reporting of dental caries were investigated in an attempt to 

mitigate theses effects. The first variation was the translation of the number of dental caries 

to the percentage of observable teeth with dental caries. For the purpose of this study, teeth 

were counted as “observable” if they had at least half of the crown and occlusal surface 

intact. Six individuals had no observable teeth and were thus excluded from these data. The 

resulting percentages were similarly compared with the related skeletal age data and, again, 

both Pearson’s r and the visual representation of data failed to identify a linear correlation.  

The second variation was inspired by the longstanding historical caries index for 

bioarchaeological material in which the sum of observed dental decay and teeth lost 

antemortem represents the adult prevalence of carious lesions (Mummery 1870). In the 

creation of the AMTL+Caries dataset, individuals who were missing their mandible or 

maxilla were excluded to reduce bias. The resulting data showed a clear positive linear 

relationship with skeletal age when plotted, and in accordance with Pearson’s r. Of course, 

since antemortem tooth loss data were combined with caries data in this model, it was 

necessary to compare the correlative strength of the antemortem tooth loss data with and 

without caries data. Comparisons of Pearson’s r scores indicated that the sum of 
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antemortem tooth loss and caries data were less strongly correlated to skeletal age than the 

antemortem tooth loss data alone. Although analysis of the caries data collected during this 

study may be limited by their observation through photographs, the age related patterns 

seen in caries and antemortem tooth loss support Meiklejohn et al.’s (1992) assertion that 

dental wear and caries are independent factors and, as can be seen in the population studied 

here, are not mutually exclusive. 

Since antemortem tooth loss proved to be strongly correlated with skeletal age, this 

relationship was plotted and linear regression models were calculated and plotted for males, 

females, and individuals with unknown sex. The inclusion of a regression model for 

individuals of unknown sex was deemed necessary as it is sometimes difficult or 

impossible to ascertain the sex of human remains. As a result, this model was derived from 

the combined male and female data. For each model, the estimated coefficients derived 

from the “summary” output from R were used to create an algebraic expression of each 

model and the 95% confidence interval was calculated by rounding the residual standard 

deviation to the nearest whole number and doubling it. Although the confidence intervals 

included with the regression equations are uniform across their respective models, graphs 

for each model showed that variation in the quantified dental indicator incrementally 

increases as skeletal age increases; that is individuals with skeletal ages of 65(+/-5 years) 

and over show a greater range in the number of antemortem teeth lost than younger 

individuals.  

Each antemortem tooth loss vs. skeletal age and sex models were examined diagnostically 

through RSD, MAE, R-squared, F-statistic, and AIC calculations. Graphs for Residuals vs. 

Fitted Values, Normal Q-Q, Scale-Location, and Residuals vs. Leverage. These linear 

models showed skewed histograms of residuals. Consequently, polynomial regression 

models were created and similarly examined for goodness of fit. Equations for these 

models are as follows:  

AMTL_linear (Female) -> y = 1.68x + 27.55, CI = +/-18 years 

AMTL_linear (Male) -> y = 1.78x + 29.39, CI = +/-18 years 

AMTL_linear (Unknown Sex) -> y = 1.67x + 28.58, CI = +/-18 years 

 

AMTL_polynomial (Female) -> y = 24.38 + 2.91x - 0.05x2, CI = +/- 16 years 
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AMTL_polynomial (Male) -> y = 26.38 + 3.64x - 0.10x2, CI = +/- 16 years 

AMTL_polynomial (Unknown Sex) -> y = 25.81 + 2.95x - 0.06x2, CI = +/- 16 years 

Regression diagnostics for the polynomial and linear regression models were then 

compared to determine the ideal model for skeletal age estimation. In both the sex-specific 

and unknown sex cases, the polynomial regression models outperformed the linear 

regression models in terms of the residual standard deviation, mean absolute error, multiple 

R-squared, adjusted R-squared, and the Akaike Information Criterion (AIC). All of these 

indicators show that the polynomial regression models have a stronger predictive strength 

than the linear regression models for AMTL and have a better fit among the data. As such, 

the polynomial regression models for AMTL may be the preferred age estimation models 

based on an oral pathological indicator. However, it is worth noting that ANCOVA tests 

on the sex-specific models reveal that the linear regression model has a slightly stronger 

correlation between AMTL and skeletal age than the polynomial model, as the polynomial 

model is more closely associated to sex than the linear model. Nevertheless, in both linear 

and polynomial models, the correlation between AMTL and skeletal age far outweighs the 

correlation between sex and skeletal age. In an attempt to verify the predictive strength of 

the AMTL models, their data were subjected to an 80:20 bootstrapping without 

replacement technique in which 20 percent of the data were used to test a model based on 

80 percent of the data. This 80:20 split was chosen in accordance with Raschka (2018), 

Prabhakaran (2017), and Gagneja (2018), and as a result of the small sample size. The 

difference between the resulting skeletal age predictions and the actual skeletal ages was 

assessed using paired t-tests. Although the calculated t-values were not statistically 

significant as a result of the small sample size, the mean of differences was found to be 

consistently low, with all means of differences falling below the mean absolute errors and 

the residual standard deviations for the original models, and under 2 years on average 

between the actual and predicted skeletal age. These tests provided a general idea of the 

accuracy of the new models. In future, upon expansion of the reference data, a repetitive 

bootstrapping without replacement test is recommended. 

Following this, attention was focused on the relationship between the percentages of 

exposed dentine in the occlusal surfaces of first and second molars. To accomplish this, the 

data that were collected at the beginning of this study through photogrammetric methods 
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were compared to skeletal ages for those respective individuals. Pearson’s r scores revealed 

strong positive correlations between skeletal age and both first and second molar dentine 

exposure.  

Using the same methods for the regression model, sex-specific models and models for 

individuals of unknown sex were created for the prediction of skeletal age based on first 

molar or second molar dentine exposure. Regression diagnostic tests (i.e. Residuals vs. 

Fitted Values, Normal Q-Q, Scale-Location, and Residuals vs. Leverage graphs) were used 

to identify any possibility for bias in the regression models. They were also used to identify 

three individuals with abnormally low dental wear for their skeletal age and one individual 

with abnormally high dental wear for her skeletal age in the first molar wear dataset. 

Likewise, five outlying data points were identified and removed from the M2 wear dataset 

to reduce bias. All of these data points represented individuals with abnormally low dental 

wear on the M2 in relation to skeletal age. Linear regression models, with and without these 

respective outliers, were compared for goodness-of-fit, resulting in final models that 

excluded the aforementioned outliers. These final models were found to be well fitted with 

the data, with slightly skewed distributions of residuals. This deviation from normality in 

residual analysis may contribute to biased regression coefficient estimates, but this issue 

can likely be resolved by expansion of the reference data. Similar to the AMTL models, it 

should be noted that variation in the percentage of exposed occlusal dentine in both first 

and second molars increases with skeletal age. Additionally, first molar regression models 

show that for the same skeletal age, females have a slightly higher percentage of occlusal 

dentine exposure. In contrast, second molar regression models show a significantly lower 

percentage of occlusal dentine exposure in females when compared to males.  

In studies of Inuits (Pedersen 1938), Australians (Campbell 1938; Molnar et al. 1983a,b), 

and American Indians (Molnar 1971), it has been found that females generally presented 

with more rapid and severe dental wear than males starting in adolescence (Molnar and 

Molnar 1990). However, the opposite has been observed in medieval human remains from 

Denmark (Lunt 1978), while other populations have not shown statistical differences in 

dental wear between the sexes (Molnar and Molnar 1990). Given this inconsistency, it has 

been proposed that significantly higher rates of dental wear in females may be a result of 
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dietary differences (Heithersay 1959) and/or the use of teeth in work dominated by females, 

such as the chewing of animal skins and plant fibers (Molnar 1972). This hypothesis may 

be particularly apt as females are known to have significantly thicker enamel than males 

on average (Smith et al. 2006). As such, they may be expected to generally have slightly 

lower rates of dental wear than males if a difference can be observed. The quantified pattern 

of wear observed in this study, however, requires further study and consideration with 

regard to sex-specific differences in diet as well as sex-specific differences in dental 

developmental timing and enamel thickness. 

At the same time, algebraic equations for each molar wear regression model were derived 

from the estimated coefficients provided through the “summary” output in RStudio. 

Confidence intervals were again calculated by rounding the residual standard deviation to 

the nearest 0.5 and doubling it. Equations for all of these models are as follows:  

M1 (Female) -> y = 0.36x + 22.29, CI = +/-12 years 

M1 (Male) -> y = 0.32x + 22.84, CI = +/-12 years 

M1 (Unknown Sex):  y = 0.34 x + 22.58, CI = +/-12 years 

 

M2 (Female) -> y= 2.57x + 23.55, CI = +/-10 years   

M2 (Male) -> y=0.28x + 26.12, CI = +/- 10 years 

M2 (Unknown Sex) -> y = 0.27x + 24.93, CI = +/- 10 years 

 

Analysis of Covariance (ANCOVA) tests were conducted on the sex-specific linear models 

to quantify the effects of the dependent variable (i.e. skeletal age) on the numeric 

independent variable (i.e. percentage dentine exposure) and the categorical independent 

variable (i.e. sex). As expected, results for all models indicated that dental wear is 

significantly affected by skeletal age with varying lower effects from sex and negligible 

effects of the interaction between age and sex.  

