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ABSTRACT 

Balance is an important determinant of physical function and falls risk. This study sought to determine the 

effect of unilateral and bilateral perturbations, with and without cognitive load, on leg muscle activity in 

healthy young and older adults, as well as identify the influence of ankle power on postural and functional 

performance. Using a split-belt treadmill system, participants experienced unilateral and bilateral accelerations 

of the treadmill, without and with the Stroop test. Surface electromyography (EMG) from eight lower limb 

muscles was recorded from the right leg. EMG onset latency following perturbation onset, and root mean 

square of the muscle bursts were calculated for each perturbation. Unlike young adults, older adults did not 

demonstrate a distal to proximal muscle activation, suggesting that older adults adopt a unique response to 

postural perturbations – a response prioritized over cognitive load. Further, a higher level of ankle muscle 

power favoured better balance in older adults.  

Keywords: balance, external perturbations, muscle power, cognitive load, older adults, EMG 
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LAY ABSTRACT 

Balance is an important determinant of physical function and falls risk. This study sought to determine the 

effect of slips (single [unilateral] or double [bilateral] limb), with and without a cognitive task, on leg muscle 

activity in healthy young and older adults. We also sought to identify the influence of ankle power (force x 

velocity) on postural and functional performance. Using a split-belt treadmill system, participants experienced 

unilateral and bilateral accelerations of the treadmill (i.e. accelerating one belt or both belts), without and with 

a cognitive test. Muscle activity from eight lower limb muscles were recorded from the right leg. The timing 

of muscle activity following acceleration onset, and magnitude of the muscle bursts were calculated for each 

acceleration. Young and older adults demonstrate different patterns of muscle activity, suggesting that older 

adults adopt a unique response to postural accelerations – a response prioritized over cognitive load. Further, a 

higher level of ankle muscle power favoured better balance in older adults. 
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Chapter 1 – Introduction 

1.1 Background and Rationale 

Falls are the primary cause of injury in individuals over the age of 65 (Kurz et al. 2016). The risk of 

falling increases with aging as a result of age-related neurological and muscular changes (Reid & 

Fielding, 2011). Aging is characterized by a decrease in muscle size as well as neuromuscular 

function (Vandervoort, 2002). A decline, specifically, in lower limb muscle power has been 

associated with functional impairments characterized by a decrease in mobility and an increase in the 

risk of falling (Reid & Fielding, 2011). The changes that occur in muscle size and function not only 

affect an individual’s ability to perform daily functional activities but can be detrimental to postural 

control and gait efficiency (Paillard, 2017). 

Balance is an important determinant of physical function and falls risk. The maintenance of upright 

balance requires the centre of mass (COM) to stay within the base of support (BoS; Maki & McIlroy, 

1997). In a dynamic environment, the relationship between the COM and BoS is controlled by 

anticipatory postural adjustments and compensatory postural adjustments (APAs and CPAs, 

respectively; Maki & McIlroy, 1997). While both types of adjustments play a role in the maintenance 

of upright stance, compensatory control is the main method used to regain balance following an 

unexpected loss of body equilibrium, or perturbation, while standing (Maki & McIlroy, 1997). 

Compensatory responses use whole-body techniques triggered by the central nervous system (CNS) 

to restore balance (Bolton, 2015).  

The use of perturbations has been a common method to investigate balance in previous studies. For 

example, support surface translations have been used to study reactive responses, (Norrie, Maki, 

Staines, & McIlroy, 2002; Dijkstra, Horak, Kamsama, & Peterson, 2015; Zemkova et al., 2017; 

Wang, Watanabe, & Asaka, 2017; Martelli et al., 2017; Inkol, Huntley, & Vallis, 2018; Shim, Harr, 

& Waller, 2018) as well as perturbations applied to the upper body (Santos, Kanekar, & Aruin, 2010; 

Kanekar & Aruin, 2014). While the use of perturbations has been extensively researched in regard to 

postural control, there is little information regarding how balance is affected when perturbations are 

induced unilaterally compared to bilaterally in older adults. The results of this study may identify 

areas of importance for balance training protocols and determine factors with the greatest influence 

on balance performance. 
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1.2 Objectives and Hypotheses 

Objectives: 

The primary objective of this study is to determine the effect of unilateral and bilateral perturbations 

on postural muscle activity in the leg, as well as to identify any muscle activation changes with the 

introduction of a cognitive load.  

A secondary objective is to identify any relation between muscle power output around the ankle joint 

to the level of muscle activation in response to the postural perturbation, as well as functional 

performance. 

A tertiary objective is to compare the postural responses between young and older adults.  

Hypotheses: 

The primary hypotheses of this study are 1) that responses will differ between perturbation types, 

such that unilateral and bilateral accelerations will demonstrate different patterns of muscle 

activation; and 2) the addition of a cognitive load will increase the latency of response and muscle 

activity in both young and older adults.   

The secondary hypotheses of this study are that, in older adults, an increase in ankle muscle power 

will have a positive influence on a clinical measure of balance and mobility. An increase in muscle 

power will be accompanied by an increase in the amplitude of muscle activity in response to 

perturbations. In young adults, it is hypothesized that ankle muscle power will demonstrate a lesser 

influence on functional performance and postural control than in older adults.  

The tertiary hypotheses are that older adults will demonstrate an increase in postural response time, 

as well as a decrease in the amplitude of the muscular response when compared to young adults. The 

effect of a cognitive load will be more pronounced in young adults, as older adults will prioritize the 

balance task to the detriment of the cognitive task. 
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Chapter 2 – Review of the Literature 

This chapter will provide an overview of postural perturbations, muscle activation in balance 

recovery, perturbation types, aging and muscle function, aging and functional performance, aging 

and external perturbations, and the effect of a cognitive load.  

2.1 Postural external perturbations 

A postural perturbation can be defined as an action that shifts the body away from equilibrium 

(Horak, Henry, & Shumway-Cook, 1997). There are a wide variety of perturbation-inducing 

techniques that can be used to examine standing balance. Examples of external perturbations include 

rotating or translating support surfaces or applying a force to a specific body part (Rasman, Forbes, 

Tisserand, & Blouin, 2018). Perturbation studies have demonstrated that balance strategies develop 

as the CNS is exposed to challenges to equilibrium (Horak et al., 1997). It is, therefore, necessary for 

perturbations to be unpredictable, in order to limit any learning effect by the CNS (Maki & McIlroy, 

2006). Responding to an external perturbation requires the CNS to adjust for the change in the COM 

to keep it within the BoS (Inkol et al., 2018).  

The mechanisms required to keep the COM within the BoS may vary depending on the magnitude of 

the perturbation. Evidence of stereotypical patterns of muscle activation following platform 

translations led to the identification of muscle synergies (Horak et al., 1997). These patterns of 

muscle activity have provided insight into the concept of motor coordination and have allowed 

researchers to distinguish between normal and abnormal coordination, which may be useful when 

identifying neurological diseases (Horak et al., 1997). The unpredictability of perturbations is an 

essential component in simulating a real-life scenario in which a fall often occurs unexpectedly 

(Maki & McIlroy, 2006). Maki and McIlroy (1997) also proposed the “change-in-support” strategy, 

which involves the use of a step, in order to broaden the BoS (Inkol et al., 2018).  

2.2 Muscle activation in balance recovery 

Maintaining a stable base of support following a perturbation will require the activation of muscles 

around the ankle and/or hip joints (Inkol et al., 2018). In response to perturbations where maintaining 

a fixed base of support is feasible, the ankle and hip strategies are used to control motion in the 

sagittal plane (Ogaya, Okita, & Fuchioka, 2016). The ankle strategy employs a distal-to-proximal 

order of muscle activation, while the hip strategy requires proximal hip and trunk activation (Horak 

et al., 1997). Under control of the CNS, these strategies can be used independently of one another or 
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work together to regain control (Hwang et al., 2009). It has been suggested that the ankle strategy 

will be employed first, followed by activation at the knee, and then hip as the perturbation intensity 

increases (Horlings et al., 2009). This suggests larger amplitude perturbations often require 

activation of the muscles around the hip as ankle strategies are insufficient (Duclos, Maynard, 

Barthelemy, & Mesure, 2014). According to previous studies, both strategies require plantar flexor 

strength to regain control following an anterior displacement of the COM (Ogaya et al., 2016). The 

hip strategy, however, requires less ankle plantar flexion torque as it relies heavily on hip flexion to 

move the COM backwards (Ogaya et al., 2016). Therefore, the maintenance of muscle strength and 

power surrounding the ankle joint may be an important factor in reducing the movement of the COM 

in response to a perturbation.  

Co-activation of the leg muscles is another common strategy that has been observed during 

perturbations (Santos et al., 2010). At the ankle, this strategy increases joint stiffness to generate the 

forces required to maintain a fixed BoS, following a perturbation. Evidence of this strategy is 

demonstrated by the co-contraction of the tibialis anterior and lateral gastrocnemius muscles found in 

response to disruptions of balance (Santos et al., 2010). In response to an unpredictable perturbation 

(pendulum impact to extended arms at shoulder level), older adults demonstrate larger compensatory 

postural adjustments (CPAs) and use different strategies and sequences of muscle activation to 

regain balance, when compared to younger adults (Kanekar & Aruin, 2014). 

During bilateral stance perturbations in predictable conditions, both younger and older adults 

demonstrate muscle activation prior to the perturbation to reduce the overall movement of the COM 

(Kanekar & Aruin, 2014). This decreases the muscle activation required during the compensatory 

phase of control following the perturbation. In this scenario, younger and older adults use a distal to 

proximal muscle recruitment strategy (Kanekar & Aruin, 2014). A reciprocal pattern of activation is 

also evident during predictable perturbations (Kanekar & Aruin, 2014). When the COM moves in an 

anterior to posterior direction, the ventral muscles are activated while the dorsal muscles are 

inhibited (Kanekar & Aruin, 2014). In unpredictable conditions, anticipatory strategies are 

negligible, resulting in larger CPAs to compensate for the movement of the COM. In this scenario, 

younger adults have demonstrated a proximal to distal recruitment strategy to maintain balance when 

responding to unexpected perturbations. (Santos et al., 2010; Kanekar & Aruin, 2014). This sequence 

of activation is not maintained in older adults (Santos et al., 2010; Kanekar & Aruin, 2014). As well, 
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the reciprocal pattern of activation is replaced by a co-activation pattern in unpredictable conditions 

(Kanekar & Aruin, 2014).  

