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ABSTRACT

Regression analyses in epidemiological and medical research typically begin with a model

selection process, followed by inference assuming the selected model has generated the data

at hand. It is well-known that this two-step procedure can yield biased estimates and invalid

confidence intervals for model coefficients due to the uncertainty associated with the model

selection. To account for this uncertainty, multiple models may be selected as a basis for

inference. This method, commonly referred to as model-averaging, is increasingly becoming

a viable approach in practice.

Previous research has demonstrated the advantage of model-averaging in reducing bias of

parameter estimates. However, there is lack of methods for constructing confidence intervals

around parameter estimates using model-averaging. In the context of multiple logistic regres-

sion models, we propose and evaluate new confidence interval estimation approaches for re-

gression coefficients. Specifically, we study the properties of confidence intervals constructed

by averaging tail errors arising from confidence limits obtained from all models included in

model-averaging for parameter estimation. We propose model-averaging confidence intervals

based on the score test. For selection of models to be averaged, we propose the bootstrap

inclusion fractions method.

We evaluate the performance of our proposed methods using simulation studies, in a com-

parison with model-averaging interval procedures based on likelihood ratio and Wald tests, tra-

ditional stepwise procedures, the bootstrap approach, penalized regression, and the Bayesian

model-averaging approach.

Methods with good performance have been implemented in the ‘mataci’ R package, and

illustrated using data from a low birth weight study.

KEYWORDS: Model-averaging; Logistic regression; Confidence interval; Score function.
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SUMMARY FOR LAY AUDIENCE

Data analysis in medical research often involves regression analysis that examines the

associations between outcome and independent variables. Analysis consists of selection of

these variables and estimation of their effects. A point estimate usually varies from sample

to sample, meaning that the estimated effect has some distribution. The 95% confidence

interval, a range around a point estimate within which the true effect is likely to fall, is used

to quantify the uncertainty associated with the estimates. Tail errors on both sides of a valid

confidence interval should be similar and close to the specified limit.

Unfortunately, using the same data to construct confidence intervals usually leads to

biased results, especially in small samples. The coverage of confidence intervals obtained

by such “double use” of the data is often below the specified limit. To address this problem,

it was proposed to use several regression models, which results are averaged. The selection

of candidate models is important for the averaging process. If done correctly it allows one

to accelerate the computations and also to improve precision of results, while a insufficient

set of models can negatively affect the final conclusions.

Model-averaging makes it possible to obtain more accurate point estimates, but many

methods for constructing confidence intervals for such averaged estimates suffer from in-

accuracy, especially if samples sizes are not large. Such intervals are often too short, and

the confidence level is much lower than the specified level.

In this work, we proposed an approach for selecting candidate models that reduces the

number of required models, but saves the information that can be obtained from the data.

We also proposed a method that constructs valid and accurate confidence intervals for re-

gression coefficients even for small samples. We used a method that suggests averaging the

tail errors over selected candidate models. The developed methods are more accurate, but

are less traditional variants of the model-averaged tail error method. We focused on build-

ing confidence intervals for logistic regression models that evaluate the effect of variables

on a binary dependent variable. To demonstrate the superiority of the proposed methods,

we compared them with frequently used methods.
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Chapter 1

INTRODUCTION

Routine data analysis in epidemiologic or health sciences research is typically con-

ducted by first selecting a model, followed by obtaining point estimates and standard errors

as well as p-values. The same data set is used for both model selection and statistical in-

ference. When separate data sets are use separately for each purpose, results are usually

valid. However, the use of the same data set repeatedly can lead to incorrect estimation of

standard errors, biased p-values and invalid confidence intervals (Berk et al., 2010; Freed-

man et al., 1988). This is because traditional inference procedures are usually developed

by assuming a given correct model. Yet the model selection process usually involves mul-

tiple comparisons of the models. Such data snooping can lead to a misspecified model and

increased Type I error.

This problem has long been documented in the literature (e.g. Pötscher, 1991 and

Kabaila, 2005). Leeb and Pötscher (2005) and Leeb (2006) pointed out that the distri-

bution of post-selected variables cannot be estimated because the estimation error is not

uniformly small even if the sample size goes to infinity. Nevertheless, a review by Walter

and Tiemeier (2009) showed that 20% of the articles published in the four leading epidemi-

ological journals in 2008 used either forward or backward stepwise selection methods. A

recent review done by Fernández-Niño et al. (2018) found that stepwise selection based

methods were used in 50% of the published articles between 2000 and 2017. These re-

sults suggest that epidemiological and medical research require more comprehensive and
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principled analytical procedures.

Common model selection procedures usually result in a single final model, which is

then assumed to be the true model upon which the subsequent statistical inference is based.

However, such inference does not reflect the uncertainty in the model selection process, so

it leads to underestimation of the standard errors and consequential undercoverage of the

confidence intervals (Berk et al., 2010). A possible solution to this problem may be the use

of the model-averaging technique that averages over a set of candidate models instead of

using a single model.

Automated techniques have been developed for model selection and sequential in-

ference. The most popular approach is the stepwise procedure using prespecified crite-

ria such as F-test, Akaike Information Criterion (AIC = −2lnL+ 2k) (Akaike, 1973) or

Bayesian Information Criterion (BIC =−2lnL+2kln(n)) (Schwarz, 1978), where lnL is a

log-likelihood function, n is a sample size and k is a number of estimated coefficients, to

compare nested models at each step, and to decide whether to leave or to remove one of the

variables. One widely known limitation of the stepwise selection procedure is that it yields

biased regression coefficients and confidence intervals that are falsely narrow (Altman and

Andersen, 1989; Hurvich and Tsai, 1990). Although it is known that stepwise methodology

has performance problems and should be used cautiously, it is still the most popular model

selection and inference approach among researchers, because of its simplicity. Currently,

nearly all software packages have implemented this procedure.

Another method for model selection, referred to as penalized regression, maximizes a

penalized likelihood function instead of the usual likelihood function. Penalized regression

increases the bias and decreases the variance of the coefficient estimation by shrinking

the regression coefficients. Such bias-variance tradeoff is usually beneficial, because the

variance decreases faster than the increase in bias, which leads to a smaller mean square

error (MSE) of the estimated model.

In general, the penalty function has a form of a sum of absolute regression coefficients
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raised to the γ-th power

Penalty = λ

p

∑
j=1
|β j|γ ,

where p is number of predictors, λ is the penalty multiplier that controls the trade-off

between bias and variance (Frank and Friedman, 1993). The penalty function penalizes the

regression coefficients whose values are far away from zero. Such shrinkage allows the

less contributive parameters to be close or equal to zero. The parameter γ > 0 changes the

structure of the penalty region, which also affects the properties of the regression method.

The Least Absolute Shrinkage and Selection Operator (LASSO), introduced by Tibshi-

rani (1996), uses γ = 1 that allows one no only the shrinkage of estimators, but also the

selection of variables. Further, many modifications of LASSO procedures were proposed,

such as Adaptive LASSO (Zou, 2006) that uses a weighted penalty
p
∑

j=1
w j|β j|. The weights

can be obtained through ordinary least squares regression (OLS) by defining w j = 1/|β̃ j|δ ,

where β̃ j are the OLS estimates for j = 1, ..., p, and δ > 0 is often set equal to 1, but could

also be estimated using cross-validation. Weighting allows an additional step of optimiza-

tion and assures the selection and estimation consistency of the method.

Ridge regression is a special case of penalized regression where γ = 2, and it was de-

veloped to improve the prediction performance in the presence of multicollinearity (Hoerl

and Kennard, 1970). Multicollinearity occurs when at least two predictors in the model

are highly associated, such that their effects on the outcome variable cannot be distin-

guished. Ridge regression changes the associations between the variables, such that the

MSE becomes smaller as the variance decreases, and allows more accurate estimation and

interpretation of the effects.

Elastic net regularization (Zou and Hastie, 2005) is another modification of the LASSO

method that adds the ridge penalty to it, which improves the performance of this method

under multicollinearity. Smoothly Clipped Absolute Deviation (SCAD) (Fan and Li, 2001)

is the model selection and inference procedure that penalizes the likelihood function. The
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penalty function of SCAD is nonconvex, and the adaptive LASSO provides effect estimates

for the original variables, while the LASSO procedure provides estimates for standardized

variables.

While LASSO-type algorithms are useful for variable selection in high-dimensional

data and for making predictions, it may have problems with post-selection inference, par-

ticularly accurate estimation of effects and confidence interval construction (Knight and Fu,

2000). Because of the bias-variance tradeoff implemented in the LASSO-type algorithms,

it is possible to construct confidence intervals, but they would not have good properties.

Several LASSO related methods for confidence interval construction and hypothesis

testing have been proposed since the introduction of LASSO for both high and low di-

mensional settings. Zhang and Zhang (2014) derived a low-dimensional projection esti-

mator that uses residuals from sparse linear regression instead of a regular score vector to

construct confidence intervals. Lockhart et al. (2014) and Taylor et al. (2014) proposed

pathwise significance tests for predictor variables that use asymptotic or exact distributions

of different pivotal quantities conditionally on the selected model. Bühlmann (2013) and

Van de Geer et al. (2014) constructed confidence intervals by controlling and adjusting bias

introduced by the regularization path of LASSO. Lee et al. (2016) derived a framework for

post-selection inference in linear regression by conditioning on a union of polyhedrons. A

similar approach was introduced by Tibshirani et al. (2016). Taylor and Tibshirani (2017)

extended this methodology to generalized regression models. The above methods provide

asymptotically valid confidence intervals under sparsity conditions for linear models with

Gaussian additive noise and large effects; however, for logistic regression models in the

finite and small sample settings, the results can be less stable.

In contrast to stepwise selection algorithms or penalized regressions that provides a

single final model for inference, the model-averaging technique compromises across a set

of candidate models by assigning weights to each model, and then averaging regression

coefficient estimates across multiple models in order to capture the average effects of the
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variables (Barnard, 1963; Roberts, 1965). The method accounts for uncertainty produced

by the single final model and outperforms single model approaches in terms of validity and

accuracy of confidence intervals.

Leamer (1978) expanded the idea of model-averaging. This approach uses the posterior

model probability as a function of a prespecified prior distribution to weight the posterior

distributions of the quantity of interest under each of the considered models. The method

is commonly referred to as Bayesian model-averaging (BMA).

Model-averaging can be time consuming due to the large number of possible models

that need to be fitted. Moreover, the averaging of all possible models increases the risk of

overfitting. To prevent overfitting, BMA accounts for uncertainty by averaging over a re-

duced set of models. To reduce the number of models, the Occam’s window approach was

proposed by Madigan and Raftery (1994). Although BMA is popular and its implemen-

tation was improved recently in terms of computational difficulties, there are still debates

about what prior distribution should be used (Wasserman, 2000).

The model-averaging approach can also be applied to the frequentist framework. Fre-

quentist model-averaging (FMA) is based upon the same idea as the Bayesian approach,

but instead of using a prior distribution, a function of information criterion is used to aver-

age over a set of models. Given uninformative, uniformly distributed priors, the Bayesian

posterior probability for model m = 1, ...,M can be approximated by the weighted function

of an exponentiated BIC:

wm =
exp(−BICm/2)

M
∑

i=1
exp(−BICi/2)

.

Buckland et al. (1997) suggested replacing BIC with AIC as a criterion for estimation

of the weight for each model. Burnham and Anderson (2002) modified the methods by

replacing the information criterion by the differences in AIC with respect to the AIC of

the best candidate model. This rescaling does not change the order of the models, but

it facilitates subsequent calculations and comparison of the models. Hjort and Claeskens
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(2003) and Claeskens and Hjort (2008) developed the focused information criterion (FIC),

obtained from the estimation of MSE as a focus estimand, while AIC or BIC are based on

the penalized likelihood function. The FIC method provides a ranked list of models for a

prespecified parameter of interest, while AIC and BIC provide a ranked list of candidate

models without considering each parameter separately. Thus, if the goal of the study is

estimation for a specific variable, the FIC can be preferable over other information criteria.

Apart from the aforementioned criteria, there are many other criteria and algorithms

that can be used to estimate weights. For example, Austin (2008) suggested bootstrap-

ping the original data and applying of backward selection on each of the bootstrapped

samples, the coefficients of eliminated variables are set to zero, and a point estimates are

obtained by averaging over all samples. The confidence interval around the estimated effect

is constructed by quantile method, that is defined by the quantiles closest to a cumulative

probability of α/2 and 1−α/2. This method can be seen as averaging over multiple mod-

els, with weights based on how often the model appears in the bootstrap procedure. The

weights are seen as the estimated posterior probability.

The frequentist model-averaging faces the problem of a large number of models that

need to be considered. There exist at least two frequentist approaches to reduce the number

of models. One approach suggests that one construct the models only from the variables

that were selected by some preceding variable selection method and ignore the eliminated

variables. The other approach is to construct all possible models from the eliminated vari-

ables and add to each model the selected candidate variables (Hansen, 2007). The candidate

model set based on the second approach includes the full model and has a higher risk of

overfitting than the first approach. At the same time, the risk of information loss and invalid

inference should be smaller for the second approach.

Methods for selecting the candidate variables can be as simple as stepwise selection or

more advanced and time consuming such as a bootstrap-based inclusion fraction. The

bootstrap-based approach involves selection of variables over a large number of boot-
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strapped samples and retains in the model only variables whose inclusion frequency ex-

ceeds some prespecified fraction (Burnham and Anderson, 2002). For example, in the

analysis of patients admitted to hospital with a heart attack, Austin and Tu (2004b) showed

that out of 30 predictors for mortality, eight variables that appeared in more than 60% of

bootstrap samples formed a parsimonious model with great predictive ability. Although this

method was used to build models for prediction, the method may also be used to estimate

effects of variables.

After candidate models are selected and their weights are estimated by the bootstrap or

an information criterion, confidence intervals can be constructed. Buckland et al. (1997)

suggested using the bootstrap method to estimate standard errors and construct confidence

intervals. Burnham and Anderson (2002) proposed an unconditional Wald-type confidence

interval that uses an adjusted standard error estimator. Turek and Fletcher (2012) developed

model-averaged tail area (MATA) intervals to improve model-averaged Wald intervals, and

compared the performance of these intervals under different information criteria. Fletcher

and Turek (2012) also proposed a method based on the profile likelihood function. Yu

et al. (2014) transformed MATA with the inverse of the cumulative distribution function of

standard normal and derived a method that can be applied to general parametric models,

and developed the asymptotic version of transformed MATA intervals.

Model-averaging methods based on AIC and BIC are widely studied. Although model-

averaging usually performs better than regular stepwise methods, it also has problems with

coverage probability and coefficient estimation. There is no simple answer as to what

procedure should be used, even though it is well-known that stepwise procedures usually

provide confidence intervals with undercoverage. For example, if a data set contains a

large number of noise variables, then penalized regressions outperform stepwise methods

in terms of variable selection (Derksen and Keselman, 1992). Wang et al. (2004) and

Genell et al. (2010) found that BMA has a better probability of selecting the true model

than stepwise regression.
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Greenland et al. (2016) compared the stepwise approaches with different criteria and

Bayesian penalized regression. They concluded that standard errors based on stepwise

methodology should be adjusted or corrected, otherwise penalized regression methods will

outperform stepwise selection procedures in terms of construction of confidence intervals.

The adjustments can be made by using bootstrap or cross-validation approaches.

Pfeiffer et al. (2017) tested the ability of choosing the true model and some inference

properties of different penalized approaches on linear and logistic regressions. To test the

variable selection ability, they defined the false positive (FP) rate as the percentage of times

when a method estimated β̂ j , 0 for noise variables, and false negative (FN) rate as a per-

centage of times when a method estimated β̂ j = 0 for outcome associated predictors. The

FP and FN rates then were averaged over all zero and non-zero coefficients of the β -vector,

respectively. They found that for logistic regression, the LASSO approach demonstrated

an increase in FP and decrease in FN with an increase of sample size and the magnitude of

non-zero coefficients. For the SCAD approach, the association of FP and FN with sample

size and coefficient magnitude was opposite to the LASSO method. For all settings, the

coverage of the confidence intervals for irrelevant variables was close to 100% for SCAD

and close to 95% for LASSO. However, the coverage of the methods for important vari-

ables was mostly far below the nominal level, that was reached only for large sample sizes

and large true effects.

Each of the methods mentioned above might be useful for prediction, but all of them

have a problem with model selection, especially when sample sizes are not large. Post-

selection inference based on these methods is also very problematic, because the coverage

of confidence intervals for non-zero predictors usually does not reach the prespecified nom-

inal level.

The general goals of this thesis are 1) to develop algorithms for reducing the subset of

models for model-averaging, and 2) to develop model-averaged confidence intervals based

on the score test. We also consider the pros and cons of the replacement of Wald standard
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errors in model-averaged tail area confidence intervals by standard errors obtained from

profile-likelihood and score confidence intervals. All methods are developed in the context

of logistic regression. This is because logistic regression analysis is frequently used in

epidemiological and biomedical research (Hosmer et al., 2013 and Rothman et al., 2008),

recognising that approaches may also be applicable to other generalized linear models.

The specific objectives are:

1. To review common approaches for model selection, with the goal of identifying the

true model;

2. To summarize procedures for post-selection inference;

3. To provide a procedures for selection of a subset of models for model-averaging;

4. To develop model-averaging score function based procedure that produces valid in-

ference for each predictor of interest;

5. To evaluate empirically the performance of the model-averaging score-based method

as compared with commonly used approaches.

This thesis is structured as follows. Chapter 2 reviews the literature on model selection

and inference methods. Chapter 3 describes the proposed method for candidate model set

selection. In Chapter 4, we present the proposed confidence interval construction algorithm

and the improvement of the existing Wald-based model-averaging tail area confidence in-

terval construction method. A simulation study is reported in Chapter 5. Empirical per-

formance of the methods was assessed by changing sample size, the number of variables,

correlation between variables, and probabily of outcome. Chapter 6 presents an R package

that implements the recommended methods. For illustrative purposes, the data from the

Baystate Medical Center Study was analysed in Chapter 7. Finally, Chapter 8 closes with

a summary of the main results, discussion of the strengths and limitations of the proposed

methods, and the proposed directions for future research.
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Chapter 2

OVERVIEW OF VARIABLE SELECTION AND CONFIDENCE

INTERVAL CONSTRUCTION METHODS

2.1 Automated model selection

Typical data analysis begins with a definition of the full model. While one may consider

all collected variables as a “full” model, we define it as the model that contains all relevant

variables and all potential confounders, that were selected by prior knowledge. Although

the full model is valid, the confidence intervals can be too wide to be meaningful.

Thus, fitting the full model is not the best way to analyse the data, because it may not

always be possible to fit the model and the results may have a lack of precision. This prob-

lem becomes more severe as the ratio of sample size to the number of predictors decreases.

Moreover, if the number of predictors is large, the results of fitting the full model may be

difficult to interpret due to its complexity.

Fitting a model with a large number of variables can decrease bias of point estimates

but increases the variance, such that the confidence intervals become unnecessarily wide.

Model selection algorithms were developed to balance the bias-variance tradeoff and ob-

tain a smaller model that still has good estimation properties and shorter, valid confidence

intervals for estimates.
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2.1.1 Stepwise selection

Efroymson (1960) is among the early studies that proposed a stepwise algorithm for a linear

regression model for a continuous outcome, using the partial F-test value as a criterion to

compare multiple models. This strategy has been used for other outcomes as well (Harrell,

2015). Widely used algorithms include:

• Forward stepwise selection, which begins with a model with no predictors, followed

by adding the most significant variable from the pool of variables, and stops when no

variables meet a prespecified criterion;

• Backward stepwise selection, which starts with all variables in the model, followed

by eliminating a least significant variable until no more variables need to be excluded

based on the prespecified criterion;

• Bidirectional or stepwise selection approach, which combines the previous methods.

It is analogous to forward selection, but each step algorithm is checking if it is pos-

sible to delete one of the selected variables.

Intuitively, it may seem that these algorithms would give the same results; however,

they do not always agree (Wiegand, 2010). The agreement between these methods is very

sensitive to sample size, number of predictors, the criteria for inclusion and exclusion of

predictors, and correlation among the predictors. The stepwise algorithms select the same

model more frequently as the sample size increases or correlation among the covariates

decreases. However, even in the case of agreement, the analysis must proceed with caution,

since this does not guarantee that the selected model is the correct one.

2.1.1.1 Inclusion and exclusion criteria

The literature on criteria for inclusion and exclusion in stepwise selection methods is di-

verse. In the context of linear regression models, Kennedy and Bancroft (1971) suggested

to use significance levels αin = 0.15 and αout = 0.1 as entry and deleting criteria, respec-
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tively. Flack and Chang (1987) and Rawlings et al. (1988) suggested αin = αout = 0.15.

These suggestions are consistent with a earlier study of Bendel and Afifi (1977), that recom-

mended the use of a significance level between 0.15 and 0.25 for both criteria and showed

that the best results for forward selection are obtained for αin = 0.15.

Aitkin (1974) pointed out that the stepwise procedure tests one variable at a time, which

leads to the conclusion that the increase in inclusion or exclusion criteria will affect the

Maximum Family-Wise Error Rate (MFWER), which is the probability of making at least

one Type I error during the procedure. Such overall Type I error is usually unknown and

greater than the Type I error of an individual test; thus usage of αin and αout much smaller

than 0.15 to get MFWER< 0.05 was recommended. For backward selection, Aitkin (1974)

proposed the use of 0.01 ≤ αout ≤ 0.10 if a researcher’s main interest is to exclude all

irrelevant variables, and 0.25≤ αout ≤ 0.50 if a researcher does not want to lose important

variables. Instead of F-tests, AIC or BIC can be used to create stopping rules for the

algorithm, but these penalty terms are still strongly related to critical values. For example,

the backward procedure with AIC penalty is equivalent to αout ≈ 0.157 (Sauerbrei, 1999).

To address performance of stepwise approaches and control the MFWER in logistic

regression, Wang et al. (2007) and Lee and Koval (1997) found that the best choices of α

vary with the number of predictors. They recommended the use of 0.2 ≤ αout ≤ 0.4 and

0.15≤αin≤ 0.2 for backward and forward stepwise selection methods, respectively. When

the number of predictors is 5 ≤ p ≤ 25, both suggested the use of α = p/100. In a study

of the performance of stepwise algorithms, Wiegand (2010) compared three inclusion/ex-

clusion criteria: 0.50/0.05 that are default criteria for linear regression in SAS PROC REG,

0.15/0.15 criteria that were recommended by Kennedy and Bancroft (1971) and Bendel

and Afifi (1977), and 0.05/0.05 that are the default settings for logistic regression in SAS

in PROC LOGISTIC. Wiegand (2010) found that αin = αout = 0.15 have the best perfor-

mance in terms of agreement on the parsimonious model, while αin = αout = 0.05 demon-

strated the worst performance. Despite the fact that 0.15 appears in the majority of studies
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as the most favorable criterion, Steyerberg et al. (1999) pointed out that in small samples a

less conservative criterion αout = 0.5, can be more reasonable.

Unfortunately, even αin = αout = 0.15 cannot guarantee that the model and inference

will be valid, because stepwise selection provides a single final model and does not account

for uncertainty. In general, there is still no agreement on cut-off criteria for input and output

of variables. Moreover, different statistical software programs may use different criteria as

defaults, and often do not rush to change them in order to comply with new findings.

2.1.1.2 The number of events per variable

Logistic regression is more sensitive to sample size than linear regression. The number of

events in the rarest outcome group relative to the number of variables (EPV) was identi-

fied as the key factor that affects the performance of logistic regression models. Peduzzi

et al. (1996) examined the effect of EPV on the reliability of logistic regression estimates

and suggested the minimal 10 EPV rule that agrees with the recommendation of Harrell

et al. (1985) to use EPV > 10. Vittinghoff and McCulloch (2007) examined a larger set of

scenarios on multivariable models and concluded that the “rule of 10” was too conserva-

tive for most cases, and that even five to nine EPV can be sufficient to obtain appropriate

confidence interval coverage and relatively small bias. However, they pointed out that

the interpretation of the effect estimates based on five events per variable should proceed

with caution, especially the interpretation of the significance of the effects. Moreover, use

of EPV < 10 might be a bad strategy, if distribution of considered variables is skewed.

Vittinghoff and McCulloch (2007) considered such more realistic scenarios with skewed

continuous variables and unbalanced distributions.

Feinstein (1996) and Agresti (2007) suggested that 20 EPV is safer; however, Cour-

voisier et al. (2011) showed that even if EPV equals 20 or 25 it still might not be enough

to get good logistic regression performance. They extended the Vittinghoff and McCulloch

(2007) study by evaluating the effect of number of predictors, correlation between them,
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magnitude of their effects and the proportion of noise variables on the association between

EPV and logistic regression performance. According to this study, an increase in the num-

ber of predictors, as well as in the correlation between them and in the magnitude of their

effects, has a negative impact on the efficiency of logistic regression in terms of statistical

power, relative bias, and convergence.

It may seem that the results of Peduzzi et al. (1996), Vittinghoff and McCulloch (2007)

and Courvoisier et al. (2011) do not agree. The apparent inconsistent results are due largely

to the fact that each subsequent study increased the number of factors that could affect lo-

gistic regression performance. It should be taken into account that the results of Vittinghoff

and McCulloch (2007) do not deny the results of Peduzzi et al. (1996), but demonstrate

that under certain conditions the choice may be in favor of a less conservative EPV. There-

fore, it can be seen that as analysed data become more complex and realistic, there is more

evidence we have that even a EPV that exceeds 10 may not always be sufficient for good

logistic regression performance.

These three studies tested the effect of EPV on the performance of logistic regression

for a prespecified model, but did not check how EPV affects logistic regression after a

stepwise selection procedure. Steyerberg et al. (1999) analysed how the backward step-

wise selection algorithm affects logistic regression with respect to changes in EPV. Their

study demonstrated that in small samples, conventional backward selection (αout = 0.05)

substantially increases the bias of estimated coefficients even for EPV=40, and that it can

be used only as an exploratory tool. Steyerberg et al. (2000) pointed out that acceptable

predictive performance of logistic regression can be achieved if EPV exceeds 50. Since the

lower bound for sufficient EPV is unique, in this thesis we defined sample sizes, such that

in each simulation block we can also analyse the effect of EPV on performance of point

estimates and confidence intervals.
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2.1.2 Concerns on stepwise selection

Despite the problems associated with them, stepwise selection procedures remain popular

in practice. Derksen and Keselman (1992) demonstrated that stepwise selection methods

provide a large number of noise variables that are not related to the outcome variable. They

tested the performance of stepwise selection methods under different conditions, such as

sample size, number of considered variables, and correlation between them. It was found

that over all conditions, less than 50% of all important variables were included in the final

model, and that the probability of choosing correct predictors reduces with the number of

considered variables, while the sample size has little effect. Such poor performance was

confirmed for logistic regression by Bursac et al. (2008).

Factors that affect performance of point estimates and confidence intervals produced by

stepwise procedures include sample size, number of considered variables, and correlation.

