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Abstract 

The function of sleep is a longstanding mystery of the brain. By contrast, the function of 

resting state networks (RSNs) is one of its most recent mysteries. The relationship between 

RSNs and neuronal activity has been unclear since RSNs were discovered during the advent 

of functional magnetic resonance imaging (fMRI). Somewhat paradoxically, investigating 

these enigmatic phenomena in parallel can help to illuminate the function of both. The three 

studies described as part of this thesis all involve an evaluation of RSN dynamics across 

wakefulness and sleep. They are all based on the same dataset, derived from an experimental 

paradigm in which healthy, non sleep-deprived participants (N=36, 21 female) slept in an 

MRI scanner, as their brain activity was recorded using simultaneous electroencephalography 

(EEG)-fMRI. An independent component analysis (ICA) was performed in the first study. 

Spatial boundaries of components in each sleep stage were compared with those of 

wakefulness, in the first attempt to catalogue RSNs across all healthy alternate functional 

modes of the brain. Against expectations, all non-wake-RSN components were positively 

identified as noise. This indicated that sleep is supported by much the same RSN architecture 

as wakefulness, despite the unique operations performed during sleep. In the second study, 

between-RSN functional connectivity (FC) dynamics were evaluated across wakefulness and 

sleep, in order to determine whether they reflect known cortical neurophysiological 

dynamics. This was confirmed, highlighting the connection between RSNs and neuronal 

activity. Moreover, the dynamic pattern suggested that one of the functions of sleep may be 

to homeostatically counterbalance wakefulness RSN FC. A further pattern, indicating 

increased FC of “higher-order” RSNs (e.g., default mode network), suggested that slow wave 

sleep might manifest an altered, rather than a reduced state of awareness, in contrast to 

historical depictions. Finally, the third study correlated frequency-banded oscillatory activity, 

as measured by EEG, with RSN activity, as measured with fMRI. This was done in order to 

track changes in representations of frequency-banded neuronal activity in each RSN across 

stages. It was discovered that the pattern of frequency band representation dynamics reflects 

the aforementioned cortical neurophysiological dynamics, further strengthening the 

connection between RSNs and neuronal activity.  
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Lay Abstract 

We spend a third of our lives disconnected from reality in a strange state called sleep. 

However it is presently unclear why it should be necessary for the sleeping brain to isolate 

itself in this way. One means of understanding why is to examine changes in brain network 

activity during sleep. A special set of “resting state” networks are particularly useful to 

understanding sleep because they have already been associated with known functions during 

wakefulness, for example, the processing of visual information. By observing 

communication changes amongst these networks, we can make use of these known 

associations to infer what the brain might be doing during sleep. This thesis makes use of 

data from a single experiment in which brain activity was recorded from sleeping 

participants. The first study found that the resting state networks that are consistently 

identifiable in wake are also consistently present during sleep, with no new networks 

appearing, despite the unique functions of sleep. This finding was foundational for the 

studies that followed however, because communication amongst these networks could be 

examined during sleep without having to consider changes to the networks themselves. The 

second study further discovered that this communication largely changes in a predictable 

manner, consistent with what is known about changes to brain chemistry during sleep. 

Moreover, the changes seem to reverse the patterns found in wakefulness, during deep sleep. 

This suggests that the function of deep sleep may be to “reset” brain activity closer towards a 

baseline pattern, so that the brain might be better prepared for the need to adapt and to create 

new patterns the following day. It is possible that this resetting process requires the brain to 

be isolated during sleep. Unexpectedly, deep sleep was also found to involve increased 

activity in networks associated with complex information processing, possibly suggesting 

that the brain might be more consciously aware during this stage than previously suspected. 

Finally, the third study found that, beyond the activity of the networks themselves, 

representing the collective activity of billions of neurons, subset neuronal populations appear 

to largely change their activity according to the aforementioned predictions. 
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Chapter 1  

1 General Introduction 

The function of sleep is one of the most longstanding mysteries of the brain. By contrast, 

understanding the function of resting state networks (RSNs) is one of the most recent 

frontiers and mysteries of the brain. The relationship between RSNs and neuronal activity 

has been unclear since RSNs were discovered during the advent of functional magnetic 

resonance imaging (fMRI) technology (Biswal, Yetkin, Haughton, & Hyde, 1995). 

Somewhat paradoxically, investigating these enigmatic phenomena in parallel can help to 

illuminate the function of both. More specifically, by exploiting sleep stages (along with 

wakefulness) as a factor of interest, it becomes possible to explore RSN dynamics during 

radically different brain operational modes, and thereby generate inferences with respect 

to RSN functions. Reciprocally, sleep dynamics can be viewed through the lens of 

changing RSN functional connectivity (FC) configurations in order to generate inferences 

with respect to sleep function. 

The three studies described as part of this thesis all involve an evaluation of RSN 

dynamics across wakefulness and sleep. In the first study, the spatial boundaries of RSNs 

were evaluated in each stage. Here, for the first time, in an effort to catalogue RSNs 

across all healthy alternate functional modes of the brain, we sought to determine whether 

sleep functions necessitate the manifestation of RSNs unique to those of wakefulness. In 

the second study, between-RSN FC dynamics were evaluated in order to determine 

whether they reflect known cortical neurophysiological dynamics, as a means of further 

highlighting the connection between RSNs and neuronal activity. Additionally, given 

known associations between RSN FC changes and varying states of conscious awareness, 

the second study had implications with respect to the dynamics of awareness during 

sleep. One limitation on the second study’s potential for generating inferences with 

respect to the neuronal origins of RSNs is the nature of the fMRI blood oxygen level 

dependent (BOLD) signal, which only indirectly measures neuronal activity. 

Consequently, an additional brain phenomenon was taken into account; namely, 

frequency-banded oscillatory activity, as measured by electroencephalography (EEG). 
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This approach has the advantage of leveraging a brain-activity recording modality that 

more directly reflects neuronal activity, in order to inform the fMRI analyses. In the third 

study, correlations between RSNs and frequency-banded activity were assessed 

dynamically across wakefulness and sleep, in order to track the frequency representation 

of neuronal activity in each RSN during different brain states.  

In sum, the purpose of the studies that make up this thesis was to make use of the 

conjunction of three ambiguous brain-related phenomena in order to help shed light on 

the nature and functions of all (with a particular focus on sleep and RSNs). This 

introductory chapter is structured to provide relevant background for each of these three 

phenomena in turn (i.e., sleep, RSNs and frequency-banded oscillations), followed by 

open questions. The last subsection indicates how the aims of each of the three studies 

addresses these open questions. Chapters 2 - 4 report the motivations, methods, findings 

and implications for each study, in detail. Finally, a General Discussion (Chapter 5), 

describes the overall implications of all three studies.  

1.1 Sleep 

1.1.1 Sleep stages 

Sleep stages are identified using a combination of EEG, electro-oculography (EOG) and 

electromyography (EMG), collectively called polysomnography, or PSG (Rechtschaffen 

& Kales, 1968). However, given that the focus of this thesis is on sleep-related brain 

activity, the following subsections will focus on the defining EEG characteristics of each 

sleep stage.  

1.1.1.1 Stage W (wakefulness) 

Wakefulness can appear as prolonged periods, or embedded as brief awakenings within 

any sleep stage (Shrivastava, Jung, Saadat, Sirohi, & Crewson, 2014). The criteria for 

scoring an EEG epoch as wakefulness is the presence of more than 50% alpha activity 

(Iber, Ancoli-Israel, Chesson, & Quan, 2007), or the absence of any sleep-specific 

features when eyes are either closed or open. Alpha appears most strongly in occipital 

cortex when a subject’s eyes are closed during relaxed wakefulness, possibly marking the 
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active suppression of visual information represented in the occipital cortex (Toscani, 

Marzi, Righi, Viggiano, & Baldassi, 2010).  

1.1.1.2 Non-REM stage 1 

Non rapid eye movement stage 1 (NREM1), also called light sleep, marks the onset of 

sleep, however it is really a transitional stage between wakefulness and NREM2, during 

which true sleep features appear. It is marked by low amplitude mixed frequency EEG 

activity (mostly in the theta frequency band), and is also characterized by the loss of 

posterior alpha-band power (Iber et al., 2007). 

1.1.1.3 Non-REM stage 2 

Non-REM stage 2 (NREM2) is the first true sleep stage. It is characterized by the first 

appearance of sleep spindles, or K-complexes (Iber et al., 2007). The theta rhythm is 

predominant during this stage, however delta waves can begin to appear, reflecting 

increasing cortical synchronization during this stage.  

Sleep spindles are phasic bursts of neuronal activity lasting >0.5 seconds and up to as 

much as 3 seconds. They are generated in the thalamus; however their appearance is very 

much the product of significant feedback between thalamus and cortex (Contreras, 

Destexhe, Sejnowski, & Steriade, 1996). They are first triggered by cortical oscillatory 

activity that recruits thalamocortical neurons (with inhibitory input from reticular neurons 

which act to modulate spindle oscillations), which finally entrain spindles in the cortex, 

where they can be recorded by EEG (Steriade, 2005). There are two distinct types of 

spindles that oscillate in different frequencies, depending on the scalp location in which 

they manifest; slow spindles (11-13.5 Hz) in frontal areas, fast spindles (13.5-16 Hz) in 

parietal areas.  

K-complexes are one of the largest events recorded by EEG in the healthy human brain 

(Cash et al., 2009). They are identified as a high amplitude negative spike in the EEG, 

followed by positive deflection. They can be followed by a spindle event, or alpha 

arousal. K-complexes can be either triggered by external sounds (called evoked K 

complexes), or can occur spontaneously. The presence of K complexes indicate 
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processing of the external environment during sleep, however it is thought that their 

function in this respect is to serve as a mechanism for inhibiting arousal and thereby 

maintain sleep (Cote, De Lugt, Langley, & Campbell, 2002; Forget, Morin, & Bastien, 

2011). It is worth noting that spindles have also been associated with this potential role 

(Cote, Epps, & Campbell, 2000a).  

1.1.1.4 Slow wave sleep 

Slow wave sleep (SWS, also called deep sleep, non-REM stage 3, or NREM3), as the 

name suggests, is marked by the increasing presence (i.e., > 20% of a sleep-scoring 

epoch) of high-amplitude, low-frequency (i.e., 0.5 - 3 Hz) slow oscillations (Iber, Ancoli-

Israel, Chesson, & Quan, 2007). In the deepest epochs of SWS, the entire EEG tracing 

can be made up of continuous trains of large amplitude slow oscillations. SWS is the 

stage in which the trend of increasing cortical synchrony becomes fully expressed. 

According to a number of markers, this stage is most dissimilar to wakefulness; 

ascending reticular activating system (ARAS) activity is inhibited, acetylcholine (ACh) 

levels are at their lowest, and the arousal threshold is highest (Hobson & Pace-Schott, 

2002). As detailed further below, the definitive feature of sleep in smaller networks of 

neurons, i.e., a burst/pause firing pattern, is most widespread during this stage. 

Significantly, SWS is longest during the first 90-minute ultradian sleep cycle and takes 

up a smaller overall proportion during subsequent cycles (over which REM begins to 

increase). Further, fatigue due to sleep deprivation is marked by localized initiation of 

SWS, prior to whole brain sleep. There is a strong biological drive for SWS, as suggested 

by the strong homeostatic response in slow wave activity during prolonged wakefulness 

or sleep deprivation (Finelli, Borbély, & Achermann, 2001; Werth, Achermann, & 

Borbély, 1996). 

1.1.1.5 Rapid eye movement sleep 

REM is identified by the presence of theta and alpha waves, as well as EOG-recorded eye 

saccades. While the EEG is similar to that of wake, EMG is significantly lower and the 

eyes are closed (Iber, Ancoli-Israel, Chesson, & Quan, 2007). REM is also known as 

paradoxical sleep, on account of these similarities to wakefulness. The resemblance of the 
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EEG is backed up by perceptual accounts of REM dreaming. Dream reports from REM 

awakenings have been found to be the most vivid (Antrobus, 1983), comparable to the 

richness of wakefulness perception. However, dream content is notably bizarre, which 

may be a consequence of reduced executive processing in frontal cortical regions during 

this stage (Braun et al., 1998). REM is shortest during the first sleep cycle, and increases 

progressively with subsequent cycles.  

REM neurophysiology is very different from that of NREM stages. The ARAS is brought 

back online, allowing for the upregulation of cortical ACh levels, which, in cats, have 

been found to increase by 116% of baseline SWS levels, which is comparable to quiet 

wakefulness (Marrosu et al., 1995). This dramatic increase facilitates cortical 

desynchronization, akin to wakefulness. This stage may also involve pontine-geniculo-

occipital (PGO) waves; endogenously-generated, propagating neuronal activity. These 

are initiated in the pons and may be the reason behind the increased visual content (i.e., 

the vivid quality) of REM dreams. PGO waves have been recorded in several species of 

non-human animals but have yet to be identified in humans, on account of the 

invasiveness of recording from the relevant brain areas. However it is presumed that 

humans have similar neural circuitry and mechanisms (Gott, Liley, & Hobson, 2017). 

1.1.2 General sleep mechanisms 

1.1.2.1 Bottom-up vs. top-down sleep mechanisms 

Sleep is best understood as a collection of interacting bottom-up and top-down processes. 

Although the global regulation of sleep is dependent upon top-down coordination by 

specialized sleep circuitry, the spontaneous development of a generalized 

sleep/wakefulness rhythm, appears to be a bottom-up, emergent phenomenon of neuronal 

networks of any size1. That said, specific sleep features beyond general sleep/wake 

rhythms, such as sleep spindles, K-complexes and the rapid eye movement (REM) state, 

                                                
1
 In this general case, sleep is simplified to synchronized activity (typically a bursting/pause firing pattern) 

and wakefulness is simplified to tonic, desynchronized neuronal activity capable of interacting with 
environmental stimuli. 
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manifest only as a consequence of the activity of more specialized circuitry. Specifically, 

circuitry capable of initiating unique interactions between cortical and non-cortical 

regions, particularly thalamocortical interactions (Hobson & Pace-Schott, 2002). 

Evidence for the bottom-up emergence of a sleep/wakefulness rhythm is as follows: 

(1) Any population of neurons will spontaneously establish sleep/wakefulness rhythms. 

C. elegans, with only 302 neurons, enters a periodic, sleep-like state known as lethargus 

(Raizen et al., 2008). In the mammalian brain, individual cortical columns alternate 

between wake-like low-amplitude EEG activity and sleep-like high amplitude activity 

(Rector, Schei, Van Dongen, Belenky, & Krueger, 2009). Isolated neuronal networks 

from in-vitro cultures have also been shown to exhibit sleep-wake cycles (Hinard et al., 

2012). Without stimulation, these cultures default to a low-frequency burst/pause firing 

pattern similar to that of cortical or thalamic neurons during non-REM (NREM) sleep. 

When stimulated with a mixture of excitatory neurotransmitters known to be upregulated 

during wakefulness, the cultures begin to exhibit a tonic firing pattern, similar to neurons 

in a wakefulness state, in vivo. Further, with the withdrawal of external stimulation, this 

firing pattern eventually reverts to a burst/fire pattern spontaneously.  

(2) Significantly, no brain region is so crucial to sleep, that its loss or dysfunction is 

capable of preventing the eventual emergence of a sleep rhythm, disturbed or otherwise 

(Krueger, Huang, Rector, & Buysse, 2013). This is true even for damaged subcortical 

regions comprising circuits that have been discovered to specialize in the regulation of 

sleep cycles. Sleep in such cases will of course be disturbed, either in terms of behaviour, 

electrophysiology or timing, however it will still be present. Further, so long as brain-

injured patients survive, even coma states are temporary states; with few exceptions, 

some form of sleep-wakefulness cycle will eventually emerge (although typical 

polysomnographic sleep-scoring criteria often cannot be applied to disorders of 

consciousness patients; Cologan et al., 2010).  

By contrast, the evolution of specialized top-down sleep circuitry is largely concerned 

with carefully coordinating the global timing of whole-brain wakefulness/slow wave 
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sleep rhythms, rather than directly generating sleep itself. The following sections describe 

these global sleep-coordination mechanisms. 

1.1.2.2 The two-process model 

According to the two-process model (Borbély, 1982), sleep timing can be predicted from 

the interaction of a circadian (i.e., 24 hour) process (“Process C”) with an independent 

homeostatic process (“Process S”) that moderates the distribution of sleep and 

wakefulness. Sleep is triggered by the coincidence of Process S reaching its upper bounds 

(as a consequence of sufficient sleep pressure, tracked by EEG slow wave activity, or 

SWA) and an increased probability of sleep onset caused by Process C (tracked via the 

release of melatonin and changes in core body temperature). A later elaboration 

(Achermann, Dijk, Brunner, & Borbély, 1993) includes the description of an ultradian 

cycle (lasting roughly 90 minutes), regulating the alternation of REM and NREM within 

sleep.  

Importantly, Process S has been shown to have a local component, such that the amount 

of waking activity in a given cortical area influences the extent of SWA in that region 

during early sleep stages. For example, unilateral hand stimulation prior to sleep results 

in an increase in EEG-recorded delta frequency power (a marker of SWA, which 

comprises both delta frequencies and the slow oscillation) over the contralateral 

somatosensory cortex during the first NREM sleep cycle, relative to unilateral 

somatosensory cortex (Kattler, Dijk, & Borbély, 1994). Further, SWA follows an anterior 

to posterior power gradient, with higher power in frontal cortical regions, as compared 

with parietal and occipital cortex. This is particularly true during early sleep cycles and 

following sleep deprivation (Finelli, Borbély, & Achermann, 2001; Werth, Achermann, 

& Borbély, 1996). These latter findings could be a reflection of higher processing 

demands on frontal cortical regions, which are thought to implement higher-order 

cognitive operations during wakefulness.  

Taken together, this evidence of a local component to Process S is consistent with the 

concept of sleep as both a top-down and a bottom-up process. Specifically, the timing of 

sleep is a consequence of global coordination, however local regions require different 
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levels of compensatory SWA, as a consequence of differing local sleep debt. In other 

words, local networks experience different sleep pressures depending on the demands of 

prior waking activity; however, top-down circuits coordinate sleep so that all regions 

enter sleep during similar timeframes regardless of this variability. Barring global 

coordination, local networks would otherwise enter sleep in accordance with their 

respective pressures. Indeed, there is evidence that sleep deprivation causes local cortical 

neuronal populations to express SWA, in advance of global signals for initiating sleep, 

and despite the remainder of the brain being in an awake state (Vyazovskiy et al., 2011). 

It has been suggested that the poor behavioural performance that accompanies sleep 

deprivation and fatigue may be a consequence of parts of the brain being in a sleep state. 

Sleep deprivation notwithstanding, these findings suggest that different cortical regions, 

as defined by RSNs or otherwise, necessarily experience different synchronization 

demands during sleep (possibly expressed as differential FC). Such synchronization 

demands would be commensurate with their activity, or function during wakefulness.  

1.1.2.3 Sleep-specific circuitry 

The circadian-timing of Process C is regulated by neurons in the suprachiasmatic nucleus 

(SCN), located in anterior hypothalamus. It is reciprocally connected to the ventrolateral 

preoptic nucleus (VLPO), an important trigger for NREM sleep that is also located in the 

hypothalamus. Process S is thought to be regulated by separate and mutually-inhibiting 

sleep- and wake-promoting nuclei located in the hypothalamus, the caudal midbrain and 

the rostral pons (Saper, Chou, & Scammell, 2001). NREM sleep is initiated when 

neurons in the VLPO release inhibitory neurotransmitters (gamma aminobutyric acid, or 

GABA, as well as galanin) that mitigate the activity of arousal-promoting nuclei located 

in the brainstem and in the posterior lateral hypothalamus. These nuclei are collectively 

known as the ARAS.  

The principal function of the ARAS is to disrupt cortical synchronization (recorded as 

high-voltage, low-frequency slow wave oscillations in EEG) and thereby facilitate the 

low-voltage high-frequency desynchronized activity necessary for implementing 

wakefulness cognition (Moruzzi & Magoun, 1949). In a similar way, the ARAS is 

involved in the generation of REM sleep, which manifests rich, wake-like dream content 
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(Hobson, Pace-Schott, & Stickgold, 2000a). The ARAS does this primarily by 

upregulating the excitatory neurotransmitter acetylcholine (ACh) in the cortex, via 

nonspecific thalamocortical pathways (Jones, 2008). In cats, cortical ACh levels were 

found to be 130% higher during quiet wakefulness, as compared with baseline slow wave 

sleep (SWS) levels, and 180% higher during active waking (Marrosu et al., 1995). These 

mechanics have been replicated in isolated cell cultures, in which the introduction of ACh 

has been shown to reduce the synchronization of action potential firing (Pasquale, 

Massobrio, Bologna, Chiappalone, & Martinoia, 2008).  

When the ARAS is inhibited during NREM, the activity of thalamocortical neurons is 

attenuated, resulting in the isolation of the cortex from exteroceptive input. Cortico-

cortical communication is not attenuated however, and slow oscillations originate from 

the cortex, characterized by an extended hyperpolarization period followed by a 

comparably extended “bursting” fire period (Steriade, 2001). These slow oscillations 

serve to coordinate other NREM oscillations such as sleep spindles and slow waves 

(Steriade, 2006).   

It is thought that the ultradian cycle is mediated by two opposing neuronal populations 

with reciprocal activity time-courses; a group of cholinergic "REM-on" neurons in the 

pontine reticular formation and aminergic "REM-off" neurons in the locus coeruleus and 

dorsal raphe nucleus (i.e., the reciprocal interaction theory, McCarley & Hobson, 1975; 

updated as the limit cycle model, McCarley & Massaquoi, 1986). 

1.1.3 Putative functions of sleep 

The possible functions of sleep are perhaps best categorized into those that involve the 

brain and those that involve the body, i.e., somatic theories. The first section will first 

briefly outline theories of somatic functions for sleep, namely; immune and metabolic 

functions. The apparent necessity of dramatically reduced conscious arousal during sleep, 

involving highly restricted processing of environmental stimuli that, in turn, radically 

compromises safety, strongly suggests that sleep largely exists to serve necessary brain-

related functions. Brain-related functions are therefore outlined in greater detail. 
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1.1.3.1 Somatic functions of sleep 

It has long been suggested by physicians that sleep serves an immune function. This has 

been tested experimentally; there is evidence suggesting that reduced sleep compromises 

immune function and further, that sleep facilitates recovery from disease (Toth, 1995). 

Sleep is also associated with reduced caloric consumption/metabolic activity, and lower 

body temperatures, and it has been suggested that at least one of its functions is to 

conserve energy for the following day (Jung et al., 2011). However, it is not clear why 

any of these functions cannot be accomplished during periods of wakeful rest (Frank, 

2006; Watson & Buzsáki, 2015). 

1.1.3.2 Brain-related functions of sleep 

As discussed above, the heavily restricted processing of environmental stimuli during 

sleep strongly suggests that it serves a necessary brain-related function. It follows that 

studies of brain activity during sleep might therefore yield the greatest insight into the 

function of sleep. Brain-related functions can be further subdivided into neuro-metabolic 

and neuro-cognitive functions (Frank, 2006) 

1.1.3.2.1 Neuro-metabolic functions of sleep 

It has been suggested that sleep serves to conserve or to restore energy supply in the brain 

(Benington & Craig Heller, 1995). Notably, brain metabolism is lower in NREM sleep, 

with positron emission topography (PET) studies indicating reduced glucose 

consumption during these stages (Heiss, Pawlik, Herholz, Wagner, & Wienhard, 1985). 

However, glucose consumption returns to or exceeds waking levels during REM sleep. 

Further, sleep studies of adenosine triphosphate (ATP) levels, a marker of cellular energy 

usage, are inconclusive with respect to the restoration of energy in the brain across sleep 

(Krueger, Frank, Wisor, & Roy, 2016). Glymphatic theories have also been proposed, 

suggesting that sleep facilitates the removal of neurotoxins. Removal of amyloid-β, a 

marker of Alzheimer’s disease, from the brain, has been found to improve during sleep 

(Xie et al., 2013). Overall however, evidence that sleep exists primarily to serve a neuro-

metabolic function is weak. Further, it does not explain the necessity for prolonged 
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periods of lost consciousness, or the complexity of sleep features and architecture (Frank, 

2006).  

1.1.3.2.2 Neuro-cognitive functions of sleep 

There is a growing body of evidence that strongly suggests that the primary function of 

sleep is related to cognition. Although long disputed, the connection between sleep and 

learning/memory now has significant experimental support; the present debate largely 

concerns which stages are relevant to memory consolidation, which kinds of memory are 

consolidated and by what mechanisms (Stickgold & Walker, 2005). Evidence of 

procedural memory improvements, particularly related to NREM2 spindles, has strong 

support (Fogel & Smith, 2011; Walker, Brakefield, Morgan, Hobson, & Stickgold, 2002). 

The theory of active system consolidation (Born & Wilhelm, 2012) suggests that 

memories that are weakly encoded by hippocampal circuits are actively replayed during 

SWS, in order to facilitate consolidation in the cortex. Further, there is evidence of a 

connection between sleep (spindles, in particular) and cognitive abilities, specifically 

reasoning (Fang, Ray, Owen, & Fogel, 2019a). This suggests that the normal and 

efficient generation of sleep spindles is necessary to support normal intellectual ability. 

At the synaptic level, long term-potentiation (LTP) and –depression (LTD) respectively 

strengthen and weaken connectivity weightings between synapses, depending on usage 

(Bear & Malenka, 1994). These molecular mechanisms are thought to underlie learning 

and memory at the neuronal level (Cooke & Bliss, 2006). There is evidence that LTP can 

be induced during REM (Bramham, Maho, & Laroche, 1994), suggesting that memory is 

consolidated during this stage. Partially in contrast to the idea that sleep serves to 

strengthen connectivity via LTP, the synaptic homeostasis hypothesis (SHY; Tononi & 

Cirelli, 2003) proposes that the primary function of SWA during NREM is to globally 

downscale synaptic potentiation. This downscaling would act as a homeostatic 

mechanism, in order to return total synaptic weightings to a baseline level. Returning the 

brain to such a baseline would help maximize cognitive plasticity for the following day 

(“sleep is the price we have to pay for plasticity”).  
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However (as pointed out in Watson & Buzsáki, 2015), where SHY and other synaptic-

homeostasis theories suggest that synaptic connections are weakened during sleep, 

memory-related theories seem to require the opposite. If sleep in fact serves both 

functions, how can these opposite processes be reconciled? Watson and Buzsaki draw 

attention to the sharp-wave ripple (SPW-R), a hippocampal rhythm that is coupled with 

many other rhythms (including slow waves and spindles), and which also seems to be 

involved in the neuronal replay of waking behaviour (Karlsson & Frank, 2009). They 

suggest that, during SWS, cortical slow waves prompt hippocampal SPW-Rs to replay 

waking memories to the cortex, where it can be encoded in long-term storage. They also 

point out, first, that neuronal firing rates steadily decrease across successive sleep cycles, 

but that the majority of this rate decrease is accounted for during REM, which only ever 

follows SWS. They suggest that LTP/memory consolidation is implemented first, during 

SWS, followed by global synaptic downscaling during REM. This allows for decreases in 

synaptic weighting, even in local circuits relevant to the encoding of a given memory, 

(consistent with a synaptic homeostasis function), without compromising the relative 

strengthening of these connections (consistent with a memory consolidation function). 

This contradicts the mechanisms proposed in SHY (which suggested that downscaling 

takes place during SWS), but at least explains how both functions can take place during 

sleep. 

Finally, the REM “wakeup hypothesis” (Klemm, 2011) proposes that, irrespective of the 

specific function subserved by SWS, it is highly dysfunctional with respect to waking 

adaptive behaviour. The brain therefore needs a continual reminder of how to engage in 

waking cognition, lest it should get stuck in such a maladaptive brain state forever. This 

theory suggests that REM evolved as a means of implementing such a reminder. Hence 

the aforementioned similarities shared by REM and wakefulness (which are in direct 

contrast to both the neurophysiology of NREM and the mechanisms used to engage it). 

1.1.4 Open questions: what can RSNs tell us about sleep? 

If the primary function of sleep is truly neuro-cognitive, as the literature indicates, this 

would suggest an important role for RSNs. As will be elaborated upon in the following 

section, RSNs are an attractive way to parcellate brain activity due to their spatial 
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similarity to what is known about the neural substrates of various cognitive functions. 