2.3 External perturbation types 

The majority of studies examining balance recovery mechanisms using external perturbations have 

focused on bilateral translations of support surface platforms (e.g. Norrie et al., 2002; Zemkova et 

al., 2017; Inkol et al., 2018; Wang et al., 2017). However, it may be important to investigate the 

effect of unilateral perturbations, as disruptions to balance during daily living often occur unilaterally 

(Duclos et al., 2014). In fact, in a clinical population with chronic ankle instability, bilateral CPAs 

have been demonstrated following unilateral perturbations (Sousa, Silva, Gonzalez, & Santos, 2018).  

Duclos et al., (2014) showed that in response to unilateral tendon vibration of the gastrocnemius-

soleus complex, the non-perturbed limb was critical in limiting the displacement of the centre of 

pressure (COP). The original antero-posterior position of the COP was restored faster following 

unilateral tendon vibration than during bilateral tendon vibration. This demonstrates the importance 

of the unperturbed limb in the restoration of balance after a perturbation (Duclos et al., 2014).  

Another study investigating the role of the stance limb during unilateral perturbations found that the 

thigh muscles of the stance limb were critical in maintaining balance (Hyodo, Saito, Ushiba, Tomita, 

& Masakado, 2010). These findings are supported by a study by Marigold, Bethune and Patla (2003), 

which compared muscle activity of the perturbed limb to that of the unperturbed limb. They 

demonstrated co-contraction of the rectus femoris and biceps femoris muscles in the unperturbed 

limb to regain control. Co-contraction around the ankle joint (i.e. tibialis anterior and medial 

gastrocnemius) has also been established in the unperturbed limb, in response to anticipation of a 

slippery surface (Chambers & Cham, 2006). It is suggested that ankle co-contraction may allow for 

better control of foot position, as well as increase joint stiffness. Overall, co-contraction strategies 

may be beneficial in decreasing the risk of falling (Chambers & Cham, 2006).  

2.4 Aging and muscle function 

A loss of muscle mass and function as a result of aging, also defined as sarcopenia, is especially 

relevant to balance because sarcopenia particularly affects muscles of the lower limb (Montero-

Fernandez & Serra-Rexach, 2013). In addition to muscular changes, aging also results in many 

functional deficits that may challenge balance and increase the risk of falling (Granacher, Gollhofer, 

Hortobagyi, Kressig & Muehlbauer, 2013).  
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Previous studies examining the effect of aging on postural control have found that older adults are 

less effective at regaining balance following an external perturbation than younger adults (Martelli et 

al., 2017; Dijkstra et al., 2015; Tsai, Hsieh, & Yang, 2014). Martelli et al. (2017) compared the 

motor responses of young (24±2.7 years) and older (65±4.8 years) adults subjected to slip-like 

perturbations while walking. They found that older adults had a slower reaction time and, in general, 

had a lower margin of stability than younger adults (Martelli et al. 2017). Another study analyzing 

muscle synergies during a forward perturbation found that older adults required more muscle 

activation and were more likely to use co-contraction to regain balance than younger adults (Wang et 

al., 2017). Dijkstra et al. (2015) found that older adults took more compensatory steps to regain 

balance following a perturbation than young adults; however, they were able to reduce the number of 

steps required following a perturbation training protocol.  

The majority of studies examining the effects of aging focus on the loss of muscle strength 

demonstrated in older adults; however, changes in muscle power may have a larger impact on 

postural stability and control (Hruda, Hicks, & McCartney, 2003). Previously, resistance training has 

been used to counter-act age-related deficits in balance and increase strength. However, it has been 

demonstrated that improvements in strength do not result in significant improvements in functional 

performance (Granacher et al., 2013).  

Muscle power is defined as the product of force and velocity (McKinnon, Connelly, Rice, Hunter, & 

Doherty, 2017). A recent review article suggests that a decrease in muscle power is related to a 

decrease in mobility and an increase in the risk of falls (McKinnon et al., 2017).  In aging, muscle 

power is lost at a faster rate than muscle strength, which may be due to the selective denervation of 

fast-twitch muscle fibres (McKinnon et al., 2017) and subsequent reinnervation by slow 

motorneurones, resulting in an increase in slow twitch muscle fibres (Inacio, 2016). In reference to 

the ability to control posture following an external perturbation, a high percentage of type II muscle 

fibres is associated with a faster reaction time (Paillard, 2017). Therefore, a loss of type II muscle 

fibres in older adults may contribute to an increased risk of falling, due to the inability to produce 

force rapidly (Paillard, 2017).  Reactive responses to a perturbation require force and velocity (i.e. 

power) to counteract the movement of the COM (Paillard, 2017). It has been suggested that older 

adults are at a higher risk of falling, when compared to young adults, because they are unable to 

generate the power required to maintain balance following an unexpected slip during walking 

(Chambers & Cham, 2006). A loss of muscle power is relevant to postural control, as a positive 



7 

 

 

correlation between muscle power output and the limits of stability scores has been demonstrated 

(Shim et al., 2018).  

2.5 Aging and functional performance 

Functional outcomes assess the ability to perform everyday tasks (i.e. eating, rising from a chair, 

using a telephone) in a safe and effective manner (Quinn, McArthur, Ellis, & Stott, 2011).  

Neuromuscular changes influence activities of daily living, such as rising from a chair and ascending 

stairs (Paillard, 2018). A loss of muscle power as a result of aging is especially relevant to physical 

function, as performance-based outcomes are largely influenced by power (Reid & Fielding, 2011). 

In community-dwelling women over the age of 65, plantarflexor muscle power has been shown to be 

an independent predictor of performance during a chair rise task, while dorsiflexor power was an 

independent predictor of an 8-stair climbing task (Suzuki, Bean, & Fielding, 2001). Conversely, 

plantar- and dorsiflexor strength were not independently associated with chair rise or stair climbing 

performance (Suzuki et al., 2001). When accounting for self-reported measures of health and 

physical function, data suggested that ankle muscle power is an essential component of functional 

performance (Suzuki et al., 2001). Regardless of training method, an increase in leg muscle power 

was more effective in improving performance-based outcomes (i.e. Short Physical Performance 

Battery; SPPB) than an increase in leg muscle strength, in older adults (Bean et al., 2010). When 

comparing types of resistance training, high-velocity resistance training has been shown to be more 

effective at improving functional outcomes (i.e. adapted arm curl, 30-s chair stand test, 8-ft up-and-

go test) than low-intensity resistance training (Bottara, Machado, Nogueira, Scales, & Veloso, 2007). 

It is, therefore, evident that an important relationship exists between lower extremity muscle power 

and functional performance and that muscle power training in older adults is critical in the 

performance of activities of daily living.  

2.6 Aging and external perturbations 

Millie et al. found that older adults were twice as likely to take a step when responding to an external 

perturbation (2003). When preparing to take a step, older adults demonstrated excessive muscle co-

contraction and a low stability margin for COP displacement (Wang et al., 2017). Taking a step may 

therefore, be an inefficient strategy to regain balance, as the act of making a step has been associated 

with an increased risk of falling among older adults (Wang et al., 2017). The action of taking a 

recovery step requires a momentary shift from double-leg stance to single-leg stance. A recent study 
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has shown that this brief moment of single-leg support can result in limb collapse and ultimately 

result in a fall (Wang, Liu, & Pai, 2019).  

There are a number of studies investigating perturbations while walking and have generally focussed 

on the action of the perturbed limb (Senden et al., 2014; Martelli et al., 2017; McCrum, Gerards, 

Karamanidis, Zijlstra, & Meijer, 2017). However, the unperturbed limb may play a critical role in 

maintaining balance because muscles of the unperturbed limb are activated quickly (> 180 ms) 

following a perturbation. These onset latencies are similar to those found in the perturbed limb 

(Marigold et al., 2003).  

The coordination between limbs in response to a perturbation is critical in the maintenance of 

balance as the actions of the unperturbed limb allow for a wider BoS, which increases stability 

(Marigold et al., 2003). A study investigating the effects of unilateral training on the trained and 

contralateral limb found that neuromuscular responses improved in both limbs following the 

unilateral training protocol. These results are indicative of a cross-education effect, which is 

beneficial in maintaining postural control (Oliveria, Brito Silva, Farina, & Kersting, 2013). This 

study suggests that balance training results in faster reaction time (muscle onset) and a longer burst 

of muscle activity. These adaptations are critical in effectively responding to disruptions to balance 

(Oliveira et al., 2013).  

2.7 Effect of a cognitive load 

Postural responses are distinct from stretch reflexes; stretch reflexes can be identified 40-50 ms 

following a perturbation, whereas a postural response occurs 70-180 ms after a loss of equilibrium 

(Horak et al., 1997). As balance control does not occur as an automatic reflex, recovery from an 

unexpected disturbance requires attention (Cheng, Tsang, Schooling & Fong, 2018). In a real-life 

scenario, a loss of balance often occurs when the mind is focused on another task. Generally, daily 

motor tasks are performed simultaneously with a cognitive task (Tomas-Carus et al., 2019). 

Therefore, an appropriate manner to train balance is in a dual-task setting.  

Dual-task paradigms offer a better understanding of the attention required to react to a challenge to 

balance (Patel & Bhatt, 2015). The capacity sharing theory, proposed by Pashler, explains how 

attentional resources are allocated to one task at the detriment of the second task (1994). The effect 

of a cognitive task, however, has been shown to vary depending on the task chosen (Inkol et al., 

2018). A study by Worden and Vallis (2016) investigated the effects of performing a cognitive 
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(auditory Stroop task) and locomotor (obstacle avoidance) task on stability control and found no 

change in stability during the locomotor task when a cognitive task was introduced, indicating a 

prioritization of the motor task. Conversely, another study investigating allocation of attentional 

resources (balancing on an ankle-disc board and performing a memory task) found a decline in 

performance in both tasks when they were performed simultaneously (Schaefer, Krampe, 

Lindenberger & Baltes, 2008). Many previous studies have examined postural control using a dual-

task paradigm (e.g. Patel & Bhatt, 2015; Norrie et al., 2002; Inkol et al., 2018).  