Austin and Tu (2004a) demonstrated this by evaluating the risk factors of acute myocardial

infarction mortality. A total of 1,000 bootstrapped samples were generated from a large

dataset of 4,911 patients that contained 29 preselected predictors and analysed the final

models suggested by three stepwise selection methods - backward, forward, and bidirec-

tional - were noted. Bootstrapping was used to imitate random sampling fluctuations, and it

showed that even small degrees of random variation in data may highly affect the model se-

lection process and risk factors that are included in the final model. For example, backward

selection identified 940 unique subsets of risk factors of mortality, and no model appeared

more than four times. Such variation of the final models means that two researchers that

use a similar stepwise method to analyse two slightly different samples from the same pop-

ulation are likely to identify a different set of important risk factors. This also means that

it is difficult to reproduce the results of any study that blindly uses a stepwise approach as

a model selection method. Thus, it is recommended to use more advanced methods, such

as the bootstrap, coupled with regular stepwise selection approaches, to get better under-

standing of the associations between an outcome and predictors, and of the strength of the
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evidence that a selected final model is reliable.

Overall, the final model obtained from a stepwise method is very sensitive to any

changes in data and relationship anomg variables even in large samples (Austin and Tu,

2004a). Steyerberg et al. (1999) demonstrated that in small samples, stepwise selection

may have substantial bias, especially if it uses the default 0.05 threshold. This makes step-

wise approaches unreliable as data analysis tools, but they still can be used for exploratory

analysis.

2.1.3 Bootstrapped stepwise selection and inference

Bootstrap is a well-known procedure that can improve the accuracy of point estimates. In

regression modeling settings, the bootstrapinvolves resampling the original data with re-

placement many times and applying a prespecified regression method on each bootstrap

sample. The estimates from multiple runs then are averaged to get less biased point esti-

mates. Sauerbrei and Schumacher (1992) suggested using the bootstrap as a tool for vari-

able selection. The frequency of a variable appearing among the results from bootstrapped

samples was considered as a criterion for the importance of the variable. This criteria was

set at 30% and 70% for two different case-studies, atopy and glioma studies. Austin and

Tu (2004b) suggested the use of at least 60% appearance as an inclusion criterion.

Bootstrap can be combined with a stepwise procedure to get better inference. To

improve the performance of stepwise procedures, Austin (2008) combined the bootstrap

method with the backward selection procedure. The effects of eliminated variables are re-

placed by zero in each bootstrapped dataset and average over all samples. This procedure

is referred to as zero-corrected backward stepwise selection and can be considered as an

approximation to Bayesian model-averaging, that is described in section 2.3.3. If the real

effect of some variable is small, a selection method will eliminate it more frequently, which

increases the number of zeroes in the final set and shifts the final effect estimator towards

zero.
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The zero-corrected backward stepwise selection method was compared to a simple

backward selection method and different variations of bootstrapped methods, such as (i)

the conditional bootstrap model selection method that considers effects of eliminated vari-

ables as missing and calculate averaged coefficients based on a non-missing set and (ii)

the naive bootstrap method that uses the original dataset to estimate a parsimonious model

by applying backward selection and then estimates only this model in each bootstrapped

dataset. To obtain confidence intervals for regression coefficients, the percentile method

that suggests the use of specified percentiles from bootstrap estimates was used. It was

shown the zero-corrected bootstrap method performs better than its competitors in terms

of confidence interval coverage and smaller bias, but still cannot reach a nominal level of

coverage. According to the simulations performed, the coverage accuracy decreases with

the effect size. The possible explanation for a such result is a large proportion of zeros

in the final set, which leads to the poor performance of the percentile confidence interval

method (Austin, 2008).

2.1.4 Common approaches to confidence interval estimation

There are three conventional approaches for asymptotic confidence interval estimation:

1. Wald confidence interval:

The Wald-based confidence interval is the well-known and commonly used type of

inference (Wald, 1943). The Wald (1−α)% confidence interval for a regression

parameter β j is given by

β̂ j± z1−α

2
× ŝe(β̂ j) , (2.1)

where z1−α

2
is the 1−α/2 quantile of a standard normal distribution.

2. Profile-likelihood confidence interval:

The profile-likelihood confidence interval was proposed by Wilks (1938) as a likeli-

hood ratio based confidence interval derived from the asymptotic χ2 distribution of
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the generalized likelihood ratio test (Venzon and Moolgavkar, 1988). The profile-

likelihood confidence interval for β j is defined by{
θ : 2[`(β̂ )−max

γ
`(θ ,γ)] ≤ q1(1−α)

}
, (2.2)

where `(θ ,γ) is a log-likelihood function of the parameter of interest and is maxi-

mized over the other coefficients γ = {β1,β2, . . . ,β j−1,β j+1, . . . ,βp}, β̂ is a vector

of the maximum likelihood estimates, and q1(1−α) is the (1−α)th quantile of the

χ2 distribution with 1 degree of freedom. The θ has two solutions - lower and upper

confidence limits for parameter of interest β j.

3. Score confidence interval:

The score confidence interval is based on the score test proposed by Rao (1948). It

is similar to the profile-likelihood confidence interval, but optimization is done over

the score function instead of likelihood function. Let us define the vector of score

function as

U(β ) =
∂`(β )

∂β
=

[
∂`(β )

∂β1
,
∂`(β )

∂β2
, . . . ,

∂`(β )

∂βp

]
,

and expected Fisher information matrix I, with j,k element given by

I jk = −E
[

∂ 2`(β )

∂β j∂βk

]
.

In this case the score confidence interval for β j is defined by{
θ : U(θ ,γ)I−1(θ ,γ)UT (θ ,γ) ≤ q1(1−α)

}
, (2.3)

where solution for this equation θ is a confidence limits of the parameter of interest

β j. Basically, for each value of θ we have to refit the model, recalculate the vector

of scores such that

∂`(θ ,γ)
∂γ

= 0

and recalculate the Fisher information matrix.
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Although the Wald method for intervals is computationally easy with a closed form, it

assumes that the distribution of the estimator follows a normal distribution and produces a

symmetric confidence interval around a point estimate, while profile-likelihood and score

intervals are not subject to this restriction. In general, confidence intervals that do not force

symmetry perform better, but may be more involved with respect to computation.

These three methods are asymptotically equivalent; however, in finite samples, the score

confidence interval is usually preferable over Wald and profile-likelihood intervals in terms

of coverage and length of the interval (Engle, 1984; Cox and Hinkley, 1979).

2.2 Penalized regression models

Penalized regression models are a large family of model selection and inference approaches

that use penalized versions of the log-likelihood function (PLL). The penalized approach

was developed to control the stability of the model. Compared to traditional stepwise vari-

able selection methods, which are very sensitive to small changes in the data set (Sauerbrei

et al., 2015), penalized regression methods are less sensitive to perturbations of the data,

resulting in more stable inferences. Each member of this family has different features that

we briefly summarize here:

• Ridge regression was developed to alleviate multicollinearity among regression pre-

dictor variables in a model, but it does not have the model selection property (Hoerl

and Kennard, 1970). Its penalized log-likelihood function is

PLL(β )ridge =
n

∑
i=1

[
yixiβ − log(1+ exiβ )

]
−λ

p

∑
j=1

β
2
j ,

where λ is the shrinkage parameter that can be estimated by cross-validation, the AIC

or BIC, and
p
∑

j=1
β 2

j is the penalty function. Bias-variance tradeoff is a basis of regres-

sion regularization methods. If two independent variables are highly correlated, the

variance of the regression parameter estimates can be large. Ridge regression de-

creases MSE by significantly lowering the variance at the cost of a small increase in
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bias. The bias for non-zero coefficients can vary between zero and λ and increases

with the magnitude of the coefficient.

• The LASSO approach was introduced by Tibshirani (1996) and, unlike ridge re-

gression, it shrinks some of the regression coefficients to zero by using the sum of

absolute values of regression coefficients as a penalty factor instead of squared coef-

ficients:

PLL(β )LASSO =
n

∑
i=1

[
yixiβ − log(1+ exiβ )

]
−λ

p

∑
j=1
|β j| .

LASSO produces sparse solutions in the case of high-dimensional data. It also can

be applied to low-dimensional data.

Ridge and LASSO methods belong to a family of penalized regression methods, called

Bridge regression, introduced by Frank and Friedman (1993), as given by

PLL(β )`γ
=

n

∑
i=1

[
yixiβ − log(1+ exiβ )

]
−λ

p

∑
j=1
|β j|γ , (2.4)

where γ ≥ 0. By setting γ = 1 or γ = 2 we can obtain LASSO or ridge methods. Al-

though LASSO and ridge methods are usually considered frequentist approaches, their re-

sults correspond to Bayesian estimators with Laplace or normal priors, respectively (Park

and Casella, 2008).

• Adaptive LASSO (Zou, 2006) was derived to reduce bias by using a weighted penalty

approach,

PLL(β )adapt =
n

∑
i=1

[
yixiβ − log(1+ exiβ )

]
−λ

p

∑
j=1

w j|β j| ,

where weight w j is a data-dependent function. There are many weighting strategies

that can be used, for example, w j = |β̃ j|−1, where initial estimates β̃ j are usually

obtained using ridge regression. With such weights the Adaptive LASSO penalizes
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more those coefficients with lower initial estimates, which reduces the estimation

bias of the LASSO. Bias is not the only problem of the LASSO approach. If a data

set contains a group of highly correlated variables, LASSO will select only one of

the variables from a group and ignore the effects of the others, which may lead to

loss of important information.

• Elastic Net (EN) was developed by Zou and Hastie (2005) to overcome the problem

created by multicollinearity by combining the ridge regression penalty factor with

the LASSO penalty factor:

PLL(β )EN =
n

∑
i=1

[
yixiβ − log(1+ exiβ )

]
−λ1

p

∑
j=1
|β j|−λ2

p

∑
j=1

β
2
j .

• Nonnegative Garrote (NNG) introduced by Breiman (1995) is a shrinkage method

that shrinks OLS estimators by minimizing

PLL(β )NNG =
n

∑
i=1

[
yixiβ − log(1+ exiβ )

]
−λ

p

∑
j=1

d j(β ,λ ) ,

where d j(β ,λ ) ≥ 0 for all j = 1, . . . , p. It was shown that NNG outperforms subset

and ridge regressions in terms of predictive accuracy if

d j(β ,λ ) = max{0,1−λ /β̂
2
j,ols}= (1−λ /β̂

2
j,ols)+ .

This means that NNG needs OLS estimates, which may lead to poor performance for

small sample size and imposes an additional limitation on the dimensionality of the

data (n > p). Later, Yuan and Lin (2007) showed that LASSO, ridge regression or

EN can also be used in d j estimation, and that if the tuning parameter, λ , is appropri-

ately chosen then NNG is consistent in terms of coefficient estimation and variable

selection.

• Smoothly Clipped Absolute Deviation (SCAD) is a member of the penalized regres-

sion family that can provide a sparse set of solutions as well as LASSO (Fan and Li,
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2001). While LASSO uses a sum of the absolute value of the regression coefficients

as the penalty function, SCAD uses a quadratic spline function with two knots, which

makes the penalty nonconvex,

PLL(β )SCAD =
n

∑
i=1

[
yixiβ − log(1+ exiβ )

]
−λ

p

∑
j=1

∫ |β j|

0
min

{
1,
(a− x/λ )+

a−1

}
dx ,

where a can be chosen by using convexity diagnostics. It was shown that SCAD

outperforms LASSO in selecting significant variables when the noise-to-signal ratio

is not large, but performs poorly when the noise-to-signal ratio increases and the

sample size is small. As in the LASSO case, λ can be estimated using different

approaches. Zhang et al. (2010) studied properties of the SCAD method and found

that a BIC-type criterion to estimate the tuning parameter identifies the true model

with probability tending to 1, while an AIC-type selector is asymptotically efficient.

• Minimax concave penalty (MCP) is another penalized method with nonconvex penal-

ties (Zhang, 2010):

PLL(β )MCP =
n

∑
i=1

[
yixiβ − log(1+ exiβ )

]
−λ

p

∑
j=1

∫ |β j|

0

(
1− x

aλ

)
+

dx .

It is similar to SCAD; however, MCP continuously relaxes the penalty rate down

to zero as the absolute value of the coefficient of interest increases, while SCAD

remains flat for a while before decreasing.

2.3 Uncertainty and post-selection inference

2.3.1 Uncertainty in model selection

Common statistical inference procedures assume the existence of a true model. In practice,

since model uncertainty is associated with the selected model, the subsequent CIs usually

have coverage lower than the nominal level.
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Leeb and Pötscher (2005) demonstrated that the sampling distributions of parameter

estimates after model selection are usually unknown. Leeb and Pötscher (2006) proved

that the conditional distribution a of post-selection estimator cannot be estimated with rea-

sonable accuracy. It was shown that even asymptotically it can be non-normal and very

complex. Berk et al. (2010) came to similar conclusions regarding the estimation of the

conditional distribution and showed that ignoring the selection step may lead to biased

regression estimates and overoptimistic, invalid confidence intervals. To improve the un-

dercoverage caused by the effect of model selection, Berk et al. (2010) suggested randomly

splitting the data into two independent data sets, and using one as a training sample and

the other as a test sample. However, splitting the data reduces the reliability and accuracy

of the analysis, even if it is possible. Kabaila (2005) described a Monte Carlo method to

calculate the coverage probability of the naive confidence interval and showed that cover-

age probability was far below the nominal coverage level if variables were selected using

minimization of AIC or BIC.

2.3.2 Post-selection inference

Berk et al. (2013) proposed a procedure that corrects for model selection, but calculates

confidence intervals for a non-standard coverage target, which is not a fixed parameter of

the data-generating model, but depends on the selected model. This procedure simultane-

ously uses all possible submodels to produce valid post-selection inference and is referred

to as Post-Selection Inference (PoSI). This procedure can guarantee the prespecified mini-

mal coverage probability for the variables selected in a data-driven way.

Consider a logistic regression model given by

P(Yi = 1|Xi) =
exp(Xiβ )

1+ exp(Xiβ )
, (2.5)

where Xi is a vector in X ∈ Rn×p and β ∈ Rp×1. Define B = {B1, . . . ,BM} as the set of

all possible models, and suppose that a model selection procedure selected model Bm ∈ B.



24

The PoSI procedure suggests that inference should be made about the projection of Xβ

onto a submatrix of X used in model Bm, but not about the true parameter β . The PoSI

algorithm produces a constant K such that the constructed confidence interval for each

selected parameter will reach at least the nominal coverage level

P(β jm ∈CI jm(K), for all j ∈ Bm) ≥ 1−α ,

where K = K(X ,B,α ,n− p) is the value that should be universally valid for post-selection

inference for any selected model. It means that PoSI is accounting for uncertainty by

calculating a multiplier for a standard error that allows a confidence intervals to achieve

at least nominal coverage for any selected model. However, such a multiplier can be very

high, such that it will lead to too wide confidence interval. Note that the coverage target

proposed in Berk et al. (2013) is dependent on the outcome of the selection procedure and

therefore it is random.

Berk et al. (2013) also proposed a simplification of PoSI focusing on a single indepen-

dent variable, while other variables in the model act as confounders to adjust the effect of

the primary parameter. Leeb et al. (2015) evaluated performance of the PoSI procedure

and concluded that PoSI can provide adequate coverage; however, it is usually too wide

to be meaningful. These methods have not been used widely because of their complexity

and because they do not provide a solution for the traditional problem where the coverage

target is a parameter of the data-generating model.

Bachoc et al. (2017) generalized the PoSI intervals and evaluated the prediction per-

formance of proposed procedures. The performance of PoSI intervals for different K was

compared for AIC, BIC, LASSO, SCAD, and minimax concave penalty (MCP) (Zhang,

2010) model selection procedures. The results for AIC and BIC were similar to those in

Leeb et al. (2015), while LASSO, SCAD, and MCP outperformed naive intervals under all

settings that were considered, but showed poor performance for small sample size and did

not reach the nominal level.
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2.3.3 Bayesian model-averaging

Bayesian model-averaging is an application of Bayesian theory to model selection and in-

ference under model uncertainty. Following Hoeting et al. (1999), we consider the logistic

regression model:

logit
[
P(Y = 1|X)

]
= Xβ , (2.6)

where X ∈Rn×p is the non-random matrix of predictors, β ∈Rp×1 is the parameter vector.

The number of models that should be considered is M = 2p. The posterior distribution of

the quantity of interest, β j, is given by

p(β j|D) =
M

∑
m=1

p(β j|D,Bm)p(Bm|D) ,

where D represents the observed data and Bm denotes model indicator. The posterior prob-

ability of each model Bm is

p(Bm|D) =
p(D|Bm)p(Bm)

∑
M
i=1 p(D|Bi)p(Bi)

,

where

p(D|Bm) =
∫

p(D|βm,Bm)p(βm|Bm)dβm ,

where βm denotes coefficient parameter in model m. BMA uses the posterior probability of

each model to construct a weighted estimate for the coefficient:

β̂
BMA
j =

M

∑
m=1

p(Bm|D)β̂ jm .

In addition to the computational difficulties of integrals and sums involved in the implemen-

tation of BMA, the specification of the prior distribution of models can be very challenging.

Specification of an incorrect prior makes the analysis meaningless, because the results will

be incorrect.

Problems may also arise with fitting a large number of predictors in a model. For

example, if the number of potential confounders is 15, the number of possible models
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is 215 = 32,768. In order to overcome this problem, the Occam’s window method was

proposed by Madigan and Raftery (1994). This method is based on two principles. First,

if a model probability is smaller than the most likely model, then this model should not

be used in the averaging process. The second principle is parsimony; if a nested model

performs better than the large model, then the large model should no longer be considered

in model-averaging. Formally, define two sets:

Q =

{
Bk :

maxi{p(Bi|D)}
p(Bk|D)

≤C1

}
and

T =

{
Bk :

p(Bl|D)

p(Bk|D)
≥C2, f or Bk ⊃ Bl ∈ Q

}
,

where the bound C1 defines the number of models considered, and should be chosen by

the data analyst. According to the two principles, the subset V that contains all the models

of Q that are not in T should be considered in the BMA. Madigan and Raftery (1994)

proposed the algorithm to find this subset. The algorithm compares nested models by the

log posterior odds

ln[p(B0|D)/p(B1|D)] ,

where B0 is the smaller model. If the log posterior odds is positive, the algorithm rejects

the largest model, but if it is large and negative then the algorithm rejects the smaller model

with all its submodels. If the log posterior odds falls into Occam’s window, then the evi-

dence for rejecting the smallest model is not strong enough and neither model is rejected.

Raftery et al. (1996) showed that using C1 = 20 that emulates the popular 0.05 significance

level based on p-values and C2 = 1/20 as the bounds of Occam’s window can improve the

performance of the algorithm.

Construction of the subset V still can be very difficult. Volinsky et al. (1997) suggested

the use of the “leaps-and-bounds” method proposed by Furnival and Wilson (1974), that

approximates the likelihood ratio test statistic and allows one to quickly identify the models
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that should be included into the subset V. This method is not good for estimation, but works

well for model comparison. For generalized linear models, Raftery (1996) proposed the use

of a single step of the Newton-Raphson algorithm for the approximation.

The standard error of a model-averaged posterior distribution from BMA is given by

se(β̂ BMA
j ) =

√
∑

Bm∈V

{
[Var(β jm|D,Bm)+ β̂ 2

jm]p(Bm|D)
}
− (β̂ BMA

j )2 .

where V denotes the subset of models considered by the BMA procedure. Such a standard

error can be used to construct a Wald based credible interval of a regression coefficient.

However, such intervals cannot guarantee the nominal coverage level.

2.3.4 Frequentists model-averaging

While BMA uses posterior probabilities as weights for averaging the models, the FMA

procedure uses information criteria obtained from all models to weight each model. Usu-

ally, there is no need to estimate all possible models because researchers have some set of

variables that they must include and a set of variables that are under consideration, but for

simplicity assume that all variables are being investigated. Selection of the models will be

discussed later. Current methods of model-averaging were usually derived in a context of

a prediction problem. We will describe their application for regression coefficients.

The FMA estimator of the regression coefficients can be written as

β̂ j =
M

∑
m=1

wmβ̂ jm

with
M
∑

m=1
wm = 1, where wm ≥ 0 is the weight associated with β̂ jm.

To estimate such weights, Buckland et al. (1997) proposed the use of a function of an

information criterion (IC):

wm =
exp(−ICm/2)

M
∑

i=1
exp(−ICi/2)

, m = 1, . . . ,M . (2.7)
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This function guarantees that if penalized log-likelihood functions of two models are equal,

those models are given the same weights. For numerical stability, when evaluating the ex-

ponential function, Burnham and Anderson (2002) computed the index of relative plausi-

bility of each model as ∆AICm = AICm−minAIC to use in Equation 2.7 instead of IC,

where

AICm = −2lnL+ 2km , m = 1, . . . ,M ,

and km is the number of non-fixed coefficients in model m including the intercept. This

function is also referred to as smooth AIC, and it assures that the model with the lowest

AIC will get the highest weight. However, AIC is not the only criterion that can be used

in model-averaging; another common criterion that can be found in the literature is the

corrected AIC proposed by Hurvich and Tsai (1989),

AICcm = −2lnLm + 2km +
2km(km + 1)
n− km−1

, m = 1, . . . ,M

that was derived for small sample sizes. The BIC,

BICm = −2lnLm + 2kmln(n) , m = 1, . . . ,M

provides a more severe penalty for model complexity.

Another option is to use the FIC proposed by Hjort and Claeskens (2003) to estimate

parameters of direct interest with good precision. Consider a logistic regression model,

P(Yi = 1|Xi,Zi) = pi =
exp(Xiβ +Ziγ)

1+ exp(Xiβ +Ziγ)
, (2.8)

where Xi is a vector in X ∈ Rn×p that is a set of variables of direct interest and Zi is a vector

in Z ∈ Rn×q that is a set of covariates that may be of indirect interest for objects i = 1, ...,n.

The Fisher Information matrix is defined as

Jn = n−1
n

∑
i=1

pi(1− pi)

XT
i Xi XT

i Zi

ZT
i Xi ZT

i Zi

=

Jn,00 Jn,01

Jn,10 Jn,11

 .
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Define

ω(X ,Z) = exp(Xβ +Zγ)(Jn,10J−1
n,00XT −ZT )

Dn = δ̂ f ull =
√

nγ̂ f ull
d−→ D∼ Nq(δ ,K) ,

that has a limiting normal distribution, where γ̂ f ull is a vector of estimates based on the full

model, and K is the lowest-right block of the partitioned matrix J−1:

K = (J11− J10J−1
00 J01)

−1 . (2.9)

Then the FIC can be written as

FICm =

(
∑

j:β j<m
ω̂ jDn, j

)2

+ 2 ∑
j:β j∈m

ω̂
2
j k̂2

j , for all m = {1, . . . ,M} ,

where k̂2 = diag(K). Claeskens and Hjort (2008) derived smooth FIC weights as

wm = exp
(
− 1

2
k

FICm

ω̂T K̂ω̂

)
/

M

∑
i=1

exp
(
− 1

2
k

FICi

ω̂T K̂ω̂

)
,

where k≥ 0 is an algorithmic parameter that moves weights from uniformly distributed for

k close to zero to FIC based weidhts for large k.

2.3.5 Confidence intervals following model-averaging

The simplest way to calculate a confidence interval for parameters is to use the Wald ap-

proach that has a form of ˆ̄
β j± z1−α

2
· ŝe( ˆ̄

β j), where ˆ̄
β j is the model-averaged estimator of

β j. Buckland et al. (1997) proposed the unconditional confidence interval constructed by

estimating a standard error as,

ŝe1(
ˆ̄
β j) =

M

∑
m=1

wm

√
V̂ar(β̂ jm|Bm)+ (β̂ jm− ˆ̄

β j)2 .

This standard error estimate has two parts: the error in parameter estimation V̂ar(β̂ jm|Bm)

and a term that measures a variation in the estimates across candidate models (β̂ jm− ˆ̄
β j)2.
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Such standard errors are based on the assumption that the sampling distribution of ˆ̄
β j is

asymptotically normal and that weights are known constants. However, neither of these as-

sumptions are usually correct. This method was revised by Burnham and Anderson (2004),

who proposed the use of

ŝe2(
ˆ̄
β j) =

√
M

∑
m=1

wm

[
V̂ar(β̂ jm|Bm)+ (β̂ jm− ˆ̄

β j)2
]

.

However, they did not find any advantages in using ŝe2(
ˆ̄
β j) rather than ŝe1(

ˆ̄
β j) with respect

to coverage probability.

Hjort and Claeskens (2003) and Claeskens and Hjort (2008) studied the asymptotic

properties of model-averaging unconditional confidence intervals proposed by Buckland

et al. (1997). They considered a local misspecification framework under which the nested

structure of the candidate models depends upon the true values of underlying model pa-

rameters. Study of the limiting distributions and coverage of model-averaged confidence

intervals showed that confidence intervals proposed by Buckland et al. (1997) are biased

and should be corrected.

Let us consider the logistic regression model in Equation (2.8), and define vector ν =

(ν1, . . . ,νq) and πm as the projection matrix needed foe maping the subsets of variables of

indirect interest, such that πmν = νm the vector that contains ν j ∈ m. Define

Km = (πmK−1
π

T
m)
−1

Qm = K−1/2
π

T
mKmπmK−1/2 .

For θ̂ = θ̂ (β̂ , γ̂), a model-average estimator of θ Hjort and Claeskens (2003) showed that

the asymptotic distribution of
√

n(θ̂ −θtrue) is

√
n(θ̂ −θtrue)

d−→ Λ =

(
∂θ

∂β

)T

J−1
00 Ψ+ω

T (δ − δ̂ (D)) ,
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where Ψ ∼ Np(0,J00) and δ̂ (D) = K1/2
(

∑m wmQm

)
K−1/2D, such that the limiting dis-

tribution Λ is non-standartized normal distribution. They proposed the use of confidence

limits

θ̂L,n = θ̂ − ω̂
T [Dn− δ̂ (Dn)

]
/
√

n− z1−α

2
k̂/
√

n (2.10)

θ̂U ,n = θ̂ − ω̂
T [Dn− δ̂ (Dn)

]
/
√

n+ z1−α

2
k̂/
√

n , (2.11)

where ω̂ and k̂ are consistent estimators of ω and k = (XT J−1
00 X +ωT Kω)1/2.

Wang and Zhou (2013) have shown that confidence intervals proposed by Hjort and

Claeskens (2003) under the local misspecification framework are asymptotically equivalent

to intervals obtained from the full model. The local misspecification framework assumes

that all models used in model-averaging contain all important variables, and differ only in

a set of unimportant variables. However, in practice this is usually not the case.

Both unconditional Wald type intervals assume that ˆ̄
β j has a normal sampling distribu-

tion, which is not always true. Turek and Fletcher (2012) derived MATA interval, that does

not require the normality assumption for ˆ̄
β , but assumes that the set of candidate models

contains the true model, and that β̂ j from the true model has a normal distribution. By

definition, a valid confidence limit must satisfy the following equations:

P(β j < β
L
j ) =

α

2
and P(β j > β

U
j ) =

α

2
,

where β L
j and βU

j are lower and upper limits of the confidence interval, respectively.