Moreover, RSNs are inherently defined and distinguished from each other as regions of 

strongly correlated activity and, further, inter-RSN relationships are also defined by the 

extent of this correlated activity. Thus, their very nature is highly suggestive of a natural 

role in the implementation of synaptic strengthening and downscaling, which are 

recurrent themes in theories of sleep function. If RSNs do play a role in sleep function 

then the following questions remain: 

(1) Do RSN dynamics during sleep provide evidence to support any of the 

aforementioned theories of neuro-cognitive sleep function?  

(2) Do the aforementioned sleep functions necessitate the manifestation of new RSNs 

unique from those of wakefulness, such that RSNs might comprise an additional 

mechanism for implementing sleep functions? If not, is the reverse the case; i.e., is one of 

the further functions of sleep to implement RSN FC changes?  

1.2 Resting state networks 

Much like sleep, RSNs are very much a phenomenon in search of a function. The first 

complication in this search is the nature of the BOLD signal used by fMRI to capture 

RSN activity. It is only due to a small quirk of the hemodynamic response that we are 

able to use BOLD to make inferences about neuronal activity. It turns out that neuronal 

activity causes a disproportionate local increase in arterial cerebral blood flow (CBF), 

and therefore in oxygenated hemoglobin, dwarfing the amount of oxygen that can be 

metabolized by local tissue. This, in turn, results in an increase in venous oxyhemoglobin 

and a proportionate decrease in venous deoxyhemoglobin (which has magnetic properties 

that cause it to interfere with the BOLD signal); the upshot is a BOLD signal increase. If, 

instead, oxygen supply always matched metabolic demand, there could never be a 

detectable BOLD signal difference in response to neuronal activity (Buxton, 2013). 

Nevertheless, fMRI only ever measures changes in venous deoxyhemoglobin 
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(technically, it does not even measure this directly2), not neuronal activity. This naturally 

begets uncertainty with respect to the neuronal activity dynamics that fMRI is purported 

to capture; an uncertainty that is exacerbated by the further inferential problems of the 

resting-state paradigms used to derive RSNs. 

In a hypothesis-driven fMRI paradigm, the timing of the BOLD signal difference can be 

modeled in accordance with the timing of provided stimuli. A general linear model 

(GLM) can then be used to identify brain regions whose BOLD activity patterns match 

the expected model (Friston et al., 1994). By contrast, resting-state fMRI studies are 

inherently data-driven: there are no stimuli onsets that can be used to model expected 

signal responses. Without such a model, it is difficult to establish whether the resting-

state signal represents a response to external stimuli, or even to endogenous cognitive 

processes. A lingering concern is that resting state activity might simply be a 

physiological artifact related to CBF only, and is not an account of neuronal activity at all 

(Tong, Hocke, Fan, Janes, & Frederick, 2015; van den Heuvel & Hulshoff Pol, 2010).  

Fortunately, there are ways to infer a connection between RSNs and neuronal activity, 

without having to use a priori models. In a GLM paradigm, it is inferred that neuronal 

activity is taking place because the change in BOLD signal coincides with known 

changes in stimuli that would be expected to change neuronal activity. A similar 

inference can be made for RSNs; if BOLD RSN activity is in some way modulated by 

global brain state changes that are known to change global neuronal activity, then this 

could be used as evidence that RSNs have some relationship with neuronal activity. 

Fortunately, it appears that such modulation does occur (see section 1.2.3, below). This is 

partly why the concern of many contemporary RSN studies lies in establishing the 

precise nature of the relationship with neuronal activity (Chen et al., 2017), rather than 

determining whether there is a relationship at all. The second study (outlined in Chapter 

3) serves this important role. 

                                                
2
 The fMRI scanner actually records electromagnetic signals emitted from hydrogen protons that have 

previously absorbed radiofrequency pulses emitted by the scanner. The diamagnetic properties of 
deoxyhemoglobin cause it to interfere with this returned signal, thereby inferentially indicating its presence. 
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Beyond such inferential paradigms, it would also be helpful to clarify the nature and 

function of RSNs by relating them to neuronal activity in a more direct manner. Instead 

of correlating changes in RSN activity with contextual changes that are known to change 

neuronal activity, it would be more advantageous to correlate them with modulations of 

direct measures of neuronal activity. Studies interested in this more direct approach 

appear to have followed one of two general approaches. The first involves correlating 

BOLD RSN activity to concurrently collected data from a modality that is more closely 

tied to neuronal activity, such as electrocorticography (ECoG), or EEG (Chang, Liu, 

Chen, Liu, & Duyn, 2013; Hacker, Snyder, Pahwa, Corbetta, & Leuthardt, 2017; Mantini, 

Perrucci, Del Gratta, Romani, & Corbetta, 2007). The second approach involves 

generating inferences with respect to RSN activity based only on data collected from a 

non-fMRI modality, or relating such data to non-concurrently captured fMRI data (Florin 

& Baillet, 2015; He, Snyder, Zempel, Smyth, & Raichle, 2008). The drawback of the 

second approach is that it has the reverse problem that fMRI-only paradigms have: they 

are more directly related to neuronal activity at the cost of being only inferentially related 

to RSN activity, which is best captured via fMRI. The third study (Chapter 4) follows the 

first approach, by correlating RSN activity, as determined using fMRI, with frequency-

band activity, as determined using concurrently-recorded EEG. 

1.2.1 Identifying RSNs 

There are two widely established means for identifying RSNs (van den Heuvel & 

Hulshoff Pol, 2010). The first uses independent component analysis (ICA) to derive 

RSNs from a data-driven approach. The second uses seed-based correlation analysis 

(SCA) to identify RSNs by making use of regions that have been determined a priori to 

localize RSNs. 

ICA methodology 

ICA is a methodology for separating signals recorded by multiple sensors into separate, 

independent “source” signals that are presumed to be (linearly) mixed within the recorded 

signals. ICA works by minimizing the Gaussianity of the recorded signals, in order to 

restore the original source signals (McKeown et al., 1998). In the context of resting state 
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fMRI, the recorded signals are the BOLD activity time-courses recorded for each voxel, 

and the source signals are independent components (ICs). If the voxel data is plotted on 

multidimensional axes (one axis per voxel), the distribution of BOLD amplitudes along a 

given axis should be Gaussian. By rotating and maximizing the entropy of such a 

multidimensional dataset along an a priori-defined number of axes (Bell & Sejnowski, 

1995), the distributions of amplitudes along each axis become minimally Gaussian (this 

only works if the sources are themselves non-Gaussian). The source signals/ICs can then 

be derived from the axes of this transformed dataset. Notably, the number of a priori-

defined axes selected (called model order selection or dimensionality selection) is 

arbitrary, although there are data-driven methods for making this decision somewhat less 

arbitrary (Beckmann & Smith, 2004). In practice, an ICA model order decomposition 

corresponding to approximately 20-30 ICs has been found to be optimal for deriving the 

“canonical” RSNs from fMRI data. As will be discussed further below, the rationale for 

this model order number is largely driven by the general interpretability of the canonical 

RSNs. 

SCA methodology 

SCA uses the average BOLD time-course activity of a given region (selected a priori) as 

a “seed” that is correlated with remaining areas of interest, in order to identify other 

regions that have similar activity profiles (van den Heuvel & Hulshoff Pol, 2010). In the 

case of RSNs, these seeds are generally RSN nodes derived from prior ICA analyses, so 

in this sense, SCA is a fundamentally hypothesis-driven methodology. One notable 

exception is the very first RSN study, which identified the bilateral somatomotor network 

from a unilateral motor cortex seed region (Biswal, Yetkin, Haughton, & Hyde, 1995). 

Importantly, given that the first study described in this thesis attempted to discover new 

RSNs during sleep, the data-driven ICA methodology was used, as the use of SCA would 

only bias findings towards previously established RSNs. 

Based on the methodologies of these two techniques, one overriding property of RSNs 

becomes apparent; they are fundamentally defined as regions of correlated activity. 

However, as discussed, the boundaries of this activity are arbitrary in the sense that they 
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are wholly dependent on the arbitrary number of dimensions chosen for an ICA 

decomposition (or, in the case of SCA, boundaries are dependent, a priori, on nodes 

based on “arbitrary” ICA results). Using a model order of 1, for example, would yield the 

entire brain as a single RSN. Alternatively, at the other extreme, one could have one IC 

for nearly every individual voxel in the fMRI dataset. What can a decomposition of 20 or 

30 provide that the extremes do not?  

The most salient answer is improved interpretability (Tagliazucchi & van Someren, 

2017). There are a host of different publicly available brain parcellations (Arslan et al., 

2018). For example, the automated anatomic labeling (AAL) atlas (Tzourio-Mazoyer et 

al., 2002), with 90 regions of interest (ROIs) across both hemispheres, has been 

implemented in (Spoormaker et al., 2010) and (Tagliazucchi & Laufs, 2014) to generate 

resting state FC maps in NREM sleep. These studies facilitate general conclusions about 

the differences in FC between wakefulness and NREM sleep, indicating, for example, 

that NREM1 sleep involves an overall increase in FC, relative to wakefulness. However, 

it is difficult for such studies to generate claims about, say, sensory processing, or to 

distinguish between sensory and higher-order processing, without first clustering the 

parcels into larger ROIs that correspond to regions associated with sensory processing 

and higher-order processing. By contrast, an ICA model order of around 20 generally 

facilitates such interpretations, as this typically yields the highly reproducible, so called 

“canonical” RSNs, which have been discovered to spatially correspond to regions known 

to be associated with cognitive functions (Smith et al., 2009). For example, the bilateral 

“auditory” RSN maps onto Heschl’s gyrus and bilateral superior temporal lobes, regions 

that are known to act as cortical substrates for auditory processing. Nevertheless, until the 

function of RSNs can be fully clarified, the spatial importance of even the canonical 

RSNs will remain an open question.  

Of course, even within an RSN there is still variability of correlated activity. A useful 

illustration of the differences in within- vs. between-RSN variability is the robust finding 

that the DMN has reduced FC between anterior and posterior nodes during SWS. This 

finding is established by using the posterior cingulate cortex (PCC) as an SCA seed 

(Horovitz et al., 2009). This kind of approach can shed light onto the sub-functions of 
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smaller hubs that comprise the larger-scale networks. Nonetheless, the DMN can still be 

robustly established as a “whole” network using ICA with a 30 model-order IC 

decomposition (Houldin, Fang, Ray, Owen, & Fogel, 2019). 

1.2.2 RSN properties 

As discussed above, although RSN studies often use SCA, the a-priori-identified nodes 

used in SCA are largely based on the findings of ICA studies (with the first RSN study 

being the exception). It is therefore most appropriate to discuss RSN and non-RSN 

properties in terms of ICA-derived IC properties. 

1.2.2.1 What isn’t a resting state network? Spatial and temporal 
features of non-neuronal independent components 

In any ICA decomposition, many of the IC sources will correspond to non-neuronal 

artifacts. Fortunately, the spatial and temporal profiles of these artifacts are well 

characterized; so much so that automated software for identifying and removing them has 

been developed (Griffanti et al., 2014; Salimi-Khorshidi et al., 2014). Spatial features 

include; indiscriminate overlap with non-grey matter regions, e.g., white matter, or 

cerebrospinal (CSF)-containing spaces such as the ventricles and the sagittal sinus; large 

numbers of small clusters, and; motion artifacts, typified by ring or crescent shapes at the 

edges of the brain. Temporal features include; high power at fast frequencies, or power 

distributed randomly across all frequencies; sudden spikes in IC timecourses, and; high 

timeseries correlation with motion timeseries, or their derivatives (Griffanti et al., 2017; 

Kelly et al., 2010a). Importantly, artifacts can only be identified by a combination of 

spatial and temporal features. For example, artifacts can have high power at low 

frequency (i.e., similar to RSNs), and can only be distinguished from RSNs, in such 

cases, by carefully examining their spatial features. 

1.2.2.2 What is a resting state network? Spatial and temporal 
features of neuronal independent components. The 
canonical RSNs, and their putative functions 

Spatial IC features thought to reflect neuronal activity include; low numbers of large 

clusters, also called “smoothness” (e.g., four large clusters for the DMN), and; good 
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spatial mapping onto grey matter areas, with low mapping onto brain boundaries. 

Temporal features include; high power at low frequency (i.e., < .1 Hz), with very little 

power at higher frequencies), and; rhythmic timeseries activity, devoid of sudden spikes 

or flat lines (De Luca, Beckmann, De Stefano, Matthews, & Smith, 2006; Griffanti et al., 

2017). 

RSNs are generally subcategorized into sensory RSNs and “higher-order”, or executive 

RSNs (Heine et al., 2012a). The sensory RSNs are primarily involved in the processing 

of unimodal sensory information, although of course each RSN comprises some degree 

of multimodal and association circuitry. They typically include; a somatomotor network 

comprising supplementary motor area, sensorimotor cortex, and secondary 

somatosensory cortex; an auditory network comprising superior temporal gyrus, Heschl's 

gyrus, posterior insula, and primary and association auditory cortices, and finally; three 

visual networks: a primary visual network encompassing bilateral striate cortex, a 

bilateral extrastriate visual network and a ventral stream visual network, which extends 

across bilateral inferior temporal lobes (Smith et al., 2009). A cerebellar network is also 

robustly identifiable, and has been implicated in emotion processing, though the three 

studies described in this thesis primarily focus on cortical RSNs. 

Higher-order RSNs include two fronto-parietal (F-P) networks, one for each hemisphere. 

They comprise lateral PFC, dmPFC, frontal eye fields (FEF), and posterior parietal 

cortex. F-P networks are also called cognitive control networks, and are thought to play 

an important role in mediating externally-directed attention and cognition (Mulders, van 

Eijndhoven, & Beckmann, 2016). F-P networks can also be dissociated into ventral and 

dorsal attention networks (Corbetta & Shulman, 2002; Vossel, Geng, & Fink, 2014). The 

dorsal attention network (DAN), comprising intraparietal and superior frontal cortex, 

facilitates top-down, goal-directed attention. By contrast, the ventral system, comprising 

the temporal-parietal junction (TPJ) and inferior frontal cortex, is capable of interrupting 

the dorsal system, in order to draw attention towards salient information in the 

environment. F-P networks are also called “task-positive” networks (Fox et al., 2005) to 

contrast them with their opposite complement, the so-called “default mode” network 

(DMN), or “task negative” network. The DMN includes bilateral ventral and dorsal 
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medial PFC (v/dmPFC), posterior cingulate cortex (PCC) and the precuneus, bilateral 

parietal cortex, as well as associations with bilateral entorhinal cortex.  

The DMN was first discovered in a PET study in which brain processing of attention-

demanding stimuli was contrasted with the brain at rest. DMN regions decreased their 

activity during attention tasks, yet increased their activity during rest, particularly when 

the eyes were closed (Raichle et al., 2001a). As a consequence of this connection to 

restful waking states, it was initially thought to act as a kind of baseline, or “default” 

processing network. However, it has since been associated with many other types of 

processing, including the regulation of moods, social behaviour, internally-directed 

thoughts/daydreaming/remembering, as well as self-awareness (Raichle, 2015). The 

DMN has also gained particular importance on account of its consistent prominence in 

studies involving manipulations of conscious arousal, such as deep sleep (Horovitz et al., 

2009), sedation (Boveroux et al., 2010), and studies involving brain-injured patients 

(Boly et al., 2009). Consequently, it is thought to play an important role in the 

manifestation of consciousness.  

1.2.3 RSN functional connectivity 

As discussed above, one of the strongest arguments in favor of connecting RSNs to 

neuronal activity, despite the inferential limitations of the BOLD signal, is the fact that 

RSN FC is known to be modulated by state changes that are also known to modulate 

neuronal activity. Significantly, such state changes include sedation, pathology, brain 

injury, shifts of cognition, and most relevant to this thesis, sleep.  

RSN FC modulation by cognitive operations  

Taken by itself, the finding of significant spatial overlap between RSNs and what is 

known about the neural substrates of cognitive functions (Smith et al., 2009) is already 

strongly suggestive of an important relationship between the two. This impression is 

extended, however, by RSN FC studies, which indicate that between-RSN FC changes 

correlate with individual differences in cognitive/executive function (Reineberg, 

Andrews-Hanna, Depue, Friedman, & Banich, 2015; Reineberg, Gustavson, Benca, 
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Banich, & Friedman, 2018). In particular, it has been shown that improved performance 

on executive tasks is associated with stronger negative FC between F-P networks and the 

DMN. This suggests that higher cognitive ability, in general, may be dependent on the 

increased segregation of the task positive/negative networks. Another study found a 

positive correlation between verbal reasoning abilities (e.g., language comprehension) 

and negative FC between the auditory network and DAN (Naci et al., 2018). It was 

suggested that enhanced functional separation of higher-order RSNs and sensory RSNs 

might be related to improved cognitive performance. These findings did not appear to 

extend to other higher-order RSNs, however.  

By contrast, improved task-switching was associated with stronger positive FC between 

F-P and visual RSNs, and between the DMN and sensory RSNs, generally (Reineberg et 

al., 2015). Intriguingly, cognitive decline associated with benign senescent aging was 

found to parallel reduced FC involving higher-order RSNs, such as the F-P and DMN, 

but not involving “emotion”-related networks, which were identified as networks that 

included inferotemporal areas, mPFC, as well as the cerebellum (Nashiro, Sakaki, 

Braskie, & Mather, 2017). Taken together, the conflicting results of these studies suggest 

that a nuanced view of the relationship between cognition and RSN FC is warranted. 

Since “cognition” is an umbrella term covering a multitude of divergent functions (e.g., 

task-switching versus language comprehension), the mediation of these functions by 

specific RSN FC relationships is likely highly idiosyncratic. Importantly, however, it 

does seem that RSN FC changes are sensitive to the facilitation of these individual 

functions, furthering the impression that they play an important role in their 

manifestation. 

RSN FC modulation by pathology 

It is important to stress that for pathological conditions, the brain is most likely 

attempting to achieve healthy waking function. Consequently, modulations of RSN FC 

configurations during these states are best understood as partially successful attempts to 

replicate healthy waking configurations, rather than attempts to achieve unique 

configurations in a teleological sense. Epilepsy is associated with several RSN FC 
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alterations; in particular, decreased within-DMN FC is associated with both focal 

epilepsy and idiopathic generalized epilepsy (Centeno & Carmichael, 2014). Alzheimers 

disease is associated with reduced within-RSN FC in both the DMN (in particular, FC 

between MTL regions and PCC) and in executive attention networks (Sorg et al., 2007; 

Vemuri, Jones, Jack, & Jr, 2012; Wang et al., 2006).  

Schizophrenia is widely thought to be a disconnection syndrome; consequently RSN FC 

changes can be expected to play a particularly important role in this disorder (Yu et al., 

2012). SCA-based studies largely indicate reduced FC associated with schizophrenia; 

when the PCC was used as a seed, FC with the remaining nodes of the DMN was found 

to be reduced (Bluhm et al., 2007). Intriguingly, schizophrenia patients with auditory 

hallucinations were found to have reduced interhemispheric FC between auditory 

networks, reinforcing the concept that disconnected information plays a role in 

schizophrenia (Gavrilescu et al., 2010). It is possible that this facilitates the misattribution 

of endogenous information to exteroceptive sources during hallucinations. 

Finally, it is worth mentioning, here, two other conditions that, similar to pathology, 

could also be viewed from the perspective of (largely failed) attempts to replicate healthy 

waking RSN FC configurations and functions. These are sedation and traumatic brain 

injury (TBI). However, as these conditions are pertinent as context for a more speculative 

discussion in Chapter 5, it is more appropriate to review the relevant literature in that 

chapter (see Section 5.2.2). 

RSN FC modulation by sleep 

By contrast to the RSN FC configurations of pathology, sedation and TBI, the 

coordinated reconfiguration of RSN FC during sleep definitively does not reflect an 

attempt to facilitate healthy wakefulness functions or to replicate healthy wakefulness 

RSN FC configurations. Sleep comprises at least two healthy alternate functional modes 

of the brain (i.e., NREM and REM), each with unique objectives distinct from those of 

wakefulness. As discussed above, although these objectives have not yet been fully 

ascertained, it is clear from sleep neurophysiology and behaviour (which can only be 

considered maladaptive to the imperatives of waking survival) that these functions are 
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necessarily different from wakefulness. Therefore, the coordinated modulation of RSN 

FC configurations during sleep is best understood as an attempt to differentiate RSN FC 

from that of wakefulness, in order to better support functions unique from those of 

wakefulness.  

Likely as a consequence of the challenges of acquiring fMRI sleep data in a noisy and 

uncomfortable scanner environment, there is a paucity of sleep FC studies, in general. It 

is therefore useful to summarize results from both RSN FC studies and FC studies which 

used non-RSN based parcellations. Such studies consistently indicate an overall increase 

in FC during early NREM sleep (i.e., NREM1 and NREM2), relative to wakefulness FC. 

They further indicate an overall decrease in FC during deeper NREM sleep i.e., SWS, 

relative to both wakefulness and early NREM sleep FC (Spoormaker et al., 2010; 

Tagliazucchi & Laufs, 2014). Corticothalamic FC is also reduced during NREM1, 

indicating a possible mechanism for impeding environmental stimuli during this early 

sleep stage; however it is quickly restored in NREM2 (during which K-complexes partly 

subserve this function). Significantly, a complete accounting of sleep FC during REM is 

conspicuously absent from these studies. Since REM is more common in later sleep 

cycles, and arousal threshold is lower than NREM sleep, the scanner environment makes 

it particularly challenging to acquire these data. 

Significantly, there are no RSN FC studies that comprehensively evaluate trends across 

the complete range of NREM and REM stages. An indication of the nature of such trends 

can be garnered from the studies that do exist, however. RSN FC sleep studies indicate 

the persistence of the canonical RSNs during NREM sleep, including SWS (Tagliazucchi 

et al., 2013). There is also evidence that the brain becomes more modular in general 

during NREM sleep, with one study indicating an increase in the ratio of within-RSN FC 

to between-RSN FC across NREM sleep (Boly et al., 2012). This trend is supported by 

findings that the anterior and posterior components of the DMN become less cohesive 

during SWS (Horovitz et al., 2009), with another study indicating evidence for this 

breakup beginning as early as NREM2 (Larson-Prior et al., 2011). Notably, studies of 

NREM1 indicate that DMN FC is little different from wakefulness, however (Horovitz et 

al., 2008; Larson-Prior et al., 2009). Finally, one study of DMN FC in REM sleep 



24 

 

indicated a return of anterior/posterior coupling during this stage, following SWS 

decoupling (Chow et al., 2013). This study also found that the negative FC between the 

DMN and DAN, characteristic of wakefulness, disappeared during REM, suggesting a 

possible substrate for the bizarre dreams typical of this stage. 

Overall, these studies suggest that NREM is marked by a progressive breakdown of 

wakefulness-like FC, manifested as increasingly isolated RSNs and even isolated nodes 

within RSNs. This coincides nicely with what we know from NREM neurophysiology, 

discussed above (Section 1.1.1). Namely, the shutdown of the ARAS results in a 

progressive decrease in ACh levels in the cortex across NREM, allowing corticocortical 

FC to revert to highly synchronized activity, in contrast to the marked desynchronized 

activity characteristic of wakefulness. It is important to stress however that an increase in 

synchrony between neurons does not necessarily suggest a concomitant increase in 

between-RSN FC, across the board; it only suggests a breakdown of wakefulness FC 

patterns.  

Despite these findings, two things are missing from the overall picture: (1) A complete 

understanding of FC dynamics across wakefulness, NREM and REM (i.e., FC changes in 

REM are poorly understood), and (2) A complete picture of the interactions of all the 

canonical RSNs (i.e., prior studies largely focused on the DMN, with insights into the 

activity of other RSNs primarily in early NREM stages only).  

Clues indicating a potential pattern of RSN FC changes across all stages can be found in 

modulations of DMN FC, for which we have the most complete picture. Specifically, 

there is a progressive breakdown of the DMN during NREM; in NREM1 DMN FC is 

mostly indistinguishable from wakefulness; in NREM2 the anterior and posterior nodes 

begin to reduce their FC, culminating in their dissociation during SWS. Finally, within-

DMN FC is restored during REM sleep. Applying this within-RSN FC pattern to 

between-RSN FC, one can imagine a progressive deviation away from wakefulness FC 

during NREM and a return during REM.  
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1.2.4 Open questions: what can sleep tell us about RSNs? 

(1) As discussed above, there seems to be an arbitrary quality to RSN spatial boundaries, 

i.e., there is variability in both within- and between-RSN FC, so it is not entirely clear 

that the boundaries used to distinguish these two kinds of variability are meaningful. 

Also, as discussed in section 1.1, sleep (NREM, in particular) facilitates dramatic cortical 

synchronization changes. Finally, unlike pathological, sedation, or TBI states (for which 

no new, spatially distinct RSNs have been discovered), sleep comprises at least two 

healthy, alternate modes of the brain, and therefore cannot be considered a compromised 

attempt to achieve healthy wakefulness functionality. As a consequence of these three 

considerations, is it possible that the boundaries of RSNs might shift during sleep, or that 

new, spatially distinct RSNs might manifest? This possibility remains to be explicitly 

tested and explored. 

(2) If RSNs truly reflect neuronal activity, then they should be impacted by state changes 

that are known to affect neuronal activity. NREM sleep entails a progressive increase in 

synchronized neuronal activity, from NREM1 to SWS. REM entails a return to 

wakefulness-like desynchronized activity, however it is also distinguished from 

wakefulness in a number of ways (e.g., cortical ACh levels are not quite as high and the 

content of REM dreams is marked by bizarre features not present in waking perception). 

Do these trends in neuronal synchrony across sleep impact RSN FC in a predictable way, 

as would be expected if RSNs represent neuronal activity?  

1.3 Frequency banded oscillatory activity 

As argued above, one of the more effective ways of clarifying the connection between 

RSNs and neuronal activity is to relate BOLD RSN activity to signals from brain activity 

recording modalities that more directly reflect neuronal activity. EEG is one of several 

technologies that capture fluctuating electromagnetic fields that are themselves directly 

generated by the summed oscillatory activity of large neuronal populations. By splitting 

such summed signals into different frequency bands and binning this banded activity 

according to the length of a volume used to record BOLD signals, an EEG frequency-

band model can be created. This model can be directly correlated with BOLD RSN 
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activity timeseries, in order to derive a picture of the neuronal frequencies represented 

within each RSN. This was the purpose of the third study in this thesis (Chapter 4).  

For clarification; the focus of the third study was to make use of EEG frequency-banded 

activity to probe neuronal representation in RSNs, in order to complement the second 

study, which generated inferences of neuronal RSN activity by using sleep to manipulate 

the neurophysiological context of the brain. The purpose of the third study was not to use 

RSN activity (or sleep) to elucidate the nature of frequency-banded activity. The present 

section therefore focuses on oscillatory activity only insofar as it is relevant to clarifying 

the nature of RSNs.  

1.3.1 The mechanics of neuronal oscillatory recording. Correlating 
EEG and BOLD signals. Common frequency-band groupings 

The summed activity of all ionic processes occurring in brain tissue (including, but not 

restricted to neuronal action potential firing3) generates an electrical potential, or voltage. 

Differences in voltage between separate cortical areas create an electromagnetic field. 

The changing activity of this field can be recorded extracellularly at the scalp (where it is 

called EEG), at the cortical surface (where it is called ECoG), or in electrodes implanted 

within the cortical tissue (where it is called the local field potential, or LFP). 

Alternatively, the magnetic field perpendicular to this electric field can be recorded as 

well (called magnetoencephalography, or MEG), however each of these recording 

modalities ultimately chronicles the same phenomenon (Buzsáki, Anastassiou, & Koch, 

2012).  

