
Western University Western University 

Scholarship@Western Scholarship@Western 

Electronic Thesis and Dissertation Repository 

8-21-2019 1:00 PM 

Effects of a Unilateral Injection of Botulinum Neurotoxin Subtype-Effects of a Unilateral Injection of Botulinum Neurotoxin Subtype-

A in the Subthalamic Nucleus of a Parkinsonian Rat Model A in the Subthalamic Nucleus of a Parkinsonian Rat Model 

Olga Khazov 
The University of Western Ontario 

Supervisor 

Jog, Mandar S 

London Health Sciences Center Co-Supervisor 

Rajakumar, Nagalingam 

The University of Western Ontario 

Graduate Program in Neuroscience 

A thesis submitted in partial fulfillment of the requirements for the degree in Master of Science 

© Olga Khazov 2019 

Follow this and additional works at: https://ir.lib.uwo.ca/etd 

 Part of the Neurosciences Commons 

Recommended Citation Recommended Citation 
Khazov, Olga, "Effects of a Unilateral Injection of Botulinum Neurotoxin Subtype-A in the Subthalamic 
Nucleus of a Parkinsonian Rat Model" (2019). Electronic Thesis and Dissertation Repository. 6413. 
https://ir.lib.uwo.ca/etd/6413 

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted 
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of 
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca. 

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F6413&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1010?utm_source=ir.lib.uwo.ca%2Fetd%2F6413&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/6413?utm_source=ir.lib.uwo.ca%2Fetd%2F6413&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca


i 

 

Abstract 

Dopaminergic degeneration in Parkinson’s disease (PD) leads to altered functional activity 

within the basal ganglia (BG) circuitry, including hyperactivity of the subthalamic nucleus 

(STN). Treatments restoring the BG functional circuitry often result in improvements in 

parkinsonian symptoms in patients and animal models. A recent study from our laboratory 

identified that infusing botulinum toxin (BoNT-A) into the internal globus pallidus provided 

a transient restoration of motor asymmetry and goal-directed locomotion in a rat model of 

PD. We hypothesized that infusions of BoNT-A into the STN in a parkinsonian rat model 

will improve motor asymmetry and locomotor abnormalities. Infusions of BoNT-A into the 

ipsilateral STN in unilaterally 6-hydroxydopamine lesioned rats assessed in the apomorphine 

rotation task, rotarod, or CatWalk apparatus revealed a dose-dependent amelioration of 

pathological rotations, while failing to affect spontaneous locomotion. The present results 

suggest that spontaneous locomotion may not dependent on the integrity of the BG functional 

circuitry.  
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Summary for Lay Audience 

In Parkinson’s disease dopaminergic cells die in the substantia nigra, a region part of the 

brains motor circuitry. This cell death leads to changes in the functional activity of this motor 

circuitry which leads to motor symptoms. Treatment options for Parkinson’s disease try to 

restore or alter the activity of this circuitry to improve motor symptoms. This study 

investigates the effects of a potential new treatment in a rat model of Parkinson’s disease. 

This new treatment involves injecting botulinum neurotoxin in a very small dose directly into 

the brain to alter the activity of the motor circuitry, which is impaired in disease, to more 

normal levels of activity. This study investigates the effects of various doses of botulinum 

toxin in the brain of a rat. This study will assess this treatments effect on drug-induced 

movement, forced movement, and voluntary movement. It was found that the two highest 

doses of botulinum toxin were successful in reducing pathological drug induced rotations, 

meaning that this treatment successfully changed the levels of activity in the brains motor 

circuitry to healthier levels. The rats did not develop impaired gait in this study, thus it is 

unknown whether this treatment would have improved a deficit in gait. The results are 

promising and the effects of this treatment on impaired gait need to be examined in a future 

study in animals with impaired walking. 
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Chapter 1  

1 Introduction 

    This chapter will provide an overview of Parkinson's disease (PD), including its 

symptoms, pathology, diagnosis, etiology, and treatment options. Major changes in 

neural circuitry involved in PD, the animal models used in PD research, and the gait 

impairment seen in humans with this disease and in animal models will be discussed. 

This chapter will then describe botulinum toxin, the molecular tool investigated as a 

potential new treatment for the gait impairment of PD. Finally, this chapter will conclude 

with the rationale of the study undertaken for this thesis. 

 

1.1 Parkinson’s Disease  

    PD is the second most common neurodegenerative disorder in the world, surpassed 

only by Alzheimer's disease in prevalence1. PD is characterized by the degeneration of 

dopaminergic neurons in the substantia nigra pars compacta (SNpc), which leads to 

changes in functional activity in the basal ganglia (BG) 2, 3.  This disease primarily affects 

older populations and its incidence rate increases with age. However individuals can 

develop PD earlier than in their 50’s1, 4. Early onset PD is due to genetic mutations, 

however cases of familial PD are very rare1, 5. For idiopathic cases average age of disease 

onset is 60 years old, with 1% of the population at that age developing the disease5, 6. The 

average life expectancy following diagnosis is 14.6 (±7.7) years with men developing PD 

slightly more often than women, at a ratio of 3:25, 7, 8. The symptoms of PD are primarily 

motor related but can include non-motor symptoms as well. People suffering from PD 

experience a reduced quality of life and this disease places great economic burden on 

both patients and the healthcare system9. Additionally, average life expectancy is rising 

worldwide, thereby increasing the aging population of the world4. Due to this, it is 

estimated that by 2030, the prevalence of PD will more than double, leading to a growing 

economic burden unless further research is done to improve prevention, treatment, and 
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palliative care options1. 

 

1.1.1 Symptoms 

     PD is primarily a movement disorder and thus the most recognizable symptoms are 

motor related. However, there are non-motor symptoms strongly associated with this 

disease as well. Motor symptoms tend to appear in the early stages of the disease and are 

a result of dopaminergic nigrostriatal denervation10. Intermediate and advanced stages of 

disease are characterized by motor fluctuations, dyskinesia, and cognitive impairment10.  

     There are four motor symptoms that are cardinal to PD: bradykinesia, rest tremor, 

rigidity, and postural instability11, 12. These symptoms are usually asymmetric in onset 

and manifest after approximately 80% of dopaminergic terminals in the nigrostriatal 

system are already lost13-15.  

    The foremost cardinal symptom, as it is found in every case of PD, is bradykinesia, 

which is defined as slowness of movement12. Bradykinesia is highly debilitating as it 

leads to difficulties in performing daily tasks, particularly those requiring fine motor 

control such as dressing, eating, and bathing11, 12. Bradykinesia impairs movement 

initiation, execution, and reaction times, which can lead to injury16-18. Manifestations of 

bradykinesia can present as difficulty with swallowing (leading to drooling), loss of facial 

expression, reduced blinking, monotonic and/or quiet speech, reduced arm swing while 

walking, and a reduction of spontaneous hand gestures17, 18. 

     The most recognizable symptom of PD is a tremor that is present during rest12. Rest 

tremor is an involuntary, slow, and coarse shaking, specifically between a frequency of 4-

6 hertz, which is present in approximately 70% of patients at initial diagnosis13. Tremor 

ceases during voluntary movement and during deeper stages of sleep12. Tremor is 

typically seen in the hands, initially affecting one side, but both hands could become 

affected with disease progression12. One feature of tremor is a phenomenon called pill-

rolling in which the index finger and thumb rub together in circular motions.  

    The third cardinal feature is rigidity. Rigidity is a stiffness and resistance to limb 

movement which is caused by excessive and continuous contraction of muscles, leading 

to increased muscle tone12. There are two types of rigidity seen in PD, lead-pipe rigidity 
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and cogwheel rigidity. Lead-pipe rigidity is a sustained resistance to movement through 

the whole range of motion while cogwheel rigidity is a jerky resistance in which the 

muscles tense and relax12. Rigidity can be associated with joint pain12. In the early stages 

of disease, rigidity tends to affect only one side of the body and the neck and shoulder 

muscles19. As the disease progresses, both sides of the body can be affected along with 

extremities and facial muscles leading over an overall reduced ability to move19.  

    The fourth cardinal feature is postural instability. Postural instability is difficulty in 

maintaining an upright or steady posture during both movement and standing. This 

feature is more common in the later stages of disease and leads to impaired balance 

causing patients to trip or fall12, 20. Falls in the elderly often lead to bone fractures, 

reduced mobility, fear/anxiety, and reduced quality of life21, 22. 

     PD can be associated with additional motor symptoms, called secondary motor 

symptoms. These most commonly include gait disturbances such as shuffling gait, 

fenestration, and freezing of gait12, 23. 

    Although primarily a movement disorder, PD is associated with many non-motor 

symptoms as well. Some non-motor symptoms can be present before the development of 

motor symptoms4, 12, 24. Non-motor symptoms of PD include autonomic dysfunction such 

as orthostatic hypotension, excessive sweating, constipation, and urinary disturbances25, 

26. Neuropsychiatric disturbances, cognitive impairment (executive dysfunction, memory 

impairment, dementia, visuospatial impairment), and mood disorders (anxiety, 

depression, apathy) are commonly present 25, 26. Sensory abnormalities (olfactory 

dysfunction) and sleep disturbances such as rapid eye movement sleep behavior disorder 

are common as well4, 10, 12, 27. The combination of motor and non-motor symptoms leads 

to a decreased quality of life, an increase in patients overall disability, and an economic 

burden placed on individuals and the health care system.  

 

1.1.2 Pathology 

      There are two main pathological characteristics of PD. The first is dopaminergic cell 

death in the substantia nigra and the second of the presence of Lewy bodies/neurites in 

several brain areas28, 29.  
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      At the time of a patient’s death, approximately 80% of dopaminergic cells in the 

SNpc have degenerated compared to healthy brains28. The most affected area is the 

ventrolateral component of the SNpc, which contains projections to the dorsal putamen of 

the striatum4. The symptoms of bradykinesia and rigidity are suggested to be caused by 

moderate to severe dopaminergic cell death within this area14. Neuronal death also occurs 

in other regions, such as the locus coeruleus (LC), nucleus basalis, pedunculopontine 

tegmental nucleus, raphe nucleus, dorsal motor nucleus of the vagus nerve, amygdala, 

and hypothalamus 4, 30.  

     Dopaminergic cell death is not the only contributor to PD pathology as Lewy body 

aggregates play an important role as well. When the protein α-synuclein becomes 

abnormal and misfolds, it develops into insoluble aggregates of intracellular inclusions4, 

28. They are called Lewy bodies when these inclusions are within the cell body and Lewy 

neurites when they are in the processes of neurons33. Lewy pathology has also been found 

in the spinal cord and peripheral nervous system, including the vagus nerve, sympathetic 

ganglia, cardiac plexus, enteric nervous system, salivary glands, adrenal medulla, 

cutaneous nerves, and sciatic nerve4. The Braak staging system is used to classify the 

degree of pathology and disease progression in PD and is based on pathological 

findings33, 34. This system contains six stages with each stage outlining the structures that 

are pathologically affected33, 34. Stages 1 and 2 are the early stages of the disease when 

patients have not yet developed motor symptoms but can have some non-motor 

symptoms present such as impaired olfaction, sleep disturbances, or constipation33-35. At 

these stages, Lewy neurites are more prevalent than Lewy bodies and Lewy pathology is 

found in lower brainstem structures (dorsal nucleus of the vagus nerve, medulla 

oblongata, pontine tegmentum) and the olfactory system (olfactory bulb, anterior 

olfactory nucleus)34. In stages 3 and 4 is when motor symptoms begin to develop35. The 

areas mentioned in the earlier stages show more Lewy pathology and in stage 3, the SNpc 

will contain Lewy inclusions as well33, 35. Pathology then spreads into the nucleus basalis 

of Meynert and by stage 4, has also spread into the amygdala and thalamus, along with 

extensive dopaminergic cell death in the SNpc33-35. In stages 5 and 6, cognitive 

impairment develops as the pathology has spread into the neocortex and into structures of 

the temporal, parietal, and frontal lobes35. There is extensive cell death in the SN, the 
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dorsal motor nucleus of the vagus nerve, the gigantocellular reticular nucleus, and the 

LC33. Stage 6 is the final and most severe stage where Lewy pathology has spread 

throughout the neocortex, affecting both motor and sensory areas in the brain33-35. 

     Other pathological mechanisms that have been examined include reduced 

mitochondrial activity due to impaired functioning of proteasomal and lysosomal 

systems36, 37. 

 

1.1.3 Diagnosis 

        Whether a patient definitively had PD cannot be confirmed until post-mortem, when 

the brain is pathologically examined. A degeneration of the SNpc as well as Lewy body 

pathology must be found for a confirmed diagnosis of PD4, 38. However, physicians can 

make a fairly accurate pre-mortem diagnosis, with studies suggesting the current 

accuracy rate to be around 80%39. Observations that can be made for diagnosis includes 

symptom onset affecting the body asymmetrically, as well as a good response to 

levodopa are supportive of a PD diagnosis29, 38. Misdiagnosis of PD can occur, with the 

most common misdiagnosis being essential tremor, Alzheimer’s disease, dementia with 

Lewy bodies, and vascular parkinsonism40. Some features that can suggest a diagnosis 

other than PD is the absence of rest tremor, occurrence of gait impairment early in 

disease, and poor response to levodopa12. 

 

1.1.4 Etiology  

    While it is known that PD symptoms arise from dopaminergic cell death in the SNpc, it 

is not known what triggers this very specific cell death. The majority of cases are 

idiopathic and likely a result of an interaction between various environmental and genetic 

risk factors4.  

    The research on environmental factors contributing to the development of PD is 

correlational and the risk of development of PD due to any individual environmental 

factor is modest41. Some of the environmental risk factors that have been suggested to be 
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linked with PD are exposure to pesticides, herbicides, heavy metals, low levels of urate in 

blood serum, and prior head injuries5, 41, 42. Interestingly, smoking (cigarettes or 

smokeless tobacco) and frequent consumption of caffeinated beverages such as coffee, 

has been found to be protective against PD according to correlational studies41, 43. 

       Although PD is mostly idiopathic, approximately 5-10% of all cases are caused by a 

known genetic mutation5, 44. However, these cases can have a distinct presentation such 

as young onset, as compared with idiopathic PD, thus are considered a distinct category 

of PD5. Both autosomal dominant and autosomal recessive gene mutations have been 

linked to the development of PD with the most common genes being SNCA, Leucine-rich 

repeat kinase 2 (LRRK2), low-density lipoprotein receptor-related protein 10 (LRP10), 

and β-Glucocerebrosidase (GBA)4, 45, 29.  The SNCA gene has been extensively studied as 

this gene encodes alpha-synuclein, a protein that is the main component of Lewy 

bodies44.  

            However, since very few cases of PD can be attributed to a known mutation, it is 

believed that environmental factors and genetic susceptibility interact together for the 

development of PD in the majority of cases5. The cellular mechanisms that are affected 

by these gene mutations that lead to the development of PD are hypothesized to be 

associated with lysosomal dysfunction leading to mitochondrial failure, oxidative stress, 

inflammation, and protein misfolding leading to protein aggregation5, 29, 46, 47.  

 

1.1.5      Treatment 

     There is currently no cure for PD and treatment is centered on symptom management, 

with the most focus towards alleviating the motor symptoms4. The two general treatment 

options available are medications or neurosurgery. The main families of drugs used for 

PD treatment are levodopa, dopamine agonists and monoamine oxidase-B (MAO-B) 

inhibitors48. When medication loses efficacy, as it tends to occur after about 5-6 years of 

use, neurosurgery can provide symptomatic relief 49.  

    The majority of patients are treated using medication. The aim of most medications for 

PD treatment is to increase dopamine concentrations in the brain or directly stimulate 

remaining dopamine receptors4. The most effective medication for PD is L-3,4-
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dihydroxyphenylalanine, otherwise known as L-DOPA or levodopa. Levodopa is a 

precursor of dopamine and is capable of crossing the blood-brain barrier, which 

dopamine cannot do50. Levodopa is usually administered with a peripheral dopamine 

decarboxylase inhibitor such as carbidopa or benderizine, in order to reduce the amount 

of levodopa that gets peripherally metabolized into dopamine. This reduces side-effects 

such as nausea, vomiting, and orthostatic hypotension, which occur when levodopa is 

converted to dopamine peripherally4, 51. It also increases the amount of levodopa that 

crosses the blood-brain barrier49, 50. 

    In the early stages of the disease, levodopa is most effective in improving rigidity, 

akinesia, and bradykinesia4, 11, 23, 52. Improvements in tremor with levodopa are 

inconsistent and variable in patients, especially at lower doses4, 23. Unfortunately, 

levodopa provides little improvement in certain motor symptoms such as gait and balance 

impairment, and does not offer relief for non-motor symptoms associated with PD23, 53, 54. 

   It is also important to note that the effectiveness of levodopa decreases as the disease 

progresses. Levodopa has a short half-life in the body, requiring patients to take the 

medication regularly and after long term use (typically between 4-6 years), its effects 

become sporadic and unpredictable55. The combination of neuronal loss from disease 

progression, as well as the long term use of levodopa leads to the development of motor 

complications such as fluctuations and dyskinesias11, 13, 23, 56. However, it is important to 

note that severity and disease duration have been found to be more strongly correlated 

with levodopa-related dyskinesia rather than duration of treatment, therefore there is no 

benefit in withholding or delaying initial levodopa therapy57. 