Let us focus on the lower limit and assume that one of the candidate models is the true

model. Thus we can define an indicator vector v = (v1, . . . ,vM), that gives the value one to

the true model, and zero to all other models.

P(β j < β
L
j ) =

M

∑
m=1

vmP(β jm < β
L
j ) . (2.12)
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Suppose that model u is the true model. Using the second assumption of the normal distri-

bution for β̂ ju, we have

P(β ju < β
L
j ) = 1−Fνu(t

L
ju) , (2.13)

where Fνu(·) is the cumulative distribution function of the t-distribution with νu degrees

of freedom associated with model u, and tL
ju = (β̂ ju−β L

j )/ŝe(β̂ ju), where ŝe(β̂ ju) is the

standard error of the maximum likelihood estimate calculated for model u. Combining

Equations (2.12) and (2.13) we have

P(β j < β
L
j ) =

M

∑
m=1

vm
(
1−Fνm(t

L
jm)
)
=

α

2
.

However, in an actual study, the true model is unknown, so that the vector v should be

estimated by a vector of weights w that is based on some criterion. Thus, the MATA lower

confidence limit β L
j is the solution of

M

∑
m=1

wm

(
1−Fνm

(
tL

jm
))

=
α

2
, (2.14)

where tL
jm = (β̂ jm−β L

j )/ŝe(β̂ jm). The MATA upper confidence limit βU
j is the solution of

M

∑
m=1

wmFνm

(
tU

jm
)
=

α

2
, (2.15)

where tU
jm = (β̂ jm−βU

j )/ŝe(β̂ jm).

Another method of confidence interval construction is referred to as Model-Averaged

Profile Likelihood proposed by Fletcher and Turek (2012). Its lower limit is the solution of

M

∑
m=1

wmΦ
(
rm(β j)

)
=

α

2
,

where Φ(·) is the cumulative distribution of the standardized normal distribution and

rm(β j) = sign(β̂ jm−β j)
√

2(logLp(β̂ jm)−max
γ

L(β j,γ)) , (2.16)
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where Lp(·) is the profile likelihood function and γ is a set of remaining parameters. To

estimate the upper limit, α/2 should be replaced with 1−α/2.

While confidence intervals for regression coefficients can be easily constructed by es-

timating standard errors ŝe1(
ˆ̄
β j) or ŝe2(

ˆ̄
β j), the MATA intervals face the problem of zero

standard errors. To see this, define the asymptotic version of the transformation-based

model-averaged tail area (ATMATA) interval as in Yu et al. (2014). If we assume that with

an increase in sample size the cumulative t-distribution function Fνm(·) converges to the

cumulative distribution function of the standard normal, we can rewrite Equations (2.14)

and (2.15) as
M

∑
m=1

wm

(
β̂ jm−β L

j

ŝe(β̂ jm)

)
= z1−α

2

M

∑
m=1

wm

(
β̂ jm−βU

j

ŝe(β̂ jm)

)
= z α

2
,

where zq is a 100q% quantile of a standard normal distribution. By solving these equations

we obtain

β
L
j =

∑
M
m=1 wm

[
β̂ jm/ŝe(β̂ jm)− z1−α

2

]
∑

M
m=1 wm/ŝe(β̂ jm)

(2.17)

β
U
j =

∑
M
m=1 wm

[
β̂ jm/ŝe(β̂ jm)− z α

2

]
∑

M
m=1 wm/ŝe(β̂ jm)

. (2.18)

If we are interested in the construction of a prediction interval, the standard error will

always be positive. However this is not the case for a single regression coefficient. If

a regression coefficient, β j, does not appear in model Ml , then ŝe(β̂ jl) ≡ 0 as well as

β̂ jl ≡ 0. In this case, in the numerator we have β̂ jl/ŝe(β̂ jl) = 0/0 and in the denominator

wl/ŝe(θ̂l) = wl/0 = ∞. To solve the problem for some β j, we have to calculate weights

based only on the models that contain variable j. Thus, the confidence intervals for regres-

sion coefficients are given by,

β
L
j =

∑
M
m=1 w jm

[
β̂ jm/ŝe(β̂ jm)− z1−α

2

]
I(ŝe(β̂ jm) , 0)

∑
M
m=1{w jm/ŝe(β̂ jm)}I(ŝe(β̂ jm) , 0)

(2.19)
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β
U
j =

∑
M
m=1 w jm

[
β̂ jm/ŝe(β̂ jm)− z α

2

]
I(ŝe(β̂ jm) , 0)

∑
M
m=1{w jm/ŝe(β̂ jm)}I(ŝe(β̂ jm) , 0)

, (2.20)

where I(ŝe(β̂ jm) , 0) is the indicator of ŝe(β̂ jm) is non-zero, and w jm is the weight given

to model m and used in the estimation of confidence intervals of β j.
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Chapter 3

SELECTION OF CANDIDATE MODELS

3.1 Introduction

The model-averaging approach needs a well defined group of candidate models to be aver-

aged. The basic requirement for the set of models is that it should include the true model

or a model that is very close to it. In addition, this set should not be very large, because

as the difference between sample size and number of models decreases both the coefficient

estimates and the coverage of the confidence intervals may suffer, especially if there are

many unnecessary variables in the data (Buckland et al., 1997).

There are different frequentist methods for defining the candidate models set proposed

in the literature. Lukacs et al. (2010) proposed the model-averaging method known as

full-model-averaging. This method uses all models, such that models not containing a

considered variable contribute zero to the averaged estimator. This method goes against

the idea of the scientific justification of each parameter and inclusion of each model into

the candidate models set emphasized by Burnham and Anderson (2004), because the full-

model-averaging set may contain biologically meaningless models. Their simulations show

that this method helps to reduce the error created by the overly complex models chosen by

the AIC.

In cases where the model with the smallest AIC has substantial weight (w > 0.9), the

full-model-averaging approach becomes less attractive, because it averages strong models
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with a large set of models whose weights are relatively very low (Burnham and Anderson,

2002). Buckland et al. (1997) recommended averaging over the best model and all its

submodels. The calculation of the estimate and confidence intervals for a specific variable

is done only over the models that contain this variable. For proper estimation the weights

have to be renormalized such that the sum of the new weights will be equal to one.

However, a dominating model does not always exist, especially when predictors are

highly correlated. In this case, the selection of the best AIC model and its submodels may

lead to loss of information and important variables. To avoid this, one can use the number

of top AIC models for construction of the candidate models set (Buckland et al., 1997;

Bolker, 2008; Richards, 2008). Buckland et al. (1997) also pointed out that in some cases

there might be more efficient ways to construct the candidate set by adding models to the

candidate model set from largest to smallest until their cumulative weight reaches 0.95.

Candidate models set selection methods, in one way or another, follow the principle of

parsimony, coupled with biological reasoning for inclusion of predictors, and can produce

good results. However, since biological reasoning is not always available and absolutely

correct, these methods must be used with caution, as the inference might be unreliable.

3.2 Parsimony principle and accuracy

Consider the logistic regression model logit
[
P(Y = 1|X)

]
= Xβ , where β is a vector of

unknown parameters. The vector β can be written as β = (θ ,γ), where θ = (θ1, ...,θp) are

parameters associated with variables of interest, and γ = (γ1, ...,γq) are parameters associ-

ated with candidate variables for inclusion. If we have prior knowledge, we can define θ

and γ sets. Prior knowledge is the most desirable model selection strategy (Buckland et al.,

1997). It suggests selection of the variables on sound scientific principles that explain the

mechanisms underlying the data. This approach is preferable for both single model se-

lection and the candidate models set selection. However, prior knowledge is not always

available, might be incomplete, and is not always applicable to different populations. This
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means that θ and γ cannot always be determined. In this study, we assume that prior knowl-

edge allows us to define the variables associated with β , but the importance of each variable

is unknown.

While there are many suggested methods for single model selection, methods for se-

lecting a set of candidate models for model-averaging remain relatively unexplored. Fre-

quentists model-averaging and Bayesian model-averaging face the problem of identifying

a sufficient set of models over which the model-averaging should be processed. For the

Bayesian settings, the most common approach is the Occam’s window algorithm (Hoeting

et al., 1999). This approach compares nested models by the log posterior odds, and for each

comparison it has three options: reject the largest model, reject the smallest model with all

its submodels, or reject neither model if the log posterior odds falls into the Occam’s win-

dow. According to the principle of parsimony, Occam’s window significantly reduces the

number of models under consideration and simplifies the model-averaging process.

One of the proposed methods in the frequentist setting is stepwise selection that chooses

the set of variables in the construction of the models for model-averaging. For example,

if a stepwise selection procedure chooses five variables, then 25 = 32 models constructed

from these variables will be used in the model-averaging process. An approach based on

bootstrap was proposed by Austin and Tu (2004b). The results support the use of bootstrap

sampling and application of stepwise selection for each bootstrapped data set. The final

model is built only from the variables that pass a 60% exclusion fraction, which also reflects

the principle of parsimony. The candidate set of models is then constructed from this

model and its submodels. Both methods can significantly reduce the number of models by

exclusion of variables; however, it may also lead to the loss of valuable information that

could be used in the model-averaging process.

There is no doubt about the importance of parsimony in the final model selection pro-

cess. However, parsimony of the model is not a ‘gold standard’, but rather a desirable prop-

erty for better generalization performance (Harrell, 2015). Regarding model-averaging,
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this principle is not necessarily the basis for the process since model-averaging should be

carried out over a group of candidate models that include both simple and more complex

models. More complex models can contain valuable information or important variables that

may not be selected for the final model. However, the use of the parsimonious model as the

most complex model in the model-averaging process carries a potential risk for inference.

The opposite of the parsimonious model is the full model. Assuming that the full model

can be fitted, it provides valid confidence limits. However, the full model provides confi-

dence intervals that are usually too wide, and results that are difficult to interpret if number

of variables is large. Thus, there is a need of a candidate models set selection technique that

prioritizes accuracy over parsimony and shrinks confidence interval length while maintain-

ing the claimed coverage property.

3.3 Candidate models selection based on inclusion fraction

As noted previously, if the model based on the parsimony principle defines the upper bound

of model complexity for model-averaging, meaning that the most parsimonious model is

the most complex model in a set of candidate models, it may result in undercoverage of

confidence intervals. Thus, the current candidate models set selection methods in the fre-

quentist setting that are based on this principle should be used with caution. We propose

an inclusion fraction method that suggests applying bootstrap on original sample, and app-

ply backward selection with AIC penalty on each bootstrapped sample. Then the variables

that appeared in 50% of selected models are assigned to θ that is a set of important vari-

ables and the remaining variables are assigned to γ , which presents a group of variables

under consideration, or variable of indirect interest. Then we suggest permuting the pa-

rameters in the γ set, and add θ to them, so the model-averaging is done over 2q models.

The 50% inclusion fraction is analogous to the 50% posterior probability that is a con-

ventional Bayesian threshold (Kass and Raftery, 1995; Genell et al., 2010). This method

fundamentally differs from the exclusion fraction method, because parsimony defines the
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lower bound of model complexity. The most parsimonious model is the simplest model in

the set of candidate models, while the full model is considered the most complex model

used in model-averaging.

Inclusion fraction, stepwise selection, and Occam’s window approaches significantly

reduce the number of the models under consideration. However, unlike the exclusion frac-

tion approach, they also allow all variables to appear in model-averaging, which means that

each variable will have a corresponding point estimate and confidence interval, regardless

of which final model is chosen. While a 60% cut-off point in the exclusion fraction method

may be unreasonable for some data, the 50% threshold is the natural choice, because it is a

non-informative point and corresponds to the initial assumption that we do not know which

variables are important. Of course, if prior knowledge allows, the idea of a 50% threshold

for all variables can be expanded to the unique thresholds for each variable, but we assume

that there is no prior knowledge besides the one that defines the full model.

In general, the approach based on inclusion fraction should provide a larger set of mod-

els than the Occam’s window approach. However, a larger set does not mean that the

approach is weaker. It only means that the inclusion fraction method needs more time to

obtain results. What is more important is the accuracy of the inference. If the inclusion

fraction method demonstrates better performance, then it is preferable over other methods,

despite the larger set of the candidate models.
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Chapter 4

IMPROVING THE WALD MODEL-AVERAGING CONFIDENCE

INTERVALS

4.1 Introduction

As pointed out in previous chapters, regression analysis has commonly been based on a

single model that was selected by a model selection process. Model selection and subse-

quent inference is still a popular way to conduct statistical analysis, despite the fact that the

single model ignores uncertainty due to model selection, which leads to biased inference

(Berk et al., 2010). To solve this problem, model-averaging procedures were developed.

Model-averaged methods account for uncertainty, but accurate CI procedures deserve fur-

ther research.

Methods for constructing confidence interval by model-averaging in the frequentist

setting have been studied by Buckland et al. (1997) and Burnham and Anderson (2004).

These procedures assume that model-averaged estimators are approximately normal, and

variances have a closed form and can be estimated, allowing symmetric confidence inter-

val to be constructed around the point estimate. In cases where estimators do not closely

follow a normal distribution, Wald intervals may not perform well. For a single model,

this problem can be solved by calculating a Wald interval for a transformed parameter,

and then transforming intervals back. However, even if the sampling distribution of the

parameter estimates for each considered model can be assumed to be normal, it does not
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mean that model-averaged parameter estimates will also have the same property, because

the weights used in averaging process are also estimated with uncertainty. Claeskens and

Hjort (2008) and Hjort and Claeskens (2003) suggested a correction for these procedures;

however, Wang and Zhou (2013) have shown that the corrected confidence interval con-

verges to the full model in the parametric context as well as in the semi-parametric model

framework.

Turek and Fletcher (2012) proposed a Wald-type confidence interval that is estimated

by averaging the tail areas of the sampling distributions that does not require estimation

of standard errors. This methodology provides reasonable confidence intervals for normal

linear models. To account for skewness of the interval, Fletcher and Turek (2012) derived

model-averaged profile likelihood confidence intervals, which performed better than Wald

intervals. Kabaila et al. (2016) compared Wald based and profile-likelihood based tail

area confidence interval construction methods for a simple case with only two models, and

showed that the coverage of the profile-likelihood based method decreases as the ratio p/n

increases, while the Wald based method demonstrates more stable coverage properties. As

discussed in Fletcher and Turek (2012) and shown in Kabaila et al. (2016), the model-

averaged profile likelihood confidence interval works well only if the profile confidence

intervals of each model perform well. The profile-likelihood method performs poorly when

correlation among variables is large or the sample size is small.

4.2 Model-averaged intervals based on score test

For single logistic regression for small samples, score based confidence intervals usually

outperform the Wald or profile-likelihood intervals (Agresti, 2011). Despite the advantages

of the score confidence intervals in finite samples, they are rarely applied in the context

of regression analyses (Engle, 1984). Since their inception, they have not actually been

applied outside of contingency table analysis. One of the possible reasons is that a score

confidence interval is not accessible in statistical software. To overcome the performance
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issues in small samples, we propose to construct confidence intervals for model-average

parameters by using a score test method. Consider the following logistic regression model:

logit
(
P(Y = 1|X)

)
= Xβ , (4.1)

where β T = (β1, ...,βp) and X is an n× p matrix of independent variables. The score

function of this model is defined by

U(β ) =
∂

∂β
`(β |Y ,X) =

n

∑
i=1

Xi

(
Yi−

exp(Xiβ )

1+ exp(Xiβ )

)
, (4.2)

where Xi is a vector of values of predictors for subject i, and Yi is a binary outcome of

subject i. The observed Fisher information matrix for this model can be defined by the

negative second partial derivatives of the log-likelihood function

I(β ) jk = −
∂ 2

∂β j∂βk
`(β |Y ,X) = −

n

∑
i=1

exp(Xiβ )

(1+ exp(Xiβ ))2 Xi jXik , (4.3)

where Xi j and Xik are the values of predictors j and k for subject i. From the score function

and the observed Fisher information, we can define the score test function for some β j as

ST (β j) =U(β j)I−1(β j)UT (β j) . (4.4)

ST (β j) is a function of β j and has χ2 distribution with one degree of freedom. For the

model-averaging framework, let us define this function for regression coefficient β j in some

model m by

STm(β j) =Um(β j)I−1
m (β j)UT

m (β j) . (4.5)

To conduct just a score test, we have to fit the regression model m, estimate all relevant

parameters and plug β̂ j into S(β j). However, if we want to calculate the confidence interval

based on score test function, we have to define statistics

Sm(β j) = sign(β̂ jm−β j)
√

Um(β j, γ̂m)I−1
m (β j, γ̂m)UT

m (β j, γ̂m) , (4.6)
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where γ̂m is a set of refitted coefficients of the nuisance variables. The (1−α)100% score

confidence interval for β j is defined by β L
j and βU

j that satisfy

Φ
(
Sm(β

L
j )
)
=

α

2
and Φ

(
Sm(β

U
j )
)
= 1− α

2
, (4.7)

where Φ(·) is the cumulative distribution of the standardized normal distribution. By anal-

ogy with model-averaged profile-likelihood, intervals we can define the model-averaged

score test interval for β j as

M

∑
m=1

wmΦ
(
Sm(β

L
j )
)
=

α

2
and

M

∑
m=1

wmΦ
(
Sm(β

U
j )
)
= 1− α

2
. (4.8)

The score intervals as well as the model-averaged profile-likelihood confidence intervals

are based on an analogy with Bayesian model-averaging, but unlike the profile-likelihood

intervals, the score intervals do not require the evaluation of the maximum likelihood esti-

mates under the alternative model.

4.3 Confidence intervals based on Wald standard errors

Turek and Fletcher (2012) proposed the model-averaging tail area confidence intervals,

which are obtained by solving the equations

M

∑
m=1

wm

(
1−Fνm

(
tL

jm
))

=
α

2
and

M

∑
m=1

wmFνm

(
tU

jm
)
=

α

2
, (4.9)

where Fνm(·) is the cumulative distribution function of the t-distribution with νm degrees of

freedom associated with model m, tL
jm = (β̂ jm−β L

j )/ŝe(β̂ jm), tU
jm = (β̂ jm−βU

j )/ŝe(β̂ jm),

and ŝe(β̂ jm) are Wald standard errors. A key feature of this method is that standard errors

used in the estimation of lower and upper limits are assumed to be equal.

While the final confidence interval obtained from Wald model-averaging tail area method

is not symmetric, the standard errors equivalency for each considered model is an unneces-

sary restriction. It is known that for each individual model, the profile-likelihood or score

methods provide asymmetric confidence intervals that usually outperform those based on



44

the Wald method (Newcombe, 1998; Agresti, 2011). This advantage becomes even more

noticeable with smaller sample sizes. Therefore, it is possible to improve the Wald model-

averaging tail area confidence intervals by replacing the standard errors of the Wald confi-

dence interval by standard errors obtained from the profile-likelihood or score confidence

intervals. s

4.4 Wald MATA corrected by the profile-likelihood and score standard errors

Although the profile-likelihood and score intervals do not have closed forms, their standard

errors can be estimated. Suppose
(
β̂

pl
L,m, β̂ pl

U ,m
)

and
(
β̂ S

L,m, β̂ S
U ,m
)

are confidence intervals for

parameter β j in model m obtained from profile-likelihood and score methods, respectively.

For the profile-likelihood method, the lower and upper standard errors can be estimated by

ŝepl
L (β̂ jm) =

β̂ jm− β̂
pl
L,m

2z1−α

2

and ŝepl
U (β̂ jm) =

β̂
pl

U ,m− β̂ jm

2z1−α

2

, (4.10)

and for the score method they can be estimated by

ŝeS
L(β̂ jm) =

β̂ jm− β̂ S
L,m

2z1−α

2

and ŝeS
U (β̂ jm) =

β̂ S
U ,m− β̂ jm

2z1−α

2

. (4.11)

The standard errors recovered from profile-likelihood or score confidence intervals in Equa-

tions (4.10) and (4.11) can be used in Equation (4.9). Such replacement can improve the

confidence intervals in terms of length, as well as computational time. Wald based model-

averaging confidence interval calculation is much faster than the profile-likelihood or score

based ones. Since the optimization algorithm is less complex, it is less likely to fail to

converge.
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4.5 Confidence intervals based on Bayesian model-averaging

The standard error of a model-averaged posterior distribution for β̂ BMA
j from BMA has the

form:

se(β̂ BMA
j ) =

√
∑

Bm∈V

{
[Var(β jm|D,Bm)+ β̂ 2

jm]p(Bm|D)
}
− (β̂ BMA

j )2 ,

where V is a set of candidate models obtained by the Occam’s window method (Hoeting

et al., 1999).

Statistical software, such as SAS or R, allows BMA to proceed with the set of selected

models and provides the point estimates and the standard errors of model-averaged poste-

rior distributions for each coefficient. It is known that BMA can be a useful tool for model

selection; however, the reliability of posterior standard errors is not very clear. One may

use this information to construct the intervals based on the estimated effects as

β̂
BMA
j ± z1−α

2
× ŝe(β̂ BMA

j )

and interpret them as regular confidence intervals. For example, Fang et al. (2016) in a

study of associations between air pollution and respiratory mortality, applied a Bayesian

model-averaging method on the set of generalized additive mixed models and presented

Wald-type confidence intervals. In a similar study, Portnov et al. (2012) calculated Wald

based confidence intervals from BMA and compared these to the results from a single

model.

The unconditional standard error proposed by Burnham and Anderson (2004) was mo-

tivated by the posterior standard errors. As shown in Hjort and Claeskens (2003), Wang and

Zhou (2013), Turek and Fletcher (2012), and Fletcher and Turek (2012), the intervals ob-

tained using unconditional standard errors in the frequentist setting have poor performance,

although it is unclear whether a similar method using a Bayesian approach would perform

better. Thus, in this research we also test the validity of the BMA Wald-type confidence

interval and give our recommendations regarding its use.
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Chapter 5

EVALUATION OF CONFIDENCE INTERVAL PROCEDURES

5.1 Introduction

Previous chapters presented statistical methods for model-averaging confidence interval

construction. In Chapter 3, we proposed to use a 50% inclusion fraction based on the

bootstrap procedure to define the set of candidate models for model-averaging. In Chapter

4, we proposed the model-averaging confidence interval construction method based on the

score function and the improved Wald based model-averaging confidence intervals. In

this chapter, some of the methods described in Chapter 2 are compared empirically under

different parameter combinations to proposed methods.

Section 5.2 presents the confidence interval construction methods that are compared

in this simulation study. Section 5.3 describes the algorithm for comparing the methods.

Section 5.4 describes the parameters and their combinations used for the simulation study.

The data generating process is described in Section 5.5. In Section 5.6, we list the software

and tools used in this simulation study. Finally, the evaluated statistics, tabulated results of

the simulation study, and the analysis of the results are presented in Section 5.7.

5.2 Confidence interval construction methods

In Chapter 2, we presented different confidence interval construction methods. In this sim-

ulation study, we evaluate the performance of our proposed methods compared to existing
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methods. Overall, 19 different methods are compared. The first group that contains six

methods that provide confidence intervals for all independent variables is:

1. Full model regression (FULL) that fits one model with all possible variables and

calculates Wald type confidence intervals,

2. Inclusion fraction (50%) based model-averaged tail area method using Wald ap-

proach (I-MATA-W),

3. Inclusion fraction (50%) based model-averaged tail area method using profile-likelihood

approach (I-MATA-PL),

4. Inclusion fraction (50%) based model-averaged tail area method using score based

approach (I-MATA-S),

5. Inclusion fraction (50%) based model-averaged tail area method using Wald ap-

proach with profile-likelihood standard errors (I-MATA-Wpl),

6. Inclusion fraction (50%) based model-averaged tail area method using Wald ap-

proach with score based standard errors (I-MATA-Ws).

The second group consists of 13 methods involving variable selection processes:

1. Backward stepwise selection method with AIC based penalties (STEP-AIC),

2. Backward stepwise selection method with BIC based penalties (STEP-BIC),

3. Zero-corrected backward selection method (ZERO-C) that averages over selected

regression models from bootstrapped samples and uses the percentile method for

confidence interval construction,

4. BMA Wald approach (BMA-W) that uses the mean and standard error of a model-

averaged posterior distribution to construct Wald based confidence intervals,

5. LASSO with λ that is within 1 standard error of the minimum,

6. Stepwise AIC exclusion based model-averaged tail area method using Wald approach

(E-MATA-W),

7. Stepwise AIC exclusion based model-averaged tail area method using profile-likelihood

approach (E-MATA-PL),
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8. Stepwise AIC exclusion based model-averaged tail area method using score based

approach (E-MATA-S),

9. Occam’s window based model-averaged tail area method using Wald approach (B-

MATA-W),

10. Occam’s window based model-averaged tail area method using profile-likelihood ap-

proach (B-MATA-PL),

11. Occam’s window based model-averaged tail area method using score based approach

(B-MATA-S),

12. Occam’s window based model-averaged tail area method using Wald approach with

profile-likelihood standard errors (B-MATA-Wpl),

13. Occam’s window based model-averaged tail area method using Wald approach with

score based standard errors (B-MATA-Ws).

In addition, we also fit the true model that is used in the model comparison process

described in the next section. For all model-averaged tail area methods, AIC was used as

the weighting criteria, because it leads to better performance for such confidence interval

construction methods (Turek and Fletcher, 2012; Fletcher and Turek, 2012; Kabaila et al.,

2017).

5.3 Comparison procedure

This simulation study compares different confidence interval construction methods for lo-

gistic regression coefficients in terms of:

1. Confidence interval coverage level, which reflects the validity of the methods. Valid

confidence intervals should provide coverages that are close to the nominal coverage

level.

2. Confidence interval tail errors, which indicate the accuracy and balance of the meth-

ods. Balanced tail errors mean that a method excludes extreme values from both

sides of the interval.
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3. Confidence interval width, which shows the efficiency of the methods. The shortest

intervals that meet the two previous properties are considered more precise, and thus

more desirable.

In addition, we present the averaged point estimates to ensure that confidence interval

methods can provide consistent estimates. Methods are investigated for 95% confidence.

We decided to conduct 1,000 runs only for full model, true model, zero-corrected back-

ward selection method and five methods based on the inclusion fraction, because these

methods provide confidence intervals for all variables in each run. Based on the mini-

mal number of simulation runs, the appropriate empirical coverage range is defined by

95±1.96
√
(95×5)/1000 = (93.6%, 96.4%).

Some of the compared methods, such as the stepwise selection based approaches or

LASSO method, are selecting variables before constructing the confidence intervals. If we

run only 1,000 simulations for these methods, some of the variables will be selected in

fewer than 1,000, which means that the empirical coverage of their coefficient effects will

be based on less than 1,000 confidence intervals. Thus, if the coverage calculation for these

methods is based on the same number of simulations as for the methods that do not select

variables, the coverage for frequently omitted variables will not be comparable (Lukacs

et al., 2010). To ensure that the methods be comparable, the number of simulation runs for

the methods that select variables should be increased.

The BWald-type BMA, three model-averaging procedures based on stepwise AIC ex-

clusion method, and five procedures based on Occam’s window method include optimiza-

tion algorithms that we cannot afford to run for a large number of simulations. However,

these methods involve variable selection processes, thus to achieve a reasonable empirical

coverage for frequently eliminated variables, we run 5,000 simulation replicates. A total of

5,000 runs is enough to ensure that the most frequently eliminated variable will be selected

in at least 1,000 runs, such that empirical coverage based on these runs will be comparable

to other methods. The backward stepwise selection methods and LASSO are also selecting
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variables; however, since the calculations for these methods are faster, we perform 10,000

runs (Lukacs et al., 2010).