In older adults, a decline in cognition has been associated with a reduced ability to effectively 

perform activities of daily living, resulting in an increased risk of falling (Fischer et al., 2014). 

Previous studies have used a cognitive-motor dual-task paradigm in order to assess the risk of falling 

in older adults (Tomas-Carus et al., 2019; Asai et al., 2018), as dual-task protocols are more 

successful at identifying functional deficits than single-task protocols (Tomas-Carus et al., 2019).  As 

previously stated, the ability to perform tasks simultaneously requires an allocation of attentional 

resources. Similar to young adults, there seems to be a lack of consensus regarding which task (i.e. 

motor or cognitive) older adults will prioritize (Nnodim, Kim, Ashton-Miller, 2016).  During the 

simultaneous administration of a gait perturbation and an auditory stimulus (i.e. vocal choice 

reaction test), older adults maintained postural control at the detriment of the cognitive task (i.e. 

significant increase in response time; Nnodim et al., 2016). Conversely, another study demonstrated 

a decline in dynamic postural performance during a dual-task protocol (Bernard-Demanze, 

Dumitrescu, Jimeno, Borel, & Lacour, 2009). It is postulated that the lack of agreement in the 

literature can be attributed to the varying complexity of the postural and cognitive tasks among 

studies (Bernard-Demanze et al., 2009). 

2.8 Summary 

Ageing is associated with many muscular and functional changes (McKinnon et al., 2017; Reid & 

Fielding, 2011). The use of external perturbations has been identified as a useful tool in analyzing 

balance strategies in older adults (e.g. Martelli et al., 2017; Inkol et al., 2018; Shim et al., 2018). It is 

important to investigate postural control strategies in older adults to determine appropriate treatment 

techniques to limit the loss of mobility and adapt to the neuromuscular changes associated with 

aging. In a natural environment, a loss of balance may occur unilaterally or bilaterally, and when the 

mind is focused on another task (Tomas-Carus et al., 2019).      
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Chapter 3 - Methods 

3.1 Study design 

This is a cross-sectional study observing healthy young and older adults. The methodology used a 

quantitative analysis to examine physiological measurements and functional performance to identify 

differences between young and older adults. All outcomes were assessed during a single testing 

session lasting approximately 60 minutes. 

This study was conducted within the Wolf Orthopaedic Biomechanics Laboratory (WOBL) at 

Western University. The Western University Research Ethics Board approved the methods used in 

this study. All participants signed an informed consent prior to participation in the study. 

3.2 Participants 

Participants recruited for this study were between the ages of 18-30 years or 70+ years. To be 

included in the study, participants were required to meet the following inclusion criteria: 

1. Be able to understand oral and written English 

2. No physical injuries (e.g. leg fracture) sustained within the last 6 months 

3. Have not been diagnosed with a respiratory and/or neurological disorder 

3.3 Experimental set-up and procedure 

Ambulatory balance was assessed using the Community Balance and Mobility Scale (CB&M, /96; 

Knorr, Brouwer & Garland, 2010) – as the performance-based functional outcome measure for this 

study. The CB&M consists of 13 tests designed to analyze balance and mobility performance. 

Examples of these tests include unilateral stance, tandem walking, and descending a flight of stairs. 

A detailed description of each the CB&M tests can be found in Appendix II.  

Participants completed maximal muscle power measurements using the Biodex System 3 isokinetic 

dynamometer. The set up and positioning of the Biodex protocol were performed according to the 

application and operation manual (Biodex Manual Systems Inc., Shirley, New York, USA). 

Participants were provided with verbal instructions and encouragement through the testing. All 

measurements were recorded unilaterally on the right side, which was the unperturbed (stance) limb 

during unilateral perturbations. The right side was chosen because it is generally the dominant limb 

for the majority of the population. 
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Isometric ankle plantarflexion/dorsiflexion 

Unilateral isometric ankle plantarflexion and dorsiflexion were assessed to determine maximum 

isometric torque about the right ankle and the maximal EMG was used for normalization of the EMG 

during perturbations. Participants were seated with the seat tilted back at 85°, with a limb-support 

pad securing the thigh and holding the knee at 30° of knee flexion (0° being full knee extension). The 

dynamometer’s axis of rotation and ankle attachment were identical to the isotonic protocol (see 

above). At an ankle angle of 90°, participants alternated between isometric plantarflexion 

contractions and isometric dorsiflexion contractions. A total of three maximum plantarflexion and 

three maximum dorsiflexion contractions were performed, with a contraction time of three seconds 

and a rest period of twenty seconds between each contraction (Biodex Medical Systems Inc., Shirley, 

New York, USA). The percent difference across the three maximal contractions was less than 10% in 

order to be considered a true representation of a maximal contraction.  

Isotonic ankle plantarflexion/dorsiflexion 

Unilateral isotonic ankle plantarflexion and dorsiflexion were assessed to determine average power 

around the ankle joint on the right side. Plantarflexion and dorsiflexion torque were set at 10% of the 

maximum torque assessed during the isometric contractions (see below). The axis of rotation of the 

dynamometer was aligned with the participant’s lateral malleolus, with an ankle and foot strap 

securing the foot to the ankle attachment. Participants completed a total of three concentric 

plantarflexion contractions and three concentric dorsiflexion contractions, moving through their full 

ROM.  

Perturbation protocol 

The Gait in Real time Analysis Interactive Lab (GRAIL) system was used for the standing 

perturbation tests. The GRAIL system (Motekforce Link, Amsterdam, Netherlands) consists of a 

dual-belt treadmill system set within a virtual reality environment. The treadmill belts are able to 

accelerate independently of one another, or in synchrony. In this study, accelerations were used to 

simulate a slip. A posteriorly-directed acceleration of the treadmill caused an anterior displacement 

of the COM. For the purpose of this study, unilateral and bilateral accelerations shifted the body 

away from equilibrium but did not induce a stepping reaction. Participants were instructed to stand in 

a comfortable standing position with one foot on each treadmill belt (i.e. shoulder width apart), while 

looking straight ahead for the duration of the perturbation testing. The duration of each perturbation 
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was 200 ms. As the duration of each perturbation was kept constant, an increase in perturbation 

intensity (i.e. increase in treadmill velocity; m/s) also caused an increase in the distance travelled by 

the treadmill belts. The intensity of all accelerations were set for each participant. Participants were 

secured by a safety harness attached to the ceiling, which did not provide any body weight support. 

Participants experienced 20 unilateral (left belt only) and 20 bilateral backward accelerations of the 

treadmill. During unilateral accelerations, the right belt remained stationary, with the right leg being 

the stance leg. Both unilateral and bilateral accelerations of the treadmill caused anterior movement 

of the body’s COM but no stepping reaction. To determine the appropriate perturbation intensity, 

participants were subjected to each perturbation type at an increasing intensity, until a step was 

required. The intensity was then decreased just below that required a step. Participants were unaware 

of the timing of the perturbations, which were delivered at least two seconds apart. Participants were 

instructed to keep their gaze on the virtual reality screen and to avoid taking a step when responding 

to the perturbation when possible. Any trials in which the participant stepped were excluded from 

analysis. Perturbations were delivered in sets, starting with five unilateral accelerations, followed by 

five bilateral accelerations. This set was repeated four times.  

Participants performed the balance perturbation tests for a second time while simultaneously 

performing the Stroop cognitive task (Stroop, 1992). The Stroop cognitive task involves the name of 

a colour appearing on the screen but written in a font of a different colour. Participants were 

instructed to call out the colour in which the word was written, and not simply read that word that 

appeared on the screen. For example, if the word BLUE appeared in green font, participants would 

call out green. The Stroop cognitive task appeared on the centre of the virtual reality screen, at a rate 

of three seconds per word. The number of correct and incorrect responses were documented.  

A visual representation of the split-belt treadmill system set within the virtual reality environment 

showing the Stroop test is demonstrated in Figure 1.  
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Figure 1. The GRAIL system with the Stroop test presented on the virtual reality screen. 

 

 

 

 

 

 

 



14 

 

 

3.4 Instrumentation/Data collection 

EMG activity was recorded from eight lower limb muscles on the participant’s right side (stance 

limb). After the skin was cleaned using NuPrep skin gel, bi-polar surface electrodes were placed 

according to the Surface ElectroMyography for the Non-Invasive Assessment of Muscles (SENIAM) 

guidelines (Hermens et al., 1999). The surface EMGs (TrignoTM Avanti wireless sensors, Delsys 

Inc., Natick, Massachusettes, USA) were recorded from: rectus femoris (RF), vastus lateralis (VL), 

vastus medialis (VM), biceps femoris (BF), lateral gastrocnemius (LG), medial gastrocnemius (MG), 

soleus (Sol) and tibialis anterior (TA) muscles. EMG signals were sampled at 2000 Hz. 

The treadmill perturbations were triggered using an application created in the GRAIL software D-

flow (Motekforce Link, Amsterdam, Netherlands). To synchronize data collection, the treadmill belt 

speeds were recorded on all systems. The speed of each treadmill belt was outputted as an analog 

signal using a Phidget Analog 4-output #1002_0B (Phidgets, Inc., Calgary, Alberta, Canada) and 

collected on Spike2 6.03 (Cambridge Electronic Design Limited, Milton, Cambridge, England) and 

Cortex-64 (version 5.0.1.1497; Motion Analysis Corporation, Rohnert Park, California, United 

States) at 2000 Hz.  