   In the late stages of PD, the aim is to offer as much symptom relief as possible while 

controlling the motor fluctuations caused by medication50. An alternative to levodopa, 

dopamine agonists, which bind to dopaminergic post-synaptic receptors thus having a 

similar effect as dopamine, are often used7, 50. While dopamine agonists are less effective 

at symptom management than levodopa, their effect is generally found to be sufficient in 

the first few years of treatment58. Another alternative to levodopa is MAO-B inhibitors, 

which increase the amount of dopamine in the brain by blocking the activity of MAO-B, 

an enzyme that breaks down dopamine50. Similar to dopamine agonist use, MAO-B 

inhibitors are often used to delay the use of levodopa early in disease, however MAO-B 



8 

 

inhibitors are associated with more adverse side-effects and are found to be less effective 

at motor symptom management than levodopa50.  

     For patients in the advanced stages of disease for whom medication is no longer 

sufficient in controlling their symptoms or began to experience intolerable side effects 

from medication, neurosurgery is a good treatment option. The most common brain 

regions that are targets in surgery are the STN, the internal division of the globus pallidus 

(GPi), the pedunculopontine tegmental nucleus, and ventral nucleus of the thalamus59.  

    One option is lesioning surgeries in which specific regions of the brain are 

intentionally and permanently damaged. By lesioning a specific target, over activity of 

that region can be suppressed. For example, lesioning the GPi, which is hyperactive in 

PD, has been found to improve dyskinesia and lesions of the ventralis intermedius of the 

thalamus have been found to improve tremor59. 

     However, lesion surgeries are not preferred now, and the most common neurosurgical 

treatment for PD is deep brain stimulation (DBS). Unlike lesioning, DBS is reversible, 

does not destroy tissue beyond the implantation of the device, and can be modified to the 

needs of the individual patient. In DBS a device called a neurostimulator is implanted 

into a brain region, most commonly the STN, and the electrodes in the device spread 

electrical impulses around the surrounding region, thus affecting neuronal activity. As 

long as a patient does not present with severe neuropsychiatric problems, DBS is a 

recommended treatment option for most motor symptoms of PD, especially tremor60. A 

major shortcoming of DBS is that it is not effective in improving postural instability, gait, 

and freezing of gait23. Therefore, there is still an unmet need in treatment options for 

patients who experience postural disturbances and impaired gait. These symptoms 

severely impair mobility, independence, and quality of life in patients. 

 

1.2 Neural Circuitry Involved in Parkinson's Disease 

       The following section is a review of the important aspects of the neural circuitry 

involved in PD. Voluntary motor movement involves the communication between the 

motor and sensory regions of the cerebral cortex, and the BG61, 62. In particular, this thesis 

will focus on the neural circuitry of the BG, as this region is severely impacted by PD62. 
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The dysfunction of the BG leads to the motor symptoms seen in PD, which is the focus of 

this thesis62. The major structures and pathways of the BG will be described. 

 

1.2.1 Basal Ganglia Circuitry in a Healthy Brain 
       The role of the BG circuitry is to process signals coming from the cerebral cortex, 

and produce output signals back to the cerebral cortex, allowing for the proper execution 

of voluntary movement through a feedback loop2, 63. The BG is a group of interconnected 

subcortical nuclei which span the telencephalon, diencephalon, and the midbrain62. The 

BG is composed of the striatum, globus pallidus, substantia nigra (SN), and subthalamic 

nucleus (STN)2. The striatum is made up of a dorsal portion (caudate nucleus, putamen), 

and ventral portion (nucleus accumbens) 2. The globus pallidus can also be further 

differentiated into the internal division of the globus pallidus (GPi) and the external 

division of the globus pallidus (GPe). In rats, the equivalent of the human GPi is the 

entopeduncular nucleus (EPN)2. The SN can be further divided into the substantia nigra 

pars compacta (SNpc) and substantia nigra pars reticulata (SNpr)2. 

      A representation of the main connections of the BG circuitry in a healthy brain is 

presented in Figure 1A. The main input structure of the BG is the striatum, and the main 

output structures are the GPi and SNpr2, 62. The striatum receives mostly glutamatergic, 

thus excitatory, input from all areas of the cerebral cortex and dopaminergic input from 

the SNpc. The striatum sends out GABAergic (inhibitory) projections to the GPi/SNpr, 

and GPe64. The striatal output GABAergic neurons express D1 and D2 receptors, whose 

functional segregation led to the division of the striatal output into two pathways, the 

direct and indirect pathway2. D1 receptors are mainly located in neurons that project 

directly to the main output structures of the BG, the GPi/SNpr, hence the name direct 

pathway. Meanwhile, D2 receptors are mainly on neurons that do not directly project to 

the main output structures, instead projecting to the GPe, and then from GPe to the STN 

and finally from the STN to the GPi/SNpr, hence the name indirect pathway65.  

      In the direct pathway, dopamine from the SNpc exerts an excitatory effect on striatal 

D1 receptors. The inhibitory GABAergic striatal neurons then project to the GPi/SNpr2, 

62. In the indirect pathway, dopamine, in contrast to its role in the direct pathway, 
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provides inhibitory effect on the striatal D2 neurons2. These D2 receptor-containing 

GABAergic striatal neurons project to the GPe2. In addition to receiving afferent 

inhibitory projections from the striatum, the GPe also receives excitatory glutamatergic 

projection from the STN64. The GPe also sends inhibitory projections to many other 

structures (GPi/SNpr, SNpc), but this thesis will focus on its main target, the STN64. The 

STN, the only glutamatergic nucleus of the BG, then sends excitatory output to the 

GPi/SNpr, the output nuclei of the BG, thus completing the indirect pathway2 (Figure 1). 

   The main output structures of the BG, the GPi/SNpr, contain GABAergic neurons, thus 

send inhibitory projections primarily to the ventral anterior and ventral lateral thalamic 

nuclei64. The thalamic nuclei then project excitatory, glutamatergic input back to the 

motor cortex64. 

    There is a recent additional pathway, called the hyper-direct pathway, which has been 

the subject of many recent studies examining BG circuitry. In this pathway, the STN 

receives excitatory glutamatergic afferents directly from the motor and premotor cortex62. 

This makes the STN the only other BG structure, other than the striatum, to receive 

significant direct cortical input2, 62. As this pathway bypasses the striatal processing of 

cortical input, it has been named the hyper-direct pathway66.  

    The neurotransmitter at the center of this system is dopamine, which acts as a 

modulator of the BG circuitry2. The importance of the overall function of dopamine in 

the motor system can be understood by its role in the BG, which is disinhibition of the 

system. The general role of the BG is to inhibit motor systems to prevent them from 

being active until appropriate31. Thus, when we want to move, the inhibition of the motor 

system is reduced, allowing us to move. As dopamine's role in the BG is to facilitate 

disinhibition, normal levels of dopamine will promote motor activity, while low levels (as 

seen in PD) will inhibit movement thus requiring more effort for proper motor output31. 

When dopamine is in excess, such as when patients are taking dopamine replenishing or 

boosting medications, involuntary movements, known as dyskinesia, will occur31. When 

dopamine acts on the D1 receptors in the striatum, the role of the direct pathway is 

facilitated. When dopamine acts on the D2 receptors in the striatum, the indirect pathway 

is inhibited. When the circuitry works in tandem in a healthy brain, voluntary movement 

is facilitated.  When dopamine is depleted, as is the case in PD due to cell death in the 
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SNpc, this leads to changes in the BG circuitry leading to suppression of voluntary motor 

function. 

 

1.2.2 Basal Ganglia Circuitry in Parkinson’s Disease  
     The dopaminergic cell death that occurs in the SNpc in this disease leads to functional 

changes throughout the BG circuitry2, 62. An overview of the functional changes in BG 

circuitry in PD is presented in Figure 1B. The loss of dopamine neurons in the SNpc 

leads to underactivity of the D1 and D2 receptors of the striatum63. Thus, the direct 

pathway contributes to the under-inhibition of the GPi/SNpr, leading to its hyperactivity 

in PD. The GPi/SNpr is not receiving as many inhibitory signals from the striatum, and in 

turn become overactive. The GPi/SNpr send inhibitory projections, thus an overactive 

GPi/SNpr will over-inhibit the ventrolateral thalamus. The ventrolateral thalamus, which 

sends excitatory projections, gets over-inhibited by the GPi/SNpr and thus sends fewer 

excitatory inputs to the motor cortex. The indirect pathway in PD also contributes to the 

over activity of the GPi/SNpr. In the indirect pathway, the loss of dopamine activity in 

the SNpc leads to underactivity of the D2 receptors of the striatum63. Thus, there is an 

increase in inhibitory input from the striatum to the GPe. The GPe gets over-inhibited and 

itself sends inhibitory output. Therefore, less inhibitory output is sent from the GPe to the 

STN. The STN, a structure that sends excitatory projections, is under-inhibited, making 

the STN hyperactive. A hyperactive STN then sends excitatory projections to the 

GPi/SNpr, thereby contributing to this area’s hyperactivity through the indirect 

pathway2.  Ultimately, there is increased inhibition of the thalamocortical motor centers, 

which are then unable to facilitate movement, leading to the development of PD motor 

symptoms such as tremor, rigidity, and bradykinesia61, 63.  
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Figure 1.1 - Basal Ganglia Circuitry in a Normal and Parkinsonian Brain 

Red arrows represent inhibitory projections and green arrows represent excitatory 

projections. A represents the functional connectivity in a normal brain. The direct, 

indirect, and hyper-direct pathways are labelled in this figure. B represents the functional 

connectivity in a Parkinsonian brain. The blue dashed lines around the SNpc represent the 

dopaminergic cell death found in PD, and the thickness of the arrows represent 

consequential changes in the activity of the regions of the BG due to this dopaminergic 

cell death. Figure adapted from Bergman, H., Wichmann, T., & DeLong, M. R. (1990). 
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1.3 Animal Models of Parkinson's Disease  

        Animal models are an invaluable tool for studying human disorders. Experiments 

that would not be possible in humans can be conducted in animal models of disease, 

making them useful for studying pathogenesis and treatment options. There are a number 

of PD animal models available, each with its own advantages and disadvantages. A 

general disadvantage of PD animal models is that none perfectly replicate the human 

disease67. Most animal models of PD lack the progressive course of PD and the non-

motor symptoms associated with the disease67. Certain animal models will also be 

associated with a specific set of symptoms but not others. Most PD animal models also 

lack the typical Lewy body inclusions seen in PD68. However, there is still great value in 

replicating certain aspects of a disease in order to closely investigate it and further our 

knowledge of the disease. A researcher must carefully consider and select the animal 

model related to the specific goals and research questions of their study. In PD, there are 

two main categories of animal models employed: genetic or neurotoxin models67-69.  

 

1.3.1 Genetic Models of PD 
       Although the majority of PD cases appear idiopathic, the use of genetic animal 

models can be very valuable as they can provide insight into the molecular processes of 

PD pathology. Gene abnormalities identified in familial PD have led to the development 

of genetic animal models of PD, with examples of transgenic rodent models showing 

alpha-synuclein, LRKK2, PINK1, PARKIN, DJ-1, and ATP13A2 mutations67. It is 

important to note that none of the genetic rodent models fully duplicate the human PD 

condition. Current models often exclude Lewy body inclusions and there is an absence of 

consistent neuronal loss in the SNpc67. Another issue in current genetic models that 

requires troubleshooting is that many models show an inconsistent phenotype, even 

among lines with the same mutations67. 
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1.3.2 Neurotoxic Models of PD 
        Currently, the most widely used neurotoxic animal models of PD in the literature are 

6-hydroxydopamine (6-OHDA) lesions in rats and 1-methyl-4-phenyl-1,2,3,6-

tetrahydropyridine (MPTP) lesions in mice and primates67, 70. A key difference between 

neurotoxic animal models of PD and the human disease is that the neurodegeneration in 

animal models occurs rapidly. In animal models, neurodegeneration occurs over a few 

days while in humans the degeneration occurs over years67. Neurotoxic models also lack 

Lewy body inclusions67. An advantage of neurotoxic models is their ability to robustly 

model the degeneration of the nigrostriatal pathway and their tendency to generate 

behavioural motor abnormalities67, 68.   

      MPTP is a highly lipophilic drug that readily crosses the blood-brain barrier and 

produces bilateral lesions of SN dopamine neurons70. After crossing the blood-brain 

barrier, MPTP is converted into MPP+ by the enzyme monoamine oxidase-B in 

astrocytes6, 70. MPP+ is then selectively taken up by dopaminergic neurons by the 

vesicular monoamine transporter 2 where it inhibits complex 1 of the mitochondrial 

electron transport chain71. This reduces ATP production and increase release of reactive 

oxidative species which leads to neuronal death71. The strength of this model is that the 

damage MPTP causes to the nigrostriatal DA pathway is identical to what’s seen in PD67. 

MPTP affects most mammals, with the most commonly used animals being mice and 

monkeys. Interestingly, rats are highly resistant to MPTP, making them an unsuitable 

animal for use with this toxin72. MPTP mouse models are mainly used to investigate 

neuronal degeneration processes in PD, while the MPTP monkey models are mainly used 

to investigate fine motor behavioural and electrophysiological studies related to PD67, 68. 

This is because the MPTP mouse model often doesn’t develop a level of impairment 

sufficient for behavioural study while the primate models do68. Behavioural testing in 

MPTP primate models are often considered necessary when new PD treatment options 

are developed73.  

       6-OHDA is a selective catecholaminergic neurotoxin, used to generate lesions in the 

nigrostriatal DA neurons67. 6-OHDA does not cross the blood-brain barrier, thus it must 

be injected directly into the brain74. 6-OHDA is taken up by catecholaminergic neurons 

via transporter-mediated reuptake, and once within the neurons, it exerts its neurotoxic 
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effects by generating oxidative stress and mitochondrial dysfunction, leading to cell 

death75. When creating a PD model, to prevent uptake into noradrenergic neurons, 

desipramine (a noradrenaline reuptake transporter blocker), is intraperitoneally injected 

half an hour before the 6-OHDA injection76. The most common sites of 6-OHDA 

injection are in the SN, medial forebrain bundle (MFB), or the striatum74, 77, 78. The most 

common animal model using 6-OHDA are rats. Unilateral lesions are most common, as 

bilaterally lesioned rats develop severe adipsia and aphagia78. Survival in bilaterally 

lesioned animals is possible but there are high mortality rates and animals require 

intensive post-surgical care which make this model highly inconvenient68. Although a 

unilaterally 6-OHDA rat model does not replicate all of the clinical features of PD, this 

model is successful at achieving dopamine depletion, nigral dopamine cell loss, and 

neurobehavioral deficits. In unilateral 6-OHDA-lesioned models, since there is a lesioned 

and a non-lesioned hemisphere, an individual animal is often used as its own control68. 

The asymmetrical lesion also allows for the use of the apomorphine-induced rotation test 

to gauge the extent of dopamine depletion and the efficacy of potential PD therapeutic 

agents and gene therapies79. 

    Apomorphine is a dopamine receptor agonist which stimulates D1 and D2 dopamine 

receptors70. Following subcutaneous injection of apomorphine, rats will rotate away from 

the site of lesion. This drug-induced behaviour occurs due to the development of 

postsynaptic hyper-sensitivity of the D1 and D2 receptors in the striatum following 

depletion of dopamine on the lesioned side. Rotations are said to only occur following a 

dopamine depletion of at least 80%79. The consensus in the literature is that an average of 

7 rotations per minute over at least 10 minutes following subcutaneous injection of 

apomorphine represents an animal that has been sufficiently dopamine depleted76, 80, 81. 

     There are other behavioural, particularly motor, changes associated with the unilateral 

6-OHDA lesion model. These motor deficits tend to affect the rats asymmetrically. There 

have been occasional findings of akinesia, rigidity, and very rarely tremor in 6-OHDA 

lesioned rats82, 83. Rats lesioned with 6-OHDA at the MFB have been found to be 

significantly worse at the rotarod task, a measure of forced motor movement84, 85. 

Lesioned rats fall off the rotating rod faster compared to sham lesioned rats. In the open 

field test, an assessment of exploratory locomotion, in which rats can freely roam showed 
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that 6-OHDA lesioned rats display significantly less motor activity compared to sham 

rats85. In general, the literature suggests that 6-OHDA lesioned rats display deficits in 

voluntary and forced motor tasks. 

 

    Ultimately, there is no animal model currently available that can perfectly mimic the 

human condition. Each model, whether genetic or neurotoxic, has its own advantages and 

disadvantages. For the current study, a MPTP primate model would serve better, but due 

to the novelty of the treatment that this thesis is exploring, preliminary studies in rodents 

must be done before moving onto a more expensive higher order animal species. 

Therefore, for the purpose of this thesis, the animal model that is selected is the unilateral 

6-OHDA rat model, as this model is well suited to test the changes in motor output in an 

experimental therapeutic treatment.  

1.4     Gait Impairment in Parkinson's Disease 

 

1.4.1     Gait Impairment in Humans 

     As mentioned in the treatment section (1.1.5), there are no effective and consistent 

treatment options for the gait abnormalities seen in PD86. This affects the quality of life of 

those suffering from PD as gait impairments severely limit mobility and predisposes 

patients to falls which can be debilitating or even deadly in an elderly population22. 

