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Abstract

Traffic signs detection is becoming increasingly important as various approaches for automa-

tion using computer vision are becoming widely used in the industry. Typical applications

include autonomous driving systems, mapping and cataloging traffic signs by municipalities.

Convolutional neural networks (CNNs) have shown state of the art performances in classifica-

tion tasks, and as a result, object detection algorithms based on CNNs have become popular in

computer vision tasks. Two-stage detection algorithms like region proposal methods (R-CNN

and Faster R-CNN) have better performance in terms of localization and recognition accu-

racy. However, these methods require high computational power for training and inference

that make them difficult to apply in real-time applications. One-stage detection algorithms like

Single Shot Multibox (SSD) and You Only Look Once (YOLO) are designed to be faster, but

their accuracy is lower compared with the two-stage detector methods. In this project, a traffic

sign detection algorithm is presented, which is inspired mainly by the SSD algorithm and its

variants. The number of layers and the number of scales for object detection were modified to

obtain the best balance in accuracy and speed detection. Experimental tests of this method over

a traffic sign dataset give results of 93.75% mAP versus 89.35% mAP obtained using standard

SSD+MobileNet, the speed of detection is 0.0124 s per image on a GPU.

Keywords: Traffic sign detection, object detection, Convolutional Neural Network, Machine

Learning, Computer Vision, Single Shot Multibox Detector (SSD).
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Summary for Lay Audience

Traffic signs detection is becoming increasingly important as various approaches for automa-

tion using computer vision are becoming widely used in the industry. Typical applications

include autonomous driving systems, mapping and cataloging traffic signs by municipalities.

Deep learning algorithms have shown a state of the art performances in classification tasks. As

a result, object detection algorithms based on deep learning have become popular in computer

vision tasks. They can be divided into two main categories: Two-stage detection algorithms

and one-stage detection algorithms. Two-stage detection algorithms have better performance in

terms of localization and recognition accuracy compared with one-stage detection algorithms.

However, one-stage detection algorithms are designed to be faster, which makes them suitable

for real-time applications where the detection time is crucial. In this project, a traffic sign de-

tection algorithm is presented, which is inspired mainly by state of the art one-stage detection

algorithms. Modifications were made through experimentation to obtain the best balance in

accuracy and detection speed.
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Chapter 1

Introduction

1.1 Overview

Traffic signs detection is becoming increasingly important as various approaches for automa-

tion using computer vision are becoming widely used in the industry. Typical applications

involve Advanced Driver Assistance Systems (ADAS), self-driving cars and mapping and cat-

aloging of traffic signs by municipalities. Convolutional neural networks (CNNs) have shown

state of the art performances in classification tasks, and as a result, object detection algorithms

based on CNNs have become popular in computer vision tasks. Detection algorithms like

Faster region-based convolutional neural networks (R-CNN) [27] and Region-based fully con-

volutional networks (R-FCN) [4] have achieved high performances in terms of localization and

recognition accuracy, however high computational power is required to training and inference.

To decrease inference time, one-stage detectors such as You only look once (YOLO) [26] and

Single shot multibox detector (SSD) [19] have been proposed, but their performance in terms

of accuracy is lower compared with algorithms like Faster R-CNN and R-FCN.

In this thesis, a traffic sign detection algorithm is presented. It is inspired mainly by the SSD

algorithm and its variants [16] [30]. The number of layers, number of scales for object de-

tection and default anchor boxes were determined through experimentation to obtain the best

1



2 Chapter 1. Introduction

balance in accuracy and speed detection.

1.2 Contributions

This thesis proposed an object detector specialized in traffic signs detections, to achieve this

goal, the network architecture of Single Shot Multibox Detector (SSD) was modified trying to

keep the best balance between speed and accuracy. The key characteristics of this algorithm

are:

• Use of MobileNet V1 [10] as base network, instead of VGG-16 which was originally

used as base the network in SSD as well as its variants [16] [30]. MobileNet architecture

was selected as it has similar accuracy as VGG 16 (70.6% vs. 71.5% trained on ImageNet

dataset), but it is 30 times smaller and 27 times less compute-intensive according to its

original paper [10].

• Feature map selection: The object detector is built with a different structure from the

original SSD algorithm. The proposed algorithm makes predictions at two different

scales (19x19 and 38x38). In comparison, the SSD algorithm makes predictions at six

different scales. The number of scales was selected through experimentation, choosing

the option with the best accuracy/speed balance.

• Feature fusion: Following the ideas presented in [16] [18] [15], the feature scales used

for prediction are created via concatenation using feature maps from the base network.

This process allows us to get feature maps with more fine-grained information, which

improves the detection of small objects.

• Bounding boxes and aspect ratios: For the first scale feature map prediction, five de-

fault bounding boxes are calculated for each feature map cell and in the second feature

map scale prediction, five default bounding boxes are calculated for each feature map

cell. The aspect ratios were calculated by applying k-means clustering in the training
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dataset [24] [25]. In comparison, SSD calculates six bounding boxes with fixed aspect

ratios for each feature map scale.

• Show a process to build an objective detector for a specific application.

1.3 Thesis outline

This thesis is structured as follows: Chapter 2 includes a literature review and background

concepts as well as previous work in traffic sign detection. Chapter 3 presents the methodology

used to develop the traffic sign detection algorithm as well as experimental results. Finally

Chapter 4 includes conclusions and future work.