The more distant recording modalities, in particular EEG, have low spatial resolution 

however, since voltage scales with the inverse of distance, and greater distances also 

result in signal interference from nearby fields. In theory then, EEG and fMRI 

complement each other well (Huster, Debener, Eichele, & Herrmann, 2012), with fMRI 

                                                
3
 Anything capable of facilitating a transmembrane current can generate an electrical potential; e.g., ionic 

charge differences across membranes in the dendrites, soma, axons, as well as glia. The resulting electric 
field therefore represents more than just synchronized fire amongst neurons. 
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making up for deficiencies in EEG spatial resolution, and EEG making up for the poor 

inferential power of the BOLD signal, with respect to neuronal activity (not to mention 

the superior temporal resolution of EEG making up for the poor temporal resolution of 

fMRI recordings). Importantly, given that the captured EEG signal represents summed 

activity, it can be decomposed into multiple frequency bands representing the separate 

neural populations that express different oscillations. This process is called spectral 

analysis, or spectral decomposition. The amplitude/power of a given frequency band is 

proportional to the number of neurons involved in expressing that rhythm. This power 

can be summed across time bins corresponding to the length of an individual volume of 

concurrent fMRI data, thereby creating a model4 of expected activity that can be 

correlated with the activity timeseries of each RSN. Models created in this way facilitate 

a hypothesis-driven methodology, similar to GLM studies. Consequently, another 

drawback of resting state studies can be overcome; namely the inferential challenges of 

data-driven approaches. 

Neuronal activity is commonly grouped into a series of frequency bands, generally 

categorized as follows: slow oscillations (0.5-1 Hz), delta (1-4 Hz), theta (4-8 Hz), alpha 

(8-12 Hz), sigma (12-16 Hz), beta (16-30 Hz), and gamma (30-60 Hz). Frequencies 

slower than the slow oscillation are termed infraslow, frequencies above gamma are 

called high-gamma or ultra-fast. Notably, the specific bounds of a given frequency band 

are up for debate. Further, some believe that beta and gamma should be grouped into the 

same category (“fast”), due to the rapid ability for neurons to transition between the two 

frequencies and evidence that there is no precise cutoff between the two (Slotnick, Moo, 

Kraut, Lesser, & Hart, 2002; Steriade, 2006; Steriade, Amzica, & Contreras, 1996).  

                                                
4
 This model can be improved by convolving the binned frequency power timeseries with a hemodynamic 

response function (HRF), which itself models the delayed (and overcompensating) blood flow response to 
neuronal activity. 
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1.3.2 Relationships between frequencies. Phase-amplitude 
coupling 

A general principle of frequency bands is that small populations of neurons coordinate 

their firing quickly via fast oscillations, thereby expressing fast frequencies, in proportion 

to the reduced time needed for signals to cross small distances5. By contrast, large 

populations coordinate their timing slowly, expressing slow frequencies, for opposite 

reasons (Buzsaki & Draguhn, 2004). Any large neural population, for example an RSN, 

necessarily comprises a multiplicity of neurons involved in different networks, however; 

with some neurons facilitating communication over long distances, and others over 

shorter distances. An RSN therefore necessarily manifests multiple frequencies; this has 

also been established experimentally (Mantini, Perrucci, Del Gratta, Romani, & Corbetta, 

2007).  

Beyond this general principle, given that slow frequencies can synchronize larger neural 

populations, it has been suggested that slower oscillations coordinate the activity of faster 

rhythms, in a hierarchical manner. There are several indications that this is indeed the 

case; for example, theta phase is known to modulate gamma amplitude in the 

hippocampus (Bragin et al., 1995a). Similarly, a study of auditory cortex in monkeys 

indicated the modulation of theta amplitude by delta phase, and the further modulation of 

gamma amplitude by theta phase (Lakatos et al., 2005). This kind of coupling is known 

as phase-amplitude coupling (PAC).  

Significantly, the slow oscillation is capable of grouping other brain rhythms during sleep 

(Steriade, 2006). For example, sleep spindles (in the sigma frequency band), as measured 

using intracellular recordings of the activity of thalamocortical neurons in cats, were 

found to occur only during the depolarization phase of the slow oscillation, which was 

measured using depth EEG recordings in the cortex (Steriade, 2006). Further, it was 

found that groups of delta waves occur at intervals that match the period of the slow 

oscillation.  

                                                
5
 It is important to clarify that “distance” is largely a function of the number of synaptic connections, not 

necessarily the geometric distance. 
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1.3.3 Frequency-banded neuronal activity representations in 
RSNs 

As discussed above, each RSN comprises different neuronal populations operating at 

different frequencies, presumably serving both local-, and between-network functions. 

The results of the first attempt to correlate frequency-banded activity (as recorded using 

EEG) with RSN activity (as recorded using fMRI) confirm that each RSN does indeed 

manifest neuronal activity at every frequency band of interest. However, they manifest in 

different proportions, thereby signifying a unique frequency band “fingerprint” for each 

RSN (Mantini, Perrucci, Del Gratta, Romani, & Corbetta, 2007). Similar studies indicate 

high within- and between-subject variability in these fingerprints however, strongly 

suggesting that the correlation between BOLD RSN activity and EEG frequency-band 

power is unstable, at least during wakefulness (Gonçalves et al., 2006; Goncalves et al., 

2008; Meyer, Janssen, Van Oort, Beckmann, & Barth, 2013).  

1.3.4 Open questions: what can frequency-banded oscillatory 
activity dynamics during sleep tell us about the nature of 
RSNs? 

(1) Sleep is accompanied by very dramatic shifts in neuronal synchronization. It is 

possible that such coordinated synchrony changes might stabilize the aforementioned 

high variability in RSN-frequency band correlations noted in wakefulness studies. Does 

changing neuronal synchrony across sleep affect RSN frequency band fingerprints in a 

predictable manner, just as it might be expected to affect between-RSN FC in a 

predictable way? Are different RSNs affected in different ways?  

(2) As discussed, it is known that slower frequencies are capable of modulating the power 

of faster frequencies, via PAC, and further, that the slow oscillation coordinates the 

activity of other oscillations during sleep. Further, RSNs are defined as regions of highly 

correlated activity. These three factors strongly suggest that frequency-banded activity 

changes within RSNs should be coordinated in some way across sleep stages. Is there 

evidence of such coordination? If so, what can this tell us about the nature of RSNs? 
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1.4 Thesis aims 

1.4.1 RSN accounting: do sleep-specific RSNs exist? 

Prior to speculating on RSN function, it is prudent to first ensure that we have a complete 

picture of them. As discussed above, putative sleep functions are very different from 

those of wakefulness. Further, unlike pathological states (let alone sedation, VS, or 

MCS), sleep stages have evolved as healthy alternate functional brain modes. Given the 

connection between RSNs and localizations of cognitive function during wakefulness, it 

is reasonable to posit that the radically different, healthy functions of sleep might 

necessitate the manifestation of entirely new RSNs. Prior investigations of RSNs during 

sleep only examined the canonical RSNs (for example, using SCA to identify DMN 

changes during NREM), without explicitly trying to search for new RSNs, and little is 

known of RSNs in REM. The aim of the first study, as detailed in Chapter 2, was to 

rectify this knowledge gap by using a data-driven methodology (i.e., ICA) to explicitly 

search for spatially unique RSNs in all sleep stages, including REM. Moreover, since 

sleep stages constitute the only healthy alternate functional modes of the brain, sleep 

stages and wakefulness would together comprise the complete search field for new RSNs. 

Thus, a search across all stages would help to ensure that we have established a complete 

RSN taxonomy. 

1.4.2 Do RSN FC dynamics vary in accordance with known 
physiological changes across wakefulness and sleep? If so, 
what can this tell us about changes to conscious 
awareness? 

As discussed in section 1.2.3, one of the most important arguments in favor of connecting 

RSNs to neuronal activity is that RSN FC is modulated by changes that are known to also 

modulate neuronal activity, for example shifts in cognition. Changes in sleep state are 

known to impact neuronal activity in a far more dramatic fashion than shifts of cognition, 

however. This is largely due to significant modulations of ACh levels, which cause 

wakefulness desynchronized activity to become increasingly synchronized during 

deepening NREM, and which facilitate a return to wakefulness-like synchronized activity 

during REM. If RSN FC dynamics were not impacted by these changes in cortical 
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neuronal synchrony, in a predictable manner, then the connection between RSNs and 

neuronal activity would be cast into doubt. The primary aim of the second study, as 

detailed in Chapter 3, was to test whether the pattern of RSN FC changes across 

wakefulness and sleep corresponds with the pattern of neuronal synchronization changes 

across these stages. A further aim was to generate inferences with respect to conscious 

awareness during sleep, given known connections between changing RSN FC and 

alterations of conscious awareness, as determined by studies of sedation and TBI. 

1.4.3 How do EEG frequency bands map onto RSNs? 

Although the second study has significant value in terms of linking RSNs with neuronal 

activity, this link could only ever be indirect, given the nature of the BOLD signal. More 

specifically, it could only be concluded from this study that changing cortical 

neurophysiology across wakefulness and sleep affects both neuronal activity and RSNs, 

in parallel, without being able to directly infer that RSNs could in fact be the substrate for 

these neuronal activity changes. In order to strengthen the assertion of a more direct 

inference, it is necessary to exploit brain activity recording modalities that more directly 

reflect neuronal activity. The aim of the third study, as detailed in Chapter 4, is to help 

bridge the gap between RSNs and neuronal activity by directly correlating RSN activity 

with EEG-derived frequency band activity across wakefulness and sleep. Similar to the 

second study, it was expected that these correlations should change in a predictable 

manner, in accordance with known changes to cortical synchronization across 

wakefulness, NREM and REM. Further, known PAC between the slow oscillation and 

other rhythms during sleep suggests that such a study might provide evidence that 

changing frequency representations, within specific RSNs, might be coordinated in some 

manner across frequencies. 
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Chapter 2  

2 Toward a complete taxonomy of resting state networks 
across wakefulness and sleep: an assessment of 
spatially distinct resting state networks using 
independent component analysis 

 
A version of this chapter has been published elsewhere (citation below) and is reproduced 

here with permission from the publisher, Oxford University Press on behalf of the Sleep 

Research Society (Appendix A). 

 

Houldin, E., Fang, Z., Ray, L. B., Owen, A. M., Fogel, S. M. (2019). Toward a complete 

taxonomy of resting state networks across wakefulness and sleep: an assessment of 

spatially distinct resting state networks using independent component analysis, Sleep, 

Volume 42, Issue 3. 

https://doi.org/10.1093/sleep/zsy235 

2.1 Introduction 

Resting state network (RSN) functional connectivity (FC) has been investigated under a 

wealth of different conditions including healthy wakefulness (Biswal, Yetkin, Haughton, 

& Hyde, 1995; Smith et al., 2013), sleep states (Horovitz et al., 2009), as well as 

compromised conditions, or altered states of consciousness, such as sedation (Boveroux 

et al., 2010), vegetative state (Boly et al., 2009), epilepsy (Centeno & Carmichael, 2014), 

Alzheimer’s disease (Sorg et al., 2007; Vemuri et al., 2012; Wang et al., 2006) and 

schizophrenia (Yu et al., 2012). Such investigations often include considerations of both 

within- and between-RSN FC. However, such considerations are themselves dependent 

upon the defined spatial boundaries of the RSNs being investigated.  

For the most part, these boundaries are taken for granted, as RSNs have now been studied 

for over two decades, beginning with the identification of the first RSN more than two 

decades ago, when it was shown that spontaneous activity of bilateral motor networks 

were strongly correlated with each other (Biswal et al., 1995). Further studies recognized 
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the existence of other RSNs, including the default mode network, a set of regions which 

first came under scrutiny because they collectively reduced their activity during goal-

directed tasks (Shulman et al., 1997) and were finally determined to be a unique RSN in 

their own right when it was acknowledged that they functioned as an interconnected 

network for supporting "baseline" and internally-focused brain activity (Raichle et al., 

2001b). The catalogue of reproducible RSNs is now well established, and they are 

commonly grouped into about ten canonical networks (see Figure 1A), typically 

comprising primary sensory networks (e.g., auditory, somatomotor, and up to three visual 

networks) as well as higher order networks (e.g., DMN, executive control and two 

independent, lateralized frontoparietal networks). These RSNs noticeably resemble the 

spatial organization of networks that support discrete cognitive functions (Damoiseaux et 

al., 2006; Smith et al., 2009). For example, the so-called “auditory” RSN involves 

bilateral regions in the superior temporal gyrus. 

It is the spatial bounds of these canonical RSNs that serve as the basis for between- and 

within-RSN FC analysis in the aforementioned compromised conditions, states of 

reduced arousal, reduced sensory processing, altered-consciousness and sleep states. 

Specifically, the regions of interest (ROIs) whose timecourses are used to define RSN FC 

are based on a priori knowledge of the nodes of RSNs, as they are defined in 

wakefulness. For example, the well-established finding (Horovitz et al., 2009) that FC 

between anterior and posterior nodes of the DMN is reduced in slow wave sleep makes 

use of seed-based correlation analysis (SCA) wherein the seed of interest is the posterior 

cingulate cortex (PCC), an important DMN node identified in wakefulness. However, the 

application of RSNs defined in wakefulness to non-healthy, or sleep-related RSN FC 

analyses is not fully justified and the existence of novel RSNs specific to other states has 

never been explicitly tested or explored. This is the major aim of the current study.  

Indeed, given the established association between the canonical RSNs and networks that 

support cognitive function during healthy wakefulness, it could be expected that non-

canonical RSNs would arise to support offline information processing. That said, 

additional, non-canonical RSNs have yet to be identified in any investigations of non-

healthy conditions or healthy sleep states. However, it is possible that such negative 
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findings are at least partly a consequence of biased analysis approaches that make the 

implicit assumption that the set of RSNs typically found in wakefulness apply to all other 

conditions. For example, a number of sleep studies have restricted their analysis to RSNs 

taken from the canonical set (e.g., the default mode network; Horovitz et al., 2009) or 

explicitly looked for RSNs that resemble the canonical set (Tagliazucchi et al., 2013), 

rather than explicitly investigate whether unique RSNs might exist. It therefore remains 

to be tested whether non-canonical RSNs exist in non-healthy conditions or across 

healthy sleep-wake states. 

Sleep is a particularly salient target for such a test, as it is a healthy alternate mode of the 

brain, with known functions distinct from the cognitive functions sustained during 

wakefulness. It is therefore possible that an unbiased search for non-canonical RSNs 

might yield RSNs associated with these sleep-specific functions. By contrast, 

compromised conditions or altered states of consciousness are less likely to manifest non-

canonical RSNs given that they do not express new functions; rather the same functions 

which are expressed in wakefulness become impaired. Unique sleep functions that could 

manifest unique non-canonical RSNs include; memory consolidation (via memory 

reactivation and replay), involving the striatum, hippocampus and medial temporal lobe 

(Fogel et al., 2017; Marshall & Born, 2007; Rattenborg, Martinez-Gonzalez, Roth, 

Pravosudov, & Pravosudov, 2011; Stickgold, 2005); sleep spindle related activation that 

supports reasoning abilities, involving thalamo-cortical regions and basal ganglia (Fang, 

Ray, Owen, & Fogel, 2017); rapid eye movement (REM) sleep maintenance, including 

dream production, involving thalamus and occipital regions (Hobson, Pace-Schott, & 

Stickgold, 2000a; Klemm, 2011; Nelson, McCarley, & Hobson, 1983). Not to mention 

other putative yet-to-be-discovered functions of sleep. 

In addition, sleep can itself be subdivided into at least two further stages, each of which is 

characterized by unique EEG signatures; e.g., REM (demarcated by the presence of eye 

movements, loss of muscle tone and desynchronized low-voltage electrophysiological 

oscillations) and non-REM (NREM) stages. NREM sleep can be further subdivided into 

NREM stage 1 (NREM1), defined by a loss of posterior alpha band power; stage 2 

(NREM2), which sees the appearance of EEG waveforms called sleep spindles and K-
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complexes; and stage 3 (NREM3) dominated by extensive slow wave delta oscillations 

(Iber et al., 2007). Any of these stages may be accompanied by the manifestation of non-

canonical RSNs in relation to these unique forms of neuronal communication that are 

remarkably distinct from waking brain activity. 

The purpose of this study was to explicitly test whether new RSNs exist in sleep by 

examining all sleep stages for RSNs that do not match the canonical set. It was 

hypothesized that new RSNs would be identified and that these could be related to sleep-

specific neural activation, functions or mentation specific to sleep. 

2.2 Methods 

2.2.1 Participants 

Forty-five subjects were recruited for this study. Of these, nine failed to meet the 

inclusion criteria by not complying with the pre-study sleep/wake schedule, and were 

thus not included in the study. The remaining 36 were healthy right-handed adults (21 

female) 18-34 years of age (M = 23.7, SD = 3.6). An a priori statistical power analysis 

was not performed, which could be considered a limitation, however the number of 

subjects included is consistent with previous studies investigating RSNs in sleep 

(Horovitz et al., 2009; Larson-Prior et al., 2009; Tagliazucchi et al., 2013). All 

participants were non-shift workers and medication-free, with no history of head injury or 

seizures, had a normal body mass index (<25), and did not consume excessive caffeine, 

nicotine or alcohol. Further, all scored <10 on the Beck Depression (Beck, Steer, & 

Brown, 1993) and the Beck Anxiety (Beck, Epstein, Brown, & Steer, 1988) Inventories 

and had no history or signs of sleep disorders, as indicated by the Sleep Disorders 

Questionnaire (Douglass et al., 1994). All participants were required to keep a regular 

sleep-wake cycle (bed-time between 22h00-24h00, wake-time between 07h00-09h00) 

and to abstain from taking daytime naps at least 7 days prior to, and throughout 

participation in the study. Compliance with this schedule was monitored using both sleep 

diaries and wrist actigraphy (Actiwatch 2, Philips Respironics, Andover, MA, USA). All 

participants met the MRI safety screening criteria. In addition, participants were given a 

letter of information, provided informed written consent before participation, and were 
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financially compensated for their participation. This research was approved by the 

Western University Health Science Research Ethics Board.  

Of the 36 participants who met the study inclusion criteria, data for 34 participants was 

included in the analysis (see Table 1). One participant withdrew from the study due to 

discomfort. Another did not sleep during the EEG-fMRI session, but did have wake 

resting state data. Of the remaining 34 participants (21 female, M = 23.7, SD = 3.7), all 

had wake resting state data, but only 28 had some stage of sleep data above the bare-

minimum 3-minute threshold. In addition, not all of the wake resting state data was used, 

as initially 5 minute wake resting state scans were used, and this was later modified to be 

8 minutes, in the interest of maximizing data availability. Thus 29 participants were used 

in the analysis of the wake data (18 females, M = 23.8, SD = 4.0), in order to capitalize 

on the longer resting state episodes. Of the 28 participants who slept, data from 25 

participants was used in the analysis of sleep stage NREM2 (15 female, M = 24.2, SD = 

4.0). Of these same 28, 11 participants (6 female, M = 22.5, SD = 3.8) had NREM3 data. 

Finally, of these same 28, 7 participants (3 female, M = 22.1, SD = 2.4) had REM data.  

Table 1. Minutes of data extracted per sleep stage. 

Measure WAKE NREM2 NREM3 REM 

Mean 7.9 15.9 18.9 9.8 

Standard Deviation 0.0 10.5 18.9 8.0 

Minimum (non-zero) 7.9 6.3 4.0 3.6 

Maximum 7.9 44.1 67.3 21.6 

N 29/34 25/34 11/34 7/34 

REM = rapid eye movement sleep stage, NREM2/3 = non-REM2/3 sleep stages. 
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2.2.2 Functional data 

Wake Data Set 

A total of 36 participants had recorded wake RSN data. Of these, 29 had 7.9 minutes of 

data, with the remainder having only 5.4 minutes. To maximize the quality of the group 

ICA (i.e., by maximizing the number of volumes used in the single subject data) the wake 

resting state analysis used the 7.9 minute datasets from the aforementioned 29 

participants, for a total of 230 minutes of data. 

Sleep Data Set 

Overall, participants managed to obtain the full spectrum of sleep stages (NREM1, 

NREM2, NREM3 and REM sleep). On an individual basis however, the majority of 

participants maintained sleep in only a few of the stages for a duration long enough to be 

considered sufficient for ICA analysis. Given the difficulty in obtaining REM sleep in 

non-sleep deprived individuals in the MRI scanner environment (e.g., due to noise and 

subject comfort), only 4 subjects managed to transition through all three sleep-stages of 

interest (NREM2, NREM3, REM) for a duration considered sufficient for the ICA 

analysis. In all cases, sleep scoring identified a pattern in which participants transitioned 

between sleep stages of variable duration; from less than 20 seconds (the shortest sleep 

scoring period) to 69.3 minutes (see Table 1 for the distribution of sleep data used in the 

final set of analyses). As expected, sleep stage NREM1 was mostly insufficient in 

duration for analysis purposes. Thus, considering the brief and transitional nature of this 

stage, it was not included in the analyses.  

As the group-ICA analysis used in this study requires single-subject inputs of equal-

length, participant fMRI data for a given sleep stage was segmented into equal length 

“blocks”. Block length was determined by the length of the shortest available single 

subject dataset for a given sleep stage (so long as this length exceeded a bare-minimum 3 

minutes). For example, if 10 participants had NREM3 data, and the participant with the 

least amount of data had 3 minutes worth, then the available data for the remaining 

participants was segmented into 3-minute blocks.     
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Twenty-eight subjects were able to sustain a sufficient amount of NREM2 sleep for the 

ICA analysis, with the shortest duration for a given participant being 4 minutes. In many 

cases, a single participant had more than one continuous bout of NREM2, such that the 

full group generated a total of 599 minutes of NREM2 data. Given the abundance of 

NREM2 data, the datasets for 3 participants were not included in order to maximize the 

length of an NREM2 block. Overall, 63 blocks of 6.3-minute duration acquired from 25 

participants were used, for a total of 396.9 minutes. 

In the case of NREM3, 11 participants had data above the minimum 3-minute cutoff, for 

a total of 236.4 minutes of available NREM3 data, with all of these participants having at 

least 4 minutes of data. Overall, 52 4-minute blocks were used in the ICA analysis of 

NREM3 data, for a total of 205.9 minutes of data. 

Very few EEG-fMRI studies report analysis of REM sleep, and thus knowledge of REM 

sleep from fMRI studies is limited. Here, 7 participants had REM data above the 3-

minute cutoff. Overall, 87.7 minutes of 3-minute plus duration data was available from 

all subjects. From this, 19 3.6-minute blocks were extracted for the REM ICA analysis, 

for a total of 68.4 minutes of data.  

2.2.3 Experimental procedure 

Each participant underwent a screening/orientation session one week prior to the 

experimental sleep session. The scanning session took place between 21h00 and 24h00, 

during which time simultaneous EEG-fMRI was recorded while participants slept in the 

scanner. Unlike the majority of similar past studies, subjects were not sleep deprived. The 

scanning session consisted of an 8-minute structural scan, followed by an eyes-closed 

wake resting state scan. Participants were then informed that they were free to fall asleep 

in the scanner. This period lasted up to 2.2 hours.  To be included in the analysis of the 

sleep data, participants were required to sleep for a period of at least 5 minutes of 

uninterrupted NREM sleep during the sleep session, however in the final analysis no 

block of less than 3.6 minute duration was used. Following the sleep session, participants 

were allowed to sleep in the nearby sleep laboratory for the remainder of the night. 
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2.2.4 Polysomnographic recording and processing 

EEG was recorded using a 64-channel magnetic resonance (MR)-compatible EEG cap 

(Braincap MR, Easycap, Herrsching, Germany) using two MR-compatible 32-channel 

amplifiers (Brainamp MR plus, Brain Products GmbH, Gilching, Germany). EEG caps 

included scalp electrodes referenced to FCz. Two bipolar electrocardiogram (ECG) 

recordings were taken from V2-V5 and V3-V6 using an MR-compatible 16-channel 

bipolar amplifier (Brainamp ExG MR, Brain Products GmbH, Gilching, Germany). 

Using high-chloride abrasive electrode paste (Abralyt 2000 HiCL; Easycap, Herrsching, 

Germany), electrode-skin impedance was reduced to < 5 KOhm. In order to reduce 

movement-related EEG artifacts, participants' heads were immobilized in the MRI head-

coil using foam cushions. EEG was digitized at 5000 samples per second with a 500-nV 

resolution. Data were analog filtered by a band-limited low pass filter at 500 Hz and a 

high pass filter with a 10-sec time constant corresponding to a high pass frequency of 

0.0159 Hz. Data was transferred via fiber optic cable to a personal computer where Brain 

Vision Recorder Software, Version 1.x (Brain Vision, Gilching, Germany) was 

synchronized to the scanner clock. EEG scanner artifacts were removed in two separate 

steps: 1) MRI gradient artifacts were removed using an adaptive average template 

subtraction method (Allen, Josephs, & Turner, 2000) implemented in Brain Products 

Analyzer, and down-sampled to 250Hz; 2) the r-peaks in the ECG were semi-

automatically detected, visually verified, and template subtraction (Allen, Polizzi, 

Krakow, Fish, & Lemieux, 1998) was used to remove ballistocardiographic artifacts 

time-locked to the R-peak of the QRS complex of the cardiac rhythm. Finally, EEG was 

low-pass filtered (60 Hz) and re-referenced to averaged mastoids. Sleep stages were 

scored in accordance with standard criteria (Iber et al., 2007) using the “VisEd Marks” 

toolbox (https://github.com/jade466 sjardins/vised_marks) for eeglab (Delorme & 

Makeig, 2004). 
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2.2.5 MRI imaging acquisition and analysis 

2.2.5.1 Recording Parameters 

Brain images were acquired using a 3.0T TIM TRIO magnetic resonance imaging system 

(Siemens, Erlangen, Germany) and a 64-channel head coil. A structural T1-weighted 

MRI image was acquired  for all participants using a 3D MPRAGE sequence (TR = 2300 

ms, TE = 2.98 ms, TI = 900 ms, FA = 9°, 176 slices, FoV = 256 x 256 mm2, matrix size = 

256 x 256 x 176, voxel size = 1 x 1 x 1 mm3). Multislice T2*-weighted fMRI images 

were acquired during the sleep session with a gradient echo-planar sequence using axial 

slice orientation (TR = 2160 ms, TE = 30 ms, FA = 90°, 40 transverse slices, 3 mm slice 

thickness, 10% inter-slice gap, FoV = 220 x 220 mm2, matrix size = 64 x 64 x 40, voxel 

size = 3.44 x 3.44 x 3 mm3). In order to obtain EEG with time-stable artifacts, which 

aligned to the timing of the EEG recordings, the MR scan repetition time was set to 2160 

ms, such that it matched a common multiple of the EEG sample time (0.2 ms), the 

product of the scanner clock precision (0.1 µs) and the number of slices (40) used 

(Multert & Lemieux, 2009). 

2.2.5.2 Functional data classification and block parcellation 

All sleep session functional volumes were scored according to standard sleep-stage 

scoring criteria (Iber et al., 2007) by an expert, registered polysomnographic technologist. 

To be included in the fMRI analysis, the EEG had to be visibly movement artifact-free. 

Volumes were classified as wake, NREM1, NREM2, NREM3 or REM. Notably, wake 

data used in the analysis was taken from the wake resting state session only, despite 

segments of wake being present in the sleep session data. Following scoring, each 

segment of sleep-stage volumes was parcellated into equal-size blocks, whose length was 

specific to each given sleep-stage. 

2.2.5.3 Preprocessing 

Blocks were individually preprocessed using the Oxford Centre for Functional Magnetic 

Resonance Imaging of the Brain Software Library (FMRIB, Oxford U.K.; FSL version 

5.09; Smith et al., 2004). Specifically, functional volumes within each block were 

realigned using FSL's MCFLIRT tool (Jenkinson, Bannister, Brady, & Smith, 2002) 
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which performs rigid body transformations. Non-brain voxels were also extracted using 

FSL's BET tool (Smith, 2002). Volumes were then spatially smoothed using a Gaussian 

kernel of 5mm full-width at half-maximum (FWHM) and highpass temporal filter 

(Gaussian-weighted least-squares straight line fitting, FWHM = 2000 s). Functional 

volumes were then registered to the MNI152 standard space (McConnell Brain Imaging 

Centre, Montreal Neurological Institute) using 12 degree-of-freedom affine registration. 