Impaired gait in PD includes slowness when walking, shorter stride length, and a reduced 

arm swing54, 88. Gait abnormalities in PD presents as a walking pattern with short and 

shuffling steps, with occasional episodes of freezing of movement22, 87. Some parameters 

of gait have been found to be sensitive to levodopa treatment while others are not 

responsive to medication. For example, pace, which includes step velocity and step 

length, have been found to be levodopa sensitive and tend to improve following 

treatment54, 89. However, other parameters of gait such as duration of stride, duration of 

swing, and variability (step-to-step fluctuations) tends to be resistant to levodopa 

treatment54, 89.  In terms of the effect of DBS on gait, the literature is inconsistent. Some 

long-term studies found that DBS of the STN resulted in consistent improvement of 

tremor, rigidity, and bradykinesia, but that were was decline in the effectiveness on gait 
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disturbances over 3 years90, 91, 5 years92, 93, 8 years94, and 10 years95, 96. However, a recent 

meta-analysis by Roper and colleagues (2016) found that both unilateral and bilateral 

DBS improved gait speed in PD patients97.  

        Overall, there is a need for new treatment options for Parkinsonian gait impairment 

as each patient is unique and responds to treatments differently. More treatment options 

are needed in order to improve the quality of life of those suffering from PD. 

 

1.4.2      Gait Assessment Tools for 6-OHDA Rat Model 

      A commonly used method for measuring forced motor movement is the rotarod test. 

The rotarod test assesses overall motor deficit in rodents by having them balance on a 

rotating rod84. The amount of time spent on the rod and maximum speed reached is 

recorded and used as a measure of the animal’s performance on this forced motor task.  

    The most common assessment tool for gait in rodents is the CatWalk apparatus. This 

tool provides an automated and simultaneous quantification of both static and dynamic 

parameters of gait during voluntary locomotion98. The Catwalk has been established as a 

reliable tool in assessing gait in rodents models86, 99, 100.  Several studies have assessed the 

6-OHDA lesioned rat model using the CatWalk and have validated gait impairment in 

this model using this tool101, 102. As the CatWalk apparatus is able to analyze changes in 

both static and dynamic gait parameters, and due to its established validity in 

measurement of 6-OHDA lesioned rat models, this test will be used in this study for gait 

analysis.  

 

1.4.3      Gait Impairment in the 6-OHDA Rat Model 

     As this study is investigating the effects of a potential new treatment for gait 

impairment in PD, gait impairment in the 6-OHDA animal model will be reviewed. 

     A study by Monville and colleagues (2006) assessed motor deficit using the rotarod 

test and found that the 6-OHDA lesioned rats compared to the sham-lesioned rats, 

performed significantly worse at 2, 4 and 6 weeks following lesion compared to pre-

lesion states84. A study by Zhou and colleagues (2015) examined the differences in gait 

parameters before and after unilateral 6-OHDA lesion in three groups of rats. Rats were 

assigned to 6-OHDA lesion in the MFB, striatum, or SNpc101. Employing the Catwalk 
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apparatus, they found the most significant impairments were in the MFB lesion group and 

concluded that 6-OHDA lesions in the MFB is a suitable model for studying gait 

dysfunction101. These authors found that stance, step cycle, terminal dual stance, and duty 

cycle were increased in lesioned rats while paw pressure intensity and print area of the 

affected paw were decreased101. A study by Chuang and colleagues (2010) found a 

similar reduction in paw pressure and maximal area of paw contact in 6-OHDA lesioned 

rats99. In particular, these studies stressed the importance of terminal dual stance as this 

parameter suggest an increased duration of the postural phase, which they claimed is 

comparable to the freezing of gait seen in human PD99, 101. The reductions found in stride 

length and swing speed are believed to reflect increased muscle rigidity101. To 

summarize, in unilaterally MFB 6-OHDA lesioned rats, studies using the Catwalk 

apparatus found decreases in average speed, max contact area, mean intensity, stride 

length and swing speed 99, 101. They also found increases in stand, swing, step cycle, duty 

cycle, and terminal dual stance99, 101. Table 1 defines the CatWalk gait parameters 

examined in this thesis. It is also important to note that asymmetries between the paws 

ipsilateral or contralateral to lesioned side were only detected for static gait parameters 

such as max contact area and mean intensity, but not for dynamic gait parameters in these 

studies99, 101. Overall, strong evidence indicates that unilateral injection of 6-OHDA into 

the MFB produces gait deficits that can be measured using the CatWalk apparatus. 
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Table 1 - CatWalk Parameter Definitions 

Parameter Definition 

Average Speed (cm/s) Distance traversed on the walkway divided by time 

Cadence (steps/s) Number of steps taken per second 

Stand (s) Duration of contact of a paw with the glass walkway 

Swing (s) Duration of no contact of a paw with the glass walkway 

Swing Speed (cm/s) Speed of a paw during swing 

Step Cycle (s) Duration of two consecutive contacts of the same paw 

Duty Cycle (%) Stand as a percentage of step cycle 

Max Contact Area (cm2) Maximum area of a paw that contacts the glass walkway 

Mean Intensity Mean pressure of a paw that contacts the glass walkway 

Stride Length (cm) Distance between two consecutive placements of the same 

paw 

Terminal Dual Stance (s) Duration of the second step in a step cycle of a paw 
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1.5      Botulinum Neurotoxin 

       Botulinum neurotoxins (BoNTs) are proteins produced by the anaerobic bacterium 

Clostridium botulinum103. BoNTs are the most acutely lethal toxin currently known in 

existence and infections with the toxin producing bacteria causes botulism, a paralytic 

illness104. There are eight distinct subtypes of BoNTs, named type A through H. The 

subtypes vary in the animal species they affect (e.g., humans, cattle, horses, fish, birds), 

which proteins they cleave, the location of cleavage along the protein, and the severity of 

paralysis the subtype causes104. Only subtypes A and B are used commercially in 

humans, with type A (BoNT-A) being the most common and potent of the two105. 

Subtypes A and B are used medically to treat diseases characterized by overactive 

muscles (muscle spasms) or cosmetically, with the most common brand names being 

Botox, Dysport, and Xeomin. Although BoNTs are the deadliest toxins in the world, at 

proper dosages their mechanisms of action make them very useful biological tools that 

are commonly used medically, cosmetically, and in research.  

 

1.5.1      Mechanism of Action 
      BoNTs are produced as a 150 kDA polypeptide made up of a 100 kDA heavy chain 

(HC) and 50 kDA light chain (LC) linked together by a disulfide bond105. The main effect 

of BoNTs is cleaving proteins involved in releasing vesicles filled with neurotransmitters 

from the presynaptic membrane105. It does this through a series of steps. The first step is 

binding to specific nerve or neuron terminals106. This is mediated by the HC portion of 

the molecule. The HC contains a carboxyl terminus and an amino terminus. The carboxyl 

terminus is responsible for recognizing and binding to specific presynaptic nerve 

terminals107. The second step is internalization of the toxin into the cell, mediated by the 

amino terminus of the HC107. Once the toxin is inside the cell, the increase in acidity 

causes the disulphide bond to break, which separates the LC from the HC107. The LC is a 

zinc metalloprotease and the active portion of the toxin. The LC, depending on its 

subtype, will cleave a specific component of the soluble N-ethylmaleimide-sensitive 

factor attachment protein receptor (SNARE) complex. Each BoNT subtype acts at 
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different SNARE proteins and cleavage sites108. BoNT-A specifically cleaves 

synaptosomal nerve-associated protein 25 (SNAP-25)107. By cleaving these proteins 

which mediate vesicle fusion and release from the presynaptic membrane, a vesicle filled 

with neurotransmitter cannot be released, thus the effect of the neurotransmitter is 

blocked107. However, this blockage wears off as the LC loses its activity and the SNARE 

proteins regenerate107. To illustrate this point with a real-life example, this is why people 

who get cosmetic Botox injections need to repeat the procedure every few months, as 

BoNTs do not have a permanent effect.  

 

1.5.2      BoNT use in the Peripheral Nervous System 
          In the peripheral nervous system (PNS), BoNT-A has a potent effect on cholinergic 

terminals107. By preventing the release of acetylcholine from axon endings at 

neuromuscular junctions, nerve signaling stop. This stop leads to flaccid paralysis107. The 

most common use of BoNT-A is as a cosmetic treatment for the reduction of the 

appearance of wrinkles. There are many other uses for BoNT-A injections in the PNS. 

BoNT-A is used as a treatment for disorders of muscle spasticity (in the neck, eyelids, 

genitals, limbs, vocal cords), disorders of hyperactive nerves (excessive sweating, 

neuropathic pain), to relax clenching muscles (oesophagus, jaw, urinary tract, bladder), 

and migraine relief109-117. 

     BoNT-A use in the PNS has been found to be an overall very safe procedure. The 

most common negative side effect of BoNT-A is the paralysis of unintended muscles 

caused by injection into the wrong areas. The safety of BoNT-A use in the PNS can be 

attested by the frequency and high number of cosmetic injections carried out each year. 

Yearly injections of BoNT-A treatment over 12 years has been found to be consistently 

safe with only a few instances of bad reactions118. The safety of BoNT-A in the PNS is 

well established, but investigations of the use and safety of BoNT-A in the central 

nervous system (CNS) are ongoing. 
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1.5.3      BoNT use in the Central Nervous System 
         In the PNS, BoNT-A blocks the presynaptic release of the neurotransmitter 

acetylcholine. In the CNS, it has been found that BoNT-A can exert its effects on 

multiple neurotransmitters, including glutamate, γ-aminobutyric acid (GABA), glycine, 

noradrenaline and dopamine106, 119-121. BoNT-A preferentially inhibits the release of 

excitatory neurotransmitters to a much stronger degree over inhibitory 

neurotransmitters120-122. Ashton and Dolly (1988) found that BoNT-A’s ability in 

blocking presynaptic release of GABA compared to acetylcholine is significantly 

weaker120. Another study, by Bigalke and colleagues (1981) found approximately 80% 

blockage at 10 ug/mL of BoNT-A for the excitatory neurotransmitter’s acetylcholine, 

noradrenalin, and glycine in preparations of rat brain and spinal cord tissue119. For the 

inhibitory neurotransmitter GABA however, in order to achieve a comparable level of 

inhibition as seen with the excitatory neurotransmitters, a 5x higher dose of BoNT-A was 

required119. Due to BoNT-A’s specificity as an excitatory neurotransmitter blocker and its 

transient effects, this molecule has great potential for application in the CNS by 

preventing the pre-synaptic release of excitatory neurotransmitters. Studies investigating 

the application of BoNTs in the CNS in rodent models of disease have found that BoNTs 

can serve as a modulator for pain123, epilepsy124, and PD69. 

 

1.5.4      BoNT-A Use as a Treatment for PD 
       BoNT-A is already used as an effective and safe treatment option for tremor in 

PD125. Injecting BoNT-A peripherally reduces tremor by blocking cholinergic activity in 

specific muscle groups. However, due to BoNT-A’s ability to block the release of 

excitatory neurotransmitters, it has great potential to be used in the CNS as a molecular 

tool to reduce over-excitation in specific brain regions. As discussed in Chapter 1.2.2, the 

activity of the BG circuitry in PD is abnormal. Several studies have examined the effects 

of BoNT-A administered directly in the brain in parkinsonian animal models. A study by 

Wree and colleagues (2011) examined the results of the apomorphine rotation test in 

unilaterally 6-OHDA lesioned rats who received an ipsilateral injection of BoNT-A (1ng 

or 2ng dose) in the striatum. They found a significant reduction in pathological drug-
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induced rotational behaviour for up to 6 months in rats that received a BoNT-A 

injection69. 

    Another study by Antipova and colleagues (2013) examined the effects of an ipsilateral 

injection of BoNT-A (1 or 2ng) in the striatum of unilaterally 6-OHDA lesioned rats. A 

reduction in apomorphine rotations was found but no motor improvement was found in 

the rotarod or open-field tests126. Although Antipova (2013) did not see improvements in 

forced or voluntary movement, they found neither neuronal death in the striatum nor 

evidence of an inflammatory response following BoNT-A injections126.  The results of 

prior studies are promising as they demonstrate that a BoNT-A injection directly in the 

brain, at the doses they tested, does not cause tissue damage while also improving some 

aspects of motor performance. A recent study by Tsang, Rajakumar, and Jog (2019) 

examined the effects of a BoNT-A injection in the GPi of 6-OHDA lesioned rats 

compared with sham lesioned rats127. An injection of 0.5ng of BoNT-A in the GPi 

significantly reduced pathological rotations in the apomorphine rotation test and 

improved various parameters of gait as measured by the CatWalk XT apparatus. They 

found that rat’s speed, body speed variation, cadence and walking pattern was returned to 

pre-lesioned performance, and the improvements persisted for up to 1-month post BoNT-

A injection127. These results suggest that BoNT-A injections at the GPi can improve 

impaired gait in hemi-parkinsonian rats127. Administration of BoNT-A directly in the 

brain has potential as a new treatment option for the impaired gait seen in PD. It is of 

great importance to continue research on this topic as there are no treatment options 

currently available for the gait impairment seen in PD. Further research must be done to 

examine the effects of BoNT-A injections at various brain sites to determine the optimal 

site(s) of injection which yield the most motor improvement. The effects at different 

doses need to be examined as well.  

 

1.6     Rationale  

     PD affects many people as it is the second most common neurodegenerative disorder 

in the population. PD is increasing in prevalence as the global aging population continues 

to increase as well. PD is a debilitating disorder which greatly affects patient’s quality of 
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life and although there are reasonably effective treatment options available for most 

symptoms, not all patients benefit from the current options available. There is still a need 

for novel treatment options, particularly to improve the gait impairment seen in PD as 

there are no strong treatment options available for this symptom. 

   As discussed in section 1.2, the dopaminergic cell death in the SNpc leads to functional 

changes throughout the BG circuitry. DBS is one treatment option for PD that modulates 

the activity of certain areas of the BG circuitry to provide symptomatic relief. Another 

way to change the activity of specific targets in the BG circuitry is through the use of a 

molecular tool. As discussed in section 1.5, BoNT-A has the ability to prevent 

presynaptic neurotransmitter release. The mechanisms of BoNT-A have been extensively 

studied and described. This toxin is already safely used in medicine, cosmetics, and 

research. However, as BoNT-A preferentially blocks glutamatergic input, the injection 

sites for this treatment in the BG are limited. The two areas of the BG that receive 

glutamatergic input are the STN and GPi. Both of these areas are good candidate sites for 

BoNT-A injection as both of these sites are hyperactive in PD. Therefore, by injecting 

BoNT-A at these sites and blocking the excitatory input they receive, their levels of 

activity can be reduced to more normal levels, thereby improving motor symptoms. The 

site of injection that this thesis will examine is the STN, as our laboratory has previously 

examined the effects of a BoNT-A injection into the EPN (rodent equivalent of the 

human GPi) on gait performance in a PD rat model. In that study by Tsang, Rajakumar, 

and Jog (2019), an injection of 0.5ng of BoNT-A at the EPN in unilaterally MFB 6-

OHDA lesioned rats significantly reduced pathological rotations in the apomorphine 

rotation test and improved some parameters of gait as measured by the CatWalk XT 

apparatus. The beneficial effects of the toxin lasted for up to 3 months. Specifically, in 

terms of gait, the lesioned rat’s performance was comparable to that of sham lesioned rats 

in their walking speed, cadence, and walking pattern127. This study provided promising 

results for the use of BoNT-A injections in the BG as a treatment for gait impairment.     

    The current study explores the effects of a BoNT-A injection at the STN. The STN has 

great potential as a target site as the majority of DBS electrode implantations are done at 

this site. In addition, several studies have found that lesions or functional inactivation of 

the STN led to improvement in PD symptoms in MPTP lesioned monkeys128, 129. 
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Ultimately, the literature suggests that reducing the hyperactivity of the STN can lead to 

improvements in motor output. The hyper-direct pathway provides glutamatergic input 

into the STN. However, the GABAergic input from the GPe is reduced substantially. 

Hence, it is possible that the reduction of the glutamate input into the STN may equalize 

the two inputs. 

     Since this is a novel treatment, as with the majority of preclinical studies, the efficacy 

should be assessed in an animal model of PD. In section 1.3, the possible animal models 

of PD are discussed, with the unilateral MFB 6-OHDA lesioned rat model selected as the 

animal model of choice for this study. Previous studies have confirmed both extensive 

dopamine depletion and motor impairment in this model, making it suitable for 

examining motor output following a novel treatment option.  

 

1.6.1      Hypothesis 
      The hypothesis of the current study is that the injection of BoNT-A into the ipsilateral 

STN of a unilaterally 6-OHDA lesioned PD rat model will improve its apomorphine-

induced pathological rotations and affect gait abnormalities. 

       Rationale for the predicted effect is as follows: injection of BoNT-A into the STN 

will lead to a reduction of STN hyperactivity through the blockage of excitatory input 

coming from the cortex. This will lead to a reduction of the over-excitation of the EPN, 

leading to a reduction in the over-inhibition of the ventrolateral thalamus, thereby 

alleviating motor abnormalities.  

 

1.6.2      Objectives 
       The objectives of this thesis were to assess the behavioural outcomes of a single 

injection of BoNT-A at the STN in a unilateral MFB 6-OHDA lesioned rat model of PD.  

The specific objectives of this study were as follows: 

1)  To confirm dopamine depletion in the striatum and SN in the PD animal model used. 