Since we compare 19 methods, for convenience we grouped the results in eight tables

marked by suffix letters A to H. The first three tables always present the means of point

estimates. The table with suffix letter A includes means of the point estimates of the true

model, full model and two backward stepwise selection methods. The second table (B) in-

cludes means of the point estimates of zero-corrected backward selection method, LASSO

method and BMA-W. We combined them together since all these methods are related to the

Bayesian framework (Austin, 2008; Park and Casella, 2008). The third table (C) always

contains means of the model-averaged point estimates based on three different methods for

selecting the candidate models - backward selection, Occam’s window and 50% inclusion

fraction.

Tables D, E, F, G, and H contain the performance results of the confidence intervals.

Table D includes coverage, tail errors and averaged width of confidence intervals con-

structed by the true model, full model and two backward stepwise selection methods. Ta-

ble E presents the inference results for zero-corrected backward selection method, LASSO

method and BMA-W. Tables F, G, and H present coverage probability, tail errors and aver-

aged width of confidence intervals that were constructed by three stepwise AIC exclusion

based, five Occam’s window based and five inclusion fraction based model-averaged tail

area methods, respectively. This tabulation structure is repeated for each of the simulation

parameters presented in the next section.

The results presented in tables marked by suffix letters A, B, and C can be used to

calculate the bias of the point estimates. We first compare the point estimates produced

by the methods. However, methods that produced large bias will not be eliminated from

further comparison, since we are also interested in their ability to estimate valid confidence

intervals.

The simulation framework allows us to use the information about the data generating
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process. Even if the true model is known and can be applied, the coverage level of some of

the predictors may not fall within the (93.6%, 96.4%) range. This is possible due to small

sample size or because of large correlation among the generated variables. Thus, we ana-

lyze the coverage level obtained from the true model. Only the coefficients whose empirical

coverage from true model falls within the appropriate coverage interval are compared. The

methods whose coverage level is below or above the empirical coverage range for a large

number of regression coefficients are excluded from further analysis. The methods that

demonstrate acceptable coverage level are then compared by tail errors.

Left and right tail errors indicate the percentage of times the confidence interval was

above or below the true parameter, respectively. For 95% confidence intervals, the ideal tail

errors both are equal to 2.5%, which means that only extreme values are excluded. After

the first comparison, we compare the methods, whose sum of the tail errors varies in the

3.6% to 6.4% interval. We are interested in the difference of the tail errors |tu− tl|, thus

we accept the method if this difference is smaller than 1% for a large number of regression

coefficients. Methods are compared only for regression coefficients that lie within the range

for the true model.

Finally, all methods that pass the two previous comparison rounds are compared by

confidence interval width. The narrowest width that indicates the better precision of the

method is desirable. Compasion of widths produced by the valid approaches is also pre-

sented in the Figures 5.1 to 5.4.

5.4 Choice of parameters in simulation

Estimation of regression coefficients and their confidence intervals might be sensitive to

many factors. The performance of confidence interval procedures for logistic regression

can be affected by sample size, probability of outcome and the number of predictors and

correlation among them. In this simulation study, we compare different methods for confi-

dence interval construction in four simulation blocks. In each block, one of the mentioned
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parameters, for example correlation among the predictors, changes, while other parameters

are fixed. All investigated parameter combinations are summarized in Table 5.1.

Sample size is the parameter that usually can be prespecified by researchers. We are

interested in checking the performance of methods when the number of observations is

not large. The regression coefficient estimates in logistic regression do not have a closed

form and can be estimated through the optimization of the likelihood function. Insuffi-

cient sample size in logistic regression can lead to not only estimation inaccuracy, but also

divergence of the optimization algorithm, known as the separation problem (Heinze and

Schemper, 2002). This problem occurs when the log-likelihood function is bounded by

zero and cannot reach a maximum by increase of regression coefficient estimates of β .

In the first block of simulations, in order to test the effect of sample size on the per-

formance of methods, we fix the number of variables at 5, correlation among variables at

0.5 and outcome probability at 0.5, and set sample sizes to be 100, 300, and 500. The

probability of outcome was controlled by the effect of intercept equal to -0.15.

The number of predictors can affect the performance of the methods. In this study, we

test the consequences of increasing the number of predictors on the performance of con-

fidence interval procedures. We generated continuous variables from normal distributions

and binary variables from Bernoulli distributions. To evaluate the effect of the number of

predictors on the performance of confidence interval procedures we fix sample size at 500,

correlation at 0.5 and outcome probability at 0.3, and set the number of predictors to be

3, 5, and 10. Such parameters were chosen with the consideration of the time required

to complete the simulation and the complexity of the analysis. For example, for p = 3,

a sample of 500 is sufficient, but for p = 10 the sample size will be quite small, and the

difference between the methods, if any, will be more evident. We generated the data with

the true effects as following,

• For the simulation model with 3 variables, we specified β = (0.01,0.5,−1), such

that X1 and X3 are normally distributed, and variable X2 associated with 0.5 effect on
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outcome has Bernoulli(0.5) distribution.

• For the data with 5 variables, we added one Bernoulli variable with −0.2 effect and

one normally distributed variable with no effect on the outcome. The true effects

β = (0,0.01,−0.2,0.5,−1) are also used for simulations related to sample size, cor-

relation, and probability of events.

• For the largest simulated data with p = 10, we added two redundant normally dis-

tributed variables and one from a Bernoulli distribution, one normally distributed

variable with effect of −0.7 and one Bernoulli distributed variable with the largest

effect of 2.5, such that β = (0,0,0,0,0.01,−0.2,0.5,−0.7,−1,2.5) is the final vector

of the true effects.

We expanded the simple model with three variables by adding not only important variables,

but also irrelevant variables to the dataset. This should also affect the performance of some

methods. The outcome probability was controlled for each model by the intercepts of -1.23,

-1.15 and -1.18.

The third parameter we are interested to assess is correlations among independent vari-

ables. It is presented in the third block of simulations. We assessed how methods perform

under the change in correlations from non-correlated data to moderate correlation. We fix

the sample size at 300, the number of variables at 5, and the probability of outcome at 0.3,

and set the correlation to be 0, 0.3 and 0.5. The intercepts of -1.42, -1.28 and -1.18 being

defined to control the outcome probability across this group of simulations. For large sam-

ple size, correlation is not a big issue; however, if sample size is small relative to the number

of predictors and the outcome probability is far from 0.5, it may decrease the performance

of confidence intervals and increase bias.
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Table 5.1: Parameter combinations used for simulation study. N - sample size, p - number
of predictors, ρ - correlation among predictors, Pr - event probability.

Combination N p ρ Pr

1 100 5 0.5 0.5

2 300 5 0.5 0.5

3 500 5 0.5 0.5

4 500 3 0.5 0.3

5 500 5 0.5 0.3

6 500 10 0.5 0.3

7 300 5 0 0.3

8 300 5 0.3 0.3

9 300 5 0.5 0.3

10 500 5 0.3 0.1

11 500 5 0.3 0.3

12 500 5 0.3 0.5

The shaded area shows parameters evaluated in each simulation block.

The outcome probability, P(Y = 1), is an important parameter in logistic regression,

which is the last parameter of interest. We fix the sample size at 300, the number of vari-

ables at 5 and the correlation between them at 0.3, and set the probability of outcome to

be 0.1, 0.3, and balanced 0.5 by defining intercept being equal to -2.7, -1.15 and -0.15, re-

spectively. We defined these values by using the same idea as for the number of predictors.

For example, 300 observations with 0.5 is enough, but it becomes more problematic with a

decrease in outcome probability.

In total, there are 12 unique parameter combinations used in this simulation study. We

devided them into four blocks that are indicated by horizontal lines. Each block evaluates

one of the considered parameters is highlighted in Table 5.1.
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5.5 Data generation

To generate datasets for the simulation study, we used the copula package in R that allows

the generation of multivariable correlated data (Yan, 2007). In this simulation study, we

are interested in testing how methods perform when data contains not only continuous,

but also binary explanatory variable. For example, if we are interested in the model with

five variables, then we want three of the five variables to be normally distributed N(0,1),

and two to be from the Bernoulli(0.5) distribution. We first define the correlation matrix

according to the final distribution of each variable with ρ = 0.3 as follows:

1 0.3 0.38 0.38 0.3

0.3 1 0.38 0.38 0.3

0.38 0.38 1 0.45 0.38

0.38 0.38 0.45 1 0.38

0.3 0.3 0.38 0.38 1


. (5.1)

Using the matrix 5.1 we generated variables from multivariate normal distribution, such

that 0.38 corresponded to the correlation between two normally distributed variables one of

which will be later transformed into a Bernoulli distributed variable, and 0.45 corresponded

to the correlation between two variables that both will be later transformed into Bernoulli

distributed variables. After the transformation of appropriate variables, we obtain data with

binary and continuous variables that have a correlation of 0.3.

Similarly, the data with ρ = 0.5 can be generated by using the following correlation

matrix: 

1 0.5 0.63 0.63 0.5

0.5 1 0.63 0.63 0.5

0.63 0.63 1 0.71 0.63

0.63 0.63 0.71 1 0.63

0.5 0.5 0.63 0.63 1


. (5.2)
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To simulate uncorrelated data, we use the identity matrix as a correlation matrix. The data

generation process was combined in function ‘copulaData’, which can be found in the

Appendix A.1.

For each of the 12 parameter combinations presented in Table 5.1, we generated dif-

ferent numbers of data sets as follows. First, we considered the number of simulation

runs S = {1000,5000, or 10000}. Then we generated a data matrix X that contains only

predictors and then we simulate S binary output vectors of y, such that

yi ∼ Bernoulli(Pri) ,

where

Pri = P(Yi = 1) =
exp(Xiβ )

1+ exp(Xiβ )
.

Depending on the number of runs, we apply each of the 19 methods described in Section

5.2. For inclusion fraction based methods that involve bootstrapping, we use 1000 bootstrap

samples.

5.6 Software and packages

The data generating and analysis programs were written in R v3.4.4 software (R Core

Team, 2013). The R packages used in the simulation study are tictoc, copula, MASS,

matrixStats, glmnet, parallel, BMA, MuMIn, and rootSolve. The tictoc package

provides a stopwatch timer, that allows one to measure time spent on different parts of an

algorithm (Izrailev, 2014). The copula package was used in the data generating process

(Yan, 2007). The MASS and matrixStats packages contain a large list of basic support

functions (Venables and Ripley, 2002; Bengtsson, 2018). The glmnet package contains a

list of functions for penalized regression modelling (Friedman et al., 2010). The parallel

package allows one to run parallel computation, which significantly reduces the simulation

time (R Core Team, 2013). The BMA and MuMIn packages allow one to do Bayesian and
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frequentist model-averaging, respectively (Raftery et al., 2005; Barton, 2009). Frequentist

model-averaging from the MuMIn package corresponds to the method suggested by Burn-

ham and Anderson (2002), thus we used it not as a confidence construction tool, but only

as a tool for intermediate calculations. Finally, the rootSolve package was used in the

optimization processes for profile-likelihood and score based model-averaged confidence

intervals (Soetaert and Herman, 2009).

5.7 Results

The simulation results are presented in four groups, such that each group evaluates the

effect of - sample size, number of predictors, correlation and probability of the outcome,

respectively. Starting with the effect of sample size, the analysis was performed for each

parameter of interest separately in the following order. First, we reviewed methods for

acceptable point estimates, then we analyzed the empirical coverage probabilities, then

discussed the tail errors balance, and finally compared the averaged widths.

5.7.1 Sample size

Tables 5.2.A to 5.2.C present the average point estimates for all considered approaches

as a function of sample size. The coverage probabilities, tail errors and average widths

of all methods are presented in Tables 5.2.D to 5.2.H. Comparison of the valid methods

by their widths is presented in Figure 5.1. The simulations were done for the parameter

combinations 1-3 in Table 5.1. We evaluated the model with five variables that have effect

β = (0,0.01,−0.2,0.5,−1) on binary outcome y. We considered three sample sizes of 100,

300, and 500, while correlation and probability of outcome were both fixed at 0.5.



58

Bias of point estimates

Overall, bias decreased with sample size. However, some of the methods provided highly

biased point estimates in comparison to the point estimates produced by the true model

even with the largest sample size. Among the methods presented in 5.2.A only the full

model provided relatively unbiased point estimates, while estimates provided by two back-

ward stepwise selection methods were biased away from zero (Harrell, 2015). The stepwise

selection with BIC penalty tended to produce larger bias than the AIC based stepwise ap-

proach as sample size increased.

Table 5.2.A: Mean of point estimates obtained from the true model, the full model, step-
wise AIC and stepwise BIC backward selection methods for different sample sizes, where
ρ = 0.5 and outcome probability is 50%. The true and the full model results are based on
1,000 simulations, the results of backward selection methods are based on 10,000 simula-
tions.

Backward selection
N β TRUE FULL STEP-AIC STEP-BIC

100 0 — -0.01 0.03 -0.03
0.01 0.01 0.01 -0.001 0.01
-0.2 -0.19 -0.19 -0.46 -0.51
0.5 0.54 0.55 1.11 1.42
-1 -1.08 -1.09 -1.07 -1.03

300 0 — 0.001 0.04 0.20
0.01 0.02 0.02 0.06 0.22
-0.2 -0.21 -0.21 -0.46 -0.50
0.5 0.52 0.52 0.76 0.93
-1 -1.03 -1.03 -1.02 -0.96

500 0 — 0.001 -0.01 0.06
0.01 0.02 0.01 0.03 0.14
-0.2 -0.21 -0.21 -0.42 -0.63
0.5 0.50 0.50 0.60 0.73
-1 -1.01 -1.02 -1.01 -0.97
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Among the methods presented in Table 5.2.B, only the zero-corrected backward se-

lection method provided relatively accurate point estimates. The LASSO based approach

provided estimates biased away from zero, while the Bayesian model-averaging resulted

in estimates mostly biased toward zero. Due to shrinkage, LASSO usually produces esti-

mates that are biased towards zero for non-zero coefficients; however, in our study we used

LASSO only to select the variables, and the point estimates were obtained by fitting regular

logistic regression with selected covariates. Since the data was used twice, first to select the

variables and then to fit a regular logistic regression model, this LASSO-based approach

shares the uncertainty problem with the stepwise selection procedure, which explains the

bias away from zero.

Table 5.2.B: Mean of point estimates obtained from the zero-corrected backward selection,
LASSO, and Wald based Bayesian model-averaging methods for different sample sizes,
where ρ = 0.5 and outcome probability is 50%. The LASSO results are based on 10,000
simulations, the results of zero-corrected backward selection and Wald based Bayesian
model-averaging are based on 5,000 simulations.

N β ZERO-C LASSO BMA-W

100 0 -0.01 -0.08 0.003
0.01 0.01 -0.08 0.001
-0.2 -0.19 -0.41 -0.02
0.5 0.547 0.855 0.16
-1 -1.16 -0.99 -0.98

300 0 0.01 -0.02 0.01
0.01 0.02 0.01 0.01
-0.2 -0.16 -0.33 -0.01
0.5 0.47 0.75 0.17
-1 -1.05 -0.99 -0.97

500 0 0.002 -0.01 0.01
0.01 0.01 0.01 0.01
-0.2 -0.17 -0.29 -0.04
0.5 0.46 0.62 0.26
-1 -1.03 -0.99 -0.98
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The bias we discuss in this study is entirely a frequentist concept, and is treated dif-

ferently in the Bayesian framework. In the frequentist framework, the loss function is

minimized with respect to a single value that is unknown, while the Bayesian expected

loss function is dependent on the prior distribution (Samaniego, 2010). The frequentist and

Bayesian point estimates coincide if a non-informative prior is used. The underestimation

of the BMA point estimates decreases with sample size as the distribution of β converges

to a normal distribution. However, for finite and small samples, the shift toward zero of the

Bayesian posterior means is common in logistic regression (Viallefont et al., 2001).

Table 5.2.C: Mean of point estimates of the backward stepwise selection (E-MATA), Oc-
cam’s window (B-MATA) and inclusion fraction (I-MATA) based model-averaging tail area
methods for different sample sizes, where ρ = 0.5 and outcome probability is 50%. The
backward stepwise selection and Occam’s window means are based on 5,000 simulations,
the results obtained from inclusion fraction are based on 1,000 simulations.

N β E-MATA B-MATA I-MATA

100 0 0.04 0.021 -0.004
0.01 0.01 0.01 0.01
-0.2 -0.37 -0.05 -0.20
0.5 1.06 0.46 0.51
-1 -1.04 -1.05 -1.07

300 0 0.03 0.04 0.01
0.01 0.05 0.04 0.02
-0.2 -0.38 -0.05 -0.18
0.5 0.71 0.45 0.50
-1 -1.00 -1.00 -1.02

500 0 0.01 0.02 0.001
0.01 0.02 0.03 0.01
-0.2 -0.40 -0.19 -0.20
0.5 0.59 0.51 0.49
-1 -1.00 -1.00 -1.01
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According to the results in Table 5.2.C, only FMA that was based on the candidate

models selected by the inclusion fraction provided reliable point estimates, regardless of

the sample size. Frequentist model-averaged estimates after backward elimination demon-

strated smaller bias than estimates from the stepwise AIC backward elimination from Ta-

ble 5.2.A; however, this bias was still significantly larger than the bias produced by the

inclusion fraction method. The model-averaged estimates based on the B-MATA approach

provided slightly biased estimates for moderate effect of 0.2 in the smallest sample size

(100 subjects). However, this bias noticeably reduced as sample size increased.

Table 5.2.D: Empirical coverage (Cov), tail errors (<, >)% and averaged width (WD)
of 95% CIs constructed by the true model, the full model, stepwise AIC and stepwise
BIC backward selection methods for different sample sizes, where ρ = 0.5 and outcome
probability is 50%. The true and the full model results are based on 1,000 simulations, the
results of backward selection methods are based on 10,000 simulations.

Backward selection

N β TRUE FULL STEP-AIC STEP-BIC

Cov (<, >)% WD Cov (<, >)% WD Cov (<, >)% WD Cov (<, >)% WD

100 0 — 94.6 (2.7, 2.7) 1.12 68.8 (15.2, 16.1) 1.13 0.0 (48.1, 51.9) 1.11

0.01 94.5 (3.0, 2.5) 1.03 94.8 (2.9, 2.3) 1.06 68.5 (15.4, 16.0) 1.06 0.0 (51.5, 48.5) 1.07

-0.2 95.4 (3.0, 1.6) 2.50 95.2 (3.1, 1.7) 2.5 63.3 (23.3, 13.4) 2.41 17.2 (35.2, 47.6) 2.34

0.5 96.1 (1.8, 2.1) 2.48 96.0 (1.8, 2.2) 2.51 86.5 (8.0, 5.5) 2.37 79.8 (17.0, 3.2) 2.37

-1 95.5 (2.6, 1.9) 1.33 95.1 (2.7, 2.2) 1.39 93.9 (3.2, 2.9) 1.20 95.1 (2.7, 2.2) 1.10

300 0 — 95.5 (1.7, 2.8) 0.66 60.0 (24.0, 15.9) 0.63 0.0 (73.2, 26.8) 0.62

0.01 95.0 (2.5, 2.5) 0.62 95.0 (2.7, 2.3) 0.63 63.2 (21.1, 15.8) 0.60 0.0 (77.2, 22.8) 0.59

-0.2 94.8 (2.6, 2.6) 1.37 94.5 (2.7, 2.8) 1.38 73.0 (16.4, 10.6) 1.31 29.8 (25.1, 45.1) 1.32

0.5 95.0 (2.2, 2.8) 1.43 95.0 (2.0, 3.0) 1.47 94.5 (5.1, 0.4) 1.31 89.8 (10.0, 0.1) 1.27

-1 94.0 (2.5, 3.5) 0.72 94.4 (2.5, 3.1) 0.74 92.0 (4.8, 3.2) 0.67 89.0 (8.8, 2.2) 0.61

500 0 — 94.7 (2.6, 2.7) 0.51 60.7 (19.3, 20.0) 0.48 0.0 (58.7, 41.3) 0.46

0.01 95.5 (2.7, 1.8) 0.48 95.2 (2.5, 2.3) 0.51 62.1 (19.0, 18.9) 0.48 0.0 (71.5, 28.5) 0.46

-0.2 94.9 (2.5, 2.6) 0.92 95.0 (2.8, 2.2) 0.94 84.8 (5.5, 9.7) 0.89 51.1 (2.0, 46.8) 0.88

0.5 96.4 (1.6, 2.0) 0.96 96.0 (1.7, 2.3) 0.98 96.1 (3.8, 0.1) 0.93 94.3 (5.7, 0.0) 0.92

-1 95.4 (2.8, 1.8) 0.56 95.6 (2.5, 1.9) 0.57 92.6 (4.3, 3.0) 0.53 87.3 (9.8, 2.9) 0.48
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Empirical coverage of confidence interval procedures

In general, not all methods showed improved performance with increasing sample size,

because some of the methods yielded serious decreases in coverage probability with in-

creasing sample size. The effect of a coefficient’s magnitude on coverage probabilities also

varied among the methods.

Table 5.2.E: Empirical coverage (Cov), tail errors (<, >)% and averaged width (WD) of
95% CIs constructed by the zero-corrected backward selection, LASSO and Wald based
Bayesian model-averaging methods for different sample sizes, where ρ = 0.5 and outcome
probability is 50%. The LASSO results are based on 10,000 simulations, the results of
zero-corrected and Bayesian approaches are based on 5,000 simulations.

N β ZERO-C LASSO BMA-W

Cov (<, >)% WD Cov (<, >)% WD Cov (<, >)% WD

100 0 100.0 (0.0, 0.0) 1.17 88.1 (6.2, 5.7) 1.12 99.5 (0.3, 0.2) 0.51

0.01 74.0 (0.3, 25.7) 1.10 87.8 (6.8, 5.5) 1.06 99.3 (0.4, 0.4) 0.47

-0.2 82.2 (17.8, 0.0) 3.03 88.3 (6.8, 4.8) 2.38 99.1 (0.4, 0.4) 1.09

0.5 93.0 (1.1, 5.9) 3.04 86.4 (7.1, 6.5) 2.47 46.1 (0.6, 53.4) 1.27

-1 99.7 (0.2, 0.1) 0.61 91.8 (5.9, 2.3) 1.22 92.9 (5.8, 1.3) 1.30

300 0 79.7 (0.0, 20.3) 0.58 87.3 (7.3, 5.4) 0.648 99.9 (0.1, 0.0) 0.24

0.01 79.7 (0.0, 20.3) 0.58 87.1 (7.8, 5.1) 0.618 99.8 (0.2, 0.0) 0.23

-0.2 89.3 (10.3, 0.4) 1.32 89.9 (4.9, 5.2) 1.317 39.9 (60.0, 0.1) 0.50

0.5 94.9 (2.0, 3.1) 1.44 91.1 (6.0, 2.9) 1.415 40.0 (0.9, 59.1) 0.86

-1 93.9 (1.2, 4.9) 0.78 90.0 (7.2, 2.8) 0.677 93.8 (4.9, 1.3) 0.68

500 0 99.8 (0.0, 0.2) 0.47 88.5 (6.1, 5.4) 0.50 99.6 (0.2, 0.1) 0.20

0.01 76.2 (0.1, 23.7) 0.46 89.3 (5.6, 5.1) 0.50 99.6 (0.3, 0.1) 0.21

-0.2 91.2 (8.1, 0.7) 0.86 92.4 (3.3, 4.3) 0.91 40.1 (59.5, 0.4) 0.44

0.5 96.0 (1.8, 2.2) 1.00 94.9 (4.4, 0.8) 0.97 55.3 (1.6, 43.2) 0.87

-1 95.0 (1.5, 3.5) 0.58 91.5 (5.9, 2.6) 0.54 93.0 (5.3, 1.7) 0.54

Among the methods presented in Tables 5.2.D to 5.2.E, only the full model provided
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valid confidence intervals. The stepwise BIC selection significantly underestimated the

coverage probabilities for all sample sizes, and the AIC penalty provided higher coverage

probabilities than BIC, but still far below the nominal level.

Table 5.2.F: Empirical coverage (Cov), tail errors (<, >)% and averaged width (WD)
of three model-averaging CI construction methods for different sample sizes using set of
candidate models obtained from backward AIC selection approach for 95% nominal level
based on 5,000 simulations, where ρ = 0.5 and outcome probability is 50%; Wald based
E-MATA-W, profile-likelihood based E-MATA-PL, and score function based E-MATA-S.

N β E-MATA-W E-MATA-PL E-MATA-S

Cov (<, >)% WD Cov (<, >)% WD Cov (<, >)% WD

100 0 68.8 (17.0, 14.2) 1.14 63.1 (20.0, 16.9) 1.14 64.4 (19.1, 16.5) 1.11

0.01 70.8 (14.4, 14.9) 1.08 63.7 (18.4, 17.9) 1.08 65.1 (17.9, 17.0) 1.05

-0.2 68.3 (21.6, 10.1) 2.45 62.4 (25.2, 12.3) 2.47 64.1 (24.2, 11.7) 2.38

0.5 90.0 (5.6, 4.4) 2.39 87.8 (7.7, 4.6) 2.39 88.9 (6.5, 4.6) 2.33

-1 95.2 (2.8, 2.0) 1.22 94.5 (2.4, 3.1) 1.21 94.5 (3.2, 2.3) 1.19

300 0 68.2 (21.2, 10.6) 0.64 66.6 (22.2, 11.2) 0.64 66.9 (22.1, 10.9) 0.63

0.01 69.6 (17.6, 12.8) 0.61 68.3 (18.6, 13.1) 0.61 68.4 (18.5, 13.1) 0.60

-0.2 75.5 (18.2, 6.3) 1.35 75.0 (18.2, 6.8) 1.35 75.1 (18.2, 6.7) 1.34

0.5 96.2 (3.2, 0.5) 1.33 96.0 (3.5, 0.5) 1.33 96.2 (3.2, 0.5) 1.32

-1 93.6 (4.2, 2.2) 0.68 93.5 (3.9, 2.6) 0.68 93.3 (4.4, 2.3) 0.68

500 0 66.1 (20.4, 13.5) 0.48 65.0 (21.0, 14.0) 0.48 65.4 (20.9, 13.8) 0.48

0.01 66.2 (17.0, 16.9) 0.48 65.1 (17.4, 17.4) 0.48 65.5 (17.3, 17.2) 0.48

-0.2 87.5 (5.8, 6.7) 0.90 87.4 (5.8, 6.8) 0.90 87.4 (5.8, 6.8) 0.90

0.5 97.3 (2.7, 0.1) 0.94 97.0 (3.0, 0.1) 0.94 97.2 (2.8, 0.1) 0.93

-1 93.5 (4.0, 2.6) 0.54 93.3 (3.7, 3.0) 0.54 93.3 (4.1, 2.6) 0.54

The zero-corrected backward selection method and the LASSO approach presented in

Table 5.2.E also demonstrated unsatisfactory results; coverage probability improved with

sample size, but did not reach the nominal level. The Wald-type BMA provided the worst

coverage probabilities out of all evaluated methods. Even with the increase of sample size,
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BMA-W could not reach the desired range.