Chapter 2

Background

This chapter introduces the background information and the basic concepts related to convo-

lutional neural networks (CNN), object detectors and previous work in traffic sign detection.

Section 2.1 presents the purpose of the main layers used to build a CNN architecture. Section

2.2 presents the most popular CNN architectures that have achieved state of the art perfor-

mances for object classification. Section 2.3 discusses object detection concepts and the main

frameworks of object detectors based on CNN. Section 2.4 presents the literature review and

previous work related to traffic signs detection, and finally, in section 2.5 the evaluation metrics

for object detection are reviewed.

2.1 Convolutional neural networks

A convolutional neural network (CNN) is a special type of neural network designed to identify

visual patterns from input images. CNNs learn directly from the input data with the automatic

generation of feature maps. CNNs has proven to be very successful in image classification

and object recognition applications. In recent years the use of CNNs has increased because

the feature maps are learned directly during the training process, in traditional object detection

techniques features are designed manually. Another advantage of CNNs is that modern archi-

4



2.1. Convolutional neural networks 5

tectures can be retrained for individual applications avoiding the need to train the CNN from

scratch. This process is called transfer learning.

Figure 2.1: Typical architecture of a convolutional neural network and its different layers

CNN architectures consist of many stacked layers (Figure 2.1 1) where each layer learns differ-

ent features from the input images. Initial layers usually learn basic features like edges, and the

final layers learn features with higher complexity that uniquely describe the input data. Con-

ventional neural networks consist of an input layer, hidden layers, and an output layer. Each

layer has a specific objective and performs a particular operation, the layers commonly used

are described below.

Convolutional layer

The convolutional layer is the principal component of a CNN. It transforms the input data by

applying convolution operations between its associated kernel (also called filter) and a local

region of the input. The objective of this layer is to construct high-level features of the input

image, that later are used to identify patterns such as shapes and can be used in classification

1from https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-
way-3bd2b1164a53
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or object detection tasks (Figure 2.22).

Figure 2.2: A convolutional layer showing the convolutional operation between its associated
filter and the input data

Pooling layer

The pooling layer has the function of reducing the size of the feature maps to reduce the number

of parameters in the final model and control overfitting during the training process. Pooling

layers are commonly placed after the convolutional layer with a down-sampling factor of 2

(Figure 2.33).

ReLU layer

The ReLU (rectified linear unit) layer applies a non-linear thresholding function to each ele-

ment of a feature map, where the negative values are set to zero, and the positive values have

no variation (Figure 2.44).

2from https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-
584bc134c1e2

3from http://cs231n.github.io/convolutional-networks/
4from https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6
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Figure 2.3: A pooling layer applying a max operation to reduce the size of a feature map

Figure 2.4: ReLU layer and its associated thresholding function applied to the input data

Batch normalization layer

Batch normalization is a technique proposed by Ioffe et al. [12]. This technique addresses

the problem of internal covariate shift by normalizing layer inputs. As is stated in the original

paper, batch normalization permits the use of higher learning rates and also works as a regu-

larizer, reducing the need for Dropout layers [31] that are typically used to reduce overfitting.

Figure 2.5 shows the batch normalization algorithm.
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Figure 2.5: Batch normalization algorithm applied to an input x.

L2 regularization

Regularization is a technique to control overfitting by adding a penalty term to the loss function.

L2 regularization is the most used form of regularization. It adds the square magnitude of all

parameters as a penalty to the loss function: λ
∑

j w2
j . Where λ is the penalty term also known

as regularization parameter or weight decay that determines the amount of penalty added to the

weights of the model.

Softmax classifier

Softmax classifier is a popular multi-class classifier. It uses as activation function the softmax

function, described in the following equation:

f j(z) =
ez j∑
k ezk

(2.1)

The softmax function takes an input vector z with arbitrary scores for each class j and outputs

a vector with values between 0 and 1 for each class j. The output vector has the property that
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the sum of all its elements is equal to one. The output of the softmax function also represents

the normalized probability that the input feature vector z belongs to a particular class j. Figure

2.65) shows an illustration of the softmax classifier.

Figure 2.6: Softmax classifier. For an input z with arbitrary scores for each class j, the output
is a vector with values between 0 and 1 for each class j.

2.2 CNN architectures

With the increase of computational power and the availability of large datasets, CNNs have

become popular for perform tasks such as image classification. The first successful application

of CNNs is LeNet [14] in 1998 and was used to recognize handwritten and machine-printed

characters. The most popular CNNs architectures that have been used for image classification

in the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) are:

AlexNet

Developed by Alex Krizhevsky, Ilya Sutskever, and Geoff Hinton, AlexNet [13] achieved a

top 5 error rate of 16% on the ILSVRC challenge in 2012. Since its publication, AlexNet has

become a staple in computer vision literature inspiring other successful architectures.

5from http://rinterested.github.io/statistics/softmax.html
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GoogLeNet

Developed by work from Szegedy et al. GoogLeNet [35] won the ILSVRC challenge in 2014

with a top 5 error rate of 6.67%, its main contribution is the inception module that uses small

convolution filters allowing the reduction of the number of parameters in the final model.

VGGNet

VGGNet [29] won the second place in the ILSVRC challenge in 2014, because of its simplic-

ity. It is widely used as a feature extractor for other applications such as object detection. With

approximately 140 M of parameters, it requires significant memory and computational power.

ResNet

With a top error rate of 3.57%, ResNet [8] developed by Kaiming He et al. won the ILSVRC

challenge in 2015. It first introduced the concept of “skip connections” that help to reduce the

vanishing gradient problem during the training process.