2)  To evaluate the dose response of BoNT-A injection at the STN in the behavioural  

      tasks used. Four doses (0.5ng, 1ng, 2ng, and 4ng) were examined.  
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3) To evaluate changes in drug induced rotations using the apomorphine rotation test  

     before and following injection of BoNT-A into the STN at various time points (1-  

     week post-injection, 1-month post-injection, 2-months post-injection, 3-months post- 

     injection). 

4) To evaluate changes in forced motor movement using the rotarod test at baseline, after  

     6-OHDA lesion, and following injection of BoNT-A into the STN at various time  

     points (1-week post-injection, 1-month post-injection, 2-months post-injection, 3-  

     months post-injection). 

5) To evaluate changes in voluntary motor movement using the CatWalk apparatus at  

     baseline, after 6-OHDA lesion, and following injection of BoNT-A into the STN at  

     various time points (1-week post-injection, 1-month post-injection, 2-months post-  

     injection, 3-months post-injection). 

 

1.6.3      Predictions 
The predictions were as follows: 

1) 6-OHDA injection at the MFB would cause dopaminergic depletion in the striatum  

     and SN.  

2) Injection of BoNT-A at the STN would reduce pathological drug induced rotations in  

     6-OHDA lesioned rats. 

3) Injection of BoNT-A at the STN would lead to improvements in the amount of time  

    spent on the rotarod, the forced motor movement task, in 6-OHDA lesioned rats. 

4) Injection of BoNT-A at the STN would lead to improvements in gait in the voluntary  

    motor movement task as measured by the CatWalk in 6-OHDA lesioned rats. 

5) The effects of the BoNT-A injection would be transient, with a peak effect at around  

    the 1-month post BoNT-A injection time-point and motor performance returning to  

    post-lesion around the 3-months post BoNT-A injection time-point. 

 

As BoNT-A has never been injected at the STN before, there are no predictions as to 

which dose will be most effective.  
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Chapter 2  

2 Materials and Methods  

  This chapter describes the methods and materials utilized in this study. All experimental 

work was approved under the protocol, AUP 2015-087, and conducted in accordance 

with the guidelines of the Animal Care Committee at Western University (Appendix 1). 

All regulatory materials permitting the use of BoNT-A and sodium pentobarbital in rats 

were approved (Appendix 2 & 3). 

 

 

Figure 2.1 - Timeline of the Experimental Protocol 
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2.1     Experimental Animals 

     Adult male Sprague-Dawley rats (Charles River Canada), weighing between 250-300 

grams at the time of the first surgery, were used in this study. Rats were housed 2-3 per 

cage, however, under the circumstance that one of the animals in the pair was sacrificed 

early, the surviving animal was housed alone. Animals were housed in a temperature and 

humidity-controlled room (22±1°C) under 12 hour light/12 hour dark conditions with free 

access to food and water.  

 

 

Figure 2.2 - Breakdown of Experimental Conditions that Animals were Assigned to 

 

2.2     Surgery 

     This section will describe the procedures for each surgery the animals went through. 

First, the procedures common to both surgeries will be described and the following 

sections will detail specificities associated with the particular surgery.  

 

2.2.1     General Surgery Procedures 

     All animals were subcutaneously injected with Metacam (1 mg/kg), an anti-

inflammatory medication for pain management, 15 minutes before the start of each 

surgery as well as a dose the day following surgery. Animals were anaesthetized through 
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an intraperitoneal injection of a mixture of ketamine (80 mg/kg) and xylazine (5 mg/kg). 

The animal’s body heat was monitored through the use of a rectal thermometer and 

thermoregulation was maintained between 36-38°C using a heat lamp, both during 

surgery and recovery. Level of sedation was monitored using the toe pinch withdrawal 

reflex. Once the withdrawal reflex was absent, indicating that the rat was deeply sedated, 

lubricating eye-drops were applied, and the area of the scalp where the incision would be 

made was shaved with an electric razor. The animal was then placed and secured onto a 

stereotaxic frame (Kopf Instruments). The surgical site was cleaned with surgical soap, 

isopropyl alcohol and a chlorhexidine solution before incision. A midline skin incision of 

approximately 2 cm was made and all soft tissue from the surface of the skull was 

removed to expose bregma. A burr hole of approximately 1 mm was drilled through the 

skull at the designated coordinates for the surgery to allow for the needle to go through 

into the desired brain region. Stereotaxic coordinates were calculated from bregma 

according to the rat brain atlas of Paxinos and Watson (2009).  

 

2.2.2     First Surgery - MFB Lesion using 6-OHDA 

      To render the animals hemi-Parkinsonian, they received a unilateral infusion of 6-

OHDA into the right MFB. Approximately 30 minutes before the infusion of 6-OHDA 

into the brain, all animals were intraperitoneally injected with desipramine hydrochloride 

(25 mg/kg, Sigma), a selective norepinephrine reuptake inhibitor. 6-OHDA lesions both 

noradrenergic and dopaminergic terminals thus the injection of desipramine protects the 

noradrenergic terminals and thus causing a lesion selectively for dopaminergic terminals. 

   After a burr hole was drilled in the skull at the MFB coordinates (AP -1.8, ML -2, DV -

8.3) (Appendix 4), a 10µl Hamilton syringe (Cole-Parmer) was lowered and a 4 μL 

solution containing 8 μg 6-OHDA /rat (100 mg of 6-OHDA dissolved 50 mL solvent 

consisting of 0.9% saline and 0.1% ascorbic acid; Sigma) was delivered over 5 minutes. 

The needle was then left in place for 5 minutes and then slowly withdrawn over another 5 

minutes.  

    Control animals receiving a sham lesion went through the same procedure as the 6-

OHDA lesioned animals but received an equivalent volume of 0.9% saline containing 
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0.1% ascorbic acid. 

 

2.2.3     Second Surgery - BoNT-A Injection at the STN 

       Three weeks after animals received their first lesioning/control surgery, they 

underwent the experimental treatment surgery in which either BoNT-A or vehicle was 

injected at the STN. BoNT-A (List, Campbell, USA) was injected into the STN (AP -3.6, 

ML -2.5, DV -8.0) (Appendix 5) using a 31G injection cannula attached to a 10 μL 

Hamilton syringe by polyethylene tubing. All doses were injected over 5 minutes with a 

volume of 0.5 μL. The cannula was left in place an additional 5 minutes after injection 

and then retracted over an additional 5 minutes. 

  All doses were dissolved in phosphate buffered saline (PBS) containing 0.1% bovine 

serum albumin (BSA). Animals receiving a BoNT-A injection were assigned to one of 

four doses. 

1) 0.5 ng (0.5 μL of 1 ng/μL BoNT-A) 

2) 1 ng (0.5 μL of 2 ng/μL BoNT-A) 

3) 2 ng (0.5 μL of 4 ng/μL BoNT-A) 

4) 4 ng (0.5 μL of 8 ng/μL BoNT-A) 

Control animal received an injection of 0.5 μL of PBS with 0.1% BSA. 

 

2.3     Behavioural Measures 

    The purpose of the behavioural measures conducted was to evaluate the changes in 

animals motor activity between baseline performance (before any surgeries), after 

inducing a PD state (lesioning/sham surgery), and after the treatment intervention 

(BoNT-A/sham injection).  

 

2.3.1     Apomorphine Rotation Test  

      The purpose of the apomorphine rotation task is to assess the quality of the 6-OHDA 

lesion. It is also a measure used to assess drug-induced movement. The animals were 

assessed after two weeks have passed from their 6-OHDA or sham surgery. After the rats 
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are subcutaneously injected with apomorphine (0.25 mg/kg; Sigma), and since the MFB 

was unilaterally lesioned, they would rotate away from the lesioned side (see Chapter 

1.3.2.2 for details). The right MFB was lesioned, therefore the rats would rotate counter-

clockwise (CCW). 

    After receiving the apomorphine injection, a rat would be placed into a polypropylene 

cage (14 inches x 20 inches, 8 inches tall). A video camera setup recorded the behaviour 

for 30 minutes. The videos were transferred to a desktop computer, and the rat’s 

rotational behaviour was quantified over 10 minutes of video footage. Clockwise (CW) 

and CCW rotations would be counted and each animal would receive a score based on 

their net rotations. This net score is divided by 10 to determine the average number of 

rotations per minute (rpm) for each rat. A sufficiently lesioned, and thus a successful 

parkinsonian model, should have a score of at least 7 rpm. If an animal that had been 

assigned to the lesioned group did not meet that score, it was removed from the study and 

sacrificed. 

    The rotation test was repeated at 1-week, 1-month, 2-months, and 3-months after 

animals received their BoNT-A injection surgery to assess changes in drug-induced 

movement. 

 

2.3.2     Rotarod 

       To assess rat’s performance on a task of forced motor movement, the rotarod 

apparatus (Panlab, Harvard Apparatus) was used. The rotarod is a standard test of motor 

coordination, balance and fatigue in rodents in which the animals are placed on rotating 

rods and the time until the animal falls off the rod is recorded.  

     In this study, the animals were placed on the rod under acceleration mode, in which 

the rotational speed of the rod will increase from 4 to 40 rpm over 5 minutes. Therefore, 

after every 8 seconds, the rpm of the rod increases by 1 rotation. Three trials per rat were 

collected with an interval of at least 30 minutes between trials. The maximum amount of 

time (in seconds) and the maximum speed of the rod (rpm) reached before a rat fell off 

were recorded. Those three trials per animal would be averaged into one score for 

statistical analysis. Both time and speed were examined because the difficulty of the task 
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for the rat increases over time. As time passes, the speed of the rod increases. For 

example, at 0 seconds, the rod starts at 4rpm. After 30 seconds, the rpm is 7. After 

another 30 seconds (1-minute total) have passed, the speed of the rod is 11, and after 

another 60 seconds have passed (2 minutes in), the rpm is increased to 18. 

 

2.3.3     Catwalk 

      To assess the gait of voluntarily moving rats, the CatWalk XT (Noldus, Wageningen, 

Netherlands) apparatus was used. The Catwalk method is an automated and computerized 

gait-analysis technique that allows objective quantification of multiple static and dynamic 

gait parameters. The apparatus consists of a glass walkway, surrounded by Plexiglas 

walls except for the two ends to serve as openings (entrance and exit). In a dark room, a 

fluorescent light shines onto the walkway from one side, and as the light is reflected 

downward, the footprints as the rat freely walks across the walkway are recorded by a 

camera mounted underneath the glass. The principle of this method is based on an optical 

technique in which the light of a fluorescent tube is completely internally reflected in the 

glass walkway. The light leaves the glass and illuminates the areas of contact as the 

animal crosses the walkway. The paw contacts are visualized, signals are digitized, and 

then stored on a computer for analysis.  

   For proper gait analysis, there are two criteria that must be met when collecting data130. 

1) The animals must cross the walkway within 8 seconds with no interruptions in their 

gait or turning around, and 2) a minimum of three crossings per animal are required. 

  Two whole body parameters were examined, average speed and cadence. The rest of the 

gait parameters measure each paw, left front limb (LF), left hind limb (LH), right front 

limb (RF), and right hind limb (RH) separately.  

 

2.4     Perfusion and Brain Extraction 

      After all behavioural data was collected, animals were sacrificed with an 

intraperitoneal injection of 1 mL of sodium pentobarbital (250 mg/kg). After injection, 

animal’s reflexes were assessed using the toe pinch reflex. Once all reflexes were absent, 
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the animal underwent a trans-cardiac perfusion. An incision in the abdomen was made to 

enter the body cavity and extended into the thoracic cavity. Once the heart was exposed, 

a needle attached to tubing and a pump, was inserted through a small incision made in the 

left ventricle into the aorta. An incision was made in the right atrium to allow for blood 

and other fluids to drain from the animal. 200 mL of 0.9% saline was pumped to clear the 

blood, followed by 400 mL of 4% paraformaldehyde to cause tissue fixation. The rat’s 

brain was removed and put into a specimen bottle containing 4% paraformaldehyde for at 

least 24 hours. The brain was then transferred into a specimen bottle containing 30% 

sucrose for cryoprotection.  

 

2.5     Immunohistochemistry 

      Brains were blocked for the region of interest and cut using a freezing microtome 

after being mounted with optimal cutting temperature (OCT) compound. Coronal brain 

sections of 40 μm thickness were cut. All incubations on the rotator were done at room 

temperature. Whenever washing sections is mentioned, the washes were done three times 

in phosphate buffer (PB) for 5 minutes each on a shaker at low speed. Images were 

acquired on a Nikon DS-Qi2 microscope.  

 

2.5.1    Thionin Nissl Staining 

     The STN is a small region and it is possible to miss this site during the BoNT-A 

injection surgery. In addition to the site being small, the brain atlas is for Sprague Dawley 

rats between 250-350g. Due to the nature of this study's timeline, most animals are over 

400g at the time of their second surgery, thus the coordinates may be slightly off. In order 

to ensure that the needle and injection was at the STN, a 0.25% thionin nissl stain was 

performed in order to visualize the needle track leading to the STN. 

    First, STN brain sections were selected and mounted onto 1 mm thick Superfrost plus 

slides (VWR International). The slides were left to air dry overnight. The next day, the 

slides containing sections were de-lipidated through transfer in 70%, 95% and then in 

100% ethanol twice for 2 minutes each, followed by submersion in 100% xylene twice 
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for 15 minutes each. The slides were then transferred in decreasing concentration of 

ethanol (100% to 95% to 70%) for 2 minutes each, followed by a 2-minute submersion in 

distilled water. The slides were then placed into a 0.25% thionin solution (Sigma-

Aldrich) for 10 seconds. The slides were then dipped between 5-10 times in distilled 

water in order to dilute the blue stain to its desired intensity. The slides then went through 

dehydration through transfer in increasing concentration of ethanol (75% to 95% to 

100%-1 to 100%-2) for 2 minutes each, followed by two consecutive submersions in 

100% xylene for 5 minutes. No. 1 cover glasses (VWR International) coated with xylene-

based mounting medium (Triangle Biomedical Sciences Inc) were applied to the surface 

of the slides. 

 

2.5.2     TH Staining 

      Staining for tyrosine hydroxylase (TH) was done for verification of 6-OHDA 

lesioning. TH staining was done at the striatum, substantia nigra, and locus coeruleus. 

Sections with regions of interest were selected, washed, and then put on a rotator for a 

maximum of 2 hours with blocking solution (0.001% Triton X-100, 15% BSA and 10% 

non-immune serum from the animal which corresponded to species of the secondary 

antibody). Sections were then directly put into the 10 antibody solution (antibody diluted 

in distilled H20 containing 15% BSA and animal serum) for at least 14 hours on a rotator 

and the next day, were washed. Sections were then put into the 20 antibody (diluted in PB 

containing 15% BSA and animal serum) for maximum 1 hour on a rotator. The 20 

antibody was either an Alexa Fluor conjugated secondary antibody (Invitrogen by 

Thermo Fisher Scientific) or a biotinylated secondary antibody (Vector Laboratories). 

After, sections were washed and put into avidin biotin peroxidase complex (ABC) 

(Vectastain Elite ABC-HRP Kit, Vector Laboratories) solution for 1 hour on the rotator 

for amplification of signal. Sections were washed and then put into TSA Biotin System 

(PerkinElmer), with 3% H2O2 added in a time-dependent manner. A timer used to ensure 

that sections were kept in the solution for the same amount of time in the solution at 10 

minutes each. Following washes, TH was detected by the 3,3’-diaminobenzidine (DAB) 

method for 5 minutes (Sigma-Aldrich). Sections were then mounted onto 1 mm thick 
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Superfrost plus slides and left for at least 24 hours to dry. Once dry, sections were then 

dehydrated by transferring slides in increasing concentration of ethanol (75% to 95% to 

100%-1 to 100%-2) for 2 minutes each, followed by two consecutive submersions in 

100% xylene for 5 minutes. Cover glasses coated with xylene-based mounting medium 

were applied to the surface of the slides. 

 

2.6     Statistical Analysis 

     Statistical analysis was performed using IBM SPSS Statistics 20. All data is expressed 

as mean ± standard error of mean. A critical value for significance of p < 0.05 was used 

throughout the study. If the assumption of normality was violated, the intended tests 

would be run regardless as the regular/repeated-measures one-way ANOVA is fairly 

robust to deviations from normality. Normality also implies that the data follow a normal 

distribution. In the case of the apomorphine rotation test, for example, a normal 

distribution may not be expected. At the post-lesion time point for example, it is expected 

that all lesioned animals will rotate at least 7 times per minute or more while the sham-

lesioned animals will not rotate (thus their scores will be around 0 rpm). The scores will 

therefore be on either extreme (0 rpm or 7rpm), with no Gaussian distribution. In this 

case, it is expected that the data should not be normal, and violations of normality are 

expected in this case. Any violations of normality will be reported in the results section 

for transparency.   

 

2.6.1     Analysis of Apomorphine Data 

     The first section of the apomorphine rotation test results were analyzed using a one-

way ANOVA. In the first section, the scores of every condition were compared at the 

same time-point. In the second section of the apomorphine rotation test results, a repeated 

measures one-way ANOVA was run. In the second section, the scores of each condition 

(separately) were compared across every time point. For both sections, the ANOVA was 

followed by a Bonferroni post-hoc test. Normality was assessed using the Shapiro-Wilk's 

test. Sphericity was assessed using Mauchly's test of sphericity, and homogeneity of 
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variances was assessed by Levene's test for equality of variances. In cases where the 

assumption of homogeneity was violated (p < .05), the results were interpreted using the 

Welch ANOVA and Games-Howell post-hoc test. 