Model-averaging after backward selection (E-MATA) presented in Table 5.2.F also pro-

duced overoptimistic results. This indicates that model-averaging that follows the stepwise

backward selection cannot improve the results and produce reliable intervals.

Table 5.2.G: Empirical coverage (Cov), tail errors (<, >)% and averaged width (WD) of five model-
averaging CI construction methods for different sample sizes using set of candidate models obtained
from Occam’s window approach for 95% nominal level based on 5,000 simulations, where ρ = 0.5
and outcome probability is 50%; Wald based B-MATA-W, profile-likelihood based B-MATA-PL,
score function based B-MATA-S, Wald based method corrected by the profile-likelihood B-MATA-
Wpl, and Wald based method corrected by the score function B-MATA-Ws.

N β B-MATA-W B-MATA-PL B-MATA-S B-MATA-Wpl B-MATA-Ws

Cov (<, >)% WD Cov (<, >)% WD Cov (<, >)% WD Cov (<, >)% WD Cov (<, >)% WD

100 0 95.5 (2.3, 2.1) 1.09 94.7 (2.9, 2.5) 1.09 94.9 (2.7, 2.4) 1.06 94.9 (2.7, 2.4) 1.10 95.2 (2.5, 2.3) 1.07

0.01 95.7 (2.2, 2.1) 1.02 94.5 (2.7, 2.8) 1.02 94.8 (2.7, 2.5) 0.99 94.7 (2.7, 2.6) 1.03 95.0 (2.6, 2.4) 1.00

-0.2 94.6 (3.7, 1.6) 2.25 93.3 (4.5, 2.2) 2.25 93.6 (4.3, 2.1) 2.19 93.7 (4.2, 2.0) 2.28 94.0 (4.0, 2.0) 2.21

0.5 94.6 (1.4, 4.0) 2.28 93.6 (2.2, 4.2) 2.21 93.8 (1.8, 4.4) 2.16 94.1 (2.1, 3.9) 2.24 94.2 (1.7, 4.2) 2.18

-1 95.5 (2.6, 1.9) 1.29 94.6 (2.3, 3.1) 1.29 94.9 (2.9, 2.2) 1.26 94.9 (2.1, 3.0) 1.31 95.2 (2.6, 2.2) 1.27

300 0 94.5 (3.5, 1.9) 0.61 94.2 (3.7, 2.1) 0.61 94.2 (3.7, 2.0) 0.60 94.3 (3.7, 2.0) 0.61 94.3 (3.7, 2.0) 0.60

0.01 95.0 (2.8, 2.2) 0.58 94.8 (3.0, 2.3) 0.58 94.8 (2.9, 2.3) 0.57 94.9 (2.9, 2.2) 0.58 95.0 (2.8, 2.2) 0.58

-0.2 90.4 (8.1, 1.5) 1.22 89.9 (8.5, 1.6) 1.22 90.2 (8.3, 1.6) 1.21 90.1 (8.4, 1.5) 1.23 90.3 (8.2, 1.5) 1.22

0.5 94.1 (1.4, 4.6) 1.26 93.9 (1.6, 4.5) 1.26 93.7 (1.4, 4.8) 1.25 94.0 (1.6, 4.4) 1.26 93.9 (1.4, 4.7) 1.25

-1 94.9 (3.0, 2.1) 0.71 94.8 (2.6, 2.6) 0.71 94.8 (3.0, 2.2) 0.70 94.9 (2.5, 2.6) 0.71 94.8 (3.0, 2.2) 0.70

500 0 90.9 (5.4, 3.7) 0.46 90.5 (5.7, 3.7) 0.46 90.7 (5.6, 3.7) 0.45 90.7 (5.6, 3.7) 0.46 90.8 (5.5, 3.7) 0.45

0.01 90.7 (4.5, 4.8) 0.46 90.5 (4.6, 4.9) 0.46 90.5 (4.6, 4.9) 0.46 90.5 (4.6, 4.9) 0.46 90.6 (4.6, 4.9) 0.46

-0.2 90.4 (7.1, 2.5) 0.88 89.9 (7.5, 2.5) 0.87 90.1 (7.3, 2.5) 0.87 90.1 (7.4, 2.5) 0.88 90.2 (7.3, 2.5) 0.87

0.5 97.3 (2.0, 0.6) 0.93 97.1 (2.3, 0.6) 0.93 97.2 (2.1, 0.6) 0.92 97.1 (2.2, 0.6) 0.93 97.3 (2.1, 0.6) 0.93

-1 94.3 (3.2, 2.4) 0.55 94.2 (3.0, 2.9) 0.55 94.2 (3.3, 2.5) 0.55 94.2 (2.9, 2.8) 0.55 94.2 (3.3, 2.5) 0.55
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Table 5.2.H: Empirical coverage (Cov), tail errors (<, >)% and averaged width (WD) of five model-
averaging CI construction methods for different sample sizes using set of candidate models obtained
from 50% inclusion fraction approach for 95% nominal level based on 1,000 simulations, where
ρ = 0.5 and outcome probability is 50%; Wald based I-MATA-W, profile-likelihood based I-MATA-
PL, score function based I-MATA-S, Wald based method corrected by the profile-likelihood I-MATA-
Wpl, and Wald based method corrected by the score function I-MATA-Ws.

N β I-MATA-W I-MATA-PL I-MATA-S I-MATA-Wpl I-MATA-Ws

Cov (<, >)% WD Cov (<, >)% WD Cov (<, >)% WD Cov (<, >)% WD Cov (<, >)% WD

100 0 94.6 (2.9, 2.5) 1.12 93.6 (3.3, 3.1) 1.11 93.7 (3.2, 3.1) 1.08 93.7 (3.2, 3.1) 1.13 93.9 (3.1, 3.0) 1.09

0.01 95.4 (2.6, 2.0) 1.05 94.3 (3.1, 2.6) 1.05 94.8 (3.0, 2.2) 1.01 94.7 (2.8, 2.5) 1.06 95.1 (2.8, 2.1) 1.03

-0.2 94.3 (3.8, 1.9) 2.40 93.4 (4.2, 2.4) 2.40 93.7 (4.1, 2.2) 2.33 93.5 (4.1, 2.4) 2.42 93.8 (4.0, 2.2) 2.35

0.5 95.8 (1.9, 2.3) 2.37 95.0 (2.6, 2.4) 2.37 95.3 (2.3, 2.4) 2.30 95.2 (2.6, 2.2) 2.40 95.5 (2.1, 2.4) 2.33

-1 95.3 (2.7, 2.0) 1.33 93.9 (2.6, 3.5) 1.33 94.0 (3.3, 2.7) 1.29 94.2 (2.5, 3.3) 1.34 94.4 (3.0, 2.6) 1.31

300 0 95.2 (2.0, 2.8) 0.65 95.0 (2.1, 2.9) 0.65 95.1 (2.0, 2.9) 0.64 95.1 (2.0, 2.9) 0.65 95.1 (2.0, 2.9) 0.64

0.01 94.8 (3.0, 2.2) 0.62 94.4 (3.1, 2.5) 0.62 94.4 (3.1, 2.5) 0.61 94.4 (3.1, 2.5) 0.62 94.7 (3.0, 2.3) 0.61

-0.2 94.4 (3.1, 2.5) 1.34 94.0 (3.3, 2.7) 1.34 94.0 (3.3, 2.7) 1.32 94.0 (3.3, 2.7) 1.34 94.1 (3.3, 2.6) 1.33

0.5 93.8 (2.4, 3.8) 1.38 93.6 (2.8, 3.6) 1.38 93.8 (2.4, 3.8) 1.37 93.6 (2.8, 3.6) 1.39 93.8 (2.4, 3.8) 1.38

-1 94.4 (2.7, 2.9) 0.72 93.9 (2.5, 3.6) 0.72 93.8 (3.0, 3.2) 0.71 94.0 (2.4, 3.6) 0.72 94.1 (2.9, 3.0) 0.72

500 0 94.0 (3.1, 2.9) 0.49 93.7 (3.3, 3.0) 0.49 93.8 (3.3, 2.9) 0.49 93.9 (3.2, 2.9) 0.50 93.9 (3.2, 2.9) 0.49

0.01 95.1 (2.8, 2.1) 0.49 95.0 (2.9, 2.1) 0.49 95.0 (2.9, 2.1) 0.49 95.0 (2.9, 2.1) 0.49 95.1 (2.8, 2.1) 0.49

-0.2 94.8 (2.9, 2.3) 0.92 94.7 (2.9, 2.4) 0.92 94.7 (2.9, 2.4) 0.91 94.7 (2.9, 2.4) 0.92 94.7 (2.9, 2.4) 0.92

0.5 95.9 (1.5, 2.6) 0.96 95.8 (1.7, 2.5) 0.96 95.8 (1.5, 2.7) 0.96 95.9 (1.6, 2.5) 0.96 95.8 (1.5, 2.7) 0.96

-1 95.1 (2.7, 2.2) 0.56 94.9 (2.7, 2.4) 0.55 95.1 (2.7, 2.2) 0.55 95.0 (2.6, 2.4) 0.56 95.1 (2.8, 2.1) 0.55

The Occam’s window based model-averaged tail area methods presented in Table 5.2.G

showed quite unusual results. By looking just at the coverage performance of these meth-

ods for the smallest sample size, we may mistakenly conclude that methods provide valid

coverage regardless of the magnitude of the coefficients. For the small sample, Occam’s

window approach was less conservative and left more models in a candidate set, but with

an increase in sample size the parsimony principle used in Occam’s window method is

more likely to eliminate important variables or models, which may lead to undercoverage.
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As sample size increases to 500, all five methods demonstrate undercoverage with around

90% coverage probability for covariates X1 to X3, overcoverage with around 97% coverage

probability for X4, while the desired range of (93.6%, 96.4%) was reached only for X5 that

had the largest effect among the considered variables. Overall, in up to 66.7% of the time,

these methods reached the desirable range.

The methods presented in Table 5.2.H as well as the full model provided valid coverage

probabilities. All methods, except for the profile-likelihood based method, provided the

coverage probabilities falling within the desired range 100% of the time, regardless of the

sample size and the magnitude of coefficient. The profile-likelihood based I-MATA-PL

and I-MATA-Wpl failed to construct valid confidence interval for X3, when sample size

was 100.

Tail errors

Out of the 19 approaches compared, only five inclusion fraction based model-averaged tail

area methods and the full model passed the first comparison stage, which means that there

is no need to discuss and compare tail errors for the other 13 methods. Upper and lower

tail errors from full models (Table 5.2.D) usually are closer to each other, compared to

those from the model-averaged methods (Table 5.2.H). However, the proportion of unstable

tail errors is the same for all considered methods, indicating that all six approaches are

acceptable in terms of balanced tail errors.

Average width

For the methods that passed the two previous tests by providing accurate point estimates

and valid confidence intervals, we compare their averaged widths in Figure 5.1. The method

that provides valid intervals with narrowest width is preferable, since narrowest width re-

flects the best accuracy and efficiency. There were five MATA methods based on inclusion
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fraction and the full model that have passed this stage.

First, the five inclusion fraction based model-averaged approaches were compared to

the full model. The full model provided larger average widths than all the model-averaged

methods except for the Wald based averaging method with profile-likelihood standard er-

rors (I-MATA-Wpl) regardless of the sample size and effect size. This implies that the full

model and I-MATA-Wpl cannot be considered as the best methods and we exclude them

from further analysis.

Of the four remaining methods, only the two score-based ones, I-MATA-S and I-

MATA-Ws, produced tight intervals for all variables and sample sizes. The profile-likelihood

based method provided slightly smaller widths than the Wald based MATA, and the differ-

ence between them reduced with sample size. The I-MATA-S approach demonstrated the

best results in terms of the averaged width that was up to 8.3% smaller than the width from

the full model, and up to 3.2% smaller than the Wald based MATA width.
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Figure 5.1: Comparison of averaged widths of the full model- , I-MATA-Wpl - ,
I-MATA-PL - , I-MATA-W - , I-MATA-Ws - , I-MATA-S - for sample sizes:
(a) - N=100, (b) - N=300, and (c) - N=500.
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5.7.2 Number of predictors

The number of predictors is partially controlled by researchers through the study objectives

and prior knowledge. We evaluated the performance of the methods on the increase in

the number of covariates. The average point estimates are presented in Tables 5.3.A to

5.3.C. The empirical coverage probabilities, tail errors and average width for all considered

approaches are presented in Tables 5.3.D to 5.3.H that illustrate the combinations 4-6 in

Table 5.1. Comparison of the valid methods by their widths is presented in Figure 5.2. The

methods were compared with 3, 5, and 10 variables, while the sample size was fixed at 500,

the correlation at 0.5, and the outcome probability at 0.3.

The small sample concept in logistic regression is highly related to EPV and ability of

the logistic regression to converge. The sample size of 500 was selected in order to see how

the methods perform under different recommended EPV values. For EPV equal to 10 and

0.3 outcome probability the smallest necessary sample sizes for a model with 10 variables

is (10×10)/0.3≈ 334, while for EPV of 20 and 50, the sample size should be increased to

667 and 1667. This means that a sample size of 500 should be enough to get valid reliable

results if we use EPV=10 as recommended by Peduzzi et al. (1996). However, according

to Vittinghoff and McCulloch (2007) or Steyerberg et al. (1999), a sample size of 500 is

too small and inference based on such a small sample might not be reliable.

Bias of point estimates

Comparing the means of point estimates produced for models with different complexity,

we can see a picture quite similar to the one we observed in previous sections. The full

model demonstrated good results, while the estimates provided by the stepwise selection

methods from Table 5.3.A were mostly biased away from zero.
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Table 5.3.A: Mean of point estimates obtained from the true model, the full model, step-
wise AIC and stepwise BIC backward selection methods for different number of covariates,
where N=500, ρ = 0.5 and outcome probability is 30%. The true and the full model results
are based on 1,000 simulations, the results of backward selection methods are based on
10,000 simulations.

Backward selection
p β TRUE FULL STEP-AIC STEP-BIC
3 0.01 0.01 0.01 0.08 0.25

0.5 0.50 0.50 0.62 0.78
-1 -1.01 -1.01 -1.00 -0.95

5 0 — -0.002 0.001 0.11
0.01 0.01 0.01 0.03 0.11
-0.2 -0.19 -0.19 -0.45 -0.67
0.5 0.49 0.49 0.63 0.78
-1 -1.01 -1.01 -1.01 -0.96

10 0 — 0.002 0.002 -0.004
0 — -0.003 0.000 -0.005
0 — 0.002 0.006 0.15
0 — -0.01 0.001 0.07

0.01 0.01 0.01 0.028 -0.03
-0.2 -0.20 -0.20 -0.337 -0.46
0.5 0.51 0.52 0.735 0.95
-0.7 -0.72 -0.72 -0.726 -0.73
-1 -1.03 -1.04 -1.03 -1.00
2.5 2.57 2.60 2.57 2.54

Both LASSO and zero-corrected method from Table 5.3.B demonstrated moderate bias.

While the LASSO showed quite consistent bias away from zero, the zero-corrected back-

ward selection demonstrated bias towards zero for relatively small effects (<0.7) and bias

away from zero for larger effects. The Wald-type BMA method was not able to provide

accurate point estimates for most of the effects; however, for the effects with magnitude

above 0.7 the bias was relatively small.
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Table 5.3.B: Mean of point estimates obtained from the zero-corrected backward selec-
tion, LASSO and Wald based Bayesian model-averaging methods for different number of
covariates, where N=500, ρ = 0.5 and outcome probability is 30%. The LASSO results
are based on 10,000 simulations, the results of zero-corrected backward selection and Wald
based Bayesian model-averaging are based on 5,000 simulations.

p β ZERO-C LASSO BMA-W

3 0.01 0.01 0.03 0.02
0.5 0.46 0.57 0.29
-1 -1.01 -1.01 -0.96

5 0 0.001 -0.01 0.01
0.01 0.01 -0.02 0.01
-0.2 -0.15 -0.31 -0.03
0.5 0.45 0.64 0.23
-1 -1.03 -0.99 -0.97

10 0 0.00 0.05 0.001
0 -0.004 -0.05 -0.002
0 0.004 -0.03 0.01
0 -0.004 0.01 0.01

0.01 0.003 -0.02 -0.001
-0.2 -0.17 -0.26 -0.06
0.5 0.46 0.65 0.18
-0.7 -0.74 -0.72 -0.70
-1 -1.07 -1.02 -1.01
2.5 2.67 2.59 2.54

Out of all methods presented in Table 5.3.C only the model-averaging methods based on

inclusion fraction and Occam’s window provided point estimates with low bias. Clearly,

the true model has precision that is hard to outperform; however, the inclusion fraction

approach provided less biased point estimates than the full model. Despite the fact that in-

creasing number of variables reduced the accuracy of I-MATA, its averaged point estimates

are still very close to the true effects.
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Table 5.3.C: Mean of point estimates of the backward stepwise selection (E-MATA), Oc-
cam’s window (B-MATA) and inclusion fraction (I-MATA) based model-averaging tail area
methods for different number of covariates, where N=500, ρ = 0.5 and outcome probability
is 30%. The backward stepwise selection and Occam’s window means are based on 5,000
simulations, the results obtained from inclusion fraction are based on 1,000 simulations.

p β E-MATA B-MATA I-MATA

3 0.01 0.23 0.07 0.01
0.5 0.61 0.53 0.50
-1 -0.99 -0.99 -1.00

5 0 -0.01 0.03 -0.001
0.01 0.03 0.02 0.01
-0.2 -0.42 -0.16 -0.20
0.5 0.62 0.51 0.48
-1 -1.00 -1.00 -1.01

10 0 -0.01 -0.002 0.002
0 -0.01 -0.01 -0.004
0 0.02 0.02 0.01
0 0.02 0.02 -0.01

0.01 0.03 0.001 0.003
-0.2 -0.32 -0.21 -0.19
0.5 0.71 0.52 0.50
-0.7 -0.72 -0.72 -0.72
-1 -1.02 -1.02 -1.03
2.5 2.56 2.55 2.59

Confidence interval coverage

Comparing the methods, we can see that the pattern is quite similar to the one we observed

in Tables 5.2.D to 5.2.H. Out of the methods presented in Tables 5.3.D to 5.3.F, the full

model provided valid coverage for 94.4% of the estimated effects; it only failed to yield

a proper coverage level for the effect of variable X5 in the 10-variables model. Moreover,

even the true model could not provide a valid coverage rate for this variable, which can be

related to the relatively small sample size. All other methods - stepwise backward selection,
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zero-corrected backward selection, LASSO, and Wald-type BMA - showed unsatisfactory

performance with at least 55.6% of effects whose coverage falling outside of the desired

range, and usually underestimating the coverage rate.

In this group of simulations, the sample size was fixed at its highest value of 500,

because otherwise the logistic model with 10 variables could have convergence problems.

We have already observed in Table 5.2.G that the coverage of model-averaged methods

based on the Occam’s window is unacceptable for sample sizes larger than 100. The results

presented in Table 5.3.G are very similar, since only up to 38.9% of the effects had the

empirical coverage within the desired range, which makes this set of method unacceptable.

All the methods presented in Table 5.3.H provided very good coverage results with

94.4% of the time within the desired range of (93.6%, 96.4%). As in the full model, these

methods failed to provide valid coverage rates for variable X5, which is smallest non-zero

effect (0.01) in this model. However, even with this failure, five I-MATA based methods

and the full model outperformed other approaches. Thus, only these six methods are further

compared.

Tail errors

We have already seen how well inclusion fraction based methods and the full model per-

formed for different sample sizes. In this group of simulations, the validity of confidence

intervals, which is the primary requirement for confidence intervals, held regardless of

the increase in the number of variables. Nevertheless, the confidence intervals provided by

these methods were not perfectly balanced, and we could distinguish two different patterns.

The full model, I-MATA-PL, and I-MATA-Wpl showed well-balanced errors for mod-

els with 3 and 5 variables but did not perform well for a model with 10 variables. The

methods based on the Wald or score function from Table 5.3.H provided two unbalanced

errors in the 3-variables model, but they did relatively well in 5 and 10 variables models.

All the approaches provided six or seven unbalanced tail errors.
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Table 5.3.D: Empirical coverage (Cov), tail errors (<, >)% and averaged width (WD) of
95% CIs constructed by the true model, the full model, stepwise AIC and stepwise BIC
backward selection methods for different number of covariates, where N=500, ρ = 0.5
and outcome probability is 30%. The true and the full model results are based on 1,000
simulations, the results of backward selection methods are based on 10,000 simulations.

Backward selection

p β TRUE FULL STEP-AIC STEP-BIC

Cov (<, >)% WD Cov (<, >)% WD Cov (<, >)% WD Cov (<, >)% WD

3 0.01 94.9 (2.6, 2.5) 0.51 94.9 (2.6, 2.5) 0.51 64.1 (23.6, 12.3) 0.50 0.0 (85.0, 15.0) 0.50

0.5 94.3 (2.5, 3.2) 1.02 94.3 (2.5, 3.2) 1.02 95.9 (4.0, 0.0) 0.97 91.9 (8.1, 0.0) 0.97

-1 96.2 (1.9, 1.9) 0.55 96.2 (1.9, 1.9) 0.55 92.5 (5.0, 2.5) 0.52 85.6 (12.4, 1.9) 0.50

5 0 — 95.3 (2.8, 1.9) 0.53 64.2 (19.4, 16.4) 0.51 0.0 (66.3, 33.7) 0.49

0.01 95.1 (2.7, 2.2) 0.53 95.0 (2.8, 2.2) 0.54 63.6 (18.4, 18.0) 0.51 0.0 (64.9, 35.1) 0.50

-0.2 95.7 (2.1, 2.2) 1.06 96.2 (1.5, 2.3) 1.09 81.0 (8.9, 10.1) 1.02 37.6 (6.2, 56.2) 1.02

0.5 95.2 (1.4, 3.4) 1.07 95.2 (1.9, 2.9) 1.10 96.1 (3.8, 0.1) 1.02 93.7 (6.3, 0.0) 1.00

-1 95.5 (1.8, 2.7) 0.59 95.0 (2.5, 2.5) 0.60 92.3 (4.8, 2.8) 0.55 87.8 (9.8, 2.4) 0.50

10 0 — 95.4 (1.9, 2.7) 0.65 63.4 (18.4, 18.2) 0.63 0.0 (50.0, 50.0) 0.63

0 — 94.6 (2.2, 3.2) 0.65 65.2 (17.3, 17.5) 0.63 0.0 (49.1, 50.9) 0.63

0 — 95.0 (2.4, 2.6) 0.66 67.8 (16.7, 15.6) 0.65 0.0 (65.6, 34.4) 0.66

0 — 94.8 (2.0, 3.2) 0.70 65.9 (17.4, 16.7) 0.68 0.0 (56.8, 43.2) 0.67

0.01 92.3 (4.0, 3.7) 0.65 92.8 (3.4, 3.8) 0.67 66.7 (15.1, 18.2) 0.65 0.0 (46.6, 53.4) 0.64

-0.2 94.7 (2.7, 2.6) 0.62 94.7 (3.0, 2.3) 0.64 92.2 (1.1, 6.7) 0.61 77.5 (0.5, 22.0) 0.61

0.5 95.2 (2.9, 1.9) 1.25 94.4 (3.3, 2.3) 1.32 94.3 (5.3, 0.4) 1.26 88.8 (11.2, 0.0) 1.25

-0.7 95.1 (2.7, 2.2) 0.67 94.7 (2.3, 3.0) 0.69 94.3 (2.2, 3.5) 0.66 96.3 (0.6, 3.2) 0.64

-1 95.8 (1.6, 2.6) 0.71 95.4 (1.5, 3.1) 0.75 93.7 (2.8, 3.5) 0.70 93.5 (3.7, 2.8) 0.66

2.5 94.8 (3.5, 1.7) 0.96 94.9 (4.1, 1.0) 1.00 94.4 (3.7, 2.0) 0.95 94.7 (2.7, 2.6) 0.92
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Table 5.3.E: Empirical coverage (Cov), tail errors (<, >)% and averaged width (WD) of
95% CIs constructed by the zero-corrected backward selection, LASSO and Wald based
Bayesian model-averaging methods for different number of covariates, where N=500, ρ =
0.5 and outcome probability is 30%. The LASSO results are based on 10,000 simulations,
the results of zero-corrected and Bayesian approaches are based on 5,000 simulations.

p β ZERO-C LASSO BMA-W

Cov (<, >)% WD Cov (<, >)% WD Cov (<, >)% WD

3 0.01 73.6 (0.2, 26.2) 0.46 91.9 (4.5, 3.6) 0.51 99.5 (0.4, 0.0) 0.25

0.5 94.2 (3.2, 2.6) 1.02 96.2 (3.3, 0.5) 1.00 59.7 (2.5, 37.8) 0.95

-1 95.9 (1.9, 2.2) 0.57 93.0 (4.5, 2.5) 0.54 91.2 (7.3, 1.5) 0.54

5 0 99.8 (0.1, 0.1) 0.48 89.3 (5.7, 5.0) 0.52 99.7 (0.1, 0.1) 0.22

0.01 73.2 (0.1, 26.7) 0.48 89.2 (5.9, 4.9) 0.53 99.8 (0.2, 0.1) 0.22

-0.2 89.5 (9.9, 0.6) 1.00 91.5 (4.0, 4.5) 1.05 41.8 (57.8, 0.4) 0.48

0.5 95.0 (2.3, 2.7) 1.09 94.4 (4.3, 1.2) 1.07 49.8 (1.5, 48.7) 0.87

-1 95.2 (1.3, 3.5) 0.62 91.0 (6.7, 2.4) 0.56 93.5 (5.2, 1.2) 0.56

10 0 99.9 (0.1, 0.0) 0.60 89.5 (5.9, 4.7) 0.64 99.7 (0.2, 0.1) 0.26

0 100.0 (0.0, 0.0) 0.61 90.0 (4.9, 5.1) 0.64 99.7 (0.1, 0.2) 0.25

0 99.9 (0.1, 0.0) 0.62 89.4 (5.4, 5.2) 0.66 99.7 (0.2, 0.1) 0.27

0 99.7 (0.0, 0.3) 0.65 88.7 (5.9, 5.4) 0.69 99.6 (0.3, 0.1) 0.28

0.01 73.6 (0.2, 26.2) 0.63 89.1 (5.4, 5.5) 0.66 99.6 (0.2, 0.2) 0.27

-0.2 95.1 (3.6, 1.3) 0.62 93.6 (2.4, 4.1) 0.63 39.6 (59.5, 0.9) 0.38

0.5 94.3 (3.8, 1.9) 1.31 93.5 (4.4, 2.1) 1.29 41.7 (1.5, 56.7) 0.89

-0.7 93.9 (1.5, 4.6) 0.75 94.2 (2.6, 3.2) 0.67 94.3 (3.0, 2.6) 0.69

-1 93.7 (0.6, 5.7) 0.79 93.8 (3.1, 3.1) 0.72 95.3 (2.7, 2.0) 0.69

2.5 89.1 (10.5, 0.4) 1.03 94.5 (4.0, 1.5) 0.97 95.2 (2.2, 2.6) 0.94
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Table 5.3.F: Empirical coverage (Cov), tail errors (<, >)% and averaged width (WD) of
three model-averaging CI construction methods for different number of covariates using
set of candidate models obtained from backward AIC selection approach for 95% nominal
level based on 5,000 simulations, where N=500, ρ = 0.5 and outcome probability is 30%;
Wald based E-MATA-W, profile-likelihood based E-MATA-PL, and score function based
E-MATA-S.