3.5 Data analysis 

All analyses were performed using Spike2 8.13 (Cambridge Electronic Design Limited, Milton, 

Cambridge, England). The onset of each perturbation and the onset of EMG activity was determined 

by threshold crossing on the filtered left treadmill belt speed signal. The threshold was calculated as 

the point the signal reached two standard deviations (SD) above the mean of a 500 ms epoch prior to 

the perturbation. EMG signals were band-pass filtered (Butterworth 4th order, 10-400 Hz) and then 

full wave rectified. After rectification, EMG signals are filtered again with a low-pass filter 

(Butterworth 2nd order, 0.7 Hz) to determine the EMG onset. The root mean square (RMS) EMG 

amplitude was calculated for 500 ms prior to the perturbation onset (baseline EMG) and for 100 ms 

after the onset of the muscle activity. Only trials in which the EMG burst exceeded 1.5 times the 

baseline were included in analyses. The latency of muscle activation was calculated as the difference 

between the timing of the muscle burst onset and the onset of the corresponding perturbation. The 

EMG amplitude during the burst was normalized to the baseline EMG amplitude. A schematic of the 

data analysis process is depicted by Figure 2. The EMG amplitude of the burst was also represented 

as a percentage of the EMG during the plateau phase of the isometric MVC.  To examine the level of 

EMG pre-activation, the RMS for a 500 ms epoch was calculated during the static trials when no 
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perturbations were delivered.  Pre-activation was considered present if the baseline EMG during the 

perturbation trial was larger than the EMG during the static trial.   

 

 

Figure 2. EMG recordings for a single perturbation from representative older adult. Perturbation 

onset taken from the treadmill signal (bottom row, dashed line) and EMG burst onset (arrow) are 

shown. Blue rectangles denote the area where RMS amplitude is calculated. 
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3.6 Statistical analysis 

Statistical analyses were conducted using SPSS v.25 (IBM Corp, Armonk, NY). All muscle activity 

data were collected for each muscle separately to obtain a robust sampling of lower extremity 

muscles. Based on physiological function and individual muscle activity, it was concluded that RF, 

VL and VM exhibited similar behaviour, as did LG and MG. These muscles were grouped together 

as the Quads and Gastrocs, respectively. Grouping these muscles together also limited the number of 

ANOVAs performed, thereby increasing the strength of the ANOVA. The mean latency and RMS 

were calculated for each group (young and older adults).  

To determine differences between EMG latency and RMS amplitude during unilateral and bilateral 

accelerations in young and older adults with and without the Stroop test, a comparison was done 

using a three-way mixed measures analyses of variance (ANOVAs) with perturbation type (unilateral 

acceleration and bilateral acceleration), and cognitive load type (No Stroop and Stroop) as the 

repeated measures and group (young adults and older adults) as the independent factor. Statistical 

significance was considered at p ≤ 0.05. EMG amplitudes as a percentage of MVC EMG were also 

analyzed using independent (comparing age groups) and paired (comparing acceleration types within 

groups) t-tests. As each muscle was subjected to four comparisons, the corrected p value was p ≤ 

0.0125. 

Any outliers, assessed by examination of studentized residuals for values greater than ± 3 standard 

deviations (SDs), were removed. When a significant interaction between factors was found, paired 

and independent t-tests were performed with Bonferroni corrections as post hoc analysis. For two 

factor interactions, four comparisons (t-tests) were performed and the corrected p value was p ≤ 

0.0125.  

The order of muscle recruitment was assessed using a one-way repeated measure ANOVA with 

Bonferroni corrections for each condition (unilateral acceleration, bilateral acceleration, No Stroop 

and Stroop). Twenty comparisons were performed in each condition and the correction p value was p 

≤ 0.0025. 

To determine the relationship between muscle power and functional performance, and latency and 

amplitude of muscle response to a perturbation, data were first tested for normality using the 

Kolmogorov-Smirnov test. Normally distributed data were analyzed using Pearson correlations (r). 

Data that were not normally distributed were analyzed using Spearman correlations (ρ). All 
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correlations were performed using a two-tailed test of significance. Statistical significance for all 

analyses was considered at p ≤ 0.05. 

A three-way mixed measures ANOVA was used to analyze any differences in EMG amplitude 

recorded during a static trial and the baseline EMG collected 500 ms prior to the perturbation onset. 

Muscle and trial type (static trial or perturbation) were the repeated measures and group (young 

adults and older adults) was the independent factor.  

In order to determine the influence of the cognitive load, the number of correct responses during the 

Stroop test (as a percentage of total responses) were compared between young and older adults using 

an independent t-test (p ≤ 0.05). 
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Chapter 4 – Results 

4.1 Participants 

Twenty healthy young adults (eleven male and nine female, mean age 22.8 ± 2.7 years; mean height 

175.2 ± 6.2 cm; mean body mass 71.1 ± 11.7 kg) and twenty healthy older adults (eleven male and 

nine female; mean age 76.6 ± 5.5 years; mean height 170.9 ± 7.5 cm; mean body mass 76.8 ± 9.0) 

with no prior musculoskeletal injuries that would affect balance testing, neurological disorders, or 

respiratory diseases participated in the study.  

4.2 Perturbation Protocol Outcomes 

4.2.1 EMG Latency  

The results of the three way mixed methods ANOVA demonstrated no interaction between the three 

independent variables (age, perturbation type and cognitive load type) in any muscle group. There 

was a significant two-way interaction between perturbation type and age in the Quads, Gastroc, Sol 

and TA muscles and a significant two-way interaction between cognitive load type and age in the 

Quads muscles (Table 1). In BF there were no significant interactions, however there is an overall 

significant main effect of age (p=0.02). 

Table 1. EMG Latency: The F-statistic (F), p-value (p) and degrees of freedom (df) from the 

interaction between perturbation and age, and cognitive load and age.  

 Perturbation type and age interaction Cognitive load type and age interaction 

Muscle F p df F p df 

Quads 17.99 p<0.001* 1 11.18 p=0.002* 1 

BF 0.891 p=0.35 1 1.46 p=0.24 1 

Gastrocs 15.34 p<0.001* 1 0.87 p=0.36 1 

Sol 9.48 p=0.004* 1 0.53 p=0.47 1 

TA 11.24 p=0.002* 1 3.20 p=0.08 1 

Significance is denoted by * 

Post hoc analyses demonstrated a significant difference in latency of muscle activation between 

young and older adults during both unilateral and bilateral accelerations in the Quads, and only 

during bilateral accelerations in the Gastrocs, Sol and TA muscles. In the Quads, older adults 

demonstrated a shorter latency of muscle activity than young adults during both unilateral and 
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bilateral accelerations. In the Gastrocs, Sol and TA muscles, young adults were quicker to respond to 

the bilateral perturbations than the older adults (Figure 3) 

Young adults demonstrated a significant difference in latency of muscle activation between unilateral 

and bilateral perturbations, such that there was a shorter latency of activation during bilateral 

accelerations, in the Quads, Gastrocs, Sol and TA muscles. The older adults had similar latencies 

across all perturbation types (Figure 3).  

In the Quads, there was a significant difference in the latency of muscle activation between young 

and older adults during both the No Stroop and Stroop condition, with the Quads being activated 

earlier in the older than the young adults (Figure 4). Young adults demonstrated a longer latency of 

muscle activation in the Stroop versus the No Stroop in the Quads; whereas the latency was not 

affected by the Stoop test in the older adults.  

Regardless of perturbation type or cognitive load type, young adults demonstrated a distal to 

proximal muscle activation pattern, with Sol, Gastrocs and TA being activated before BF and Quads 

(Figure 3 and 4). During unilateral accelerations, Sol was activated significantly earlier than all 

muscles and Quads were activated significantly later than all other muscles (p<0.0025). When both 

legs were perturbed, there was no significant difference between Quad and BF latency. In all 

conditions, the onset of Gastrocs and TA activity was similar (Figure 3). The Stroop test had minimal 

influence on the order of muscle activation (Figure 4) 

Older adults activated Sol first, followed by Quads, with Gastrocs and TA, and BF activated last 

during both perturbation types and cognitive load types. (Figure 3 and 4). Regardless of perturbation 

type, older adults activated BF significantly later than all other muscles (p<0.0025). As well, there 

was a significant difference between the onset of Sol activity and the burst of activity produced by 

the other distal muscles (p<0.0025). There was not, however, any difference in the onset of TA, 

following Gastroc activation (Figure 3). Similar to young adults, the addition of the Stroop test had 

minimal effect on the pattern of muscle activation in older adults (Figure 4).  
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Figure 3. Latency of muscle activation, denoted by mean and SD, of combined cognitive load tests 

describing the interaction between perturbation type and age. 

 a denotes a significant difference from older adults during unilateral accelerations; b denotes a 

significant difference from older adults during bilateral accelerations; c denotes a significant 

difference between unilateral and bilateral accelerations 
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Figure 4. Latency of muscle activation, denoted by mean and SD, of combined acceleration types 

describing the interaction between cognitive load and age. 

 a denotes a significant difference from older adults during No Stroop; b denotes a significant 

difference from older adults during Stroop; c denotes a significant difference between No Stroop and 

Stroop 
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4.2.2 EMG burst amplitude: 

The results of the three way mixed methods ANOVA demonstrated a significant interaction between 

the three independent variables (age, perturbation type and cognitive load type) only in the Quads 

muscles. There was a significant two-way interaction between perturbation type and age in the 

Quads, Gastrocs, and Sol muscles and a significant two-way interaction between cognitive load type 

and age in the Quads and TA muscles (Table 2). In BF there were no significant interactions, 

however there was an overall significant main effect of perturbation (p<0.001). 

Table 2. EMG Amplitude: The F-statistic (F), p-value (p) and degrees of freedom (df) from the 

interaction between perturbation and age, and test and age.  

 Perturbation type and age interaction Cognitive load type and age interaction 

Muscle F p df F p df 

Quads 10.56 p=0.002* 1 7.91 p=0.008* 1 

BF 3.94 p=0.055 1 0.40 p=0.53 1 

Gastrocs 12.38 p=0.001* 1 0.17 p=0.68 1 

Sol 37.60 p<0.001* 1 0.10 p=0.75 1 

TA 0.01 p=0.91 1 5.65 p=0.02* 1 

Significance is denoted by * 

Post-hoc analyses demonstrated that young adults produced a larger amplitude of muscle activity 

than older adults during unilateral accelerations and bilateral accelerations in the Quads, Gastrocs 

and Sol muscles. In both age groups, a significantly larger burst of muscle activity was seen 

following bilateral accelerations in these muscles. There were no significant differences in BF or TA 

as a function of age or perturbation type. In the Quads and TA muscles, young adults demonstrated a 

significantly larger amplitude of muscle activity in both cognitive load conditions when compared to 

older adults (Figure 5). Also in the Quads and TA muscles in young adults, a larger burst of muscle 

activity was seen during the Stroop test when compared to the No Stroop test (Figure 6).  

