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Abstract 

Remote sensing can play a key role in understanding the makeup of urban forests. This thesis 

analyzes how high-resolution multispectral imagery, lidar point clouds, and multidate 

multispectral imagery allow for improved classification of London, Ontario’s urban forest. 

Chapter 2 uses object-based support vector machine classification (SVM) to classify five 

types of trees using features derived from Geoeye-1 imagery and lidar data. This results in an 

overall accuracy of 85.08% when features from both data sources are combined, compared 

with 77.73% when using only lidar features, and 71.85% when using only imagery features. 

Chapter 3 makes use of Planetscope and VENuS images from different seasons to classify 

deciduous trees, conifers, non-tree vegetation, and non-vegetation using SVM. Using 

multidate Planetscope images increases overall accuracy to 83.11% (8.19 percentage points 

more than single-date Planetscope classification), while using multidate VENuS images 

increases accuracy to 72.18% (2.22 percentage points higher than single-date VENuS 

classification). 
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Summary for Lay Audience 

Urban trees provide numerous benefits to a city’s environment, as well as the health of its 

people. It is often necessary for urban planners to know the makeup of tree species in the 

urban forest. Trees can be identified and classified by species using remotely sensed data. 

This data is often imagery, but other data sources such as lidar (3D point data from laser 

pulses) also allow for classification. This thesis focuses on two different data sources for 

classifying trees. The first source is a combination high-resolution imagery and lidar data. 

The second contains multiple images of the same area on different days of the year.  

In chapter 2, features derived from imagery and lidar, which ultimately represent the 

chemical and structural traits of trees, are used to classify five types of trees in London, 

Ontario. Object-based classification is used, meaning individual trees crowns are delineated 

and classified, rather than just classifying individual pixels. It is found that lidar features 

perform better than imagery features, resulting in more trees being classified accurately. 

However, combining features from both data sources results in an even higher level of 

accuracy.  

Chapter 3 focuses on using imagery obtained on different dates, to capture seasonal changes 

in vegetation. Four dates are used, representing different stages of leaf development in trees. 

Two sensors are used, Planetscope and VENuS, which have rarely been used for multidate 

tree classification. Planetscope has higher-resolution, but has fewer bands, meaning it 

captures less detailed spectral information. VENuS has more bands but lower spatial 

resolution. Classification is performed on image pixels and classifies the study area into 

deciduous trees, conifers, non-tree vegetation and non-vegetation. Significant improvement 

to accuracy is found for Planetscope when using multiple dates, in particular using images 

from April when leaves are not present and July when leaves are fully grown. Improvement 

from using multiple dates is smaller when using VENuS. 
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Chapter 1  

1 Introduction 

1.1 Importance of Urban Trees 

 From isolated trees along city streets to dense stands within parks, the urban forest 

is a prominent aspect of many cities. The urban forest refers to all woody vegetation 

within and around human settlements (Miller 1997). This includes individual trees on 

streets and in yards, woodlands of naturally growing trees, as well as plantations 

(Konijnendijk 2005). Urban forests provide numerous benefits to both the environment 

and the human population of cities. As they come from the natural functioning of an 

ecosystem, these benefits can be defined as ecosystem services (Carreiro, Song, and Wu 

2008).  

Ecosystem services include improvements to air quality, temperature, 

biodiversity, and human physical and mental health. Trees benefit air quality by 

removing pollutants and particulates which are trapped on the surface of the tree and 

absorbed into it (Carreiro, Song, and Wu 2008). Trees can also help reduce temperatures, 

which is a major concern due to urban heat effects. For example, parks are often 2-3 °C 

cooler than the surrounding city (Konijnendijk 2005). Shading also reduces the 

temperature of buildings, therefore lowering cooling costs and energy use, while trees 

acting as wind buffers can reduce heating costs in winter (Carreiro, Song, and Wu 2008). 

From a broader climatic perspective, trees are also beneficial as they sequester carbon 

during their lifetimes, reducing the greenhouse effect (Carreiro, Song, and Wu 2008). 

Trees also improve biodiversity by providing habitat for other species. This is most 

significant with old, primary forest, but even individual trees provide habitat for birds and 

invertebrates (Konijnendijk 2005). There are also direct health benefits for humans. 

Access to urban forests can improve people’s physical health by encouraging them to go 

outside and be active. Even mental health may be improved, as trees have been tied to 

stress reduction (Konijnendijk 2005).  
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 Not all trees provide these benefits equally. For example, a study of trees’ ability 

to trap particulates found differences based on size and species. Other trees may be 

unsuited to reducing pollution due to their intolerance to certain pollutants (Dawe 2011). 

In a park, the type of trees selected and their placement (e.g. individual trees or clusters 

of trees) will affect how people use the area around them (Konijnendijk 2005). The 

conditions that trees face also must be considered. Street trees will face more difficulties, 

such as polluted road runoff and higher wind stress, compared to trees in a denser 

wooded area (Konijnendijk 2005). A diverse range of species is also important in order to 

minimize the impacts of pests or diseases that may target only a certain type of tree 

(Carreiro, Song, and Wu 2008). Tree biodiversity can also be considered an ecosystem 

service in its own right (Alvey 2006). Urban forests are often the location where non-

native species are introduced and spread, but they also have the potential for high 

biodiversity (Alvey 2006). This is reflected within Ontario, with a number of cities in 

Southern Ontario establishing plans that support increasing the number of native tree 

species (Almas and Conway 2016).  

1.2 Tree Classification Using Remote Sensing 

Due to the benefits provided by trees, and the variations in these benefits between 

species, it is necessary to have knowledge of tree species composition. It is one of the key 

components of urban tree inventories, along with factors such as determining tree size 

and condition (Miller 1997). Remote sensing can assist in obtaining this information. 

Older methods included making use of manual interpretation of aerial images to 

determine tree composition (Miller 1997). Now, a wide variety of data sources can be 

used as input for algorithms that are capable of classifying trees.  

 Remote sensing tree classification most commonly uses imagery (Fassnacht et al. 

2016). Imagery is gathered by passive remote sensors, which measure electro-magnetic 

energy reflected of off objects in the area the sensor is monitoring. The sensor itself does 

not emit energy. The sensor typically contains multiple bands, which sense electro-

magnetic energy from certain wavelength ranges. The number of bands differs between 

sensors. A sensor with more than 50 bands is defined as hyperspectral, more than 10 as 

superspectral and less than 10 (but still with multiple bands) as multispectral (Jones and 
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Vaughan 2010). A larger number of bands means that a difference that exists only in a 

small wavelength range may be detected by hyperspectral, but not with lower spectral 

resolution sensors. Vegetation, including trees, typically have similar reflectance patterns: 

low reflectance in blue and red wavelengths, somewhat higher reflectance in green 

wavelength and much higher reflectance in near infrared wavelengths. Due to the 

similarities in reflectance, it is sometimes stated that hyperspectral is needed to 

successfully differentiate vegetation (Alonzo, Bookhagen, and Roberts 2014). In recent 

years, studies classifying tree species using hyperspectral have become the most common 

(Fassnacht et al. 2016). However, there are still studies that achieve success using 

multispectral sensors, albeit typically with lower numbers of classified species (Table 

1.1). 
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Table 1.1: Past remote sensing studies on tree classification 

Year/Author Sensor 

# 

Band

s 

Resolutio

n (m) 

Object/

Pixel Classes 

1998 Martin AVIRIS 224 20 Pixel 11 (Stands of species, mixed) 

2003 

Goodenough Hyperion 242 25 Pixel 

10 (Species dominant, other 

landcover) 

2003 

Goodenough 

cont. 

Landsat-

7 6 25 Pixel 

10 (Species dominant, other 

landcover) 

2004 Xiao AVIRIS 224 3.5 Pixel 16 (Species) 

2010 Jones 

AISA 

Dual 492 2 Pixel 11 (Species) 

2012 Cho 

CAO 

Alpha 288 1.12 Pixel 6 (Species) 

2012 Cho cont. 

WorldVi

ew 2 8 1.12 Pixel 6 (Species) 

2012 Cho cont. 

Quickbir

d 4 1.12 Pixel 6 (Species) 

2012 Dalponte 

AISA 

Eagle 126 1 Pixel 

8 (Species, other broadleaf, 

conifer, non-forest) 

2012 Immitzer 

WorldVi

ew 2 8 2 Object 10 (Species) 

2012 Jensen AISA 248 2.2 Object 10 (Species, Genus) 

2012 Zhang 

AISA 

Dual 492 1.6 Object 40 (Species) 

2013 Adelabu 

RapidEy

e 4 5 Pixel 5 (Species) 

2013 Alonzo AVIRIS 224 3.7 Object 15 (Species) 

2014 Alonzo AVIRIS 224 3.7 Object 29 (Species) 

2016 Immitzer 

Sentinel-

2 13 10 Object 7 (Stands of species) 

2017 Liu 

CASI 

1500 72 1 Object 15 (Species) 

2017 Shen 

AISA 

Eagle 64 0.6 Object 5 (Species) 

Spatial resolution is another major aspect of a passive sensor. Sensors have 

different sized instantaneous fields of view, which is the angle in which energy is focused 

on the sensor. The ground-projected area of the instantaneous field of view determines 

the spatial resolution. In digital images, this will be the size of one pixel (Jensen 2005). A 

pixel will have values for each band, representing the measured energy for that area. All 

objects in that area will influence the value of the pixel. This leads to mixed pixels, in 

which a pixel represents multiple objects (e.g. multiple trees, tree and surrounding ground 
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cover). The size of the pixel can determine whether it is possible to separate individual 

trees. If the pixel size is too coarse to do so, classification may instead be based on pure 

stands of a single tree species, or mixtures of multiple tree species (Fassnacht et al. 2014). 

In contrast, higher resolution sensors allow for the classification of individual trees by 

species, whether for objects or for individual pixels. 

 In addition to passive sensors, there are also active sensors which emit their own 

energy and measure its return. Examples include radar and lidar, of which lidar is more 

commonly used for classifying tree species (Fabian Ewald Fassnacht et al. 2016). Lidar 

emits laser pulses which are reflected off objects they hit, returning information about the 

elevation of the object, as well as the amount of returned energy. Further values can be 

derived from lidar, including numerous measures of tree structure. Lidar can be used on 

its own to classify tree species or be combined with imagery (Table 1.2). 

Table 1.2: Past tree classification studies making use of lidar data 

Year/Author # Classes Combined with Imagery 

2008 Holmgren 3 Yes 

2009 Orka 2 No 

2010 Korpela 3 No 

2012 Dalponte 7 Yes 

2012 Vaughn 5 No 

2013 Li 4 No 

2014 Alonzo 29 Yes 

2017 Liu 15 Yes 

2017 Shen 5 Yes 

Classification algorithms assign classes either to individual pixels (pixel-based 

classification) or to objects covering multiple pixels (object-based classification). 

Classification can either be supervised, where image pixels/objects are compared to user-

defined training areas, or unsupervised where the classifier automatically selects natural 

grouping within the image as classes. At the simplest level, classification is based on 

pixel values, with pixels/objects being assigned to the training class whose spectral 

values are closest to their own. (Jensen 2005). However, many different classification 

methods exist which have more complicated means of classification. Commonly used 



6 

 

parametric classifiers, which have assumptions that must be met about the distribution of 

data, include maximum likelihood classifier and linear discriminant analysis. However, it 

is becoming more common to use non-parametric methods which do not require 

assumptions about data distribution (Plaza et al. 2017). Two commonly used methods are 

support vector machine and random forest (Table 1.3). This thesis focuses on support 

vector machine classification.  

Table 1.3: Classification methods used in previous studies 

Year/Author Classifier 

1998 Martin Maximum Likelihood 

2003 Goodenough Maximum Likelihood 

2004 Xiao Linear Spectral Mixture Analysis 

2010 Jones Support Vector Machine 

2012 Cho Maximum Likelihood 

2012 Dalponte Support Vector Machine, Random Forest 

2012 Immitzer Random Forest, Linear Discriminant Analysis 

2012 Jensen Linear Discriminant Analysis 

2012 Zhang Neuro-fuzzy 

2013 Adelabu Support Vector Machine, Random Forest 

2013 Alonzo Linear Discriminant Analysis 

2014 Alonzo Linear Discriminant Analysis 

2014 Ghosh Support Vector Machine, Random Forest 

2016 Immitzer Random Forest 

2017 Liu Random Forest 

2017 Shen Random Forest 

Typically, numerous features are used for classification. The most basic feature is 

reflectance or pixel values from imagery. For trees, these values (and thus the light 

reflected off of trees) in related to chemical properties of leaves, the shape and structure 

of leaves and the shape and structure of the tree canopy (Fassnacht et al. 2016). Many 

additional classification features can be derived from image pixel values. From lidar, the 

height and reflected energy of laser points reflected off of trees can be used to derived 

numerous structural measures. This will be described in more detail in the following 

chapters.  
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1.3 Study Area and Data 

This thesis focused on the urban forest of London, Ontario. As of the 2016 census, 

London had a population of 383,437 and an area of 232.48 km2 (Statistics Canada 2017). 

The urban forest of London is diverse, with trees in different settings including individual 

trees along streets, and natural forest in environmentally significant areas. London is also 

diverse in terms of species. The city is located in the Carolinian zone of Canada, the only 

primarily deciduous forest in the country. Many species found here are more common in 

the United States, and not present elsewhere in Canada (Almas and Conway 2016). 

Additionally, the inventory of city-maintained trees in London makes it clear that many 

introduced species are present.  

 The data used to classify the urban forest of London comes from several different 

sensors. Chapter 2 makes use of high-resolution multispectral Geoeye-1 imagery, as well 

as lidar data. Chapter 3 uses multispectral Planetscope imagery, and superspectral 

VENuS imagery, both of which have high spatial resolution, though lower than Geoeye-

1. The extents of the study areas of both chapters are shown in the map below (Figure 

1.1).  
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Figure 1.1: Study area for chapters 2 and 3 within London, Ontario. Sentinel-2 

image used for city overview. 

1.4 Research Objectives 

This thesis focuses on further examining the potential of remote sensing for tree 

classification. Although both methods draw on high resolution multispectral imagery, the 

exact circumstances vary. Chapter 2 focuses on higher quality, but less accessible data. 

Namely, Geoeye-1 imagery with 1.6 m resolution is used, alongside lidar data. Both 

datasets are capable of classifying individual trees at the species level. However, they are 

not easily obtained. Geoeye-1 is expensive, as are other sensors with similar spatial 

resolution. The lidar data is from an Ontario government initiative and is publicly 

available, but repeated coverage of the same area on different dates is not available. In 

contrast, chapter 3 focuses on imagery with somewhat lower resolution (3 m and 5 m for 

Planetscope and VENuS respectively). This is still quite high but is too coarse to resolve 
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most individual trees. These sensors instead benefit from repeated observations of the 

same area, allowing images from multiple seasons to be used for classification. The 

research goals of this thesis are mostly focused on specific chapters. The goals of chapter 

2 are: 

1) Identify which features from high-resolution multispectral imagery and lidar data 

contribute most to accurately classifying tree species. 

2) Determine if combining high-resolution multispectral imagery and lidar results in a 

higher classification accuracy than either data source can achieve individually. 

The goals for chapter 3 are: 

3) Assess the ability of multitemporal classification using Planetscope and VENuS to 

improve the classification of vegetation. 

4) Identify which image dates and combinations of dates are best suited to distinguishing 

vegetation classes. 

 Chapter 2 involves classifying five different types of trees at the object level, 

while making use of classification features from high-resolution imagery and lidar data. 