MobileNet

MobileNet [10] is designed to address computer power limitations in embedded vision appli-

cations. To reduce the number of parameters and the model size, MobileNet uses a depthwise

separable convolution. It achieves similar accuracy values as VGG-16 and GoogleNet with

fewer parameters hence allowing faster training and inference.
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2.3 Object Detection

Object detection is one of the main research areas in computer vision. Its main objective is

to find objects in an image (object localization) and determine the class of the object (object

classification) among a predefined set of categories [40] (Figure 2.76).

Figure 2.7: Difference between image classification (left) and object detection (right).

Traditional object detection algorithms follow a typical pipeline that consists of:

Region selection: To find objects in an image, traditional methods scan the entire image apply-

ing sliding windows of different sizes and scales and generating smaller image crops that later

are analyzed individually to determine if there is an object inside the sliding window. Due to

the significant number of analyzed candidates, this process is computationally expensive [40].

Feature extraction: To analyze each candidate generated during the sliding windows process,

we need visual features that give us meaningful information about the image. Popular visual

features include SIFT (scale-invariant feature transform) features [20] that have the property

of being invariant to image scale and rotation, HOG (histograms of oriented gradients) features

[5] used in human detection and Haar-like features [17] used in face recognition. However,

6from http://cs231n.stanford.edu/slides/2016/winter1516 lecture8.pdf
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most of the feature descriptors are designed to detect a specific type of objects, and their per-

formance could be affected by illumination conditions.

Classification: Once we have the feature descriptor vector of each sliding window, the next

step is to classify the image crops in a target object class and background. The most common

algorithm used is SVM (support vector machines) [3].

Non-maxima suppression (NMS): Due to the sliding window process many candidates are

generated and to filter the most significant results, non-maxima suppression is performed. Only

the results with the highest scores are selected as the result of the object detector.

Object detectors based on CNNs have become popular due to the success of the application

of CNN architectures (for example VGGNet [29], ResNet [8]) as feature extractors. Object

detectors based in these CNN architectures have achieved state of the art performances in terms

of accuracy and good enough detection speed to be deployed in mobile devices [11]. CNN

networks have the ability to learn more sophisticated features due to their deep architectures,

finding more complex patterns in images. Features learned by CNNs are more robust than

the features manually designed, which makes CNN architectures more suitable for a variety of

applications since we can train the same model with different datasets. [40].

Generic object detectors based on CNNs have the objective of classifying the objects in an

image and show the position of the objects drawing a rectangular bounding box around them.

Generic CNN based object detection methods can be classified into two groups: two-stage

detectors and one-stage detectors.

Two-stage detectors

Two-stage detector frameworks consist of a two-step process. First, the algorithm focuses in to

generate a region of interest or proposals and then classify each region of interest into prede-

fined object classes(Figure 2.8). Successful algorithms in this category are Region-based fully

convolutional networks (R-FCN) [4] and Faster region-based convolutional neural networks
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(R-CNN) [27]. In Faster R-CNN a base network (VGGNet for example) is used as a feature

extractor, and features from an intermediate feature map are selected to generate proposals

(300 in the original paper [27]). In the next stage, these feature proposals combined with the

output of the base network are used to predict object classes and bounding box coordinates.

R-FCN [4] follows a similar process compared with Faster R-CNN, but the regions of interest

are generated from the output of the base network instead of an intermediate feature map. This

change reduces the computational power needed, increasing the speed of detection, training

and achieving similar accuracy compared with Faster R-CNN.

Figure 2.8: High-level diagram for two-stage detectors, showing the region proposal phase and
the classification phase (image from [11]).

One-stage detectors

One-stage detectors directly predict the object class and location as a regression problem in a

single pass through a convolutional neural network (Figure 2.9). The main objective of one-

stage detectors is to improve the detection speed, however, their accuracy is lower compared

with two-stage detectors.

The most popular algorithms in this category are You only look once (YOLO) [26] and Single

shot multibox detector (SSD) [19]. YOLO divides the input image in an SxS grid, for each

grid, the network predicts B bounding boxes and confidence scores. The number of grids S
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and the number of bounding boxes B are hyperparameters of the algorithm. SSD uses default

anchor boxes with different aspect ratios and scales to make predictions in six feature maps,

with the objective of predict objects with different scales and shapes. The network generates

as output, scores for the presence of objects, and bounding box coordinates.

Figure 2.9: High-level diagram for one-stage detectors, showing the one-step process that com-
bines classification and bounding box prediction (image from [11]).

2.4 State-of-the-art in Traffic Sign Detection

Traditional traffic signs detection algorithms are based on image processing techniques, where

the feature extraction is performed manually. These methods consider the main characteristics

of traffic signs such as specific color and shape. Color based techniques use the color of the

traffic signs as the main feature to identify their location on the image [33]. Supreeth et al. [32]

use color segmentation to detect red color traffic signs, the images are transformed to grayscale

from RGB color space. Next, the algorithm selects region candidates in the image applying

shape and size constraints, crops and saves the selected regions, and passed them through a

neural network for classification.

Although color segmentation using the RGB space takes less computational power and time,

it is difficult to apply in real time environments because it requires stable illumination condi-

tions. In order to have algorithms less sensitive to illumination changes, Nguwi et al. [22] use

the Hue-Saturation-Intensity (HSI) color space to locate road signs and neural networks for

classification. Ben Romdhane et al. [1] use Hue-Saturation-Value (HSV) color space to gener-
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ate candidate regions. HOG features are used as feature descriptors, and an SVM classifier is

used to identify the traffic sign category.