p β E-MATA-W E-MATA-PL E-MATA-S

Cov (<, >)% WD Cov (<, >)% WD Cov (<, >)% WD

3 0.01 55.6 (42.5, 1.9) 0.48 54.2 (43.9, 1.9) 0.48 54.2 (43.9, 1.9) 0.48

0.5 96.6 (3.4, 0.1) 0.96 96.2 (3.8, 0.1) 0.96 96.4 (3.5, 0.1) 0.95

-1 92.8 (4.9, 2.3) 0.54 92.8 (4.6, 2.6) 0.54 92.7 (4.9, 2.4) 0.53

5 0 68.8 (17.2, 14.0) 0.51 67.9 (17.8, 14.3) 0.51 68.4 (17.7, 14.0) 0.51

0.01 68.8 (14.9, 16.3) 0.52 67.3 (16.0, 16.8) 0.52 67.6 (16.0, 16.4) 0.52

-0.2 84.5 (8.8, 6.6) 1.04 84.2 (8.8, 6.9) 1.04 84.2 (8.8, 6.9) 1.04

0.5 96.8 (3.0, 0.2) 1.03 96.7 (3.1, 0.2) 1.03 96.8 (3.0, 0.2) 1.03

-1 93.9 (4.0, 2.1) 0.56 93.9 (3.6, 2.5) 0.56 93.8 (4.0, 2.2) 0.56

10 0 67.1 (16.3, 16.6) 0.64 65.8 (16.7, 17.5) 0.64 66.0 (16.7, 17.2) 0.63

0 71.7 (12.4, 16.0) 0.64 70.2 (13.0, 16.8) 0.64 70.4 (12.7, 16.8) 0.63

0 67.6 (18.5, 13.9) 0.65 66.2 (19.5, 14.3) 0.66 66.9 (19.0, 14.1) 0.65

0 69.5 (17.4, 13.1) 0.68 68.0 (18.7, 13.2) 0.68 68.8 (18.0, 13.2) 0.68

0.01 69.6 (12.9, 17.5) 0.65 68.5 (13.5, 18.0) 0.65 68.9 (13.3, 17.7) 0.65

-0.2 94.0 (1.0, 5.0) 0.62 93.7 (1.0, 5.3) 0.62 93.9 (1.0, 5.1) 0.62

0.5 96.2 (3.4, 0.3) 1.27 96.0 (3.6, 0.3) 1.27 96.2 (3.5, 0.3) 1.26

-0.7 94.8 (2.3, 3.0) 0.66 94.4 (2.2, 3.4) 0.66 94.6 (2.3, 3.1) 0.66

-1 95.2 (2.2, 2.5) 0.70 94.9 (2.1, 3.0) 0.70 95.1 (2.3, 2.6) 0.70

2.5 95.0 (2.8, 2.2) 0.96 94.5 (3.7, 1.7) 0.96 94.9 (2.9, 2.2) 0.95
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Table 5.3.G: Empirical coverage (Cov), tail errors (<, >)% and averaged width (WD) of five model-
averaging CI construction methods for different number of covariates using set of candidate models
obtained from Occam’s window approach for 95% nominal level based on 5,000 simulations, where
N=500, ρ = 0.5 and outcome probability is 30%; Wald based B-MATA-W, profile-likelihood based B-
MATA-PL, score function based B-MATA-S, Wald based method corrected by the profile-likelihood
B-MATA-Wpl, and Wald based method corrected by the score function B-MATA-Ws.

p β B-MATA-W B-MATA-PL B-MATA-S B-MATA-Wpl B-MATA-Ws

Cov (<, >)% WD Cov (<, >)% WD Cov (<, >)% WD Cov (<, >)% WD Cov (<, >)% WD

3 0.01 91.5 (5.6, 2.9) 0.45 90.9 (6.0, 3.1) 0.50 91.0 (5.9, 3.0) 0.49 91.1 (5.9, 3.0) 0.50 91.2 (5.8, 3.0) 0.49

0.5 97.1 (2.4, 0.6) 0.97 96.8 (2.7, 0.6) 0.97 97.0 (2.4, 0.6) 0.99 96.8 (2.6, 0.6) 0.97 97.0 (2.4, 0.6) 0.97

-1 93.9 (3.8, 2.3) 0.55 93.9 (3.5, 2.6) 0.55 93.8 (3.9, 2.3) 0.54 94.0 (3.5, 2.5) 0.55 93.9 (3.8, 2.3) 0.55

5 0 92.0 (4.5, 3.5) 0.49 91.8 (4.6, 3.6) 0.49 91.9 (4.6, 3.5) 0.48 91.9 (4.6, 3.5) 0.49 92.0 (4.5, 3.5) 0.49

0.01 91.5 (4.0, 4.5) 0.50 91.0 (4.2, 4.7) 0.50 91.2 (4.2, 4.6) 0.49 91.2 (4.2, 4.6) 0.50 91.2 (4.2, 4.6) 0.50

-0.2 87.1 (10.2, 2.6) 0.98 86.6 (10.7, 2.7) 0.98 86.7 (10.6, 2.7) 0.97 86.8 (10.5, 2.7) 0.98 86.9 (10.4, 2.7) 0.98

0.5 96.5 (2.0, 1.5) 1.01 96.4 (2.2, 1.5) 1.01 96.5 (2.0, 1.5) 1.01 96.4 (2.2, 1.5) 1.02 96.5 (2.0, 1.5) 1.01

-1 94.9 (3.1, 2.1) 0.58 94.7 (2.9, 2.3) 0.58 94.8 (3.1, 2.1) 0.57 94.7 (2.9, 2.3) 0.58 94.8 (3.1, 2.1) 0.57

10 0 91.0 (4.4, 4.6) 0.62 90.6 (4.6, 4.8) 0.62 90.7 (4.6, 4.8) 0.61 90.7 (4.5, 4.8) 0.62 90.8 (4.5, 4.7) 0.61

0 92.7 (3.3, 4.0) 0.62 92.4 (3.4, 4.2) 0.62 92.5 (3.3, 4.2) 0.61 92.5 (3.3, 4.1) 0.62 92.5 (3.3, 4.1) 0.61

0 91.3 (5.2, 3.5) 0.64 90.8 (5.6, 3.7) 0.64 91.0 (5.4, 3.6) 0.63 90.9 (5.5, 3.6) 0.64 91.1 (5.3, 3.6) 0.63

0 91.0 (5.3, 3.8) 0.65 90.4 (5.7, 3.8) 0.65 90.8 (5.4, 3.8) 0.65 90.7 (5.5, 3.8) 0.65 90.8 (5.4, 3.8) 0.65

0.01 91.8 (3.3, 4.9) 0.63 91.5 (3.6, 4.9) 0.63 91.5 (3.6, 4.9) 0.63 91.5 (3.6, 4.9) 0.63 91.6 (3.5, 4.9) 0.63

-0.2 90.9 (6.6, 2.5) 0.60 90.5 (6.7, 2.8) 0.60 90.6 (6.8, 2.7) 0.60 90.7 (6.6, 2.7) 0.60 90.7 (6.7, 2.6) 0.60

0.5 93.8 (2.0, 4.1) 1.24 93.7 (2.2, 4.1) 1.24 93.8 (2.1, 4.1) 1.23 93.7 (2.2, 4.1) 1.24 93.8 (2.1, 4.1) 1.23

-0.7 95.0 (2.3, 2.7) 0.67 94.5 (2.2, 3.3) 0.67 94.7 (2.4, 2.9) 0.66 94.6 (2.2, 3.3) 0.67 94.8 (2.3, 2.9) 0.66

-1 95.2 (2.4, 2.3) 0.71 95.0 (2.1, 2.9) 0.71 95.2 (2.4, 2.4) 0.70 95.0 (2.1, 2.8) 0.71 95.2 (2.4, 2.4) 0.70

2.5 95.2 (2.7, 2.1) 0.96 94.8 (3.5, 1.7) 0.96 95.1 (2.8, 2.1) 0.95 94.9 (3.5, 1.7) 0.96 95.1 (2.8, 2.1) 0.95
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Table 5.3.H: Empirical coverage (Cov), tail errors (<, >)% and averaged width (WD) of five model-
averaging CI construction methods for different number of covariates using set of candidate models
obtained from 50% inclusion fraction approach for 95% nominal level based on 1,000 simulations,
where N=500, ρ = 0.5 and outcome probability is 30%; Wald based I-MATA-W, profile-likelihood
based I-MATA-PL, score function based I-MATA-S, Wald based method corrected by the profile-
likelihood I-MATA-Wpl, and Wald based method corrected by the score function I-MATA-Ws.

p β I-MATA-W I-MATA-PL I-MATA-S I-MATA-Wpl I-MATA-Ws

Cov (<, >)% WD Cov (<, >)% WD Cov (<, >)% WD Cov (<, >)% WD Cov (<, >)% WD

3 0.01 94.5 (3.2, 2.3) 0.51 94.3 (3.3, 2.4) 0.51 94.4 (3.2, 2.4) 0.51 94.4 (3.2, 2.4) 0.51 94.5 (3.2, 2.3) 0.51

0.5 94.8 (2.1, 3.1) 0.99 94.5 (2.4, 3.1) 0.99 94.7 (2.1, 3.2) 0.99 94.7 (2.4, 2.9) 0.99 94.7 (2.1, 3.2) 0.99

-1 95.9 (2.7, 1.4) 0.54 95.6 (2.5, 1.9) 0.54 95.7 (2.8, 1.5) 0.54 95.6 (2.5, 1.9) 0.54 95.8 (2.8, 1.4) 0.54

5 0 94.7 (3.0, 2.3) 0.52 94.5 (3.1, 2.4) 0.52 94.6 (3.1, 2.3) 0.52 94.6 (3.1, 2.3) 0.52 94.6 (3.1, 2.3) 0.52

0.01 94.5 (2.9, 2.6) 0.53 94.4 (2.9, 2.7) 0.52 94.4 (2.9, 2.7) 0.52 94.4 (2.9, 2.7) 0.53 94.5 (2.9, 2.6) 0.52

-0.2 95.3 (2.2, 2.5) 1.05 95.3 (2.2, 2.5) 1.05 95.3 (2.2, 2.5) 1.04 95.3 (2.2, 2.5) 1.05 95.3 (2.2, 2.5) 1.05

0.5 94.8 (1.6, 3.6) 1.06 94.8 (1.7, 3.5) 1.06 94.7 (1.6, 3.7) 1.05 94.8 (1.7, 3.5) 1.06 94.8 (1.6, 3.6) 1.06

-1 94.7 (2.7, 2.6) 0.58 94.2 (2.5, 3.3) 0.58 94.4 (2.7, 2.9) 0.58 94.2 (2.5, 3.3) 0.59 94.6 (2.7, 2.7) 0.58

10 0 95.2 (2.4, 2.4) 0.64 94.9 (2.5, 2.6) 0.64 94.9 (2.5, 2.6) 0.63 95.0 (2.4, 2.6) 0.64 95.2 (2.4, 2.4) 0.64

0 94.6 (2.1, 3.3) 0.64 94.5 (2.4, 3.1) 0.64 94.5 (2.3, 3.2) 0.64 94.5 (2.2, 3.3) 0.64 94.5 (2.3, 3.2) 0.64

0 94.7 (2.7, 2.6) 0.66 94.2 (2.8, 3.0) 0.66 94.3 (2.8, 2.9) 0.65 94.2 (2.8, 3.0) 0.66 94.4 (2.8, 2.8) 0.65

0 95.2 (2.0, 2.8) 0.69 95.1 (2.1, 2.8) 0.69 95.2 (2.0, 2.8) 0.68 95.1 (2.1, 2.8) 0.69 95.2 (2.0, 2.8) 0.68

0.01 92.6 (3.5, 3.9) 0.66 92.3 (3.6, 4.1) 0.66 92.4 (3.5, 4.1) 0.65 92.4 (3.5, 4.1) 0.66 92.6 (3.5, 3.9) 0.65

-0.2 94.8 (3.2, 2.0) 0.63 94.6 (3.2, 2.2) 0.63 94.7 (3.2, 2.1) 0.62 94.6 (3.2, 2.2) 0.63 94.8 (3.2, 2.0) 0.62

0.5 94.3 (3.3, 2.4) 1.29 94.1 (3.5, 2.4) 1.29 94.3 (3.3, 2.4) 1.28 94.2 (3.4, 2.4) 1.29 94.3 (3.3, 2.4) 1.28

-0.7 94.9 (2.4, 2.7) 0.68 94.2 (2.4, 3.4) 0.68 94.5 (2.6, 2.9) 0.68 94.3 (2.4, 3.3) 0.68 94.6 (2.6, 2.8) 0.68

-1 95.3 (1.6, 3.1) 0.73 94.9 (1.6, 3.5) 0.73 95.1 (1.7, 3.2) 0.73 95.0 (1.6, 3.4) 0.73 95.1 (1.7, 3.2) 0.73

2.5 95.4 (3.4, 1.2) 0.98 94.2 (4.8, 1.0) 0.98 95.3 (3.5, 1.2) 0.97 94.3 (4.7, 1.0) 0.98 95.4 (3.4, 1.2) 0.98
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Only the full model provided symmetric confidence intervals out of all methods that

were compared at this stage, and yet it did not outperform the model-average methods in

terms of tail errors balance. Even though some of the methods provided slightly unbalanced

intervals, we still compare them further.

Average width

The methods that provided valid and balanced intervals are presented in Figure 5.2. The

full model usually provides wider confidence intervals than all other methods. By defini-

tion, provided intervals are always valid, which makes the full model preferable over most

methods compared in this thesis. However, the I-MATA based methods also demonstrated

reliable and balanced intervals, and outperformed the full model in terms of the average

width, regardless of the number of variables in the model.

Regarding the inclusion fraction based model-averaging methods presented in Table

5.3.H, we observed the following width hierarchy that has been preserved for any model

size. In terms of interval width, the order is MATA-S<MATA-Ws<MATA-PL<MATA-W<

MATA-Wpl. Despite the fact that the difference between the methods is not very large, this

relation is consistent for any number of variables in the models considered in this sim-

ulation. The number of variables increases the confidence interval width; however, the

I-MATA-S algorithm demonstrated greater precision out of all tested methods.
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Figure 5.2: Comparison of averaged widths of the full model- , I-MATA-Wpl - ,
I-MATA-PL - , I-MATA-W - , I-MATA-Ws - , I-MATA-S - for number of
variables: (a) - p=3, (b) - p=5, and (c) - p=10.
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5.7.3 Correlation

It is known that high correlation among predictors can have negative effects on inference.

We compared how methods perform under three different correlation levels among five

variables: 0, 0.3 and 0.5. The probability of outcome and sample size were fixed at 0.3 and

300, respectively. The simulation results reflect combinations 7-9 from Table 5.1. Tables

5.4.A to 5.4.C present the averaged point estimates. The empirical coverage probabilities,

tail errors, and average width of 19 compared approaches are presented in Tables 5.4.D to

5.4.H. Comparison of the valid methods by their widths is presented in Figure 5.3.

Bias of point estimates

As one would expect, the increase in correlation increased the bias of point estimates for

the effect of any magnitude. The orientation of the bias for each method is no different

from previous simulations. The stepwise selection methods from Table 5.4.A, LASSO

based selection approach from Table 5.4.B and model-averaging after stepwise selection

from Table 5.4.C demonstrated consistent bias away from zero for effects with magnitude

below 1. These methods provided biased point estimates even for uncorrelated covariates.

The results of the Wald-type BMA from Table 5.4.B were mostly biased toward zero.

This indicates that Bayesian model-averaging might not be appropriate for making fre-

quentist inference about the effect of covariates in logistic regression if sample size is too

small.

The zero-corrected method provided slightly biased point estimates; however, due to

bootstrapping involved in this procedure, its point estimates are more accurate than esti-

mates calculated by the conventional AIC backward elimination from Table 5.4.A. It can

be also seen that correlation had a smaller effect on the bias of point estimates of the ZERO-
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C method than on the bias of stepwise backwards selection.

Table 5.4.B: Mean of point estimates obtained from the zero-corrected backward selection,
LASSO and Wald based Bayesian model-averaging methods for different correlation levels
between five covariates, where N=300 and outcome probability is 30%. The LASSO results
are based on 10,000 simulations, the results of zero-corrected backward selection and Wald
based Bayesian model-averaging are based on 5,000 simulations.

ρ β ZERO-C LASSO BMA-W

0 0 0.002 0.02 -0.002
0.01 0.002 0.05 -0.001
-0.2 -0.18 -0.34 -0.05
0.5 0.48 0.63 0.25
-1 -1.06 -1.02 -1.01

0.3 0 0.01 0.01 0.01
0.01 0.01 -0.003 0.01
-0.2 -0.16 -0.32 -0.03
0.5 0.48 0.66 0.21
-1 -1.06 -1.02 -1.00

0.5 0 0.001 -0.01 0.01
0.01 0.02 -0.03 0.01
-0.2 -0.17 -0.35 -0.03
0.5 0.46 0.73 0.20
-1 -1.06 -0.99 -0.98

In two previous simulation groups, the averaged point estimates of the inclusion frac-

tion MATA based methods were closer to the true effects than estimates from the full and

the true models. In this set of simulations, the I-MATA based average point estimates pre-

sented in Table 5.4.C are usually closer to the true values than the true model estimates.

The model-averaging based on candidate models selected by the Occam’s window demon-

strated good results for uncorrelated data; however, as the correlation increased, the bias

became more noticable for all covariates.
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Table 5.4.A: Mean of point estimates obtained from the true model, the full model, step-
wise AIC and stepwise BIC backward selection methods for different correlation levels
between five covariates, where N=300 and outcome probability is 30%. The true and the
full model results are based on 1,000 simulations, the results of backward selection meth-
ods are based on 10,000 simulations.

Backward selection
ρ β TRUE FULL STEP-AIC STEP-BIC

0 0 — 0.002 -0.01 -0.07
0.01 0.01 0.01 0.04 0.03
-0.2 -0.21 -0.21 -0.51 -0.77
0.5 0.52 0.52 0.68 0.87
-1 -1.03 -1.04 -1.02 -1.01

0.3 0 — 0.004 0.024 0.19
0.01 0.01 0.01 0.02 0.16
-0.2 -0.20 -0.20 -0.49 -0.68
0.5 0.53 0.52 0.70 0.89
-1 -1.03 -1.03 -1.02 -0.99

0.5 0 — -0.004 0.04 0.17
0.01 0.02 0.02 0.03 0.20
-0.2 -0.22 -0.22 -0.50 -0.71
0.5 0.51 0.52 0.76 0.96
-1 -1.03 -1.03 -1.02 -0.97
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Table 5.4.C: Mean of point estimates of the backward stepwise selection (E-MATA), Oc-
cam’s window (B-MATA) and inclusion fraction (I-MATA) based model-averaging tail area
methods for different correlation levels between five covariates, where N=300 and out-
come probability is 30%. The backward stepwise selection and Occam’s window means
are based on 5,000 simulations, the results obtained from inclusion fraction are based on
1,000 simulations.

ρ β E-MATA B-MATA I-MATA

0 0 -0.03 -0.01 0.002
0.01 0.004 -0.004 0.003
-0.2 -0.50 -0.19 -0.21
0.5 0.69 0.51 0.52
-1 -1.02 -1.02 -1.03

0.3 0 0.04 0.03 0.01
0.01 0.05 0.03 0.01
-0.2 -0.45 -0.14 -0.19
0.5 0.69 0.49 0.52
-1 -1.02 -1.06 -1.03

0.5 0 0.04 0.03 -0.001
0.01 0.04 0.03 0.02
-0.2 -0.47 -0.13 -0.20
0.5 0.74 0.49 0.50
-1 -1.01 -1.01 -1.03

Confidence interval coverage

The coverage probabilities were compared in Tables 5.4.D to 5.4.E. Only the full model

provided stable and valid confidence interval coverages for all correlation levels. The BIC

based stepwise backward selection method provided the worst results with only two accept-

able coverages for the variable X5 with the largest effect magnitude over all other variables.

The STEP-AIC and ZERO-C also provided poor coverage rates, with up to six variables

whose empirical coverage probability fell within the desirable range. The BMA-W and

LASSO approaches provided three and four reliable coverages, respectively.
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Table 5.4.D: Empirical coverage (Cov), tail errors (<, >)% and averaged width (WD)
of 95% CIs constructed by the true model, the full model, stepwise AIC and stepwise
BIC backward selection methods for different correlation levels between five covariates,
where N=300 and outcome probability is 30%. The true and the full model results are
based on 1,000 simulations, the results of backward selection methods are based on 10,000
simulations.

Backward selection
ρ β TRUE FULL STEP-AIC STEP-BIC

Cov (<, >)% WD Cov (<, >)% WD Cov (<, >)% WD Cov (<, >)% WD

0 0 — 94.9 (2.4, 2.7) 0.57 68.2 (15.7, 16.1) 0.58 0.0 (41.8, 58.2) 0.59
0.01 94.6 (2.5, 2.9) 0.58 94.5 (2.7, 2.8) 0.58 66.0 (17.3, 16.7) 0.59 0.0 (54.2, 45.8) 0.60
-0.2 96.2 (1.8, 2.0) 1.16 96.1 (1.8, 2.1) 1.16 83.1 (7.0, 9.9) 1.17 42.9 (4.2, 53.0) 1.19
0.5 94.7 (3.3, 2.0) 1.15 94.6 (3.4, 2.0) 1.16 96.1 (3.8, 0.2) 1.16 91.1 (8.9, 0.0) 1.17
-1 95.0 (2.5, 2.5) 0.66 94.8 (2.3, 2.9) 0.67 95.3 (2.3, 2.4) 0.66 95.4 (2.7, 2.0) 0.65

0.3 0 — 95.8 (2.3, 1.9) 0.62 64.6 (20.1, 15.3) 0.60 0.0 (73.3, 26.7) 0.61
0.01 95.7 (1.9, 2.4) 0.62 95.1 (1.8, 3.1) 0.64 64.7 (18.4, 17.0) 0.62 0.0 (69.1, 30.9) 0.61
-0.2 94.7 (2.3, 3.0) 1.18 94.9 (2.2, 2.9) 1.18 81.3 (9.2, 9.6) 1.17 40.6 (8.6, 50.8) 1.17
0.5 95.0 (2.9, 2.1) 1.23 94.8 (3.2, 2.0) 1.25 95.4 (4.4, 0.2) 1.20 90.6 (9.4, 0.0) 1.20
-1 95.3 (2.2, 2.5) 0.69 94.8 (2.3, 2.9) 0.70 94.3 (3.0, 2.7) 0.67 93.6 (4.4, 2.0) 0.65

0.5 0 — 95.4 (2.2, 2.4) 0.71 60.9 (24.6, 14.6) 0.67 0.0 (70.4, 29.6) 0.65
0.01 94.9 (3.4, 1.7) 0.70 94.2 (3.5, 2.3) 0.71 64.7 (19.3, 16.0) 0.68 0.0 (71.9, 28.1) 0.67
-0.2 94.7 (2.8, 2.5) 1.33 94.1 (2.8, 3.1) 1.36 74.3 (13.1, 12.6) 1.30 33.2 (11.1, 55.7) 1.30
0.5 95.0 (2.6, 2.4) 1.35 95.4 (2.6, 2.0) 1.41 94.7 (4.9, 0.4) 1.31 89.8 (10.2, 0.0) 1.30
-1 94.8 (2.7, 2.5) 0.78 94.7 (2.5, 2.8) 0.79 92.3 (4.4, 3.4) 0.71 90.3 (7.1, 2.6) 0.65

The stepwise AIC exclusion based model-averaged method in Table 5.4.F also per-

formed poorly with only 40% of coverage probabilities within the desired range, regardless

of the methods used to estimate confidence intervals. The methods presented in Tables

5.4.D to 5.4.E, except for the full model, cannot calculate valid confidence intervals for

effect sizes smaller than 0.5. The negative effect of increased correlation is observed for

two stepwise selection methods and LASSO, since the number of correctly covered effects

decreased for 0.5 correlation.

In general, the Occam’s window based methods presented in Table 5.4.G presented
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good performance with no less than 86.7% of the time reaching the appropriate coverage

rate. The Wald type model-averaged method demonstrated 100% success in terms of va-

lidity. The coverages for all coefficients were close to the nominal level. The coverage rate

obtained from the Wald-type MATA after correction by the score standard errors provided

minor underestimation for the variable X3. Its coverage rate was slightly below the 93.6%

under the largest correlation setting, while other methods struggled to achieve credible cov-

erage for the variable X1. Since the Occam’s window selection already demonstrated poor

performance in Tables 5.2.G and 5.3.G, only B-MATA-W and B-MATA-Ws techniques

were accepted for further analysis.

Table 5.4.E: Empirical coverage (Cov), tail errors (<, >)% and averaged width (WD) of
95% CIs constructed by the zero-corrected backward selection, LASSO and Wald based
Bayesian model-averaging methods for different correlation levels between five covariates,
where N=300 and outcome probability is 30%. The LASSO results are based on 10,000
simulations, the results of zero-corrected and Bayesian approaches are based on 5,000 sim-
ulations.