This combination is common in past research and in general results in a more accurate 

classification than either source of data can provide on its own. The main purpose of the 

study is to examine features from imagery and lidar in more detail, testing features that 

have been used in past studies but rarely all used at one time. In some cases, more 

variations have been used, such as generating texture measures for all spectral bands 

rather than only certain bands.  

 Chapter 3 focuses on multitemporal classification, using multiple images from the 

same sensor of the same area at different times of the year for classification. This has 

been tested for various sensors in the past, with accuracy typically higher for 

classification using multiple image dates. However, the sensors used in this chapter, 

Planetscope and VENuS, are fairly new and have not yet been used for tree classification 

using multidate imagery.  
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1.5 Thesis Organization 

This thesis uses integrated article format. Chapter 1 provides background information on 

the urban forest and tree classification using remote sensing and presents the research 

objectives. Chapter 2 examines object-based tree species classification using both high-

resolution multispectral imagery and lidar data. Chapter 3 details pixel-based 

multitemporal classification of landcover, including two types of trees (deciduous and 

coniferous). Chapter 4 summarizes the findings of chapters 2 and 3.  
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Chapter 2  

2 Tree Species Classification Using High-resolution 
Multispectral Imagery and Lidar 

2.1 Introduction 

2.1.1 Tree Classification Data Sources 

Urban trees provide numerous benefits to cities. These include social benefits 

such as improving the aesthetic appeal of cities, as well as physical benefits like 

controlling urban heat and air pollution (Konijnendijk 2005). However, many trees within 

cities are introduced species, which may not aid the proper functioning of the local 

ecosystem. Increasing the proportion of native tree species within cities is already a target 

for certain municipalities in Southern Ontario (Almas and Conway 2016). Assessing tree 

species diversity is also a common goal of tree inventories carried out by cities. However, 

conducting inventories is expensive and time consuming (Östberg et al. 2013). 

Identifying species using remote sensing can provide a solution, as it is faster than ground 

surveys, and potentially more cost effective (Fassnacht et al. 2016).  

Both spectral imagery and lidar data have been used to successfully identify tree 

species. Spectral imagery differentiates tree species on the basis on reflectance 

differences between species, which are influenced by chemical properties as well as leaf 

morphology and canopy structure (Fassnacht et al. 2016). Due to the similarity in 

reflectance between species, this is often performed using hyperspectral sensors (Alonzo, 

Bookhagen, and Roberts 2014). Hyperspectral sensors measure reflected light using a 

large number of bands measuring narrow wavelength ranges. In contrast, multispectral 

sensors measure light using a small number of bands covering large wavelength ranges. 

However, a number of studies have used multispectral sensors and achieved some 

success when classifying trees (Goodenough et al. 2003, Immitzer, Atzberger, and 

Koukal 2012, Adelabu et al. 2013). Cho et al. 2012 found that hyperspectral and four-

band Quickbird imagery achieved almost identical overall accuracy.  
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 Lidar functions by emitting laser pulses, which are reflected back to the sensor 

from objects. Returned lidar pulses contain information on elevation and returned energy. 

Numerous lidar features can be created from this information, but ultimately they 

represent the structure of the crown and foliage (Fassnacht et al. 2016). Intensity, 

representing reflected energy from the laser (often infrared), is associated both with leaf 

reflectance and structure (Korpela et al. 2010). Lidar data is also capable of tree 

classification, although studies using solely lidar data generally identify only a few key 

species (Ørka, Næsset, and Bollandsås 2009, Korpela et al. 2010, Vaughn, Moskal, and 

Turnblom 2012, Shi et al. 2018). 

 The combination of spectral and lidar data can better classify tree species than 

either data source can individually. Increases in overall accuracy when comparing 

classification using hyperspectral data alone to classification using hyperspectral and 

lidar data include Dalponte et al. 2012 (6 species and non-forest, 74.1% to 84%), Alonzo 

et al. 2014 (29 species, 79.2% to 83.4%) and Shen 2017 (5 classes, 88.8% to 90.6%). An 

especially large increase was Liu 2017 with an increase from 51.1% to 70% with 15 

species. The large increase was attributed to the early stage of leaf growth making lidar 

more useful than spectral data (Liu et al. 2017). Similar improvements were found in 

studies using multispectral images and lidar such as Holmgren et al. 2008 (3 classes, 84% 

to 94%) and Ke et al. 2010 (5 species dominant stand classes, 84 kappa to 92 kappa).  

2.1.2 Classification Features 

 Classification features derived from spectral images most commonly include the 

pixel values or reflectance of the sensor’s bands. For object based classification, the mean 

of the pixels in tree crowns is often used (Fassnacht et al. 2016). Limiting the calculation 

of the mean to the brightest pixels in the crown has been found to improve accuracy 

(Shen and Cao 2017). Alternatively, a single pixel from the top of the tree crown may be 

selected (Zhang and Qiu 2012).  

Lidar features generally represent crown density, shape, and surface texture, as 

well as return intensity (Vaughn, Moskal, and Turnblom 2012). Features based on the 

height of lidar points include exact heights of points (e.g. maximum height), statistics 
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calculated from those heights (e.g. mean, skew and kurtosis of height), and percentiles 

(e.g. height which 95% of lidar points in crown fall below).  

The utility of height features varies between studies. Ørka et al. 2009, Vaughn et 

al. 2012 and Korpela et al. 2010 all found intensity measures to be more useful than 

height measures. In contrast, Ke et al. 2010 found height useful when classifying natural 

forest, and Cho et al. 2012 found a 5.8 percentage point increase in overall accuracy 

when using maximum height alongside spectral data to classify savannah trees.  

Image texture refers to the image being rough or smooth. In digital images, it is 

based on the differences between pixel values (Hall-Beyer 2018). The inclusion of 

texture improves image classification (Coburn and Roberts 2004). Texture measures can 

be derived from either the spectral image or a lidar product such as a normalized digital 

surface model (nDSM). Common measures used include grey level co-occurrence matrix 

textures (GLCM) which are based on different grey-level combinations within a moving 

window (Hall-Beyer 2018). Their usefulness varies, with Li et al. 2015 finding them less 

useful than spectral features, while in Heinzel et al. 2012 GLCM measures from both 

imagery and nDSM were among the 14 most important features in the study.  

2.1.3 Research Objectives 

The purpose of this study was to better understand the ability of imagery and lidar 

to classify tree species. This was accomplished by making use of numerous classification 

features derived from both high-resolution multispectral imagery and lidar. These 

included spectral means, texture measures of imagery and a normalized digital surface 

model, and measures of lidar height and intensity. The overall goals of the study were: 

1) Achieve an accurate classification of five types of trees in London, Ontario using 

support vector machine classification with features derived from high-resolution 

multispectral Geoeye-1 imagery and lidar. 

2) Identify which classification features contribute most to the accuracy of the 

classification result. 
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3) Verify if combining high-resolution multispectral imagery and lidar results in a higher 

classification accuracy than either data source can achieve individually. 

2.2 Methodology 

2.2.1 Study Area and Data Description 

London, Ontario is located in southern Ontario, Canada. The city contains isolated 

urban trees along streets and on private property, as well as denser clusters of trees within 

parks and environmentally significant areas. The study area covers approximately 25 km2 

in the north of London, corresponding to the boundary of the study’s Geoeye-1 image. 

This area contains both new and old neighbourhoods, leading to a variety of tree ages and 

sizes (Figure 2.1) 

 

Figure 2.1: Study area within London, Ontario 
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The study made use of a Geoeye-1 image captured on July 9, 2018. Geoeye-1 is a 

satellite mounted high-resolution multispectral sensor owned by the company 

DigitalGlobe. The satellite is in sun-synchronous orbit at 684 km and makes 12 to 13 

orbits daily. It contains four bands corresponding to blue, green, red and near-infrared 

(NIR) wavelengths (Table 2.1). The multispectral bands have a spatial resolution of 1.6 

m. Additionally, there is a panchromatic band with a spatial resolution of 0.4 m.  

Table 2.1: Geoeye-1 imagery specifications 

Band # Wavelength (nm) Colour Spatial Resolution (m) 

Band 1 450-510 Blue 1.6 

Band 2 510-580 Green 1.6 

Band 3 655-690 Red 1.6 

Band 4 780-920 Near Infrared 1.6 

Panchromatic 450-800 

Greyscale (covers visible 

spectrum to beginning of 

NIR) 0.4 

The study’s lidar data was collected on May 15, 2017 using an aircraft mounted 

Leica ALS70-HP. This sensor is produced by Leica Geosystems.  The study area data is 

part of a larger lidar dataset of Southwestern Ontario around Lake Erie and is collected 

and provided by the Ministry of Agriculture, Food and Rural Affairs (OMAFRA). The 

average lidar point density is 8 points/m2 and the wavelength of the laser is 1064 nm. 

Each lidar pulse may have up to five returns.  

2.2.2 Class Selection 

There are numerous tree species in the study area, both native and introduced. The city’s 

tree inventory accounts for many city-maintained trees, including most street trees and 

some park trees. Within the study area, this includes over 160 species. Classification was 

performed to differentiate between five tree types. Four species were selected: Acer 

platanoides (Norway maple), Tilia cordata (littleleaf linden), Picea pungens (Colorado 

blue spruce) and Gleditsia triacanthos (honey locust). In addition, the Norway maple 

cultivar “Schwedleri” was also selected. These species are among the ten most common 

in the study area, according to the city tree inventory. However, they are also all 

introduced species which do not grow natively in the London area. In addition, they have 
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marked physical differences. Colorado blue spruce is the only conifer of the five and has 

blue-green coloured needles. The leaf and crown shapes of Norway maple, littleleaf 

linden and honey locust are all distinct. Norway maple and Schwedleri Norway maple 

have the same crown and leaf shape, but “Schwedleri” is distinguished by red coloured 

foliage (Figure 2.2).  

 

Figure 2.2: Trees classified in study. Clockwise from top left: Norway maple, 

Schwedleri Norway maple, Colorado blue spruce, littleleaf linden, honey locust.  

2.2.3 Workflow 

The general stages of processing are shown in the flowchart below (Figure 2.3). 

Classification began with preprocessing Geoeye imagery through atmospheric correction 

and orthorectification. The lidar point cloud was also processed to generate elevation 
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products including a normalized digital surface model (nDSM). The nDSM was the basis 

of watershed delineation, which created the tree crown objects used in the study. Shaded 

relief elevation images were also created from the nDSM. The Geoeye image was further 

processed by pansharpening (increasing resolution to panchromatic band pixel size of 0.4 

m). The pansharpened bands were used to generate GLCM texture measures. 

Additionally, GLCM textures were generated from the nDSM and four shaded relief 

images. The original 1.6 m Geoeye bands were masked based on NDVI and bright pixels 

(sunlit) to ensure only tree vegetation reflectance was measured. From these new images 

(masked Geoeye images, GLCM texture for pansharpened Geoeye bands, shaded relief 

and nDSM) zonal statistics in ArcGIS was run to calculate features from the pixels in the 

tree crown object. Additionally, LAS Canopy was used to calculate metrics from the lidar 

points within the tree crown object boundaries. This provided all the features used for 

classification in this study. More detailed explanations for each stage are provided in the 

following subsections. 

 

Figure 2.3: General workflow for creation of classification features. Features 

derived from imagery are in blue, from lidar in yellow. 
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2.2.4 Object Creation 

This study used object-based classification, where pixels representing the same 

feature are grouped together as an object and assigned the same class. Here, the objects 

represent individual tree crowns. Segmentation of tree crown objects was performed 

using marker-controlled watershed segmentation from the R Forest Tools package 

(Plowright 2018).  

The algorithm delineates tree crowns from an nDSM, which represents the height 

of objects as if they were on a level plane, without the influence of terrain elevation. The 

nDSM was generated from lidar. A digital surface model (DSM) was generated based on 

the highest elevation lidar point for each cell, while a digital terrain model (DTM) was 

generated based on the average elevation of ground lidar points in each cell. The DTM 

was then subtracted from the DSM to obtain the nDSM.  

Marker controlled watershed segmentation uses a search window to find local 

maxima and delineates the “watershed” around them. Here, the local maxima represent 

the tops of trees. Tree crowns tend to increase in size alongside tree height. A more 

accurate segmentation can be achieved by changing the size of the search window in 

relation to the elevation value of the pixel (Chen et al. 2006). To establish how crown 

size varies with height, 105 trees of several common species were manually delineated. 

Their maximum height and crown width were recorded and a curve was plotted through 

these points to establish a function between tree height and crown size (Chen et al. 2006).  

This resulted in under-segmentation, with several smaller crowns being merged together. 

To avoid this problem, a new function was generated using only the smallest crown for 

each 1 m height interval. 

 Segmentation was performed using three nDSMs of various pixel sizes (1 m, 1 m 

with low-pass filter, 0.5 m, 0.5 m with low-pass filter). The low-pass filter was used to 

fill gaps and irregularities in crowns, which were particularly noticeable in the 0.5 m 

image (Barnes et al. 2017). The unfiltered 0.5 raster produced poor results and was not 

further analyzed. From visual examination, height differences between crowns were 
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noticeable at both resolutions, but differences within crowns were emphasized more 

strongly with 0.5 m pixel size.  

The generated crowns were compared to manually delineated crowns to determine 

segmentation quality (Figure 2.4). The sections of generated crowns that intersected 

manual crowns were extracted, with each containing three measurements of area: the area 

of the manual crown, the area of the original generated crown, and the area of the section 

of the generated crown that intersects the manual crown. 

 

Figure 2.4: Manual crowns (red) and generated crowns (green) 

Three metrics for segmentation quality were then created: 

1) The total number of generated crowns that intersect a manual crown. The number 

of intersecting generated crowns should be lower, as that indicates a single 

manual crown is not split between multiple generated crowns. 

2) For each manual crown, the largest intersecting generated crown area divided by 

the total area of intersecting generated crowns. If there are multiple intersecting 

crowns, it is preferable that a single one cover most of the manual crown. 

3) The area of the section of a generated crown that intersects a manual crown, 

divided by the total area of that generated crown. Ideally, the portion of the 
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generated crown intersecting the manual crown will be a similar size to the entire 

generated crown. If not, it indicates that multiple tree crowns are contained in the 

generated crown. 

The metrics indicated that the low-pass filtered 0.5 m nDSM produced the best 

segmentation (Table 2.2). The 1 m low-pass filtered nDSM had fewer total intersecting 

generated crowns, indicating that single manual crowns were not split between multiple 

generated objects. However, the size of the part of the generated object that intersects 

with the manual crown was much smaller than the total size of that object, suggesting that 

the generated object represents multiple tree crowns. In contrast, the 0.5 m low-pass 

filtered nDSM, generated objects more often contained only a single tree crown. On 

average, the intersecting area of the generated object containing the manual crown made 

up 73.76% of the total area of the same generated object. Because of the higher quality of 

crowns based on the measurements, further processing made use of the objects generated 

by the 0.5 m low-pass filtered nDSM. 

Table 2.2: Accuracy measures for tree crown objects. Best value in green. LP = low-

pass filter. Metric 1 is the exact value, metric 2 is mean of values for all generated 

crowns that intersect a watershed object, metric 3 is mean of values for largest 

intersecting generated crown for each manual crown. 