Shape-based segmentation is as an alternative for color-based segmentation. It relies on the

assumption that traffic signs come in a regular shape (rectangle, triangle, circle, octagon).

Nguyen et al. [23] use Hough transform to detect general shapes (circles, rectangles, etc.)

and is complemented with edge detection to detect speed limit and warning signs. Yang et

al. [37] use a color probability model to generate areas of interest, alongside with Histogram

of Oriented Gradient (HOG) features as a feature descriptor, and a CNN performs the classifi-

cation. Zabihi [38] presents a method for detection and recognition of traffic signs inside the

attentional visual field of drivers, HOG features with SVM are used for detection and SIFT

features with color information for recognition.

With the improvement of computational power and the availability of suitable datasets, deep

learning methods have become popular in computer vision tasks. As was mentioned in the

previous section, the main categories for generic object detectors based on CNNs are two-stage

detectors and one-stage detectors. Many traffic sign detectors based on CNNs use variants of

the generic object detectors. Zhang et al. [39] use a modified version of YOLOv2 [24] to

detect traffic signs. The authors changed the filters sizes, and the number of layers to find

the best balance between speed and accuracy. Müller et al. [21] present another interesting

application of one stage detectors (SSD), it uses a deeper feature extractor and modified default

bounding boxes to increase accuracy for traffic lights detection. Zhu et al. [41] designed

a CNN architecture considering that traditional object detectors are trained to detect objects

that occupy a significant portion of an image, in contrast, traffic signs usually occupy a small

fraction of an image.
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2.5 Evaluation metrics

Intersection over union

Bounding Boxes are evaluated using the intersection over union (IoU) metric also known as the

Jaccard index, which is a ratio between the intersection and the union of the area of predicted

boxes (Apred) and the area of the ground truth boxes (Agt). IoU is the metric used in the matching

strategy to determine if a default bounding box corresponds to the ground truth box or the

background.

IoU =
Apred ∩ Agt

Apred ∪ Agt

Mean average precision (mAP)

The primary metric of evaluation for object detectors is the mean average precision (mAP). For

the interpolated mAP (Salton and McGill 198) used in the VOC2007 challenge the area under

the precision-recall curve is interpolated at a set of eleven equally spaced recall levels [0, 0.1, .

. . , 1]:

mAP =
1

11

∑
r∈{0,0.1,...,1}

pinterp(r)

At each recall level (r) the precision is interpolated by taking the maximum precision value

measured for a method for which the corresponding recall exceeds r [6]:
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pinterp(r) = max
r̃:r̃>r

p(r̃)

Where p(r̃) represents the measured precision at a recall value r̃. As is stated by Everingham

et al. [6], interpolating the area under the precision-recall curve reduces the impact of the

”wiggles” in the curve caused by small variations in the ranking of examples. (Figure 2.107).

Figure 2.10: Interpolated precision-recall curve (green line with red dots) used for the calcula-
tion of mean average precision

For the Pascal VOC (Visual object classes) dataset, the metric is calculated for an IoU threshold

of 0.5, for the COCO (Common objects in context) dataset the mAP is calculated as an average

of ten different IoU thresholds from 0.5 to 0.95 in steps of 0.05. Taking an average of ten IoU

thresholds, this method rewards models that have better localization precision.

7from https://medium.com/@jonathan hui/map-mean-average-precision-for-object-detection-45c121a31173



Chapter 3

Traffic signs detector

In this chapter, the methodology used to build the traffic signs detector is presented. The final

experiment results are compared against the generic object detector SSD [19]. SSD architecture

is used as a baseline to deploy the model presented in this thesis.

3.1 SSD architecture review

SSD is designed to make predictions on images in one single pass, the output is expressed in

terms of a set of default bounding boxes and a value of confidence of the presence of the target

object class for each default bounding box. The algorithm makes predictions in six different

scale feature maps in an attempt to identify objects of different sizes and shapes. The main

characteristics of the SSD algorithm are:

Multi-scale feature maps for detection

SSD algorithm adds extra convolutional feature layers at the end of the base network, these

layers decrease in size progressively to make predictions on six different layers (with sizes of

38x38, 19x19, 10x10, 5x5, 3x3, 1x1 using VGG16 [29] as the base network). The algorithm

18
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Figure 3.1: Comparison between SSD [19] and YOLO [26] network architectures. SSD adds
feature layers to the end of a base network and, uses six feature maps to make predictions.
YOLO uses one feature map to make predictions.

makes four predictions for the first, fifth and sixth layers and six predictions for the remaining

three layers. YOLO in the other hand makes predictions in one feature scale [26], Figure 3.1

shows the difference between these two architectures.

Default bounding boxes and aspect ratios

SSD [19] associate each cell in the feature maps used for prediction with a set of default

bounding boxes. The algorithm predicts the offsets relative to the default box in the cell and a

confidence score that expresses the presence of a target object class inside the default box. For

k given locations in a feature map, the algorithm computes c class scores by applying (c + 4)k

filters for each feature map cell. For an m × n feature map, the output will have a size of

(c + 4)kmn. SSD algorithm applies default bounding boxes to all the six feature layers used

for prediction. These default bounding boxes have different scales and aspect ratios in order to

efficiently predict objects of different sizes and shapes. Figure 3.2 shows an illustration of how

bounding boxes work in the SSD algorithm [19].
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Figure 3.2: Default bounding boxes and aspect ratios in SSD. During training, the algorithm
needs the input image and ground truth bounding boxes (a). Anchor boxes of different aspect
ratios are defined at each location in feature maps with different scales ( for example 8 x 8 (b)
and 4 x 4 (c)) (image from [19]).