Finally, each block was individually cleaned of non-neuronal artifacts (e.g., cardiac 

pulsation, motion-related, white matter) using the FIX plug-in for the FSL package 

(Griffanti et al., 2014; Salimi-Khorshidi et al., 2014) an automatic noise detection and 

removal algorithm. Prior to using FIX, FSL's MELODIC tool (Beckmann & Smith, 2004) 

was used to generate a set of ICs for each block. MELODIC prewhitens and variance 

normalizes all timeseries prior to applying probabilistic ICA (PICA), which outputs a set 

of spatial maps converted into Z statistic maps based on estimated standard error of 

residual noise. MELODIC's default dimensionality estimation function automatically 

estimates the number of ICs by performing a Bayesian analysis. FIX assessed each of 

these ICs as noise or signal, after generating more than 180 distinct spatial and temporal 

features of each IC and feeding these into a multi-level classifier. Temporal features 

associated with non-neuronal ICs include sudden changes in time series' amplitude, 

frequency-domain power at high frequencies and correlation of the time series with white 

matter (WM) or cerebrospinal fluid (CSF) extracted time series. Spatial features include 

having a large number of small clusters and high overlap with brain boundaries or with 

WM/ventricles/CSF areas. FIX classification performance has been evaluated to have an 

average true negative rate (noise correctly classified as such) of 98.9% (Salimi-Khorshidi 

et al., 2014). ICs classified as noise were then subtracted from the ICA mixing matrix and 

a new set of "clean" functional volumes was generated.    

2.2.5.4 Group-level analysis 

Group spatial-ICA (with a model order of 30 components) was performed with 

MELODIC on all available blocks for a given sleep stage in order to maximize the 

available data for deriving group-level maps. The resulting 30 ICs (per sleep stage) were 

then individually compared with 10 canonical spatial templates derived from a separate 
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wake RSN study (see Figure 1A; Smith et al., 2009) using spatial correlation (FSL utility; 

fslcc). In order to be consistent with current approaches, a liberal spatial correlation 

threshold of r = 0.2 was selected (for comparison, Tong et al. (2015) and Reineberg et al. 

(2015) used similar cutoffs of r > 0.25 and r > 0.21, respectively) to help classify ICs as 

either resembling the canonical set or being a potentially new RSN for further inspection 

(See Figure 6 in the Supplemental Material for the distribution of available correlation 

values in this study). However both above- and below-threshold ICs were also (visually) 

examined carefully for spatial differentiation from the canonical set. It is important to 

emphasize here that the use of a specific spatial correlation threshold (statistically-based, 

or otherwise), will always be arbitrary, in the case of classifying ICs as RSNs. This is 

because RSN classification must always take into account other IC features, such as 

frequency-power. That said, a threshold of around r > 0.2 seems to work as a useful 

heuristic for early IC screening. Clearly identifiable noise-related below-threshold 

components were then screened by hand, in accordance with the general guidelines in 

Griffanti et al. (2017) and Kelly et al. (2010b). Note that it is impossible to completely 

separate noise from networks in fMRI data, at either the single-subject or group level, 

therefore noise ICs would be expected at the group level despite cleaning at the single-

subject level (more specifically, timecourse patterns associated with noise can be too 

infrequent for ICA to detect at the single-subject level, yet, importantly, they can repeat 

sufficiently across multiple subjects, so that they manifest as statistically independent and 

can therefore be reliably detected at the group level). Briefly, in the screening procedure, 

IC spatial features were examined for overlap with non-grey matter areas such as those 

comprising WM or CSF IC and frequency-power spectra were examined for power 

distribution across all frequencies, or power concentration in high frequencies. The 

intention was to follow up this screening with a more sophisticated fingerprint analysis 

tool (De Martino et al., 2007), as well as a functional connectivity analysis between this 

component and the canonical RSNs, however the lack of remaining components 

following this screening procedure rendered such steps unnecessary.   

Finally, we conducted a follow-up analysis in which we repeated the group-level ICA 

analysis described above, using a dataset consisting of all of the sleep stages combined 

together (note: in this analysis, the blocks were cut to the same length across sleep stages; 
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i.e., to 129 volumes). This was done in an attempt to determine whether the ICA might 

extract new spatial patterns that would otherwise be missed in an analysis of individual 

sleep stage data. 

2.3 Results 

Non-noise group-level above-threshold independent components (ICs) largely matched 

the RSNs from the external dataset (Smith et al., 2009), with low correlation components 

comprising constituent regions of a given canonical RSN rather than being located in a 

different spatial region entirely (see Figure 1 for sample images).  

Sample below-threshold ICs are shown in Figure 2, along with their frequency-power 

spectra. All below-threshold ICs had time course properties which allowed them to be 

positively identified as non-neuronal artifacts, in accordance with standard identification 

procedures (Griffanti et al., 2017; Kelly et al., 2010a). For example, the first IC in Figure 

2A overlaps significantly with WM regions and the second IC overlaps with CSF-

containing regions and also has power distributed across all frequencies (i.e., it is not 

restricted to low frequencies as is typical of RSNs). As such, contrary to our predictions, 

none could be said to represent spatially-unique RSNs differentiable from canonical 

RSNs in any sleep stage of interest. 
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Figure 1. External templates used for spatial comparison and group-level above-threshold 

independent components (ICs) for each sleep stage.  

(A) The 10 external templates used in the spatial correlation, with representative sagittal, coronal and axial 

slices. (B, C, D) Group-level above-threshold ICs with the highest spatial correlations to each of the 10 

external templates, for each sleep stage. Color bars indicate Z statistics based on the estimated standard 

error of residual noise. Spatial correlation values with respective templates are presented in the upper left 

corner for each IC. NREM2/3 = non-REM sleep stage 2/3, REM = rapid eye movement sleep stage. 

The follow-up analysis (in which the group ICA was performed on a dataset comprised of 

all the sleep-stage data combined together) yielded similar results; i.e., above-threshold 

ICs largely matched the RSNs from the external dataset and below-threshold ICs were 

positively identified as non-neuronal artifacts (see Figure 3 for sample images). 
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Figure 2. Sample below-threshold independent components (ICs) in each sleep stage. 

(A, B, C) A selection of below-threshold group-level ICs, for each sleep stage (representative, sagittal, 

coronal an axial slices shown). Color bars indicate Z statistics based on the estimated standard error of 

residual noise. Frequency-power spectra are shown immediately below each IC. Highest template-

correlation value is indicated in top left corner for each IC. NREM 2/3 = non-REM sleep stage 2/3, REM = 

rapid eye movement sleep stage. 

Finally, for reference, color-coded correlation values for all 30 group-level ICs for all 

stages (including the combined-stages dataset) are presented in the Supplemental 

Material section, below (see Figures 4 and 5), with their best-matched external templates 

indicated. 
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Figure 3. External templates used for spatial comparison and group-level above-threshold 

independent components (ICs), with sample below-threshold ICs for a dataset comprised 

of all sleep stages combined.   

(A) The 10 external templates used in the spatial correlation, with representative sagittal, coronal and axial 

slices. (B) Group-level above-threshold ICs with the highest spatial correlations to each of the 10 external 

templates, for a dataset comprised of all sleep stage data combined together. Color bars indicate Z statistics 

based on the estimated standard error of residual noise. Spatial correlation values with respective templates 

are presented in the upper left corner for each IC. (C) A selection of below-threshold group-level ICs 

(representative, sagittal, coronal an axial slices shown). Color bars indicate Z statistics based on the 

estimated standard error of residual noise. Frequency-power spectra are shown immediately below each IC. 

Highest template-correlation value is indicated in top left corner for each IC. 

2.4 Discussion 

This is the first study to use combined EEG and fMRI to examine all sleep stages with 

the explicit purpose of identifying non-canonical sleep-specific RSNs. It was 

Auditory)

Cerebellar)

Striate)Visual)

Extrastriate)Visual)

Somato5motor)

Ventral)Visual)

Default)Mode)

Execu;ve)Control)

Frontoparietal)(L))

Frontoparietal)(R))

B:)ALL5STAGES5MIXED)ICs)A:)TEMPLATES)

Sample)Above5threshold)ICs)

.60)

.73)

.66)

.69)

.53)

.71)

.68)

.68)

.61)

.34)

C:)ALL5STAGES5MIXED)ICs)

.07)

.09)

.01)

Sample)Below5threshold)ICs)

10)

2.5)

z5scores)

10)

2.5)

z5scores)

Frequency)(Hz/10000))

Frequency)(Hz/10000))

Frequency)(Hz/10000))

Po
w
er
)

Po
w
er
)

Po
w
er
)



47 

 

hypothesized that some new RSNs would be discovered and that these could be related to 

aspects of mentation specific to sleep, much as waking cognitive functions are related to 

the canonical RSNs. Surprisingly, no new sleep-specific RSNs were found in any sleep 

stage, despite a directed search using a uniquely rich dataset, as all below-threshold ICs 

were carefully inspected and positively identified as non-neuronal artifacts. These results 

strongly suggest that there are no sleep-specific RSNs. Rather, the canonical RSNs that 

seemingly support waking mentation also support (or at the very least, co-occur with) 

sleep-specific functions and thus, the repertoire of canonical RSNs present in wake 

comprises the full set across sleep-wake states. Moreover, the results of previous RSN FC 

studies which made use of RSN nodes defined by wakefulness studies can now be 

confirmed to stand on more solid ground, and appear to have not inadvertently 

overlooked sleep-specific RSNs. Importantly, these findings suggest that unique 

functions of sleep (e.g., offline memory consolidation), cognitive processes (e.g., 

dreaming), electrophysiological features and forms of communication (e.g., spindles, k-

complexes, slow waves) which characterize sleep stages (e.g., NREM1, 2, 3, REM), 

surprisingly, do not manifest or require unique sleep-specific RSNs. 

There are a number of methodological limitations that could explain this result. In 

particular, the quality of a search for a new RSN can only be measured against two 

definitions; what constitutes an RSN and what might constitute an RSN unique from 

what is currently defined as an RSN. Given that the functional role of RSNs is presently 

speculative, such definitions must be delimited by a collection of spatial and temporal 

properties, the most important of which are those that would rule out a potential RSN 

from being a known source of non-neuronal blood oxygen level dependent (BOLD) 

artifacts. If this study has failed to recognize the existence of a "sleep-RSN", then this 

failure likely rests on the assumptions made about the spatial and temporal properties 

most commonly used to identify RSNs.  

As far as spatial properties are concerned, it is reasonable to question whether the spatial 

templates in Smith et al., (2009) used to rule out group-level ICs as being new RSNs, 

were a fair representation of canonical RSNs. These 10 templates were themselves 

generated from a 20 model-order ICA decomposition, and hence their spatial bounds are 
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specific to this decomposition. A comparison of ICs from the present study against 

external templates generated from a different model order would surely yield different 

results. On the other hand, while the correlation values would have changed, visual 

inspection of components would indicate that the same networks were being represented, 

albeit in a reduced or more elaborated form. Nevertheless, Ray et al. (2013) performed an 

assessment of ICA dimensionalities ranging in size from 20 to 200 and found that a 

dimensionality of around 20 is appropriate for examining RSNs at the scale of the 10 

canonical RSNs. This same rationale applies to the use of a 30 model-order 

decomposition for the data in the present study.  

An additional challenge involves the use of an automatic ICA de-noising algorithm to 

clean the individual blocks. This algorithm makes use of spatial and temporal property 

weightings that are biased towards what current RSN experts deem to be a non-neuronal 

artifact in wake resting state data. It is entirely possible that RSNs in sleep exhibit 

different temporal and spatial properties from their waking counterparts, for example 

power at oscillatory high-frequency that would cause them to be rejected as noise by an 

expert (or automated software tuned to the judgement of an expert). Further, without 

knowing the true functional role and neurological mechanisms of RSNs, there will 

always be some uncertainty in defining either RSNs or non-neuronal artifacts outside of 

their normal milieu (i.e., waking conditions). 

Such concerns can be mitigated when considering the general robustness of the essential 

spatial configuration and temporal properties of RSNs under compromised or 

pathological conditions. There is therefore some measure of confidence that an RSN will 

have recognizable properties under healthy physiological conditions alternate to wake. 

A more contentious issue might be the resting state lengths used in the analysis. The 

NREM3 and REM analyses made use of 4- and 3.6-minute duration blocks, respectively. 

Resting state analyses typically utilize 5-7 minutes of data, and it has been suggested that 

a 12-16 minute resting state scan time is ideal (Birn et al., 2013). However, given the 

difficulty in acquiring NREM3 and REM fMRI data, the short block lengths were 

considered reasonable. For comparison, a similar EEG-fMRI sleep study by Chow et al. 
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(2013; prior to the current study, this was the largest available EEG-fMRI dataset 

available for REM) acquired 32.4 minutes of REM data from 4 subjects out of an initial 

pool of 18, all of whom were sleep deprived for 44 hours prior to the study; the present 

study acquired 75.2 minutes of REM data from 7 subjects out of an initial pool of 35, 

none of whom were sleep deprived. The inadequacy of these datasets would appear to be 

unlikely however given the identification of robust canonical RSNs in both of these 

stages, however Type II error (i.e., concluding that new RSNs are not present in sleep) is 

still a possibility.  

Further, it should be noted that the ICA results are potentially biased by the extra number 

of blocks drawn from single-subject data with more volumes available for a given sleep 

stage. This was considered an acceptable risk, in order to maximize the data available for 

the sleep ICA analysis. In order to test whether this was possibly problematic, we 

repeated the analysis using only a single block for each subject with data available for a 

given stage, and were able to confirm the same pattern of results using this alternative 

approach. 

Finally, it is worth pointing out that the well-established finding that the DMN breaks up 

into anterior and posterior nodes during slow wave sleep (Horovitz et al., 2009) is not 

contradicted by the present results which indicate that the DMN can be detected across all 

sleep stages. This apparent discrepancy likely emerges from the different aims and 

approaches used in previous studies, which employed SCA. SCA looks at whole-brain 

correlations with the average timecourse within a "seed" region (e.g., the PCC). By 

contrast, the present study employed ICA, which finds statistically independent 

components by maximizing the non-Gaussianity of a dataset. It is therefore consistent for 

a "complete" DMN (i.e., comprising anterior and posterior components), to be detected as 

a distinct component using ICA, to coexist with a less cohesive DMN, as identified using 

SCA methodology. Hence, the present results can be considered to be complementary 

with previous studies, given the differing approaches; our results show that the DMN is 

present in all sleep stages, but previous studies show that cohesiveness of the DMN 

varies as a function of sleep depth. Although beyond the scope of the present study, 



50 

 

future studies should consider other approaches, importantly; a comprehensive analysis 

of RSN functional connectivity differences across wakefulness and all sleep stages. 

In conclusion, although canonical RSNs have been identified in sleep in a number of 

prior studies, these studies were not explicitly looking for RSNs beyond the waking set, 

and as a consequence would not have included these networks in their investigation, nor 

were they comprehensive (with REM often excluded; understandable given the difficulty 

of acquiring REM fMRI data). Consequently, this is the first study that explicitly tested 

whether the full inventory of RSNs is known across sleep/wake states and represents a 

further step in the direction of defining a complete taxonomy of RSNs.  

2.5 Supplemental material 

 

Figure 4. Color-coded correlation values for all group-level independent components 

(ICs) and their best-matched resting state network (RSN) templates, for rapid eye 

movement (REM) sleep and non-REM stages 2/3 (NREM2/3). 
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Ordinate axis presents the ten external RSN templates used in the spatial correlation, with representative 

sagittal, coronal and axial slices. Abscissa indicates color-coded Pearson's r correlation values for each of 

the 30 group-level ICs, for each stage, presented in the vertical dimension with their best-matched template. 

 

Figure 5. Color-coded correlation values for all group-level independent components 

(ICs) and their best-matched resting state network (RSN) templates, for wakefulness and 

the combined sleep stages dataset. 

Ordinate axis presents the ten external RSN templates used in the spatial correlation, with representative 

sagittal, coronal and axial slices. Abscissa indicates color-coded Pearson's r correlation values for each of 

the 30 group-level ICs for each stage, presented in the vertical dimension with their best-matched template. 
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Figure 6. Frequency distribution histogram of the spatial correlations between 

independent components (ICs) and resting state networks (RSNs). 

Frequency distribution histogram based on all available correlation values; 30 ICs X 10 RSN templates X 5 

datasets (wakefulness, three sleep stages and the dataset with all sleep stages combined) = 1500 values. The 

spatial correlation threshold (0.2) is indicated with a red rectangle. 

 

 

Distribution of Pearson’s r values!

Pearson’s r value!

N
um

be
r o

f v
al

ue
s!

100!

200!

300!

400!

0!

500!

600!

700!



53 

 

Chapter 3  

3 Slow wave sleep is an altered, not a reduced, state of 
consciousness: resting state network functional 
connectivity in sleep 

3.1 Introduction 

Resting state networks (RSNs) are low frequency fluctuations in the functional magnetic 

resonance imaging (fMRI) blood oxygen level dependent (BOLD) signal that are 

consistently organized into well-defined spatial networks with a striking similarity to the 

spatial organization of networks that support discrete cognitive functions (Damoiseaux et 

al., 2006; Smith et al., 2009). Moreover, it is known that changes in cognitive processing 

are reflected in changes to functional connectivity (FC) within and between RSNs (Cole, 

Ito, Bassett, & Schultz, 2016; Hearne, Cocchi, Zalesky, & Mattingley, 2017). Currently, 

RSN FC has been evaluated for a number of compromised and non-wakefulness states, 

including sedation (Boveroux et al., 2010; Schrouff et al., 2011), the vegetative state 

(Boly et al., 2009; Vanhaudenhuyse et al., 2010) and sleep (Horovitz et al., 2009; Larson-

Prior et al., 2009, 2011; Tagliazucchi et al., 2013). Collectively, these studies suggest that 

reduced states of conscious awareness are associated with a reduction in the magnitude of 

RSN FC, particularly for non-sensory, “higher-order” RSNs such as the default mode 

network (DMN) (Heine et al., 2012b). As such, RSN FC configurations provide a useful 

investigative tool for profiling states of conscious awareness. However, RSN FC in sleep 

is the least well understood, due to the paucity of fMRI data acquired during particular 

stages of sleep, specifically rapid eye movement (REM) and non-REM stage 3, also 

known as slow wave sleep (SWS), and the challenges inherent in acquiring 

electroencephalographic (EEG)-fMRI sleep recordings. These sleep stages are each 

accompanied by dramatic changes to the neurochemical and electrophysiological milieu 

of the brain, which can be expected to impact both RSN FC and the accompanying state 

of awareness. These changes are associated with distinct EEG signatures; indeed, it is 

primarily EEG features that are used to categorize sleep stages themselves, as well as 

brain arousal levels and information processing changes across sleep-wake states (Cote, 
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Epps, & Campbell, 2000a; Dang-Vu, McKinney, Buxton, Solet, & Ellenbogen, 2010; 

Iber, Ancoli-Israel, Chesson, & Quan, 2007; Klimesch, 2012; MacLean, Arnell, & Cote, 

2012; Steriade, 2003). However, it remains to be determined how these broad-level 

changes are reflected in changes to RSN FC, and, by association, alterations of conscious 

awareness. 

RSN FC is known to change as a function of sleep state (i.e., relative to wakefulness FC 

configurations), although the literature on this subject is still sparse (Boly et al., 2012; 

Chow et al., 2013; Larson-Prior et al., 2011). Larson-Prior (2011) showed that there is a 

reduction of the negative functional correlations between the DMN and both the dorsal 

attention network (DAN) and the executive control network (ECN) during the transition 

from wake to sleep. Boly (2012) showed that intra-RSN FC becomes proportionally 

stronger than inter-RSN FC during non-rapid eye movement (NREM) sleep compared to 

wake. Horovitz (2009) demonstrated that DMN subregions become dissociated during 

SWS. Taken together, these studies suggest that there is a reduction in the magnitude of 

inter-RSN FC and that RSNs become more isolated from each other during NREM sleep, 

relative to wakefulness. Although NREM inter-RSN FC has been investigated in a 

handful of studies (especially early NREM/light sleep), no study has comprehensively 

evaluated inter-RSN FC changes across wake, NREM stage 2 (NREM2), SWS and REM 

sleep. This was the major aim of the current investigation. 

REM and NREM sleep are defined by distinct electrophysiological signatures that have 

unique neurophysiological substrates, which are well characterized. One of the defining 

EEG characteristics which dissociates REM from NREM sleep is the extent of cortical 

synchrony. More specifically, NREM sleep is characterized by the emergence and 

eventual dominance of delta waves in the neocortex. As measured by EEG, delta waves 

are ~0.5-2Hz oscillations that are the consequence of widespread synchronized 

communication, regulated by thalamocortical input in a burst mode (Contreras & 

Steriade, 1995; Steriade, Timofeev, & Grenier, 2001); a unique mode of cortical-

subcortical communication, unlike that seen in wakefulness or REM. NREM sleep is 

typically (Iber et al., 2007) further subdivided into three stages: 1) NREM1; an 

intermediate stage between quiet wakefulness and the emergence of clear sleep features, 
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2) NREM2, which is characteristically defined by EEG signatures such as K-complexes 

and sleep spindles, and, 3) SWS, when delta/slow waves dominate the EEG. Although 

these distinct NREM features are thought to serve important functions, such as 

information processing (Colrain, Webster, & Hirst, 1999), homeostasis (Feinberg & 

March, 1995) and memory consolidation (Diekelmann & Born, 2010; Fogel & Smith, 

2011; Rasch & Born, 2013; Stickgold, 2005), they all involve an expression of highly 

coordinated and hypersynchronized cortical oscillatory activity (Weigenand, 

Schellenberger Costa, Ngo, Claussen, & Martinetz, 2014a). This synchrony increases 

progressively across the NREM stages (i.e., NREM1 < NREM2 < SWS), and is the 

defining EEG feature used to discriminate between these NREM stages according to 

standard scoring criteria (Iber et al., 2007). 

However, it remains to be determined how this change in global communication as a 

function of NREM depth is reflected in RSN FC and, by association, how changes in 

RSN FC are reflected in changes in awareness. The present literature suggests that 

NREM (and SWS in particular), involves both reduced arousal/awareness of the 

environment, as well as reduced neural activity, and is therefore best described as a 

quiescent state. For example, it is known from positron emission spectroscopy (PET) 

studies that glucose consumption in NREM is half that of wakefulness (Heiss, Pawlik, 

Herholz, Wagner, & Wienhard, 1985; Kennedy et al., 1982). Further, a 2010 study 

(Spoormaker et al., 2010) indicated that global FC actually increases in the transition to 

sleep, but decreases dramatically in slow-wave sleep. However, the polarity of FC 

changes was not indicated in this study (only the absolute value of FC differences) and 

cortical regions were not defined by RSN spatial boundaries. As mentioned above, the 

current literature also suggests that connectivity fragments in NREM sleep (Horovitz et 

al., 2009; Larson-Prior et al., 2011), which is also consistent with a view of sleep as a 

state of quiescence. Despite these indications, it is not global FC that necessarily 

determines awareness. Rather, studies have shown that it is largely the FC of higher-order 

RSNs (such as the DMN) specifically, that determines conscious awareness (Martuzzi, 

Ramani, Qiu, Rajeevan, & Constable, 2010; Schrouff et al., 2011; Vanhaudenhuyse et al., 

2010). Consequently, although NREM sleep involves reduced conscious arousal, 

characterized by reduced sensory processing of the environment (Posner, Saper, Schiff, & 
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Plum, 2008), it is not clear whether it also manifests a qualitatively different state of 

conscious awareness, with correspondingly unique RSN FC (particularly involving 

higher-order RSNs), as opposed to merely reduced wake-like FC.  

In contrast to NREM, REM sleep is associated with so-called “desynchronized” cortical 

activity (Brown & McCarley, 2008) that enables the kind of flexible cortico-cortical 

communication that is no longer driven by burst-mode operations of the thalamocortical 

circuitry. Rather, cortical input is tonic, as is similarly required for waking cognition. 

Indeed, REM sleep has also been called “paradoxical sleep” for this very reason. Another 

feature shared between REM and wakefulness is the activation of the ascending reticular 

activation system (ARAS), a network of brainstem nuclei which coordinates the cortical 

release of acetylcholine, a neuromodulator that has the effect of suppressing the highly 

synchronized oscillatory activity characteristic of NREM, thereby facilitating the 

desynchronized cortical activity of REM sleep and wake (Lee, 2005; Schwartz & Roth, 

2008). Finally, REM dream reports indicate that mentation in REM is perceptually more 

vivid, animated, is more emotionally charged (Cavallero, Cicogna, Natale, Occhionero, & 

Zito, 1992; Foulkes, 1962) and is more continuous (i.e., longer dream reports, 41) than 

that of NREM. This suggests a correlation between desynchronized cortical activity and 

rich conscious content, similar to rich, wake-like cognition; albeit with important 

differences such as a bizarre and nonsensical story-like quality to dream content. This 

distinct state would also be expected to have an important impact on RSN FC that differs 

from SWS, but perhaps resembles that of the waking brain. 

Taken together, these observations suggest systems-level neural network activity that 

changes as a function of wake, NREM and REM sleep. In this neurophysiological 

context, it follows that the trend towards cortical synchrony in NREM would have a 

progressively destabilizing impact on wakefulness cortico-cortical FC and further, that 

this should be reflected in progressive differentiation of wakefulness and NREM2/SWS 

inter-RSN FC. Moreover, the desynchronized activity characteristic of REM should 

facilitate cortico-cortical FC that resembles wakefulness, which should be reflected in 

similarities between wakefulness and REM inter-RSN FC.  
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By employing simultaneous EEG-fMRI, this study had two primary aims: The first was 

to compare inter-RSN FC across all prominent sleep-wake states (i.e., Wake, NREM2, 

SWS, REM), in order to determine how changes in RSN FC patterns reflect 

neurochemical, electrophysiological and cognitive differences between NREM and REM. 

It was hypothesized that inter-RSN FC would trend away from wakefulness-like FC, in a 

progressive fashion, during NREM stages and subsequently trend back towards 

wakefulness-like FC in REM sleep.  

The second aim was to determine whether NREM FC is merely a reduced version of 

wakefulness FC, as suggested by the literature, or is in fact an altered FC state altogether. 

More specifically, reductions in the magnitude of FC during SWS would suggest that it is 

a weakened version of wakefulness, whereas a reversal of the polarity of connectivity in 

the opposite direction (e.g., negative to positive, and positive to negative) in SWS would 

suggest that it represents a qualitatively different state of connectivity (and awareness) 

from that of wakefulness or REM.  

3.2 Methods 

3.2.1 Participants 

Please see section 2.2.1, above. 

3.2.2 Experimental procedure 

Please see section 2.2.3, above. 

3.2.3 Polysomnographic recording and processing 

Please see section 2.2.4, above. 

3.2.4 MRI imaging acquisition, processing and analysis 

3.2.4.1 Recording parameters 

Please see section 2.2.5.1, above. 
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3.2.4.2 Functional data classification 

All sleep session functional volumes were scored according to standard sleep-stage 

scoring criteria (Iber et al., 2007) by an expert registered polysomnographic technologist. 

To be included in the fMRI analysis, the EEG had to be visibly movement artifact-free. 

Volumes were classified as wake, NREM1, NREM2, SWS or REM. Notably, wake data 

used in the analysis was taken from the wake resting state session only, despite wake 

segments being present in the sleep session data. This was to avoid including wake 

periods contaminated with variable levels of drowsiness/sleep inertia from preceding 

sleep episodes of varying sleep depth. Following sleep scoring, a single epoch was 

extracted from the total set of functional volumes, for each participant who had data 

available for a given stage. The length of the epoch extracted per participant was 

determined by considering the minimum length time series available amongst all the 

participant data for a given stage. For example, if 25 participants had at least (a bare 

minimum of) 3 minutes of NREM2 data, with the smallest epoch available for a given 

participant being 4 minutes, then a single 4-minute NREM2 epoch was extracted from the 

data available for all participants with NREM2 data. In practice, any participant with less 

than 4 1/2 minutes of data for a given stage was rejected from the analysis for that stage, 

as a further consideration of the number of time points required for an accurate functional 

connectivity analysis. 

3.2.4.3 Wake data acquired/extracted for analysis 

Of the 34 participants included in the analysis, 29 had 220 MRI volumes worth 

(approximately 8 minutes) of data, with the remainder having 150 volumes 

(approximately 5 1/2 minutes). One participant had data recorded with slightly different 

acquisition parameters, so their wake data was excluded, leaving a total of 33 

participants, each with150-volume epochs used in the final analysis. For the direct 

comparison of stages, wake data was truncated (see below). 