2.2.5 Selection of Crowns for Classification 

From the objects generated from watershed segmentation, 448 objects representing 

individual tree crowns were selected for classification (Table 2.3). The crowns represent 

trees of different ages and sizes throughout the study area. Because tree age can affect 

lidar intensity, an attempt was made to use trees of different ages for classification 

nDSM Total # 

intersecting 

generated 

objects 

Largest generated 

object as percent of 

all intersecting 

objects 

Area of generated object intersecting with 

manual crown / Area of entire generated 

object 

1m 130 88.89% 71.61% 
1m LP 102 96.45% 59.93% 
0.5m 

LP 
112 94.27% 73.76% 
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(Korpela et al. 2010). The study area was divided into nine sections, based on the typical 

size of trees. Within each section, 55 points (11 points per tree type) were placed 

randomly. The nearest object of that point’s target tree species was selected to be used in 

classification. The species was verified using Google Streetview images. Selection was 

limited to city-maintained trees identified by the city inventory, and only objects 

containing a single tree crown were used. This was to avoid confusion caused by a single 

object containing multiple trees of different species. However, it does mean that 

classification accuracy is likely higher than if all tree crowns in the study area were 

classified. In some cases, there was no tree near the random point, so the exact number of 

sample crowns differs between species. Selected crowns were distributed throughout the 

study area, but limited to mostly to residential areas (Figure 2.5) 

Table 2.3: Number of crowns selected for classification per tree type. 

Tree Type Number of Crowns 

Norway maple 92 

Schwedleri Norway maple 82 

Honey locust 92 

Littleleaf linden 96 

Colorado blue spruce 86 
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Figure 2.5: Selected tree crowns within the study area. 

2.2.6 Image Processing 

Further processing was required to generate the features used for classification from the 

imagery and lidar data. The Geoeye-1 image was provided without atmospheric 

correction or orthorectification. ATCOR atmospheric correction was performed in PCI 

Geomatica to remove atmospheric distortion in the image and transform pixel values into 

surface reflectance (ATCOR Ground Reflectance Tutorial). Additionally, 

orthorectification was performed using ENVI to adjust for distortion caused by elevation 

changes in the image, and to align properly with the tree crown objects and the nDSM 

from which they were delineated (Harris Geospatial. RPC Orthorectification Tutorial). 

Pansharpening was also performed, to enhance the resolution of multispectral Geoeye 

bands to that of the panchromatic resolution (0.4 m). This was done using the SPEAR 

pansharpening method in ENVI (Harris Geospatial. SPEAR Pansharpening).  



27 

 

From the Geoeye image, the mean and standard deviation (SD) for each of the 

four bands were found for each crown. Mean and SD were also calculated based on the 

normalized difference vegetation index (NDVI). NDVI is based on the difference 

between red and NIR band values and indicates healthy vegetation. The calculation was 

based on pixels that fall within the crown object. However, differing pixel sizes between 

the nDSM and the Geoeye image, as well as imperfect registration, meant that tree crown 

objects did not perfectly align with trees in the Geoeye image. Pixels representing other 

features would be included in metrics based on imagery. To avoid this problem, two 

masks were used. First, an NDVI mask was used to eliminate non-vegetation pixels. 

Pixels with a value below 0.5 were changed to no data, in order to avoid their inclusion 

when calculating metrics. Due to the high image resolution, there were large differences 

in pixel values within tree crowns caused by shadows. Past studies have indicated that 

selecting only sunlit pixels improves tree species classification (Immitzer, Atzberger, and 

Koukal 2012, Shen and Cao 2017). Once non-vegetation pixels were removed, a further 

mask was created by finding the mean NIR reflectance value of each crown, then 

changing all pixels falling below that value to no data (Figure 2.6). The remaining pixels 

were considered sunlit. (Shen and Cao 2017). The mean and SD were calculated twice, 

once with only the NDVI mask applied, and a second time with the sunlight mask applied 

as well. This was performed using the zonal statistics tool in ArcGIS, which finds a mean 

value based on pixels within a polygon (ESRI). 
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Figure 2.6: Process for extracting reflectance features: a) Geoeye-1 imagery with 

crown object overlying pixels. b) NDVI threshold, pixels over 0.5 NDVI in green, 

grey masked. c) NIR band, used for sunlit mask. d) Sunlit mask, pixels below mean 

NIR reflectance in crown masked out (grey). e) Remaining pixels after application 

of both masks.  

2.2.7 Lidar Processing 

Lidar features were created in LASTools software, with the use of LASCanopy 

(Rapidlasso). For each crown, the metrics were calculated based on lidar points within 

the bounds of the polygon (Figure 2.7). Points classified as ground or high/low noise 

were excluded, as were points which fell below a certain height (here left as the default 

value of 1.37 m). For both height and intensity, the same features were generated. These 

included exact values (minimum and maximum value of lidar points), statistics (mean, 

average square value, kurtosis, skewness, standard deviation) and percentiles. Height 

percentiles indicate that a certain percentage of lidar points fall below a certain height. 

Height percentiles were normalized to allow trees of different heights to be more directly 

comparable (e.g. 75% of points fall below 86% of the tree’s maximum height, rather than 

7.8 m) (Ørka, Næsset, and Bollandsås 2009). Intensity percentiles indicate that a certain 
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percentage of points have an intensity value lower than a certain value (e.g. 75% of 

points have an intensity value of less than 25000). 

 

Figure 2.7: a) Lidar points viewed from above, with outline of crown shown. Lidar 

features calculated only for points within crown object. b) Lidar point cloud viewed 

from side, showing varying elevations of points. Points below 1.37 m excluded from 

calculations. 

2.2.8 Texture Processing 

Texture measures were generated using the TEX algorithm in PCI Geomatica (PCI 

Geomatics. TEX Texture Analysis). The window for texture calculation was set as 3x3 

due to the presence of small trees with relatively few pixels comprising the crown. Eight 

GLCM measures, and four GLDV measures were calculated. The grey level co-

occurrence matrix is created from pairs of pixel values between neighbouring pixels, 

while GLDV is based on the diagonal of the matrix (Hall-Beyer 2018). Textures were 

calculated based on the nDSM and all four Geoeye pansharpened bands.  

Texture measures were also generated based on shaded relief images. Shaded 

relief is a visualization method that simulates the shadowing effect caused by differences 

in elevation and is typically used to represent surface roughness of terrain. In this study, 

the shadowing effect was instead used to exaggerate differences in pixel values of the 

nDSM for tree crowns. Shaded relief images for the four cardinal directions were 

        a                b 
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generated in ArcGIS using the nDSM, with sun azimuth at 0, 90, 180 and 270 degrees, 

and sun elevation at 45 degrees (Figure 2.8) Zonal statistics in ArcGIS was once again 

used to get a mean value for each texture measure. However, edges of trees had values 

that were influenced by the pixels surrounding the tree crown, rather than within crown 

pixel value differences. To exclude these, the tree crown polygons were decreased in size 

by 0.5 m on all sides (the size of one nDSM pixel). 

 

Figure 2.8: Data used to generate texture features, with example for each tree type. 

From top to bottom: nDSM, shaded relief, pansharpened Geoeye-1 imagery. Note 

that the tree crown object goes along edges of trees. For this reason, reduced sized 

objects were used for the calculation of texture features. 

In total, 160 classification features for each tree crown were generated (Figure 2.9 and 

Figure 2.10). For full descriptions of these features, see Appendix A. 
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Figure 2.9: Features derived from Geoeye-1 imagery. Black: Texture features. 

Orange: Reflectance features (NDVI mask). Red: Reflectance features (Sunlit 

mask). 
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Figure 2.10: Features derived from lidar data. Black: Lidar height and intensity 

features from point cloud. Red: Texture features from lidar derived nDSM and 

shaded relief. 
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2.2.9 Support Vector Machine Classification 

Classification was performed using support vector machine (SVM) which is a machine 

learning classifier. SVM finds the best fitting hyperplane to separate two classes. 

Typically, a linear separation is not possible, so the data is transformed to a higher 

dimension where a separation can be made. This requires the use of a kernel, such as the 

radial basis function which is used in this study. Additionally, SVM is a binary classifier 

for separating two classes, so various methods have been developed to allow multiclass 

classification (Pu 2017). This study used the SVM implementation in the R package 

“e1071”, which uses the one-against-one technique (Meyer 2019). For each feature to be 

classified this method tries all possible binary combinations of classes and assigns the 

feature to the class which it is most often placed in (Gidudu, Hulley, and Marwala 2007).  

 SVM has several benefits for classification. In this study 160 features were tested, 

with up to 88 being used at a time, while only 448 tree crowns were available as training 

and testing data. With SVM, classification accuracy is not negatively affected by high 

dimensionality (Pu 2017). Additionally, it can perform well with a relatively small 

amount of training data (Fassnacht et al. 2016). The use of random forest classification 

was also considered, but ultimately SVM was chosen as it performed better in several 

tree classification studies (Immitzer, Atzberger, and Koukal 2012, Dalponte, Bruzzone, 

and Gianelle 2012, Adelabu et al. 2013, Shang and Chisholm 2014). 

Once classification was performed, the results were compared to the true classes 

of the testing data. From the comparison of predicted and actual classes, a confusion 

matrix was generated (Table 2.4). Each column of the matrix shows what the training 

data was classified as. The mean of each column is the producer’s accuracy of the class, 

indicating how many testing samples were classified correctly for a particular class. The 

rows show to which class members of a predicted class truly belong. The mean of each 

row is the user’s accuracy. The sum of the diagonals divided by the total number of 

samples gives the overall accuracy, representing the percent of testing samples classified 

correctly (Lillesand, Kiefer, and Chipman 2008). 
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Table 2.4: Example confusion matrix. Classes A through E. Columns indicate the 

reference classes, while rows indicate the predicted classes. Column total is 

producer’s accuracy for that class, row is user’s accuracy. Overall accuracy in red is 

the sum of the diagonals divided by the total number of samples 

  A B C D E Total UA 

A 71 19 2 2 2 96 0.739583 

B 13 56 2 0 5 76 0.736842 

C 4 3 86 0 5 98 0.877551 

D 1 0 0 84 0 85 0.988235 

E 3 4 2 0 84 93 0.903226 

Total 92 82 92 86 96 448   

PA 0.771739 0.682927 0.934783 0.976744 0.875   0.850446 

 In order to have better confidence in the results, five-fold cross validation was 

used. This method involves splitting the data into five groups, with the classes distributed 

evenly between the groups. Classification is run five times, using four groups as training 

data and one group as testing data. Each of the five groups is used once as testing data. 

The final overall accuracy (OA) is the mean of the overall accuracy from the five 

iterations (Rodríguez, Pérez, and Lozano 2010). 

Initially, classification was performed with single features. This was to determine 

which were most useful for classification and guide the selection features to group 

together later on. Each of the 160 features were used as the sole classification feature, and 

the resulting overall accuracy was recorded. Next, groups of related features were tested. 

The different combinations of features were based on the data source, the type of feature, 

and the results of single feature classification (e.g. removing low performing features). 

Following this, the best results of group classification were combined. In total, 75 

different combinations of features were tested. The main groups of features are as 

follows:  

1) Imagery pixel values 

2) Imagery texture measures 

3) nDSM texture measures 
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4) shaded relief texture measures 

5) lidar height features 

6) lidar intensity features. 

2.3 Results 

2.3.1 Single Feature Results 

Intensity features performed far better than features from any other group (Table 

2.5). The top seven most accurate single feature classification results came from intensity 

metrics. The 75th percentile of intensity had the highest classification accuracy at 

63.42%, which outperforms entire groups of features (i.e. Geoeye reflectance, height 

features, nDSM texture). Other intensity features with high accuracy included statistical 

metrics (mean, skew and standard deviation) as well as middle range percentiles (25th – 

90th). Percentiles at the upper and lower ends were less useful, as was the minimum 

intensity value. The maximum and 99th percentile of intensity were almost always the 

same value, and of no use for distinguishing species. 

Table 2.5: Classification overall accuracy using single lidar intensity feature. 

Intensity Feature OA 
 

Intensity Feature OA 

75th Percentile 63.42% 
 

10th Percentile 42.20% 

50th Percentile 62.09% 
 

95th Percentile 39.08% 

Mean 55.38% 
 

5th Percentile 39.07% 

Skewness 52.48% 
 

Kurtosis 36.38% 

90th Percentile 49.10% 
 

Minimum 33.03% 

25th Percentile 48.73% 
 

Average Square 25.24% 

Standard Deviation 44.43% 
 

99th Percentile 21.89% 

1st Percentile 42.41% 
 

Maximum 21.43% 

Among height features, middle range height percentiles (50th and 75th) classified 

trees most accurately, which is similar to results found in Liu et al. 2017 (Table 2.6). 

Percentiles at extremes (1st, 99th) were less accurate. The skew and kurtosis of height had 

higher accuracy than other statistics. The minimum height outperformed the maximum 

height, which was not useful as each species was represented by trees of different ages 

(and therefore heights). 
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Table 2.6: Classification accuracy using single lidar height feature. 

Feature OA  Feature OA 

50th Percentile 41.32% 
 

1st Percentile 29.94% 

75th Percentile 40.44% 
 

Kurtosis 29.27% 

25th Percentile 35.93% 
 

Minimum 28.33% 

10th Percentile 34.16% 
 

99th Percentile 28.15% 

5th Percentile 32.58% 
 

Standard Deviation 25.22% 

Skewness 32.58% 
 

Maximum 21.39% 

90th Percentile 30.58% 
 

Mean 21.18% 

95th Percentile 30.38% 
 

Average Square 19.40% 

For Geoeye, mean NIR band reflectance was the most useful feature with 42.17% 

overall accuracy (Table 2.7). Next followed mean green band reflectance, mean NDVI, 

and the standard deviation of NIR. Red and blue band mean reflectance were lower, as 

were most standard deviation measurements. Vegetation reflectance is somewhat higher 

in green wavelengths than in blue or red, and near-infrared reflectance is much higher. 

The higher classification accuracy of these bands is similar to Immitzer et al. 2012 and Li 

et al. 2015, which both found green and NIR in Worldview-2 to be useful but differs as 

Immitzer also found the blue band to be important. 

Table 2.7: Classification accuracy using single Geoeye-1 reflectance feature. 

Sunlit Mask Feature OA   NDVI Mask Feature OA 

NIR Mean 42.17%   NIR Mean 39.72% 

Green Mean 31.94%   NIR SD 31.05% 

NDVI Mean 31.49%   NDVI Mean 30.16% 

NIR SD 26.83%   Green Mean 27.92% 

Red Mean 25.23%   Red Mean 25.28% 

Blue Mean 24.80%   NDVI SD 25.22% 

Red SD 22.09%   Blue Mean 23.49% 

NDVI SD 21.87%   Red SD 22.13% 

Green SD 21.41%   Green SD 19.18% 

Blue SD 20.52%   Blue SD 18.09% 

The results from texture measures were fairly similar for all shaded relief 

directions as well as the nDSM (Table 2.8 and Table 2.9). Texture measures which had 

high accuracy across all shaded relief directions and the nDSM included standard 
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deviation, dissimilarity and GLDV mean. GLCM mean and correlation were not useful. 

Dissimilarity and variance both relate to “the dispersion of value around the mean” (Hall-

Beyer 2018). Both textures emphasize edges, where pixel values change rapidly (Hall-

Beyer 2017). This suggests that crown height changes help differentiate species. These 

changes occur within a 3x3 pixel (1.5 m x 1.5 m) window, representing changes over 

fairly large sections of the tree crown. GLDV mean is equivalent to dissimilarity, so its 

comparable accuracy is expected (PCI Geomatics. TEX Texture Analysis). The low 

performing GLCM mean and correlation both are interior measures, for areas of similar 

pixel values (Hall-Beyer 2017). The lack of homogenous areas in the tree crowns of all 

species may explain their low classification accuracy. 
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Table 2.8: Classification accuracy using single shaded relief texture feature. 