As previously applied to the AMTL regression models, a bootstrapping without 

replacement technique was used to test the molar wear regression models. Again, 

using RStudio, the datasets were randomly split 80:20 for model creation and test 

data (cf. Raschka 2018; Prabhakaran 2017; Gagneja 2018). Linear regression testing 

models were created from a random selection of 80% of the dataset. The remaining 
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20% of the dataset were input into the linear regression testing models, resulting in 

predictions of skeletal age for those individuals. These predictions were compared to 

the actual skeletal age by way of a t-test. Although all of the resulting t-values were 

statistically insignificant due to small sample sizes, the means of the differences 

between predictions from the bootstrapped regression models and the actual skeletal 

ages of the individuals included in the test samples were between +/-2 years for all 

dental wear regression models. These tests demonstrate that these models generally 

tend to produce age estimates within the given confidence intervals when compared 

to skeletal age. Antemortem tooth loss models showed similar results with only one 

model producing a mean of differences larger than +/=2 years (See  

 

 

Table 4.8. Actual vs. Predicted Skeletal Age (AMTL Male Polynomial Regressions))). 

Paired t-tests of bootstrapped data for the multiple regression models showed larger means 

of differences, with four models including male data (See Table 4.16. Actual vs. Predicted 

Skeletal Age as per the M1+M2+AMTL Multiple Regression Model for Males,Table 

4.19,Table 4.22, Table 4.25) and two unknown sex models (See Table 4.18 andTable 4.27) 

producing means of differences between +/-2 and +/-10 years. Nevertheless, in all cases, 

the mean of differences falls below the calculated uniform confidence interval. In the 

future, if the reference data are expanded, more meaningful tests of these models could be 

completed through repetitive bootstrapping without replacement methods, and it is hoped 

that this expansion will result in lower means of differences.  

Following the creation and testing of age estimation models based on quantified dental 

wear in first and second molars, these models were compared to the Brothwell (1963a) 

standard for age estimation based on dental wear. The Brothwell (1963a) standard is the 

most commonly used dental wear age estimation method in Egypt although it was designed 

for use in prehistoric to early medieval British populations (Hillson 1996). In order to 

compare the Brothwell standard to the new regression models, it was necessary to quantify 

the percentage of exposed dentine in the reference image provided by Brothwell (1963a). 
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Since Brothwell’s standard provides multiple dental wear examples for each age cohort, 

the minimums and maximums of the age cohort and the quantified dental wear were used 

to graph the photogrammetrically quantified Brothwell standard. The linear regression 

models for M1 and M2 wear were graphed for a visual comparison. 

Through this data visualization, it is apparent that there are gaps in Brothwell’s dental wear 

representation with regard to the percentage of occlusal dentine exposed. This is not 

surprising as the reference images were selected according to their general shape and 

pattern of dentine exposure, rather than its relative area. However, this lack of precision 

and the possibility for variation in these shapes and patterns throughout the dental wear 

process have been known to result in challenges in the assignment of a dental wear pattern 

to a Brothwell age category.  

In the comparative graph, it is also clear that the linear regression models are far more 

precise than the Brothwell (1963a) standard and may be helpful in producing more 

sensitive estimations of age, particularly for older individuals. In the M1 graph, it is 

apparent that the same percentage of dentine exposure relates to slightly lower skeletal age 

estimates on average in the first three Brothwell age estimation ranges when compared to 

the linear regression models. In the M2 graph, the same percentage of dentine exposure 

relates to slightly lower skeletal age estimates in the youngest Brothwell cohort and slightly 

higher skeletal age estimates in the oldest Brothwell age cohort in comparison with the 

associated linear regression models. Looking at the specific data points, this has translated 

into many underestimates of skeletal age from Brothwell’s M1 wear standard and a 

transition from underestimation to overestimation of skeletal age from Brothwell’s M2 

wear standard. Given that the linear models were based on the data at hand, they are 

designed for goodness of fit with the data and therefore do not have such dramatic biases. 

Of course, it is possible that the linear regression models are slightly biased in relation to 

chronological age due to their reliance on skeletal age estimates. This complicates 

comparison with the Brothwell (1963a) standard, which is presented as an estimator of 

chronological age. Unfortunately, modern Egyptian populations have dissimilar rates of 

dental wear from ancient Egyptian populations due to differences in diet and food 

preparation. As such, until age estimation methods for human remains significantly 
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improve, particularly in the older cohorts, the accuracy of age estimation regression models 

for ancient Egyptians will continue to be based on skeletal age and therefore be at risk for 

systematic bias. Fortunately, skeletal age estimates based on methods not developed 

through the principles of the Rostock Manifesto (i.e. based on known age reference 

population and calculated using Bayesian statistics), are known to underestimate age in 

older cohorts as estimates tend toward the mean (Hoppa and Vaupel 2002). Consequently, 

it may be inferred that the use of skeletal age estimates in the creation of the linear 

regression models may result in an underestimation of skeletal ages when using these 

regression models. If this is true, and the regression models for the chronological age of 

the Kellis 2 population can be assumed to be higher on the skeletal age scale than those 

depicted above, then the Brothwell (1963a) method may actually underestimate 

chronological age in the 17-45 year cohorts for M1 wear in the Kellis 2 population to a 

greater degree than is depicted in the comparative graph for M1 wear. Similarly, the 

Brothwell method may also underestimate chronological age in the 17-25 year cohort for 

M2 wear in the Kellis 2 population more significantly than is observable in the comparative 

graph for M2 wear. 

Since the molar wear regression models were shown to be less ambiguous in their 

interpretation than Brothwell’s (1963a) standards as well as more specific in their age 

estimates, multiple regression models were investigated for their ability to cross-reference 

linear regression models to achieve more accurate and specific predictions. To this end, 

algebraic multiple regression equations for all combinations of M1 wear, M2 wear and 

AMTL were derived from the estimated coefficients presented through the “summary” 

output for the relevant R codes in RStudio. As was done in all previous regression models, 

regression diagnostics were examined for goodness of fit and predictive value and 

confidence intervals were calculated by rounding the doubled residual standard deviation. 

The resulting multiple regression equations are as follows:  

M1+M2+AMTL 

Males -> y = 0.23(M1) + 0.03(M2) + 1.03(AMTL) + 21.70, CI = +/- 9 years     

Females -> y = -0.16(M1) + 1.01(M2) – 4.44(AMTL) + 22.11, CI = +/-4 years 

Unknown Sex -> y = 0.24(M1) + 0.03(M2) + 1.02(AMTL) + 21.07, CI = +/- 7 years 
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M1+AMTL 

Males -> y = 23.24 + 0.21(M1) + 1.04(AMTL), CI = +/- 11 years 

Females -> y = 20.77 + 0.27(M1) + 1.30(AMTL), CI = +/- 6 years    

Unknown Sex -> y = 22.10 + 0.23(M1) + 1.18(AMTL), CI = +/- 9 years 

 

M2+AMTL 

Males -> y = 25.37 - 0.03(M2) + 1.90(AMTL), CI = +/-11 years 

Females -> y = 21.78 + 0.28(M2) + 0.91(AMTL), CI = +/-5 years      

Unknown Sex -> y = 23.93 + 0.002(M2) + 1.91(AMTL), CI = +/- 10 years 

 

M1+M2 

Males -> y = 21.21 + 0.28(M1) + 0.15(M2), CI = +/- 9 years            

Females -> y = 22.18 + 0.06(M1) +    0.26(M2), CI = +/- 6 years      

Unknown Sex -> y = 21.28 + 0.24 + 0.16, CI = +/-8 years     

To test the predictive value of these models, the 80:20 bootstrapping without replacement 

method was used to predict skeletal age estimates, which were then compared with the 

actual skeletal age through a t-test (cf. Raschka 2018; Prabhakaran 2017; Gagneja 2018). 

Although most models showed means of differences between actual and predicted skeletal 

ages under half of the calculated mean absolute error, 3/4 regression models for males (all 

of the male equations that included M2 wear data) and 2/4 regression models for unknown 

sex (which also included M2 wear data) showed relatively higher means of differences. 

This pattern is reflected in the fact that all M1+AMTL models had relatively high R-

squared values (which is preferred) when compared to M2+AMTL, M1+M2, and 

M1+M2+AMTL models. Moreover, within each of these model types, female models had 

AICs that were significantly lower (and thus had greater predictive strength) than the AICs 

for comparative male or unknown sex models. As such, the multiple regression models that 

are partly based on M2 wear in males should be used with caution.  