3.2.4.4 Sleep stage data acquired/extracted for analysis 

Overall, participants managed to obtain the full spectrum of sleep stages (NREM1, 

NREM2, SWS and REM sleep). Given the significant challenges of sustaining sleep in an 
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MRI scanner environment (due to noise and participant comfort), on an individual basis 

the majority of participants maintained sleep in only a subset of the sleep stages of 

interest, for a duration long enough to be considered sufficient for FC analysis. 

Surprisingly, 4 participants did manage to transition through all three sleep-stages of 

interest (NREM2, SWS and REM). In all cases, sleep scoring identified a pattern in 

which participants transitioned between sleep stages of variable duration; from less than 

20 seconds (the shortest sleep scoring period) to 69.3 minutes. Notably, sleep stage 

NREM1 was mostly unavailable, however considering the brief and transitional nature of 

this stage, it was justifiably eliminated from the analysis at the expense of exploring 

interesting FC changes that might occur during the sleep onset process; which would 

likely require an experimental approach tailored to study sleep onset per se. 

The majority of participants (28 out of 33) were able to sustain a sufficient amount of 

NREM2 sleep for the FC analysis. However, it was decided that 24 150-volume epochs 

be used in the analysis, in order to both match the available wake data and to maximize 

the robustness of the FC analysis. In the case of SWS, 11 participants had data above the 

minimum 83-volume (3-minute) cutoff, with 10 having at least one epoch longer than 

110 volumes (approximately 4 minutes). However, as 110 volumes was considered 

unsuitable for a functional connectivity analysis, two datasets were excluded, leaving 9 

133-volume (4.8 minute) epochs. Seven participants had REM data above the 83 volume 

cutoff, with all seven having at least one session longer than 100 volumes (approximately 

31/2 minutes). Despite the difficulty in acquiring REM data, 100 volumes was considered 

unsuitable for a functional connectivity analysis and one dataset was excluded (n.b., 

resting state analyses typically utilize 5-7 minutes of data; Birn et al., 2013). This left six 

129-volume (4.6 minute) epochs for use in the analysis. For the direct comparison of 

stages, NREM2 and SWS data was truncated (see below). 

3.2.4.5 Functional data truncation 

In order to have equal length epochs for the inter-stage comparisons (to satisfy the 

requirements of the analysis approach; see Supplemental Material), data for the stage 

with more volumes available per subject was truncated to the length of the stage with 

fewer volumes available. For the wake vs. SWS comparison, wake epochs were truncated 
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to the length of the shorter SWS epochs (i.e., 133 volumes). Similarly, in the comparison 

of wake vs. REM, wake epochs were truncated to the length of the shorter REM epochs 

(i.e., 129 volumes). Likewise, NREM2 epochs were reduced to 133 volumes in the 

NREM2 vs. SWS comparison. Notably, this reduction allowed for two datasets to be re-

included in the analysis, resulting in 26 133-volume epochs for the NREM2 vs. SWS 

comparison. Similarly, 26 129-volume NREM2 epochs were used in the NREM2 vs. 

REM comparison. Finally, SWS epochs were truncated to 129 volumes for the SWS vs. 

REM analysis. 

3.2.4.6 Preprocessing 

Each sleep and wake epoch was individually preprocessed using the Oxford Centre for 

Functional Magnetic Resonance Imaging of the Brain Software Library (FMRIB, Oxford 

U.K.; FSL version 5.09; 57). Functional volumes within each epoch were realigned using 

FSL's MCFLIRT tool (Jenkinson et al., 2002) which performs rigid body 

transformations. Non-brain voxels were also extracted using FSL's BET tool (Smith, 

2002). Volumes were spatially smoothed using a Gaussian kernel of 5mm full-width at 

half-maximum (FWHM) and high-pass temporal filtered (Gaussian-weighted least-

squares straight line fitting, FWHM = 2000s). Functional volumes were then coregistered 

to the MNI152 standard space (McConnell Brain Imaging Centre, Montreal Neurological 

Institute) using 12 degree-of-freedom affine registration. Finally, each epoch was 

individually cleaned of non-neuronal artifacts using the FIX plug-in for the FSL package 

(Griffanti et al., 2014; Salimi-Khorshidi et al., 2014), an automatic noise detection and 

removal algorithm. Prior to using FIX, FSL's MELODIC tool (Beckmann & Smith, 2004) 

was used to generate ICs for each epoch. MELODIC's default dimensionality estimation 

function automatically estimates the number of ICs by performing a Bayesian analysis. 

FIX then assessed each of these ICs as noise or signal, after generating more than 180 

distinct spatial and temporal features of each IC and feeding these into a multi-level 

classifier. ICs classified as noise were then subtracted from the ICA mixing matrix and a 

new set of functional volumes was generated.   
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3.2.4.7 Functional connectivity analysis 

The FC analysis was carried out in a number of stages. First, 20 independent component 

(IC) templates derived from a separate healthy waking RSN ICA study (Smith et al., 

2009) were spatially regressed onto the single-subject 4D epochs available for each sleep 

stage, using FSL's dual_regression function (Nickerson, Smith, Öngür, & Beckmann, 

2017). The spatial regression produced a set of 20 beta values (i.e., one beta value per IC) 

for each volume of functional data, reflecting how well each of the 20 ICs were 

represented at each time point. Each IC therefore had a series of beta values across all 

time points, which was treated as a pseudo time series, for further FC analysis. These 

pseudo-time series were used as inputs for the FSLNets network modeling toolbox 

(v0.6.3; http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLNets). The 20 ICs were then reduced to 

only those 14 that represented RSNs. Although 20 ICs were spatially regressed onto the 

data, not all of these were considered canonical RSNs. FSL image viewer FSLEyes and 

the FSLNets' ts_spectra function were used to respectively assess the spatial 

configuration and power-frequency spectra of each of these 20 ICs. The time courses of 

six noise-related ICs were regressed out of all other time series and then deleted, leaving 

14 RSN time series. Next, full-correlation matrices were generated from these 14 RSN 

time series, at the single subject level, using FSLNets’ nets_netmats function, resulting in 

91 unique FC edges for each sleep stage, for each participant (i.e., there are 91 unique 

pairs amongst 14 RSNs). Full correlation values were converted to z-scores using the 

Fisher r-to-z transform, with corrections made for degrees of freedom, taking into 

account autocorrelation. 

3.2.4.8 Polynomial fitting to edge functional connectivity data 
across wakefulness and sleep 

In order to test our main hypotheses, we assessed the pattern of FC changes across all 

sleep stages for a given FC edge. First-, second- and third-order polynomials were fit to 

stage-coded edge data (whole numbers were assigned according to sleep stage; wake 

edges were assigned an x-axis value of “1”, NREM2 a value of “2”, SWS a value of “3” 

and REM a value of “4”). The quality of fit was assessed by calculating a coefficient of 

determination (i.e., R-square values) for each polynomial function. To test for the 
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statistical likelihood of a best fitting function, sample distributions of R-square values for 

each polynomial fit were generated by resampling the data using permutation hypothesis 

testing (i.e., by randomly assigning the edge FC data to different sleep stages, calculating 

new R square values for the polynomial fits and iterating this procedure 10,000 times). P-

values were then calculated for the actual fitted polynomials by comparing the R square 

values to the permuted sample distributions. 

Next, each of the 91 edges was assessed as being best described by one of the three 

polynomial functions, i.e., a first-order non-horizontal line, a second-order quadratic 

function, or a third-order cubic function (see Figure 1 for a cartoon of possible fits). If 

only one type of polynomial fit was significant for a given edge, then the pattern of FC 

change for that edge was categorized as being best described by that fit. Otherwise, the 

polynomial fit with the lowest p value and highest R square value was used to best 

describe the pattern of FC change for that edge. If no statistically significant best-fits 

were identified, then that edge was categorized as being best described by a flat, 

horizontal line (i.e., no significant changes in edge FC across the sleep stages, in 

accordance with the null hypothesis; see top left panel of Figure 7). 

 

Figure 7. Cartoon of possible polynomial fits for functional connectivity (FC) data across 

wakefulness and sleep. 

(A) null hypothesis (H0); first-order polynomial, horizontal line fit. (B) alternative hypothesis 1 (H1); first-

order polynomial, non-horizontal line fit. (C) alternative hypothesis 2 (H2); second-order polynomial, 

quadratic line fit. (D) alternative hypothesis 3 (H3); third-order polynomial, cubic line fit. REM=rapid eye 

movement, NREM2=non-REM stage 2, SWS=slow wave sleep. 

WAKE WAKE

NREM2 SWS REM

NREM2 SWS REMREMNREM2 SWS

A B

C D

H

&Ƶ
ŶĐ
ƟŽ

ŶĂ
ů��

ŽŶ
ŶĞ

ĐƟ
ǀŝ
ƚǇ

&Ƶ
ŶĐ
ƟŽ

ŶĂ
ů��

ŽŶ
ŶĞ

ĐƟ
ǀŝ
ƚǇ

&Ƶ
ŶĐ
ƟŽ

ŶĂ
ů��

ŽŶ
ŶĞ

ĐƟ
ǀŝ
ƚǇ

&Ƶ
ŶĐ
ƟŽ

ŶĂ
ů��

ŽŶ
ŶĞ

ĐƟ
ǀŝ
ƚǇ

WAKE NREM2 SWS REM WAKE

H

H H

0

32

1



63 

 

Once all the edges were categorized according to best polynomial fit, a one-variable chi-

square test was performed to examine the distribution of these categorizations. When 

quadratic fits were found to be the most prevalent, the distribution of concavity (i.e., 

convex vs. concave) was tested using a binomial test. Importantly, the categorization of 

edge data as concave or convex was determined by first reversing data for FC edges that 

had negative FC in wakefulness. This was done in order to group together only those 

edges that were changing their magnitudes in the same direction (i.e., reducing or 

increasing in magnitude, relative to zero), so that changes relative to the FC of 

wakefulness would become more apparent. Further, edge FC changes best described by 

convex quadratic fits were tested to determine whether NREM sleep was, on average, 

accompanied by a reversal or a reduction of wakefulness FC. This was accomplished by 

performing 1-sample t-tests in the predicted direction on the FC results for each stage. 

Finally, the same tests were performed on the subset of convex fit edges that reversed 

their connectivity pattern and were strengthened in the opposite direction. 

3.2.4.9 Angular distances between stages 

Angular distances were evaluated in order to determine the dissimilarity between each of 

the sleep stages and wakefulness. This was done by first assembling relevant edge FC 

values for a given participant in a given stage into a single vector. For example, for 

NREM2 there were 24 vectors in total, corresponding to the 24 participants with useful 

NREM2 data. For comparisons of all FC edge data, each of these 24 NREM2 vectors was 

comprised of 91 values, corresponding to the 91 unique FC edges amongst the 14 RSNs 

assessed in this study. By contrast, for comparisons of the subset of convex quadratic 

edge data, each of the 24 NREM2 vectors was comprised of 29 values, corresponding to 

the 29 FC edges that were best described by convex quadratic fits. Next, angular 

distances were calculated between mean vectors for each stage (i.e., vectors comprised of 

edge FC values that have been averaged across participants for a given stage). Angular 

distances were calculated between pairs of vectors according to the following formula: 

Angular distance =
cos!! 𝐴 ∙ 𝐵

∥ 𝐴 ∥∥ 𝐵 ∥
𝜋                   (1)    

where A, B are the vectors of interest, 𝐴 ∙ 𝐵 is the vector dot product, and ∥ 𝐴 ∥∥ 𝐵 ∥ are the vector lengths. 
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In order to evaluate the statistical significance of the differences between the vectors 

belonging to each stage, a non-parametric MANOVA was performed in accordance with 

(Anderson, 2001; Anderson & Ter Braak, 2003). In this case, Equation (1) was used to 

evaluate angular distances between vectors defined by single-subject edge FC data for 

each stage. The test statistic is a multivariate analogue of the F-ratio, as follows: 

𝐹 =
𝑆𝑆! (𝑎 − 1)
𝑆𝑆! (𝑁 − 𝑎)                         (2) 

Where the numerator is the between-groups variance and the denominator is the within-groups variance. 

SSA is the between-group angular distance sum of squares (SS), calculated as total SS (SST) - SSW, SSW is 

the within-group angular distance sum of squares. SS is calculated as the angular distances amongst all 

single-subject vector pair combinations, divided by the relevant number of vectors, as per (Anderson, 2001; 

Anderson & Ter Braak, 2003). a=number of groups, N=number of vectors.  

A null distribution of this statistic was created by resampling the data (i.e., by randomly 

assigning the vectors to different sleep stages, calculating new pseudo F-statistics and 

iterating this procedure 10,000 times). A P-value was then calculated for the actual F 

value by comparing it to the permuted sample distribution. A significant F value was 

followed by a posteriori testing, in which t-statistics for specific pairs of sleep-wake 

stages were calculated as the square root of the F-statistic above, as per (Anderson, 

2001), with statistical significance calculated using the same resampling technique.  

Finally, this set of procedures was repeated for vectors comprised of FC edge subsets 

defined by their best-fitted polynomials, as described in the methods above. For example, 

vectors comprised of convex quadratic edges contained 29 edge FC values. 

3.3 Results 

3.3.1 Edge functional connectivity polynomial fit results 

Of the 91 total FC edges, polynomial fits for 49 edges failed to reject the null hypothesis. 

This suggests that either FC does not change across sleep-wake states for these edges, or 

that these results were not robust enough to generate conclusions with respect to the 

alteration of FC across wakefulness and sleep. This is not surprising however, as it would 
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not necessarily be expected that all brain region pairings would change the magnitude or 

direction of their FC from sleep to wake. Importantly, this also suggests that the 

remaining edges, which we seek to further understand here, are the most responsive to 

neurophysiological dynamics across sleep/wake states. Of these remaining 42 edges, 

seven were best described by either linear or cubic fits, with the vast majority, 83% or 35 

edges, best described by quadratic fits, in line with our hypothesis. This significant result 

(Table 2) strongly suggests that whole-brain RSN FC can be best described as deviating 

away from wakefulness FC during NREM sleep, and returning back towards wakefulness 

FC in REM sleep.  

Table 2. Tests of the distribution of polynomial fits to resting state network functional 

connectivity data across wakefulness and sleep 

Chi square test on the distribution of polynomial fit patterns across sleep/wake states 

Linear (N) Quadratic (N) Cubic (N) χ2 p 

3 35 4 47.3 < 0.001 

Binomial test on concavity of quadratic fits 

Convex (N) Concave (N) 

   29 6 

 

p < 0.001 

 Note: Exact p values < .001 are not reported 

The quadratic fit edges were then tested for concavity, with 29 found to be convex, and 

the remaining six being concave. This significant bias towards a convex inflection (Table 

2) further suggests that FC in NREM sleep is systematically, and specifically, driven in 

the opposite direction from wake-like connectivity. For example, where two RSNs are 

positively correlated with one another in wakefulness, by contrast, in NREM sleep FC is 

driven in the direction of negative correlation. 
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The polynomial fits for the significant FC edges are illustrated graphically in Figure 8 

(also see Supplemental Material Figures 11 and 12, for FC matrices indicating the direct 

statistical comparison of edge FC distributions between specific stages). Notably, the 

convex quadratic fits have been further subdivided into those which reverse their 

connectivity pattern and are strengthened in the opposite direction (indicated in red) and 

those which otherwise approach zero correlation (i.e., which could be described as 

merely reducing their connectivity). By contrast, the remaining polynomial patterns 

represent a relatively small minority of FC edges. 

 

Figure 8. Significant polynomial fits to functional connectivity (FC) data across 

wakefulness and sleep stages.  

(A) FC edges best described by convex quadratic fits (N=29). Plus symbols indicate group-average FC 

values for a given edge, for a given stage. Polynomials are fit to these group-average values. Units are 

Fisher r-to-z-transformed full-correlation values, taking into account autocorrelation. Average fitted curve 

is indicated in green. FC edges that reverse their FC during NREM are indicated as red lines. (B) Concave 

quadratic fits (N=6). (C) Cubic fits (N=4). (D) Linear fits (N=3). Note: data for FC edges that have 
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negative FC in wakefulness has been reversed such that inversion of wakefulness FC is more apparent. 

REM=rapid eye movement, NREM2=non-REM stage 2, SWS=slow wave sleep. 

The convex quadratic-fit edges were further tested to determine whether they best 

described, overall, the NREM stage as a reduction in the magnitude of FC (i.e., only 

trending in the direction of reversed connectivity) or as an actual reversal of wakefulness 

FC (i.e., by increasing the magnitude of FC in the opposite direction). If FC in NREM 

sleep was driven towards the inversion of wakefulness FC, then the expected result6 

would be that FC is significantly different from zero in the negative direction, for the 

deepest NREM stage, i.e., SWS (with NREM2 being somewhere intermediate between 

wakefulness and SWS FC). Further, if FC in REM sleep returns towards wakefulness FC, 

then it would be expected to be significantly different from zero in the positive direction. 

Remarkably, this is precisely what the results indicate (Table 3; unshaded columns); 

suggesting that the most common edge FC change across wakefulness and sleep is one in 

which FC in NREM sleep is inverted and strengthened in the opposite direction relative 

to wakefulness, and in REM sleep, is restored back to a more wake-like pattern. As 

would be expected, the results are even stronger for the subset of 20/29 edges whose 

pattern of changes is indicated by red lines in Figure 8 (see shaded columns in Table 3 for 

t-test results), as it is clearly these edges that are driving the overall results.  

 

 

 

 

                                                
6
 Note: data for FC edges that have negative FC in wakefulness has been reversed such that inversion of 

wakefulness FC is more apparent. 
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Table 3. 1-sample t-test to determine if functional connectivity (FC) deviates significantly 

away from zero connectivity in the predicted direction for convex quadratic-fit edges. 

 

WAKE NREM2 SWS REM 

 

All Reversal All Reversal All Reversal All Reversal 

p < .001  < .001 .87 < .001 .004 < .001 < .001 < .001 

M 2.0 1.4 .1 - .7 - .4 -1.0 1.6 .9 

ci 1.9 to ∞ 1.2 to ∞ -∞ to .3 -∞ to - .5 -∞ to - .1 -∞ to - .7 1.2 to ∞ .4 to ∞ 

t 22.6 13.4 1.1 -6.4 -2.7 -6.1 7.2 3.4 

d .73 .52 .04 - .29 - .17 - .45 .55 .31 

Note 1: “All” refers to all convex quadratic-fit edges, “Reversal” refers to the subset of convex quadratic-fit 

edges that reverse their FC pattern and are strengthened in the opposite direction, NREM2=non-rapid eye 

movement stage 2, SWS=slow wave sleep 

Note 2: Exact p values < .001 are not reported 

While the polynomial fit results are consistent with the idea that REM is paradoxically 

similar to wake, they are also surprising in that they appear to challenge the classic view 

of NREM sleep as merely a quiescent state. Instead, these results suggest for the first 

time that NREM, and SWS in particular, is a much more active state than previously 

supposed, such that NREM FC acts in direct opposition to wakefulness FC, rather than 

being a state characterized by degraded, reduced or disconnected functional 

communication between brain regions. 

3.3.2 Angular distances between stages 

Overall, the above pattern of results, combined with the extant literature, strongly 

suggests that wakefulness and REM sleep could be characterized as FC states that are 

most similar to one another, and further, that wakefulness and SWS are most dissimilar 

(with NREM2 being intermediate between the two). However, given that the convex 
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edges represent a subset of the total number of FC edges (35/91), it is not clear whether it 

can also be said that overall FC changes reflect this pattern. One method for assessing the 

dissimilarity of sets of features is angular distance. The complete set of features for a 

given state (in this case, FC edge data) can be assembled into a vector in 

multidimensional space (with one dimension per FC edge) and angular distances can be 

calculated between pairs of such vectors, with larger values indicating greater 

differentiation. We predicted that, overall (i.e., in the comparison of vectors comprising 

all 91 FC edges), the angular distances amongst the stages would reflect the suggested 

pattern described above.  

The results (Figure 9, top left) confirm that, overall, RSN FC in SWS sleep is indeed 

driven the furthest away from wakefulness (i.e., the angular distances between the groups 

of SWS and wake vectors are greatest), whereas RSN FC in REM sleep recovers back to 

a state that more closely resembles wakefulness (i.e., the angular distances are smallest), 

with NREM2 being intermediate. Importantly, the differences between all NREM vectors 

(i.e., NREM2 and SWS) and those of both wakefulness and REM were also significant 

and the differences between the vectors of wakefulness and REM were not significant. 

This indicates that, statistically, REM and wakefulness could not be distinguished from 

each other on the basis of their overall RSN FC, whereas both NREM2 and SWS can be 

distinguished from both wakefulness and REM. Based on these results, it is therefore 

reasonable to describe overall changes in RSN FC in terms of the predicted pattern. 
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Figure 9. Representative cartoon of the angular distances between vectors representing 

resting state network (RSN) functional connectivity (FC) in different sleep-wake stages. 

(A – F) Vectors exist in multidimensional space, with the number of dimensions dependent on the number 

of FC edges that are in a given best-polynomial fit category (e.g., each vector exists in 29 dimensional 

space for the category CONVEX). However, only two dimensions are represented here, for illustrative 

purposes. Indicated angles are the degree-equivalent of the angular distances between the mean vectors for 

each stage (indicated as colored arrows), with the mean wakefulness vector always used as the reference 

point. Angles between sleep stages are not indicated, however the statistical significance of these 

differences is indicated by asterisks (note that angles between any pair of vectors actually exists in separate 

dimensional planes and is only represented in the same plane for illustrative purposes). Colored triangles 

indicate the spread of vectors for each stage, again for illustrative purposes, as they are actually spread 

across multidimensional space. (A) ALL edges (N=91 dimensions). (B) NULL edges (N=49). (C) LINEAR 

edges (N=3). (D) CONVEX edges (N=29). (E) CUBIC edges (N=4). (F) CONCAVE edges (N=6). 

REM=rapid eye movement, NREM2=non-REM stage 2, SWS=slow wave sleep. 

Finally, all vectors were separated into component vectors comprising the edges that 

were best fit by the polynomials tested (as indicated in Figure 8), in order to confirm that 

the subset of convex edges really are the greatest contributors to the overall pattern. As 

seen in Figure 9, it is clear that this is the case. Only for the convex edges (lower right 

panel, Figure 9) is the same pattern indicated, with the same, or greater significance. This 

suggests that these FC edges are indeed the principal drivers of the overall RSN FC 
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differences that manifest between wakefulness and each sleep stage. In other words, it 

appears that it is those FC edges whose dynamics are most consistent with known 

neurophysiological changes, that are also the most responsible for the overall changes in 

state (as represented by RSN FC) across wakefulness and sleep.  

3.3.3 Distribution of sensory and higher-order nodes 

The previous results notwithstanding, there did appear to be a split between individual 

edges that indicate reversals of wakefulness FC (red lines in Figure 8) and those that 

indicate a reduction. This warranted a closer look at the RSNs comprised by the 

individual edges. Figure 10 displays the RSN FC matrix for SWS (also see Supplemental 

Material Figure 13, for the FC matrices of all examined stages). Importantly, “reversal” 

edges comprise many “higher-order” RSN nodes, suggesting that SWS involves the 

increased engagement of RSNs whose activity levels have been associated with the 

modulation of conscious awareness (Heine et al., 2012b). The following RSNs were 

classified as higher-order, on account of their involvement in the manipulation of 

multimodal information: (anterior and posterior) default mode network (aDMN, pDMN), 

executive control network (ECN), (left and right) fronto-parietal network (lF-P, rF-P), 

dorsal attention network (DAN). These RSNs were distinguished from the following 

“sensory” RSNs, which are primarily involved in the manipulation of unimodal sensory 

information: Auditory (A), somato-motor (SM), striate-, extrastriate- and ventral stream-

visual networks (sV, esV, vsV).  
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Figure 10.  Full-correlation functional connectivity (FC) matrices for 14 resting state 

networks (RSNs) during slow wave sleep (SWS). 

Nodes reordered according to hierarchical clustering (hierarchy visualized above matrix). Colors represent 

Fisher r-to-z transformed correlations between nodes (taking into account autocorrelation and standard 

error), with 1-group t-test performed on all participants with data available for a given sleep stage. Black 

circles indicate FC edges that reverse the polarity of FC during NREM (i.e., negative FC changing to 

positive FC, or vice versa), relative to wakefulness. White circles indicate FC edges that reduce the 

magnitude of FC during NREM, relative to wakefulness. SM=somato-motor, sV=striate visual, 

A=auditory, DAN=dorsal attention network, esV=extra-striate visual, vsV=ventral stream visual, 

DMN=default mode network, ECN=executive control network, l/rF-P=left/right fronto-parietal. 

The nature of RSN nodes involved in both reversal and “reduction” FC edges is further 

summarized in Table 4. Notably, the majority (13/20) of reversal edges involve higher-

order RSNs. There are also more higher-order RSN edges in the reversal category than in 
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the reduction category. Given the important role that the DMN plays in conscious 

awareness (Boveroux et al., 2010; Martuzzi, Ramani, Qiu, Rajeevan, & Constable, 2010; 

Schrouff et al., 2011; Vanhaudenhuyse et al., 2010), Table 5 also summarizes FC changes 

for the DMN specifically, for all significant-fit polynomial edges, not just convex fits. It 

is notable that the majority of edges involving DMN nodes increase the magnitude of 

their FC during SWS (Table 5, box).  

Table 4. Summary of sensory and higher-order resting state network (RSN) nodes 

involved in reversal/reduction functional connectivity (FC) edges 

 

Reduction convex edges (N) Reversal convex edges (N) 

Higher-order - Higher order 3 2 

Higher-order - Sensory  5 11 

Sensory - Sensory 1 7 

Table 5. FC Edges involving Default Mode Network (DMN) nodes (all significant 

polynomial fit types) 

RSN nodes involved 

Best-fit 

Polynomial Change from Wake to SWS FC 

   extrastriate Visual - aDMN concave increasing negative FC (**) 

Dorsal attention network - pDMN cubic increasing positive FC 

Auditory - aDMN convex negative to highly positive FC (***) 

striate Visual - pDMN convex negative to highly positive FC (**) 

Auditory - pDMN convex decreasing negative FC (***) 

ventral stream Visual - aDMN convex decreasing negative FC (*) 
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aDMN=anterior DMN, pDMN=posterior DMN, SWS=slow wave sleep 

Note: Indicated significance values (asterisks) reflect differences in the direct comparison of SWS and 

wakefulness FC values for these edges; these values are not associated with the significance of curve 

fitting. 

 

3.4 Discussion 

There are four notable results from this study, each with important implications for 

understanding the RSN FC and corresponding levels of awareness of brain states in 

which neurophysiology varies dramatically. The first, as predicted, was that inter-RSN 

FC appears to follow the aforementioned neurophysiological trends across wakefulness 

and sleep (i.e., changing cortical synchrony as a consequence of varying acetylcholine 

levels) consistently across the majority of FC edges that were found to be best described 

by significant polynomial fits (i.e., 35/42 were quadratic). Consequently, we have 

identified, for the first time, a potential correspondence between these two distinctive, 

dynamic processes, across the complete spectrum of healthy brain states (i.e., 

wakefulness, NREM and REM). The second is that the direction of this FC change was 

predictably specific to what the “starting” FC was in wakefulness, for 29/35 of the 

quadratic fit edges (i.e., the convex edges). For example, if edge FC between two RSNs 

was highly positively correlated in wakefulness, then this FC would trend increasingly in 

the direction of negative correlation from NREM2 to SWS and then return towards 

increasing correlation in REM. Third, we found that the pattern of changes undertaken by 

the convex edges is so dominant in relation to the patterns undertaken by the remaining 

edges, that the overall, whole-brain level pattern of changes is actually largely consistent 

with that of the convex edges. This suggests that those FC edges whose dynamics across 

wakefulness and sleep are most consistent with known neurophysiological dynamics are 

also most responsible for the overall changes in state across wakefulness and sleep, at 

least in terms of RSN FC.  
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These results support the idea of contrasting functions for NREM and REM, wherein the 

brain is purposefully driven into a different FC configuration in NREM and is then 

returned to a wakefulness-like configuration in REM. It is possible that this very specific 

directional change in RSN FC serves a homeostatic function, such that RSN FC in 

NREM reduces FC, as it is established during a given day, so that the brain is less biased 

towards specific RSN connectivity the following day. This could result in cognitive 

flexibility and thereby facilitate improved adaptability. It is also consistent with the 

principle of the synaptic homeostasis hypothesis (SHY, 42), which asserts that NREM 

sleep serves to counterbalance accrued wakefulness long term potentiation (LTP) 

between specific neurons. This finding is more directly consistent with the so-called 

REM “wake-up hypothesis” (Klemm, 2011), which proposes that REM serves to counter 

the effects of NREM, in order to consistently remind the brain how to reactivate 

wakefulness-like activity, lest it get stuck in the “functionally perturbed” SWS state.  