Matching strategy

During the training process, the ground truth box needs to be matched with a default bounding

box to train the algorithm accordingly. The ground truth is matched with the default bound-

ing box with the best jaccard index (also known as intersection over union). An overlapping

threshold of 0.5 is used during the training process, the index values below 0.5 are labeled as

background, and the values higher than 0.5 are labeled as a target object. Authors claim that

this gives the network more flexibility, simplifying the learning process [19].

Training Objective

The loss function used for training is a weighted sum of the classification loss (Lcon f ) and the

localization loss (Lloc):

L(x, c, l, g) =
1
N

(Lcon f (x, c) + αLloc(x, l, g)) (3.1)
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Where N represents the number of matched default bounding boxes. The localization loss is the

Smooth L1 loss [7] between the predicted (l) and ground truth (g) bounding box parameters.

The parameters for each default bounding box (d) are its center (cx, cy), width (w) and height

(h). All these values are encoded as shown in the following equations:

Lloc(x, l, g) =

N∑
i∈Pos m∈{cx,cy,w,h}

∑
xk

i jsmoothL1(lm
i − ĝm

j ) (3.2)

Where:

ĝcx
j =

(gcx
j − dcx

i )

dw
i

ĝcy
j =

(gcy
j − dcy

i )

dh
i

ĝw
j = log(

gw
j

dw
i

) ĝh
j = log(

gh
j

dh
i

)

The classification or confidence loss is the softmax loss over all the target classes (c) [19].

Lcon f (x, c) = −

N∑
i∈Pos

xp
i jlog(ĉp

i ) −
∑

i∈Neg

log(ĉ0
i ) (3.3)

where ĉp
i =

exp(cp
i )∑

p exp(cp
i ) .

Hard negative mining

Because of the matching strategy, a large number of default bounding boxes are labeled as

background, resulting in a high imbalance between the positive classes (target objects) and

negative class (background). In SSD [19], the training samples are filtered by confidence score,

keeping the most significant ones. In the end, the algorithm always tries to keep a ratio of 3:1

between the negative and positive samples, this leads to a more stable training process.
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3.2 Dataset

For this thesis, the dataset used is the CSUST Chinese traffic sign detection benchmark (CCTSDB)1

[39]. The dataset consists of 10000 images and three categories (or classes): mandatory traffic

signs, prohibitory traffic signs, and warning traffic signs. Each image has an annotation file

that contains the coordinates of the ground truth bounding box and the class ID of the target

object. One or more traffic signs can be included in a sample image. For evaluation purposes,

the dataset was split into 80% for the training set and 20% for the test set.

Figure 3.3: Sample images from the dataset.

3.3 Methodology

Base network selection

With the objective to reduce the computational complexity, training, and detection time, the

selection of the base network is a primary task while building an object detector. State-of-the-
1//github.com/csust7zhangjm/CCTSDB
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art convolutional neural networks [29] [8] [34] have deeper architectures with the objective of

reaching high accuracy values. However, these accuracy improvements come with a decrease

in detection speed, which makes deeper networks challenging to apply in real-world scenarios

where the computational cost is a crucial factor.

MobileNet [10] presents a successful design that efficiently balances network size and speed.

According to the authors, MobileNet achieves an accuracy of 70.6% on the ImageNet clas-

sification dataset. In comparison, VGG-16 [29] achieves 71.6% on the same dataset, but,

MobileNet is 30 times smaller than VGG-16 in terms of the number of parameters. The main

component that makes MobileNet a light architecture is the depthwise separable convolution,

which divides the traditional convolutional layer into two parts: depth-wise convolution and

point-wise convolution. The first part, the depthwise convolution, applies a single filter to each

input channel. The second part, pointwise convolution, applies a 1x1 convolution to combine

the outputs of the depthwise convolution in one result [10] [28]. In comparison, a typical

convolution layer, filters and combines the inputs into a set of outputs in one step (Figure 3.4).

Figure 3.4: Standard convolutional layer (left) versus Depthwise Separable convolution layer
(right)(image from [10]).

Figure 3.5 shows the mobilenet architecture, which consists of a traditional convolutional layer

followed by 13 depthwise separable convolutional blocks. Each one of these blocks contains

a batch normalization layer to reduce the internal covariate shift and the risk of overfitting

during training. The last layers that are used for classification tasks are an average pool layer,

followed by a fully connected layer and finally, a softmax classifier.In order to use MobileNet as
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a feature extractor for object detection, the last three layers previously mentioned (responsible

for classification) were removed, following a similar process used in the SSD paper [19].

Figure 3.5: Mobilenet architecture for classification tasks. It consists on a traditional convo-
lutional layer followed by 13 depthwise separable convolutional blocks. The last layers are
an average pool layer, followed by a fully connected layer and finally, a softmax layer (image
from [10]).