It is hoped that revisiting these methods for model creation with an expanded dataset in the 

future will resolve the identified challenges. Furthermore, the resulting standards will 

subsequently be tested on geographically diverse Roman Period populations to determine 

the regional applicability of the standards and calculate correction factors as needed. 

Similarly, the standards will then be tested on populations from differing time periods 

within Egypt to determine its chronological applicability and any relevant correction 

factors for use of the standard in these populations. To this end, a call to action was included 

in a presentation of the preliminary findings of this study at the 2019 Bioarchaeology in 
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Ancient Egypt conference in Cairo. This call to action was well-received and several 

researchers expressed their interest in contributing data for this purpose.  Plans for the 

expansion and systematic testing of the new standards for dental age estimation in adults 

are further discussed in the Future Research section (Section 4.10.4).  

Overall, this study demonstrates that significant improvements can be made in the 

estimation of age through new methods and standards for analysis of adult dental age 

indicators. Specifically, a photogrammetric method of quantifying dental wear was shown 

to have little intra- and inter-observer error and removed the ambiguity inherent in the use 

of the Brothwell (1963a) atlas of dental wear in relation to age. The strong correlations 

between the quantified dental wear and skeletal age resulted in the creation of regression 

models that are far more specific than the Brothwell (1963a) standards in the estimation of 

skeletal age. Through the use of the uniform confidence interval included with these 

regression models, the accuracy of these models is relatively high as well. The number of 

teeth lost antemortem was also proven to be strongly correlated in relation to skeletal age 

and was integrated into multiple regression models with quantified dental wear data for 

first and second molars in the Kellis 2 population. These regression models show great 

potential although the models that include male second molar data may require revision 

with an expanded dataset. Nevertheless, the female regression models represent a 

significant improvement in macroscopic adult dental age estimation. As such, the null 

hypothesis for this part of the dissertation, (Ho): “Current dental age estimation standards 

based on dental wear cannot be improved”, can be rejected. Furthermore, this new method 

for adult dental age estimation would be beneficial to the fields of forensics, immigration, 

and bioarchaeology, among others. 

4.8 Research Ethics 

The University of Western Ontario does not require Research Ethics Board approval for 

the study of unidentified human remains. A letter from the Research Ethics department has 

been written to confirm these regulations and to demonstrate the university’s approval of 

the use of human remains in the proposed study and is available upon request. With regards 

to the treatment of these remains, all specimens will be handled with respect and care and 

the study will be non-destructive in nature. While handling the human remains, I will abide 
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by the Vermillion Accord on Human Remains, which has been adopted for use by the 

UWO Department of Anthropology. 

4.9 Limitations 

Although the image analysis method used in this study is an excellent way to quantify 

dental wear and has little inter- and intra-observer error, it does have some limitations. For 

example, it can be difficult to distinguish the occlusal surface from the other surfaces 

depending on the lighting and the photographic angle. Given this, the photographic angle 

of the occlusal surface can only significantly affect data collection when the angle is quite 

obviously off (Hillson, personal communication). Another limitation of the current method 

is the time requirement for manual selection of the elements to be measured within the 

image analysis software. This limitation may be eliminated in the near future as a trainable 

weka segmentation program (artificial intelligence software) is being investigated by the 

current author as an alternative to the manual image analysis method. If this artificial 

intelligence program is found to be accurate, it may be applied to batches of images, further 

decreasing the time requirement for this type of dental wear analysis.  

This study was limited by the size of the population sample available for study due to its 

reliance on pre-existing photographs of occlusal dentition. Statistical significance would 

have be stronger with a larger number of individuals in each age cohort. Thankfully, this 

reference sample can be expanded when work permissions resume as more than 700 

individuals have been excavated at this site to date.  

Inherent in the study of dental wear in ancient Egyptians is the problem of accuracy and 

specificity in the skeletal age estimates which were necessarily taken as the “known” age 

of individuals. Since the rates of dental wear in ancient Egyptians are not comparable to 

modern populations, it was necessary to conduct a study of the ancient population directly. 

With the limitations and biases of current macroscopic skeletal age estimation methods,  

The paleodemographic structure of the sample reference population will produce a bias in 

any age estimation standards created in their image (Hoppa and Vaupel 2002). Bayesian 

statistical methods have been successfully used to normalize the tendency for age estimates 
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to regress toward the mean (Hoppa and Vaupel 2002). Unfortunately, since this study 

required the use of skeletal age estimates based on non-Bayesian methods as the “known” 

age of individuals, application of Bayesian statistical methods to the new standard would 

result in age estimates that are still biased. In the future, if less time-intensive methods for 

ultra-specific and -accurate age estimation are accessible and permissible in Egypt, the 

creation of a standard using Bayesian statistical analysis of quantified exposed dentine in 

a population whose age can be considered “known” is recommended.  

4.10 Future Research 

4.10.1 Examining the Effects of Dental Erosion in Ancient Egyptians 

A study of the remains of ancient Egyptian bread and beer in collaboration with UCLA 

PhD candidate, Amr Shahat, is currently in progress. This study involves the testing of pH 

as well as the quantity of residual sugars and concentrations of calcium, fluoride, and 

potassium (cf. Swift 1966; Larsen and Nyvad 1999). The quantification of residual sugars 

will be conducted to verify results of the pH analysis, according to the methods of Swift 

(1966). Together, the pH and concentrations of calcium, fluoride and potassium will be 

used in the first study to estimate the erosive potential of ancient Egyptian food staples, 

bread and beer.   

4.10.2 An atlas-type standard? 

Although atlases based on dental development are necessarily subjective, their 

convenience is unequivocal. During a recent presentation of this dental wear research at 

the Bioarchaeology in Egypt 2019 conference, I polled the audience to determine the level 

of interest in an atlas-type age estimation tool for dental wear. This poll revealed some 

interest in a sex-, region-, and time-specific dental wear atlas, though this level was far 

lower than the interest expressed in the possibility of dental quantification and age 

estimation software. As such, an atlas-type standard was not prioritized for this dissertation, 

but may be considered in the future.  
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4.10.3 Computer assisted age estimation from dental wear? 

Since the quantification of dentine may be more closely related to age than the categorical 

images of dental wear presented in atlas-type standards, an automated system for the 

quantification of exposed dentine is being investigated. Within the FIJI (is just ImageJ) 

program, there is an application in Plugins > Segmentation > Trainable Weka 

Segmentation. This artificial intelligence application can be trained to recognize specific 

colours and borders separating these colours. This colour thresholding method is more 

specific than the freehand selection method used to quantify dentine to date, as individual 

pixels are classified based on shared visual characteristics, such as colour. Since the 

occlusal surface can be isolated through the use of a blue rubber dental dam surrounding 

the tooth during photography, it may be possible to train this classifying application to 

recognize the differences in colour between enamel and exposed dentine without confusion 

from similar colouring in the background. This dental dam would also serve to delimit the 

occlusal surface from the adjacent surfaces, solving the problems associated with the 

identification of occlusal edges in photographs. If possible, then this trained classifier code 

may be shared online with other Fiji users, who could then apply this classifier to quickly 

measure areas of exposed dentine and the occlusal surface in a number of occlusal images 

at once. Ideally, the trained application would be able to identify the differences between 

stained enamel, caries, and exposed dentine. However, it may be necessary to develop code 

for a new function within this application to deselect areas in cases where the classifier 

makes incorrect selections. Lastly, a macro program may be created to automate all of these 

functions in FIJI (is just ImageJ) and input the generated data into a simple calculator to 

determine age at death. The feasibility of the proposed automated system will be 

investigated in future studies.  

4.10.4 Expansion of the New Standards and Testing on Different 
Populations 

Although the age estimation equations provided above are currently only recommended 

for use on Roman Period populations from the Dakhleh Oasis, this standard will be revised 

in the near future. As per the suggestion of Dr. Brenda Baker and Dr. Jerome Rose, in the 

future, the new standard may be compared to standards resulting from the Miles’ (1962) 
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protocol to ensure the accuracy of the new method. Additionally, approximately 500 skulls 

from the Fag El-Gamous cemetery in Seila, Fayoum, Egypt will be analyzed as above and 

the rates of wear will be compared with the data from Kellis 2. This study will determine 

if there were significant differences in dental wear over geological space within Upper and 

Lower Egypt during the Roman Period. The Fag El-Gamous data will then be integrated 

into the age estimation equations to broaden the scope of the standard so that it may be 

applied to all populations within Roman Egypt. At this time, consideration may also be 

given to the expansion of the standard to include dental wear scoring for anterior teeth.  

Following this geographical expansion, further studies are planned to examine dental wear 

in Upper and Lower Egypt through different time periods. These studies would enable the 

systematic expansion of the sex-, region-, and time-specific dental wear standard while 

allowing for the identification of significant changes in food production/processing 

methods or differences in food preferences throughout Egyptian history. Some Egyptian 

bioarchaeologists have already offered to provide quantified occlusal wear data from 

earlier time periods to enable this extended study. 