In young and older adults, the degree of muscle activity, denoted as a percentage of MVC EMG (% 

MVC EMG), was larger during bilateral accelerations than during unilateral accelerations in 

Gastrocs and Sol. Older adults also demonstrate an increase in BF activity during bilateral 

accelerations. The EMG amplitude (% MVC EMG) decreased significantly in the TA during 

bilateral accelerations when compared to unilateral accelerations, only in young adults. Regardless of 

acceleration type, older adults demonstrated larger EMG (% MVC EMG) values in BF than young 
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adults. During unilateral accelerations only, older adults also demonstrated a larger degree of muscle 

activation in Quads and Sol than young adults (Table 3).  

Table 3. The percentage of muscle activity, denoted as the average percentage of MVC, during the 

burst of activity following perturbations without a cognitive load.  

 Young adults Older adults 

 Unilateral 

acceleration (% 

of max) 

Bilateral 

acceleration (% 

of max) 

Unilateral 

acceleration (% 

of max) 

Bilateral 

acceleration (% 

of max) 

Quads 12.45+ 14.72 25.21 23.39 

BF 14.96+ 21.78+ 41.44* 51.48 

Gastrocs 37.57* 60.64 80.32* 108.23 

Sol 32.38*,+ 63.67 67.94* 86.38 

TA 23.09* 17.63 29.31 27.15 
* denotes a significant difference from bilateral accelerations; + denotes a significant difference from 

older adults 
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Figure 5. EMG burst amplitude normalized to baseline EMG, denoted by mean and SD, of combined 

cognitive load types describing the interaction between perturbation type and age. 

 a denotes a significant difference from older adults during unilateral accelerations; b denotes a 

significant difference from older adults during bilateral accelerations; c denotes a significant 

difference between unilateral and bilateral accelerations 
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Figure 6. EMG burst amplitude normalized to baseline EMG, denoted by mean and SD, of combined 

acceleration types describing the interaction between cognitive load and age.  

a denotes a significant difference from older adults during No Stroop; b denotes a significant 

difference from older adults during Stroop; c denotes a significant difference between No Stroop and 

Stroop 
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4.2.3 EMG Pre-activation 

In both young and older adults, the baseline EMG collected just prior to the perturbation onset was 

significantly larger than the EMG amplitude collected during static trials when no perturbation was 

delivered or expected by the participant.  Older adults demonstrate larger EMG pre-activation than 

young adults in all muscles except BF (p<0.01; Table 4). 

Table 4. Baseline EMG measures, denoted by mean (SD).  

 Baseline EMG Young adults (mV) Older adults (mV) 

Quads Static trial EMG 0.008 (0.007) + 0.04 (0.05)  

Perturbation baseline EMG 0.02 (0.008) *,+ 0.08 (0.07) * 

BF Static trial EMG 0.01 (0.008)  0.02 (0.008)  

Perturbation baseline EMG 0.02 (0.007) * 0.03 (0.02) * 

Gastrocs Static trial MG 0.02 (0.01)  0.02 (0.008)  

Perturbation baseline EMG 0.03 (0.02) *,+ 0.07 (0.03) * 

Sol Static trial EMG 0.01 (0.006) + 0.06 (0.04)  

Perturbation baseline EMG 0.06 (0.02) *,+ 0.12 (0.06) * 

TA Static trial EMG 0.01 (0.006)  0.01 (0.008)  

Perturbation baseline EMG 0.03 (0.01) *,+ 0.09 (0.1) * 

* denotes a significant difference from static trial; 

 + denotes a significant difference from older adults 

 

4.2.4 Stroop Accuracy 

There was a significant difference in the number of correct responses (as a percentage of total 

responses) reported during the Stroop test between young and older adults (p=0.001), although both 

groups performed the task very well. Young adults demonstrated a greater percentage of correct 

responses than older adults (mean: 99.6% (0.75) and 94.7% (6.3), respectively).  
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4.3 Functional Balance and Ankle Muscle Power  

Community Balance & Mobility scores and average plantarflexor and dorsiflexor power for the 

young and older adult groups are presented in Table 5.  Older adults have lower CB&M scores and 

lower isotonic power than young adults. 

Table 5. CB&M scores, isotonic ankle plantarflexor and dorsiflexor power, denoted by mean (SD), 

in young and older adults.  

 CB&M score (/96) Average isotonic 

ankle plantarflexor 

power (Watts) 

Average isotonic 

ankle dorsiflexor 

power (Watts) 

Young adults 94.3 (1.5) 53.7 (24.6) 13.6 (7.2) 

Older adults 63.1 (12.9) 23.9 (10.5) 4.9 (2.2) 

 

The majority of the data used for the correlations between power and functional outcomes, EMG 

latency and RMS amplitude were not normally distributed (p>0.05), therefore, Spearman correlations 

were used in all cases. 
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4.3.1 Muscle Power and Functional Outcomes 

Plantarflexor muscle power or dorsiflexor muscle power and CB&M score data for young and older 

adults are presented in Figure 7. Whereas there were no significant correlations between 

plantarflexor or dorsiflexor power and CB&M score in young adults (ρ=0.150 and ρ=-0.098 

respectively), there was a significant correlation between plantarflexor power and CB&M score (ρ= 

0.464; p=0.04), in older adults but not between dorsiflexor power and CB&M score (ρ=0.314; 

p=0.18).  

 

Figure 7. The correlation between plantarflexor and dorsiflexor power and CB&M score in young 

and older adults.  

* denotes significance 

 

 

 

 

 

* 
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4.3.2 Muscle Power and EMG burst amplitude 

While there were no significant correlations between plantarflexor muscle power and RMS in the 

Gastrocs and Sol muscles during accelerations in young adults (ρ=-0.190 to 0.247), there was a 

significant correlation between plantarflexor power and RMS in Gastrocs during bilateral 

accelerations (ρ=0.582; p=0.007) in older adults, but not during unilateral accelerations (ρ=0.394; 

Figure 8). 

 

Figure 8. Correlations between plantarflexor power and EMG burst amplitude in the Gastrocs and 

Sol during unilateral and bilateral accelerations in young and older adults.  

* denotes significance 
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4.3.4 Muscle Power and Perturbation Intensity 

In young adults, there was no significant correlation between plantarflexor power and unilateral 

perturbation intensity (ρ =-0.018). There was, however, a significant correlation between 

plantarflexor power and unilateral perturbation intensity (ρ =0.486; p=0.03) in older adults. In both 

young and older adults there was no significant correlation between plantarflexor power and bilateral 

perturbation intensity (ρ =0.183 and ρ =0.293 respectively; Figure 9).  

 

Figure 9. Correlations between plantarflexor power and perturbation intensity of unilateral and 

bilateral accelerations in young and older adults. 

* denotes significance 

. 
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Chapter 5 – Discussion 

The main findings of this study are that, unlike young adults, older adults do not modulate their 

postural responses, depending on whether the perturbation occurs unilaterally or bilaterally. The 

addition of a cognitive load does not influence the postural response in older adults, suggesting they 

are prioritizing the postural task over the cognitive task. Further, an increase in muscle power proves 

beneficial for functional and postural performance in older adults.  

5.1 Unilateral and Bilateral Accelerations 

We hypothesized that unilateral and bilateral accelerations would produce different responses, and 

that the addition of a cognitive load would delay muscle activation and increase the burst of muscle 

activity required to regain balance. Additionally, we hypothesized that older adults would 

demonstrate a greater latency of muscle activity, a decreased amplitude of muscle activation and 

prioritize the balance task over the cognitive task when compared to young adults. The muscle 

activation patterns observed in this study indicate that young and older adults respond differently to 

perturbations to a support surface platform. Partially confirming our hypothesis, young adults 

adjusted their postural responses depending on whether the perturbation occurred unilaterally or 

bilaterally. Conversely, older adults responded in a similar manner regardless of perturbation type 

(Figure 3, 5). Contrary to our hypothesis, the addition of the Stroop test had minimal influence on 

latency or amplitude of the muscle bursts produced by young adults, and no influence in older adults 

(Figure 4, 6).  

Young adults 

Based on the latency of muscle activation, young adults demonstrated a distal to proximal order to 

muscle activation to regain balance following a perturbation (Figure 3). The use of support surface 

translations has been shown to elicit muscle activation quickly at the ankle joint, followed by 

involvement at the thigh and then trunk (Horak & Nashner, 1986). The burst of Sol activity was first, 

followed by the similar onset latencies of Gastrocs and TA, and lastly proximal muscle activation, 

further supporting the notion that ankle musculature is critical in the maintenance of balance in 

young adults (Horak & Nashner, 1986). While this recruitment order is different to the proximal to 

distal order found in randomly applied external  perturbations Santos et al., (2010), it provides 

evidence that young adults rely on the ankle strategy (Horak et al., 1997), regardless of whether 

balance is challenged unilaterally or bilaterally. In the study by Santos et al. (2010), the perturbation 
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was delivered at shoulder level to the participants extended arm, whereas in our study the 

perturbation occurred distally. It is possible that the height at which the perturbation occurs 

(proximal or distal) can influence the muscular response, such that proximal perturbations rely on 

proximal muscle activation, whereas distal perturbations rely on distal muscle activation.  

The type of acceleration (unilateral/bilateral) influenced the latency of response in the Quads, 

Gastrocs, Sol and TA, but not the BF. The quicker onset (decreased latency) of muscle activity 

during bilateral perturbations provides insight into the importance of the stance leg in limiting the 

loss of equilibrium (Duclos et al., 2014) and reducing the muscular response. The unperturbed limb 

has been shown to be activated at latencies between 140 and 250 ms (Marigold et al. 2003), whereas 

the perturbed limb has been shown to be activated at latencies between 70 and 110 ms (Horak & 

Nashner, 1986). Additionally, the contribution of the plantarflexor muscles (as a percent of MVC 

EMG) increases significantly during bilateral perturbations and demonstrates activity above 60% of 

MVC EMG, indicating that bilateral perturbations require more ankle musculature involvement. 