 

2.6.2     Analysis of Rotarod Data 

          A comparison between all animal groups at the pre-lesion and post-lesion time 

points was done to determine if the 6-OHDA rat model induced any significant 

impairment on this forced motor task compared to sham lesioned animals. At pre-lesion, 

before animals have undergone any surgery, it would be expected that there is no 

significant difference between animal groups.  

     A one-way ANOVA was run. The scores for each condition at both time points were 

assessed for normality using the Shapiro-Wilk's test. Homogeneity of variances was 

assessed by Levene's test for equality of variances. In cases where the assumption of 

homogeneity was violated (p < .05), the results were interpreted using the Welch 

ANOVA and Games-Howell post-hoc test. 

 

2.6.3     Analysis of Catwalk Data  

     A comparison between all animal groups at the baseline and post-lesion time point 

was done to determine if the 6-OHDA rat model induced significant motor impairment 

compared to sham lesioned animals. At pre-lesion, before animals have undergone any 

surgery, it would be expected that there is no significant difference between animal 

groups. At the post-lesion time point however, based on our laboratories previous study, 

all lesioned groups are expected to perform worse than the sham lesioned groups127. 

      Two of the CatWalk parameters that were presented are whole body measures 

(average speed and cadence), meaning that an overall score was presented for the whole 

body. Those two parameters will be presented first in the CatWalk results section. A one-

way ANOVA for both time points (pre- and post-lesion) was run, with a Bonferroni post-

hoc test for multiple comparisons. For the rest of the CatWalk parameters, there is a score 

for each individual paw. Therefore, a one-way ANOVA with a Bonferroni post-hoc was 

run for every paw at both time points. For all analyses, normality was assessed using the 
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Shapiro-Wilk's test and homogeneity of variances was assessed by Levene's test for 

equality of variances. In cases where the assumption of homogeneity was violated (p < 

.05), the results were interpreted using the Welch ANOVA and Games-Howell post-hoc 

test.  
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Chapter 3  

3 Results 
 

3.1 Verification of 6-OHDA Lesion 

      Unilateral 6-OHDA lesioning of the MFB was visually verified in a random selection 

of lesioned animals through staining of tyrosine hydroxylase (TH)-positive terminals in 

the striatum (Figure 3.1 A) and cell bodies in the SN (Figure 3.2 B). Sections from sham-

operated animals were also labeled for TH-positive terminals in the striatum (Figure 3.1 

B) and SN (Figure 3.2 B). 7 randomly selected 6-OHDA lesioned animals (20% of the 

total lesioned animals) were stained for TH. 3 randomly selected sham lesioned animals 

(20% of the total sham animals) were stained for TH. 6-OHDA lesioning of the right 

MFB resulted in a reduction in TH immunoreactivity in the ipsilateral striatum and SN 

while a sham saline injection did not result in a reduction in TH immunoreactivity on 

both sides in the striatum and SN. 

   Additionally, to confirm that the injection of desipramine successfully prevented 

damaged to noradrenergic terminals, labeling of TH-positive neurons in the LC was 

examined. The LC of a representative 6-OHDA lesioned animal is presented in Figure 

3.3 A, and the LC of a representative sham-operated animal is shown in Figure 3.3 B.  

  Visual inspection comparing the lesioned and non-lesioned side in 6-OHDA lesioned 

animals as well as comparison with sham lesioned animals suggests that there was a 

substantial depletion of dopaminergic cells in the striatum and SN. 

 

3.2 Verification of STN Injection Site 

   In order to verify that BoNT-A injection was at the STN, a Nissl stain was performed in 

coronal sections to visualize the needle track leading to the STN. The needle track of a 

representative section is shown in Figure 3.4.  This method provides a visual 

confirmation of whether the STN was accurately targeted. 
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Figure 3.1 - TH Staining of the Striatum 

TH staining in the striatum of a representative 6-OHDA lesioned animal (A) and a 

representative sham lesioned animal (B). The contralateral/left striatum (L) and 

ipsilateral/right striatum (R) are labelled. The areas of interest (striatum) are outlined in a 

blue oval. 6-OHDA lesioning of the right MFB resulted in a reduction in TH 

immunoreactivity in the ipsilateral striatum while a sham saline injection did not result in 

a reduction in TH immunoreactivity on both sides. Scale bars: 1 mm. 

 

TH staining in the SN of a representative 6-OHDA lesioned animal (A) and a 

representative sham lesioned animal (B). The contralateral/left SN (L) and 

ipsilateral/right SN (R) are labelled. The areas of interest (SN) are outlined in blue ovals. 

6-OHDA lesioning of the right MFB resulted in a reduction in TH immunoreactivity in 

the ipsilateral SN while a sham saline injection did not result in a reduction in TH 

immunoreactivity on both sides. Scale bars: 1 mm. 

Figure 3.2 - TH Staining of the STN 

/ 
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Figure 3.3 - TH Staining of the LC 

TH staining in the LC (the cluster of darkly stained cells at the top) of a representative 6-

OHDA lesioned animal (A) and a representative sham lesioned animal (B). The 

contralateral/left LC (L) and ipsilateral/right LC (R) are labelled. The areas of interest are 

outlined in blue ovals. 6-OHDA lesioning of the right MFB did not result in a reduction 

in TH immunoreactivity in the LC in both lesioned and sham lesioned animals with the 

injection of desipramine 30 mins before 6-OHDA injection, thus sparing noradrenergic 

terminals in the LC. Scale bars: 1 mm. 
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Figure 3.4 - Nissl Stain for Needle Track to STN Confirmation 

Thionin Nissl staining to visual the needle track in a representative animal that received 

injection into the STN (AP -3.6, ML -2.5, DV -8.0). Red arrows are pointing to the 

needle track and the blue arrows point to the neuron cluster that composes the STN. The 

needle track leads to the medial portion of the STN. Due to the volume injected (0.5 µl 

would occupy 0.5 mm3), it is likely the STN (volume in a rat is 0.8mm ± 0.1), was 

sufficiently flooded with BoNT-A152.  Scale bar: 1 mm. 
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3.3 Apomorphine Rotation Test Results 

 

3.3.1 Effect of BoNT-A at Each Time Point 

   This section will report on the results of the all animal groups compared at the same 

time point. Comparing the scores (rpm) of each animal group at the same time-point will 

provide insight into the effect of BoNT-A on pathological rotations at each time point. 

This allows for a comparison of the efficacy of each dose of BoNT-A in reducing 

pathological rotations at each time point. 

     At every time point, the lesion/sham BoNT-A injection group and lesion/0.5ng BoNT-

A injection group did not significantly reduce in the number of pathological drug-induced 

rotations. At every time point, those two groups were not significantly different from 

each other. Additionally, at every time point, the sham lesion/4ng BoNT-A group and 

sham lesion/sham BoNT-A group were not significantly different from each other in their 

rotational score. 

    At the post-lesion time point, lesioned groups rotated at 7 rpm or higher, while sham 

lesioned animals remain at 0 rpm (Figure 3.5 A). According to multiple comparisons with 

Bonferroni post-hoc, none of the lesioned groups were significantly different from each 

other. Likewise, neither of the sham lesioned groups were significantly different from 

each other. As expected, all of the lesioned animals rotated at significantly higher rates 

than the sham lesioned animals [F (6, 45) = 88.654, p < .001]. The scores on the 

apomorphine rotation test were normally distributed in every group, except for the lesion 

+ 2ng BoNT-A group (p = .008). There was homogeneity of variances. 

    At the 1-week post treatment injection time point, there were significant differences 

between various groups [F (6, 45) = 19.481, p < .001] (Figure 3.5 B). According to 

Bonferroni post-hoc, the lesion/sham BoNT-A group, lesion/0.5ng BoNT-A group, and 

lesion/1ng BoNT-A group, did not differ significantly in their rpm at this time point. 

However, compared to the lesion/sham BoNT-A group, the lesion/2ng BoNT-A (p < 

.001) group, and lesion/4ng BoNT-A group (P < .001) had significantly fewer 

pathological rotations. At this time point, there were no significant differences between 

the lesion/2ng BoNT-A, lesion/4ng BoNT-A and the two sham lesioned groups (4ng 



43 

 

BoNT-A and sham BoNT-A). There were also no significant differences between the 

sham lesioned animals who received a 4ng BoNT-A or sham BoNT-A injection (p =.47). 

Therefore, at this time point, the lesioned animals who received the two highest doses of 

BoNT-A (2 or 4ng) rotated at comparable rates to that of the sham lesioned animals. The 

scores on the apomorphine rotation test were normally distributed for every group, except 

for the lesion/4ng BoNT-A group (p = .02), sham/4ng BoNT-A group (p = .041), and 

sham/sham BoNT-A group (p = .03). There was homogeneity of variances. 

    At the 1-month post-treatment injection time point, there were significant differences 

between the various animal groups [F (6, 45) = 15.51, p < .001] (Figure 3.5 C). The 

lesioned animals who received a 1ng (p < .001), 2ng (p < .001), or 4ng (p < .001) 

injection of BoNT-A continue to show a significantly lower number of pathological 

rotations compared to the lesion/sham group at this time point. However, only the 

lesioned animals who received either 2ng or 4ng of BoNT-A were found to not be 

significantly different from either of the sham lesioned groups. The scores on the 

apomorphine rotation test were normally distributed for every group, except for the 

lesion/4ng BoNT-A group (p = .02), sham/4ng BoNT-A group (p < .001), and sham/sham 

BoNT-A group (p = .002). There was homogeneity of variances. 

  At the 2 months post-treatment injection time point, there were significant differences 

between various animals, Welch's F (6, 17.913) = 38.807, p < .001. (Figure 3.5 D). The 

lesioned animals who received a 1ng, 2ng, or 4ng injection of BoNT-A continued to 

rotate below 7 rpm and the scores of these groups were significantly lower compared to 

the lesion/sham group at this time point. However, only the lesioned animals who 

received either 2ng or 4ng of BoNT-A were found to not be significantly different from 

either of the sham lesioned groups. The scores on the apomorphine rotation test were 

normally distributed for every group, except for the sham/4ng BoNT-A group (p = .02). 

The assumption of homogeneity of variances was violated (p = .013), therefore 

significance was interpreted using the Welch ANOVA and the Games-Howell post-hoc 

was used to interpret the multiple comparisons.  

    At the 3 months post-treatment injection time point, there were significant differences 

between various groups [Welch's F (6, 17.43) = 30.677, p < .001] (Figure 3.5 E). While 

all of the lesioned groups that received an injection of BoNT-A at a dose of 1ng or higher 
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continued to rotate below the pathological threshold of 7 rpm, the number of rotations 

were returning to pathological baseline. Only the lesion/2ng BoNT-A group was found to 

still be significantly different from the lesion/sham BoNT-A (p =.019). The scores on the 

apomorphine rotation test were normally distributed for every group, except for the 

lesion/sham BoNT-A group (p = .038), and the sham/sham group (p = .01). The 

assumption of homogeneity of variances was violated (p = .007), therefore significance 

was interpreted using the Welch ANOVA and the Games-Howell post-hoc was used to 

interpret the multiple comparisons.  
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A comparison of apomorphine (0.25 mg/kg, SC) induced rotations between all groups at 

the same time point. Positive values on y-axis represent counter-clockwise rotations and 

negative values represent clockwise rotations. Lesion/Sham (n=8), lesion/0.5ng BoNT-A 

(n=6), lesion/1ng BoNT-A (n=7), lesion/2ng BoNT-A (n=7), lesion/4ng BoNT-A (n=8), 

sham/4ng BoNT (n=8), sham/sham (n=7). Apomorphine rotations 2 weeks post-lesion or 

sham surgery (A), 1-week post BoNT-A injection (B), 1-month post BoNT-A injection 

(C), 2 months post BoNT-A injection (D), 3 months and post BoNT-A injection (E). All 

results are presented as mean ± SEM. One-way ANOVA and post hoc Bonferroni test 

were performed, except for the 2-month (D) and 3-month (E) post injection time points 

where a Games-Howell post-hoc test was performed, *p<0.05, **p<0.005. 

Figure 3.5 - Apomorphine Rotations of Every Group Compared at the Same Time Point 
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3.3.2 Effect of BoNT-A Over Time 

    This section will report on the results of the apomorphine rotation test scores of each 

animal group separately across time points. Comparing the performance of one group 

across time will provide insight to the effect of BoNT-A on pathological rotations over 

time for each group. The results of the control groups will be presented first, followed by 

the results of the experimental groups. 

 

3.3.2.1     Control Groups Results 

     Sham lesioned animals displayed no significant rotational behaviour at any time-point, 

regardless of whether animals received a 4ng dose of BoNT-A or sham injection during 

the treatment surgery (Figure 3.6 A-B).  

    A sham BoNT-A injection in sham lesioned animals did not cause significant changes 

in drug-induced rotational behaviour at any time point [F (1.406, 8.433) = .934, p = .396] 

(Figure 3.6 A). Rotations were normally distributed, except at the 1-week (p = .03), 1 

month (p < .002), and 3 month post (p = .01) time points. The assumption of sphericity 

had been violated, χ2(9) = 19.558, p = .029, thus the results were interpreted and reported 

using the Greenhouse-Geisser adjustment. Epsilon (ε) was 0.351 and used to correct the 

one-way repeated measures ANOVA. 

    An injection of the highest dose of BoNT-A examined in the study (4ng) in sham 

lesioned rats did not cause significant changes in drug-induced rotational behaviour at 

any time point [F (1.618, 11.323) = 2.856, p = .106] (Figure 3.6 B). Rotations were 

normally distributed except at the 1-week (p = .041), 1-month (p < .001), and 2-month 

post (p = .019) time points. The assumption of sphericity had been violated, χ2(9) = 

24.632, p = .005, thus the results were interpreted and reported using the Greenhouse-

Geisser adjustment. Epsilon (ε) was 0.404 and used to correct the one-way repeated 

measures ANOVA.  

     A sham BoNT-A injection in lesioned rats led to no reduction in pathological 

rotational behaviour at any post-treatment time point, remaining at above 7 rpm (Figure 

3.6 C). Although rpm was found to be statistically significantly different across time [F 

(4, 28) = 3.708, p = .015], upon examining the Bonferroni post-hoc, no significant 
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differences were found between time points. However, the difference between the 1-week 

post and 1-month post-treatment injection time points were close to approaching 

significance (p = .053). This may account for why significance was found at the tests of 

within-subjects effects level but not at the pairwise comparison level. Rotations were 

normally distributed at each time point, except at 3 months post (p = .038) and the 

assumption of sphericity had not been violated. 
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Figure 3.6 - Apomorphine Rotations across Time Points in Control Groups 

Changes in apomorphine (0.25 mg/kg, s.c) induced rotations before and after BoNT-A or 

sham injection at the STN. Positive values on the y-axis represent counter-clockwise 

rotations and negative values represent clockwise rotations. (A) n=7, (B) n=8, (C) n=8. A 

sham injection in place of BoNT-A in sham lesioned rats did not cause any significant 

changes in rotations at any time point (A). An injection of 4ng of BoNT-A in sham 

lesioned rats did not cause any significant changes in rotational behaviour (B), and a 

sham injection in place of BoNT-A in 6-OHDA lesioned rats also did not cause any 

changes in rotations at any time point (C). All sham lesioned rats remained at around 0 

rotations/minute, while 6-OHDA lesioned rat always remained at above 7 

rotations/minute. All results are presented as mean ± SEM.  A repeated measures one-

way ANOVA and post-hoc Bonferroni test was performed. 
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3.3.2.1 Experimental Groups Results 

     Injection of apomorphine (0.25 mg/kg) caused at least 7 CCW rpm in the 6-OHDA 

lesioned groups at the post-lesion time point (Figure 3.7 A-D). Lesioned animals 

displayed an average number of 8.7 rpm CCW at post-lesion.  

   Injection of 0.5ng of BoNT-A in lesioned rats did not cause significant differences in 

pathological rotations at any time point [F (4,20) = 29.29, p = .244] (Figure 3.7 A). 

Rotations were normally distributed at each time point, and the assumption of sphericity 

had not been violated. 

   Injection of 1ng of BoNT-A in lesioned rats significantly reduced the number of 

pathological drug-induced rpm [F (4, 24) = 5.076, p = .004]. However, the only time 

point where there was a significant reduction in rotations from post-lesion according to 

Bonferroni post-hoc, was at 2-months post-treatment (p = .046) (Figure 3.7 B). Rotations 

were normally distributed at each time point, and the assumption of sphericity had not 

been violated. 

    Injection of 2ng of BoNT-A in lesioned rats significantly reduced the number of 

pathological drug-induced rpm [F (4, 28) = 12.526, p < .001]. Bonferroni post-hoc 

revealed that rpm significantly decreased from post-lesion to 1-week post BoNT-A 

injection (p = .005), post-lesion to 1-month post BoNT-A injection (p = .011), and from 

post-lesion to 2-months post BoNT-A injection (p = .013) (Figure 3.7 C). Rotations were 

normally distributed at each time point, except at the post-lesion time point where the 

data was not normally distributed (p = .008). The assumption of sphericity had not been 

violated. 