Subsequent to the expansion of the reference data, the regression models should be re-

evaluated and Poisson regression can be investigated for goodness-of-fit. Data may also be 

divided according to age to investigate whether a combination of different regression 

models may better suit the different age cohorts within the reference data.   
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Chapter 5 

5 Dissertation Summary and Conclusion 

This dissertation has demonstrated the value of dental anthropology through its significant 

contributions to scientific and anthropological knowledge, and proven the particular value 

of macroscopic dental age estimation methods. Despite the relative accuracy and 

specificity of the existing macroscopic dental age estimation standards (as demonstrated in 

an abbreviated preliminary meta-analysis), this dissertation also revealed that there is room 

for improvement in dental age estimation, particularly through the development of (time-

,) sex- and region-specific standards based on innovative methods for data collection and 

statistical analysis.  

In the case of subadult dental age estimation standards, a proposed method for the creation 

of a sex- and region-specific standard was designed and determined to be feasible. This 

method was subsequently compared to the methods used for the creation of pre-existing 

age estimation standards based on dental development. This meta-analysis demonstrated 

that all of the identified methodological errors present in the pre-existing standards can be 

eliminated through the use of the proposed method. This method was designed in 

accordance with the Rostock Manifesto (Hoppa and Vaupel 2002), which requires the 

collection of data from a large population sample with known ages and the use of Bayesian 

statistics for predictive modelling. Bayesian statistical methods have been shown to 

improve age estimates in human remains by reducing biases related to the composition of 

the reference population, as other statistical methods produce estimates that tend toward 

the mean (Hoppa and Vaupel 2002). For the purpose of the proposed study, the chosen 

reference population was specific to the region, could be aged to within a month of their 

birthdate, and could be mined for data relating to factors affecting dental development. 

Since radiographic study is the most effective macroscopic method for the observation of 

dental development, it was necessary to integrate radiographic data collection into a larger 

public dental health program. This public health initiative would also enable the collection 

of gingival emergence data for comparison with alveolar eruption timing. This research 

model was planned out in detail to ensure that the proposed study was ethical and in 
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accordance with the risk-benefit philosophy (Davidson and O’Brien 2009; Iannucci and 

Howerton 2012), which requires that the benefit to a patient outweighs any risks involved 

in medical radiation exposure. To this end, digital panoramic radiographic data collection 

was recommended for use in the proposed method as it is known to have a significantly 

lower effective dose of radiation than other dental radiographic methods. All details of the 

proposed methods for standard creation were made available to readers to ensure 

transparency in the methods of creation, their replication, and their potential for 

application. This transparency represents yet another improvement on several existing 

subadult dental age estimation standards.  

Errors in methodology from the existing subadult dental age estimation standards were 

compared to the proposed methodological model. This meta-analysis further demonstrates 

the many methodological improvements that are addressed in the proposed model and have 

the potential to contribute to more accuracy and unbiased subadult age estimates. This 

study of subadult dental age estimation methodology thus rejects the null hypothesis 

“Current macroscopic subadult dental age estimation standards cannot be improved”. 

This null hypothesis was subsequently tested with a focus on macroscopic adult dental age 

estimation standards, which is traditionally based on dental wear. During a review of the 

literature relevant to age estimation based on dental wear, it was discovered that the role of 

dental erosion in the relative severity of ancient Egyptian dental wear may be greatly 

underestimated. Through an examination of ancient Egyptian iconographic, textual and 

archaeological evidence, I identified several foods and drinks with the potential to erode 

dental enamel. These findings indicated that the staple foods in ancient Egypt, namely 

bread and wine, likely had high erosive potential. Although further investigation of this 

finding was outside the scope of this dissertation, a collaborative study has been 

commenced to specify the erosive potential through chemical tests of ancient bread and 

beer residues.  

Following this review of the literature, a new method for quantifying the percentage of 

occlusal dentine exposure was applied to a photographic sample of occlusal dentition from 

the Kellis 2 cemetery population in Egypt. This method, introduced by Phillips-Conroy et 
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al. (2000) and modified by Deter (2006, 2009), uses image analysis software to count the 

number of pixels within an outlined area (i.e. the exposed dentine patches and the occlusal 

surface) which are then used to calculate the percentage of the occlusal surface occupied 

by exposed dentine. This is the first time this method of dental wear quantification has been 

applied to age estimation. Intra- and inter-observer tests were conducted through the use of 

intra-class correlation on first molar data to ensure the accuracy and reliability of this 

method. Results showed a 99% correlation between intra-observer data and a 98% 

correlation between inter-observer data. These data represent an improvement on the intra- 

and inter observer rates seen through the use of the Brothwell (1963a) method, in which 

intra- and inter-observer errors were both 80%) (Alayan 2018). 

Following these tests of intra- and inter-observer error, examinations of variation within 

individual dentition were conducted to determine whether quantities of dental wear on 

different 1st molars show significant differences. T-tests of isomere data revealed a 

statistically significant difference between wear in upper and lower first molars at a 90% 

confidence interval. A simple plot of differences showed that lower first molars tended to 

have more severe wear than upper first molars. It was concluded that this was likely a result 

of larger tooth diameter and thicker dental enamel in the upper molars. This finding was 

significant as it confirms that dental wear scores (or in this case percentages) in upper and 

lower first molars are not interchangeable. These data support the observations of Murphy 

(1959b) and Pal (1971) and are an importance consideration when scoring dental wear 

T-tests of antimere data revealed a statistically significant difference between dental wear 

in lower left and right molars, independent of direction. These results stand in contrast to 

the commonly held belief that there is little difference in dental wear between left and right 

sides of the dentition (Hillson 1996). Similarly to the observed difference between 

isomeres, this asymmetry of dental wear in antimeres should be taken into consideration 

when estimating age based on dental wear. In the meantime, this asymmetry in dental wear 

among antimeres was investigated in relation to dental pathology to determine if pain, 

discomfort, or a loss of tooth surface could be the reason for more wear on one side of the 

mouth. To this end, individuals with the greatest dental wear asymmetry were identified 

through the use of a Tukey’s boxplot and Tukey’s (1977) rule for identifying outliers. 
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Unfortunately, results of a detailed comparison of dental pathology to dental wear 

asymmetry were inconclusive as three of the four individuals were excluded due to use of 

the teeth as tools, gross caries on the occlusal surface, and a missing maxilla. The remaining 

individual presented with pathology and tooth loss on both sides of the mouth, giving little 

indication of the reason for the asymmetrical dental wear pattern. Although the results of 

this study were inconclusive, it demonstrates some of the factors that need to be considered 

when estimating age based on the quantification of dental wear. It is hoped that future 

research may shed more light on the relationship, if any, between dental wear asymmetry 

and dental pathology.  

Following this investigation of dental pathology, the two most common and quantifiable 

discrete pathologies, dental caries and antemortem tooth loss, were examined in relation to 

skeletal age. Pearson’s r scores and data plots indicated no linear relationship with skeletal 

age for the number of caries per individual or the percent of observed teeth with carious 

lesions. However, the sum of caries with teeth lost antemortem, as well as the number of 

teeth lost antemortem, were shown to have strong linear correlations with skeletal age. 

Through a comparison of Pearson’s r scores for each of these datasets, it became clear that 

the inclusion of dental caries with antemortem tooth loss did not improve the correlation. 

Thus, antemortem tooth loss alone was identified as a strong indicator of skeletal age with 

statistically significant Pearson’s r scores of 0.85 and 0.80 for female and male datasets, 

respectively. Although analysis of the caries data collected during this study may be limited 

by their observation through photographs, the age related patterns seen in caries and 

antemortem tooth loss, and their coexistence within individuals, support Meiklejohn et al.’s 

(1992) assertion that dental wear and caries are independent factors and are not mutually 

exclusive. 

For the purpose of age estimation, linear and polynomial regression models were designed 

and tested for goodness of fit. Through a comparison of these models, the polynomial 

models were found to be better fitted to the data and had a stronger predictive value. Having 

said this, caution must be taken in using these models as there is a possibility that they are 

skewed by the limited number of older adults included in the dataset. This paucity of data 

in the older cohorts may be particularly influential on the polynomial regression models as 
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they run the risk of overfitting to the data. However, it should be noted that Rosing and 

Kvaal (1998) observed a similar polynomial relationship between antemortem tooth loss 

and age. Nevertheless, all of these models should be revisited in the future when more data 

become available. In the meantime, it is worth noting that ANCOVA tests on the sex-

specific models reveal that the linear regression model has a slightly stronger correlation 

between AMTL and skeletal age than the polynomial model, as the polynomial model is 

more closely associated to sex than the linear model.  

Consequently, it was decided that the polynomial equation should be used as a predictor of 

skeletal age based on antemortem tooth loss until additional data can be integrated and this 

hypothesis tested. In the meantime, the linear regression model would be integrated into 

subsequent multiple regression models for skeletal age estimation based on dental 

indicators. Both linear and polynomial models were further tested through an 80:20 

bootstrapping without replacement technique in which 80% of the dataset were used to 

create a new regression model and the remaining 20% were input into this model to predict 

skeletal ages (cf. Raschka 2018; Prabhakaran 2017; Gagneja 2018). The means of the 

differences between the actual skeletal age and the predicted skeletal age for the test data 

were found to be smaller than +/-1.5 years in all but the male polynomial model for AMTL. 