Therefore, it could be said that bilateral perturbations pose a greater threat to balance, and hence 

require a greater muscular response. Further, the decrease in Quad onset latency, as well as the 

increase in BF EMG activity as a percentage of MVC (although not significant) associated with 

bilateral perturbations is indicative of the muscle recruitment strategy proposed by Horlings et al., 

which states that knee and hip musculature are activated as the perturbation intensity increases 

(2009).  

Again, in support of statement made by Horlings et al., (2009; see above), young adults 

demonstrated larger RMS EMG amplitudes during bilateral accelerations than during unilateral 

accelerations, further supporting the notion that bilateral perturbations pose a greater risk to 

equilibrium. It would seem, however, that young adults rely minimally on Quad activation, as 

although there is an increase in RMS amplitude during bilateral accelerations, the amplitude of EMG 

activity, denoted as a percentage of MVC is relatively low (Table 3). The plantarflexor muscles 

demonstrate a significant increase in RMS amplitude, as well as a greater percentage of MVC EMG 

during bilateral accelerations (Table 3), providing further support for the reliance on the ankle 

strategy regardless of perturbation condition. Previous studies have also demonstrated the 

maintenance of the ankle strategy for postural control in young adults (Mackey & Robinovitch, 

2006; Boyas et al., 2017).  
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Although co-contraction has been previously reported as a mechanism for postural control using a 

fixed BoS strategy (Santos et al., 2010), based on the RMS values as a percentage of MVC EMG, 

there is limited evidence of a co-contraction strategy used by young adults in this study. BF 

demonstrates a greater degree of activation than the Quads, but overall the contribution is minimal 

(12-22%; Table 3). The greatest degree of activation is demonstrated in the plantarflexor muscles, 

however there is lesser activation in TA. There may be an indication of co-contraction around the 

ankle joint during unilateral perturbations, which is supported by a previous study demonstrating the 

co-contraction around the ankle joint in the unperturbed limb in response to a disruption to balance 

(Chambers & Cham, 2006). Previous evidence of co-activation has been reported in response to 

perturbations applied at the shoulder or during gait (Santos et al., 2010; Chambers & Cham, 2006). It 

is, therefore, possible that stance perturbations are more easily managed by young adults, and do not 

require a stiffening response strategy.   

In response to forward sway, the dorsal muscles are expected to be the main contributors to the 

posterior movement of the COM to restore equilibrium (Horak et al., 1997). The addition of the 

Stroop test resulted only in an increase in EMG latency and amplitude in the Quads, as well as an 

increase in amplitude in TA in young adults. As the cognitive load affected only ventral muscles, this 

suggests that the Stroop test had a minimal effect on postural performance. These results are 

supported by a previous study by Worden and Vallis (2016), which found no change in motor 

performance, in young adults, when a cognitive task was introduced. The similarities in the results of 

our study to the results of Worden and Vallis (2016) may be attributed to the choice of cognitive task 

(visual Stroop task and auditory Stroop task, respectively). The lack of effect may also be attributed 

to the limited complexity of the cognitive task (Bernard-Demanze et al., 2009) and the relative ease 

in which young adults responded to postural perturbations.  

Additionally, it has recently been suggested that the effect of a cognitive load may be altered 

depending on whether the response to a perturbation requires a fixed BoS or a change-in-support 

strategy (Inkol et al., 2018). Inkol et al. (2018) found a decline in motor performance but not 

cognitive performance when responding to perturbations in which balance was maintained using a 

fixed BoS strategy, but the opposite (i.e. decline in cognitive performance but not in motor 

performance) when the postural control required the execution of a step. As the current study 

required balance to be maintained without changing the dimensions of the BoS, this could explain 

the consistency of correct Stroop responses in young adults.  
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Older adults 

Older adults demonstrated a similar latency of muscular response regardless of whether the 

perturbation occurs unilaterally or bilaterally, suggesting that older adults are not able to modulate 

their response based on the task demands. In both acceleration types, there is no difference in the 

onset latencies between the first burst of muscle activity, produced by the Sol, and the activation of 

the Quads. While these results may indicate a greater reliance on the Quads for postural control, 

older adults generate a relatively small amplitude of muscle activity in the Quads, denoted as a 

percentage of MVC EMG (23-25%; Table 3). Early activation of the Quads, therefore, may be 

related to greater reliance on hip movements, which has previously been reported in older adults 

(Manchester, Woollacott, Zederbauer-Hylton, Marin, 1989; Okada, Hirakawa, Takada, & Kinoshita, 

2001).  

The immediate activation of the Sol and Quads followed by the activation of the Gastrocs, TA and 

BF indicates that older adults may adopt a mixed ankle and hip strategy in response to a disruption to 

balance. Older adults demonstrated an increased reliance on the dorsal muscles as evidenced through 

the large degree of muscle activation as a percentage of their MVC EMG (41-108%; Table 3). While 

older adults activated BF last, the burst of muscle activity is relatively large (41%-51%; Table 3). As 

it is expected that the dorsal muscles will be the main contributors to equilibrium following a 

forward loss of balance (Horak et al., 1997), older adults were able to maintain this pattern albeit 

with a slower onset of activation. The greater relative degree of activation demonstrated by older 

adults is not uncommon, as a previous study has also reported greater RMS values in older adults 

when normalized as percent of MVC EMG (Tsai et al., 2014). That is, relative to their MVC RMS 

EMG, older adults required a greater percentage of their maximal muscle activation capacity to 

return to a position of equilibrium (Tsai et al., 2014).  

Based on the lower treadmill acceleration intensity in which balance can be maintained without 

taking a step, bilateral perturbations pose a greater threat to stability and therefore require more 

muscle activity to correct for the loss of equilibrium. As the stance limb (during unilateral 

perturbations) is now being perturbed, a greater loss of balance occurs. In the Quads, Gastrocs and 

Sol, the EMG amplitude increases during the bilateral perturbation when compared to the unilateral 

perturbation. The increase in EMG amplitude in the Quads is most likely related to a greater degree 

of movement at the hip joint during bilateral accelerations (Manchester et al., 1989), as the muscle 

burst as a percentage of MVC EMG remains relatively small (Table 3). Gastrocs and Sol activity has 
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been shown to reduce the movement of the COM in response to a forward loss of balance (Graham, 

Carty, Lloyd, & Barrett, 2017). Therefore, without a fixed stance limb, a greater reaction from the 

Gastrocs and Sol is required. The degree of activation in BF, Gastrocs and Sol (based on % MVC 

EMG) increases significantly during bilateral accelerations as well, further supporting the increased 

difficulty of bilateral perturbations.  

The use of co-contraction strategies for postural control has previously been reported in older adults 

(i.e. Nagai et al., 2011; Wang et al., 2017). The use of co-contraction specifically around the ankle 

joint has been demonstrated as an ankle stiffening strategy during static and dynamic postural control 

tasks (Nagai et al., 2011; Donath, Kurz, Roth, Zahner, & Faude, 2016). While older adults 

demonstrated a large reliance on the dorsal muscles for postural control, the activity of the ventral 

muscles was relatively small (Table 3). The overall weak level of co-activation demonstrated in this 

study may be related to the nature of the postural task. In previous studies, co-contraction in older 

adults has been identified in response to tasks such as functional reach tests, standing on a foam 

balance pad and following anterior displacements of the support surface platform (posterior 

movement of the COM, but no stepping reaction; Nagai et al., 2011; Donath et al., 2016; Okada et 

al., 2001). As accelerations (or posterior translations) of the treadmill were used in our study, the 

need for co-activation may be limited, as the dorsal muscles alone (specifically the plantarflexor 

muscles) are capable of stabilizing the COM.  

Older adults demonstrated a similar latency and amplitude of EMG response in the No Stroop and 

Stroop conditions. This could be indicative of a “posture first” strategy in older adults, meaning they 

will prioritize the balance task to the detriment of the cognitive task (Shumway-Cook, Woollacott, 

Kerns, & Baldwin, 1997). These results are comparable to previous studies, in which older adults 

maintained postural control during a dual-task protocol, but demonstrated a decline in cognitive task 

performance (Nnodim et al., 2016). A previous study has also demonstrated the increased attentional 

demands of a step recovery compared to a fixed BoS recovery (Brauer, Woollacott, & Shumway-

Cook, 2002), which may partially account for the lack of effect the addition of a cognitive load had 

on postural control in our study. As the fear of falling has been shown to increase with age, older 

adults may be more inclined to allocate attentional resources to the postural task, as it poses a greater 

risk to balance than the cognitive task (Scheffer, Schuurmans, van Dijk, van Der Hooft, & De Rooij. 

2008).  
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Young vs. Older adults 

The use of platform perturbations to disturb standing balance in young and older adults has 

previously identified differences in postural control strategies (Alexander, 1994). There is a lack of 

consensus among perturbation studies when analyzing muscle activation patterns from the lower 

limb muscles (Chambers & Cham, 2007; Tsai et al., 2014; Kanekar & Aruin, 2014). During slip 

forward perturbations, young adults activated proximal leg muscles and TA sooner than older adults, 

but demonstrated a delayed activation in the gastrocnemius muscle when compared to older adults 

(Tsai et al., 2014). In young and older adults, the early activation of the knee flexors and distal 

muscles (TA and MG), followed by a significantly delayed activation of the knee extensors has been 

demonstrated in response to a slippery surface during gait (Chambers & Cham, 2007). Previous 

studies have also reported a delay in the activation of the distal muscles in older adults when 

compared to younger adults (Woollacott, Shumway-Cook, & Nashner, 1986). 

The dissimilarities in postural responses observed in young and older adults in our study are in line 

with Kanekar & Aruin (2014), who found dissimilarities in postural responses between age groups. 