    Injection of 4ng of BoNT-A in lesioned rats significantly reduced the number of 

pathological drug-induced rpm [F (1.823, 12.759) = 16.68, p < .001]. Bonferroni post-hoc 

revealed that rpm was significantly decreased from post-lesion to 1-week post BoNT-A 

injection (p = .004), post-lesion to 1-month post BoNT-A injection (p = .001), and from 

post-lesion to 2-months post BoNT-A injection (p = .009) (Figure 3.7 D). Rotations were 

normally distributed, except at the post-lesion (p = .045), 1-week post (p = .002) and 1-

month post (p = .02) time points. The assumption of sphericity had been violated, χ2(9) = 

22.629, p = .01, thus the results were interpreted and reported using the Greenhouse-
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Geisser adjustment. Epsilon (ε) was 0.456 and used to correct the one-way repeated 

measures ANOVA.  
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Changes in apomorphine induced rotations in 6-OHDA lesioned rats before and after 

BoNT-A injections into the ipsilateral STN. Positive values on the y-axis represent 

counter-clockwise rotations and negative values represent clockwise rotations. (A) n=6, 

(B) n=7, (C) and (D) n=8. An injection of 0.5ng of BoNT-A did not cause a reduction in 

rotations at any time-point (A). An injection of 1ng of BoNT-A only caused a significant 

reduction in rotations at the 2-month time point (B). Both the 2ng and 4ng doses were 

successful in significantly reducing pathological rotations at the 1-week, 1-month, and 2-

month post-injection time points (C and D).  All results are presented as mean ± SEM.  

Asterisks indicate a significant difference between the time points according to repeated 

measures one-way ANOVA and post-hoc Bonferroni test, *p<0.05, **p<0.005. 

Figure 3.7 - Apomorphine Rotations Across Time Points in Experimental Groups 
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3.4 Rotarod Results 

   The amount of time (seconds) spent on the rotarod, as well as speed (rpm) reached 

before a rat fell off was recorded and analyzed. At the pre-lesion (baseline) time point, all 

animals are naive as none have undergone any surgeries. At the post-lesion time point, all 

animals have either undergone a unilateral 6-OHDA lesion or sham lesion.  

 

3.4.1     Maximum Time Spent on Rotarod 

     The average time spent on the rod at the pre-lesion time point for lesioned animals 

was 98.8 (SD ± 36.7) seconds and for sham lesioned animals was 96.2 (SD ± 26.7) 

seconds. The amount of time animals spent on the accelerating rod before falling off was 

not significantly different between the animal groups at the pre-lesion time point [F (6. 

45) = 1.86, p = .146] (Figure 3.8 A) or the post-lesion time point [F (6. 45) = .527, p = 

.785] (Figure 3.8 B).  

   As 6-OHDA lesioned animals did not perform significantly worse than sham lesioned 

animals, the results suggest that the 6-OHDA PD animal model did not produce an 

impairment in the amount of time spent on an accelerating rotating rod before falling off. 

    The scores for the rotarod test of all 7 animal groups at both the pre-lesion and post-

lesion time points were normally distributed and there was homogeneity of variances for 

all groups at both time points. 
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At the pre-lesion time point, before animals undergone any surgery, there were no 

significant differences between any groups in the amount of time spent on an accelerating 

rod before falling off (A). At the post-lesion time point, there was no significant 

difference between groups in the amount of time spent on an accelerating rod before 

falling off (B). 6-OHDA lesioned animals did not perform significantly better or worse 

than sham lesioned animals, thus the 6-OHDA PD animal model did not produce an 

impairment in this forced motor task. All results are presented as mean ± SEM. A one-

way ANOVA was performed, followed by Bonferroni post-hoc.  

 

 

 

Figure 3.8 - Time Spent on Rotarod at Baseline and Post-Lesion Time Points 
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3.4.2     Maximum Speed Reached on Rotarod 

    The average speed reached at baseline (pre-lesion) time point for animals assigned to 

the lesion-group was 15.4 (SD ± 4.4) rpm while for the sham lesioned group was 15.1 

(SD ± 3.2) rpm. The speed reached before falling off was not significantly different 

between groups at the pre-lesion time point [F (6. 45) = 1.701, p = .143] (Figure 3.9 A) 

nor at the 2-week post-lesion time point [F (6. 45) = .537, p = .777] (Figure 3.9 B). 

   As the 6-OHDA lesioned animals did not perform significantly worse than sham 

lesioned animals, the results suggest that the 6-OHDA PD animal model did not produce 

an impairment in the speed reached nor the time spent on an accelerating rotating rod 

before falling off. 

    The scores for the rotarod test of all 7 animal groups at both the pre-lesion and post-

lesion time points were normally distributed and there was homogeneity of variances for 

all groups at both time points. 

    As the 6-OHDA lesioned animals scores on both time spent on the rod and max speed 

researched were not significantly different from sham lesioned animals, the data for post 

BoNT-A injection time points (1-week, 1-month, 2-months, 3-months post BoNT-A 

injection) was not shown in the results section. If the PD animal model did not produce a 

deficit in this task, then the effects of a BoNT-A injection cannot be interpreted properly. 

However, the full data of the rotarod task for both time and speed is presented in 

Appendix 6 for transparency. For the data presented in the appendix, a one-way ANOVA 

was run by comparing the scores of all conditions at the same time point and no 

significant differences were found throughout. Thus, at all time points, all of the animal 

groups were not significantly different from each other. 
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Figure 3.9 - Speed Reached on Rotarod at Baseline and Post Lesion Time Points 

At the pre-lesion time point, before animals undergone any surgery, there were no 

significant differences between any groups in the speed reached on an accelerating rod 

before falling off (A). At 2-weeks post-lesion, there was no significant difference 

between groups in the speed reached on an accelerating rod before falling off (B). 6-

OHDA lesioned animals did not perform significantly better or worse than sham lesioned 

animals, thus the 6-OHDA PD animal model did not produce an impairment in this 

forced motor task. All results are presented as mean ± SEM. A one-way ANOVA was 

performed, followed by Bonferroni post-hoc.  
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3.5 CatWalk Results 

      Throughout the CatWalk results, animal groups are reflected according to the figure 

legend with warm colours representing control groups (red: 6-OHDA lesion animals + 

Sham BoNT-A injection, light orange: sham lesion + 4ng BoNT-A injection, dark 

orange: sham lesion + sham BoNT-A injection). Cool colours (shades of blue) represent 

the experimental groups. All animals in the experimental groups are 6-OHDA lesioned 

and receive one of four doses of BoNT-A (0.5ng-4ng). The shade of blue gets lighter the 

higher the dose. 

 

3.5.1      Average Speed 

    Average speed is the distance traversed on the walkway divided by time. No 

significant differences were found in average speed between any animal groups at any 

time point (Figure 3.10). None of the five 6-OHDA lesioned group’s average speed was 

better or worse than of the two sham lesioned groups. This suggests that the PD animal 

model used did not produce a quantifiable deficit of average compared to sham lesioned 

animals at any post-lesion time point. At both the pre-lesion and post-lesion time points, 

the data was normally distributed for all animal groups (p > .05) and there was 

homogeneity of variances (p > .05).  

 

3.5.2      Cadence 

    Cadence is the number of steps taken per second. No significant differences in cadence 

were found between any animal groups at any time point (Figure 3.11). None of the five 

6-OHDA lesioned groups, cadence was better or worse than that of the two sham 

lesioned groups. This suggests that the PD animal model used did not produce a 

quantifiable deficit of cadence compared to sham lesioned animals at the post-lesion time 

point. At both the pre-lesion and post-lesion time points, the data was normally 

distributed for all animal groups (p > .05) and there was homogeneity of variances (p > 

.05). 
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Changes in 

average speed 

before any 

surgery and after 6-OHDA or sham lesion surgery. No significant differences were found 

at pre-lesion or at post-lesion between all animal groups. No differences pre-lesion would 

be expected as animals have not undergone any surgery, however at the post-lesion time 

point a difference should be expected between the lesioned groups and the sham groups. 

No difference in average speed at the post-lesion time point indicates that the 6-OHDA 

lesioned animals have not developed a motor impairment, as measured by the CatWalk, 

compared to sham lesioned (control) animals. All results are presented as mean ± 

SEM.  A one-way ANOVA was performed on both time points. 

 

 

Figure 3.10 - Average Speed at Pre and Post Lesion Time Points 
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Changes in cadence before any surgery and after 6-OHDA or sham lesion surgery. No 

significant differences were found at pre-lesion or at post-lesion between all animal 

groups. No differences pre-lesion would be expected as animals have not undergone any 

surgery, however at the post-lesion time point a difference should be expected between 

the lesioned groups and the sham groups. No difference in average speed at the post-

lesion time point indicates that the 6-OHDA lesioned animals have not developed a 

motor impairment, as measured by the CatWalk, compared to sham lesioned (control) 

animals. All results are presented as mean ± SEM.  A one-way ANOVA was performed 

on both time points. 

 

 

 

 

 

Figure 3.11 - Cadence at Pre and Post Lesion Time Points 
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3.5.3      Stand 

   Stand is the duration of contact of a paw with the walkway in seconds. No significant 

differences in stand were found between any animal groups at any time point for any of 

the paws (Figure 3.12 A-D). None of the five 6-OHDA lesioned groups stand scores were 

significantly different than that of the two sham lesioned groups. This suggests that the 

PD animal model used did not produce a quantifiable deficit in the stand parameter 

compared to sham lesioned animals at the post-lesion time point. At the pre-lesion time 

point the data was normally distributed for all 7 animal groups for every paw, except for 

the LF paw of the lesion/sham group (p = .041) and the RF paw of the lesion/0.5ng BoNT 

group (p = .036). At the post-lesion time point the data was normally distributed for all 7 

animal groups for every paw, except for the LF paw of the lesion/sham group (p = .013) 

and the sham lesion/4ng BoNT group for every paw except the LF, LH (p = .015), RF (p 

= .015), RH (p = .005). There was homogeneity of variances at pre-lesion for every paw 

except the RF paw (p = .046), and there was homogeneity of variances at post-lesion for 

every paw. 
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Changes in stand (seconds) before surgery and after 6-OHDA or sham lesion surgery. No 

significant differences were found at pre-lesion or at post-lesion between all animal 

groups in the left front paw (A), left hind paw (B), right front paw (C), and right hind 

paw (D). No difference in stand at the post-lesion time point indicates that the 6-OHDA 

lesioned animals have not developed a motor impairment, as measured by the CatWalk, 

compared to sham lesioned animals. All results are presented as mean ± SEM. A one-way 

ANOVA and Bonferroni post-hoc test was performed for every paw at both time points. 

 

Figure 3.12 - Stand Score of Every Paw at Pre and Post Lesion Time Points 
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3.5.4      Swing 

   Swing is the duration of no contact of a paw with the walkway in seconds. No 

significant differences in stand were found between any animal groups at any time point 

for the LF, LH, and RH paws (Figure 3.12. A, B, D). However, a significant difference 

was found at the RF paw at the post-lesion time point F (6, 45) = 2.437, p = .04 (Figure 

3.13 C). According to Bonferroni post-hoc, the lesion/sham group and the sham 

lesion/4ng BoNT-A group were significantly different (p = .042). 

     However, this finding of a significant difference between a lesioned group and a sham 

lesioned group does not mean that the 6-OHDA model was successful in inducing a 

motor deficit. As none of the other four lesioned groups showed a significant increase in 

swing, it is likely that this significant finding was due to high variability in the 

lesion/sham group. In order to confidently claim that the 6-OHDA lesion PD model was 

successful in producing a deficit in the swing parameter, the other four 6-OHDA lesioned 

groups should also show a deficit compared to the two sham lesioned groups. 

   At the pre-lesion time point the data was normally distributed for all 7 animal groups 

for every paw, except for the LF paw of the lesion/0.5ng BoNT-A group (p = .022), the 

LH paw of the sham/4ng BoNT-A group (p = .009), and the RH paw of the lesion/4ng 

BoNT-A (p = .034) and sham/4ng BoNT-A group (p = .009). At the post-lesion time 

point the data was normally distributed for all 7 animal groups for every paw, except for 

the LF paw of the lesion/2ng BoNT-A group (p = .024) and the LH paw of the 

lesion/sham group (p = .048). There was homogeneity of variances at pre- and post-lesion 

for every paw. 
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Changes in 

swing 

(seconds) before 

surgery and after 6-OHDA or sham lesion surgery. No significant differences were found 

at pre- or post-lesion between all groups in the left front paw (A), left hind paw (B), or 

right hind paw (D). A significant difference was found at the post-lesion time point in the 

right front paw between the lesion/sham group and the sham/4ng BoNT-A group (C). 

Due to the fact that only one lesioned group showed a significant difference with a sham 

lesioned group, the likely reason for this finding is due to high variability of the data in 

the lesion/sham group. To make the claim that the 6-OHDA lesion was successful in 

causing a deficit in the swing parameter, all lesioned group should have a higher swing 

score than both sham lesioned groups. All results are presented as mean ± SEM. A one-

way ANOVA and Bonferroni post-hoc test was performed for every paw at both time 

points, p<0.05*.  

3.5.5      Step Cycle 

      Step cycle is the time in seconds between two initial contacts of the same paw. No 

Figure 3.13 - Swing Score of Every Paw at Pre and Post Lesion Time Points 
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significant differences in stand were found between any animal groups at any time point 

for any of the paws (Figure 3.14 A-D). None of the five 6-OHDA lesioned groups step 

cycle scores were significantly different than that of the two sham lesioned groups. This 

suggests that the PD animal model used did not produce a quantifiable deficit in the step 

cycle parameter compared to sham lesioned animals at the post-lesion time point.  

    At the pre-lesion time point the data was normally distributed for all 7 animal groups 

for every paw, except for the LF paw of the lesion/0.5ng BoNT-A group (p = .025), the 

RF paw of the lesion/0.5ng BoNT group (p = .009), and the RH paw of the lesion/0.5ng 

BoNT group (p = .013). At the post-lesion time point the data was normally distributed 

for all 7 animal groups for every paw, except for the LF paw of the lesion/sham group (p 

= .046). There was homogeneity of variances at pre- and post-lesion for every paw. 
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Changes in step cycle (seconds) before surgery and after 6-OHDA or sham lesion 

surgery. No significant differences were found at pre-lesion or at post-lesion between all 

animal groups in the left front paw (A), left hind paw (B), right front paw (C), and right 

hind paw (D). No difference in step cycle at the post-lesion time point indicates that the 

6-OHDA lesioned animals have not developed a motor impairment, as measured by the 

CatWalk, compared to sham lesioned animals. All results are presented as mean ± SEM. 

A one-way ANOVA and Bonferroni post-hoc test was performed for every paw at both 

time points. 

 

Figure 3.14 - Step Cycle of Every Paw at Pre and Post Lesion Time Points 
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3.5.6      Duty Cycle 

   Duty cycle expresses stand as a percentage of step cycle. No significant differences in 

duty cycle were found between any animal groups at any time point for any of the paws 

(Figure 3.15 A-D). None of the five 6-OHDA lesioned groups duty cycle scores were 

significantly different than that of the two sham lesioned groups. This suggests that the 

PD animal model used did not produce a quantifiable deficit in the duty cycle parameter 

compared to sham lesioned animals at the post-lesion time point.  

    At the pre-lesion time point the data was normally distributed for all 7 animal groups 

for every paw, except for the LF paw of the lesion/sham group (p = .049), the LF paw of 

the sham/4ng BoNT group (p = .011), and the RF paw of the lesion/1ng BoNT group (p = 

.044). At the post-lesion time point the data was normally distributed for all 7 animal 

groups for every paw, except for the LF paw of the lesion/4ng BoNT group (p = .013), 

and the RF paw of the lesion/2ng BoNT-A group (p = .009). There was homogeneity of 

variances at pre- and post-lesion for every paw, except for the LF paw at pre-lesion (p = 

.013) and post-lesion (p = .009).  
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Changes in duty cycle (%) before surgery and after 6-OHDA or sham lesion surgery. No 

significant differences were found at pre-lesion or at post-lesion between all animal 

groups in the left front paw (A), left hind paw (B), right front paw (C), and right hind 

paw (D). No difference in duty cycle at the post-lesion time point indicates that the 6-

OHDA lesioned animals have not developed a motor impairment, as measured by the 

CatWalk, compared to sham lesioned animals. All results are presented as mean ± SEM. 

A one-way ANOVA and Bonferroni post-hoc test was performed for every paw at both 

time points. 

 

Figure 3.15 - Duty Cycle of Every Paw at Pre and Post Lesion Time Points 
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3.5.7      Terminal Dual Stance 

   Terminal dual stance is the duration in seconds of the second step in a step cycle of a 

paw that the contralateral paw is also in contact with the walkway. No significant 

differences in terminal dual stance were found between any animal groups at any time 

point for any of the paws (Figure 3.16 A-D). None of the five 6-OHDA lesioned groups 

terminal dual stance scores were significantly different than that of the two sham lesioned 

groups. This suggests that the PD animal model used did not produce a quantifiable 

deficit in the terminal dual stance parameter compared to sham lesioned animals at the 

post-lesion time point.  

    At the pre-lesion time point the data was normally distributed for all 7 animal groups 

for every paw, except for the LH paw of the lesion/4ng BoNT-A group (p = .007), the RF 

paw of the lesion/0.5ng BoNT group (p = .011), and the RF paw of the lesion/4ng BoNT 

group (p = .039).  