The fourth and most important discovery was that a large majority (i.e., 20/29) of the FC 

edges that trend towards reduced FC in early NREM (i.e., in the direction of reversed 

FC), actually reverse their FC polarity in SWS, by increasing in magnitude in the 

opposite direction. This reversal suggests that at least one of the functions of NREM 

sleep is to drive cortical FC as far away from wakefulness FC as possible, further 

consistent with a homeostatic function. Importantly, these edges were found to comprise 

a substantial number of higher-order RSN nodes. In contrast to sensory RSNs, whose FC 

has been shown to be largely independent of manipulations of consciousness (Boveroux 

et al., 2010), higher-order RSNs have been shown to reduce their FC in response to 

decreases in conscious awareness (Martuzzi et al., 2010; Schrouff et al., 2011; 

Vanhaudenhuyse et al., 2010). Even more suggestive is the fact that the majority of edges 

involving the DMN increase their FC between wakefulness and SWS. Many FC studies 

have indicated an important role for this network in facilitating conscious awareness, 

with decreased DMN FC shown to parallel reduced consciousness in both the vegetative 

state (Vanhaudenhuyse et al., 2010) and during sedation (Boveroux et al., 2010; Schrouff 

et al., 2011). These results notwithstanding, FC between the anterior and posterior nodes 

of the DMN does decrease during SWS, consistent with the findings of other studies 

(Horovitz et al., 2009).  
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These surprising results suggest that it is perhaps incorrect to consider NREM as a 

quiescent state. Such a conclusion would follow from an observation that edge FC 

patterns remained the same, yet became reduced during SWS. Instead, the strengthening 

in the reverse direction, when framed in the context of known connections between 

increased RSN FC (particularly that of higher-order RSNs such as the DMN) and 

conscious awareness, suggests that NREM manifests an alternate state of conscious 

awareness. We refer here to the clinical definition of consciousness, which distinguishes 

between two subcomponents: conscious arousal (i.e., alertness with respect to the 

environment) and conscious awareness (i.e., the contents/percepts of consciousness) 

(Posner, Saper, Schiff, & Plum, 2008). In the case of SWS, there is low arousal, but 

conscious awareness in the form of endogenously generated mental content, i.e., dreams. 

Notably, this view is corroborated by NREM dream reports, which can even be 

distinguished from those of REM based solely on the frequency of descriptive word 

features (Antrobus, 1983).  

It bears emphasizing that this last finding provides compelling evidence that sleep, 

overall, is not merely a quiescent state; a challenge that could said to have began in the 

1950s, with the identification of REM first as a unique sleep state (Aserinsky & 

Kleitman, 1953) and later as a “paradoxical” sleep state with features more similar to 

wakefulness than to quiescence (Dement, 1958; Jouvet, Michel, & Courjon, 1959). By 

combining the established view of REM with the present consideration of NREM as non-

quiescent (in terms of RSN FC and perceptual state), these results support the notion that 

sleep is comprised of a set of alternate states of conscious awareness that the healthy 

brain naturally manifests.  

It is important to note here that the observed reversal of FC is not inconsistent with the 

findings of other studies that FC is reduced in SWS sleep (Spoormaker et al., 2010; 

Tagliazucchi & Laufs, 2014), as FC can trend in the direction of reversed FC without 

increasing in absolute value. Reduced FC also supports the finding that energy 

consumption is reduced in NREM (Braun et al., 1997a; Dang-Vu et al., 2005),. 
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Future studies should follow up on the key finding of this study, that RSN FC appears to 

reverse during SWS. A longitudinal study would be ideal for determining whether the 

strength of this reversal corresponds to the strength of a given edge on a given day. If so, 

this would provide further support for the idea that SWS serves a homeostatic function, at 

the level of RSN FC. It would also be worth investigating edges that don’t appear to 

change as a function of sleep-wake state. In this study, 54% of edges were, statistically, 

best described by a straight line across wakefulness and sleep, suggesting either that they 

genuinely do not change, or that our study did not obtain sufficient data to identify a 

change. It is also important to investigate other functional roles for this FC reversal in 

SWS; it is already known that NREM plays a key role in memory consolidation and 

relates to inter-individual differences in human intelligence (Fang, Sergeeva, et al., 

2017a; Fogel & Smith, 2011), for example. One means of investigating such functional 

roles might be to leverage EEG by identifying connections between RSN FC in different 

sleep stages and EEG-defined frequency band power dynamics, or phasic events such as 

sleep spindles and K complexes (all with known functional associations). 

In conclusion, this study demonstrated for the first time that inter-RSN FC appears to be 

modulated in accordance with changes in cortical neurophysiology across wakefulness 

and sleep. It further suggested that NREM sleep progressively modulates RSN FC in a 

directional fashion, opposite to that of wakefulness, thereby implying a possible 

wakefulness/SWS homeostatic function, with REM serving to counterbalance the effects 

of NREM sleep. To our surprise, it also confirmed that this directional change went as far 

as reversing FC and strengthening it in the opposite direction, for a majority of the edges 

in the largest category of polynomial fits. A closer examination of these edges revealed 

substantial involvement of higher-order RSNs. Further, the majority of significant-fit 

edges involving the DMN were shown to increase their FC. Given the established 

connection between modulation of conscious awareness and the concomitant modulation 

of FC involving higher-order RSNs (particularly the DMN), this result supports the 

supposition that SWS co-occurs with altered, but not necessarily reduced conscious 

awareness. Thus, NREM sleep (particularly SWS) is better described as an alternate state 

of awareness, contradicting the historic view that it is a reduced state of consciousness. 

When this observation is combined with the long-held view of REM as a paradoxical 
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wakefulness-like state, these results suggest that sleep, overall, cannot be easily described 

as a quiescent state. Rather, it is best described as a collection of altered states of 

consciousness that change dynamically in a highly organized and predictable way. 

3.5 Supplemental material 

 

Figure 11. Full-correlation functional connectivity (FC) matrices for 14 resting state 

networks (RSNs) across wakefulness and sleep. 
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Nodes reordered according to hierarchical clustering of the below-diagonal sleep stage (hierarchy 

visualized above each matrix). Colors represent Fisher r-to-z transformed correlations between nodes 

(taking into account autocorrelation and standard error), with 1-group t-test performed on all subjects with 

data available for a given sleep stage. Asterisks indicate significant differences (p < 0.05 minimum) in edge 

FC between stages, as determined by univariate 2-sample t-tests. (A) non-rapid eye movement stage 2 

(NREM2) matrix below, wake above diagonal. (B) slow wave sleep (SWS) below, wake above diagonal. 

(C) REM below, wake above diagonal. (D) SWS below, NREM2 above diagonal. SM=somato-motor, sV= 

striate visual, A=auditory, DAN=dorsal attention network, esV=extra-striate visual, vsV=ventral stream 

visual, DMN=default mode network, ECN=executive control network, l/rF-P=left/right fronto-parietal. 

 

Figure 12. Full-correlation functional connectivity (FC) matrices for 14 resting state 

networks (RSNs) during sleep. 

Nodes reordered according to hierarchical clustering of the below-diagonal sleep stage data (hierarchy 

visualized above each matrix). Colors represent Fisher r-to-z transformed correlations between nodes 

(taking into account autocorrelation and standard error), with 1-group t-test performed on all subjects with 

data available for a given sleep stage. Asterisks indicate significant differences (p < 0.05 minimum) in edge 

FC between stages, as determined by univariate 2-sample t-tests. (A) rapid eye movement (REM) matrix 

below, non-REM stage 2 (NREM2) above diagonal. (B) REM below, slow wave sleep (SWS) above 

diagonal. SM=somato-motor, sV=striate visual, A=auditory, DAN=dorsal attention network, esV=extra-

striate visual, vsV=ventral stream visual, DMN=default mode network, ECN=executive control network, 

l/rF-P=left/right fronto-parietal. 
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Figure 13. Full-correlation functional connectivity (FC) matrices for 14 resting state 

networks (RSNs) across wakefulness and sleep. 
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Nodes reordered according to hierarchical clustering (visualized above each matrix). Colors represent 

Fisher r-to-z transformed correlations between nodes (taking into account autocorrelation and standard 

error), with 1-group t-test performed on all participants with data available for a given sleep stage. (A) 

wakefulness. (B) non-rapid eye movement stage 2 (NREM2). (C) slow wave sleep (SWS). (D) REM. Black 

circles indicate FC edges that reverse wakefulness FC in NREM. White circles indicate FC edges that 

reduce wakefulness FC in NREM. SM=somato-motor, sV=striate visual, A=auditory, DAN=dorsal 

attention network, esV=extra-striate visual, vsV= ventral stream visual, DMN=default mode network, 

ECN=executive control network, l/rF-P=left/right fronto-parietal 
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Chapter 4  

4 Resting state networks constrain neuronal activity at 
multiple frequency bands across wakefulness and sleep 

4.1 Introduction 

Investigations of the potential connection between correlated resting state blood oxygen 

level dependent (BOLD) activity (manifested as resting state networks, or RSNs) and 

correlated neuronal activity has continued ever since the idea was first proposed (Biswal, 

Yetkin, Haughton, & Hyde, 1995). However, the specifics of this connection are still 

unclear and not fully substantiated (Chen et al., 2017; Leopold & Maier, 2012; 

Schölvinck, Leopold, Brookes, & Khader, 2013). Given that the BOLD signal is 

indirectly and inferentially related to neuronal activity (Heeger & Ress, 2002; Logothetis, 

2008), efforts to establish this connection have turned to brain activity recording 

modalities that more directly reflect neuronal activity. In one approach, frequency band 

limited power (BLP) fluctuations, as recorded using electroencephalography (EEG) or 

electrocorticography (ECoG), is directly correlated with RSN activity, as recorded using 

functional magnetic resonance imaging (fMRI). Based on the results of such inter-

modality correlations, different frequency bands appear to be recruited in different 

proportions within each RSN (Mantini, Perrucci, Del Gratta, Romani, & Corbetta, 2007). 

Thus, each RSN can be said to manifest a unique “fingerprint” of BLP preferences, and, 

by inference, to manifest different proportions of neuronal populations that express 

distinct oscillatory frequencies.  

However, attempts to settle the specifics of BLP localization within RSNs and/or brain 

regions have produced mixed and inconclusive results. For example, theta BLP was 

found to map strongly to the DMN in one ECoG-fMRI study (Hacker, Snyder, Pahwa, 

Corbetta, & Leuthardt, 2017), but not in another, similar study (Foster, Rangarajan, 

Shirer, & Parvizi, 2015). The stability of BLP localization within specific RSNs over 

time and across subjects appears to be unstable, and is marked by high variability of the 

correlation between RSN activity and BLP fluctuations (Meyer, Janssen, Van Oort, 

Beckmann, & Barth, 2013). As a consequence of this inconsistent relationship during 
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wakefulness, it is difficult to substantiate the long-suspected connection between RSNs 

and neuronal activity. 

Significantly however, the relationship between RSNs and BLP across all three healthy 

functional modes of the brain (namely; wakefulness, rapid eye movement (REM) and 

non-REM (NREM) sleep), remains to be investigated. It is possible that: (1) correlations 

between fMRI-derived RSN activity and EEG-derived BLP fluctuations are more stable 

during sleep, or; (2) changes in these correlations across these stages might reveal a 

stable pattern. By employing simultaneous EEG-fMRI during sleep, the purpose of the 

present study was to determine how correlations between EEG-derived BLP fluctuations 

and fMRI-recorded RSN activity change across sleep-wake states (e.g., wakefulness, 

NREM and REM). We aim to understand the dynamics of this relationship across all 

three healthy alternate functional modes of the brain, in the hopes of further 

substantiating the relationship between neuronal activity and RSN activity. More 

specifically, if there is evidence for a consistent dynamic pattern, across sleep-wake 

states, then the present indications of an inconsistent relationship between neuronal 

activity and RSNs (when wakefulness is examined alone), can be clarified within the 

larger context of a more stable relationship across all healthy alternate states of the brain.  

Importantly, the cortical neurophysiology of REM and NREM are quite distinct, and this 

can be expected to impact both frequency band dynamics at the global level, as recorded 

by EEG, as well as RSN activity, as recorded by fMRI. Specifically, NREM is 

characterized by increasingly synchronized cortical activity (Weigenand, Schellenberger 

Costa, Ngo, Claussen, & Martinetz, 2014b), as a consequence of lower levels of 

acetylcholine (ACh), a neuromodulator that is known to disrupt synchronization. By 

contrast, REM is characterized by desynchronized cortical activity, similar to 

wakefulness, due to the cortical release of ACh, effected by the reactivation of the 

ascending reticular activating system during this stage (Brown & McCarley, 2008). We 

predicted, for each RSN examined, a progressive deviation away from the BLP 

fingerprint characteristic of wakefulness (i.e., as delineated by correlations between RSN 

activity timeseries and simultaneously collected EEG-derived BLP timeseries, in several 

frequency bands of interest), during deepening NREM, which would be maximally 
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differentiated during slow wave sleep (SWS). Further, we predicted a return to a wake-

like BLP fingerprint during REM.  

4.2 Methods 

4.2.1 Participants 

See section 2.2.1, above. 

4.2.2 Experimental procedure 

See section 2.2.3, above. 

4.2.3 Polysomnographic recording and processing 

See section 2.2.4, above. 

4.2.4 MRI imaging acquisition and analysis 

4.2.4.1 Recording parameters 

See section 2.2.5.1, above. 

4.2.4.2 Functional data classification 

All sleep session functional volumes were scored according to standard sleep-stage 

scoring criteria (Iber et al., 2007) by an expert registered polysomnographic technologist. 

To be included in the fMRI analysis, the EEG had to be visibly movement artifact-free. 

Volumes were classified as wake, NREM1, NREM2, SWS or REM. Notably, wake data 

used in the analysis was taken from the wake resting state session only, despite wake 

segments being present in the sleep session data. This was to avoid including wake 

periods contaminated with variable levels of drowsiness/sleep inertia from preceding 

sleep episodes of varying sleep depth. Following sleep scoring, a single epoch was 

extracted from the total set of functional volumes, for each participant who had data 

available for a given stage.  
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4.2.4.3 Functional data extraction 

The length of the epoch extracted per participant was determined by considering the 

minimum length time series available amongst all the participant data for a given stage. 

For example, if 25 participants had at least (a bare minimum of) 3 minutes of NREM2 

data, with the smallest epoch available for a given participant being 4 minutes, then a 

single 4-minute NREM2 epoch was extracted from the data available for all participants 

with NREM2 data. In practice, any participant with less than 4 1/2 minutes of data for a 

given stage was rejected from the analysis for that stage, as a further consideration of the 

number of time points required for an accurate functional connectivity analysis. 

4.2.4.4 Wake data acquired/extracted for analysis 

Of the 34 participants included in the analysis, 29 had 220 MRI volumes (approximately 

8 minutes) worth of data, with the remainder having 150 volumes (approximately 5 1/2 

minutes). One participant had data recorded with slightly different acquisition 

parameters, so their wake data was excluded, leaving a total of 33 participants, each with 

150-volume epochs (wake data was unavailable for 12 of these participants at the time of 

thesis assembly, however).  

4.2.4.5 Sleep stage data acquired/extracted for analysis 

Overall, participants managed to obtain the full spectrum of sleep stages (NREM1, 

NREM2, SWS and REM sleep). Given the significant challenges of sustaining sleep in an 

MRI scanner environment (due to noise and participant comfort), on an individual basis, 

the majority of participants maintained sleep in only a subset of the sleep stages of 

interest, for a duration long enough to be considered sufficient for FC analysis. 

Remarkably, 4 participants did manage to transition through all three sleep-stages of 

interest (NREM2, SWS and REM). In all cases, sleep scoring identified a pattern in 

which participants transitioned between sleep stages of variable duration; from less than 

20 seconds (the shortest sleep scoring period) to 69.3 minutes. Notably, sleep stage 

NREM1 was mostly unavailable, however considering the brief and transitional nature of 

this stage, it was justifiably eliminated from the analysis at the expense of exploring 
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interesting correlations that might occur during the sleep onset process; which would 

likely require an experimental approach tailored to study sleep onset per se. 

The majority of participants (28 out of 33) were able to sustain a sufficient amount of 

NREM2 sleep for the correlation analysis. However, it was decided that 24 150-volume 

epochs be used in the analysis, in order to both match the available wake data and to 

maximize the robustness of the correlation analysis. In the case of SWS, 11 participants 

had data above the minimum 83-volume (3-minute) cutoff, with 10 having at least one 

epoch longer than 110 volumes (approximately 4 minutes). However, as 110 volumes 

was considered unsuitable for a correlation analysis, two datasets were excluded, leaving 

9 133-volume (4.8 minute) epochs. Seven participants had REM data above the 83 

volume cutoff, with all seven having at least one session longer than 100 volumes 

(approximately 31/2  minutes). Despite the difficulty in acquiring REM data, 100 volumes 

was considered unsuitable for a correlation analysis and one dataset was excluded (n.b., 

resting state analyses typically utilize 5-7 minutes of data; Birn et al., 2013). This left six 

129-volume (4.6 minute) epochs for use in the analysis. 

4.2.4.6 Preprocessing 

Each sleep and wake epoch was individually preprocessed using the Oxford Centre for 

Functional Magnetic Resonance Imaging of the Brain Software Library (FMRIB, Oxford 

U.K.; FSL version 5.09; 57). Functional volumes within each epoch were realigned using 

FSL's MCFLIRT tool (Jenkinson et al., 2002) which performs rigid body 

transformations. Non-brain voxels were also extracted using FSL's BET tool (Smith, 

2002). Volumes were spatially smoothed using a Gaussian kernel of 5mm full-width at 

half-maximum (FWHM) and high-pass temporal filtered (Gaussian-weighted least-

squares straight line fitting, FWHM = 2000s). Functional volumes were then coregistered 

to the MNI152 standard space (McConnell Brain Imaging Centre, Montreal Neurological 

Institute) using 12 degree-of-freedom affine registration. Finally, each epoch was 

individually cleaned of non-neuronal artifacts using the FIX plug-in for the FSL package 

(Griffanti et al., 2014; Salimi-Khorshidi et al., 2014), an automatic noise detection and 

removal algorithm. Prior to using FIX, FSL's MELODIC tool (Beckmann & Smith, 2004) 

was used to generate ICs for each epoch. MELODIC's default dimensionality estimation 
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function automatically estimates the number of ICs by performing a Bayesian analysis. 

FIX then assessed each of these ICs as noise or signal, after generating more than 180 

distinct spatial and temporal features of each IC and feeding these into a multi-level 

classifier. ICs classified as noise were then subtracted from the ICA mixing matrix and a 

new set of functional volumes was generated.   

4.2.4.7 EEG-fMRI correlation analysis 

4.2.4.7.1 Generation of RSN timeseries 

10 RSN templates derived from a separate healthy waking RSN ICA study (Smith et al., 

2009) were spatially regressed onto the single-subject 4D epochs available for each sleep 

stage, using FSL's dual_regression function (Nickerson, Smith, Öngür, & Beckmann, 

2017). The spatial regression produced a set of 10 beta values (i.e., one beta value per 

RSN) for each volume of functional data, reflecting how well each of the 10 RSNs were 

represented at each time point. Each RSN therefore had a series of beta values across all 

time points, which was treated as a pseudo time series, for use in the correlation with the 

EEG power spectral data. This procedure was also repeated for 20 independent 

component (IC) templates from the same external study (Smith et al., 2009), as these 

templates included separated anterior and posterior DMN components. As not all of these 

ICs represented RSNs, additional steps were implemented: FSL image viewer FSLEyes 

and the FSLNets' ts_spectra function were used to respectively assess the spatial 

configuration and power-frequency spectra of each of these 20 ICs. The time courses of 

six noise-related ICs were regressed out of all other time series and then deleted, leaving 

14 RSN time series, two of which belonged to anterior/posterior DMN RSNs. 

4.2.4.7.2 Generation of frequency-band power timeseries 

Timeseries were generated for 5 frequency bands of interest; delta (0.3 – 4 Hz), theta (4 – 

8 Hz), alpha (8 – 12 Hz), sigma (12 – 16 Hz), beta (16 – 24 Hz). Discrete power values 

were generated for each frequency band, in 2.16s time bins (corresponding to the fMRI 

volume length), using a wavelet analysis on the complete EEG timeseries for the Cz 

electrode. This procedure generated 5 timeseries per subject, one for each frequency 

band. The relevant EEG power values (corresponding to each fMRI epoch) were then 
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extracted from each timeseries and convolved with a hemodynamic response function, 

using SPM’s Volterra function.  

Finally, each frequency band timeseries was correlated with each RSN timeseries 

available in each wake and sleep stage, at the single-subject level. The resulting single-

subject correlations were plotted on a single scatter plot, across sleep stages, producing a 

unique plot for each frequency band, for each RSN (i.e., 50 unique plots in total).  

4.2.4.7.3 Polynomial fitting to edge FC data across wakefulness 
and sleep 

In order to test our main hypotheses, we assessed the pattern of correlation value changes 

across all sleep stages for a given frequency band, for a given RSN, by fitting three 

different polynomial functions, i.e., a first-order non-horizontal line, a second-order 

quadratic function, or a third-order cubic function (see Figure 14 for a cartoon of possible 

fits) to stage-coded correlation data. Correlation values were stage coded by assigning a 

whole number according to sleep stage. Wake correlations were assigned an x-axis value 

of “1”, NREM2 a value of “2”, SWS a value of “3” and REM a value of “4”. A 

coefficient of determination (i.e., R-square values) was calculated for each polynomial 

function. To test for the statistical likelihood of a best fitting function, sample 

distributions of R-square values for each polynomial fit were generated by resampling the 

data using permutation hypothesis testing (i.e., by randomly assigning the edge FC data 

to different sleep stages, calculating new R square values for the polynomial fits and 

iterating this procedure 1000 times). P-values were then calculated for the actual fitted 

polynomials by comparing the R square values to the permuted sample distributions. If 

only one type of polynomial fit was significant for a given frequency band, for a given 

RSN, then the pattern of correlation value changes was categorized as being best 

described by that fit. Otherwise, the polynomial fit with the lowest p value and highest R 

square value was used to best describe the pattern. If no statistically significant best-fits 

were identified, then the correlation values were categorized as being best described by 

the polynomial fit with the highest R-square value. 
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Figure 14. Cartoon of possible polynomial fits for correlation data across wakefulness 

and sleep. 

(A) Null hypothesis (H0); first-order polynomial, horizontal line fit. (B) Alternative hypothesis 1 (H1); first-

order polynomial, non-horizontal line fit. (C) Alternative hypothesis 2 (H2); second-order polynomial, 

quadratic line fit. (D) Alternative hypothesis 3 (H3); third-order polynomial, cubic line fit. REM=rapid eye 

movement, NREM2=non-REM stage 2, SWS=slow wave sleep. 

4.2.4.8 General linear model analysis 

In order to determine the spatial localization of the different frequency-bands, single-

subject frequency band timeseries were regressed onto the fMRI data using a general 

linear model (GLM), for each of wake, NREM2, SWS and REM (performed with SPM). 

Group level results were generated using first-level beta maps as inputs. 

4.3 Results 

4.3.1 Correlations between RSN activity and BLP fluctuations 

Consistent with our hypotheses, the predicted (quadratic) trend was followed for the 

majority of frequency bands in more than half (i.e., 5/9) of the cortical RSNs examined; 

i.e., striate visual (sV), extrastriate visual (esV), executive control network (ECN), 

left/right fronto-parietal network (l/rF-P) (Figure 15). Notably, the quadratic fits to the 

correlation data were significantly different (i.e. p < .05) from a horizontal line for the 

majority (i.e., 15/25) of frequency bands in these RSNs. Frequency bands in the 
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remaining RSNs (i.e., ventral stream visual (ventV), default mode network (DMN), 

cerebellum, somatomotor (SM), auditory) largely followed independent trends. However 

these trends were largely found not to be significantly different (i.e., p > .05) from a 

horizontal line for the majority (i.e., 21/25) of the frequency bands in these RSNs (see 

colored asterisks in Figure 15, for significant fits). Fingerprints for these RSNs remained 

largely consistent across wakefulness and sleep (i.e., auditory, cerebellum, integrated 

DMN), or followed a consistent decrease across stages (i.e., SM). The follow-up analysis 

of the anterior and posterior subregions of the DMN, demonstrated that the anterior DMN 

(aDMN) largely follows the predicted trend, i.e., significant quadratic fits for all 

frequency bands of interest), By contrast, the posterior DMN (pDMN) did not appear to 

follow the predicted trend, nor were the polynomial fits to the data significantly different 

from a horizontal line (Figure 16). These results suggest that frequency BLP in individual 

RSNs is largely responsive to the dynamics of cortical neural synchrony across 

wakefulness and sleep. They further suggest that it may be more meaningful to consider 

the DMN as two separate RSNs; namely, aDMN and pDMN. 
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Figure 15. Best-fit polynomials to resting state network (RSN) activity correlations with 

band limited power fluctuations across wakefulness and sleep, for 5 EEG-derived 

frequency bands of interest. 

Significant fits are indicated with colored asterisks. Mean correlation values across participants are 

indicated with plus symbols. W=wakefulness, REM=rapid eye movement, N2=non-REM stage 2, 

SWS=slow wave sleep. sV=striate visual, esV=extrastriate visual, ventV=ventral stream visual, 

DMN=default mode network, Cereb=cerebellum, SM=somatomotor, Aud=auditory, ECN=executive 

control network, r/lF-P=right/left frontoparietal network 

It is notable that frequency band correlations for the higher-order RSNs (i.e., DMN, ECN, 

l/rF-P) largely begin as negative correlations during wakefulness and trend towards 

positive correlations, in a progressive fashion, during NREM. For the ECN and for l/rF-P, 

there is also a return to wake-like correlations in REM, following the predicted pattern. 

By contrast, frequency band correlations for the sensory RSNs largely begin as positive 

correlations during wakefulness and trend towards increasingly negative correlations 
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during NREM. For sV and esV, there is also a return to wake-like correlations in REM, 

following the predicted pattern. These results indicate that the boundaries of the 

canonical RSNs may play a role in defining the specific inflection of the pattern. This 

could suggest, in turn, that canonical RSN boundaries meaningfully constrain the 

dynamics of neuronal activity across wake-sleep state changes. 

 

Figure 16. Best-fit polynomials to anterior and posterior default mode network (a/pDMN) 

activity correlations with band limited power fluctuations across wakefulness and sleep, 

for 5 EEG-derived frequency bands of interest. 

Significant fits are indicated with colored asterisks. Mean correlation values across participants are 

indicated with plus symbols. W=wakefulness, REM=rapid eye movement, N2=non-REM stage 2, 

SWS=slow wave sleep.  

4.3.2 GLM results 

Overall, significant frequency band activity was mostly localized to subcortical regions, 

such as the thalamus and cerebellum, rather than to (cortical) RSNs, across sleep stages 

(Figures 17 and 18). Delta, alpha, and beta BLP was localized to the cerebellum in 

NREM2 (pFWE < .001, .018, and .011, respectively, at the cluster-level). Alpha BLP was 

also localized to the cerebellum in SWS (pFWE < .033, at the cluster-level). These results 

coincide with the results of MEG studies that indicate an important role for alpha in 

mediating cortico-cerebellar activity in support of cognition (Ben-Soussan, Glicksohn, & 
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Berkovich-Ohana, 2015; Kujala et al., 2007), albeit during wakefulness, not sleep. 

Further, slow waves and delta have been linked to the cerebellum in an EEG-fMRI study 

(Dang-Vu et al., 2008). 