North Relief Feature OA  East Relief Feature OA 

Standard Deviation 36.63% 
 

Standard Deviation 42.01% 

Dissimilarity 36.42% 
 

Contrast 39.51% 

GLDV Mean 36.42% 
 

GLDV Contrast 39.51% 

Contrast 35.99% 
 

Dissimilarity 38.64% 

GLDV Contrast 35.99% 
 

GLDV Mean 38.64% 

Angular 2nd Moment 35.74% 
 

GLDV Entropy 37.29% 

GLDV Ang. 2nd Moment 35.51% 
 

Homogeneity 36.16% 

Homogeneity 35.49% 
 

Entropy 35.73% 

Entropy 35.49% 
 

GLDV Ang. 2nd Moment 35.06% 

GLDV Entropy 35.25% 
 

Angular 2nd Moment 34.15% 

GLCM Mean 29.88% 
 

Correlation 28.58% 

Correlation 20.77% 
 

GLCM Mean 28.41% 

     

South Relief Feature 
  

West Relief Feature 
 

Standard Deviation 40.58% 
 

Dissimilarity 42.44% 

GLDV Entropy 40.43% 
 

GLDV Mean 42.44% 

Dissimilarity 39.48% 
 

Homogeneity 39.69% 

GLDV Mean 39.48% 
 

GLDV Entropy 39.04% 

GLDV Ang. 2nd Moment 39.30% 
 

GLDV Angular 2nd Moment 39.04% 

Contrast 39.25% 
 

Standard Deviation 38.88% 

GLDV Contrast 39.25% 
 

Contrast 38.43% 

Angular 2nd Moment 38.65% 
 

GLDV Contrast 38.43% 

Entropy 38.44% 
 

Angular 2nd Moment 37.73% 

Homogeneity 37.54% 
 

Entropy 37.71% 

GLCM Mean 37.03% 
 

GLCM Mean 31.00% 

Correlation 26.13% 
 

Correlation 21.88% 
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Table 2.9 Classification accuracy using single nDSM texture feature. 

nDSM Feature OA 

Standard Deviation 40.58% 

Dissimilarity 40.13% 

GLDV Mean 40.13% 

GLDV Entropy 39.47% 

GLDV Ang. 2nd Moment 38.35% 

Homogeneity 37.04% 

Entropy 35.24% 

Contrast 35.22% 

GLDV Contrast 35.22% 

Angular 2nd Moment 33.90% 

Correlation 30.37% 

GLCM Mean 19.86% 

The results of classification with textures created from Geoeye image bands 

differed from shaded relief and nDSM texture results (Table 2.10). GLCM mean, which 

was of little use with nDSM and shaded relief-based texture had the highest classification 

accuracy for all four bands. The GLCM mean is the mean of pixel value combinations in 

the GLCM matrix (Hall-Beyer 2018). Mean is high in cases where there are few edges 

with large pixel value differences (Hall-Beyer 2017). Angular second movement and 

correlation were the least accurate for visible spectrum bands. However, correlation 

produced a relatively high accuracy with NIR. High correlation indicates that there is a 

predictable relationship between neighbouring pixels (Hall-Beyer 2018). 
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Table 2.10: Classification accuracy using single Geoeye-1 texture feature. 

 

2.3.2 Feature Group Results 

For Geoeye imagery features, the highest classification accuracy came from using the 

means of all bands after masking out darker pixels with the sunlit mask (OA 60.03%) 

(Table 2.11). Including NDVI resulted in a slightly lower accuracy (OA 59.14%), as did 

including band standard deviations (58.11%). In most combinations of features, the set 

using the sunlit mask outperformed the matching set using only the NDVI mask. Band 

Blue Texture OA  Green Texture OA 

GLCM Mean 35.94% 
 

GLCM Mean 38.86% 

Contrast 35.48% 
 

Homogeneity 36.61% 

GLDV Contrast 35.48% 
 

Dissimilarity 35.25% 

Standard Deviation 34.39% 
 

GLDV Mean 35.25% 

Dissimilarity 33.49% 
 

GLDV Ang. 2nd Moment 34.84% 

GLDV Mean 33.49% 
 

GLDV Entropy 34.83% 

GLDV Ang. 2nd Moment 30.16% 
 

Standard Deviation 33.46% 

GLDV Entropy 29.27% 
 

Contrast 33.01% 

Homogeneity 28.13% 
 

GLDV Contrast 33.01% 

Entropy 24.11% 
 

Entropy 31.03% 

Correlation 22.55% 
 

Angular 2nd Moment 30.10% 

Angular 2nd Moment 22.29% 
 

Correlation 23.68% 

     

Red Texture OA  NIR Texture OA 

GLCM Mean 33.71%  GLCM Mean 44.24% 

Contrast 32.35%  Correlation 33.69% 

GLDV Contrast 32.35%  Contrast 32.15% 

Dissimilarity 31.92%  GLDV Contrast 32.15% 

GLDV Mean 31.92%  Dissimilarity 29.49% 

Standard Deviation 29.90%  GLDV Mean 29.49% 

GLDV Entropy 28.14%  Standard Deviation 28.12% 

GLDV Ang. 2nd Moment 27.92%  Angular 2nd Moment 26.14% 

Homogeneity 25.88%  Entropy 25.68% 

Entropy 22.98%  Homogeneity 23.42% 

Angular 2nd Moment 22.55%  GLDV Ang. 2nd Moment 23.22% 

Correlation 22.11%  GLDV Entropy 22.77% 
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standard deviations performed poorly and did not improve results. Including the NIR 

band substantially improved accuracy compared to using only the visible spectrum bands. 

Table 2.11: Classification accuracy using multiple Geoeye-1 reflectance features. 

RGB = features from red, blue and green bands. Mask indicates whether sunlit 

mask or NDVI mask used.  

RGB 

Mean 

NIR 

Mean 

NDVI 

Mean 

RGB 

SD 

NIR 

SD 

NDVI 

SD 

Overall 

Accuracy 

Mask 

✓ ✓ 
    

60.03% Sun 

✓ ✓ ✓ 
   

59.14% Sun 

✓ ✓ 
 

✓ ✓ 
 

58.11% Sun 

✓ ✓ ✓ ✓ ✓ ✓ 57.67% Sun 

✓ ✓ 
    

57.40% NDVI 

✓ ✓ 
 

✓ ✓ 
 

57.17% NDVI 

✓ ✓ ✓ ✓ ✓ ✓ 56.95% NDVI 

✓ ✓ ✓ 
   

56.51% NDVI 

✓ 
     

45.38% Sun 

✓ 
  

✓ 
  

43.36% Sun 

✓ 
     

38.66% NDVI 

✓ 
  

✓ 
  

37.77% NDVI 
   

✓ ✓ 
 

28.83% NDVI 
   

✓ ✓ 
 

24.35% Sun 
   

✓ 
  

21.87% Sun 
   

✓ 
  

19.42% NDVI 

It was unclear whether using texture measures of shaded relief was preferable to 

using texture measures of the nDSM. Textures from single shaded relief directions had 

lower accuracy than from the original nDSM. Combining all shade direction textures had 

a somewhat higher accuracy (OA 59.6%) than nDSM textures (OA 56.13%). This was 

also true for four of the five iterations of classification (Table 2.12). However, when 

combined with other feature groups, nDSM textures somewhat outperformed shaded 

relief textures. Excluding low performing texture measures based on the results of single 

feature classification did not improve accuracy compared to using all texture measures. 
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Table 2.12: Overall accuracy for each cross-fold validation run for nDSM and 

shaded relief features. Higher result in green. 

Fold nDSM Shaded 

Relief 

1 56.70% 61.80% 

2 57.61% 63.04% 

3 55.68% 62.50% 

4 58.43% 57.30% 

5 52.22% 53.33% 

Average 56.13% 59.60% 

Texture derived from Geoeye imagery performed better than either nDSM or 

shaded relief texture (Table 2.13). Texture from the NIR band (OA 53.17%) and the 

green band (OA 50.89%) outperformed texture from the red (OA 41.72%) and blue (OA 

41.08%) bands. Classification using only textures from NIR and green achieved a better 

result (OA 71.68%) than using textures from all four bands (OA 68.94%). 

Table 2.13: Classification accuracy using texture measures from Geoeye-1. 

Blue 

Texture 

Green 

Texture 

Red 

Texture 

NIR 

Texture 

Overall 

Accuracy  
✓ 

 
✓ 71.68% 

✓ ✓ ✓ ✓ 68.94%    
✓ 53.17%  

✓ 
  

50.89%   
✓ 

 
41.72% 

✓ 
   

41.08% 

Lidar height features performed best when percentiles and statistics were used 

together (OA 48.4%) (Table 2.14). Including exact values resulted in a lower accuracy 

(OA 44.7%). The same was true when comparing intensity percentiles and statistics (OA 

69.5%) to all intensity features (68.6%). 
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Table 2.14: Classification accuracy when using lidar height and intensity features.  

Height 

Exact 

Height 

Stats 

Height 

Percentiles 

Intensity 

Exact 

Intensity 

Stats 

Intensity 

Percentiles 

Overall 

Accuracy 

    
✓ ✓ 69.51%    

✓ 
 

✓ 69.47%    
✓ ✓ ✓ 68.59%      

✓ 67.21%    
✓ ✓ 

 
64.56%     

✓ 
 

63.89%    
✓ 

  
59.62%  

✓ ✓ 
   

48.46% 

✓ 
 

✓ 
   

45.35% 

✓ ✓ ✓ 
   

44.70%   
✓ 

   
44.66%  

✓ 
    

43.55% 

✓ 
     

35.08% 

The results showed that lidar alone is able to classify the five types of trees with 

moderate accuracy. Using different groups of features derived from lidar data improved 

classification accuracy. While intensity features had 69.5% overall accuracy, this 

increased to 73.03% when both intensity and height features were used, and further 

increased to 77.73% when texture from the nDSM was included. Classification accuracy 

is further improved by incorporating imagery features. Including Geoeye mean 

reflectance and GLCM textures further improved overall accuracy to 85.1%. When using 

features from Geoeye, the overall accuracy when using only texture measures (OA: 

71.68%) was almost as high as when using mean reflectance alongside texture measures 

(71.85%). 

The features used in the most accurate classification were as follows: Geoeye 

reflectance means for all bands (limited to sunlit pixels), lidar intensity and height 

percentiles and statistics (minimum and maximum excluded), nDSM derived texture 

measures and Geoeye texture measures from the green and near-infrared bands (Table 

2.15). 
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Table 2.15: Classification accuracy when using combined groups of features. 

2.3.3 Species 

The producer’s and user’s accuracy of individual species varied between feature groups 

(Figure 2.11 and Figure 2.12). Additionally, confusion between classes also differed 

based on the features used for classification (see Appendix B). Geoeye features produced 

good results for Norway maple and Schwedleri Norway maple, poorer results for 

Colorado blue spruce and littleleaf linden and worst results for honey locust. When 

looking at individual band results, Schwedleri Norway maple was classified very poorly 

in all bands except for green, where classification was still fairly low. It was still 

misclassified as littleleaf linden and Norway maple despite the difference in colour. The 

benefits of multispectral imagery for distinguishing species is greatest when all four 

bands are used. 

 The accuracy of species when classified using nDSM textures were similar. 

Colorado blue spruce was classified best, which is unsurprising considering its distinctive 

canopy shape. More confusion occurred between different deciduous species. Schwedleri 

Geoeye 

Reflectance 

Geoeye 

Texture 

nDSM 

Texture 

Shaded 

Relief 

Texture 

Lidar 

Height 

Lidar 

Intensity 

Overall 

Accuracy 

✓ ✓ ✓ 
 

✓ ✓ 85.08%  
✓ ✓ 

 
✓ ✓ 84.65% 

✓ ✓ 
 

✓ ✓ ✓ 83.72%  
✓ 

 
✓ ✓ ✓ 82.61%  

✓ 
  

✓ ✓ 81.74% 

✓ 
   

✓ ✓ 78.39%   
✓ 

 
✓ ✓ 77.73%    

✓ ✓ ✓ 76.80%  
✓ ✓ 

   
73.68%     

✓ ✓ 73.03% 

✓ ✓ 
    

71.85%  
✓ 

    
71.68%      

✓ 69.51% 
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Norway maple had the lowest PA, but surprisingly was confused more often with honey 

locust, which has a very different canopy shape and density, rather than with Norway 

maple which it differs from primarily in colour. Overall, confusion existed between all 

deciduous trees. It may be that the 0.5 m resolution of the nDSM is still not sufficient to 

resolve the differences in crown structure between deciduous species. Additionally, each 

pixel represents the highest lidar point within that area. The gaps in the canopy for 

species such as honey locust may not be represented well because of this. In contrast, the 

structure of Colorado blue spruce leads to a more distinct changes in canopy height. 
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Figure 2.11: Producer’s accuracy for all five tree types, when classified using 

different groups of features. 
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Figure 2.12: User’s accuracy for all five tree types, when classified using different 

groups of features. 

Texture measures of Geoeye green and NIR bands also classified Colorado blue 

spruce most accurately. The four deciduous tree types all had similar PA and were 

occasionally confused with each other. However, classification accuracy was fairly good 

for all species when using texture measures. Compared to texture from the nDSM, 

Geoeye texture was based off a higher resolution raster (0.4 m) and better represented 

shadowing than what was simulated by the coarser resolution shaded relief.   
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 Using only metrics from lidar height classified Colorado blue spruce most 

accurately, while Schwedleri Norway maple had very low PA. The high accuracy of 

Colorado blue spruce is as expected due to its distinctive structure and foliage. However, 

Schwedleri Norway maple was confused fairly evenly with other species, not just 

Norway maple, which would have been expected considering their similar structure. 

 As before, lidar intensity metrics most accurately classified Colorado blue spruce. 

Honey locust was also highly accurately classified. When using intensity metrics, 

confusion most often occurred between the two types of Norway maple. This may be due 

to similar reflectance of the NIR laser used by lidar, or structural aspects, as both affect 

lidar intensity measurements. 

 The best classification result, combing features from lidar and imagery, had 

nearly perfect PA and UA for Colorado blue spruce, fully differentiating it from 

deciduous species. Honey locust was the next most accurately classified (PA 93.5%). 

Schwedleri Norway maple had the lowest PA but was still close to 70%. 

 User’s accuracy did not differ greatly from producer’s accuracy. In some cases, 

there were noticeable differences between the two types of accuracy, such as higher 

user’s accuracy than producer’s accuracy for honey locust when Geoeye texture was used 

for classification, and lower user’s accuracy compared to producer’s accuracy for blue 

spruce for nDSM texture, lidar height and lidar intensity. Despite these differences, there 

were no cases where user’s accuracy was a particular cause of concern in the results.  

2.4 Discussion 

Texture measures derived from Geoeye imagery were extremely useful. Using textures 

from the green and NIR bands resulted in higher accuracy than using image reflectance. 

When combined together, there is only a marginal increase to the Geoeye texture 

accuracy (OA 71.7% for texture features alone, OA 71.8% with texture and reflectance 

features). This could be due to correlation between Geoeye mean reflectance and texture 

measures. The highest performing GLCM texture is the GLCM mean. The Pearson’s R 

correlation with mean reflectance for the green band is 0.73, while for the NIR band it is 
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0.84. The strong correlation between these features may result in little additional 

information being contributed when Geoeye-1 reflectance is added to classification. 