Feature maps selection for prediction

As mentioned in section 3.1, SSD algorithm uses six feature maps with different scales to make

predictions. The objective is to tackle a central dilemma of object detectors based on CNNs,

the balance between classification and localization. In CNNs, the last layers have more se-

mantic information, which is useful for classification. However, size reduction of feature maps

typical of CNNs makes the last layers lose information for localization, especially localization
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of small objects. This trade-off between localization and classification is the main reason why

SSD algorithm uses feature maps of different sizes. The features maps with higher sizes are

responsible for small object detection. However, features in shallow layers do not have enough

semantic information, which makes the classification part more difficult, resulting in a poor

representation when it comes to small object detection. To avoid this drawback, Li et al. [16]

and Cao et al. [2] propose feature fusion modules to form a feature map with more context

information to improve small object detection while following the same feature pyramid struc-

ture of SSD. Lee et al. [15], propose residual blocks and deconvolution layers to enrich feature

maps of shallow layers with context information from the last layers.

Following these ideas, feature maps of different sizes are combined for the final predictions.

The question now is: which feature layers combine?. For this reason, the feature maps are

plotted for different scales of the SSD algorithm using MobileNet as a base network, showing

only the areas of interest (traffic signs). The idea is to identify which feature map is responsible

for the detection of traffic signs of different sizes.

Figure 3.6: Feature maps for different layers using an input image of 300x300, with the areas
of interest highlighted. The layer of size 75x75 and the layer of size 38x38 can localize the
small traffic signs. In the layer of size 19x19, some small traffic signs are missed due to the
downsampling process related to CNNs.
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Figure 3.6 shows some results for an input image size of 300x300. As can be seen, the output

of layer of size 75x75 and the layer of size 38x38 can localize the small traffic signs in the

sample images. For the layer of size 19x19, some small traffic signs are missed due to the

typical downsampling process related to CNNs.

As part of the experiments for this thesis, different feature maps are fused and tested to deter-

mine the best combination. One and two feature maps for prediction were tried, measuring the

accuracy and computational cost.

Anchor boxes selection

Anchor boxes are a crucial parameter in one-stage object detectors. The aspect ratio, scale, and

the number of anchor boxes should be carefully selected because they impact the efficiency

and accuracy value of our object detector directly. As mentioned in the previous section, SSD

algorithm utilizes a set of default bounding boxes with different scales and aspect ratios for

each feature map used for detection. For this project, the anchor boxes were selected using the

k-means cluster algorithm with the goal of maximize the value of intersection over union (IoU)

in the predictions. As is stated by Redmon et al. [24], using the Euclidean distance as a metric

for the k-means algorithm leads to significant errors as the size of the boxes increases. For this

reason, a distance metric based on IoU is used to determine the clusters [24] [25].

d(box, centroid) = 1 − IoU(box, centroid) (3.4)

The number of anchor boxes could be considered as a hyperparameter in the training process.

Selecting a high number of anchor boxes may improve the quality of our predictions in terms

of IoU, but this will also increase the computational cost needed for training and prediction. In

order to select the best number of anchor boxes, the average IoU versus the number of clusters

was calculated and is shown in the figure 3.7:
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Figure 3.7: Number of anchor boxes vs mean IoU, with six anchor boxes the mean IoU is
around 0.75, with ten anchor boxes the mean IoU is around 0.8

As we can see in figure 3.7, the relationship between the number of anchor boxes and mean

IoU is not linear. With six anchor boxes, the mean IoU is around 0.75, and with ten anchor

boxes, we have an IoU around 0.8. To get a mean IoU above 0.85, the number of anchor boxes

needs to be at least 17. For the experiments, six anchor boxes were used in the model with

one feature map for prediction. For the model with two feature maps for prediction, ten anchor

boxes were used, five for each feature map.

3.4 Experiments

For all the experiments a computer with an Intel i7-4829K @ 3.70GHz CPU and a NVIDIA

Tesla K80 GPU was used. The size of the images for all the tests is 300x300. The average

precision (AP) was measured with an intersection over union (IoU) threshold of 0.5. The com-

putational cost was estimated, counting the number of multiplications and additions (MAC) op-

erations [10], which is equivalent to calculate the floating point operations per second (FLOPs)

of a model. For all the experiments, the number of predictions per class and the detection time
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(measured in a GPU) are presented. The predictions per class is a fixed number, and it is di-

rectly proportional to the size of the feature map used for prediction. For a feature map of size

m ∗ n and k anchor boxes, the number of predictions per class is equal to m ∗ n ∗ k.

Data augmentation

Following the training strategies used in SSD [19], we used data augmentation to increase

the number of training samples artificially. The objective is to obtain a better generalization

and robustness in our final model. To each image in the training dataset is applied one of the

following options:

• Use the entire input image.

• Sample a patch with an IoU value of 01, 0.3, 0.5, 0.7, or 0.9 with the target object.

• Randomly crop a patch of size between 0.1-1 of the original image size.

After the sampling step, each patch is re-sized to a fixed size and is flipped horizontally with

a probability of 0.5, in addition to applying some photo-metric distortions such as contrast,

brightness, and color manipulation similar to those described by Howard[9].

Training parameters

The proposed algorithm was implemented using Pytorch 0.4 as framework. The source code is

based on open source repositories (ssd.pytorch2 and RFBNet3 [30]). The training parameters

and strategies are similar to the ones used in SSD [19]. Stochastic gradient descent (SGD) was

used as the optimization algorithm with an initial learning rate of 0.001, momentum of 0.9, and

a batch size of 32. With the objective of avoiding overfitting, a learning rate decay policy and

L2 regularization with weight decay (penalty parameter) of 0.0005 were applied.