 

Figure 17. Whole-brain group-level general linear model results, non-REM stage 2 

(NREM2). 

Only voxels for band-limited-power-related activity that survives family-wise error correction at the cluster 

level (CL) are shown. 
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Figure 18. Whole-brain group-level general linear model results, slow wave sleep (SWS). 

Only voxels for band-limited-power-related activity that survives family-wise error correction at the cluster 

level (CL) are shown. 

Consistent with the cortical origins of slow rhythms (Steriade, 2001), delta BLP was 

found to be localized to cortical regions; i.e., to precentral cortex in NREM2 (pFWE < 

.001, at the cluster-level) and to mid-cingulate cortex during SWS (pFWE < .005, at the 

cluster-level). Furthermore, sigma BLP was significantly associated with the thalamus, 

during both NREM2 and SWS (pFWE < .001, at the cluster-level, for both stages). Given 

that sigma is in the frequency range (i.e., 12 – 16 Hz) of sleep spindles, this finding is 

consistent with the known thalamic origins of the spindle pacemaker (Contreras, 

Destexhe, Sejnowski, & Steriade, 1996). None of the REM GLM results were significant 

at the cluster-level, however, given the limited data available for this stage (N=6), this is 

not unexpected (Figure 19) given the noisy scanner environment and the fact that REM 

appears predominantly in later sleep cycles. Thus, given the paucity of available data in 

the extant literature, we report the uncorrected results here. All results are at puncorr < .001, 

at the voxel-level, except for alpha-band localization to the post central gyrus  (puncorr < 

.003, at the voxel-level). Notably, each frequency band was localized to at least one 

cortical location. Theta BLP, in particular, was localized to a number of regions of the 

temporal cortex, including fusiform and lingual gyrus. The cortical localization of both 

theta and alpha is reassuring, given that the EEG signatures used to identify REM sleep 

(Iber, Ancoli-Israel, Chesson, & Quan, 2007) include these frequency bands specifically.  
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Figure 19. Whole-brain group-level general linear model results, rapid eye movement 

(REM) sleep. 

4.4 Discussion 

As predicted, the hypothesized dynamic trend across sleep-wake states was largely 

followed for the majority (5/9) of cortical RSNs, including two sensory RSNs (i.e., striate 

and extrastriate visual) and the majority of higher-order RSNs (i.e., executive control 

network, left/right frontoparietal networks), with the exception of the DMN (where the 

DMN was considered as a whole). This result suggests that the neurophysiological 

dynamics across NREM and REM have a predictable global impact on the expression of 

frequency band power within the majority of individual RSNs. It is remarkable that this 

finding is also consistent with a recent, preliminary study of RSN functional connectivity 

(FC) conducted by our group, in which we noted that the majority of functional 

connections also follow this trend (Houldin, Fang, Ray, Stojanoski, et al., 2019) 

Together, these two studies suggest that the dynamics of both RSN FC and BLP (as 
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constrained to RSNs) are dependent upon the global changes in cortical synchrony 

manifested by NREM and REM. While this finding makes intuitive sense, it is 

nevertheless reassuring to identify such consistency between otherwise distinctive 

processes, each of which is defined by unique recording modalities. It is worth noting that 

these results demonstrate, for the first time, the dynamics of EEG-derived BLP, as it 

relates specifically to BOLD activity within RSNs, across all sleep-wake states. 

It is important to consider the four RSNs that do not appear to follow the predicted trend. 

Of these, the polynomial fits for three (i.e., DMN, cerebellum, auditory network) are not 

significantly different from a horizontal line, i.e., group-level BLP fluctuations do not 

appear to be modulated by known cortical synchrony dynamics across wakefulness and 

sleep. Among these, the cerebellum is non-cortical and therefore shouldn’t be expected to 

follow neurophysiological trends specific to the cortex. The stability of the cerebellar 

BLP fluctuations across wakefulness and sleep is reflected in the group-level GLM 

results, in which the cerebellum is observed persistently (i.e., NREM2 alpha, beta and 

delta, SWS alpha). By contrast, as far as the GLM results for the cortical RSNs are 

concerned, it appears that BOLD activity for the majority of cortical regions is not 

consistently synchronized with any given frequency-band, across subjects. This could be 

because cortical RSNs are required to flexibly recruit frequency power in accordance 

with changing cognitive loads. By contrast, the cerebellum may be loaded more 

consistently over time (across all frequency bands), and, importantly, across all healthy 

functional brain states in wakefulness and sleep.  

It is worth mentioning that the appearance of a significant cluster of voxels in a GLM 

analysis requires relatively consistent, sustained correlated activity of (BOLD activity in) 

that cluster with a regressor of interest (in this case, the BLP timeseries convolved with 

an HRF) across subjects. By comparison, the correlation analysis used in this study could 

yield relatively low correlations between BLP and RSN activity; so long as different 

stages yield different correlations however, a significant dynamic pattern across stages 

could still be found. As discovered by (Meyer, Janssen, Van Oort, Beckmann, & Barth, 

2013), there is high variability of BLP representation within specific RSNs, over time and 

across subjects (at least during wakeful, eyes-closed, rest). This suggests that neuronal 
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activity in a given RSN is highly dynamic (i.e., not consistent), likely in accordance with 

the requirements of dynamically changing cognitive activity (which would require 

changing contributions from the neural populations constrained to individual RSNs, over 

time). It would therefore be expected that group level GLM results would be less likely to 

indicate sustained BLP activity in specific cortical regions.  

As for the cortical RSNs that do not appear to change across stages, i.e., the DMN and 

the auditory network, it is important to note that DMN FC is known to be reduced 

between its anterior and posterior nodes during SWS. This should correspond to 

differential frequency preferences for these nodes and possibly to different dynamics, 

during NREM. In order to address this possibility, a separate analysis was conducted, 

allowing for the anterior/posterior components of the DMN to be examined separately 

(Figure 16). As expected, this produced a more differentiated mix of patterns for the 

frequency bands of interest. Importantly, these differences were significant for all 

frequencies, for the anterior DMN, three of which followed the hypothesized pattern 

across wakefulness and sleep. 

Alpha-band activity was the most common frequency band to demonstrate a significant 

polynomial fit amongst all RSNs (i.e., 6/10, or 7/11, where the DMN is subdivided). This 

is consistent with a magnetoencephalography (MEG) study (Hipp, Hawellek, Corbetta, 

Siegel, & Engel, 2012) that sought to identify the cortical correlation structure of 

spontaneous oscillatory activity and found that global correlation of spontaneous activity 

peaks in the alpha-beta frequency range. It could be the case that the methods used in the 

present study are best able to capture dynamics in the alpha band simply because the 

alpha signal is strongest across the whole brain. 

Most interestingly, irrespective of whether some RSNs follow the predicted trend and 

some do not, what appears to be the consistent pattern across RSNs is that RSN 

timeseries-EEG frequency band correlation dynamics within each RSN largely parallel 

each other. This finding is surprising, given that each sleep-wake state has its own unique 

electrophysiological signature in terms of relative EEG power spectra (Iber, Ancoli-

Israel, Chesson, & Quan, 2007; Steriade, 2003). One possible interpretation of this result 
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is that, in general, frequency band dynamics within a given RSN genuinely increase or 

decrease in strength together across stages. This finding corresponds nicely with what we 

know of both the nature of RSNs, as well as band-limited spontaneous oscillations. First, 

it supports the idea that RSNs act to constrain neuronal activity, generally (Deco & 

Corbetta, 2011), even if the profile of this activity changes over time and across healthy 

alternate brain states. Indeed, the defining characteristic of RSNs is that they are 

identified (using techniques such as ICA or SCA) as regions with highly correlated 

activity. Second, it supports the idea of cross frequency phase-amplitude coupling 

(Bragin et al., 1995a); i.e., that the phase of slower frequencies modulates the power of 

faster frequencies. If frequency banded activity is changing in the same direction within 

an RSN, this could be because the activity of slower frequencies is influencing that of 

faster frequencies, possibly via phase-amplitude coupling.  

What is particularly interesting about these results is the fact that the banded-frequency 

dynamics of spatially proximate RSNs are constrained in different ways. For example, 

the extrastriate visual RSN is proximate to (posterior) left and right frontoparietal 

networks, however they have opposite dynamics, emphasizing the spatial authority of 

each respective RSN. An alternative interpretation of this result is that it is not the 

frequency band dynamics that are changing together, but instead it is only the correlations 

between the RSN and EEG timeseries that are changing together. For example, in the 

case of the ECN, it could be that correlations across frequency bands collectively rise 

together during NREM because there is a graded decrease in the within-subject 

variability of frequency banded activity during NREM (as captured by EEG, relative to 

RSN timeseries variability, as captured by the BOLD signal), and so the BOLD signal 

begins to more closely match the EEG signals, across NREM. However, this would not 

necessarily mean that there was increased activity in these bands during NREM. 

Overall, an RSN is perhaps best described as a collection of neurons in which all activity 

is constrained within certain temporal limits. The boundaries of a given RSN end (in a 

graded fashion), when a given local population of neurons is no longer phase-locked to 

the collective set of neurons of that RSN. Given the fact that the RSN FC of pathological 

brains is differentiable from that of the healthy population, (e.g., epilepsy (Centeno & 
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Carmichael, 2014), Alzheimer’s disease (Wang et al., 2006) and schizophrenia (Yu et al., 

2012)), it seems that the consequence of an RSN’s failure to impose temporal authority is 

cognitive dysfunction. In the present study, it cannot be determined which frequency 

band is setting the temporal constraints, however. It may be the case that frequency band 

dynamics are coordinated outside the boundaries of the canonical RSNs, with different 

frequency bands having different hubs. For example, the medial temporal lobes appear to 

be a hub for the theta frequency range (Hipp, Hawellek, Corbetta, Siegel, & Engel, 2012). 

Despite this possibility, it is intriguing that the slowest band (i.e., delta) matches the 

predominant trends, in 9/10 RSNs, indicating that faster frequencies are phase-locked to 

delta activity. 

In conclusion, this study confirmed that the majority of RSN frequency-band fingerprint 

dynamics are responsive to the changing neurophysiological environment across 

wakefulness, NREM and REM, in a predictable manner. It was further discovered that all 

RSNs, including those that did not follow the hypothesized trend, appear to constrain 

within-RSN frequency band dynamics in a consistent manner, supporting the idea that an 

RSN is a cortical region that imposes consistent temporal constraints upon its neural 

population, across all healthy alternate functional modes of the brain. 

 



100 

 

Chapter 5  

5 General discussion 

The primary aim of this thesis was to employ simultaneous EEG-fMRI during sleep to 

help illuminate the properties and functions of both sleep and RSNs. In this chapter, the 

main findings will be summarized along with discussion of the insights gained from this 

approach. There are three main sections, corresponding to each of the three studies 

described in Chapters 2 – 4. Within each main section is a subsection discussing the 

separate implications of the study for the nature and function of RSNs, and of sleep. 

Finally, a Summary and Conclusions section closes out this chapter. 

There were four primary findings, overall, each with significant implications that will be 

expanded upon, below. In the first study, reported in Chapter 2, all canonical RSNs were 

positively identified in sleep, and against expectations, all ICs which could not be 

identified as canonical RSNs, across all sleep stages, were positively identified as noise. 

This finding suggested that the wakefulness canonical RSNs comprise the complete set 

across all healthy alternate functional modes of the brain, and that there are likely no 

sleep-specific networks to putatively support unique sleep brain states and their 

respective functions. In the second study, reported in Chapter 3, RSN FC dynamics were 

largely found to reflect the pattern that would be predicted from known cortical neuronal 

synchrony dynamics across wakefulness and sleep (i.e., a progressive deviation away 

from wakefulness states during NREM, and a return during REM). This was taken as a 

convincing indication that RSNs reflect neuronal activity, thereby providing further 

supportive evidence on this longstanding issue. Within this dynamic pattern, a further, 

unexpected pattern indicated that NREM FC generally moves in the direction opposite to 

wakefulness FC (e.g., positive correlations specifically becoming negative, and vice 

versa). This finding is consistent with a homeostatic role for NREM sleep, thus 

potentially providing support for neuro-cognitive theories of sleep function.  

Finally, in the third study, reported in Chapter 4, BLP representation in individual RSNs 

was also found to reflect the aforementioned pattern of cortical synchrony dynamics 
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across wake/sleep. Notably, the pattern was largely consistent across the examined 

frequency bands of interest. This provided further evidence that RSNs reflect neuronal 

activity. Importantly, the specific pattern of these dynamics (i.e., the inflection of the 

pattern) was different, depending on the canonical RSN examined. This supports the 

assertion that the canonical RSN boundaries might represent the limits of meaningfully 

coupled neuronal activity, across frequency bands, since BLP largely changes in the same 

direction, within the canonical RSN borders. Overall, these three studies help to clarify 

the nature and functions of both RSNs and sleep, individually, and in terms of their 

interactions with each other. 

5.1 First study: Toward a complete taxonomy of RSNs 

The primary aim of the first study was to identify spatially unique sleep-specific RSNs. 

The data-driven ICA methodology was used in order to overcome any a priori bias 

towards the canonical RSNs found in wakefulness. The positive findings (i.e., that all 

canonical wake RSNs were identified in all sleep stages, and that the remaining ICs were 

identified as non-neuronal sources of noise) indicated that there are likely no sleep-

specific RSNs. This, in turn, suggests that the wakefulness canonical RSNs most likely 

comprise the complete set across all healthy alternate functional modes of the brain. It 

further suggests that prior studies which made use of wakefulness RSNs during sleep 

(without explicitly testing assumptions) were warranted in doing so. These novel findings 

have implications for the nature of both RSNs and sleep, which are each discussed in 

turn, below. 

5.1.1 What the first study reveals about the nature and function of 
RSNs 

The results of this study have two important implications with respect to the nature of 

RSNs. Namely; (1) we have a better understanding of the full set of RSNs across all 

healthy alternate function modes of the brain, and; (2) given that RSNs spatially 

correspond to areas known to be related to wakefulness functions, and that the spatial 

correspondence between RSNs and sleep functions is less clear, it is possible that RSNs 
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may serve wakefulness-related functions only. These two implications are expanded 

upon, below. 

As discussed in Chapter 2, the first, more obvious implication is that we can be more 

confident that the complete repertoire of RSNs is known. This has not been explicitly 

investigated to date. As pointed out in Chapter 1, a resting state study that spans 

wakefulness, NREM and REM constitutes the complete search space for identifying the 

full repertoire of RSNs. This is because these states comprise the full set of healthy, 

alternate functional modes of the brain. By contrast to pathological states, TBI or 

sedation, these states are the only ones in which putative functions associated with RSNs 

could have evolved. The results of this study also suggest that prior resting state sleep 

studies were warranted in making use of wakefulness RSNs, despite not testing the 

implicit assumption that only the wakefulness RSNs apply to sleep. From a broader 

perspective however, it is perhaps not unreasonable to claim that the catalogue of RSNs 

(Biswal, Yetkin, Haughton, & Hyde, 1995) is closer to being fully inventoried.  

The second implication follows directly from the first, as identifying the specific RSN 

inventories in each of wakefulness and sleep can help us to infer the functional role of 

RSNs. Conversely, an incorrect accounting of RSNs could have lead to misleading 

conclusions with regards to their function. In exploring the functional implications of the 

negative result of the first study, it is worthwhile to first discuss the alternate implications 

of a positive result. Specifically, discovering a spatially distinct RSN in one or more sleep 

stages might, by itself, have suggested that RSNs play an active role in supporting sleep 

functions. For clarification, this would have been a suggestion only, in the same sense 

that the sudden manifestation of sleep spindles in NREM2 suggests, by itself, that 

spindles might support sleep-specific functions. It nevertheless remains possible that 

spindles have no such role, and that they are instead epiphenomenal with respect to sleep 

function (of course, in the case of spindles, there is plenty of evidence beyond their mere 

manifestation that they do, in fact, serve a functional role; Cote, Epps, & Campbell, 

2000b; Fang, Sergeeva, et al., 2017b; Fogel & Smith, 2011).  
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However, since the results of this study suggested that the wakefulness RSNs represent 

the complete set, the above argument cannot be used to link RSNs to unique sleep 

function per se. In order to determine what these results do suggest with respect to RSN 

function across wakefulness and sleep, it is worth examining the initial evidence that 

suggested RSNs might be involved in serving wakefulness-related functions. As 

discussed in the Introduction, there are two lines of evidence. The first is that RSN FC 

changes in response to changes in cognitive activity (Naci et al., 2018; Reineberg, 

Andrews-Hanna, Depue, Friedman, & Banich, 2015; Reineberg, Gustavson, Benca, 

Banich, & Friedman, 2018). The second is that there is a remarkable spatial 

correspondence between the canonical RSNs and regions known to be involved in 

supporting wakefulness-related cognition (Smith et al., 2009). Do these two lines of 

evidence apply to RSNs and sleep? 

Clearly, the first line of evidence applies, given the results of the second study, described 

in Chapter 3, as well as that of prior studies (Boly et al., 2012; Chow et al., 2013; 

Horovitz et al., 2009; Larson-Prior et al., 2011). As for the second type of evidence, there 

is little clear indication, based on the present literature, that RSNs have a noticeable 

spatial correspondence with regions known to be involved with sleep functions. As 

described in Chapter 1, sleep spindle activity has been localized to both the thalamus and 

the cortex (Contreras, Destexhe, Sejnowski, & Steriade, 1996). Although RSNs are 

certainly cortical, localization of spindle activity does not appear to implicate specific 

RSNs. For example, an EEG-fMRI study that attempted to localize spindles and K-

complexes implicated areas such as the PCC and right hippocampus as spindle-related 

areas (Caporro et al., 2012). Despite the association of these regions with posterior DMN, 

the same study also implicated areas that are not associated with the DMN, such as the 

putamen, precentral gyrus and superior temporal gyrus. Additionally, an fMRI 

investigation of both hippocampal and spindle activity during NREM (Andrade et al., 

2011) found a progressive decrease in hippocampal-DMN FC from wakefulness to SWS, 

without finding an interaction with spindles. Further, fast and slow spindles were 

separately localized to anterior cingulate/medial PFC regions (i.e., anterior DMN), 

amongst a host of other cortical areas (i.e., too many to suggest a specific association 

with anterior DMN). Similarly, K-complexes have been localized to posterior midline 
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cortex, as well as striate cortex and precentral gyrus (Caporro et al., 2012). This suggests 

potential relationships with cortical regions associated with multiple RSNs (e.g., striate 

visual and somato-motor RSNs), without implicating any individual RSN specifically.  

Nevertheless, potential associations between RSNs and spatial localizations of sleep-

specific features should be investigated in a future, more directed analysis. On this note, 

it is also worth mentioning the results of a recent, preliminary study conducted by our 

group. Namely, evidence was provided that differing DMN FC during spindle events is 

associated with inter-individual differences in reasoning ability (Fang, Ray, Owen, & 

Fogel, 2019b). However, the functional nature of this relationship remains to be resolved. 

It is not clear whether spindles are responsible for triggering DMN FC, or vice versa. 

Moreover, it is not clear whether DMN activity in this context reflects a passive role. For 

example, this DMN activity may reflect homeostatic/restorative action (e.g., in the 

manner of SHY; Tononi & Cirelli, 2003), or it may reflect the passive replay of waking 

events (e.g., similar to the hypothesis that SPW-Rs prompt the replay of waking events in 

the cortex, during sleep; Watson & Buzsáki, 2015). 

Overall then, it seems that the connection between RSNs and waking function is 

supported by two lines of evidence (i.e., spatial correspondence and RSN FC dynamics). 

By contrast, RSNs are connected to sleep functions by only one line of evidence (i.e., 

RSN FC dynamics). Further, as discussed in the study reported in Chapter 3, RSN FC 

dynamics across sleep are a positive indicator of the link between RSNs and neuronal 

activity generally (i.e., since the pattern of RSN FC dynamics largely matches the pattern 

of cortical neuronal synchrony dynamics). Consequently, it is possible that RSN FC 

dynamics may only reflect a link to neuronal activity, more generally, without implicating 

a more specific relationship between RSNs and sleep-related functions. In conclusion, the 

link between RSNs and sleep functions requires further substantiation. There is presently 

more substantial evidence in favor of a conclusion that RSNs serve wake-specific 

functions, exclusively.  
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5.1.2 What the first study reveals about the function of sleep 

On the surface, it would seem that the first study is only relevant to understanding the 

nature of RSNs. However, it is also directly relevant to the nature of sleep, because it can 

help to generate insight into the ordering of sleep and RSNs within a functional 

hierarchy. One of the open questions raised in the Introduction (section 1.1.4), was 

whether RSNs serve as a mechanism for supporting sleep functions, or whether, instead, 

one of the further functions of sleep might be to manipulate RSNs in some way. As 

discussed above, the lack of a sleep-specific RSN, in combination with weak evidence 

linking the canonical RSNs to sleep functions, suggests that RSNs might exist to support 

wake-specific functions only. As a direct consequence of this perspective, the role of 

sleep, as it relates to RSNs, could be considered as follows (this consideration is 

speculative of course, and further studies would be required to test these assertions 

directly):  

(a) during wakefulness, the canonical RSNs serve as an active substrate for cognition, 

facilitating necessary interactions with the environment; (b) during sleep, the brain is 

largely cut off from the environment, therefore systems that exist to facilitate 

exteroceptive interactions (such as RSNs) can be safely manipulated, without having to 

worry about negative effects on the intended functions of such systems; (c) consequently, 

the true mechanisms of sleep, which presumably do not include RSNs, can emerge and 

act upon RSNs, with RSNs playing a passive role.  

Moreover, given this suggested relationship between RSNs and sleep functions, it is 

worth mentioning further implications for the perceptual effects facilitated by RSNs 

during sleep (i.e., dreams). Specifically, the suggested relationship supports (though 

certainly does not prove) the proposition that dreams might better be considered as 

passive epiphenomena. By contrast, a finding that suggested an active role for RSNs 

during sleep, could have further suggested a similarly active role for the perceptions 

manifested by RSNs. For example, there is evidence, from other studies, in support of the 

idea that dreams are a means of replaying wakefulness events during sleep, thereby 

facilitating memory consolidation (e.g., see review in Wamsley, 2014).  
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5.2 Second study: SWS is an altered, not a reduced state 
of awareness 

The second study, as reported in Chapter 3, represents the first whole-brain assessment of 

RSN FC dynamics across wakefulness and all sleep stages (notably including REM 

sleep). The primary aim of this study was to identify a correlation between RSN FC 

dynamics and known cortical neuronal synchrony dynamics across wakefulness and 

sleep. The edge FC results of this study yielded three important patterns, namely: (1) a 

quadratic fit pattern for the majority (i.e., 35/42) of significant FC edges, matching the 

neuronal dynamic pattern, as hypothesized; (2) a convex pattern for the majority (i.e., 

29/35) of quadratic fit edges, and; (3) an increase in magnitude in the opposite direction 

(i.e., relative to wakefulness FC), across NREM sleep, for the majority (i.e., 20/29) of 

convex quadratic fit edges. The primary implication of the first discovered pattern is an 

increased confidence that RSNs reflect neuronal activity, thus adding to the body of 

evidence that the two are related, and helping to counter arguments that RSNs might 

reflect non-neuronal BOLD artifact. The second and third patterns are both consistent 

with neuro-cognitive theories of sleep function, which supports the idea that sleep might 

serve a homeostatic role (in particular, a synaptic rescaling function). Finally, the third 

pattern suggests that SWS is perhaps better described as an altered, rather than a reduced 

state of consciousness. The discovered patterns have interesting implications for the 

nature of both RSNs and sleep, which are each discussed in turn, below. 

5.2.1 What the second study reveals about the nature of RSNs 

The connection between RSNs and neuronal activity 

One of the principal means of linking RSNs to neuronal activity is demonstrating that 

RSN activity is modulated by state changes that are known to modulate neuronal activity. 

Such demonstrations are particularly important given the inherently inferential quality of 

both the BOLD signal as well as the data-driven ICA methodology used to identify 

RSNs. Fortunately, cortical neuronal activity dynamics during sleep are relatively well 

established, thus offering a template pattern against which RSN dynamics can be 

compared. As detailed in Chapter 1, suppression of ARAS activity during NREM results 



107 

 

in the downregulation of cortical ACh levels. This, in turn, results in progressively 

increasing synchronization of cortical neuronal activity across NREM1, NREM2 and 

SWS. Finally, the reactivation of the ARAS during REM results in wakefulness-like 

cortical desynchronized neuronal activity. If RSNs truly represent neuronal activity, then 

RSN FC dynamics should respond to these changes in a predictable way. Data for the 

majority (i.e., 35/42, or 83%) of significant RSN FC edges were best fit by quadratic 

functions, across wakefulness, NREM and REM (i.e., FC moved progressively away 

from wakefulness FC during NREM, and returned during REM, consistent with the 

aforementioned cortical neuronal synchrony dynamics). This result can therefore be taken 

as further evidence that RSNs represent neuronal activity in some way.  

Beyond this predicted pattern, however, the second study indicated that RSN FC during 

NREM sleep appears to directly oppose wakefulness FC (e.g., positive correlations 

moved in the direction of negative correlation). Of the 35 quadratic FC edges, 29 were 

convex, indicating that FC moved in the opposite direction from wakefulness FC during 

NREM, while returning during REM. Even more significantly, 20 of these edges (i.e., 

69%) increased in magnitude in the opposite direction during NREM. These results are 

consistent with a homeostatic function for NREM sleep, in line with theories of a 

homeostatic function for sleep at the synaptic level (Tononi & Cirelli, 2014; Watson & 

Buzsáki, 2015). Thus, this connection to the synaptic level, although superficial, helps to 

reinforce the idea that RSNs are, in some way, linked to neuronal phenomena. 

The significance of the canonical RSN spatial boundaries 

One of the issues raised in the Introduction is the seemingly arbitrary quality of RSN 

spatial boundaries. In a sense, these boundaries are one of the most defining 

characteristics of RSNs (in that they help to distinguish individual RSNs from each other, 

if not from non-neuronal ICs), yet they are also the only property that is user-defined. It 

was pointed out that an ICA decomposition of around 20-30, which yields the canonical 

RSNs, facilitates useful interpretations for RSN activity. As indicated in (Smith et al., 

2009), these spatial boundaries correspond to areas known to be relevant to specific kinds 

of cognitive processing. Beyond this correspondence, however, the precise functional 
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relevance of these boundaries is not clear, and remains an unresolved problem to solve. 

One of the exciting implications of the second study is that the three patterns outlined 

above (i.e., the quadratic, convex quadratic, and increasing SWS magnitude patterns) 

might be used as criteria for gauging the relevance of the canonical RSN boundaries. 

Specifically, these patterns were discovered to apply to RSNs defined by a 20-model-

order ICA decomposition. Consequently, it can be said that the boundaries defined by 

this decomposition are decidedly less arbitrary than previously suspected, because they 

yield added information.  

However it remains to be demonstrated whether this added information might also be 

available under different ICA decompositions or even under different non-ICA-based 

brain parcellations. Only by demonstrating that this information is in some way exclusive 

to the canonical RSN boundaries can it be said that canonical RSN boundaries “add” this 

information. One highly-fragmented non-ICA parcellation was in fact applied to the sleep 

fMRI data, with the intention of beginning to address this issue, although the results were 

not included in Chapter 2 in order not to distract from the primary aims of that study. In 

this alternate analysis, a cortical parcellation consisting of 333 regions was used (Gordon 

et al., 2016). This particular parcellation was selected because it represents a highly 

fragmented version of resting state FC data.   

The results (Table 6, in Appendix B) were promising. Of the significant FC edges, 33% 

were quadratic, with the majority of edges being either cubic (42%) or linear (25%). For 

comparison, 83% of the significant fits were quadratic in the original study. Further, 74% 

of the quadratic edges were convex in the alternate analysis, matching the homeostatic 

pattern, as compared with 83% in the original study. Thus, these preliminary results 

suggest that the canonical RSNs are more informative than a significantly more 

fragmented parcellation, in the sense that they better reflect patterns that are known to be 

associated with (or hypothesized to occur for) neuronal activity during sleep. 