The mean of the differences for the bootstrapped male polynomial model was 4.18 years, 

which is still well below the mean absolute error (5.58 years) and the residual standard 

deviation (7.76 years).  

Following this investigation into discrete pathological indicators for age, the quantified 

dental wear data were tested for correlation with skeletal age. Pearson’s r scores indicated 

strong linear correlations between skeletal age and both first and second molar wear for 

male and female datasets. Consequently, linear regression models were similarly designed 

and tested. These models showed relatively high predictive value and small confidence 

intervals. When compared to a quantified version of the Brothwell standard for dental age 

estimation, the linear regression models were more specific and more accurate. The 

quantified Brothwell standard showed gaps in dental wear representation, which is not 

surprising given the imprecision of the method. This precision in the use of 
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photogrammetric quantification of dental wear helps to avoid the subjectivity inherent in 

atlas-type and description-type age estimation standards.  

Following this proof of concept for the use of regression models based on quantified dental 

wear, multiple regression models were designed for all combinations of antemortem tooth 

loss and first and second molar wear. Regression diagnostics and the bootstrapping without 

replacement test indicated that small reference sample sizes may have negatively affected 

the accuracy and precision of the models that incorporated male first molar wear data. 

However, all other multiple regression models demonstrated great accuracy and precision 

with error rates well within the given confidence intervals. This shows that there is potential 

for significant improvement in age estimation based on dental indicators of age. However, 

in future, following expansion of the reference dataset, it is recommended that these models 

are all retested using a repetitive bootstrapping without replacement technique to ensure 

that outliers do not have a significant negative impact on prediction accuracy. 

In conclusion, the null hypothesis ‘(Ho): “Current dental age estimation standards based on 

dental wear cannot be improved”, can be rejected, given the proven potential for 

improvement in subadult standards and the presentation of new and improved adult 

standards. This dissertation also demonstrates the utility of photogrammetric dental wear 

quantification in age estimation and identifies several areas for future study. Among the 

listed future research topics, the development of a trainable artificial intelligence program 

for the quantification of exposed occlusal dentine is in progress. This would allow for large 

collections of photographs of occlusal dentition to be analyzed instantaneously, enabling 

widespread use of this system within the intended region. Given that the designed 

regression models are more accurate and precise than Brothwell’s universally-applied 

standard, it is recommended that, following recalculation of these standards with a larger 

reference sample, they are tested on geographically and chronologically diverse 

populations in the regions of Egypt and the Middle East. Through this process, a sex-, 

region-, and time-specific standard can be developed with correction factors for deviant 

populations. This method would be more user-friendly and less time-consuming than the 

Miles method with better accuracy and precision than the Brothwell method.   
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This improvement in macroscopic dental age estimation could be beneficial to the fields of 

dentistry, pediatric medicine, orthodontics, biology, health sciences, evolutionary 

medicine, forensics, immigration, socio-cultural studies, and bioarchaeology. Within 

bioarchaeology, alone, improved age estimation would have applications in evolutionary 

studies, osteobiographies, paleo-pathology, paleo-epidemiology, and paleo-demography. 

In particular, it would contribute to significantly improved lifetable reconstructions based 

on past populations, as improved dental wear aging standards have the greatest potential, 

among macroscopic aging methods, to rectify the problem of age underestimation in older 

cohorts. Given their relative accuracy, specificity, and applicability to a large age range, 

dental age estimation methods remain the best macroscopic single indicators of age. 

However, this dissertation has shown that there is room for improvement in these methods 

and, to paraphrase Konigsberg and Frankenberg (1992: 253), we must continue to strive to 

make age estimation more of a science than an art.  
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Appendix 3 

Script for Classroom Recruitment 

Hello, my name is ____________.  I am here today to talk to you about a research study 

about dental growth and development in modern and ancient Egyptian children which is 

being done under the supervision of Dr. El Molto.   

I am currently recruiting participants who are between the ages of 2 and 17 years old, with 

a birthdate that falls within one month of available study dates, and who would like to 

participate in this study.  Briefly, the study involves the completion of a questionnaire by 

you and/or your legal guardian about factors that may affect dental health and development. 

Eligible participants will then be assigned an appointment to receive a free panoramic 

dental x-ray, and an appointment for a free dental examination, oral health report and 

advice from a local dentist about oral health and hygiene. This study will be conducted in 

the Radwania Radiographic Laboratory on Sharia Television in Luxor. There will be a total 

of 1020 local participants in this study. 

If you are interested in participating or have any questions; please contact me at the email 

address or phone number provided in the information form.  

 Thank you for considering participation in this study. 
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Appendix 5 

Oral Health Education Pamphlet 
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Appendix 6 

 
Dissertation R Codes 

 
##Dataframes, column names, and regression models included in this list of R codes were used in 
dissertation calculations; however these R codes were often used to calculate, plot or graph more 
than one dataset or model. 
 

Intra-class Correlation (ICC) 

>psych::ICC(intra) 

 
Paired t-test 

>t.test(Isomere$LM1, Isomere$UM1, paired=TRUE, conf.level=0.95) 
 
Simple plot of differences 

>plot(Difference, pch = 16, ylab="Difference (UM1 – LM1)", main="Variance of 
Upper Molar Wear from Lower Molar Wear") + abline(0,0, col="blue", lwd=2) 

 
Tukey’s Boxplot 

>boxplot(antimeres$Difference, ylab = "Difference (%)", main = "Difference 
between Left and Right First Molars (%)") 

 
Pearson’s r Correlation Test 

>cor.test( ~ Age + AMTL, data = AMTL2, subset = Sex == "M") 

 
Caries vs Age and Sex 

> ggplot2::ggplot(AMTL, aes(x=caries,y=Age, group=Sex,colour=Sex,shape=
Sex)) + geom_point(position = position_jitter(w = 0.1, h = 0.0), size=
2) +  ggtitle("Number of Carious Teeth in Relation to Skeletal Age and 
Sex") + theme(plot.title = element_text(hjust = 0.5)) + labs(x = "Numbe
r of Teeth with Carious Lesions",y = "Skeletal Age (+/- 5 years)") + sc
ale_colour_manual(name="Sex", labels = c("Female", "Male"), values = c
("deeppink", "deepskyblue1")) +scale_shape_manual(name="Sex",labels = c
("Female", "Male"), values=c(16, 17)) + theme(legend.position="right") 
+ guides(color=guide_legend("Sex"), shape=guide_legend("Sex")) 

 
Observed Teeth with Carious Lesions vs Age and Sex 

> ggplot2::ggplot(AMTL3, aes(x=obs,y=Age,group=Sex,colour=Sex,shape=Se
x)) + geom_point(position = position_jitter(w = 0.1, h = 0.0),size=2) +  
ggtitle("Percentage of Observed Teeth with Carious Lesions in Relation 
to Skeletal Age and Sex") + theme(plot.title = element_text(hjust = 0.
5)) + labs(x = "% Observed Teeth with Carious Lesions",y = "Skeletal Ag
e (+/- 5 years)") + scale_colour_manual(name="Sex", labels = c("Female
", "Male"), values = c("deeppink", "deepskyblue1")) +scale_shape_manual
(name="Sex",labels = c("Female", "Male"), values=c(16, 17)) + theme(leg
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end.position="right") + guides(color=guide_legend("Sex"), shape=guide_l
egend("Sex")) 

 
Number of Teeth Affected by AMTL or Caries vs. Age and Sex 

> ggplot2::ggplot(AMTL2, aes(x=AMTL.Caries,y=Age,group=Sex,colour=Sex,s
hape=Sex)) + geom_point(alpha=0.3,size=2) + ggtitle("Number of Teeth Af
fected by AMTL or Caries in Relation to Skeletal Age and Sex") + theme
(plot.title = element_text(hjust = 0.5)) + labs(x = "Number of Teeth Af
fected by AMTL or Caries", y = "Skeletal Age (+/-5 years)") + scale_col
our_manual(name="Sex", labels = c("Female", "Male"), values = c("deeppi
nk", "deepskyblue1")) +scale_shape_manual(name="Sex",labels = c("Female
", "Male"), values=c(16, 17)) + theme(legend.position="right") + guides
(color=guide_legend("Sex"), shape=guide_legend("Sex"), fill=guide_legen
d("95% Confidence Interval")) + stat_smooth(method = "lm", fullrange = 
TRUE) 
 
>gd = lm(Age~Sex + AMTL.Caries + Sex:AMTL.Caries, data = AMTL2) 