The four image bands of Geoeye are limited in how well they can differentiate 

species when using only mean reflectance. However, hyperspectral imagery is less 

accessible than multispectral imagery, being mostly limited to airborne sensors rather 

than satellites (Transon et al. 2018). Using GLCM texture measures appears to be a 

useful way to improve tree species classification when only multispectral images are 

available. Ke, Quackenbush, and Im 2010 found varying levels of contribution to 

classification from image mean reflectance and texture measures. In many cases, mean 

image reflectance outperformed texture measures. This differs from this study, where 

only NIR mean reflectance produced a higher accuracy than the higher performing 

texture measures when using single feature classification. For all other bands several 

texture measures resulted in higher accuracy than mean reflectance. Heinzel and Koch 

2012 found classification based on texture to perform somewhat worse than image 

reflectance. The difference may be due to the lower number of texture features used in 

that study, as well as basing texture measures on transformed intensity rather than the 

original reflectance values from each band.  

 The results from using lidar features highlighted the importance of lidar intensity 

for tree classification. Intensity features resulted in higher classification accuracy than 

features based on lidar height. The intensity of returns is affected by the structure of the 

tree crown, as well as how both leaves and branches reflect incoming light (Holmgren, 

Persson, and Söderman 2008). In contrast, height is limited to structural features such as 

the density of leaves and branches, which affect the ability of laser pulses to penetrate the 

crown (Ørka, Næsset, and Bollandsås 2009). Despite the greatest benefits coming from 

intensity, all three types of features derived from lidar (intensity, height, nDSM texture) 

improved classification accuracy. This suggests that they all provide unique information 

for differentiating tree species.  The results from using shaded relief were not noticeably 

better than simply using the nDSM. However, measurements based on the pattern or 

extent of shadowing on tree crowns may be beneficial and would be worth further 

examination. 
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 Removing features that performed poorly based on single feature classification 

had little impact on classification accuracy. The best result excluded certain low 

performing metrics such as the maximum and minimum of height and intensity. When 

these features were included, overall accuracy was 84.82%, only slightly lower than the 

best result of 85.08%. Feature selection using an algorithm, rather than manually 

selecting features may have resulted in slightly higher accuracy (Fabian E. Fassnacht et 

al. 2014). Although reducing the number of features is not necessary for accuracy, it 

would be beneficial for processing time. In the present study, only 448 trees were 

classified, so the number of features had little impact on run times. However, tens of 

thousands of trees were delineated in total within the study area. Processing times would 

be much larger, making feature reduction beneficial for faster classification.  

 Although a good overall accuracy was achieved, this is only the accuracy of the 

448 trees selected for classification, representing five tree types. Attempting to include 

more species, which would be necessary for a full classification of urban trees, would be 

more difficult and may be beyond the capabilities of the available datasets. Factoring the 

accuracy of tree crown delineation into classification accuracy would also be beneficial. 

2.5 Conclusions 

This research assessed the capability of Geoeye-1 high resolution multispectral imagery 

and 8 points/m lidar data to classify trees through SVM classification. Five types of trees, 

with 448 tree crowns total, were used for classification. Multiple combinations of 

classification features were tested, with the best result having an overall accuracy of 

85.08%.  

Classification performed using different groups of features showed that GLCM 

texture measures of pansharpened Geoeye green and NIR bands classify trees with 

moderate accuracy (OA: 71.68%). This was higher than using the mean reflectance of all 

four Geoeye bands (OA: 60%). This demonstrates how making use of texture measures 

can compensate for the low spectral resolution of Geoeye images.  
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Features measuring intensity were by far the best features derived from lidar (OA: 

69.51%). However, the use of metrics based on the height of points in the lidar cloud, as 

well as texture measures of an nDSM generated from lidar further improved accuracy 

when combined with intensity features (OA: 77.73%). Making full use of all that lidar 

data can provide improves classification results.  

Combing features derived from imagery and lidar further increased classification 

accuracy. The highest overall accuracy (85.08%) was achieved from combining mean 

reflectance from imagery, image texture measures, measures of lidar height and intensity, 

and nDSM texture measures. This was an increase of 7.78 percentage points above using 

lidar alone. These features from lidar data and high-resolution multispectral imagery 

should be considered in further attempts to classify tree species. 
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Chapter 3  

3 Classification of Vegetation Using Multitemporal 
Planetscope and VENuS Imagery 

3.1 Introduction 

The classification of vegetation in imagery can be improved by making use of phenology. 

Phenology is the predictable, seasonal development of natural ecosystems, including 

vegetation (Jensen 2005). In remote sensing, more focus is given to seasonal patterns of 

vegetation, rather than specific events in vegetation development such as bud burst. 

Metrics relating to phenology have been calculated from remote sensing data, such as 

USGS Remote Sensing Phenology Products. A more common use is to utilize 

phenological information already present in the image to classify vegetation (Schwartz 

2013). 

Different types of vegetation differ in the timing of their phenological stages. This 

affects the spectral reflectance of vegetation and can aid in identifying them in imagery 

(Jensen 2005). Images taken at different dates can capture changing vegetation 

phenology. The additional phenological information provided by including images from 

multiple dates can make up for lower spectral resolution (Tigges, Lakes, and Hostert 

2013). Past studies have generally found an improvement in classification accuracy when 

multiple image dates are used, although the degree of improvement varies. For example, 

Tigges et al. 2013 made use of five Rapideye images to classify stands of trees of the 

same genus. Compared to using a single image, multidate imagery improved the kappa 

by 0.31. In contrast, Richter et al. 2016 made use of hyperspectral imagery from two 

dates to classify ten species and found a small increase to accuracy of 4 percentage points 

when using both image dates rather than a single image (Table 3.1). Multidate 

classification is also beneficial when classifying broader land cover groups. A 

classification of land cover in Chile improved accuracy between 5-10 percentage points 

(with greater increases for simpler classification schemes) when using four-season 

imagery (Zhao et al. 2016). The classification scheme differentiating conifer and 

deciduous forest resulted in an increase of 8 percentage points to overall accuracy. Xie et 
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al. 2019 classified several species of trees, as well as other land cover, and increased 

accuracy by 7.77 percentage points using bitemporal classification.  

Table 3.1: Past studies that used multidate imagery to classify tree species or 

vegetation cover.   

Year/ 

Author 

Sensor Resol-

ution 

(m) 

Number 

Of 

Dates 

Classifier Number 

of 

Classes 

Features 

Classified 

Overall 

Accuracy 

Increase 

From 

Single 

Date 

2010 

Hill 

Airborne 

Thematic 

Mapper 

2 3 MLC 6 Tree 

Genera 
88.00% 17.40 

2013 

Tigges 

RapidEye 5 5 SVM 8 Tree 

Genera 0.83 kappa 

0.31 

kappa 

2015 

Li 

Worldview 

2/3 

0.5 2 SVM 5 Tree 

Species 92.40% 9.70 

2016 

Richter 

AISA 

Dual 2 2 PLS-DA 10 

Tree  

Species 78.40% 3.80 

2016 

Zhao 

Landsat 8 

OLI 

30 4 RF 10/30/35 Land 

Cover 80/73/59% 10/8/5 

2017 

Le 

Louarn 

Pleiades 0.5 2 RF 6 Tree 

Species 

79.20% 13.90 

2019 

Xie 

ZiYuan-3 2 2 MLC 13 Tree 

Species/ 

Land 

Cover 76.39% 7.77 

The ability of multiple dates to improve classification is clear, but it is also 

important to consider the exact dates of images, as the dates when trees are most 

distinguishable can vary. For example, Hill et al. 2010 noted that trees would have been 

better differentiated if an image from April had been included to capture the first 

appearance of leaves and buds. Past studies have indicated that spectral differences 

between trees are greater early in the growing season than in summer (Tigges, Lakes, and 

Hostert 2013). Zhao et al. 2016 also found better results from the date corresponding to 

the growing season when classifying land cover. 

 This study focused on assessing the ability of two multispectral sensors with high 

spatial and temporal resolution, Planetscope and VENuS, to classify vegetation. Both 

sensors are new and have rarely been used for vegetation classification. However, their 

high revisit times make them well suited for multitemporal classification. The goals of 

the study were: 
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1) Accurately classify the study area into deciduous trees, conifers, non-tree vegetation 

and non-vegetation using Planetscope and VENuS images. 

2) Determine which time of the year is best for differentiating these classes. 

3) Assess whether using multiple image dates improves classification accuracy over 

using single dates. 

4) Compare the classification accuracy between Planetscope (higher spatial resolution, 

lower spectral resolution) and VENuS (higher spectral resolution, lower spatial 

resolution). 

3.2 Methodology 

3.2.1 Study Area 

The study area covers 56.58 km2 in the west of London, Ontario (Figure 3.1). 

 

Figure 3.1: Location of study area (yellow) within London, Ontario. 
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The land cover within this area is diverse, with trees growing in different settings. 

Residential areas contain trees mixed in with buildings, roads and lawns. Parks and golf 

courses contain both isolated and clustered trees, as well as large areas of grass. 

Agricultural land outside the city contains dense woodlots, as well as isolated trees in 

fields alongside crops. The study area also contains woodlands with large numbers of 

trees. This includes three environmentally significant areas: Medway Creek, Sifton Bog, 

and Warbler Woods. London is located in the Carolinian zone of Canada, the only 

primarily deciduous forest in Canada (Drushka 2003). As such, broadleaf deciduous 

species represent the majority of trees in the study area. However, Sifton Bog is an 

anomaly, containing black spruce and tamarack which are more common in Northern 

Ontario. Tamarack is distinct as it is a deciduous conifer. Additionally, conifers planted 

by humans can be found both in wooded areas, as well as in residential areas. The 

diversity of tree locations and their influences is further discussed in this paper. 

3.2.2 Data Description 

Imagery was obtained from two satellite sensors: VENuS and Planetscope. VENuS 

(Vegetation and Environment monitoring on a New MicroSatellite) was developed jointly 

by the Israeli Space Agency and the French National Centre for Space Studies. It travels 

in sun-synchronous orbit at an altitude of 720 km and completes and orbits the earth 29 

times every two days. Planetscope is operated by the Planet Labs company. It is not a 

single satellite but rather a constellation of over 120 miniature Dove satellites which are 

in sun-synchronous orbit at an altitude of 475 km. The constellation orbits the earth’s 

poles every 90 minutes. Both sensors are well suited to multidate classification because 

of their frequent revisit times. VENuS captures the same location every two days, while 

Planetscope revisits daily, although at the time of writing imagery does not appear to be 

available at this frequency. Nonetheless, there are many images available, so it was 

possible to obtain clear images for all seasons. Planetscope has 3 m spatial resolution, 

which is higher than VENuS which is 5 m. Planetscope is more limited in spectral 

resolution with only four bands, while VENuS has 12 (although two cover the same 

wavelength ranges) (Table 3.2).  
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Table 3.2: Spectral bands of Planetscope and VENuS sensors. 
 

Planetscope VENuS 
 

Wavelength  

(nm) 

Colour Spatial  

Resolution 

Wavelength  

(nm) 

Colour Spatial  

Resolution 

Band 1 455 - 515 Blue 3 m 395 - 435 Blue 5 m 

Band 2 500 - 590 Green 3 m 420 -460 Blue 5 m 

Band 3 590 - 670 Red 3 m 470 - 519 Blue-Green 5 m 

Band 4 780 - 860 Near Infrared 3 m 535 - 575 Green 5 m 

Band 5 

   

600 - 640 Red 5 m 

Band 6 

   

600 - 640 Red 5 m 

Band 7 

   

652 - 682 Red Edge 5 m 

Band 8 

   

690 - 714 Red Edge 5 m 

Band 9 

   

734 - 750 Red Edge 5 m 

Band 10 

   

774 - 790 Red Edge 5 m 

Band 11 

   

845 - 885 Near Infrared 5 m 

Band 12 

   

900- 930 Near Infrared 5 m 

Planetscope data was made available through the Planet education and research 

program. It is provided georeferenced, orthorectified and atmospherically corrected. 

VENuS is currently available only for select locations, one of which includes western 

London, Ontario. VENuS is also provided georeferenced and orthorectified. 

Atmospherically corrected surface reflectance is available at 10 m spatial resolution, 

however that was too coarse to meet the needs to the study. Instead, 5 m top-of-

atmosphere reflectance products were used. The dates chosen were mostly free of cloud 
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and haze and focused on a fairly small area so this level of correction should be 

acceptable.  

 Four dates were chosen for Planetscope (Figure 3.2) and VENuS (Figure 3.3), 

representing different stages of leaf growth. The April images capture the study area 

before leaf growth has begun on trees. The May images have partial leaf growth, with 

leaves at different stages of development. July represents full leaf development. In 

October, leaves have begun to change colour and fall. For both April and July, images 

from the same date were available for both sensors. However, there was no clear May 

image in 2018 for VENuS, so a 2019 image was selected instead. This should be 

acceptable, as phenology is similar for the same time each year (Jensen 2005). However, 

exact timing differs due to factors such as weather, so the extent of leaf growth may 

differ between them (Li et al. 2015). The October Planetscope image is slightly later in 

the month than the VENuS image, with more changed and fallen leaves. The choice of 

dates was based on the suggestions in the literature that an image of full leaf growth 

should be combined with images from early leaf growth in spring, or senescence in 

autumn (Hill et al. 2010) (Tigges, Lakes, and Hostert 2013). However, the primary focus 

of this study is distinguishing coniferous and deciduous trees. April was included to have 

a date with no leaves on deciduous trees, to better distinguish them from conifers. 
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Figure 3.2: Planetscope images used for classification. 
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Figure 3.3: VENuS images used for classification. 
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3.2.3 Classification Process 

Four classes were chosen to represent the study area. Trees were divided into deciduous 

and coniferous. Distinguishing between them was the primary goal of the study. All other 

vegetation was included in a non-tree vegetation class. In previous studies, other 

vegetation has more often been confused with trees. For example, grass was more often 

misclassified as tree than impervious surfaces or bare land in Xie et al. 2019, with a 

similar finding in Zhao et al. 2016. Therefore, it was of interest to analyze this as a 

distinct class. Finally, all non-vegetated land cover was grouped together. As spectral 

reflectance of vegetation differs greatly from other types of land cover, it was assumed 

that there would be little confusion with trees.  

Areas were manually selected to act as training data for the classifier. Multiple 

training classes for each of the four classes were selected to account for spatial 

heterogeneity within classes (Table 3.3).  

Table 3.3: Training classes used as input to classifier, and corresponding four final 

classes (Deciduous trees, coniferous trees, other vegetation, non-vegetation) 

Deciduous Trees 
 

Other Vegetation 

Deciduous Forest 
 

Bog 

Deciduous Street 
 

Grass 

Maple/Beech Forest 
 

Long Grass 

Sugar Maple Forest 
 

Low Vegetation 

Deciduous Backyard 
 

Grass Backyard 

Deciduous Backyard Small 
 

Crops 

Deciduous Thicket/Shrub 
 

  
   

Coniferous Trees 
 

Non-Vegetation 

Conifer Forest 
 

House 

Conifer Various 
 

Large Building 

Conifer Backyard 
 

Road 

Conifer Backyard Small 
 

Bare Earth 

Tamarack/Spruce 
 

Water 
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Among deciduous trees, classes were created for trees within dense clusters, along 

streets, and inside backyards. Drawing on a report on Medway Creek, classes were also 

created for areas identified as primarily sugar maple, and maple and beech forest (City of 

London). Thicket, representing small trees and shrubs, was also trained separately. 