2https://github.com/amdegroot/ssd.pytorch
3https://github.com/ruinmessi/RFBNet
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Epochs 250
Batch size 32
Optimizer SGD
Learning rate 0.001

Learning Rate Decay Policy Drop by a factor of 10
at 150 and 200 epochs

Momentum 0.9
Weight Decay 0.0005

Table 3.1: Training parameters used in experiments

Experiment 1

The first round of tests consists of building an object detector with one feature map for detec-

tion. For this purpose, the output of the base network, which has a size of 10x10 (for an image

input of 300x300) is upsampled and concatenated with a feature map of a higher scale. For

this experiment, six anchor boxes are used according to the analysis shown in the methodology

section.

Figure 3.8, shows the network architecture for experiment 1. It consists of three tests. For the

first test, the feature map of size 10x10 is upsampled and concatenated with the feature map of

size 19x19. In the second test, the feature map of size 10x10 is upsampled and concatenated

with the feature map of size 38x38. Finally, in the third test, the feature map of size 10x10 is

upsampled and concatenated with the feature map of size 75x75.

Figure 3.8: Network architecture for experiment 1
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Results of experiment 1

The results are presented in table 3.2. The test using the feature map of size 38x38 gives

7.73% higher accuracy and 87.7% more computational cost than the model using the feature

map of size 19x19. The reason could be that the feature layer with a higher size (38x38) has

more fine-grained information necessary to detect small objects than the smaller feature map

(19x19) which is reflected in, the higher accuracy value.

The test using the feature map of size 75x75 has a lower accuracy value compared with the test

using the feature map of size 38x38 (86.13% vs. 86.22%) and is 1.61 ms slower. In this case,

the feature map of size 38x38 gave better accuracy values and is faster. For this reason, test 2

showed the best performance in experiment 1. Comparing test 2 vs. test 3, using a feature map

with a higher size did not increase the accuracy values, it seems that the 75x75 feature map is

too shallow and does not contain enough context information, even when combined with the

upsampled 10x10 feature map.

Layers fused AP, IoU: 0.5 Detection
time (ms)

# Predictions
per class

MAC (in
millions)

Parameters
(in

millions)
10x10 - 19x19 78.49 7.61 2166 1620 4.87
10x10 - 38x38 86.22 8.04 8664 3040 4.81
10x10 - 75x75 86.13 9.65 33750 8450 4.77

Table 3.2: Results of experiment 1

Experiment 2

The second experiment consists of an object detector with two feature maps for detection.

Figure 3.9 shows the network architecture for experiment 2, which consists of three tests. In

the first test, the feature map of size 10x10 is upsampled and concatenated with the feature

map of size 38x38 for the first feature map for detection. The resulting feature map of size

38x38 is upsampled again and concatenated with the feature map of size 75x75 for the second

feature map used for detection. In the second test, the feature map of size 10x10 is upsampled



3.4. Experiments 31

and concatenated with the feature map of size 19x19 for the first feature map for detection.

The resulting feature map of size 19x19 is upsampled again and concatenated with the feature

map of size 38x38 for the second feature map used for detection. Finally, in the third test, the

feature map of size 10x10 is upsampled and concatenated with the feature map of size 19x19

for the first feature map for detection. The resulting feature map of size 19x19 is upsampled

again and concatenated with the feature map of size 75x75 for the second feature map used for

detection. For this experiment, ten anchor boxes are used, five for each feature map used for

detection.

Figure 3.9: Network architecture for experiment 2

Results of experiment 2

The results of experiment 2 are presented in table 3.3. The second test gives an accuracy value

of 0.25% higher and 66.4% less computational cost than the model used in test 3. Compared

with the first test, the second test gives 2.74% higher accuracy with less than the half compu-

tational cost. Comparing test 2 vs. test 3, test 2 reached better accuracy values and is 2.07 ms

faster than test 3. For this reason, test 2 showed the best performance in experiment 2. Similar

to experiment 1, the feature map of size 75x75 does not add any benefit to the performance of

the model. The lack of context information in the shallow layer of the base network could be

the cause behind this behaviour.
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Layers fused AP, IoU:
0.5

Detection
time
(ms)

# Predic-
tions per

class

MAC (in
millions)

Parameters
(in

millions)
10x10 - 38x38 — 38x38 - 75x75 90.74 14.14 35345 5230 5.29
10x10 - 19x19 — 19x19 - 38x38 93.48 10.08 9025 2200 5.37
10x10 - 19x19 — 19x19 - 75x75 93.23 12.15 29930 3660 5.35

Table 3.3: Results of experiment 2

Experiment 3

For experiment 3, is used the same network architecture as in experiment 2. However, instead

of upsampling and concatenation modules, residual blocks are used. As is stated by Lee et

al. [15] and Wang et al. [36], residual feature maps try to maintain low-level information of

shallow feature maps while having a high-level abstraction of feature maps of the lasts layers

in the base network. By separating the prediction module from the base network, the gradients

of the prediction module do not flow towards the feature maps of the base network [15].

Fig 3.10-a shows the three-way residual block [15]. It consists of three branches: branch one

reduces the number of channels of the input feature map, branch two increases the represen-

tation power of the shallow feature map through a 3x3 convolution layer, and branch three

makes the upsampling through a deconvolution layer, to propagate context information to a

small feature map [15]. For experiment 3, two tests were made. The first test with the three-

way residual block [15]. The second test with a small change in the method of combining the

branch 3 and branch 1, 2, using concatenation instead of element-wise sum, fig 3.10-b.