 
Antemortem tooth loss in relation to skeletal age and sex 

> ggplot2::ggplot(AMTL2, aes(x=AMTL,y=Age,group=Sex,colour=Sex,shape=Se
x,fill=Sex)) + geom_point(alpha=0.5,size=2) + ggtitle("Antemortem Tooth 
Loss in Relation to Skeletal Age and Sex") + theme(plot.title = element
_text(hjust = 0.5)) + labs(x = "Number of Teeth Lost Antemortem", y = "
Skeletal Age (+/-5 years)") + scale_colour_manual(name="Sex", labels = 
c("Female", "Male"), values = c("deeppink", "deepskyblue1")) +scale_sha
pe_manual(name="Sex",labels = c("Female", "Male"), values=c(16, 17)) + 
theme(legend.position="right") + guides(color=guide_legend("Sex"), shap
e=guide_legend("Sex"), fill=guide_legend("95% Confidence Interval")) + 
stat_smooth(method = "lm", fullrange = TRUE) 
 
> ggplot2::ggplot(AMTL2, aes(x=AMTL,y=Age)) + geom_point(alpha=0.3, size
=2, colour="chartreuse3") + ggtitle("Antemortem Tooth Loss (AMTL) in Rel
ation to Skeletal Age for Unknown Sex") + theme(plot.title = element_tex
t(hjust = 0.5)) +  labs(x = "Number of Teeth Lost Antemortem", y = "Skel
etal Age (+/-5 years)") + theme(legend.position="right") + stat_smooth(m
ethod = "lm", fullrange = TRUE, colour="chartreuse3") 
 
>modelAMTLlm = lm(Age~Sex + AMTL + Sex:AMTL, data = AMTL2) 
>AMTLU = lm(Age~AMTL, data = AMTL2) 

 
AMTL polynomial regression models 

>new_AM=cbind(AMTL2$AMTL, AMTL2$AMTL^2) 
>modelAMpoly = lm(Age~Sex + new_AM + Sex:new_AM, data = AMTL2)  
>summary(modelAMpoly) 
>plot(modelAMpoly) 
>hist(residuals(modelAMpoly), col="turquoise1", main = "Histogram of Res
iduals", xlab = "Residuals", ylab = "Frequency") 
 
>ggplot2::ggplot(AMTL2, aes(x=AMTL,y=Age,group=Sex,colour=Sex,shape=Se
x)) + geom_point(alpha=0.3,size=2) + stat_smooth(aes(x = AMTL,y = model
AMpoly$fitted.values)) + ggtitle("Antemortem Tooth Loss (AMTL) in Relat
ion to Skeletal Age and Sex") + theme(plot.title = element_text(hjust = 
0.5)) +  labs(x = "Number of Teeth Lost Antemortem", y = "Skeletal Age 
(+/-5 years)") + scale_colour_manual(name="Sex", labels = c("Female", "
Male"), values = c("deeppink", "deepskyblue1")) +scale_shape_manual(nam
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e="Sex",labels = c("Female", "Male"), values=c(16, 17)) + theme(legend.
position="right") + guides(color=guide_legend("Sex"), shape=guide_legen
d("Sex")) 
 
> ggplot2::ggplot(AMTL2, aes(x=AMTL,y=Age)) + geom_point(alpha=0.3,size=
2,colour = "chartreuse3") + stat_smooth(aes(x = AMTL,y = AMTLpolyU$fitte
d.values), colour = "chartreuse3") + ggtitle("Antemortem Tooth Loss (AMT
L) in Relation to Skeletal Age for Unknown Sex") + theme(plot.title = el
ement_text(hjust = 0.5)) +  labs(x = "Number of Teeth Lost Antemortem", 
y = "Skeletal Age (+/-5 years)") + theme(legend.position="right") 
 
> set.seed(100) 
> trainingRowIndex <- sample(1:nrow(AMTL2), 0.8*nrow(AMTL2))  
> trainingData <- AMTL2[trainingRowIndex, ]  
> testData  <- AMTL2[-trainingRowIndex, ] 
> new_AM2=cbind(trainingData$AMTL, trainingData$AMTL^2) 
> lmMod = lm(Age~new_AM2, data = trainingData) 
> Summary(lmMod) ## use estimated coefficients to create actual algebraic 
formula 
> x = trainingData$AMTL 
#input actual algebraic formula 
> M = actual algebraic formula 
> t.test(testData$Age, M, paired=TRUE, conf.level=0.95) 
 
modelAMpoly = lm(Age~Sex + new_AM + Sex:new_AM, data = AMTL2) 
AMTLpolyU = lm(Age~new_AM, data = AMTL2) 
AMTLpolyF = lm(Age~new_AM, data = AMTL2F) 
AMTLpolyM = lm(Age~new_AM, data = AMTL2M) 
 
Percentage Exposed Dentine in M1 in Relation to Skeletal Age and Sex 

ggplot2::ggplot(M1.5, aes(x=M1,y=Age,group=Sex,colour=Sex,shape=Sex,fil
l=Sex)) + geom_point(alpha=0.3,size=2) + ggtitle("Percentage Exposed De
ntine in M1 in Relation to Skeletal Age and Sex") + theme(plot.title = 
element_text(hjust = 0.5)) + labs(x = "% Exposed Dentine in M1", y = "S
keletal Age (+/-5 years)") + scale_colour_manual(name="Sex", labels = c
("Female", "Male"), values = c("deeppink", "deepskyblue1")) +scale_shap
e_manual(name="Sex",labels = c("Female", "Male"), values=c(16, 17)) + t
heme(legend.position="right") + guides(color=guide_legend("Sex"), shape
=guide_legend("Sex"), fill=guide_legend("95% Confidence Interval")) + s
tat_smooth(method = "lm", fullrange = TRUE) 
 
> ggplot2::ggplot(M1.5, aes(x=M1,y=Age) + geom_point(size=2, colour="cha
rtreuse3",alpha=0.3) + ggtitle("Percentage Exposed Dentine in M1 in Rela
tion to Skeletal Age for Unknown Sex") + theme(plot.title = element_text
(hjust = 0.5)) +  labs(x = "% Exposed Dentine in M1", y = "Skeletal Age 
(+/-5 years)") + theme(legend.position="right") + stat_smooth(method = "
lm", fullrange = TRUE, colour="chartreuse3") 
 
>gd = lm(Age~Sex + M1 + Sex:M1, data = M1.5) 
>M1U = lm(Age~M1, data = M1.5) 
 

Percentage Exposed Dentine in M2  

>ggplot2::ggplot(M2.5, aes(x=M2,y=Age,group=Sex,colour=Sex,shape=Sex,fi
ll=Sex)) + geom_point(alpha=0.3,size=2) + ggtitle("Percentage Exposed D
entine in M2 in Relation to Skeletal Age and Sex") + theme(plot.title = 
element_text(hjust = 0.5)) + labs(x = "% Exposed Dentine in M2", y = "S
keletal Age (+/-5 years)") + scale_colour_manual(name="Sex", labels = c
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("Female", "Male"), values = c("deeppink", "deepskyblue1")) +scale_shap
e_manual(name="Sex",labels = c("Female", "Male"), values=c(16, 17)) + t
heme(legend.position="right") + guides(color=guide_legend("Sex"), shape
=guide_legend("Sex"), fill=guide_legend("95% Confidence Interval")) + s
tat_smooth(method = "lm", fullrange = TRUE) 
 
> ggplot2::ggplot(M2.5, aes(x=M2,y=Age)) + geom_point(size=2, colour="ch
artreuse3",alpha=0.3) + ggtitle("Percentage Exposed Dentine in M2 in Rel
ation to Skeletal Age for Unknown Sex") + theme(plot.title = element_tex
t(hjust = 0.5)) +  labs(x = "% Exposed Dentine in M2", y = "Skeletal Age 
(+/-5 years)") + theme(legend.position="right") + stat_smooth(method = "
lm", fullrange = TRUE, colour="chartreuse3") 
 
>modelM2.5 = lm(Age~Sex + M2 + Sex:M2, data = M2.5) 
>M2U = lm(Age~M2, data = M2.5) 

 
Regression diagnostics 

##Residuals, Coefficients, RSE, R-squared, F statistic, 
>Summary(gd) 
 
##Mean Absolute Error 
>accuracy(list(modelAMTLlm, AMTLU, modelAMTLpoly, AMTLpolyU, gd, M1U, mo
delM2.5, M2U, ModelmregM3, modelmregF, modelmreg2, modelM1AMM, M1AMF,M1A
MU, modelmregM2AMM, M2AMF, M2AMU, M1M2M, M1M2F, M1M2U),plotit=TRUE, digi
ts=3) 
 
##Diagnostic plots in 2x2 layout 
>par(mfrow=c(2,2)) 
>plot(gd) 
 
##Histogram of residuals 
>hist(residuals(gd), col="turquoise1", main = "Histogram of Residuals", 
xlab = "Residuals", ylab = "Frequency") 

 
ANCOVA/ANOVA 

>anova(gd) 