Conifers had classes for dense clusters, and backyards. Additionally, a class was created 

for the tamarack and spruce forest present in the Sifton Bog. Tamarack is a deciduous 

conifer, shedding needles in winter. In the final classification, it was included as 

coniferous. Non-tree vegetation classes included grass (both in open areas and in 

backyards), crops, wild meadow (long grasses and low vegetation) and bog moss. Non-

vegetation represented numerous classes including houses, concrete buildings, roads, 

water and bare earth. Higher resolution imagery and a normalized digital surface model 

(representing heights of objects in the study area) were used to aid in determining land 

cover when selecting training sites. Maps of land cover in the environmentally significant 

areas of London (including Medway Creek, Sifton Bog and Warbler Woods) were 

provided by the Upper Thames Conservation Authority.  

 Following training area creation, classification was carried out in ENVI using 

support vector machine classification (SVM). SVM is a machine learning classifier that 

finds the hyperplane that best separates two groups of data. For groups that are not 

linearly separable, the data can be transformed into a higher dimension using a kernel 

function, which allows for better classification. SVM was originally a binary classifier, 

but it can be modified to allow classification of multiple classes (Pu 2017). In the case of 

ENVI, classification is carried out for each pixel in the image (Harris Geospatial). With 

Planetscope all four bands were used as features for the classifier, while for VENuS band 

6 was excluded as it covers the same wavelength range as band 5. SVM performs better 

when the parameters are tuned to data being classified. However, the long processing 

time for classification made this impractical, so the default parameters were used instead. 

This included making use of the radial basis function kernel. Accuracy assessment was 

carried out following classification. 

 Classification accuracy was assessed through the use of randomly generated 

points. The true land cover for each point was determined, after which it was compared to 
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the class of the pixel it falls on in the classified images. These were stratified based on the 

results of the four-date Planetscope classification to the percentage of each of the four 

classes in the image. 600 points were generated, of which 586 were used, with some 

excluded as it was too difficult to determine the land cover present.  

 Based on the difference between real-world class and the classification result for 

each point, a confusion matrix was constructed. This shows the class each point actually 

belongs to, and what it was classified as. From the matrix, producer’s and user’s 

accuracies can be calculated for each class. Producer’s accuracy is based on the columns 

of the table and indicates the probability that a pixel belonging to a class based on real 

world reference data was correctly assigned to that class. User’s accuracy is based on the 

rows and indicates the probability that a pixel assigned to a certain class by the classifier 

truly belong to that class. Overall accuracy is based on the diagonal cells in the matrix 

and indicates what percentage of points were correctly classified (Lillesand, Kiefer, and 

Chipman 2008). Another measure of accuracy, kappa, is also generated. Kappa takes into 

account chance agreement, based on the row and column totals of the confusion matrix 

(Jensen 2005). Following accuracy assessment, the results were analyzed. 

3.3 Results 

3.3.1 Overall Accuracy 

Classification using Planetscope imagery always had higher accuracy than classification 

using VENuS imagery, although the extent varied (Table 3.4). Overall accuracy when 

using single date images was similar between Planetscope and VENuS. For both sensors, 

April performed best, followed by May then October, while July imagery produced the 

least accurate classification. With single date classification, Planetscope outperformed 

VENuS most when using in April and July images, while there was little difference when 

using May and October images.  
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Table 3.4: Overall accuracy and kappa of classification results, for all combinations 

of dates. 

Image Dates Planetscope 

Overall 

Accuracy 

VENuS 

Overall 

Accuracy 

Planetscope 

Kappa 

VENuS 

Kappa 

Four date 83.11% 70.99% 0.76 0.58 

April 74.92% 70.65% 0.63 0.57 

May 71.50% 69.97% 0.58 0.56 

July 67.07% 61.26% 0.54 0.47 

October 68.26% 67.58% 0.53 0.53 

April + July 83.11% 71.84% 0.76 0.60 

May + July 81.23% 72.18% 0.73 0.60 

October + July 79.52% 69.28% 0.71 0.57 

Planetscope more clearly outperformed VENuS when using multidate 

classification. Four-date classification with Planetscope was 12.12 percentage points 

higher than four-date classification with VENuS, and 10.92 percentage points higher than 

the best (two-date May/July) VENuS result. The results with two-date classification were 

similar, with Planetscope greatly outperforming VENuS. However, there was less of a 

difference between the two sensors when classification was performed with only one 

date. At the lowest, the Planetscope October classification was only 0.68 percentage 

points higher than the corresponding VENuS result. 

 For Planetscope, using multiple image dates clearly outperformed using only 

single dates. In all cases, combining the July image with another date results in higher 

accuracy than either alone. When combined with July imagery, accuracy was highest for 

April, followed by May then October. This is the same ranking as when using single 

dates. However, the least accurate two-date classification (July/October) still performed 

better than the best single date classification (April). Overall, the best multidate 

Planetscope classification (all four dates combined) had an overall accuracy 8.19 

percentage points higher than the best single date classification (April). Overall accuracy 

when using only the two-date April/July classification and when using all four images 

was the same. Due to this result, no further combinations were tested (e.g. three-date 

classification) as using only two-dates already performed as well as using all four images. 

In contrast, there is less of a difference in accuracy between classification with single or 
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multiple VENuS images. The best multidate classifications (May/July, April/July) had 

slightly higher overall accuracy than the best single date classification (April), while the 

least accurate two-date classification (October/July) performed worse. Classification 

results using April/July, and May/July images had slightly higher overall accuracy than 

classification using all four dates. 

3.3.2 Class Accuracy 

Differences in accuracy between sensors and image combinations also appeared for 

individual classes (Table 3.5 and  

 

 

 

 

 

Table 3.6). Confusion between classes also differs between date combinations, as seen in 

the confusion matrices (see Appendix C). Four-date Planetscope classification provided 

the best producer’s accuracy for deciduous trees, while using two-date April/July images 

was marginally lower. VENuS was similar, with two-date April/July imagery best 

classifying deciduous trees, and four-date classification being slightly less accurate. For 

both sensors, confusion of deciduous species occurred primarily with non-tree vegetation. 

Planetscope also classified coniferous best using all four images. However, with VENuS 

four-date and April/July producer’s accuracies were lower for coniferous, particularly 

four-date classification. Instead, October/July classification was more accurate. 

Confusion for conifers was more common with deciduous trees than non-tree vegetation 

with Planetscope, but evenly split with VENuS. When classifying non-tree vegetation, 

Planetscope May/July images performed best, followed by October/July and April/July. 

The best result for non-tree vegetation for VENuS was May/July images. Non-vegetation 
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was best classified by Planetscope October/July images, while the best classification from 

VENuS made use of only October imagery.  

 Producer’s accuracy for deciduous trees was lowest in July for both sensors. 

Confusion occurred with conifers and other vegetation. Confusion was somewhat greater 

for other vegetation with Planetscope, and with conifers for VENuS. Conifers were 

classified least accurately in May and July with Planetscope, being confused mainly with 

deciduous trees. Conifer producer’s accuracy was also low for the May image with 

VENuS, but four-date classification was the second lowest. Confusion occurred with both 

deciduous trees and other vegetation. Non-tree vegetation producer’s accuracy was 

lowest with the October image for both sensors. Non-vegetation producer’s accuracy was 

lowest in May for Planetscope, while with VENuS it was lowest when using two-date 

April/July imagery. 

 User’s accuracy differed greatly from producer’s accuracy in some cases. Non-

vegetation was fairly stable with high values for both measures of accuracy. In contrast, 

deciduous and coniferous trees had some very different results. For example, the July 

classification was the least accurate Planetscope date for deciduous trees based on 

producer’s accuracy, but the most accurate based on user’s accuracy. There were also 

some cases where VENuS user’s accuracy outperformed Planetscope. Large differences 

also existed for conifers, with user’s accuracy almost always being lower than producer’s 

accuracy. Results also differed for the same date when comparing user’s and producer’s 

accuracy. For example, Planetscope May/July and October/July classifications had the 

same producer’s accuracy for conifers, but May/July user’s accuracy was higher. July 

was the highest single VENuS date for conifers according to producer’s accuracy, but the 

lowest according to user’s accuracy. Four-date classification using Planetscope had high 

or highest values for both measures of accuracy. 
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Table 3.5: Producer’s accuracy for each class, for all combinations of dates. 

Deciduous Producer’s Accuracy 
 

Other Vegetation Producer’s Accuracy 

Planetscope 
 

VENuS 
 

Planetscope 
 

VENuS 

Four  

date 

74.56% 
 

Four 

 date 

66.67% 
 

Four  

date 

82.58% 
 

Four  

date 

73.75% 

April 63.31% 
 

April 53.57% 
 

April 79.28% 
 

April 78.45% 

May 57.40% 
 

May 51.79% 
 

May 81.51% 
 

May 78.51% 

July 20.12% 
 

July 33.93% 
 

July 79.86% 
 

July 75.84% 

October 38.46% 
 

October 41.67% 
 

October 76.32% 
 

October 70.00% 

April + 

 July 

73.96% 
 

April +  

July 

67.26% 
 

April +  

July 

84.31% 
 

April + 

 July 

79.62% 

May +  

July 

69.23% 
 

May + 

 July 

61.31% 
 

May +  

July 

87.66% 
 

May + 

 July 

82.91% 

October 

+ July 

56.80% 
 

October 

 + July 

48.81% 
 

October  

+ July 

85.62% 
 

October  

+ July 

82.17% 

           

Conifer Producer’s Accuracy 
 

Non-Vegetation Producer’s Accuracy 

Planetscope 
 

VENuS 
 

Planetscope 
 

VENuS 

Four  

date 

73.33% 
 

Four  

date 

43.33% 
 

Four  

date 

90.95% 
 

Four  

date 

75.88% 

April 60.00% 
 

April 50.00% 
 

April 81.88% 
 

April 80.15% 

May 43.33% 
 

May 40.00% 
 

May 79.10% 
 

May 80.90% 

July 53.33% 
 

July 53.33% 
 

July 93.83% 
 

July 72.38% 

October 43.33% 
 

October 50.00% 
 

October 86.08% 
 

October 84.70% 

April +  

July 

66.67% 
 

April +  

July 

53.33% 
 

April +  

July 

91.03% 
 

April +  

July 

72.29% 

May +  

July 

60.00% 
 

May +  

July 

46.67% 
 

May +  

July 

88.41% 
 

May +  

July 

76.09% 

October 

+ July 

60.00% 
 

October 

+ July 

63.33% 
 

October 

+  

July 

94.44% 
 

October 

+ July 

76.19% 
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Table 3.6: User’s accuracy for each class, for all combinations of dates. 

Deciduous User’s Accuracy   Other Vegetation User’s Accuracy 

Planetscope   VENuS   Planetscope   VENuS 

Four  

date 85.14%   

Four 

date 76.71%   

Four 

date 71.51%   

Four 

date 57.28% 

April 76.98%   April 82.57%   April 55.70%   April 48.92% 

May 75.19%   May 80.56%   May 52.43%   May 48.72% 

July 94.44%   July 77.03%   July 53.00%   July 51.60% 

October 66.33%   October 79.55%   October 55.06%   October 50.00% 

April + 

July 85.03%   

April + 

July 84.96%   

April + 

July 71.67%   

April + 

July 56.56% 

May +  

July 85.40%   

May + 

July 82.40%   

May + 

July 70.31%   

May + 

July 57.71% 

October 

 + July 88.07%   

October 

+ July 80.39%   

October 

+ July 72.38%   

October 

+ July 60.28% 

                      

Conifer User’s Accuracy   Non-Vegetation User’s Accuracy 

Planetscope   VENuS   Planetscope   VENuS 

Four  

date 61.11%   

Four  

date 38.24%   

Four  

date 94.62%   

Four  

date 86.50% 

April 58.06%   April 48.39%   April 87.60%   April 83.85% 

May 37.14%   May 50.00%   May 89.45%   May 83.40% 

July 19.05%   July 16.00%   July 91.57%   July 89.64% 

October 20.97%   October 22.39%   October 87.69%   October 86.31% 

April + 

July 58.82%   

April +  

July 39.02%   

April +  

July 94.67%   

April + 

 July 87.43% 

May +  

July 40.00%   

May +  

July 34.15%   

May +  

July 97.17%   

May +  

July 90.67% 

October  

+ July 29.03%   

October  

+ July 25.00%   

October  

+ July 94.44%   

October  

+ July 90.72% 
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3.3.3 Spectral Plots 

Confusion between classes is due to similar spectral reflectance. The spectral response of 

training classes varied throughout the year, as can be seen by examining the spectral 

profiles of Planetscope (Figure 3.4) and VENuS (Figure 3.5).  

 

Figure 3.4: Planetscope spectral means for vegetation training classes. 



74 

 

 

Figure 3.5: VENuS spectral means for vegetation training classes. 

July had the lowest overall accuracy for both sensors, and also noticeable 

similarities between the spectral profiles of different classes. In the Planetscope image, 

many of the classes cluster together, with similar spectral means. This is particularly true 

for forest deciduous trees and non-tree vegetation. Deciduous and conifers in narrow 

areas also have similar reflectance. With VENuS, spectral means are similar for most 

classes in blue to red edge bands, with the exception of grasses. Tamarack/spruce and 

narrow conifer are fairly distinct from other classes in the NIR range, but the main 

conifer class is very similar to narrow deciduous. Deciduous classes and non-tree 

vegetation are somewhat separable in the red edge and NIR ranges.  
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 The Planetscope April image had the highest producer’s accuracy among single-

date classification for both deciduous and coniferous trees. Most classes have a distinct 

spectral curve, although in specific bands certain training classes from different 

vegetation types are similar (e.g. urban and narrow deciduous, and crops in NIR band). 

NIR for conifers is higher than for deciduous, as is expected because this image is before 

leaf growth for deciduous trees. Surprisingly, conifers are still lower in green reflectance 

than deciduous trees. This could potentially be due to undergrowth or grass below 

deciduous trees.  In the April VENuS image, deciduous forest trees are distinct, but 

narrow conifer and deciduous training classes have very similar reflectance. As with 

Planetscope, conifer reflectance is low for most bands including green, but rises sharply 

in the NIR bands.  

 In May, the spectral curves of different classes are more similar than in April, but 

not as close as July. Although they mostly follow the typical vegetation reflectance trend, 

the actual values are distinct. Tamarack and deciduous thicket both still have low NIR 

reflectance, indicating that they may grow foliage later than the other training classes. 

Most coniferous and deciduous tree classes have similar reflectance. This seems to match 

the high confusion of conifers with deciduous. However, deciduous was more often 

misclassified as other vegetation. The agricultural crop training class is the only one to 

have similar reflectance to deciduous tree classes. The VENuS May image is similar, 

with all classes following the typical vegetation curve, and similar reflectance curves 

being present for both conifers and deciduous. Compared to other dates, the curves of 

conifers closely followed those of deciduous trees.  

 The October image for Planetscope also follows typical vegetation reflectance 

curves, with the exact values being closer than in May and similar to July. Deciduous 

trees were most often misclassified as conifers in October, although the reason is not 

apparent from the reflectance curves, with conifers and grasses both being differing from 

deciduous training classes to a similar degree. For VENuS, most training classes follow a 

similar trend, and exact spectral means appear very similar for this date. For both sensors, 

there is a decline in NIR reflectance for most classes compared to summer, with the 

exception of grass which remains high. 
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3.3.4 Map Analysis 

Differences between classification results using different sensors and dates also appeared 

when examining the maps produced through pixel classification (Figure 3.6 and Figure 

3.7.  
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Figure 3.6: Classification result using four-date Planetscope imagery 
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Figure 3.7: Classification result using four-date VENuS imagery 
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When examining the four-date classification using Planetscope and VENuS, 

distinct differences appeared in several areas. In the Medway Valley, the creek was 

somewhat more prominent in the VENuS classification, as was non-tree vegetation. 