ρ β ZERO-C LASSO BMA-W
Cov (<, >)% WD Cov (<, >)% WD Cov (<, >)% WD

0 0 100.0 (0.0, 0.0) 0.53 87.7 (6.1, 6.2) 0.58 99.7 (0.1, 0.2) 0.22
0.01 71.8 (0.0, 28.2) 0.53 86.8 (6.9, 6.3) 0.58 99.8 (0.1, 0.2) 0.21
-0.2 88.9 (10.9, 0.2) 1.08 89.4 (4.8, 5.8) 1.17 45.0 (54.5, 0.5) 0.52
0.5 94.0 (3.7, 2.3) 1.17 95.9 (3.4, 0.8) 1.16 49.8 (2.2, 48.0) 0.94
-1 93.8 (0.9, 5.3) 0.69 95.4 (2.2, 2.4) 0.66 94.9 (3.1, 2.0) 0.65

0.3 0 99.9 (0.1, 0.0) 0.58 87.8 (6.4, 5.7) 0.61 99.7 (0.3, 0.0) 0.23
0.01 74.3 (0.0, 25.7) 0.59 87.5 (6.1, 6.4) 0.63 99.7 (0.3, 0.0) 0.24
-0.2 87.3 (12.3, 0.4) 1.11 91.0 (4.5, 4.4) 1.17 40.0 (59.7, 0.3) 0.48
0.5 94.7 (3.6, 1.7) 1.26 95.1 (3.9, 1.0) 1.23 46.1 (2.0, 51.9) 0.90
-1 93.8 (1.4, 4.8) 0.74 93.9 (3.4, 2.7) 0.68 95.3 (3.0, 1.7) 0.67

0.5 0 100.0 (0.0, 0.0) 0.67 87.5 (7.5, 5.0) 0.70 99.8 (0.2, 0.0) 0.26
0.01 74.9 (0.2, 24.9) 0.66 87.8 (6.7, 5.5) 0.70 99.7 (0.2, 0.0) 0.25
-0.2 88.4 (11.3, 0.3) 1.27 91.2 (4.0, 4.8) 1.32 43.0 (56.8, 0.2) 0.52
0.5 95.5 (2.5, 2.0) 1.38 92.2 (5.3, 2.5) 1.38 44.6 (1.8, 53.7) 0.93
-1 93.6 (1.7, 4.7) 0.83 91.1 (6.2, 2.7) 0.73 94.6 (4.1, 1.3) 0.72
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Except for two profile-likelihood related methods, the inclusion fraction based ap-

proaches in Table 5.4.H provided acceptable coverage rates. While the rest of the meth-

ods in Table 5.4.H demonstrated valid coverage 100% of the time, both I-MATA-PL and

I-MATA-Wpl provided slightly underestimated coverage for the variable X5 in highly cor-

related data. Valid coverage rate is the most important feature we are looking for. We still

accepted the profile-likelihood based approaches for further comparison even though it

slightly missed one coverage probability. Thus, all methods based on the inclusion fraction

are being compared in the next section.

Tail errors

We evaluated the tail errors for eight methods that passed the first stage - the full model,

Occam’s window based MATA-W and MATA-Ws, and five inclusion fraction based meth-

ods. Despite the fact that BMA based methods provided good coverage rates, the balance

of the confidence intervals was not achieved. Only 53.3% of confidence coverage rates

provided by BMA based methods were well-balanced. The absolute difference between

upper and lower tail errors for confidence intervals varied between 1 and 2.5.

The profile-likelihood based approaches and the full model demonstrated better balance

of tail errors; however, the best results were obtained from the 50% inclusion fraction based

MATA-W and two score based model-averaged approaches that failed to have balanced tail

errors for most of variables. The full model also provided well-balanced intervals. Thus, it

was also considered and compared by average width to model-averaged methods.
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Table 5.4.F: Empirical coverage (Cov), tail errors (<, >)% and averaged width (WD) of
three model-averaging CI construction methods for different correlation levels between five
covariates using set of candidate models obtained from backward AIC selection approach
for 95% nominal level based on 5,000 simulations, where N=300 and outcome probability
is 30%; Wald based E-MATA-W, profile-likelihood based E-MATA-PL, and score function
based E-MATA-S.

ρ β E-MATA-W E-MATA-PL E-MATA-S
Cov (<, >)% WD Cov (<, >)% WD Cov (<, >)% WD

0 0 67.8 (13.9, 18.3) 0.58 64.9 (15.2, 19.9) 0.58 65.4 (15.0, 19.6) 0.57
0.01 72.2 (11.7, 16.2) 0.59 70.1 (12.4, 17.5) 0.59 70.1 (12.4, 17.5) 0.58
-0.2 83.9 (7.6, 8.5) 1.17 83.1 (7.6, 9.3) 1.17 83.4 (7.6, 9.0) 1.16
0.5 96.4 (3.5, 0.2) 1.16 95.8 (4.0, 0.2) 1.16 96.1 (3.7, 0.2) 1.15
-1 95.0 (2.8, 2.2) 0.66 94.5 (2.5, 3.0) 0.66 94.8 (3.0, 2.2) 0.65

0.3 0 65.7 (21.9, 12.4) 0.61 64.2 (23.0, 12.8) 0.61 64.6 (22.4, 13.0) 0.60
0.01 67.4 (20.8, 11.8) 0.62 65.2 (21.8, 13.1) 0.62 65.6 (21.8, 12.6) 0.62
-0.2 82.7 (10.6, 6.7) 1.18 82.3 (10.6, 7.1) 1.18 82.6 (10.6, 6.8) 1.17
0.5 95.8 (3.9, 0.3) 1.21 95.3 (4.5, 0.3) 1.21 95.7 (4.1, 0.3) 1.20
-1 95.3 (2.6, 2.0) 0.68 95.3 (2.2, 2.5) 0.68 95.1 (2.8, 2.1) 0.67

0.5 0 65.5 (22.0, 12.4) 0.68 63.2 (23.2, 13.5) 0.68 63.9 (23.1, 13.0) 0.67
0.01 70.4 (16.9, 12.7) 0.69 67.7 (18.5, 13.8) 0.69 68.5 (17.8, 13.6) 0.68
-0.2 78.9 (12.3, 8.7) 1.32 78.4 (12.3, 9.2) 1.32 78.6 (12.3, 9.1) 1.31
0.5 95.1 (4.5, 0.4) 1.33 94.6 (5.0, 0.4) 1.33 95.0 (4.6, 0.4) 1.32
-1 94.0 (3.8, 2.2) 0.73 93.8 (3.5, 2.7) 0.73 93.7 (4.0, 2.3) 0.72



89

Table 5.4.G: Empirical coverage (Cov), tail errors (<, >)% and averaged width (WD) of five model-
averaging CI construction methods for different correlation levels between five covariates using set
of candidate models obtained from Occam’s window approach for 95% nominal level based on
5,000 simulations, where N=300 and outcome probability is 30%; Wald based B-MATA-W, profile-
likelihood based B-MATA-PL, score function based B-MATA-S, Wald based method corrected by the
profile-likelihood B-MATA-Wpl, and Wald based method corrected by the score function B-MATA-
Ws.

ρ β B-MATA-W B-MATA-PL B-MATA-S B-MATA-Wpl B-MATA-Ws
Cov (<, >)% WD Cov (<, >)% WD Cov (<, >)% WD Cov (<, >)% WD Cov (<, >)% WD

0 0 94.5 (2.4, 3.1) 0.57 94.0 (2.6, 3.4) 0.57 94.1 (2.5, 3.4) 0.56 94.1 (2.5, 3.4) 0.57 94.2 (2.5, 3.2) 0.57
0.01 95.6 (1.9, 2.6) 0.58 95.1 (2.1, 2.8) 0.58 95.2 (2.0, 2.8) 0.57 95.2 (2.0, 2.8) 0.58 95.3 (1.9, 2.7) 0.57
-0.2 95.1 (2.7, 2.2) 1.16 94.8 (2.9, 2.3) 1.16 94.8 (2.9, 2.3) 1.15 94.9 (2.8, 2.3) 1.16 95.0 (2.8, 2.2) 1.15
0.5 94.8 (2.2, 3.0) 1.15 94.5 (2.5, 3.0) 1.15 94.7 (2.4, 3.0) 1.14 94.6 (2.5, 3.0) 1.16 94.8 (2.3, 3.0) 1.15
-1 95.0 (2.9, 2.1) 0.66 94.6 (2.5, 3.0) 0.66 94.8 (2.9, 2.3) 0.65 94.7 (2.4, 2.9) 0.66 94.8 (2.9, 2.2) 0.66

0.3 0 94.3 (3.6, 2.2) 0.59 93.9 (3.8, 2.3) 0.59 94.0 (3.7, 2.3) 0.58 94.0 (3.8, 2.2) 0.59 94.2 (3.7, 2.2) 0.58
0.01 94.3 (3.6, 2.1) 0.60 93.9 (3.8, 2.3) 0.60 94.0 (3.8, 2.2) 0.59 94.0 (3.8, 2.3) 0.60 94.1 (3.8, 2.2) 0.60
-0.2 94.3 (4.0, 1.7) 1.15 94.0 (4.3, 1.7) 1.15 94.1 (4.2, 1.7) 1.14 94.1 (4.2, 1.7) 1.15 94.2 (4.1, 1.7) 1.14
0.5 94.6 (2.2, 3.2) 1.19 94.3 (2.6, 3.2) 1.19 94.4 (2.3, 3.4) 1.18 94.4 (2.5, 3.1) 1.19 94.5 (2.2, 3.3) 1.18
-1 95.6 (2.3, 2.1) 0.69 95.4 (2.0, 2.5) 0.68 95.4 (2.4, 2.2) 0.68 95.5 (2.0, 2.5) 0.69 95.5 (2.4, 2.1) 0.68

0.5 0 93.8 (3.9, 2.3) 0.65 93.3 (4.1, 2.5) 0.65 93.4 (4.1, 2.5) 0.64 93.5 (4.0, 2.5) 0.65 93.6 (4.0, 2.4) 0.64
0.01 95.0 (2.8, 2.2) 0.66 94.6 (3.0, 2.3) 0.66 94.7 (3.0, 2.3) 0.65 94.7 (3.0, 2.3) 0.66 94.8 (2.9, 2.2) 0.65
-0.2 93.6 (4.5, 1.9) 1.27 93.2 (4.7, 2.1) 1.26 93.3 (4.7, 2.0) 1.25 93.4 (4.6, 2.0) 1.27 93.5 (4.5, 2.0) 1.26
0.5 94.2 (2.2, 3.6) 1.30 93.8 (2.6, 3.6) 1.29 93.9 (2.4, 3.8) 1.28 94.0 (2.5, 3.5) 1.30 94.0 (2.3, 3.7) 1.29
-1 95.3 (2.7, 2.0) 0.75 95.0 (2.6, 2.4) 0.75 95.0 (2.8, 2.1) 0.75 95.0 (2.6, 2.4) 0.75 95.1 (2.8, 2.1) 0.75
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Table 5.4.H: Empirical coverage (Cov), tail errors (<, >)% and averaged width (WD) of five model-
averaging CI construction methods for different correlation levels between five covariates using set
of candidate models obtained from 50% inclusion fraction approach for 95% nominal level based on
1,000 simulations, where N=300 and outcome probability is 30%; Wald based I-MATA-W, profile-
likelihood based I-MATA-PL, score function based I-MATA-S, Wald based method corrected by the
profile-likelihood I-MATA-Wpl, and Wald based method corrected by the score function I-MATA-
Ws.

ρ β I-MATA-W I-MATA-PL I-MATA-S I-MATA-Wpl I-MATA-Ws
Cov (<, >)% WD Cov (<, >)% WD Cov (<, >)% WD Cov (<, >)% WD Cov (<, >)% WD

0 0 95.2 (2.3, 2.5) 0.56 94.6 (2.7, 2.7) 0.57 94.7 (2.6, 2.7) 0.57 94.7 (2.6, 2.7) 0.58 94.9 (2.4, 2.7) 0.57
0.01 94.5 (2.3, 3.2) 0.58 93.7 (2.8, 3.5) 0.58 94.0 (2.6, 3.4) 0.57 94.0 (2.6, 3.4) 0.58 94.2 (2.5, 3.3) 0.58
-0.2 95.8 (1.9, 2.3) 1.17 95.5 (1.9, 2.6) 1.16 95.6 (1.9, 2.5) 1.15 95.5 (1.9, 2.6) 1.17 95.6 (1.9, 2.5) 1.16
0.5 94.9 (3.1, 2.0) 1.16 94.3 (3.7, 2.0) 1.16 94.6 (3.4, 2.0) 1.15 94.3 (3.7, 2.0) 1.16 94.7 (3.3, 2.0) 1.15
-1 94.9 (2.5, 2.6) 0.66 94.5 (1.9, 3.6) 0.66 94.7 (2.5, 2.8) 0.66 94.7 (1.9, 3.4) 0.67 94.8 (2.5, 2.7) 0.66

0.3 0 95.7 (2.4, 1.9) 0.61 95.2 (2.9, 1.9) 0.61 95.3 (2.7, 2.0) 0.60 95.3 (2.8, 1.9) 0.61 95.5 (2.6, 1.9) 0.61
0.01 95.2 (2.1, 2.7) 0.63 94.9 (2.2, 2.9) 0.63 95.1 (2.2, 2.7) 0.62 95.0 (2.2, 2.8) 0.63 95.1 (2.2, 2.7) 0.62
-0.2 94.7 (2.4, 2.9) 1.18 94.5 (2.5, 3.0) 1.17 94.6 (2.5, 2.9) 1.16 94.7 (2.4, 2.9) 1.18 94.7 (2.4, 2.9) 1.17
0.5 94.7 (3.4, 1.9) 1.23 94.6 (3.6, 1.8) 1.22 94.5 (3.5, 2.0) 1.21 94.6 (3.6, 1.8) 1.23 94.5 (3.5, 2.0) 1.22
-1 94.5 (2.9, 2.6) 0.69 94.1 (2.4, 3.5) 0.69 94.2 (3.0, 2.8) 0.68 94.1 (2.4, 3.5) 0.69 94.3 (3.0, 2.7) 0.69

0.5 0 94.4 (3.0, 2.6) 0.69 94.0 (3.2, 2.8) 0.69 94.2 (3.1, 2.7) 0.69 94.3 (3.0, 2.7) 0.69 94.3 (3.0, 2.7) 0.69
0.01 94.1 (3.7, 2.2) 0.70 93.9 (3.7, 2.4) 0.70 94.0 (3.7, 2.3) 0.69 94.0 (3.7, 2.3) 0.70 94.1 (3.7, 2.2) 0.69
-0.2 94.0 (3.3, 2.7) 1.33 93.9 (3.3, 2.8) 1.33 93.9 (3.3, 2.8) 1.32 93.9 (3.3, 2.8) 1.34 94.0 (3.3, 2.7) 1.32
0.5 95.0 (2.5, 2.5) 1.36 94.7 (2.8, 2.5) 1.36 94.9 (2.6, 2.5) 1.35 94.8 (2.8, 2.4) 1.37 95.0 (2.5, 2.5) 1.35
-1 94.0 (3.2, 2.8) 0.77 93.4 (3.1, 3.5) 0.77 93.9 (3.3, 2.8) 0.76 93.5 (3.1, 3.4) 0.77 93.9 (3.3, 2.8) 0.76

Average width

The full model and five inclusion fraction based MATA methods with balanced confidence

intervals were compared by their average widths in Figure 5.3. All methods provided sim-

ilar average widths for the uncorrelated variables, such that the maximal width difference

between the methods did not exceed 1.2%. The inclusion fraction based MATA-W ap-

proach provided the largest average width, while the MATA-S method produced the short-

est intervals.
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Overall, the order of model-averaging methods by width was MATA-S < MATA-Ws <

MATA-PL<MATA-W<MATA-Wpl. The full model outperformed the MATA-PL method

for uncorrelated data; however, with the increase in correlation that expectedly inflated av-

erage width of all methods, the full model took its place at the end of this order with the

highest averaged width. With the increase of correlation, the outperformance of the I-

MATA-S method over all other approaches became more noticeable with differences vary-

ing in 1.6-4.7% range. The improvement may be small, but it is always in favor of the

inclusion fraction based MATA-S algorithm.
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Figure 5.3: Comparison of averaged widths of the full model- , I-MATA-Wpl - ,
I-MATA-PL - , I-MATA-W - , I-MATA-Ws - , I-MATA-S - for correlations:
(a) - ρ=0.3, (b) - ρ=0, and (c) - ρ=0.5.
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5.7.4 Probability of outcome

The probability of the outcome is an important factor when evaluating logistic regression

models. Performance of methods for inference improves as probability shifts toward 0.5.

For the next set of simulations, the methods are compared for 0.1, 0.3 and 0.5 probability.

For evaluating the effect of outcome probability on the performance of the methods,

data with five correlated variables and 500 subjects was generated, and the correlation

between all variables was fixed at 0.3. The outcome probability was regulated by changing

the intercept. For outcome probabilites of 0.1, 0.3, and 0.5, we used intercepts equal to

-2.7, -1.15 and -0.15, respectively. The means of point estimates are presented in Tables

5.5.A to 5.5.C, while empirical coverage probabilities, tail errors and average widths for 19

methods can be found in Tables 5.5.D to 5.5.H. Comparison of the valid methods by their

widths is presented in Figure 5.4.

The probability of event plays an important role in choosing the sufficient sample size.

According to the different EPV suggestions - 10, 20, and 50 events per variable, for the

smallest outcome probability of 0.1 the sufficient sample size should be 500, 1000, or

2500, while for the outcome probability of 0.5 the sample sizes should be 100, 200, or 500

(Peduzzi et al., 1996; Vittinghoff and McCulloch, 2007; Steyerberg et al., 1999). However,

even for the smallest outcome rate the logistic regression did not have any convergence

problems.

Bias of point estimates

Overall, the performance of the methods improved as the outcome probability approached

0.5. As in previous simulations, out of all methods presented in Table 5.5.A, the full model

is the only one that provided the most unbiased point estimates.
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Table 5.5.A: Mean of point estimates obtained from the true model, the full model, step-
wise AIC and stepwise BIC backward selection methods for different outcome probabil-
ities, where N=500 and ρ = 0.3. The true and the full model results are based on 1,000
simulations, the results of backward selection methods are based on 10,000 simulations.

Backward selection
Prob β TRUE FULL STEP-AIC STEP-BIC

0.1 0 — 0.000 0.022 0.1
0.01 0.02 0.02 0.02 0.20
-0.2 -0.21 -0.21 -0.54 -0.78
0.5 0.52 0.52 0.74 0.99
-1 -1.04 -1.04 -1.02 -1.00

0.3 0 — 0.004 -0.01 0.06
0.01 0.01 0.01 0.03 0.15
-0.2 -0.20 -0.20 -0.43 -0.62
0.5 0.50 0.50 0.58 0.71
-1 -1.01 -1.02 -1.02 -1.00

0.5 0 — 0.002 -0.01 0.04
0.01 0.01 0.01 0.03 0.09
-0.2 -0.20 -0.20 -0.42 -0.60
0.5 0.50 0.50 0.56 0.67
-1 -1.02 -1.02 -1.02 -1.0

The stepwise elimination methods provided significantly biased results. Since the BIC

penalty penalizes additional covariates more than AIC, the estimated effect should be larger

than the true effect in order to be selected for the final model, if true effect is not large.

Because of this, the bias produced by the BIC based backward elimination was larger than

the bias produced by the AIC penalty.
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Table 5.5.B: Mean of point estimates obtained from the zero-corrected backward selection,
LASSO and Wald based Bayesian model-averaging methods for different outcome proba-
bilities, where N=500 and ρ = 0.3. The LASSO results are based on 10,000 simulations,
the results of zero-corrected backward selection and Wald based Bayesian model-averaging
are based on 5,000 simulations.

Prob β ZERO-C LASSO BMA-W

0.1 0 0.004 -0.02 0.01
0.01 0.01 0.002 0.01
-0.2 -0.17 -0.38 -0.04
0.5 0.46 0.68 0.21
-1 -1.06 -1.01 -1.01

0.3 0 0.01 -0.02 0.004
0.01 0.01 0.02 0.004
-0.2 -0.16 -0.30 -0.05
0.5 0.46 0.58 0.27
-1 -1.03 -1.01 -1.00

0.5 0 0.002 -0.02 0.004
0.01 0.01 0.02 0.01
-0.2 -0.16 -0.29 -0.05
0.5 0.47 0.57 0.29
-1 -1.04 -1.01 -1.01

All methods presented in Table 5.4.B produced relatively biased point estimates as in

previous simulations. Both zero-corrected backward elimination and LASSO provided

biased estimates away from zero, while most of the estimates by the Wald-type BMA were

biased toward zero. The increase in outcome probability just slightly reduced the bias of

these methods.

The model-averaging results from Table 5.4.C showed that Occam’s window and in-

clusion fraction approaches selected appropriate sets of models and produced consistent

point estimates. For the data with 0.1 outcome probability, the point estimates by the inclu-

sion fraction were less biased than the estimates based on Occam’s window. The results of
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model-averaging after backward elimination also show that even for 0.5 outcome probabil-

ity, model-averaging cannot correct the bias created by poor selection of candidate models.

Table 5.5.C: Mean of point estimates of the backward stepwise selection (E-MATA), Oc-
cam’s window (B-MATA) and inclusion fraction (I-MATA) based model-averaging tail area
methods for different outcome probabilities, where N=500 and ρ = 0.3. The backward
stepwise selection and Occam’s window means are based on 5,000 simulations, the results
obtained from inclusion fraction are based on 1,000 simulations.

Prob β E-MATA B-MATA I-MATA

0.1 0 0.03 0.04 0.004
0.01 0.03 0.04 0.02
-0.2 -0.51 -0.19 -0.2
0.5 0.73 0.55 0.51
-1 -1.02 -1.02 -1.04

0.3 0 0.004 0.02 0.01
0.01 0.02 0.02 0.01
-0.2 -0.41 -0.20 -0.2
0.5 0.57 0.50 0.49
-1 -1.01 -1.01 -1.02

0.5 0 0.01 0.01 0.001
0.01 0.03 0.02 0.01
-0.2 -0.41 -0.22 -0.2
0.5 0.55 0.50 0.50
-1 -1.02 -1.02 -1.02

Confidence interval coverage

Overall, the coverage performance of the methods was improved by the increase in outcome

probability. However, the methods that showed weak results for 0.1 probability of outcome

did not reach the nominal coverage level for more a balanced outcome.
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Table 5.5.D: Empirical coverage (Cov), tail errors (<, >)% and averaged width (WD)
of 95% CIs constructed by the true model, the full model, stepwise AIC and stepwise BIC
backward selection methods for different outcome probabilities, where N=500 and ρ = 0.3.
The true and the full model results are based on 1,000 simulations, the results of backward
selection methods are based on 10,000 simulations.

Backward selection
Prob β TRUE FULL STEP-AIC STEP-BIC

Cov (<, >)% WD Cov (<, >)% WD Cov (<, >)% WD Cov (<, >)% WD

0.1 0 — 95.7 (2.2, 2.1) 0.70 64.9 (19.6, 15.5) 0.69 0.0 (67.1, 32.9) 0.70
0.01 95.1 (2.5, 2.4) 0.68 94.9 (2.7, 2.4) 0.68 66.7 (18.3, 15.0) 0.67 0.0 (71.1, 28.9) 0.67
-0.2 95.2 (3.0, 1.8) 1.39 94.8 (3.1, 2.1) 1.40 78.2 (11.9, 9.8) 1.39 21.6 (11.9, 66.5) 1.43
0.5 95.1 (2.9, 2.0) 1.34 95.2 (2.6, 2.2) 1.36 95.2 (4.4, 0.5) 1.31 87.4 (12.6, 0.0) 1.31
-1 94.3 (2.4, 3.3) 0.76 94.3 (2.3, 3.4) 0.77 94.8 (2.7, 2.5) 0.732 94.7 (3.5, 1.9) 0.71

0.3 0 — 95.8 (2.5, 1.7) 0.47 62.6 (17.2, 20.3) 0.46 0.0 (58.5, 41.5) 0.46
0.01 94.0 (3.0, 3.0) 0.46 93.7 (3.1, 3.2) 0.46 64.8 (17.1, 18.1) 0.45 0.0 (74.2, 25.8) 0.45
-0.2 94.4 (2.7, 2.9) 0.92 94.6 (2.3, 3.1) 0.93 87.0 (4.5, 8.5) 0.90 51.6 (3.5, 44.9) 0.90
0.5 95.5 (1.9, 2.6) 0.91 95.4 (2.1, 2.5) 0.92 96.6 (3.4, 0.0) 0.89 94.5 (5.5, 0.0) 0.88
-1 94.6 (2.8, 2.6) 0.53 94.4 (2.9, 2.7) 0.54 94.1 (2.6, 3.3) 0.52 93.5 (3.6, 2.9) 0.50

0.5 0 — 95.0 (1.9, 3.1) 0.43 67.0 (16.3, 16.6) 0.42 0.0 (57.2, 42.8) 0.42
0.01 94.8 (2.8, 2.4) 0.42 94.9 (2.9, 2.2) 0.43 63.6 (17.0, 19.5) 0.42 0.0 (65.0, 35.0) 0.42
-0.2 95.9 (2.2, 1.9) 0.85 96.0 (2.0, 2.0) 0.86 88.2 (3.5, 8.3) 0.84 56.0 (1.7, 42.3) 0.83
0.5 95.9 (2.0, 2.1) 0.85 95.7 (2.2, 2.1) 0.86 97.0 (3.0, 0.0) 0.83 95.8 (4.2, 0.0) 0.82
-1 94.5 (2.3, 3.2) 0.50 94.6 (2.2, 3.2) 0.50 94.6 (2.4, 3.0) 0.48 93.6 (3.6, 2.8) 0.47

Table 5.5.D contains results for the full model and two stepwise selection methods.

While the full model provided strong results with 100% of the effects getting valid cov-

erage, the stepwise based methods, STEP-AIC and STEP-BIC, performed poorly with ac-

ceptable coverage probability only for variable X4 and/or X5, such that only 26.7% of the

time they reached the empirical range for nominal level.

Out of all methods presented in Table 5.5.E, the LASSO procedure provided the best

results, although only one third of the empirical coverage probabilities was in the desired

range. The worst performance was shown by the Wald-type Bayesian model-averaging
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method with 80% of the coverages outside of the desired range. The zero-corrected method

also demonstrated poor performance, regardless of the probability of outcome.

Table 5.5.E: Empirical coverage (Cov), tail errors (<, >)% and averaged width (WD) of
95% CIs constructed by the zero-corrected backward selection, LASSO and Wald based
Bayesian model-averaging methods for different outcome probabilities, where N=500 and
ρ = 0.3. The LASSO results are based on 10,000 simulations, the results of zero-corrected
and Bayesian approaches are based on 5,000 simulations.

Prob β ZERO-C LASSO BMA-W
Cov (<, >)% WD Cov (<, >)% WD Cov (<, >)% WD

0.1 0 99.9 (0.0, 0.1) 0.64 87.5 (6.5, 6.0) 0.70 99.4 (0.4, 0.1) 0.30
0.01 75.9 (0.0, 24.1) 0.63 88.2 (6.9, 5.0) 0.68 99.7 (0.3, 0.1) 0.29
-0.2 86.1 (13.8, 0.1) 1.31 90.5 (4.7, 4.8) 1.40 61.0 (38.9, 0.1) 0.63
0.5 95.2 (2.5, 2.3) 1.33 94.0 (4.2, 1.9) 1.34 45.4 (2.2, 52.4) 0.97
-1 93.2 (1.0, 5.8) 0.81 94.7 (3.0, 2.3) 0.74 95.1 (2.9, 2.0) 0.73

0.3 0 99.9 (0.0, 0.1) 0.43 88.5 (5.2, 6.4) 0.47 99.7 (0.3, 0.1) 0.20
0.01 73.5 (0.1, 26.4) 0.42 88.4 (6.1, 5.4) 0.46 99.9 (0.1, 0.0) 0.20
-0.2 91.8 (7.6, 0.6) 0.86 92.4 (3.4, 4.2) 0.91 41.8 (57.6, 0.6) 0.46
0.5 95.1 (2.4, 2.5) 0.95 96.2 (3.5, 0.3) 0.91 56.5 (1.9, 41.6) 0.85
-1 93.9 (2.2, 3.9) 0.55 94.3 (2.8, 3.0) 0.52 94.6 (3.0, 2.4) 0.52

0.5 0 99.8 (0.1, 0.1) 0.39 89.9 (5.1, 5.0) 0.43 99.8 (0.1, 0.1) 0.19
0.01 72.8 (0.1, 27.1) 0.38 88.1 (6.0, 5.9) 0.43 99.8 (0.1, 0.2) 0.18
-0.2 92.6 (6.9, 0.5) 0.78 92.3 (3.4, 4.2) 0.85 44.0 (55.4, 0.6) 0.46
0.5 95.3 (2.8, 1.9) 0.89 96.5 (3.3, 0.2) 0.85 62.1 (1.4, 36.4) 0.85
-1 93.1 (1.4, 5.5) 0.51 94.7 (2.7, 2.6) 0.49 95.3 (2.4, 2.2) 0.49

The E-MATA methods in Table 5.5.F presented similar results to the stepwise AIC

backward elimination from Table 5.5.D in terms of 26.7% coverage success, but they still

performed better than STEP-AIC. The stepwise AIC exclusion based model-average meth-

ods mostly provided coverage intervals with underestimated variance, however its empiri-

cal coverage probabilities were slightly closer to the lower bound of 93.6% than those of

the STEP-AIC approach.
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Table 5.5.F: Empirical coverage (Cov), tail errors (<, >)% and averaged width (WD) of
three model-averaging CI construction methods for different outcome probabilities using
set of candidate models obtained from backward AIC selection approach for 95% nominal
level based on 5,000 simulations, where N=500 and ρ = 0.3; Wald based E-MATA-W,
profile-likelihood based E-MATA-PL, and score function based E-MATA-S.