 
M1 Wear vs. Brothwell 

ggplot2::ggplot(M1.5, aes(x=M1,y=Age,colour=Sex,shape=Sex,fill=Sex))+ge
om_rect(aes(xmin = 6, xmax = 16.1, ymin = 17, ymax = 25,colour = "paleg
reen"), fill = "palegreen",show.legend = FALSE)+geom_rect(aes(xmin = 2
2.13, xmax = 56.55, ymin = 25, ymax = 35,colour="palegreen"), fill = "p
alegreen",show.legend = FALSE)+geom_rect(aes(xmin = 59.77, xmax = 84.1
3, ymin = 35, ymax = 45,colour="palegreen"), fill = "palegreen",show.le
gend = FALSE)+geom_rect(aes(xmin = 84.13, xmax = 100, ymin = 45, ymax = 
100,colour="palegreen"), fill = "palegreen",show.legend = FALSE)+ geom_
point(alpha=0.5,size=2)+ xlim(0,100)+ylim(0,100)+ggtitle("Comparing Kel
lis 2 Dentine Exposure in M1 to the Quantified Brothwell Standard") + t
heme(plot.title = element_text(hjust = 0.5),legend.position = "right")+ 
labs(x = "Percentage of Dentine Exposure",y = "Skeletal Age (+/- 5 year
s)")+ scale_colour_manual(values = c("deeppink","deepskyblue1","palegre
en"),labels = c("Female", "Male","Brothwell"))+scale_shape_manual(value
s=c(16,17,NULL),labels = c("Female","Male","Brothwell"))+scale_fill_man
ual(name="95% Confidence Interval", values=c("deeppink","deepskyblue1",
"palegreen"),labels=c("Female","Male","Brothwell"))+stat_smooth(method 
= "lm", se = TRUE, fullrange = TRUE) 
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M2 Wear vs. Brothwell 

ggplot2::ggplot(M2.5, aes(x=M2,y=Age,colour=Sex,shape=Sex,fill=Sex))+ g
eom_rect(aes(xmin = 0, xmax = 5.438066, ymin = 17, ymax = 25,colour = "
palegreen"), fill = "palegreen",show.legend=FALSE)+geom_rect(aes(xmin = 
7.471264, xmax = 26.36816, ymin = 25, ymax = 35,colour="palegreen"), fi
ll = "palegreen",show.legend=FALSE)+geom_rect(aes(xmin = 36.1039, xmax 
= 60.15038, ymin = 35, ymax = 45,colour="palegreen"), fill = "palegreen
",show.legend=FALSE)+geom_rect(aes(xmin = 60.15038, xmax = 100, ymin = 
45, ymax = 100,colour="palegreen"), fill = "palegreen",show.legend=FALS
E)+ geom_point(alpha=0.5,size=2)+ xlim(0,100)+ylim(0,100)+ggtitle("Comp
aring Kellis 2 Dentine Exposure in M2 to the Quantified Brothwell Stand
ard") + theme(plot.title = element_text(hjust = 0.5),legend.position = 
"right")+ labs(x = "Percentage of Dentine Exposure",y = "Skeletal Age 
(+/- 5 years)")+ scale_colour_manual(values = c("deeppink","deepskyblue
1","palegreen"),labels = c("Female", "Male","Brothwell"))+scale_shape_m
anual(values=c(16,17,NULL),labels = c("Female","Male","Brothwell"))+sca
le_fill_manual(name="95% Confidence Interval", values=c("deeppink","dee
pskyblue1","palegreen"),labels=c("Female","Male","Brothwell"))+stat_smo
oth(method = "lm", se = TRUE, fullrange = TRUE) 

 
Multiple Regression 

>modelmreg2 = lm(formula = Age ~ M1 + M2 + AMTL, data = mreg2) ##male an
d female 
>modelmregM = lm(formula = Age ~ M1 + M2 + AMTL, data = mregM) ##male 
>modelmregF = lm(formula = Age ~ M1 + M2 + AMTL, data = mregF) ##female 
>summary(modelmreg2) ##Residuals, Coefficients, RSE, R-squared, F statis
tic 
 
>par(mfrow=c(2,2)) ##Diagnostic plots in 2x2 layout 
>plot(gd) 
 
>hist(residuals(gd), col="turquoise1", main = "Histogram of Residuals", 
xlab = "Residuals", ylab = "Frequency") ##Histogram of residuals 
 
>AIC(lmMod) 

 
Regression Model 80:20 Bootstrapping Tests Without Replacement 

>set.seed(100) 
>trainingRowIndex <- sample(1:nrow(mregF), 0.8*nrow(mregF))  
>trainingData <- mregF[trainingRowIndex, ]  
>testData  <- mregF[-trainingRowIndex, ] 
>lmMod <- lm(Age ~ M1 + M2 + AMTL, data=trainingData) 
>distPred <- predict(lmMod, testData) 
>act = data.frame(cbind(actuals=testData$Age, predicteds=distPred))  
>View(act) 
>t.test(act$actuals, act$predicteds, paired=TRUE, conf.level=0.95)  
>M = lm(Age ~ M1 + M2 + AMTL, data=mregF) 
>summary() 
>AIC() 

 
AMTLU = lm(Age~AMTL, data = AMTL2) 

 
gd = lm(Age~Sex + M1 + Sex:M1, data = M1.5)  
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SYMPOSIUMS HOSTED          

 

Co-organizer and Co-chair. Podium Symposium: Cancer and Neoplastic Disease in 

Bioarchaeology: Establishing a Dialogue for Future Research. Paleopathology 

Association’s Annual Meeting. April 8, 2014. 

 

CONFERENCES ORGANIZED         

 

Conference Co-organizer. Working Anthropology. The University of Western Ontario 

Department of Anthropology. April 2013.  

 

Program Co-editor. Joint Conference on the Bioarchaeology of Ancient Egypt & the 

International Symposium on Animals in Ancient Egypt. American University in 

Cairo – Tahrir Campus. January 10-13, 2019.   

 

 

CONFERENCE POSTERS AND PRESENTATIONS      
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Engaging with Disparate Datasets. American Association of Physical Anthropology 

Annual Meeting. March 26, 2015.  

 

Kirkpatrick, C.L. “Site 117: Reconstructing the Lives and Deaths of the Deceased at 

Nubia’s Earliest Known Cemetery”. [Poster]  Paleopathology Association’s 

Annual Meeting. March 25, 2015.  

 

Kirkpatrick, C.L. “Subadult Oral Health and Dental Development in Modern and Ancient 

Egypt” [Invited Podium] Department of Anthropology, The University of Western 

Ontario. March 13, 2015.  

 

Kirkpatrick, C.L. and Willoughby, J. “Entanglements of Ancient and Modern: Defining 

Archaeological Space on the West Bank of Luxor”. [Podium] Confronting 

Categories: Western Anthropology Graduate Student Conference. March 6-8, 

2015.   

 

Kirkpatrick, C.L. and Molto, J.E. “How Short is Short? A Possible Case of Dwarfism from 

Egypt’s 3rd Intermediate Period from the Dakhleh Oasis, Egypt”. [Poster] 

American Association of Physical Anthropology Annual Meeting. April 10, 2014. 
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Neoplastic Disease in Bioarchaeology. Paleopathology Association’s Annual 

Meeting. April 8, 2014.  
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WORK EXPERIENCE          

 

BYU Egypt Excavation Project – Head of Osteology 

February 2018 – March 2018                 

Seila, Fayoum, Egypt 

 Osteology team leader (ongoing seasonal position). This season was focused on 

organization and curation of the magazine as well as trauma analysis and 

documentation. Co-hosted a short osteological field school for Egyptian 

antiquities inspectors. 

 

Paleo-oncology Research Organization and Ancient Cancer Foundation – Executive 

Director 

June 2016 – Ongoing                  

Minneapolis, Minnesota, USA 

 Executive co-founding member responsible for the development and enforcement 

of legal and business protocols, planning and leadership of business meetings, 

development of marketing strategies, website maintenance, business and academic 

research contributions, and team management and coordination. Guest editor, 

leader, and coordinator on the IJPP Paleo-oncology Special Issue project, reporting 

to IJPP Editor-in-Chief, Dr. Jane Buikstra, on behalf of the PRO team. 

 

Theban Tomb 110 – Visiting Scholar 

January 2017           

Luxor, Egypt 

 Assisted Dr. Miguel Sanchez, Dr. Jesus Herrerin, and Dr. Rosa Dinares in the 

radiographic analysis of pathologic bones from the collection of commingled 

remains excavated in TT110.  

 

University of Memphis Mission to Theban Tomb 16 – Dental Anthropologist 

December 2016 – January 2017                     

Dra Abu el-Naga, Luxor, Egypt 

 Inventoried, documented and analyzed dentition from the collection of commingled 

remains excavated in TT16. 

 

Paleo-oncology Research Organization – Director of Operations; Ancient Cancer 

Foundation - CFO 

April 2013 – June 2016                  

Minneapolis, Minnesota, USA 

 Executive co-founding member responsible for the development and enforcement 

of legal, financial and business protocols, application for incorporated non-profit 

business status, development of marketing strategies, social media content creator, 

business and academic research contributions, and team management and 

coordination. 
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The University of Western Ontario – Teaching Assistant 

September 2014 – December 2014                           

London, Ontario, Canada  

 Assisted lecturer in the ‘Biological Anthropology’ online course during semester 1. 