Importantly, there was still a non-negligible number of quadratic fits in the alternate 

analysis. Were none of the fits quadratic, this would have indicated that the BOLD data 

itself was suspect, because if BOLD data is truly linked to neuronal activity, then any 
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parcellation of BOLD data should yield some amount of FC edges whose dynamics 

match that of neuronal activity. Thus this result is important insofar as it supports the 

connection between BOLD data and neuronal activity, while still highlighting the 

meaningful quality of the spatial boundaries of whole canonical RSNs. Furthermore, the 

results of this alternate analysis suggest new criteria for the assignment of meaning to 

specific RSN parcellations, generally. Namely, pattern matching with (1) neuronal 

synchrony dynamics across sleep (i.e., quadratic functions best fit to FC dynamics), and 

(2) the discovered pattern that was consistent with a homeostatic function (i.e., convex 

quadratic functions). As will be discussed below, these criteria can also be applied to the 

third study.  

Dividing the DMN 

Finally, as was mentioned above, the only RSN that was not tracked holistically in the 

second study was the DMN. Instead, as is sometimes done in the extant literature (Xu, 

Yuan, & Lei, 2016), it was split into anterior and posterior nodes. There were a number 

of reasons for assuming that this would be a reasonable way of analyzing this particular 

RSN. First, there is evidence from prior studies that the DMN separates into anterior and 

posterior nodes during SWS (Horovitz et al., 2009), and further, that this separation 

begins as early as NREM2 (Larson-Prior et al., 2011). Second, diffusion tensor imaging 

(DTI) studies indicate important structural connectivity differences between the anterior 

and posterior DMN nodes. Namely, only the posterior node (i.e., the PCC) connects to 

the medial temporal lobe (MTL), with no white matter tracts connecting the anterior 

(dmPFC) node to the MTL (Greicius, Supekar, Menon, & Dougherty, 2009). Given the 

importance of the MTL to memory-related functions (Squire, Zola-Morgan, & Stuart, 

1991), this could suggest a natural functional dissociation between anterior/posterior 

DMN, as a consequence of these structural connectivity differences. Importantly, the fact 

that the aforementioned findings apply to a split DMN suggests that it may be more 

informative to consider the DMN as two separate RSNs, consistent with the results of a 

number of different studies (Damoiseaux et al., 2008; Lei, Zhao, & Chen, 2013). This 

idea will be expanded upon in section 5.3.1.  
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5.2.2 What the second study reveals about the nature and function 
of sleep 

Further validation of sleep stage differences  

The results of the second study have a number of important implications with respect to 

the nature and function of sleep. At the broadest level, this was the first study to assess all 

sleep stage and wakefulness differences from the perspective of whole-brain RSN FC. In 

particular, angular distance was used to assess differences in whole-brain FC 

configurations of wakefulness and sleep stages. The angular distance results are 

particularly reassuring, because they validate findings derived from many other 

measurements. For example, as detailed in Chapter 1, there is extensive evidence from 

measures of EEG (e.g., SWA signatures), neurochemistry (e.g., cortical ACh levels), the 

activity of brainstem nuclei (e.g., those comprising the ARAS), and the behaviour of 

thalamocortical circuitry, which collectively indicate that: (1) NREM is a radically 

different state from both REM and wakefulness, and, (2) brain activity during REM 

shares many similarities to wakefulness. The results of the second study indicated that the 

angular distances between NREM stage vectors (i.e., NREM2 and SWS) and those of 

both REM and wakefulness were significant. Thus, this is the first study to corroborate 

the idea that NREM is not the same state as either wakefulness or REM, from the 

standpoint of the whole-brain RSN FC configurations for these stages.  

Similarly exciting was the fact that from this same standpoint, REM and wakefulness 

were not significantly distinguished states. It goes without saying of course (see Chapter 

1), that from the perspective of behaviour (e.g., arousal level) and, for example, PFC CBF 

(which is reduced in REM), there is plenty of evidence that REM and wakefulness are not 

the same state. Nevertheless, it is thought provoking to discover that from the perspective 

of whole-brain RSN FC, these states are difficult to distinguish. Assuming that there is a 

correspondence between RSN FC and cognition/perception (see section 1.2.3), this result 

further suggests that the perceptual state facilitated by REM FC configurations might be 

similar to wakefulness. Indeed, this suggestion is backed up by REM dream reports, 

which indicate a vivid quality comparable to that of wakefulness (Hobson, Pace-Schott, 

& Stickgold, 2000b). 
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Moreover, the categorization of FC edges into different polynomial fits further revealed 

that the FC edges most responsible for driving these state differences were the very same 

edges that best reflect cortical neuronal synchrony dynamics across these stages. Given 

that these cortical dynamics are, in turn, known to be driven by well-established sleep 

mechanisms (i.e., Process S, involving neuronal circuitry that controls ARAS activation), 

it is not unreasonable to suggest that: (1) sleep mechanisms may actually drive whole-

brain RSN FC changes, and, (2) doing so may in fact be one of the critical functions of 

sleep. 

These findings help to reinforce our understanding of the functional hierarchy between 

sleep and RSNs, because it links a known sleep mechanism (i.e., ARAS deactivation 

prompting an increase in cortical synchrony) to a known RSN property (i.e., RSN FC). In 

contrast to the results of the first study, this study is better placed to suggest that sleep 

mechanisms might actively target RSN properties.  

A neuro-cognitive function for sleep 

As discussed in section 1.1, much of the evidence collected in relation to putative sleep 

functions indicates that the primary function of sleep is to serve some necessary brain-

related purpose, in particular, a neuro-cognitive function (Frank, 2006). Hypothesized 

neuro-cognitive functions emphasized either (or both) a memory-consolidation function 

(facilitated by LTP at the neuronal level), or a global synaptic downscaling function 

(involving the homeostatic recalibration of connectivity weights, to facilitate neuronal 

plasticity at the whole-brain level). One open question is whether an evaluation of RSN 

dynamics might provide evidence to support such roles. 

The most interesting finding of the second study was not the pattern followed by the 

majority (i.e., 35/42) of significant FC edges (i.e., the quadratic pattern, which was 

hypothesized based on known cortical synchrony dynamics), but the particular inflection 

of this pattern. The fact that the majority (i.e., 29/35) of quadratic fits were discovered to 

have convex inflections was exciting because it appears to suggest that NREM sleep 

serves to move whole-brain FC configurations in a direction opposite to wakefulness. 

Moreover, the majority of convex quadratic fits (i.e., 20/29) not only moved in the 
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opposite direction, by reducing their FC, but remarkably, further strengthened their FC in 

the opposite direction. It was this last result that was particularly surprising, as it could 

not have been predicted from the literature. Technically, known reduced FC 

(Spoormaker et al., 2010), and reduced glucose consumption (Heiss, Pawlik, Herholz, 

Wagner, & Wienhard, 1985) during NREM is consistent with convex quadratic fits to the 

edge FC data. However, these previously established findings give little indication that 

FC might actually strengthen in the opposite direction. Thus, these findings are 

particularly exciting, because they actually provide new corroborating evidence for a 

homeostatic neuro-cognitive role for sleep (in particular, for NREM sleep). 

SWS as a state of altered conscious awareness 

This last finding is also interesting because it has potential implications beyond the 

functional role of sleep. Specifically, it could suggest that conscious awareness is not 

necessarily reduced during SWS. Although this implication is admittedly speculative, it is 

worth further discussion here, because it challenges a commonly accepted dogma 

regarding the fundamental nature of SWS, namely that it is a state of dramatically 

reduced consciousness. This historic belief would be supported if RSN FC were only 

reduced in magnitude. Instead, FC for a majority of the significant edges continues past 

zero, reverses polarity and is strengthened in this direction. Further, a greater number of 

higher-order RSNs are involved in these reversals, rather than reductions of FC (i.e., 13 

vs. 8). Even more notably, four out of six of the significant FC edges that involve the 

DMN (across all edges, not just the subset of convex quadratic edges) increase their FC 

during SWS. As mentioned in Section 1.2.3 of the Introduction, it is worth elaborating 

here on RSN FC modulations due to sedation and TBI, because they provide context for 

higher-order RSN and DMN-specific FC changes associated with consciousness.  

Clinical definitions of consciousness distinguish between two subcomponents: conscious 

arousal (i.e., alertness with respect to the environment) and conscious awareness (i.e., the 

contents/percepts of consciousness; Posner, Saper, Schiff, & Plum, 2008). Sedation 

involves both reduced arousal and awareness, whereas states following TBI (e.g., the 

vegetative state, or VS, and the minimally conscious state, or MCS) involve normal 
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levels of arousal but low awareness (Fernández-Espejo & Owen, 2013; Laureys, 2005). 

Importantly, this difference suggests that a comparison of the findings of sedation and 

TBI studies can help dissociate markers of conscious awareness from those of conscious 

arousal.  

Sedation studies reveal that the negative correlations between task-positive/-negative 

networks, as typified by healthy wakefulness, are diminished during sedation, in 

proportion to administered sedative levels (Boveroux et al., 2010). Further, within-RSN 

FC in higher-order networks (DMN and F-P) was reduced, and thalamocortical FC 

involving these networks was found to be negative. By contrast, both within-RSN and 

thalamocortical FC involving sensory networks were comparable to their connectivity 

patterns in the unsedated state. Overall, this suggests that changes in both conscious 

arousal and awareness are associated with reductions in the FC profiles of the higher-

order RSNs only. TBI studies can help further distinguish which higher-order RSN is 

important for conscious awareness in particular, however. A study that directly compared 

locked-in syndrome patients with VS patients found that DMN integrity alone was 

sufficient to differentiate the aware locked-in syndrome patients, although the F-P 

network also appears to play an important role in such distinctions (Roquet et al., 2016).  

As an important caveat to these findings, a separate study found that within-DMN FC 

was preserved in a VS patient, though not in a brain-dead patient (Boly et al., 2009). 

Further, negative correlations were identified between DMN and the task positive 

network, consistent with healthy subjects. However, the VS patient did not meet criteria 

indicating covert conscious awareness, such as successfully completing mental imagery 

paradigms (e.g., Owen et al., 2006). The results of this study suggest that relatively 

uncompromised DMN FC and preserved negative correlations between task-positive and 

–negative networks may be a necessary, though not sufficient condition for conscious 

awareness. Finally, a study investigating the processing of exogenous information (i.e., 

an auditory story) during both sedation and TBI discovered the common factor to be 

reduced FC between F-P and auditory networks (Naci et al., 2018).  
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Collectively, these findings point to the need for future studies, in order to clarify the 

RSN FC differences in the manifestation of conscious arousal versus conscious 

awareness. Conscious arousal could be facilitated by the integrity of higher-order RSNs 

alone. Conscious awareness may be more dependent on DMN integrity as a necessary 

condition, with sufficient conditions perhaps being further mediated by negative FC 

between DMN and F-P, in addition to positive FC between F-P and sensory RSNs. An 

alternative perspective that could potentially resolve these discrepancies is that 

consciousness is better defined in terms of dynamic FC, rather than any specific static FC 

configuration. In particular, healthy consciousness during wakefulness appears to be 

marked by the capacity to flexibly and consistently deviate away from any fixed FC 

pattern, in particular, connectivity patterns defined by anatomical connections (Demertzi 

et al., 2019). 

Nevertheless, the surprising findings of the second study (i.e., the reversal of RSN FC 

polarity and subsequent increase in magnitude in the opposite direction, for edges 

involving higher-order RSNs, in particular the DMN, during SWS) suggest that prior 

characterizations of SWS as a state of reduced consciousness might need re-evaluation. 

Above and beyond the magnitude increase, the reversal itself warrants further discussion 

with respect to conscious awareness. It seems to suggest that SWS perception might, in 

some way, be qualitatively different from wakefulness perception. But how might this 

alternate state of consciousness manifest? In attempting to substantiate this idea, it is 

worth examining and contrasting dream reports from both REM and NREM sleep. Dream 

reports from all stages are arguably strange to begin with, but SWS dream reports are not 

strange in the same way that REM dream reports are strange. In REM, dreams share the 

similarly vivid quality of wakefulness perception, albeit with particularly bizarre content, 

which the dreamer has difficulty recognizing as such (Hobson, Pace-Schott, & Stickgold, 

2000b). Such a state is consistent with what might be expected from a brain that is 

connected in a similar way to wakefulness (i.e., similar whole-brain RSN FC), yet, for 

example, has reduced CBF in the dorsolateral PFC (i.e., a brain region associated with 

self-reflective awareness; Braun et al., 1997b).  
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By contrast to the content differences of REM, accompanied by a failure to recognize the 

bizarreness of this content, NREM dream reports suggest possible structural failures of 

perception. The extended narrative sequences that are also associated with REM (Foulkes 

& Schmidt, 1983), are replaced with dramatically fragmented perceptual sequences 

during NREM. The median length of REM dream sequences have been found to be over 

six times longer than their NREM counterparts (Hobson et al., 2000b). Thus, it is possible 

that a reduced capacity to successfully generate an extended narrative sequence is the 

direct consequence of RSN FC configurations that have reversed their functional 

connectivity.  

5.3 Third study: Resting state networks constrain neuronal 
activity at multiple frequency bands across wakefulness 
and sleep 

The third study, reported in Chapter 4, fully exploited the simultaneous EEG-fMRI data 

by more directly investigating the relationship between RSN activity and an EEG 

measure of frequency-banded neuronal oscillatory activity. The primary aim of this study 

was to determine whether correlations between EEG-derived frequency band power and 

fMRI-derived RSN activity reflect the pattern of cortical neuronal synchrony dynamics 

across wakefulness and sleep. There were two main discoveries: (1) the majority of RSN 

frequency-band fingerprints matched the aforementioned pattern, as predicted. This 

extended the findings of the second study, by more directly indicating a connection 

between RSNs and neuronal activity; (2) BLP dynamics across wakefulness and sleep 

were largely consistent within each individual RSN, even in those RSNs in which the 

dynamics did not match the hypothesized pattern. This second finding suggested that the 

boundaries delimited by the canonical RSNs might represent the limits of some as-yet-

undetermined mechanism for coupling neuronal activity across different frequency bands.  

5.3.1 What the third study reveals about the nature of RSNs 

The significance of the canonical RSN boundaries 

Overall, the results of the third study help to corroborate the contention that RSNs have 

an important connection to neuronal activity. It was discovered that within-RSN 
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frequency band representation largely increases and decreases in a seemingly coordinated 

manner across frequencies, throughout wakefulness and sleep stages. Notably, the 

specific pattern of frequency band dynamics (e.g., whether frequency band representation 

increased across NREM and decreased during REM, or vice versa) was largely consistent 

within an RSN, but could flip in a spatially adjacent RSN (e.g., r/l F-P vs. esV). This 

remarkable consistency has critical implications for the nature of RSNs. Namely, it 

suggests that the canonical RSN boundaries are meaningful in the sense that they may 

represent the limits of coordinated neuronal activity, across all frequency bands. Outside 

the bounds of a given canonical RSN, neuronal populations coordinate their activity, 

across frequency bands, according to a different phase, for example (e.g., according to 

phases dictated by the separately-coordinated neuronal populations of neighboring 

RSNs). Thus, the defining feature of RSNs from the perspective of BOLD resting state 

(i.e., a region of correlated BOLD activity), may well be their defining feature from the 

perspective of neuronal oscillatory activity across all frequency bands. As suggested in 

Chapter 4, PAC is most likely the mechanism by which neuronal activity is coordinated 

across frequency bands. Further, the fact that delta frequency band dynamics match the 

dominant pattern in nearly all RSNs is suggestive; it is consistent with the possibility that 

SWA may coordinate neuronal activity for all faster frequency bands. This exciting 

possibility will be discussed further in section 5.2.3, below. Overall, these findings 

provide further support for the often contentious debate regarding the neuronal origins of 

both the BOLD signal and RSNs (Tong, Hocke, Fan, Janes, & Frederick, 2015; van den 

Heuvel & Hulshoff Pol, 2010).  

As suggested in the previous subsections, it is important to test the relevance of the 

canonical RSN boundaries by attempting other parcellations delineated by different ICA 

decompositions, or by non-ICA based parcellations. Although not included in the results 

section of Chapter 4, a 14-RSN parcellation was analyzed in addition to the 10-RSN 

parcellation. This parcellation subtly breaks up some of the canonical RSNs. Despite 

being very similar, the slightly higher-fragmentation analysis yielded fewer frequencies 

that significantly matched the predicted pattern. According to the new criteria for 

ascribing meaning to brain parcellations, described in the previous section, this result can 
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therefore be taken as further evidence that the (holistic) canonical RSNs are actually 

meaningful for systems-level brain communication. 

Dividing the DMN 

As explained in Chapter 4, there is one notable exception to the above results. Namely, 

the “whole” canonical DMN did not express the predicted pattern. Moreover, no 

significant pattern of change was identified across wakefulness and sleep. Only when the 

DMN was subdivided into anterior and posterior components did the predicted pattern 

emerge to some extent. This finding has potentially significant functional implications. 

Just as a lack of meaning was the motivation for consolidating N3 and N4 into 

NREM3/SWS, the added information facilitated by splitting the DMN could suggest that 

it may be more meaningful to consider the DMN as two separate RSNs; i.e., “anterior 

DMN” and “posterior DMN” (which may function in dissociable ways). As discussed in 

section 5.2.1, this consideration of the DMN is backed up by the results of a number of 

different studies (Damoiseaux et al., 2008; Horovitz et al., 2009; Lei, Zhao, & Chen, 

2013; Xu, Yuan, & Lei, 2016).  

5.3.2 What the third study reveals about the nature of sleep 

Although the primary aim of the third study was to use frequency band dynamics during 

sleep to help elucidate the neuronal nature of RSNs, the results of this study could also 

help to fill in some important gaps in relation to sleep mechanisms. More specifically, 

while the second study provided evidence that was consistent with a homeostatic function 

for sleep, it did not have explanatory power with respect to the neuronal mechanisms by 

which this function might be achieved. Nor could it, given that it only made use of BOLD 

data, with its aforementioned inferential limitations. By contrast, the third study provides 

evidence in support of the possibility that SWA might be the mechanism by which sleep 

coordinates global RSN FC.  

Strictly speaking, if the patterns of changing frequency representation in a given RSN, 

across stages, were truly independent events, then there would be a .012 probability that 
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four out of the five examined frequencies followed the same pattern7.  Given that this 

occurred in 8/11 RSNs, the total probability is 9.4 x 10-14 8. This result suggests that the 

representations of different frequencies in RSNs are likely not independent events and 

that RSN-bound frequency banded activity might be coordinated in some way. Although 

the results of the third study do not have the power to confirm what this mechanism 

might be (i.e., by virtue of being a correlational study), the combination of these results 

with outside evidence, as detailed below, is at least suggestive. 

One of the most characteristic features of sleep is SWA. As described in Chapter 1, these 

oscillations emerge spontaneously in the cortex, with the downregulation of ACh that 

follows the inhibition of the ARAS during NREM sleep. Remarkably, patterns of delta 

frequency9 changes across wakefulness and sleep matched the dominant pattern amongst 

all other frequency band changes, in nine out of the 11 RSNs examined (i.e., where the 

DMN is considered as two separate RSNs). For example, in the striate visual RSN and 

both F-P RSNs, the dominant patterns were best fit by a convex quadratic function and a 

concave quadratic function, respectively. In each case, the dominant pattern was matched 

by the delta band frequency dynamics. This finding certainly does not prove that the slow 

oscillation is responsible for coordinating the activity of faster rhythms, however it is at 

least consistent with such a possibility. These findings become particularly exciting, 

however, when they are combined with previous evidence that: (1) slow rhythms have the 

inherent capacity to coordinate the activity of large neural populations, covering large 

distances; (2) slow rhythms can coordinate the activity of faster rhythms via PAC (Bragin 

et al., 1995b; Lakatos et al., 2005), and; (3) the slow oscillation, specifically, has been 

                                                
7
 i.e., there are 7 possible pattern fits: 1st-order polynomial; horizontal, upward slope, downward slope; 2nd-

order polynomial: concave, convex; 3rd-order: initial upwards inflection, initial downwards inflection. The 
probability that four of five frequencies should follow the same pattern is calculated by making use of the 
Probability Mass Function of the Multinomial Distribution, multiplied by the Permutation formula, as 
follows: 5!/(4!1!0!0!0!0!0!)(1/7)4(1/7)1(1/7)0(1/7)0(1/7)0(1/7)0(1/7)0 x 7!/(7–2)! 
8 This was calculated using the Binomial Formula, as follows: 11!/((11-8)!8!) x .0128(1-.012)(11-8) 
9
 Although the third study identifies the slowest examined frequency as “delta”, and delta is not technically 

categorized the same as the slow oscillation, the frequency range for “delta” used in this particular analysis 
was actually 0.3 – 4 Hz, so it comprises both delta and the slow oscillation. It is therefore not unreasonable 
to generate claims about the slow oscillation. 
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found to coordinate both spindles and delta activity, i.e., faster rhythmic activity 

(Steriade, 2006). This collection of findings leaves the overall impression that the slow 

oscillation may be coordinating the activity of all faster rhythms, across wakefulness and 

sleep, within the boundaries defined by the canonical RSNs.   

An important caveat to this suggestion is that SWA is characteristic of NREM sleep, not 

wakefulness and REM, so it is not clear why it might be influencing the other frequencies 

during these other stages. It is worth emphasizing however, that slow frequencies such as 

delta do not simply disappear during wakefulness (Goncalves et al., 2008; Mantini, 

Perrucci, Del Gratta, Romani, & Corbetta, 2007; Meyer, Janssen, Van Oort, Beckmann, 

& Barth, 2013). Thus, they might still retain the capacity to influence faster frequencies, 

despite being less representative of neuronal activity, overall, during this stage (with 

REM being less well understood). Nevertheless, it is still very possible that there is some 

other emergent coordination amongst the different frequency bands, which does not 

implicate the slow oscillation as the instigating mechanism, at least during stages outside 

of NREM.  

5.4 Summary and conclusions 

In summary, this thesis employed simultaneous EEG-fMRI during sleep to help 

illuminate the properties and functions of both sleep and RSNs. With respect to RSNs, it 

was discovered that the previously established repertoire of wakefulness canonical RSNs 

likely comprises the complete set across all three alternate functional modes of the brain 

(i.e., wakefulness, NREM and REM). When this discovery is combined with previously 

weak evidence of a connection between RSNs and sleep-related functions, it supports 

(though certainly not decisively) the contention that the function of RSNs may be to 

facilitate wakefulness-related cognition only. Thus, the presence of RSNs during sleep 

may be as passive objects of active sleep-related mechanisms, though further research is 

needed to understand the precise nature of the functional relationships between RSNs and 

sleep. It was further discovered that RSN FC dynamics largely reflect neuronal 

synchrony dynamics across wakefulness and sleep, thereby helping to substantiate the 

connection between RSNs and neuronal activity. This connection was further 

substantiated by the discovery that frequency banded activity, as measured by EEG, 
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largely appears to be coordinated across wakefulness and sleep, within RSN boundaries. 

Importantly, this last finding suggested that RSN boundaries may represent the limits of 

coordinated neuronal activity across all frequency bands, an appraisal that is consistent 

with how RSNs are conceptualized based on BOLD data (i.e., as regions of correlated 

BOLD activity). Finally, the meaningful quality of the canonical RSN boundaries was 

advocated by preliminary evidence that the aforementioned discoveries were best 

demonstrated by canonical RSN parcellations, as opposed to more highly fragmented 

parcellations. There was one exception to this principle, however; the second and third 

studies suggested that it might be more meaningful to consider the DMN as two separate 

RSNs (namely, an “anterior DMN” and a “posterior DMN”), supporting the findings of 

other studies.  

With respect to sleep, evidence was provided that the modulation of whole-brain RSN FC 

might be one of its most important functions. RSN FC dynamics were discovered to be 

largely consistent with the dynamics of phenomena under the direct control of sleep 

mechanisms (i.e., cortical neuronal synchrony). Since RSN FC dynamics during NREM 

were also discovered to change in opposition to wakefulness FC configurations, this 

suggested support for the idea that sleep might serve a homeostatic function, at the level 

of RSN FC. Importantly, this finding is consistent with previously hypothesized neuro-

cognitive theories of sleep function, at the synaptic level (i.e., SHY). Further, the fact that 

the majority of significant edges reverse, rather than reduce their FC profiles during 

SWS, suggested that this state might be better characterized as an altered, rather than a 

reduced state of cognitive activity. Notably, this reversal included a significant number of 

higher-order RSN nodes, such as the DMN, which has been implicated in studies 

involving the modulation of conscious awareness. This latter finding is suggestive that 

SWS might also be better characterized as a state of altered consciousness, though such a 

contention is only speculative at this stage and requires further substantiation. Finally, it 

was discovered that delta frequency band dynamics across wakefulness and sleep are 

consistent with the dominant patterns of the remaining frequency bands in nearly all of 

the canonical RSNs. This finding is consistent with the possibility that sleep might 

coordinate RSN frequency banded activity via its well-documented association with the 

slow oscillation. 
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Overall, based on the results of the three studies in this thesis, the newly emergent picture 

of the relationship between canonical RSN and sleep functions might be depicted as 

follows: (a) during NREM, the ARAS is switched off, in order to increase cortical 

neuronal synchrony; this increased neuronal synchrony largely manifests as the slow 

oscillation; (b) the slow oscillation coordinates the activity of faster rhythms, via PAC, 

however this coordination is constrained to the limits of the canonical RSN boundaries; 

(c) neuronal activity relationships between the canonical RSNs is not constrained, 

therefore the collective interactions of large neural populations (captured, from the 

BOLD signal, as between-RSN FC) is free to move in independent directions; (d) during 

NREM, whole-brain between-RSN FC moves, progressively, in a direction opposite to 

wakefulness configurations, thus reducing wakefulness FC patterns amongst the 

canonical RSNs; (e) during REM, the ARAS is reactivated, and cortical activity is free to 

return to desynchronized interactions; whole-brain between-RSN FC returns in the 

direction of wakefulness FC, reducing the possibility of the system getting stuck in 

dysfunctional NREM RSN FC configurations; (f) following multiple ultradian cycles, 

involving the alternation of NREM and REM RSN FC configurations, the system is 

brought closer to a neutral configuration, in a homeostatic fashion, thereby improving 

plasticity for the following day.  

Future directions 

This thesis introduces the idea of using both the pattern of neuronal synchrony dynamics 

across wakefulness and sleep (characterized by a quadratic fitting function), and a further 

“homeostatic pattern” (characterized by a convex quadratic function) as criteria for 

ascribing meaning to cortical resting state brain parcellations. Based on preliminary 

results (described in section 5.1.2 and 5.1.3), it was suggested that the canonical RSNs 

might comprise the most meaningful boundaries according to these criteria. However, a 

more comprehensive study is warranted, in which a wide range of ICA decompositions 

and cortical parcellations are subjected to the same analysis. The parcellation identified 

as most meaningful by such a study would be valuable with respect to resolving a 

longstanding issue in neuroscience; namely, the nature of the functional organization of 
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the brain. Such analyses could also implement graph-theoretical measures using RSNs 

generated from different decomposition numbers, as nodes. 

As discussed in section 5.1.1, evidence of a link between RSNs and sleep functions is 

weak, at best. It was suggested that a follow-up study be conducted to determine whether 

more evidence might be available. One possibility would be a set of separate SCAs 

performed during each sleep stage of interest. Individual RSNs and BOLD localizations 

of spindles, k-complexes and other sleep features (e.g., SWA) could be used as seed 

regions, with the objective of determining correlations amongst these different features.  
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Appendix B: Additional parcellation analysis for the second study 

Table 6. Number of functional connectivity (FC) edges per best-fit polynomial, for two 

brain parcellation types 

 

Number of FC edges, by parcellation type 

Best-fit polynomial Smith (14 RSNs) Gordon (333 ROIs) 

   Quadratic 35   (83% of sig. edges) 3,841   (33% of sig. edges) 

Convex Quadratic 29   (83% of quad. edges) 2,837   (74% of quad. edges) 

Cubic 4 4,834 

Linear 3 2,927 

   

Total # of sig. FC edges 42   (46% of total edges) 11,602   (21% of total edges) 

Total # of FC edges 91 55,278 

   

Note: Smith refers to brain parcellations taken from (Smith et al., 2009) and used in implementing the 
second study (Chapter 3). Gordon refers to brain parcellations taken from (Gordon et al., 2016). 
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