VENuS generally had more homogenous areas, due to the larger pixel size. This was also 

noticeable in the neighbourhood north of the creek, with non-tree vegetation covering 

areas that were distinguished as tree in the Planetscope classification (Figure 3.8). In 

most residential areas, Planetscope seemed to classify too many pixels as non-vegetation 

while VENuS did not classify enough and missed smaller buildings. In newer 

neighbourhoods with smaller trees, Planetscope classified trees that VENuS missed 

(Figure 3.9). Broadly though, the two classifications were very similar visually. 
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Figure 3.8: Medway Creek and surrounding neighbourhood in four-date 

Planetscope and VENuS classifications 

 

Figure 3.9: Four-date Planetscope and VENuS classifications of relatively new 

subdivision in North London, containing mostly small trees 
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 Examining the different image date classification results showed clearer 

differences for Planetscope (see Appendix D, Figures D-1 to D-7). Planetscope April 

classification was similar to four-date classification in most ways. Some differences 

included creeks and rivers appearing more clearly, due to the lack of overhanging leaves, 

and some forested areas being misclassified as non-tree vegetation. May also had 

relatively less vegetation, and had many forested areas incorrectly identified as 

coniferous. July had the most noticeable problems, with many forested areas classified as 

non-tree vegetation. The confusion between tree and non-tree vegetation classes was very 

noticeable visually for this date. This confusion was also noticeable in the October 

classification. Two-date classifications differed less when compared to four-date 

classification. April/July classification, which had comparable overall accuracy, had 

somewhat more non-tree vegetation at the expense of non-vegetation and trees. In several 

rural areas, this appeared to be the correct classification. May/July had similar issues as 

May, incorrectly classifying many trees as coniferous. October/July classification 

incorrectly classified Medway Creek as coniferous trees.  

 Comparing four-date VENuS classification to other results also showed 

differences (see Appendix D, Figures D-7 to D-14). April classification for VENuS was 

similar to April Planetscope results, with more pixels identified as non-tree rather than 

tree, and Medway Creek clearly classified. May classification also had somewhat fewer 

tree pixels but did not differ greatly from the four-date image. July classification had 

noticeable areas of non-tree vegetation being classified as trees, and too many pixels 

identified as conifers. Over-classification of conifers was even more noticeable in the 

October image. The differences between four-date and two-date classification with 

VENuS were not particularly notable.  

3.4 Discussion 

Classification accuracy was affected by location, with pixels in more homogenous areas 

being better classified. For Planetscope four-date classification, deciduous tree accuracy 

was 91.94% in heavily forested areas but 64.49% outside of them. VENuS four-date 

classification accuracy for deciduous trees was 95.16% within densely wooded areas and 

50% outside. For other classes, the number within forested areas is too small to draw 
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conclusions. This is due to the spatial resolution of the sensors. The 3 and 5 m pixel sizes 

of Planetscope and VENuS, respectively, make it difficult to correctly classify trees 

surrounded by other land cover. Pixels containing the tree crown likely also contain 

spectra from surrounding features such as grass, roads or buildings. This affects the 

spectral response of the pixel, sometimes enough to no longer clearly belong to its proper 

class. Changing foliage in clusters of deciduous trees is clearly detected, with a moderate 

change in green reflectance and a large decrease in NDVI reflectance. However, there is 

less change to pixel values for many trees along residential streets. These trees are 

surrounded by grass so during periods without leaves, the pixel value may be influenced 

by reflectance off of grass visible through the bare branches. In April, grass already has 

fairly high reflectance in green and NIR, while deciduous trees are characterized by lower 

values in these wavelength ranges during that time. Trees also overhang roads and 

buildings, so that there are many mixed pixels representing reflectance from trees and 

man-made structures. All of this contributes to the lower accuracy of trees within more 

built-up areas. 

 The spatial resolution of the imagery also causes issues for assessing 

classification accuracy. The georeferencing of Planetscope and VENuS images is not 

perfect, so it can be difficult to determine the exact location of the pixel being assessed in 

the reference data. It is possible that an accuracy assessment point on the edge of a tree, 

according to higher resolution data sources, may actually be outside of the tree entirely in 

the Planetscope or VENuS image. At the resolution of these sensors, it is difficult to 

differentiate isolated trees from other vegetation. There are presumably errors within 

accuracy assessment because of this, which may lead to lower accuracy values. 

 Other issues in classification can be attributed to training classes. Several 

improvements should have been made to better distinguish types of vegetation. In 

October certain trees had lost leaves, other changed colour, and others had little change 

from summer. In May, leaf growth was at different stages for different trees. Further 

dividing deciduous training classes by taking into account which areas experienced these 

phenological stages could have improved classification. The same is true of agricultural 

fields. While these were changed for each single-date to ensure bare fields were not 
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included as training for crops, a single training class was used for the four-date 

classification. This included any field that had crops in any of the four images. It would 

have been better to have multiple crop training classes, based on which images had crops 

present. The overly general training classes may explain some of the confusion between 

vegetation and non-vegetation.  

It is not clear from the spectral plots why accuracy substantially improved when 

combining multiple dates for Planetscope but did not for VENuS. Differences between 

dates are somewhat more pronounced for Planetscope. This is especially true of April, 

where the relatively lower NIR reflectance compared to other dates is more notable with 

Planetscope than it is with VENuS. However, the differences between dates still appear 

in VENuS. It may simply be due to the lower spatial resolution of VENuS. Training 

samples, with the exception of the backyard classes, were selected in areas where a given 

class was clearly distinguishable. However, the low resolution of VENuS resulted in 

more mixed pixels, which would not share the spectral signatures of these purer classes. 

Therefore, the changes to reflectance over the seasons for purer training classes may not 

closely match the same land cover in areas with more mixed pixels. 

The higher accuracy of Planetscope for all tested image date combinations 

suggests that spatial resolution was more important that spectral resolution. The higher 

accuracy of VENuS within dense forest, where large homogenous areas make spatial 

resolution less important, show that spectral resolution is a benefit to classification. 

However, when classifying urban trees those uniform stands of trees are relatively rare. A 

past study using higher resolution imagery obtained similar overall accuracy classifying 

trees in an urban area, while identifying four specific species in addition to general 

broadleaf and conifer classes (Le Louarn et al. 2017). This was accomplished using a 

sensor with 0.5 m spatial resolution and using only two dates. However, both Planetscope 

and VENuS have a benefit over higher resolution sensors because their data is more 

easily obtainable. This is due to the high revisit frequency, as well as programs that 

provide free imagery for academic purposes. Even when purchased, Planetscope is more 

affordable than high resolution sensors such as Pleiades and Worldview (Sozzi et al. 

2018).  
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 The results are generally lower when compared to past studies. Tigges, Lakes, and 

Hostert 2013 classified the one coniferous species in their study with near perfect 

accuracy. Non-tree pixels were masked out and not accounted for, nor were other species 

of conifers. Conifers were also perfectly classified in Le Louarn et al. 2017 when using 

bitemporal classification. The three conifers in Sheeren et al. 2016 had over 90% 

accuracy and were misclassified most commonly with the other conifer classes. In 

contrast, the accuracy of coniferous and deciduous trees in this study was only similar to 

the forest class in Zhao et al. 2016. This study differed from Tigges, Lakes, and Hostert 

2013 and Sheeren et al. 2016 due to their use of homogenous areas greater than one pixel 

for training and testing. Thus, the issue of mixed pixels did not influence their studies. Le 

Louarn et al. 2017 made use of a higher resolution sensor (Pleiades pansharpened to 0.5 

m spatial resolution) and used object-based classification. Zhao et al. 2016 made use of 

coarser resolution Landsat, which at 30 m spatial resolution is larger than the size of 

individual trees.  

In comparison to other studies, Planetscope behaved as expected, with higher 

accuracy when using multiple image dates for classification. The degree of improvement 

was similar to past studies. The low improvement of VENuS is unusual in comparison, 

with only Richter et al. 2016 having a similarly low increase with multitemporal 

classification. However, that study focused only on distinguishing between tree species 

and made use of hyperspectral data from two dates, so there is little similarity with the 

results of VENuS classification in this study. 

3.5 Conclusions 

This study made use of four images of different seasons from Planetscope and VENuS 

sensors in order to classify land cover in London, Ontario into deciduous trees, 

coniferous trees, non-tree vegetation and non-vegetation using support vector machine 

classification. The main results were: 

1) 83.11% overall accuracy was achieved with four-date and two-date (April/July) 

Planetscope images, while 72.18% overall accuracy was reached with two-date 

(May/July) VENuS images. 
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2) April, before leaves had begun to grow on deciduous trees, was the best time for 

distinguishing these classes according to overall accuracy. It also provided the best 

producer’s accuracy for conifer and deciduous classes when using Planetscope imagery, 

as well as a relatively high user’s accuracy. April VENuS imagery also best classified 

deciduous and coniferous trees, when considering both user’s and producer’s accuracy. 

 3) Combining multiple dates substantially improved classification when using 

Planetscope imagery. All multidate classification overall accuracy results were higher 

than single date results, with the best multidate result being 8.19 percentage points higher 

than the best single-date result. For VENuS, there was much less of a difference, with 

some single-date results outperforming multidate results, and only a 2.22 percentage 

point difference between the best multidate result and the best single-date result.  

4) Planetscope (with four bands and 3 m spatial resolution) outperformed VENuS (11 

unique bands, 5 m spatial resolution) for all date combinations. Differences were greatest 

in urban settings, where different land covers in close proximity resulted in more mixed 

pixels.  

While the results for Planetscope were as expected, VENuS was not greatly 

improved by the use of multidate imagery. Improving the issues present in this study such 

as training area selection could yield different results or provide more clarity on the 

different effects of multitemporal classification for Planetscope and VENuS. Overall, it is 

clear that with Planetscope combining multiple dates at distinct phenological stages is 

well suited for distinguishing different types of vegetation. 
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Chapter 4  

4 Conclusion 

4.1 Summary 

Trees provide numerous benefits to cities, including improving air quality, moderating 

temperature, improving human health and increasing biodiversity. Many of these services 

are dependent on the type of tree. Species selection is also important to ensure the 

survival of the tree depending on the stresses of its location. Finally, many cities consider 

increasing the number of native species to be a goal. Understanding the species of trees 

present in a city’s urban forest is important, and remote sensing can aid in providing this 

information through tree classification. 

 Chapter 2 detailed object-based support vector machine classification of five tree 

types. Classification features were derived from high-resolution multispectral Geoeye-1 

imagery and lidar data. A normalized digital surface model (nDSM) was generated using 

the lidar point cloud and used to as the basis for marker-controlled watershed 

segmentation to create tree crown objects. Based on these objects, features were created 

based on image reflectance, image texture, nDSM texture, lidar height and lidar intensity. 

Numerous combinations of features were used as input for classification in order to 

determine which best classify different types of trees. 

 Chapter 3 tested the ability of multidate Planetscope and VENuS imagery to 

classify land cover into deciduous trees, coniferous trees, non-tree vegetation and non-

vegetation using pixel-based SVM classification. For each sensor, images from April, 

May, July and October were used individually for classification. Multitemporal 

classification was then carried out with all four images, and combinations of the July 

image and one other date. 

4.2 Conclusions 

The research objectives for both sections of the thesis were completed. The results from 

chapter 2 were: 
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1) The best features from high-resolution multispectral imagery and lidar data were 

identified. GLCM texture measures generated from pansharpened Geoeye-1 imagery 

were highly useful for classification. The best result from imagery features made use of 

texture measures of the green and near-infrared bands. GLCM mean was a particularly 

useful feature. Mean reflectance from imagery did little to increase accuracy when 

combined with texture measures. For lidar data, intensity metrics were by far the most 

useful. Middle range (50th and 75th) intensity percentiles were the most useful individual 

features. The addition of features derived from lidar intensity, lidar height and nDSM 

texture measures further improved classification accuracy. 

2) The combination of features from imagery and lidar data resulted in higher 

classification accuracy then either could achieve individually. Lidar features 

outperformed imagery features by 5.88 percentage points. However, the combination of 

features from both sources of data increased accuracy 7.78 percentage points more than 

using lidar alone. This resulted in 85.08% overall accuracy when classifying five types of 

trees. 

The conclusions for chapter 3 were: 

3) Vegetation classification was improved by using images from multiple seasons. This 

was most pronounced for Planetscope imagery, where multitemporal classification was 

8.19 percentage points higher than the best single-date result. However, the improvement 

was much lower for VENuS, which only saw a 2.22 percentage point increase. 

Planetscope outperformed VENuS, achieving 83.11% overall accuracy compared to 

72.18% with VENuS. 

4) The best dates for differentiating the study’s vegetation classes (deciduous trees, 

coniferous trees, non-tree vegetation) was a combination of April imagery from before 

leaf growth, with a later image. For Planetscope this was a combination of April and July 

imagery. Adding May and October images did not further increase overall accuracy. 

VENuS performed best with May and July imagery, which was slightly more accurate 

than classification using April and July. 
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4.3 Contributions 

Chapter 2 examined numerous classification features from multispectral imagery and 

lidar. Although most had been used in previous studies, the various classification tests 

help to clearly show the capabilities of each feature for classification. For high-resolution 

multispectral imagery, it was found that the means of grey-level co-occurrence matrix 

texture measures outperform the mean reflectance of image bands. Therefore, very-high 

resolution sensors that allow for texture measures of individual trees should make use of 

them for classification. Lidar data can also provide a source for texture measures through 

the creation of an nDSM. Using nDSM texture alongside metrics from the lidar point 

cloud improved accuracy. Relatively few studies make use of texture measures, and when 

they do their improvement to accuracy is usually not clearly displayed.   

 Chapter 3 made use of two relatively new sensors, Planetscope and VENuS. As 

far as I am aware, neither have been used for multitemporal tree classification. For 

Planetscope, using multiple dates greatly improves its ability to differentiate coniferous 

and deciduous trees from each other, as well as from other vegetation. The results for 

VENuS were less clear, with little improvement to accuracy when using multitemporal 

classification. However as noted in chapter 3, issues may have arisen due to mixed pixels 

and training area selection. While it is safe to suggest multiple image dates improve tree 

classification with Planetscope, conclusions are harder to draw for VENuS. Comparing 

the two sensors, Planetscope outperformed VENuS. While VENuS benefited from a high 

number of spectral bands, including several in the red edge and near-infrared regions, 

Planetscope had a higher spatial resolution (5 m compared to 3 m). For classifying urban 

vegetation, spatial resolution is more significant than spectral resolution as it avoids 

issues of mixed pixels.  

4.4 Discussion 

Both sections of the thesis were held back by certain limitations. Chapter 2 was limited 

by the small number of trees used for classification. While the five chosen tree types were 
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very common in the study area, many additional species were also present. The results 

provide useful information on which features distinguish different trees, but they do not 

demonstrate that the data sources used could allow for even a partial inventory of city 

trees. This problem is common to most studies on urban tree classification, with only a 

small number such as Alonzo, Bookhagen, and Roberts 2014 and Zhang and Qiu 2012 

classifying a substantial number of species. It could be of interest to attempt a more 

extensive classification with Geoeye-1 and lidar data, although the relatively low number 

of species classified in similar studies does not make it seem likely to succeed. However, 

identifying certain target species still has uses, such as Murfitt et al. 2016 which 

identified ash trees and assessed their health to monitor the presence of emerald ash borer 

beetles.  