The onset timing of muscle activity reported in this study are comparable to previous studies using 

external perturbation techniques (Horak & Nashner, 1986; Forghani & Milner, 2017). These studies 

found early onset of ankle activity at 70-80 ms in young adults in response to a perturbation (Horak 

& Nashner, 1986; Forghani & Milner, 2017) followed by thigh and trunk latencies up to 110 ms 

(Horak & Nashner, 1986). The onset latencies demonstrated in our study are indicative of a long-

latency stretch response (Forgaard, Franks, Maslovat, & Chua, 2016). Long latency responses have 

been shown to differ between young and older adults, such that older adults demonstrated a longer 

peak response time (Madhavan et al., 2009), which may explain the increased latency of response in 

the distal muscles and BF in older adults when compared to young adults. Although BF demonstrates 

no interaction effects, there is a significant difference between age groups, such that older adults 

demonstrate an increase in response time. The lack of any interaction effects may be explained by 

the reliance on ankle musculature in young adults and the lack of modulation in older adults. The 

short Quad latencies in older adults were most likely due to the differences in control strategies 

demonstrated by young (ankle strategy) and older (mixed strategy) adults.  

The RMS of the first 100 ms of muscle activity following the burst onset is larger in the Quads, 

Gastrocs and Sol in the young adults compared to older adults. Larger amplitudes of muscle activity 

have previously been reported in young adults during hazardous slip conditions during gait, in which 
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young adults demonstrate a more powerful response (Chambers & Cham, 2007). As force must be 

generated quickly to stabilize the COM, the smaller EMG amplitude values demonstrated by the 

older adults may partially be attributed to the increase in motor unit size and a decrease in 

contraction velocity as a consequence of aging, (McKinnon et al., 2017) which results in a decreased 

ability to produce a great amount of force rapidly (i.e. the first 100 ms following a perturbation). 

While older adults demonstrate reduced RMS amplitudes when compared to young adults, they also 

demonstrate a higher percent of MVC when responding to perturbations, indicating a relatively 

greater degree of activation. In accordance with Tsai et al. (2014), who also reported greater RMS 

values in older adults when normalized as a percentage of MVC EMG, relative to their MVC EMG 

older adults required a greater percentage of their maximal muscle activation capacity to return to a 

position of equilibrium. In addition, results of the comparison between baseline EMG amplitudes 

demonstrated a higher pre-activation EMG activity in older adults (Table 4). This baseline activity 

could partially account for the decreased amplitude of EMG activity demonstrated by older adults 

following a perturbation, as all RMS values obtained in this study were normalized to baseline EMG. 

Finally, as the perturbation intensity is set relative to each participant, older adults are subjected to 

smaller perturbations than young adults, which may also explain the decreased EMG values.  

The muscle recruitment patterns identified in young and older adults differed in each group. As 

young adults employed the ankle strategy, there was an emphasis on the plantarflexor muscles to 

regain control. In older adults, the mixed ankle and hip strategy incorporated ankle and thigh 

muscles. Differences in postural strategies have been identified in a previous study investigating the 

effects of different standing balance tasks (Donath et al., 2016). However, in the study by Donath et 

al. (2016), older adults demonstrated a relatively larger degree of muscle activity from the TA than 

did young adults. In our study, TA was activated to a similar amplitude, regardless of age. This may 

be related to the nature of the balance tasks, as in our study, the anterior movement of the COM puts 

the ankle joint in an unstable position (Brockett & Chapman, 2016), and thus both age groups 

required some TA activity to stabilize the joint.  

There is a significant difference in the number of correct responses obtained during the Stroop test 

between young and older adults, such that older adults demonstrated a lower percentage of correct 

responses. Overall, however, the limited effect of the cognitive task on motor performance in both 

groups may be explained by the familiarity of the initial postural position. In this study, participants 

were instructed to stand in a comfortable position, with feet shoulder-width apart. This well-learned 
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position most likely required limited attention prior to the perturbation, and therefore participants 

were able allocate more resources to the successful completion of the cognitive task. For example, 

the difficulty of a postural stance alone (i.e. tandem stance on a see-saw), without any external 

perturbations, has been shown to be effective in decreasing stability (Dault, Geurts, Mulder, 

Duysens, 2001). Based on Pashler’s capacity sharing theory (1994), it is possible that by allocating 

more attentional resources to an initial stance position, the cognitive task performance would decline.  

Limitations 

One limitation of this study is that the perturbations were set relative to each participant. This makes 

direct comparison more difficult, as each participant was perturbed at a different intensity. For this 

study, however, relative perturbations were necessary to ensure balance could be maintained without 

taking a step. Additionally, the increased EMG activity prior to a perturbation in older adults may 

increase latency, as with a greater amount of pre-activation, the time it takes for the EMG amplitude 

to exceed 1.5 times is longer with elevated baseline values. Pre-activation has previously been 

demonstrated in older adults during functional task performance (Hsu, Wei, Yu, & Chang, 2007). 

Further, in older adults, any joint replacements as well as visual acuity and proprioceptive deficits 

were not measured which may influence the participant’s ability to respond to support surface 

translations.   

5.2 Muscle Power Outcomes 

It was hypothesized that an increase in muscle power would be correlated with an increase in 

functional outcomes (CB&M score), as well as an improvement in postural performance (i.e. 

increase in RMS amplitude) only in older adults, as the effect of ankle muscle power would be 

limited in young adults. In accordance with our hypotheses, older adults demonstrated a positive 

relationship between ankle muscle power and function and postural performance. Older adults 

demonstrated a significant correlation between ankle plantarflexor power and CB&M score, similar 

to previous literature, which has reported the beneficial effects of ankle power on functional 

outcomes (Reid & Fielding, 2011). While not significant, there was also a positive correlation 

between dorsiflexor muscle power and CB&M score in older adults. As a previous study has 

reported a significant correlation between the dorsiflexor power and functional performance (Suzuki 

et al., 2001), the addition of more participants may be required to achieve statistical significance. A 

lack of influence of muscle power on postural control in young adults has been reported in previous 
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studies, in which no correlation between dynamic balance and peak power of the lower limb muscles 

was found during chair jumping (Zemkova et al., 2017).  

There was a significant correlation between ankle plantarflexor power and Gastrocs EMG activity 

during bilateral accelerations. Power is especially important during bilateral perturbations, as the 

action of both limbs being perturbed requires a shorter latency of muscle activation (i.e. an increased 

ability to produce force rapidly). As Gastrocs activity is crucial to the backward acceleration of the 

COM (Graham et al., 2017), the increase in plantarflexor power allows for a more forceful and rapid 

onset of muscle activity to return to a position of equilibrium. Plantarflexor power may only be 

crucial during bilateral perturbations, as during unilateral perturbations the stance limb minimizes the 

COM displacement (Duclos et al., 2014) and therefore limits the response required by the 

plantarflexor muscles. The lack of effect plantarflexor power has on Sol activity may be related to 

the functional roles in the Sol and Gastrocs, as Gastrocs activity has been shown to play a larger role 

following vestibular balance-corrections as well as in the maintenance of standing balance (Dakin, 

Heroux, Luu, Inglis, & Blouin, 2016; Giulio, Maganaris, Baltzopoulos, & Loram, 2009). 

Further, there was a significant correlation between ankle plantarflexor power and unilateral 

acceleration intensity. That is, participants with a higher level of muscle power were able to maintain 

balance in response to larger unilateral perturbations. The correlation between plantarflexor power 

and unilateral, but not bilateral, perturbations may be explained by the reduction in functional ankle 

mobility associated with aging (Vandervoort et al., 1992). Bilateral perturbations may require greater 

movement at the ankle joint, as there is no stance limb to limit the loss of equilibrium. As older 

adults demonstrate a decrease in ankle range of motion (ROM), bilateral perturbations may be 

limited by the decreased ability to move through the appropriate range and regain stability (Mecagni, 

Smith, Robert, O’Sullivan, 2000), and therefore an increase in power alone may not be sufficient to 

control balance.  

As participants experience a forward loss of balance, it is expected that the dorsal muscles would be 

primarily activated to regain balance (Kanekar & Aruin, 2014). This may explain the lack of effect 

dorsiflexor power and TA activity had on postural control. Overall, maintaining muscle power 

during the aging process is critical in the maintenance of not only functional performance, but also 

postural performance.   
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Chapter 6 – Conclusion 

Postural responses to external platform perturbations differed between young and older adults. 

Young adults adopted a distal to proximal recruitment strategy, and modulated the postural response 

between unilateral and bilateral perturbations. In contrast, older adults demonstrated early activation 

of the quadriceps muscles and responded to unilateral and bilateral perturbations in a similar manner. 

The addition of a cognitive task had minimal influence on the postural activity in the older adults 

suggesting that older adults prioritized their balance over their cognitive performance. A higher level 

of muscle power had a positive association with postural muscle activation and functional 

performance in older adults, but had minimal effect in young adults. Further research is needed to 

examine the mechanisms responsible for the lack of modulation of postural responses in older adults 

when responding to different types of perturbations.  
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Study Title: Regional Activation of Plantarflexor Muscles during Standing Balance 

Principal Investigator: Dr. Jayne Garland, PhD, Faculty of Health Sciences, Western University 

(jgarland@uwo.ca) 

Research Team: Tanya Ivanova, PhD, Faculty of Health Sciences (tivanova@uwo.ca), Patrick 

Siedlecki, MSc, School of Kinesiology (psiedlec@uwo.ca), Dominique Arsenault, BSc. (Hons) Kin, 

School of Physical Therapy (darsena2@uwo.ca), Joshua Cohen, School of Kinesiology 

(jcohen66@uwo.ca) 

Letter of Information 

Dear Potential Participant, 

You are being invited to participate in the following research project entitled “Regional Activation of 

Plantarflexor Muscles during Standing Balance”. The study will take place within the Wolf 

Orthopaedic Biomechanics Laboratory inside Western University’s 3M Building. The study is being 

conducted by Patrick Siedlecki, a PhD. student in the School of Kinesiology at Western University, 

Dominique Arsenault, an MSc. student in the School of Physical Therapy, Joshua Cohen, a BSc. 

undergraduate student in the School of Kinesiology at Western University, and Dr. Jayne Garland, 

Professor and Dean of the Faculty of Health Sciences at Western University in London, Ontario. 

The purpose of this study is to evaluate the activity of the calf muscles (ankle plantarflexors) in 

response to balance disruptions. A total of 20 participants in each age group are being recruited for 

this study. 