Results of experiment 3

The results of experiment 3 are presented in table 3.4. The second test gives an accuracy

value of 0.19% higher, 2.31% more computational cost and is 0.42 ms slower than the model

used in test 1. Both tests in this experiment gave better accuracy values than the best result in

experiment 2. Residual blocks can increase accuracy values, and for this application (detecting

traffic signs), concatenation is a better fusion method compared with the element-wise sum
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(a) Three-way residual block as is presented in
[15].

(b) Three-way residual block modified for ex-
periment 3

Figure 3.10: Residual blocks used in experiment 3

(better accuracy values with an increase of detection time of less than 0.5 ms).

Test AP, IoU: 0.5 Detection
time (ms)

MAC (in
millions)

Parameters
(in millions)

Test 1 93.56 12.02 3030 7.6
Test 2 93.75 12.44 3100 7.7

Table 3.4: Results of experiment 3

Finally, table 3.5 shows the comparison of the proposed network against the generic object

detector SSD with VGG16 and MobileNet as the base network. The detection speed was

evaluated using a NVIDIA Tesla K80 GPU and an Intel i7-4829K @ 3.70GHz CPU. The com-

putational cost measured in multiplications and additions (MAC) operations is not proportional

to the detection speed. The proposed algorithm has 2.67 times MAC operations than the SSD-

MobileNet algorithm. The SSD-MobileNet is 1.3 times faster than the proposed algorithm in a

CPU. In an GPU the SSD-MobileNet model is 1.49 times faster than the proposed algorithm.

In terms of accuracy, the proposed algorithm reached a higher value (93.75% vs. 89.35%)

compared with SSD-MobileNet.

Compared with SSD-VGG16, as expected, SSD-VGG16 gives a higher accuracy value because

of the use of a deeper base network. For the same reason, SSD-VGG16 is slower compared

with both SSD-MobileNet and the proposed algorithm.
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Method Avg. Precision, IoU: Detection time MAC Parameters

0.5 0.75 0.5:0.95 GPU
(ms)

CPU
(sec)

(in
millions)

(in
millions)

SSD- VGG16 95.71 86.5 75.12 52.75 1.59 30590 24.01
SSD-MobileNet 89.35 68.82 62.41 8.35 0.337 1160 5.65

Proposed algorithm 93.75 88.79 73.47 12.44 0.438 3100 7.7

Table 3.5: Comparison of the proposed network against SSD
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Conclusions and Future work

In this thesis, an adapted version of the single shot multibox detector (SSD) algorithm mod-

ified for traffic sign detection is presented. The base network was changed from VGG-16 to

MobileNet. The reason for this change is to use a lighter network architecture, that efficiently

balances network size and detection speed. A common approach seen in deep learning lit-

erature for increasing the accuracy values in object detection applications is using a deeper

and more sophisticated base network. However, deeper architectures require high computa-

tional power, and in some cases, the detection time is too high that makes them not suitable for

real-time applications. The proposed algorithm has a comparable accuracy value (93.75% vs.

95.71%) compared with the Single shot multibox detector (SSD) algorithm (with VGG-16 as

base network), which means that a light size CNN architecture like MobileNet can be used as

a base network to build reliable object detectors when the computational cost is a limitation.

The number of feature maps used for prediction was reduced, from six in the original SSD

algorithm to two. This change was driven by the fact that traffic signs come in regular shapes

(circle, triangle, and rectangle), and in defined colors. Therefore, they could be detected with

simpler convolutional neural networks (CNN) architectures. In experiment 1 and experiment

2 feature fusion map that combines context information from deeper CNN layers with the

information in shallow layers was used. This is more useful for localization purposes. Different

35
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feature maps were combined to find the combination that provides the best accuracy value.

During these experiments, feature maps visualization has proven to be a useful tool that helps

to identify the best feature map candidates to combine and also have a better understanding of

how the convolutional layers work. An interesting result during the evaluation process showed

that using feature maps of shallow layers (like the feature map of 75x75), will not necessarily

give the best accuracy values. This result shows that although shallow layers provide useful

information to detect small objects. They do not have enough context information that makes

the classification task more difficult.

Results of experiment 3 showed that residual blocks are a good technique to increase context

information in shallow layers in a CNN. Compared with the results of experiment 2, experiment

3 reached higher accuracy values. However, residual blocks also increase the size, complexity

of the network and, detection time. All of these factors need to be taken into account, especially

if the objective is to use the object detector in real-time applications where the detection time is

crucial. The process followed in this thesis can be used to design object detectors for specific

applications, for example, street light detection, waste bin detection for automatic waste col-

lection systems, applications where the target objects have a regular form and a limited range

of colors.

For future work, the goal is to use LIDAR (Light Detection and Ranging) data as part of a

more robust object detector. Test more low computational cost oriented CNN architectures like

MobileNet-V2 [28] and PeleeNet [36] as base network, following the same design process used

in this thesis. Testing different loss functions, especially the localization loss function is also

planned. In SSD algorithm, Smooth L1 is used as a loss function. This loss function tries to

minimize the distance between the ground truth and the predicted bounding box. However, the

similarity between the ground truth and the prediction is measured through intersection over

union (IoU), a loss function based in IoU could increase the quality of the predicted bounding

boxes and the accuracy values because during the training process the algorithm will optimize

the IoU directly.
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Proposed Algorithm

(a) SSD+Mobilenet (b) Proposed algorithm
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