At the post-lesion time point the data was normally distributed for all 7 animal groups for 

every paw, except for the LF paw of the sham/4ng BoNT (p = .023) and sham/sham 

group (p = .012), and the RH paw of the lesion/sham (p = .007), lesion/2ng BoNT-A (p = 

.022), and sham/4ng BoNT-A (p = .001) group. There was homogeneity of variances at 

pre- and post-lesion for every paw, except for the LF paw at pre-lesion (p = .018) and 

post-lesion (p < .001).  
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Changes in terminal dual stance (seconds) before surgery and after 6-OHDA or sham 

lesion surgery. No significant differences were found at pre-lesion or at post-lesion 

between all animal groups in the left front paw (A), left hind paw (B), right front paw 

(C), and right hind paw (D). No difference in terminal dual stance at the post-lesion time 

point indicates that the 6-OHDA lesioned animals have not developed a motor 

impairment, as measured by the CatWalk, compared to sham lesioned animals. All results 

are presented as mean ± SEM. A one-way ANOVA and Bonferroni post-hoc test was 

performed for every paw at both time points. 

Figure 3.16 - Terminal Dual Stance of Every Paw at Pre and Post Lesion Time Points 
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3.5.8      Swing Speed 

     Swing speed is the speed in centimeters per second of a paw during swing. No 

significant differences in terminal dual stance were found between any animal groups at 

any time point for any of the paws (Figure 3.17 A-D). None of the five 6-OHDA lesioned 

groups swing speed scores were significantly different than that of the two sham lesioned 

groups. This suggests that the PD animal model used did not produce a quantifiable 

deficit in the swing speed parameter compared to sham lesioned animals at the post-

lesion time point.  

    At the pre-lesion time point the data was normally distributed for all 7 animal groups 

for every paw, except for the LF paw of the lesion/0.5ng BoNT-A group (p = .045), LH 

paw of the lesion/1ng BoNT-A group (p = .034), and RF paw of the lesion/0.5ng BoNT-

A group (p = .049). At the post-lesion time point the data was normally distributed for all 

7 animal groups for every paw, except for the RF paw of the lesion/1ng BoNT (p = .007). 

There was homogeneity of variances at pre- and post-lesion for every paw. 
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Changes in swing speed (cm/second) before surgery and after 6-OHDA or sham lesion 

surgery. No significant differences were found at pre-lesion or at post-lesion between all 

animal groups in the left front paw (A), left hind paw (B), right front paw (C), and right 

hind paw (D). No difference in swing speed at the post-lesion time point indicates that the 

6-OHDA lesioned animals have not developed a motor impairment, as measured by the 

CatWalk, compared to sham lesioned animals. All results are presented as mean ± SEM. 

A one-way ANOVA and Bonferroni post-hoc test was performed for every paw at both 

time points. 

 

Figure 3.17 - Swing Speed of Every Paw at Pre and Post Lesion Time Points 
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3.5.9      Stride Length 

   Stride length is the distance between successive placements of the same paw. 

Interestingly, significant differences between animal groups in every paw was present at 

pre-lesion. In the LF paws [Welch's F (6, 19.125) = 5.455, p = .002], a significant 

difference was found between the lesion/sham group and lesion/2ng BoNT-A group (p = 

.014), the lesion/sham group and lesion/4ng BoNT-A group (p = .025), the lesion/2ng 

BoNT-A and sham/4ng group (p = .026), and finally, the lesion/4ng BoNT-A and 

sham/4ng group (p = .015) (Figure 3.18 A). In the LH paws [F (6, 45) = 4.175, p = .002], 

a significant difference was found between the lesion/sham group and lesion/4ng BoNT-

A group (p = .028), the lesion/2ng BoNT-A and sham/4ng group (p = .047), and the 

lesion/4ng BoNT-A and sham/4ng group (p = .019) (Figure 3.18 B). In the RF paws [F 

(6, 45) = 4.691, p = .001], a significant difference was found between the lesion/2ng 

BoNT-A group and sham/4ng BoNT-A group (p = .013), and the lesion/4ng BoNT-A (p 

= .01) (Figure 3.18 C). In the RH paws [Welch's F (6, 19.383) = 4.086, p = .009] a 

significant difference was found between the lesion/sham group and lesion/2ng BoNT-A 

group (p = 0.39), the lesion/sham group and lesion/4ng BoNT-A group (p = .007) and the 

lesion/4ng BoNT-A group and sham/4ng BoNT-A group (p = .012) (Figure 3.18 D). 

However, no significant differences in stride length were found between any animal 

groups at the post-lesion time point (Figure 3.18 A-D). 

      The results suggest that at baseline before animals have undergone any surgery, that 

their stride length was fundamentally different between groups. However, at the post-

lesion time point, there are no significant differences. One explanation is that there was 

particularly high variability in the data for this feature at that time point. Ultimately 

however, as there are no significant differences at the post-lesion time point in any of the 

paws between animal groups, the 6-OHDA model not successful in inducing a motor 

deficit in the stride length parameter. 

   At the pre-lesion time point the data was normally distributed for all 7 animal groups 

for every paw, except for the LF paw of the sham/sham group (p = .044), the RF paw of 

the sham/sham group (p = .043), and the RH paw of the sham/sham group (p = .007). At 

the post-lesion time point the data was normally distributed for all 7 animal groups for 

every paw, except for the LF paw of the sham/4ng BoNT-A group (p = .03), the LH paw 
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of the lesion/4ng BoNT-A group (p = .045), the RF paw of the sham/4ng BoNT-A group 

(p = .002), and the RH paw of the sham/4ng BoNT-A group (p = .039). There was 

homogeneity of variances at the pre-lesion time point for the LH and RF paw but not for 

the LF (p = .017) and RH (p = .019) paws. There was homogeneity of variances at the 

post-lesion time point for every paw. 
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Changes in stride length (cm) before surgery and after 6-OHDA or sham lesion surgery. 

Significant differences were found at the pre-lesion time point for the left front paw (A), 

left hind paw (B), and right hind paw (D). No significant differences were found at the 

post-lesion time point. As no differences were found between the lesioned or sham 

lesioned animal groups at post-lesion, the 6-OHDA animal model was not successful in 

causing a deficit in the stride length parameter. All results are presented as mean ± SEM. 

A one-way ANOVA and Bonferroni post-hoc test was performed for every paw at both 

time points, p<0.05*.  

Figure 3.18 - Stride Length of Every Paw at Pre and Post Lesion Time Points 
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3.5.10      Max Contact Area 

    Max contact area (cm2) is the maximum surface area of a paw that contacts the glass 

walkway. There are no significant differences in max contact area between groups at both 

the pre-lesion and post-lesion time points for the LF, LH, and RF paws (Figure 3.19 A-

C). A significant difference between groups was found for the RH paw at both pre-lesion 

[F (6, 45) = 2.46, p = .038] and post-lesion [F (6, 45) = 3.747, p = .004] (Figure 3.19 D). 

According to Bonferroni post-hoc, at pre-lesion in the RF paw, the lesion/1ng BoNT-A 

group and the sham lesion/4ng BoNT-A group are significantly different (p = .034). At 

post-lesion time, differences in the RF paw was found between the following groups, the 

lesion/0.5ng BoNT-A and lesion/4ng BoNT-A group (p = .048), the lesion/2ng BoNT-A 

and sham/4ng BoNT-A group (p = .044), and finally the lesion/4ng BoNT-A group and 

sham/4ng BoNT-A group (p = .034). 

      Upon examination of Figure 3.19 D, it is clear that there is a high amount of 

variability in the data, which could explain the finding of a significant difference between 

a lesioned group and a sham lesioned group. Although differences were found between 

lesioned groups and sham groups at the post-lesion time point, it is clear that the 6-

OHDA lesion PD model was not successful in producing a deficit in the max contact area 

parameter. All of the lesioned groups should produce a similar level of deficit, however 

the literature states that a decrease in max contact area should be seen in 6-OHDA 

lesioned animals as PD animals are exerting less pressure with their affected paws99, 101. 

Another reason why the differences found in this parameter is due to variability in the 

data is because a significant difference was found between two groups that were both 

lesioned, the lesion/0.5ng BoNT-A and the lesion/4ng BoNT-A groups.  

   At the pre-lesion time point the data was normally distributed for all 7 animal groups 

for every paw, except for the RF paw of the sham/sham group (p = .036). At the post-

lesion time point the data was normally distributed for all 7 animal groups for every paw, 

except for the RF paw of the sham/4ng BoNT-A group (p = .022) and the sham/sham 

group (p = .006). There was homogeneity of variances at the pre- and post-lesion time 

points for every paw. 
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Changes in max contact area (cm2) before surgery and after 6-OHDA or sham lesion 

surgery. No significant difference at pre- or post-lesion were found between animal 

groups for the LF (A), LH (B), or RF (C) paws. Significant differences were found at the 

pre- and post-lesion time point for the RH paw (D). 

The 6-OHDA animal model was not successful in causing a deficit in the max contact 

area parameter as there is not a consistent deficit among all lesioned groups. The 

significant differences found in this parameter are likely due to high variability in the 

data. The inconsistency in scores among the 6-OHDA groups supports this as well as the 

finding that there is a significant difference between the two groups that were both 

lesioned (lesion/0.5ng BoNT-A and lesion/4ng BoNT-A). All results are presented as 

mean ± SEM. A one-way ANOVA and Bonferroni post-hoc test was performed for every 

paw at both time points, p<0.05*. 

Figure 3.19 - Max Contact Area of Every Paw at Pre and Post Lesion Time Points 
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3.5.11      Mean Intensity 

    Mean intensity is the mean pressure of a paw that contacts the walkway. At the pre-

lesion time point significant differences in mean intensity were found for the LF [Welch's 

F (6, 19.147) = 5.129, p = .003](Figure 3.20 A), LH [F (6, 45) = 3.633, p = .005](Figure 

3.20 B), RF [Welch's F (6, 18.881) = 7.556, p < .001](Figure 3.20 C), and RH paws 

[Welch's F (6, 19.396) = 4.244, p = .007](Figure 3.20 D). According to Bonferroni (or 

Games-Howell post-hoc when homogeneity of variances was violated), at pre-lesion 

there were significant differences in max contact area of the LF paw between the 

lesion/sham and lesion/4ng BoNT-A groups (p = .031), and lesion/1ng BoNT-A and 

lesion/4ng BoNT-A groups (p = .022). In the LH paw, there were significant differences 

between the lesion/sham and lesion/4ng BoNT-A groups (p = .009) and the lesion/1ng 

BoNT-A and lesion/4ng BoNT-A groups (p = .043). In the RF paw, there were 

significant differences between the lesion/sham and lesion/4ng BoNT-A groups (p = .01), 

the lesion/1ng BoNT-A and lesion/2ng BoNT-A groups (p = .043), and the lesion/1ng 

BoNT-A and lesion/4ng BoNT-A groups (p = .008). In the RH paw, there was a 

significant difference between the lesion/1ng BoNT-A and sham/4ng BoNT-A groups (p 

= .047). 

    At the post-lesion time point significant differences in mean intensity were found for 

the LF [F (6, 45) = 3.285, p = .009](Figure 3.20 A), LH [F (6, 45) = 2.615, p = 

.029](Figure 3.20 B), RF [F (6, 45) = 3.527, p = .006](Figure 3.20 C), and RH paws [F 

(6, 45) = 3.564, p = .006](Figure 3.20 D). According to Bonferroni post-hoc, at post-

lesion there were significant differences in max contact area of the LF paw between the 

lesion/sham and sham/sham groups (p = .023), and lesion/1ng BoNT-A and sham/sham 

groups (p = .043). In the LH paw, although a significance was found using the ANOVA, 

Bonferroni post-hoc did not find significant differences between any groups. Some group 

comparisons were close to reaching the p=.05 threshold but did not make it.  In the RF 

paw, there were significant differences between the lesion/sham and sham/sham groups 

(p = .017), and the lesion/1ng BoNT-A and sham/sham groups (p = .032). In the RH paw, 

there was a significant difference between the lesion/4ng BoNT-A and sham/sham groups 

(p = .037). Finding differences between groups at pre-lesion indicates that there was a 

high degree of variability between animals before any surgery. Although differences were 
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found between lesioned groups and sham groups at the post-lesion time point, it is clear 

that the 6-OHDA lesion PD model was not successful in producing a deficit in the mean 

intensity parameter. Based on prior studies, a decrease in intensity should be expected in 

6-OHDA lesioned animals (Chuang et al. (2010) and Zhou et al. (2015), not a general 

increase in the lesioned groups as seen in the results of this study.  

   At the pre-lesion time point the data was normally distributed for all 7 animal groups 

for every paw, except for the LF paw of the sham/sham group (p = .043) and the RF paw 

of the lesion/1ng BoNT-A group (p = .032). At the post-lesion time point the data was 

normally distributed for all 7 animal groups for every paw, except for the RF paw of the 

lesion/2ng BoNT-A group (p = .035). There was homogeneity of variances at the pre-

lesion time point for the LH paw but not for the LF (p = .009), RF (p = .001) and RH 

paws (p = .014). At the post-lesion time point, there was homogeneity of variances for all 

paws. 
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Changes in mean intensity before surgery and after 6-OHDA or sham lesion surgery. 

Significant differences at pre- and post-lesion were found between animal groups for the 

LF (A), RF (C), and RH(D) paws. Significant differences were found only at the pre-

lesion time point for the LH paw (B). The 6-OHDA animal model was not successful in 

producing a deficit in the mean intensity parameter as there is not a consistent deficit 

among all lesioned groups when compared to sham lesioned animals. Also, prior studies 

have found a decrease in mean intensity in 6-OHDA lesioned animals, not an increase as 

the results from this study show. The significant differences found in this parameter are 

likely due to high variability in the data. All results are presented as mean ± SEM. A one-

way ANOVA and Bonferroni or Games-Howell post-hoc test was performed for every 

paw at both time points, p<0.05*. 

Figure 3.20 - Mean intensity of Every Paw at Pre and Post Lesion Time Points 
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Chapter 4  

4 Discussion 

    Unilateral 6-OHDA lesions resulted in pathological rotations following apomorphine 

injection. A dose of 2-4ng of BoNT-A is sufficient in reducing pathological drug-induced 

rotations, for up to 3 months, as by that time point, in both the 2ng and 4ng groups, the 

number of pathological rotations began to return to baseline performance and were not 

significantly different from the pre-lesion time point. 

   Despite the emergence of apomorphine-induced rotations, forced movement as 

measured by the rotarod test and spontaneous locomotion as measured using the CatWalk 

did not produce motor deficits or gait abnormalities in our MFB 6-OHDA lesioned 

model. Testing spontaneous locomotion, the majority of CatWalk parameters did not find 

any significant differences between animal groups at the pre-lesion and post-lesion time 

points in any paws. The instances where significant differences were found between 

animal groups was likely due to the high degree of variability in the data. This 

interpretation is supported by the fact that the significant findings between parameters 

were not consistent. To support the claim that the 6-OHDA model causes a deficit in a 

particular gait parameter, at the post-lesion time point, all animals assigned to a lesioned 

group should show the deficit when compared to the sham lesioned animals. 

Additionally, no differences should be found between two different groups that were both 

assigned to the lesioned condition. Yet there were instances, such as with the stride 

length, max contact area, and mean intensity parameters when significant differences 

were found between the two groups in which animals were 6-OHDA lesioned. 

 

4.1 Discussion of Apomorphine Test Results 

         The timeline of BoNT-A effect seen in the results of this study follow a similar 

timeline of peak effects and wearing off to what is seen involving injections in peripheral 

targets in a clinical setting131-133. In agreement with this study, the peak effect of BoNT-A 

when used as a clinical therapeutic for tremor through peripheral injection is at 1-month 

post-injection and wears off at around 3-4 months post-injection131-133.  
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   Overall, 2-4ng of BoNT-A injected into the STN was successful in reducing 

pathological drug-induced rotations. However, in combination with the results of this 

study, the published literature suggests that the EPN is the superior site of injection for 

the use of BoNT-A in the brain. A prior study in the lab by Tsang, Rajakumar, and Jog 

(2019) examined the effects of a BoNT-A injection in the brain of 6-OHDA lesioned rats. 

In that study, they found a greater reduction in pathological drug-induced rotations in the 

apomorphine rotation test when a dose of BoNT-A was injected into the EPN127. 

Additionally, this stronger reduction in pathological rotations was achieved with a dose 

4x lower than what was needed in the current study to achieve a lasting reduction in 

pathological rotations (0.5ng verses 2ng). The difference in dose needed to reduce 

pathological rotations is likely due to the difference in firing activity of the glutamatergic 

projections coming to the area that received the BoNT-A injection145. The activity of the 

glutamatergic cortical projections coming to the STN is reduced in PD, while the 

glutamatergic projections from the STN to the GPi/SNpr are increased in activity in 

PD145. Therefore, if the activity of the cortical projections are already reduced in a 

diseased state, to cause further reduction in its level of activity would require a high dose. 

The EPN, on the other hand receives a hiring firing rate of glutamatergic input coming 

from a hyper-active STN in the disease brain, therefore an effect can be seen with a lower 

dose of BoNT-A145. The current literature thus suggests that an injection in the EPN 

(rodent equivalent of the human GPi/SNpr) is much more effective than an injection in 

the STN. 