 Chapter 3 was limited to a relatively small number of dates. Both VENuS and 

Planetscope have very frequent revisit times, which should allow for a greater number of 

dates to be tested. During periods of change to leaves in spring and fall, images only a 

short time apart may capture different phenological stages. Unfortunately, there is a 

shortage of imagery in the London area for 2018 and 2019, especially for VENuS. If 

availability improves, this could allow the strengths of these sensors to better be tested. 

4.5 Future Research 

The classification scheme in chapter 3 was simple, only distinguishing deciduous and 

coniferous trees. Individual tree classification seemed infeasible because of the 3 m 

spatial resolution being coarser than many tree crowns. Kwan et al. 2018 used data fusion 

methods including STARFM and FSDAF with Planetscope and higher resolution 

Worldview-2 imagery. This process simulated images with Worlview-2 resolution for 

dates when only a Planetscope image was available. Worldview-2 and Geoeye-1 both 

have similar spatial resolution, so simulated images of this pixel size generated from data 

fusion algorithms using Planetscope and Geoeye-1 could allow for individual tree species 

classification. Very-high resolution sensors such as Worldview-2 and Geoeye-1 are 

expensive and have fewer images available, making multitemporal classification difficult. 

Data fusion with the more accessible Planetscope could allow the power of multitemporal 

classification to be made use of more easily. However, more research is needed to 
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determine if fusing these two sensors could create images of sufficient quality for 

individual tree classification. 
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Appendices  

Appendix A: Classification features used in chapter 2 

Table A-1 Metrics generated using zonal statistics in ArcGIS 

Feature Name Description 

Mean Mean of pixels within 

object 

Standard Deviation Standard deviation of pixels 

within object 
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Table A-2 Texture measures generated using TEX in PCI Geomatica, for 

pansharpened Geoeye bands, shaded relief, and nDSM 

Feature Name Equation Description 

Angular 2nd Moment 

SUM(i,j=0,N-1)(P(i,j)**2) 

 

 

Measure of 

orderliness of 

image, higher value 

is more orderly 

Contrast 

SUM(i,j=0,N-1)(P(i,j)*(i-

j)**2) 

 

 

Measure of 

difference between 

pixel values of 

neighbouring pixels 

Correlation 

SUM(i,j=0,N-1)(P(i,j)*(i-

Mean_i)*(j-

Mean_j))/SQRT(Var_i * Var_j) 

 

 

Measures 

predictability of 

relationship 

between 

neighbouring pixel 

values 

Dissimilarity 

SUM(i,j=0,N-1)(P(i,j)*|i-j|) 

 
Similar to contrast, 

measure of 

difference between 

pixel values 

Entropy 

SUM(i,j=0,N-1)(-P(i,j) * 

LOGe(P(i,j))),  assuming 

that 0 * LOGe(0) = 0. 

 

 

Measure of 

orderliness, higher 

value in less orderly 

Homogeneity 

SUM(i,j=0,N-1)(P(i,j)/(1+(i-

j)**2)) 

 

Measure of the 

similarity of pixel 

values of 

neighbouring pixels 

Mean 

 

 

 

SUM(i,j=0,N-1)(i*P(i,j)) 

 
Mean based on 

GLCM matrix 

(rather than simply 

means in image) 



95 

 

Standard Deviation 

Var_i = SUM(i,j=0,N-

1)(P(i,j)*(i - Mean_i)**2) 

 

Std. Deviation_i = 

SQRT(Var_i) 

Top equation is variance, standard 

deviation is square root of 

variance 

Standard deviation 

based on GLCM 

matrix 

GLDV Angular 2nd 

Moment 

SUM(k=0,N-1)(V(k)**2) 

Measure of 

orderliness, based 

on GLDV derived 

from GLCM matrix 

GLDV Contrast 

SUM(k=0,N-1)(V(k) * k**2) 

Contrast measure 

based on GLDV 

GLDV Entropy 

SUM(k=0,N-1)(-

V(k)*LOGe(V(k)), assuming 

that 0*LOGe(0)= 0 

 

Entropy measure 

based on GLDV 

GLDV Mean 

SUM(k=0,N-1)(V(k)*k) 

 
Mean based on 

GLDV 
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Table A-3 Lidar height metrics generated using LASCanopy 

All these metrics are based on the lidar points higher than 1.37 m found within the area of 

a tree crown object. 

Feature Name Description 

Height Minimum Lowest height value 

Height Maximum Highest height values 

Height Mean Mean height value  

Height Average 

Square Value 

Square root of mean of squared height 

values  

Height Standard 

Deviation 

Standard deviation of height values 

Height Skewness Represents to what degree height 

values are more often higher or lower 

than the mean  

Height Kurtosis Represents the shape of the 

distribution of height points, to what 

degree they diverge from the mean 

Height 

Percentiles 

The height value that N% of lidar points 

fall below. (e.g. 10th percentile is the 

height value that 10% of lidar points fall 

below). 

This is normalized to percent of a tree’s 

height (e.g. if tree is 20 m, and 90th 

percentile value is 16 m, the value is 

normalized to 0.8)  
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Table A-4 Lidar intensity metrics generated using LASCanopy 

 

Intensity 

Minimum 

Lowest intensity value 

Intensity 

Maximum 

Highest intensity values 

Intensity Mean Mean intensity value  

Intensity Average 

Square Value 

Square root of mean of squared 

intensity values  

Intensity Standard 

Deviation 

Standard deviation of intensity values 

Intensity 

Skewness 

Represents to what degree intensity 

values are more often higher or lower 

than the mean  

Intensity Kurtosis Represents the shape of the 

distribution of intensity points, to 

what degree they diverge from the 

mean 

Intensity 

Percentiles 

The intensity value that N% of lidar 

points fall below. (e.g. 10th percentile 

is the intensity value that 10% of lidar 

points fall below). 

This is not normalized. 
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Appendix B: Confusion matrices for chapter 2 

Table B-1 Confusion matrix of the classification using Geoeye reflectance Features 

  

Norway 

maple 

Schwedleri 

Norway 

maple 

Honey 

locust 

Colorado 

blue 

spruce 

Littleleaf 

linden Total 

Norway maple 56 12 12 8 11 99 

Schwedleri Norway maple 8 57 1 2 2 70 

Honey locust 12 2 48 16 12 90 

Colorado blue spruce 5 1 11 51 14 82 

Littleleaf linden 11 10 20 9 57 107 

Total 92 82 92 86 96   

Table B-2 Confusion matrix of the classification using Geoeye texture features 

  

Norway 

maple 

Schwedleri 

Norway 

maple 

Honey 

locust 

Colorado 

blue 

spruce 

Littleleaf 

linden Total 

Norway maple 66 17 10 7 6 106 

Schwedleri Norway maple 14 55 2 2 12 85 

Honey locust 4 2 62 1 4 73 

Colorado blue spruce 1 0 2 71 7 81 

Littleleaf linden 7 8 16 5 67 103 

Total 92 82 92 86 96   

Table B-3 Confusion matrix of the classification using Shaded Relief texture 

features 

  

Norway 

maple 

Schwedleri 

Norway 

maple 

Honey 

locust 

Colorado 

blue 

spruce 

Littleleaf 

linden Total 

Norway maple 48 28 12 3 10 101 

Schwedleri Norway maple 16 22 7 1 8 54 

Honey locust 16 20 72 1 5 114 

Colorado blue spruce 4 6 0 62 16 88 

Littleleaf linden 8 6 1 19 57 91 

Total 92 82 92 86 96   
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Table B-4  Confusion matrix of the classification using nDSM Texture features 

  

Norway 

maple 

Schwedleri 

Norway 

maple 

Honey 

locust 

Colorado 

blue 

spruce 

Littleleaf 

linden Total 

Norway maple 51 21 15 1 8 96 

Schwedleri Norway maple 5 17 17 1 14 54 

Honey locust 23 33 53 1 4 114 

Colorado blue spruce 3 2 3 77 14 99 

Littleleaf linden 10 9 4 6 56 85 

Total 92 82 92 86 96   

Table B-5 Confusion matrix of the classification using lidar height features 

  

Norway 

maple 

Schwedleri 

Norway 

maple 

Honey 

locust 

Colorado 

blue 

spruce 

Littleleaf 

linden Total 

Norway maple 48 23 31 2 14 118 

Schwedleri Norway maple 12 16 12 5 11 56 

Honey locust 18 17 37 1 10 83 

Colorado blue spruce 3 11 2 69 14 99 

Littleleaf linden 11 15 10 9 47 92 

Total 92 82 92 86 96   

Table B-6 Confusion matrix of the classification using lidar intensity features 

  

Norway 

maple 

Schwedleri 

Norway 

maple 

Honey 

locust 

Colorado 

blue 

spruce 

Littleleaf 

linden Total 

Norway maple 41 17 0 7 1 66 

Schwedleri Norway maple 25 54 0 0 15 94 

Honey locust 5 0 74 0 16 95 

Colorado blue spruce 16 2 1 79 1 99 

Littleleaf linden 5 9 17 0 63 94 

Total 92 82 92 86 96   
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Table B-7 Confusion matrix of the classification using combined Geoeye and Lidar 

Features (Best Result) 

  

Norway 

maple 

Schwedleri 

Norway 

maple 

Honey 

locust 

Colorado 

blue 

spruce 

Littleleaf 

linden Total 

Norway maple 71 19 2 2 2 96 

Schwedleri Norway maple 13 56 2 0 5 76 

Honey locust 4 3 86 0 5 98 

Colorado blue spruce 1 0 0 84 0 85 

Littleleaf linden 3 4 2 0 84 93 

Total 92 82 92 86 96   
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Appendix C: Confusion matrices for chapter 3 

Table C-1  Confusion matrix of the classification for Planet Four-date 

  Deciduous Conifer Other Vegetation Non- Vegetation Total 

Deciduous 126 5 15 2 148 

Conifer 10 22 3 1 36 

Other Vegetation 30 3 128 18 179 

Non-Vegetation 3 0 9 211 223 

Total 169 30 155 232   

Table C-2 Confusion matrix of the classification for Planet April 

  Deciduous Conifer Other Vegetation Non-Vegetation Total 

Deciduous 107 7 10 15 139 

Conifer 11 18 2 0 31 

Other Vegetation 30 5 88 35 158 

Non-Vegetation 21 0 11 226 258 

Total 169 30 111 276   

Table C-3 Confusion matrix of the classification for Planet May 

  Deciduous Conifer Other Vegetation Non-Vegetation Total 

Deciduous 97 13 10 9 129 

Conifer 19 13 3 0 35 

Other Vegetation 37 4 97 47 185 

Non-Vegetation 16 0 9 212 237 

Total 169 30 119 268   
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Table C-4 Confusion matrix of the classification for Planet July 

  Deciduous Conifer Other Vegetation Non-Vegetation Total 

Deciduous 34 0 2 0 36 

Conifer 51 16 13 4 84 

Other Vegetation 77 14 115 11 217 

Non-Vegetation 7 0 14 228 249 

Total 169 30 144 243   

Table C-5 Confusion matrix of the classification for Planet October 

  Deciduous Conifer Other Vegetation Non-Vegetation Total 

Deciduous 65 14 8 11 98 

Conifer 41 13 5 3 62 

Other Vegetation 44 3 87 24 158 

Non-Vegetation 19 0 14 235 268 

Total 169 30 114 273   

Table C-6 Confusion matrix of the classification for Planet April/July 

  Deciduous Conifer Other Vegetation Non-Vegetation Total 

Deciduous 125 5 14 3 147 

Conifer 9 20 4 1 34 

Other Vegetation 29 5 129 17 180 

Non-Vegetation 6 0 6 213 225 

Total 169 30 153 234   

Table C-7 Confusion matrix of the classification for Planet May/July 

  Deciduous Conifer Other Vegetation Non-Vegetation Total 

Deciduous 117 7 11 2 137 

Conifer 19 18 6 2 45 

Other Vegetation 29 5 135 23 192 

Non-Vegetation 4 0 2 206 212 

Total 169 30 154 233   
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Table C-8 Confusion matrix of the classification for Planet October/July 

  Deciduous Conifer Other Vegetation Non-Vegetation Total 

Deciduous 96 4 8 1 109 

Conifer 37 18 5 2 62 

Other Vegetation 32 8 131 10 181 

Non-Vegetation 4 0 9 221 234 

Total 169 30 153 234   

Table C-9 Confusion matrix of the classification for VENuS Four-date 

  Deciduous Conifer Other Vegetation Non-Vegetation Total 

Deciduous 112 8 23 3 146 

Conifer 14 13 3 4 34 

Other Vegetation 32 8 118 48 206 

Non-Vegetation 10 1 16 173 200 

Total 168 30 160 228   

Table C-10 Confusion matrix of the classification for VENuS April 

  Deciduous Conifer Other Vegetation Non-Vegetation Total 

Deciduous 90 7 5 7 109 

Conifer 10 15 6 0 31 

Other Vegetation 41 7 91 47 186 

Non-Vegetation 27 1 14 218 260 

Total 168 30 116 272   

Table C-11 Confusion matrix of the classification for VENuS May 

  Deciduous Conifer Other Vegetation Non-Vegetation Total 

Deciduous 87 6 8 7 108 

Conifer 6 12 3 3 24 

Other Vegetation 49 10 95 41 195 

Non-Vegetation 26 2 15 216 259 

Total 168 30 121 267   
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Table C-12 Confusion matrix of the classification for VENuS July 

  Deciduous Conifer Other Vegetation Non-Vegetation Total 

Deciduous 57 5 9 3 74 

Conifer 64 16 12 8 100 

Other Vegetation 43 8 113 55 219 

Non-Vegetation 4 1 15 173 193 

Total 168 30 149 239   

Table C-13 Confusion matrix of the classification for VENuS October 

  Deciduous Conifer Other Vegetation Non-Vegetation Total 

Deciduous 70 5 12 1 88 

Conifer 39 15 7 6 67 

Other Vegetation 43 7 84 34 168 

Non-Vegetation 16 3 17 227 263 

Total 168 30 120 268   

Table C-14 Confusion matrix of the classification for VENuS April/July 

  Deciduous Conifer Other Vegetation Non-Vegetation Total 

Deciduous 113 5 12 3 133 

Conifer 15 16 7 3 41 

Other Vegetation 30 8 125 58 221 

Non-Vegetation 10 1 13 167 191 

Total 168 30 157 231   

Table C-15 Confusion matrix of the classification for VENuS May/July 

  Deciduous Conifer Other Vegetation Non-Vegetation Total 

Deciduous 103 4 13 5 125 

Conifer 19 14 4 4 41 

Other Vegetation 39 11 131 46 227 

Non-Vegetation 7 1 10 175 193 

Total 168 30 158 230   
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Table C-16 Confusion matrix of the classification for VENuS October/July 

  Deciduous Conifer Other Vegetation Non-Vegetation Total 

Deciduous 82 5 11 4 102 

Conifer 45 19 6 6 76 

Other Vegetation 35 5 129 45 214 

Non-Vegetation 6 1 11 176 194 

Total 168 30 157 231   
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Appendix D: Classification maps for chapter 3 

 

Figure D-1  
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Figure D-2  
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Figure D-3  
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Figure D-4  
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Figure D-5  
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Figure D-6  
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Figure D-7  
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Figure D-8  
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Figure D-9  
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Figure D-10  
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Figure D-11  
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Figure D-12 
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Figure D-13  



119 

 

 

Figure D-14  
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