Proctored and marked exams and marked written osteological assignments. 

 

BYU Egypt Excavation Project – Head of Osteology 

February 2014                 

Seila, Fayoum, Egypt 

 Responsible for the macroscopic analysis of Middle Kingdom and Early Roman 

Period human remains. This season focused on a preliminary bioarchaeological 

study of the skeletal remains in the storage magazine and resulted in a report on the 

potential for knowledge acquisition through further bioarchaeological study. Co-

hosted a short osteological field school for Egyptian antiquities inspectors. 

 

The University of Western Ontario – Graduate Research Assistant 

September 2013 – April 2014                           

London, Ontario, Canada  

 Paid position for independent research contributing to doctoral dissertation. 

 

The University of Western Ontario – Teaching Assistant 

September 2012 – April 2013                           

London, Ontario, Canada  

 Assisted lecturer in the ‘Individuation in Forensic Science’ course during semester 

1 and the ‘Human Aging’ course during semester 2. Held office hours, marked 

essays and exams, and proctored exams. 

 

The University of Western Ontario – Teaching Assistant 

September 2011 – April 2012                                      

London, Ontario, Canada  

 Assisted lecturers in the ‘Human Aging: Bioanthropological Perspectives’ course 

and the ‘Introduction to Biological Anthropology and Archaeology’ course. Gave 

lectures for both classes, held office hours, marked essays and exams, and proctored 

exams. 

 

Lady Hudson Preventative Conservation Project – Principle Researcher 

January 2012 – April 2012                                  

London, Ontario, Canada 

 Researched and compiled the conservation and storage history of the Lady Hudson 

mummy and her coffin, conducted a comparative analysis of her state of 

conservation since her arrival at the University of Western Ontario, monitored the 

environmental factors in her storage room and researched the materials making up 

her current display case. Reported findings along with suggestions for the 

installation of safer lighting, which was later implemented by the Associate Dean 

in the Faculty of Social Science, Dr. Andrew Nelson.  
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Colossi of Memnon and Amenhotep III Temple Conservation Project – Final Report 

Editor 

October 2011 – January 2012        

[Via Email] Cairo, Egypt 

 Edited and checked facts for the large final report covering four years of excavation, 

conservation and reconstruction at the Temple of Amenhotep III and the Colossi of 

Memnon. This report was later submitted to the Supreme Council of Antiquities in 

Egypt.  

 

The University of Western Ontario – Volunteer GPR Survey Assistant   

October 2011                                     

Dresden, Ontario, Canada 

 Helped to complete the widely publicized ground penetrating radar (GPR) survey 

of Uncle Tom’s Cabin Historic Site cemetery. This site is made up of the black 

settlement and cemetery that was established by Rev. Josiah Henson, following his 

escape from slavery. Henson inspired Harriet Beecher Stowe’s character, Uncle 

Tom, in her highly influential anti-slavery novel “Uncle Tom’s Cabin”.  

 

URS – Field Archaeologist  

May 2011 – August 2011                        

Southern Ontario, Canada 

 Excavated, classified, mapped and documented artifacts from archaic native 

Canadian and 19th century archaeological sites.    

 

The British Museum – Volunteer Physical Anthropologist     

September 2010 – October 2010                           

London, England, U.K. 

 Cleaned, inventoried and analyzed human remains from the Kawa collection. 

Recorded measurements and non-metric skeletal traits according to the Buikstra 

and Ubelaker “Standards for Data Collection from Skeletal Remains”. Also assisted 

with the collection and set-up of bone x-rays.  

 

The Egyptian Museum in Cairo – Exhibit Development Consultant           
June 2010 – August 2010          

Cairo, Egypt 

 Assisted Dr. Sayed Hassan in the creation of the temporary exhibit “Coins through 

the Ages: Selected Coins from the Egyptian Museum in Cairo”. Gave input on the 

arrangement of display cases, the objects displayed and co-wrote information 

panels and display case labels.  
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ARCE Egyptian Museum Database Project – Collections Management System 

Assistant         
June 2010 – November 2010                            

Cairo, Egypt 

 Input and cross checked object file information from register books, catalogues and 

reference books. Inventoried and photographed objects on display in the museum 

galleries. Drafted object descriptions and internet search instructions. Coordinated 

and managed volunteers and interns. Organized computer filing system.     

 

Dr. Hourig Sourouzian – Egyptological Research Assistant               
April 2010 – May 2010             

Luxor and Cairo, Egypt and London, England, U.K. 

 Conducted Egyptological research at Chicago House, The British Museum and 

various other libraries. 

 

Colossi of Memnon and Amenhotep III Temple Conservation Project – Documentalist 

Ceramicist’s Assistant 

January 2010 – March 2010; January – March 2011             

Luxor, Egypt 

 Supervised and recorded reconstructions in the Peristyle of the Mortuary Temple 

of Amenhotep III. Documented new finds through photography, sketches, 

measurements, descriptions and the maintenance of join lists. Developed a new 

organizational system for pottery throughout the site. Assisted Dr. Pascale Ballet, 

Ceramicist, with the identification, analysis, documentation and drawing of pottery 

during her two week work period. Also completed a seasonal documentation report 

and co-wrote a seasonal restoration report. 

 

The British Museum – Physical Anthropology Intern      

October 2009 – November 2009                           

London, England, U.K. 

 Cleaned, inventoried and analyzed human remains under the supervision of Dr. 

Daniel Antoine, Curator of Physical Anthropology. Recorded measurements and 

non-metric skeletal traits according to the Buikstra and Ubelaker “Standards for 

Data Collection from Skeletal Remains”.  Also assisted with unpacking newly 

acquired mummies and organizing them for storage. 

 

The Egypt Centre – Volunteer Gallery Attendant                        

September 2008 – January 2010                

Swansea, Wales, U.K.        

 Monitored the galleries, provided information and gave demonstrations. Also cared 

for and researched selected artifacts under the ‘Object Handling Scheme’. 
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Dr. Choi Dental Office – Dental Assistant / Dental Nurse            
Aug 2007 – Sept 2008                     

Mississauga, Ontario, Canada 

 Developed extensive knowledge of tooth and jaw structure, pathology, and dental 

radiology which has contributed greatly to my abilities as a Physical 

Anthropologist.  

 

UWO Zooarchaeology Laboratory – Volunteer Bone Processor    
December 2006 – June 2007                

London, Ontario, Canada  

 Helped clean and identify animal bones for the reference collection in the 

University of Western Ontario’s new zooarchaeology laboratory. 

 

WLU Archaeological Field School – Archaeological Apprentice 
June 2006 – July 2006                            

Madaba, Jordan 

 Excavated a Nabataean housing complex on the Wadi Ath-Thamad Project led by 

Dr. P.M. Michèle Daviau (Wilfrid Laurier University, Canada). Cleaned, 

processed, sketched and recorded artifacts, architectural elements and other 

archaeological features. Helped to write the final archaeological report. 

 

GRANTS            

Bioarchaeology of Ancient Egypt 2019 conference travel grant (750USD)  

Institute of Ancient History at the University of Basel travel grant (500€)  

Robert Hathaway Ontario Graduate Scholarship 2015 ($5000)  

Ontario Graduate Scholarship 2014-2015 ($15000)  

Western Graduate Student Conference Travel Award 2014 ($250)  

Ontario Graduate Scholarship 2013-2014 ($15000)  

Swansea University Postgraduate International Excellence Scholarship 2008 (2000GBP)  

University of Western Ontario Dean’s Honor List 2006 ($0)  

Western Scholar Award 2002 ($750)  

 

FUNDRAISING           

Over $10,000 raised for the Paleo-oncology Research Organization to date.  

 

LANGUAGES           

Fluent in English; Conversational knowledge of French and Arabic; Basic understanding 

of Spanish. 

 

PROFESSIONAL MEMBERSHIPS (past and present)      

AAPA (American Association of Physical Anthropologists) 

ACF (Ancient Cancer Foundation) – Founding Executive Member; Executive Director 

ARCE (American Research Centre in Egypt) 

CAPA (Canadian Association for Physical Anthropology) 

DAA (Dental Anthropology Association) 

EEF (Egyptologists’ Electronic Forum)  
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EES (Egypt Exploration Society) 

ESHO (European Society for the History of Oncology) 

GTA Union (Graduate Teaching Assistant’s Union, University of Western Ontario) 

IADR (International Association for Dental Research) 

IAPO (International Association for Paleodontology) 

ICOM (International Council of Museums) 

OMA (Ontario Museum Association)  

PPA (Paleopathology Association)  

PRO (Paleo-oncology Research Organization) – Founding Executive Member; Executive 

Director 

WAGS (Western Anthropology Graduate Society, University of Western Ontario) 
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