 

4.2      Lack of Impairment in 6-OHDA Rat Model 

   This section will discuss possible explanations as to why the 6-OHDA rat model of PD 

did not produce a motor deficit in the rotarod and CatWalk tasks in the current study.  

 

4.2.1      Lack of Impairment in Rotarod Task 

         A difference in the maximum speed or the amount of time spent on an accelerating 

rod was not seen between 6-OHDA lesioned animals and sham lesioned animals at the 

pre and post-lesion time points. Therefore, lesioned animals did not show a motor deficit 
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in this specific task. One possible explanation for why a deficit in lesioned animals was 

not found could be due to the rotarod protocol that was used. Rotarod has a fixed speed 

function where the rod rotates at a steady speed and an acceleration function where the 

rod increases in speed from 4 rpm to 40 rpm over a 5-minute period. This study used the 

acceleration function as this was the protocol that was most commonly used in the 

literature with the 6-OHDA lesion rat model85, 134, 141. Carvalho et al., (2013) as well as 

Spooren et al., (2000) used the accelerating rotarod in their studies examining unilaterally 

6-OHDA lesioned animals. Campos et al., (2013) also used the accelerating rotarod in 

bilaterally 6-OHDA lesioned animals. Spooren et al., (2000) had no control group (sham 

or no lesion) to compare performance with for rotarod, and Campos et al., (2013) used a 

bilateral lesion which produces a more severe deficit. Therefore, the results of this thesis 

did not agree with the deficit found in the Carvalho et al., (2013) study, whose methods 

are comparable with the study presented in this thesis. 

   A study by Monville and colleagues (2006) compared the relative power, reliability, 

and sensitivity of the fixed speeds and accelerating protocols of the rotarod task in 6-

OHDA and sham lesioned animals. Their results suggest that the fixed speed protocol is 

more sensitive in detecting the presence of a lesion while the accelerating protocol is a 

more discriminative test to correlate motor deficits against lesion size84. Although the 

rotarod assessment was not conducted, based on the extent of motor deficits found in 6-

OHDA lesioned animals in of our previous study (Tsang, Rajakumar & Jog, 2019), it was 

predicted that the 6-OHDA animal model would have produced a strong and obvious 

motor deficit. Thus, based on a priori expectations, the accelerating protocol was selected 

as the more appropriate protocol. It may be the case that the fixed speed protocol would 

have in fact been the more appropriate protocol to use in this study, as Monville et al 

(2006) recommend the fixed speed protocol in experiments where maximum sensitivity is 

required to detect small changes in performance. A study by Haddadi et al., (2014) 

supports this as they used the fixed speed rotarod protocol in unilaterally 6-OHDA 

lesioned rats and found a significant reduction in the amount of time spent on the rod 

compared to sham lesioned and non-operated animals. The accelerating protocol is also 

relatively more difficult for animals to perform. To illustrate the difference between the 

protocols, in a fixed speed function the rpm is selected and stays consistent, but with the 
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accelerating function, after every 8 seconds the rpm increases by 1. Therefore, at 1 

second, the speed is 4rpm, at 33 seconds the rpm is 8, at 1 minute the rpm is 11, and at 2 

mins the rpm is 19. Rats that might be able to stay on the rod for a long amount of time at 

a lower fixed speed, say 8 rpm, might have incredible difficulty at higher speeds.  

 

4.2.2      Inconsistency and Lack of Confirmation of Noradrenergic  

              Cell Sparing 

  A possible explanation for why this study did not find a gait deficit in unilaterally 6-

OHDA lesioned animals could be because this study injected desipramine before the 

infusion of 6-OHDA. Desipramine is a noradrenaline reuptake transporter blocker and 

thus prevents uptake of 6-OHDA into noradrenergic neurons and degeneration of these 

cells. Consequently, our 6-OHDA PD model possesses specific depletion of dopamine 

without altering noradrenergic neuronal function. Gait abnormalities of PD is one of the 

least responsive symptoms to pharmacological dopamine replacing therapy (levodopa) 

which is remarkably effective in most other motor deficits of PD23, 53, 54. Noradrengeric 

projections from the LC modulates the activity of the brainstem and spinal cord motor 

pattern generators, thus affecting gait145, 146. This is supported by the finding that 

noradrenergic dysfunction in the LC is most closely linked to the symptom of freezing of gait in 

PD146, 147. Unfortunately, many preclinical studies do not state whether or not desipramine 

was injected before the infusion of 6-OHDA when creating animal models. One of the 

studies cited in the introduction as support for the validity of the use of the CatWalk 

apparatus in gait assessment in a 6-OHDA model explicitly stated in their discussion that 

they did not inject desipramine before 6-OHDA lesion101. Therefore, the noradrenergic 

cells in the LC were not protected in their animals. Zhou et al., (2015) investigated gait 

changes using the CatWalk apparatus in three different unilateral 6-OHDA rat models 

and found deficits in various gait parameters. However, Zhou et al., (2015) concluded 

that the gait deficits they found could be due to the loss of noradrenergic neurons of the 

LC. Additionally, a study by Westin et al., (2012), in bilaterally 6-OHDA lesioned rats 

also did not state whether desipramine was injected before 6-OHDA lesion. Vandeputte 

et al., (2010) confirmed deficits in gait using CatWalk in unilaterally 6-OHDA lesioned 
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rats, but it is unknown if desipramine was injected. Chang et al., (2003) who found that 

unilateral 6-OHDA lesioned rats produced impaired treadmill walking, a different task 

for measuring gait impairment, also did not state whether desipramine pre-treatment was 

given. Chuang et al., (2010) found gait deficits in a unilateral 6-OHDA model but did not 

state whether desipramine was administered. It is also important to note that they injected 

a very high dose of 6-OHDA (30 μg) in the MFB, a dose 3.75x higher than what was 

used in this study.  

   There are studies that have injected desipramine, as stated in their methods and found 

motor deficits. However, the motor deficits found are not specifically gait related. Metz et 

al., (2005) stated desipramine was injected in their unilaterally 6-OHDA lesioned rats and 

found a motor deficit. However, the motor assessments in that study involved solely the 

forelimbs such as the forelimb reaching task and ladder walking task137. The ladder 

walking task measures deficits in limb coordination and limb placing by assessing a rat's 

ability to navigate across a runway with irregularly spaced rungs137. This study also did 

not confirm protection of noradrenergic cells in the LC through immunolabeling. 

Similarly, Shi, Woodward, & Chang (2006) stated desipramine injection in their methods 

and found a motor deficit unilaterally 6-OHDA lesioned rats, but the motor task they 

used was the cylinder test, which only measures limb-use asymmetry and not gait. 

    There are studies that have examined gait deficit in 6-OHDA lesioned animals and 

stated that desipramine was injected in their methods. A study by Vlamings et al., (2007) 

found deficits in gait using the CatWalk apparatus, however, this study used a bilaterally 

lesioned 6-OHDA model, not a unilateral lesion and the authors lesioned the striatum 

directly, not the MFB. The distinction is important as it is well-established that rats with 

bilateral 6-OHDA lesions caused impairments in more behavioral motor paradigms than 

unilateral 6-OHDA lesions139. A bilateral lesion is more severe than a unilateral lesion 

and prevents possible compensatory effects from the intact side139. Furthermore, 

Vlamings et al., (2007) failed to show TH staining at the LC to confirm that 

noradrenergic neurons were protected. Tsang et al., (2019) stated in their methods that 

desipramine was injected and demonstrated a deficit in gait in unilaterally 6-OHDA 

lesioned rats. However, histological confirmation of LC neurons being protected was not 

documented. Considering the poor solubility of desipramine, it is not certain that the 
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noradrenergic cells in the LC were, in fact, protected. 

    Thus far, no studies have confirmed a gait deficit in a unilaterally 6-OHDA lesioned 

rats who had desipramine injected and confirmed sparing of noradrenergic cells in the 

LC. Therefore, future studies should verify the role of concomitant noradrenergic 

neuronal loss in gait performance in preclinical PD models. 

 

4.2.3       MFB Coordinate Selection 

    Another explanation for why a deficit in gait was not found in this study while other 

studies with 6-OHDA models found gait deficits could be due to the MFB coordinates 

selected for 6-OHDA lesion (Table 2). There is variability in the effect of 6-OHDA 

lesion based on the coordinates used to inject into the MFB. It has been found that lesions 

of the ventrolateral area of the striatum lead to pronounced effects on movement 

initiation, sensorimotor orientation, and skilled motor behaviour, while lesions of the 

dorsomedial area of the striatum had more general effects on locomotion and drug-

induced turning behaviour143, 145-149. It may be the case that due to the MFB coordinates 

used in this study, there was a heterogeneous lesion of dopamine fibers across different 

areas of the striatum leading to a behavioural phenotype in which animals show 

impairment in drug-induced turning but not gait. 
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Table 2: Comparison of MFB Coordinates used for Unilateral 6-OHDA Lesion 

 

Anterior-Posterior 

(AP) 

Medial-Lateral 

(ML) 

Dorsal-Ventral 

(DV) 

This study's coordinates -1.8 -2 -8.3 

Carvalho et al., (2013) - 4.4 -1 -7.8 

Chuang et al., (2010) - 4.4 -1.2 -7.8 

Haddadi et al., (2014) -5 -2.1 -7.7 

Metz & Whishaw (2002) -4 -1.5 -8.5 

Monville et al., (2006) -4.4 -1 -7.8 

Tsang et al., (2019) -1.8 - 2 -8.3 

Vandeputte et al., (2010) -3.4 -1.6 -8.2 

Wree et al., (2011) - 2.3 -1.5 -9 

Yuan et al., (2005) -3.2 -1.5 -8.7 

Zhou et al., (2015) -4.4 -1.1 -7.8 

    

   The most commonly used MFB coordinates used in studies that this thesis cited are: AP 

-4.4, ML -1 or -1.5, DV -7.8. Following comparison with previous studies, the MFB 

coordinates used in this study are relatively more anterior. A study by Metz & Whishaw 

(2002) which investigated the relationship between drug-induced rotation rates and scores 

on two tests of motor behavior in rats unilaterally lesioned with 6-OHDA in the 

nigrostriatal bundle supports this explanation. These authors found that the intensity of 

apomorphine drug-induced rotations did not correlate with their measures of motor 



86 

 

performance. The motor assessments in their study included end point and qualitative 

measures of forelimbs and hindlimbs assessed in a skilled reaching task and a skilled 

ladder rung walking task142. It was concluded that while scores on apomorphine rotations 

tests are an indicator of the extent of dopamine depletion following 6-OHDA lesion, they 

are a poor predictor of motor impairment142. The authors therefore suggested that drug-

induced rotational behaviour and skilled movement should be considered independent 

effects of 6-OHDA lesions142. The results from three other independent studies also 

suggest that rotation intensity and motor impairments are at most, only weakly related162-

164. The explanation provided for the poor correlation between rotational behaviour and 

motor skill relates to variability in lesion site, as variations in needle insertion site may 

cause damage to fibers that are differentially involved in rotational behaviour versus 

skilled movements142, 147-151. These results support the earlier claim made in this section 

that there is variability in the outcomes of 6-OHDA lesion based on the MBF coordinates 

due to the somatotopy of the MFB. Whole body movements used in rotational behaviour, 

forelimb movements used for reaching, and movements using all four limbs for walking 

are partially independent. The observation made in Metz and Whishaw’s (2002) study 

that the rats that showed fewer rotations had a smaller number of residual intact 

dopaminergic cells in the lateral part of the substantia nigra, whereas none of the high 

rotators showed remaining cell bodies in that area, supports that claim as well142.  

      Based on these findings, it is likely that the lack of a motor deficit seen in the rotarod 

and CatWalk tasks, while there was the presence of apomorphine induced rotations in the 

6-OHDA lesioned animals, may be partly due to the MFB coordinates used in the current 

study.  

 

4.2.4       Difference in Type of Locomotion Measured  

    Although this study and the previous study done in this laboratory (Tsang et al., 2019) 

used the same MFB coordinates for the 6-OHDA lesion, there is a discrepancy in the 

measurement of a motor deficit. This study did not find a gait impairment using the 

CatWalk apparatus while the previous study did. As previously discussed, this 

discrepancy may be due to a lack of noradrenergic cell protection in the LC as this was 
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not confirmed in the previous study. Another possible explanation for this discrepancy in 

the expression and measurement of gait may be due to the effects of food restriction in 

the animals. After all, food deprivation changes animal’s motivation during behavioural 

tasks. Animals that are food deprived and trained to expect a food reward at the end of a 

task are engaging in goal-oriented locomotion, not purely spontaneous locomotion. While 

the CatWalk measures voluntary movement, the previous study from our laboratory 

measured goal-oriented movement, while the current study measured spontaneous 

movement. In the current study true spontaneous movement was assessed because 

animals were not food deprived or given a reward for crossing the Catwalk. Animals 

walked from one end of the Catwalk to the other end in this study with no motivational 

prompts. Goal directed activities and appetitive motivation are associated with striatal 

dopamine148. It is well known that the ventromedial striatum is highly innervated by 

dopaminergic fibers and implicated in reward and motivation149-153. Manipulating 

dopamine levels in the ventromedial striatum can affect performance on multiple tasks 

believed to measure motivated behavior, including conditioned reinforcement, Pavlovian-

instrumental transfer paradigms, effort-based decision-making tasks, and progressive 

ratio schedules154-158. Thus, it is strongly suggested that causing a dopamine depletion in 

the striatum will have an impairment in goal directed locomotion, but not spontaneous 

movement. This may be the reason why, although the same MFB coordinates were used 

in this laboratory’s previous study, due to food restricting the animals, this led to 

voluntary, yet goal directed locomotion as hungry animals were motivated by received a 

food reward when crossing the CatWalk. In the current study, motivation did not play a 

role, thus the locomotion was both voluntary and spontaneous. It may be the case that 

striatal dopamine depletion does not cause a deficit in spontaneous locomotion sensitive 

enough to be measured by the CatWalk.  

   This finding is supported in human PD as it is well known that striatal dopamine 

depletion is known to affect patient’s cognitive motivation, and disorders of motivation 

(such as apathy) are common in PD159. This phenomenon is reflected in humans as it has 

been found that the basal ganglia and supplementary motor area, which play a role in the 

affective organization of goal-directed locomotion, are impaired in PD160-161. 
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4.3      Conclusion 

4.3.1      Limitations 

       The greatest limitation of this study is that no deficit in gait was found in the lesioned 

animals compared to sham lesioned animals. Therefore, the treatment outcomes of this 

intervention in the forced motor task (rotarod) and voluntary motor task (CatWalk) 

carried out in this study cannot be evaluated. The methods require refinement by 

adjusting the MFB lesion coordinates used and adding a skilled reaching task like the 

cylinder test. By adding a skilled reaching task, it can be determined if a motor 

impairment that develops is exclusive to rotational behaviour, forelimb usage, or gait. 

 

4.3.2      Significance  

  This was the first study that attempted to examine the effects of a BoNT-A injection at 

the STN. The goal of this study was to assess drug-induced movement through the 

apomorphine rotation test, forced movement through the rotarod, and spontaneous 

locomotion using the CatWalk apparatus. This study found that an injection of at least 

2ng of BoNT-A was successful in reducing pathological drug induced rotation for up to 3 

months. The results of the apomorphine induced rotation test found in this study agree 

with a previous study published from our laboratory. Tsang et al., (2019) injected BoNT-

A into the EPN and found that the EPN is a superior site to achieve transient symptomatic 

relief following intracerebral injections of BoNT-A. The current study found reductions 

in pathological rotations starting at a dose of 2ng of BoNT-A, while Tsang et al., (2019) 

found a reduction in pathological rotations at a dose of 0.5ng. Therefore, a dose 4x lower 

than what was needed to achieve reductions in pathological rotations in this study, was 

sufficient in reducing pathological rotations and improving gait. However, the study by 

Tsang et al. (2019) used a CatWalk testing paradigm that utilized food restricted rats 

trained using food reward, hence studying goal-directed locomotion, while the current 

study employed animals without food restriction where locomotion is unlikely influenced 

by motivation for food reward. While our results point to a notion that spontaneous 

locomotion might not be influenced by functional integrity of BG circuitry, results favors 
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that BoNT-A injections into the EPN would have better potential for treating PD, 

particularly validation in primate models of PD.  

 

4.3.3      Future Directions 

     Unfortunately, as a behavioral motor deficit was not found in the PD animal model, 

whether BoNT-A injections into the STN would have improved motor symptoms is 

currently unknown. However, a future study may be conducted with adjusted MFB 

coordinates in which both drug-induced rotations, which indicate dopaminergic depletion 

in the striatum and SN, occur as well as motor deficits. Then it can be assessed whether 

BoNT-A at the STN improves motor output and can potentially be used as a treatment 

option in PD. Once motor outcomes are assessed in a PD animal model demonstrating a 

motor deficit, further comparison can be made with other studies investigating the 

outcomes of BoNT-A at other injection sites. From there, it can be determined which site 

is the best target for neuromodulation using BoNT-A in treatment outcomes. Overall, the 

results suggest that BoNT-A injection in the central nervous system is a viable treatment 

option with promising potential.  
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Appendices 
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Appendix 2 - Health Canada Ketamine Use Approval 
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Appendix 3 - Health Canada Sodium Pentobarbital Use Approval 
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Appendix 4 - Stereotaxic Surgery Coordinates for the Medial Forebrain Bundle 
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