Study Criteria: 

To participate in this study, you must be between the ages of 18-30 years or 70+ years and be able 

to understand oral and written instructions in English. You will not be able to participate in the study 

if you have sustained a physical injury (e.g. leg fracture) within the last 6 months or have been 

diagnosed with a respiratory and/or neurological disorder. 

Procedures: 

You are being asked to attend a single session that will take approximately 60-90 minutes to 

complete. You will be asked to fill out The Self Evaluation of Breathing Questionnaire regarding any 

symptoms you may be experiencing.  

After completing the questionnaire, you will be asked to complete the Community Balance and 

Mobility (CB&M) Assessment under the supervision of one of the student researchers. The CB&M 

requires you to perform various balancing activities (i.e. one legged stance, crouch walk, run, etc.). 

You will be scored on how well you complete each of the 13 tasks.  

After the CB&M, your ankle muscle power (force per unit time) will be evaluated using the BIODEX 

strength testing system. You will be positioned in a reclined chair with your ankle strapped onto an 

immovable cushion.  You will be asked to plantarflex (point toes down) and dorsiflex (pull toes up) 

mailto:psiedlec@uwo.ca
mailto:darsena2@uwo.ca
mailto:jcohen66@uwo.ca
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your ankle three times as hard as you can. The position of your ankle will then be held in neutral 

and you will be asked to push down with your foot as hard as you can without your ankle moving.  

You will also be asked to push your foot down slowly until you reach half of your maximal force, hold 

it for 5 seconds and then slowly relax. 

Electrodes will be applied to muscles of the legs and trunk, and a pad of electrodes will be placed 

over one of your calf muscles to evaluate muscle activity. You will have 26 reflective markers placed 

on various places around your body and a strap will be placed around your chest to detect your 

breathing. You will be fitted in a safety harness that is connected to the ceiling above the treadmill. 

Your resting breathing and heart rate will be measured for 2 minutes while you are standing. 

Balance disruption tests will take place when the treadmill is not moving (0 km/h), and while walking 

(3.6 km/h). These balance disruptions involve moving one or both treadmill belts, on which you are 

standing, in a variety of directions. During some of these balance tests, you will also be completing 

a cognitive task. The cognitive task is the Stroop Test, in which the name of a colour will appear in a 

colour that is different than the name. You will have to say the colour the word appears in. The 

Stroop test will randomly appear on the left, middle or right projector screen. 

Possible Risks and Harms: 

There are minimal known risks for participating in this study. By collecting personal information, 

there is the risk of a breach of privacy; this is minimized by using initials and age as opposed to full 

name and date of birth. During the CB&M and treadmill sections, it is possible for you to lose your 

balance and sustain an injury (sprain or bruise). A fall will be minimized by the presence of a 

student researcher who will stay beside the participant to act as a spotter. You will also be wearing 

a safety harness that will prevent you from falling off of the treadmill. The treadmill is also equipped 

with an emergency stop button which will bring the treadmill to a stop if pressed. 

Benefits: 

You will not receive any direct benefits from participating in this study. The results of this study may 

provide further information to clinicians and researchers and help in identifying new appropriate 

treatments for clinical populations in the future. 

Compensation: 

You will not receive any compensation for participating. A parking token will be provided if you need 

one. 

Confidentiality: 

Participation in this study is voluntary; you have the right to withdraw at any time. If you are a 

student, withdrawal from the study will have no effect on your academic success. All information that 

is provided and collected will be kept strictly confidential and you have the right to decline providing 

any personal information or answering any questions that you do not want to answer. The personal 

information required includes initials, age and gender. Email address and phone number will also be 

collected for scheduling purposes. You will be assigned a unique identification number to prevent 

identification from third parties and only the research team will have access to the recorded data 

and personal information.  

All of the information collected will be securely stored in a locked cabinet in the Wolf Orthopaedic 

Biomechanics Laboratory at Western University for a period of 7 years. Any data or information that 

is sent electronically between researchers will also be password protected. The results from this 

study will be presented in a paper and oral presentation as part of the requirement of completing a 



51 

 

 

thesis based undergraduate and graduate program. An abstract may also be submitted in the future 

to a scientific conference for consideration, with the possibility of a presentation. Confidentiality will 

be observed during the course of the research, in the final report, and in the presentation of the 

results. If you are interested in obtaining your results, a copy will be provided upon completion of 

this study. 

Western Health Sciences Research Ethics Board (HSREB) may require access to the study records 

for quality assurance (to check that the information collected in the study is correct and follows 

proper guidelines).  

Contact Information: 

If you agree to participate in this study, please complete the attached consent form. If you have any 

other questions, please feel free to contact Patrick Siedlecki by email at psiedlec@uwo.ca, 

Dominique Arsenault by email at darsena2@uwo.ca or Joshua Cohen by email at 

jcohen66@uwo.ca. If you have any questions related to the ethics of the research and would like to 

speak to someone outside of the research team, please contact The Office of Human Research 

Ethics at (519) 661-3036 or 1-844-720-9816 or by email at ethics@uwo.ca. 

Sincerely, 

Patrick Siedlecki, MSc 

Doctor of Philosophy graduate student, School of Kinesiology,  

Western University, London, Ontario 

Dominique Arsenault, BSc 

Master of Science graduate student, School of Physical Therapy, 

Western University, London, Ontario 

Joshua Cohen 

Bachelor of Science undergraduate student, School of Kinesiology, 

Western University, London, Ontario 

Dr. Tanya Ivanova, PhD 

Research Coordinator 

Western University, London, Ontario 

Dr. Jayne Garland, PhD 

Professor and Dean, Faculty of Health Sciences 

Western University, London, Ontario 

 

 

This letter is yours to keep for future reference.
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Consent Form Version 2 March 2, 2018 

 

Consent Form 

Title: Regional Activation of Plantarflexor Muscles during Standing Balance 

Principal Investigator: Dr. Jayne Garland, PhD. 

Research Team:  Patrick Siedlecki, MSc. 

Dominique Arsenault, BSc. 

Joshua Cohen 

Tanya Ivanova, PhD 

 

I, _____________________________ have read the Letter of Information, have had the nature of 

the study explained to me and I agree to participate. All questions have been answered to my 

satisfaction. 

 _____________________________ _______________________  

Participant Name (please print)   Print Date  

_____________________________ _______________________  

Signature of Participant     Print Date  

____________________________ _______________________  

Researcher Name (please print)   Print Date 

____________________________ _______________________  

Signature of Researcher     Print Date  

 

To receive a copy of your results after completion of the study, please provide an email address or 

telephone number below so you can be contacted: 

__________________________________________________________________
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APPENDIX III 

Post-hoc comparison results tables 
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Table 6. EMG Latency, denoted by mean (SD), of combined cognitive load types describing the 

interaction between perturbation type and age.  

Muscle Perturbation type Age group Latency (ms) 

Quads 

 

Unilateral acceleration Young 128.3 (38.0)a,c 

Older 78.6 (19.7) 

Bilateral acceleration Young 99.5 (25.5)b 

Older 76.6 (22.4) 

Gastrocs Unilateral acceleration Young 85.8 (16.8)c 

Older 83.0 (11.9) 

Bilateral acceleration Young  64.9(8.1)b 

Older 79.0 (9.6) 

Sol Unilateral acceleration Young 71.7 (11.0)c 

Older 71.6 (8.8) 

Bilateral acceleration Young 58.8 (8.5)b 

Older 70.1 (8.1) 

TA Unilateral acceleration Young 84.8 (12.0)c 

Older 89.0 (19.5) 

Bilateral acceleration Young 72.5 (15.9)b 

Older 88.6 (22.7) 

a denotes a significant difference from older adults during unilateral accelerations; b denotes a 

significant difference from older adults during bilateral accelerations; c denotes a significant 

difference between unilateral and bilateral accelerations in young adults 
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Table 7. EMG Latency in Quads, denoted by mean (SD), of combined perturbation types 

describing the interaction between cognitive load type and age.  

Muscle Cognitive load 

type 

Age group Latency (ms) 

Quads No Stroop Young 105.0 (27.2)a,c 

Older 78.3 (22.0) 

Stroop Young 122.9 (40.1)b 

Older 76.8 (20.2) 

a denotes a significant difference from older adults during No Stroop; b denotes a significant 

difference from older adults during Stroop; c denotes a significant difference between No Stroop 

and Stroop in young adults 

 

Table 8. EMG Amplitude, denoted by mean (SD), of combined cognitive load types describing 

the interaction between perturbation type and age.  

Muscle Perturbation 

type 

Age group RMS (a.u) 

Quads Unilateral 

acceleration 

Young 2.79 (0.84)a,c 

Older 1.47 (0.54)c 

Bilateral 

acceleration 

Young 3.67 (1.17)b 

Older 1.67 (0.74) 

Gastrocs Unilateral 

acceleration 

Young 4.68 (1.83)a,c 

Older 2.70 (1.15)c 

Bilateral 

acceleration 

Young 7.45 (2.58)b 

Older 4.06 (2.06) 

Sol Unilateral 

acceleration 

Young 2.21 (0.87)a,c 

Older 1.46 (0.44)c 

Bilateral 

acceleration 

Young 4.27 (1.63)b 

Older 1.81 (0.44) 

a denotes a significant difference from older adults during unilateral accelerations; b denotes a 

significant difference from older adults during bilateral accelerations; c denotes a significant 

difference between unilateral and bilateral accelerations in young adults; d denotes a significant 

difference between unilateral and bilateral accelerations in older adults 
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Table 9. EMG Amplitude, denoted by mean (SD), of combined perturbation types describing the 

interaction between cognitive load type and age. 

Muscle Cognitive load 

type 

Age group RMS (a.u) 

Quads No Stroop Young 2.96 (0.95)a,c 

Older 1.61 (0.76) 

Stroop Young 3.50 (1.19)b 

Older 1.52 (0.52) 

TA No Stroop Young 6.15 (2.41)a,c 

Older 4.01 (3.19) 

Stroop Young 7.16 (3.01)b 

Older 3.83 (3.19) 

. a denotes a significant difference from older adults during No Stroop; b denotes a significant 

difference from older adults during Stroop; c denotes a significant difference between No Stroop 

and Stroop in young adults 
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