Prob β E-MATA-W E-MATA-PL E-MATA-S
Cov (<, >)% WD Cov (<, >)% WD Cov (<, >)% WD

0.1 0 67.2 (19.3, 13.5) 0.70 65.0 (20.6, 14.5) 0.70 65.5 (20.2, 14.3) 0.69
0.01 72.0 (14.5, 13.5) 0.68 70.3 (14.8, 14.8) 0.68 70.6 (15.3, 14.1) 0.67
-0.2 79.7 (12.7, 7.6) 1.40 78.8 (12.7, 8.4) 1.41 79.4 (12.7, 7.9) 1.39
0.5 95.5 (4.2, 0.3) 1.32 95.0 (4.6, 0.3) 1.32 95.3 (4.4, 0.3) 1.30
-1 94.9 (2.7, 2.3) 0.74 94.6 (2.5, 2.9) 0.74 94.7 (2.8, 2.5) 0.73

0.3 0 69.1 (16.4, 14.5) 0.47 68.1 (16.7, 15.2) 0.47 68.5 (16.5, 15.0) 0.47
0.01 69.7 (14.6, 15.6) 0.46 68.8 (15.3, 16.0) 0.46 69.0 (15.1, 15.9) 0.46
-0.2 87.6 (5.4, 7.0) 0.91 87.5 (5.4, 7.1) 0.91 87.5 (5.4, 7.1) 0.91
0.5 97.3 (2.7, 0.0) 0.89 97.0 (3.0, 0.0) 0.89 97.2 (2.8, 0.0) 0.89
-1 94.5 (2.7, 2.8) 0.52 94.3 (2.4, 3.2) 0.52 94.4 (2.7, 2.9) 0.52

0.5 0 67.1 (18.2, 14.7) 0.43 66.0 (18.9, 15.1) 0.43 66.1 (18.8, 15.1) 0.43
0.01 69.0 (16.5, 14.5) 0.42 68.0 (17.0, 15.1) 0.42 68.1 (16.8, 15.1) 0.42
-0.2 89.9 (3.1, 7.1) 0.85 89.8 (3.1, 7.1) 0.85 89.8 (3.1, 7.1) 0.84
0.5 97.9 (2.1, 0.0) 0.83 97.6 (2.4, 0.0) 0.83 97.8 (2.2, 0.0) 0.83
-1 95.1 (2.2, 2.7) 0.49 94.8 (1.8, 3.3) 0.49 95.0 (2.2, 2.8) 0.49

The Occam’s window based model-averaged methods presented in Table 5.5.G also

provided very disappointing results. As for the E-MATA based algorithms, this set of

methods successfully provided correct coverage only 26.7% of the time. Nevertheless, out

of all methods in Tables 5.5.E to 5.5.G, the BMA based model-averaged methods presented

the best coverage levels with average coverage of around 91%. Unfortunately, none of the

methods in Tables 5.5.D to 5.5.G could outperform the full model in terms of percentage

of the time the empirical coverage probability hit the desired range.
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Table 5.5.G: Empirical coverage (Cov), tail errors (<, >)% and averaged width (WD) of five model-
averaging CI construction methods for different outcome probabilities using set of candidate models
obtained from Occam’s window approach for 95% nominal level based on 5,000 simulations, where
N=500 and ρ = 0.3; Wald based B-MATA-W, profile-likelihood based B-MATA-PL, score function
based B-MATA-S, Wald based method corrected by the profile-likelihood B-MATA-Wpl, and Wald
based method corrected by the score function B-MATA-Ws.

Prob β B-MATA-W B-MATA-PL B-MATA-S B-MATA-Wpl B-MATA-Ws
Cov (<, >)% WD Cov (<, >)% WD Cov (<, >)% WD Cov (<, >)% WD Cov (<, >)% WD

0.1 0 91.5 (5.2, 3.2) 0.68 91.0 (5.5, 3.5) 0.68 91.1 (5.4, 3.4) 0.67 91.2 (5.4, 3.4) 0.68 91.2 (5.4, 3.4) 0.67
0.01 92.5 (3.9, 3.7) 0.66 92.1 (4.0, 4.0) 0.66 92.2 (4.0, 3.8) 0.65 92.1 (4.0, 4.0) 0.66 92.2 (4.0, 3.8) 0.66
-0.2 90.6 (6.9, 2.6) 1.34 90.0 (7.0, 3.0) 1.35 89.9 (7.3, 2.8) 1.33 90.1 (6.9, 3.0) 1.35 90.0 (7.2, 2.7) 1.33
0.5 94.0 (2.4, 3.7) 1.30 93.6 (2.7, 3.8) 1.30 93.7 (2.5, 3.8) 1.28 93.7 (2.6, 3.7) 1.30 93.8 (2.5, 3.8) 1.28
-1 95.2 (2.4, 2.3) 0.74 94.8 (2.3, 2.9) 0.74 94.9 (2.6, 2.5) 0.74 94.9 (2.2, 2.9) 0.75 95.1 (2.5, 2.4) 0.74

0.3 0 91.9 (4.3, 3.7) 0.46 91.7 (4.5, 3.8) 0.46 91.8 (4.4, 3.8) 0.45 91.7 (4.5, 3.8) 0.46 91.8 (4.4, 3.8) 0.46
0.01 92.2 (3.7, 4.0) 0.45 92.0 (3.8, 4.2) 0.45 92.0 (3.8, 4.2) 0.44 92.0 (3.8, 4.2) 0.45 92.1 (3.7, 4.1) 0.44
-0.2 89.7 (7.5, 2.8) 0.89 89.3 (7.8, 2.9) 0.89 89.4 (7.7, 2.9) 0.89 89.4 (7.7, 2.9) 0.89 89.6 (7.5, 2.8) 0.89
0.5 97.3 (2.2, 0.5) 0.89 97.1 (2.4, 0.5) 0.89 97.2 (2.3, 0.5) 0.88 97.2 (2.3, 0.5) 0.89 97.2 (2.3, 0.5) 0.88
-1 94.7 (2.6, 2.7) 0.52 94.5 (2.4, 3.1) 0.52 94.6 (2.6, 2.8) 0.52 94.6 (2.3, 3.1) 0.53 94.7 (2.6, 2.7) 0.52

0.5 0 91.0 (4.9, 4.0) 0.42 90.9 (5.0, 4.1) 0.42 90.9 (5.0, 4.1) 0.42 90.9 (5.0, 4.0) 0.42 90.9 (5.0, 4.1) 0.42
0.01 91.7 (4.4, 4.0) 0.41 91.4 (4.5, 4.1) 0.41 91.4 (4.5, 4.1) 0.41 91.4 (4.5, 4.1) 0.41 91.5 (4.5, 4.1) 0.41
-0.2 90.3 (6.6, 3.1) 0.83 90.2 (6.7, 3.1) 0.83 90.2 (6.6, 3.1) 0.83 90.2 (6.7, 3.1) 0.83 90.3 (6.6, 3.1) 0.83
0.5 97.7 (1.7, 0.6) 0.83 97.6 (1.8, 0.6) 0.83 97.6 (1.8, 0.6) 0.83 97.6 (1.8, 0.6) 0.83 97.7 (1.8, 0.6) 0.83
-1 95.3 (2.0, 2.7) 0.49 95.0 (1.7, 3.2) 0.49 95.2 (2.1, 2.7) 0.49 95.0 (1.7, 3.2) 0.49 95.3 (2.0, 2.7) 0.49

The inclusion fraction based model-averaged methods in Table 5.5.H presented valid

and stable results for all estimated effects. The decrease in probability of outcome had no

effect on the performance on I-MATA based algorithms.

Tail errors

Out of all methods, only the full model and inclusion fraction based methods demonstrated

consistency in the reliability of the confidence interval. These methods passed the previous

test, and showed similar performance in terms of the balance between tail errors. The best
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results were provided by the full model and two score function based model-averaging

methods. The profile-likelihood based procedures underperformed all other methods in

terms of tail errors balance. However, we still consider them further, since the differences

were small.

Table 5.5.H: Empirical coverage (Cov), tail errors (<, >)% and averaged width (WD) of five model-
averaging CI construction methods for different outcome probabilities using set of candidate models
obtained from 50% inclusion fraction approach for 95% nominal level based on 1,000 simulations,
where N=500 and ρ = 0.3; Wald based I-MATA-W, profile-likelihood based I-MATA-PL, score func-
tion based I-MATA-S, Wald based method corrected by the profile-likelihood I-MATA-Wpl, and Wald
based method corrected by the score function I-MATA-Ws.

Prob β I-MATA-W I-MATA-PL I-MATA-S I-MATA-Wpl I-MATA-Ws
Cov (<, >)% WD Cov (<, >)% WD Cov (<, >)% WD Cov (<, >)% WD Cov (<, >)% WD

0.1 0 95.7 (2.3, 2.0) 0.69 95.6 (2.4, 2.0) 0.69 95.6 (2.4, 2.0) 0.69 95.6 (2.4, 2.0) 0.70 95.7 (2.3, 2.0) 0.69
0.01 94.6 (3.1, 2.3) 0.68 94.4 (3.3, 2.3) 0.68 94.5 (3.2, 2.3) 0.67 94.4 (3.3, 2.3) 0.68 94.5 (3.2, 2.3) 0.67
-0.2 94.5 (3.4, 2.1) 1.38 94.0 (3.8, 2.2) 1.39 94.0 (3.8, 2.2) 1.37 94.2 (3.6, 2.2) 1.39 94.0 (3.8, 2.2) 1.37
0.5 95.5 (2.2, 2.3) 1.34 95.0 (2.6, 2.4) 1.34 95.1 (2.5, 2.4) 1.32 95.0 (2.6, 2.4) 1.34 95.1 (2.5, 2.4) 1.32
-1 94.8 (2.1, 3.1) 0.76 94.2 (1.9, 3.9) 0.76 94.4 (2.3, 3.3) 0.75 94.4 (1.9, 3.7) 0.76 94.5 (2.2, 3.3) 0.75

0.3 0 95.4 (2.8, 1.8) 0.47 95.4 (2.8, 1.8) 0.47 95.3 (2.8, 1.9) 0.46 95.4 (2.8, 1.8) 0.47 95.3 (2.8, 1.9) 0.47
0.01 94.0 (2.9, 3.1) 0.46 93.8 (3.0, 3.2) 0.46 93.9 (3.0, 3.1) 0.46 93.8 (3.0, 3.2) 0.46 93.9 (3.0, 3.1) 0.46
-0.2 93.9 (3.1, 3.0) 0.92 93.7 (3.1, 3.2) 0.92 93.7 (3.1, 3.2) 0.91 93.7 (3.1, 3.2) 0.92 93.8 (3.1, 3.1) 0.91
0.5 95.5 (1.8, 2.7) 0.91 95.4 (1.9, 2.7) 0.91 95.3 (1.8, 2.9) 0.90 95.4 (1.9, 2.7) 0.91 95.4 (1.8, 2.8) 0.90
-1 94.0 (3.2, 2.8) 0.53 93.9 (2.9, 3.2) 0.53 93.8 (3.3, 2.9) 0.53 94.0 (2.9, 3.1) 0.53 93.8 (3.3, 2.9) 0.53

0.5 0 95.1 (1.9, 3.0) 0.43 94.9 (2.1, 3.0) 0.43 94.9 (2.1, 3.0) 0.43 94.9 (2.1, 3.0) 0.43 94.9 (2.1, 3.0) 0.43
0.01 95.1 (2.8, 2.1) 0.42 94.9 (2.9, 2.2) 0.42 95.0 (2.8, 2.2) 0.42 95.0 (2.8, 2.2) 0.42 95.0 (2.8, 2.2) 0.42
-0.2 95.8 (2.0, 2.2) 0.85 95.8 (2.0, 2.2) 0.85 95.8 (2.0, 2.2) 0.85 95.8 (2.0, 2.2) 0.85 95.8 (2.0, 2.2) 0.85
0.5 95.7 (2.2, 2.1) 0.85 95.4 (2.5, 2.1) 0.84 95.5 (2.3, 2.2) 0.84 95.4 (2.5, 2.1) 0.85 95.7 (2.2, 2.1) 0.84
-1 94.4 (2.3, 3.3) 0.50 93.7 (2.2, 4.1) 0.50 94.2 (2.3, 3.5) 0.49 93.7 (2.2, 4.1) 0.50 94.3 (2.3, 3.4) 0.49

Average width

The widths of the confidence intervals constructed with the full model and five I-MATA

based methods are compared in Figure 5.4. The average widths provided by the full model
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were slightly larger than those by the model-averaged methods. The shortest average

widths were produced by I-MATA-S again, however in this case the difference between

I-MATA-S and the full model is small. The width of intervals constructed by I-MATA-W

and two profile-likelihood based methods closer to the full model than to I-MATA-S.

The difference within the model-averaged procedures group is even smaller, but re-

gardless of the outcome rate, the I-MATA-S outperformed all other methods. The outcome

probability had a slightly positive effect on the difference in performance of score based

and Wald based methods, such that the superiority of the score based procedure fades with

outcome approaching the balance at 0.5.
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Figure 5.4: Comparison of averaged widths of the full model- , I-MATA-Wpl - ,
I-MATA-PL - , I-MATA-W - , I-MATA-Ws - , I-MATA-S - for outcome
probabilities: (a) - Pr=0.1, (b) - Pr=0.3, and (c) - Pr=0.5.
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5.8 Discussion

The performance of confidence interval procedures evaluated in this thesis varies depend-

ing on sample size, number of variables, correlation, and probability of outcome. While in-

crease in sample size or outcome probability improved the performance of model-averaged

tail area procedures in terms of tail errors balance and confidence interval width, the step-

wise selection related methods demonstrated poor performance even for the less problem-

atic combinations of parameters. Increase in correlation or number of variables adversely

affected the width and balance of the compared methods. The procedures in general per-

formed better for regression coefficients having large magnitudes. Among the compared

methods, the score function based MATA method applied on a set of models provided

by the inclusion fraction approach consistently demonstrated the shortest valid confidence

intervals.

Bias of point estimates

Although the main objective of this work is to study and compare the confidence intervals

of various methods, we first discuss their point estimation properties, since it is a necessary

condition for a procedure with good performance. Comparing the averaged point estimates

of the methods, it was found that the full model and the I-MATA method provided the

closest results to true effects.

The Occam’s window approach also provided a sufficient set of candidate models to get

relatively unbiased point estimates. However, only the frequentist model-averaging based

on this set provided acceptable results, while Bayesian model-averaging methods provided

significant bias towards zero.

The stepwise selection approaches, LASSO, zero-corrected method and model-averaging
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methods based on the set of the models selected by the backward selection showed large

deviations from true effects. The bias produced by these methods was mostly away from

zero, because the model selection processes involved in these methods usually select vari-

ables with large coefficients, such that variables with low effects have a higher probability

to be selected if their estimates are overestimated for small sample. Since the BIC penalty

is more conservative than AIC, in small samples the estimates for small effects are more

likely to be selected after BIC penalty. As a result, the bias produced by the BIC based

stepwise selection was always larger than the bias by the AIC based method. The bootstrap

involved in the zero-corrected method and the model-averaging step in E-MATA methods

slightly improved the point estimates with respect to the simple stepwise AIC based back-

ward selection; however, the bias produced by these methods was significantly larger than

the bias by inclusion fraction based methods.

Confidence interval coverage

Overall, only six methods, the full model and five inclusion fraction based approaches,

provided good empirical coverage probabilities, which are equivalent to those of the true

model and which almost always maintained the nominal level. All other methods have

shown somewhat inferior performance, usually having coverage lower than the nominal

level. Since these methods failed at the first stage of comparisons, we only casually ex-

amined them. Therefore, in this section we also consider these methods more closely and

discuss possible reasons.

The worst results were produced by the Wald-type BMA and the stepwise BIC meth-

ods; they provided valid confidence interval coverage less than 20% of the time. Indeed,

even though STEP-BIC is a frequentist method, it was developed as an asymptotic ap-

proximation to transformation of the Bayesian posterior probability of a considered model.

Since BIC penalizes a model of complexity more heavily than AIC, in the finite sample

it excludes variables with small effect more often, focusing only on the greatest effects.
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But even under fairly light combinations of parameters (low correlation, large sample size,

etc.), these two BIC based methods could not always get valid coverage probability for

large effects.

The STEP-AIC method proved to be slightly better than the STEP-BIC, but 70% of

the time the empirical coverage was below the desired range. The AIC tends to overfit the

model’s dimension asymptotically and select a more complicated model than BIC (Shibata,

1976); however, for a finite and small sample, it is possible that this feature allowed the AIC

method to handle such a task a little better (Zhang, 1993).

The zero-corrected method was proposed to improve performance of conventional step-

wise selection using bootstrap algorithm. It showed a noticeable improvement of all confi-

dence interval coverage probabilities. Nonetheless, the confidence intervals for the weakest

effects were still below the lower empirical limit. Austin (2008) noted a similar pattern and

suggested that this may be due to the low selection frequency of the variables with small

effects.

We also assessed how the LASSO method performed as a tool for building confidence

intervals for the predictor effects. Although LASSO can be explained with Bayesian theory,

in this thesis we considered this method as the simplest and well-known representative of

penalized methods. The LASSO method usually performed better with the choice of the

model than the stepwise methods (Steyerberg et al., 2000). Its performance is noticeably

better than that of the stepwise methods because the coverage probabilities provided by

LASSO are much closer to the stated nominal value than those of the stepwise methods.

At the same time, it provided acceptable intervals mostly for large effects in a quarter of

the parameter combinations, which is worse than the stepwise AIC based method and zero-

corrected approach.

The model-averaging technique, as shown by simulations, can improve confidence in-

terval performance. Unfortunately, the presence of the true model, or a model close to it in

the group of candidate models, is an important condition for this (Burnham and Anderson,
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2002; Turek and Fletcher, 2012). Results from E-MATA methods suggest that averaging

of models that can be constructed from variables remaining after the stepwise regression

is inefficient. This method was included in the simulation to check if the model-averaged

tail area approach can improve the inference after variable selection. The averaging proce-

dure slightly improved the empirical coverage probability of the confidence intervals under

all combinations of simulated parameters, but is still not enough to be recommended for

practice.

The Occam’s window is a better way to select models than the stepwise approaches,

since it is more likely to eliminate the redundant variables (Wang et al., 2004). However,

Genell et al. (2010) showed that the probability of choosing correct variables is not much

different from stepwise regression. Since Occam’s window allows more complex models to

break into a group of candidate models, the results of B-MATA have surpassed all previous

methods described in this section. Wasserman (2000) pointed out that the BMA algorithm

is asymptotically consistent in choosing the correct model, but the accuracy of the method

in a finite and small sample is poorly understood. Our results showed that as sample size

increased, the performance of the method decreased. However, since the maximum sample

size we tested was not too large, these results did not disprove the asymptotic theory, but

only illustrated that the principle of parsimony applied in the BMA algorithm may have

a negative effect on the validity of the confidence intervals. The B-MATA based methods

also showed good coverage for low correlation cases, but in more complex settings they

demonstrated chronic underestimation.

All methods based on the inclusion fraction performed better than the other meth-

ods, providing results that are competitive with those from the full and the true models.

In general, the I-MATA based method showed good and stable coverage not affected by

any complications of the parameter combinations. Of the five methods, only two profile-

likelihood based methods showed slightly weaker results, which is consistent with Kabaila

et al. (2016) results. The difference between the empirical coverage probabilities did not
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exceed 1.4%, indicating that the methods successfully provide valid confidence intervals.

Tail errors

The I-MATA based approaches and the full model provided relatively well-balanced tail

errors. The differences between the methods are minor, especially within the group of the

inclusion fraction based procedures. The full model provided slightly better balance on

average but provided more tail errors with differences that were equal to or exceeded 1%.

Out of the remaining methods, we cannot single out any approach that has balanced

tail errors. Even if we consider only the variables for which these methods provided valid

coverage probability, the differences between two tail errors were usually higher for any of

the I-MATA based methods.

Average width

Since the results of the I-MATA based and full model approaches are similar in terms of

validity and balance of the tail errors, the last decisive factor is the length of the confidence

intervals. In terms of interval width, throughout all simulations the order of the methods

was quite stable. The full model was the worst, producing the largest average width for all

parameters. Of the five I-MATA based methods, the profile-likelihood technique did not

differ much from the Wald, while the substitution of the Wald standard deviations by the

ones based on the profile-likelihood confidence interval construction method only worsened

the results. The shortest confidence intervals were provided by two methods based on the

score function. Replacing the Wald standard errors by the score based standard errors only

slightly reduced the confidence intervals width, while the I-MATA-S showed the smallest

intervals, which indicates greater precision of the method.

Some of the methods showed poor results of validity and balance of confidence inter-

vals, with larger averaged confidence intervals. For example, the average length of the
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confidence intervals built with LASSO in 76% of cases was higher than that of the score

function based MATA method, and for ZERO-C this number was 46%. Such results in-

dicate the possibility that the underestimation of the variance was not the only reason for

their failure to achieve nominal coverage level, but also the bias of these methods relative

to the true point estimates.

Regarding the inadequacy in the assessment of variance, the BMA-W method can be

distinguished from methods. The average widths of the confidence intervals of all methods

were relatively close to each other, but the confidence intervals built by the BMA were 2

to 3 times shorter than the others. However, unsatisfactory coverage and balance results,

make BMA-W the least attractive method for building confidence intervals in regression

analysis.

5.9 Conclusion

In general, the 50% inclusion fraction based methods for model-averaging with the score

function approach performed best in scenarios considered in the simulation study. Regard-

less of changes in parameters that can affect the analysis, the two inclusion fraction based

MATA methods with score function, I-MATA-S and I-MATA-Ws, demonstrated consis-

tently good coverage. For these methods, the magnitude of the effect did not affect the

coverage rate, which was not true for the other methods. The predictors’ effects of 0.01

or 0.2 may not be very important compared with effects larger than 1; however, model-

averaging ensures that the confidence interval is always valid even for small effects. Of

all the methods demonstrating valid confidence intervals, I-MATA-S built the most nar-

row intervals. The advantage of this method was most pronounced with decreasing sample

size or increasing number of variables. The maximal difference in length did not exceed

10%; however, it is up to a researcher to decide whether such an improvement is clinically

important.
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Chapter 6

R-PACKAGE

6.1 Introduction

To facilitate data analysis using the proposed methods we have developed a convenient tool

for constructing model-averaged confidence intervals. This should increase the adoption of

model-averaging methodology for model building and for obtaining confidence intervals

based on the methods proposed in this thesis.

Even though the idea of constructing model-averaged confidence intervals in the fre-

quentist framework has been known for many years, we were able to find only two pack-

ages that could do this in R. The first package MuMIn, developed by Barton (2009), allows

one to construct confidence intervals proposed by Burnham and Anderson (2002). It is a

large package that can be applied to various types of regression, allows the use of different

information criteria, and also has the option to select a set of candidate models based on the

cumulative weight. Nevertheless, Burnham and Anderson (2002) stated that their method

was based on the assumptions that weights were known constants. Since this assumptions

often violated, the unconditional confidence interval has poor coverage properties (Hjort

and Claeskens, 2003; Claeskens and Hjort, 2008; Turek and Fletcher, 2012; Fletcher and

Turek, 2012).

The second package, MATA, was developed by Turek (2015), and allows one to calculate

Wald type model-averaged tail area confidence intervals. Although this package is undoubt-
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edly useful, we find it inconvenient to use since it neither selects the candidate models, nor

estimates coefficients and weights, because all this information has to be provided by the

user.

Since the MuMIn package provides invalid confidence intervals, and the MATA package is

not user-friendly and limited by the Wald type intervals, we have developed an R-package

MATACI that is easy to use that can provide confidence intervals based not only on the

Wald based, but also the profile-likelihood and score function based methods. In the next

sections we describe in detail the MATACI package and its capabilities, as well as discuss

its limitations and further updates necessary in later versions of the package.

6.2 The MATACI package

We have implemented the proposed procedures into a user friendly R package, MATACI.

The simulation study was conducted using this package. The package allows one to choose

the method for candidate model selection and preferred confidence interval construction

method.

6.2.1 The MATACI function

The package MATACI contains the main ‘mataci’ function and several supporting func-

tions which will be described in Section 6.2.2. The ‘mataci’ function is applied by the

statement mataci(formula, data, nboot = 1000, selection = "Freq", cim =

"Score", ci = 0.95, par = F). First, it selects the set of candidate models in accor-

dance with the user’s requested method, inclusion fraction or Occam’s window. Then, it

estimates confidence interval using a selected variant of a model-averaging tail area ap-

proach. A short description of the agruments used in the ‘mataci’ function is presented in

Table 6.1.
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Table 6.1: Description of the ‘mataci’ function arguments.

Usage

mataci(formula, data, nboot = 1000, selection = "Freq",)

cim = "Score", ci = 0.95, par = F)

Arguments

formula an object of class ‘formula’: a symbolic description of the full model to

be fitted.

data an object of class ‘data.frame’ (or object coercible by ‘as.data.frame’ to

a data frame) containing the variables in the full model.

nboot the number of bootstrap replicates.

selection a description of the method for selection of candidate models to be used

in the model-averaging process. If it is set to ‘Freq’ the inclusion frac-

tion method is applied. If it is set to ‘Bayes’ the Occam’s window is

used to select candidate models.

cim a description of the method for construction of MATA confidence inter-

vals to be used by the function. The possible options for this argument

are ‘Wald’, ‘PL’, ‘Score’, ‘Wald-S’, and ‘Wald-PL’.

ci the confidence level of the required interval.

par logical string; if applied it allows one to use parallel processing for

model-averaging estimation.

The first two arguments of the function ‘formula’ and ‘data’ define the full model

and the dataset that are used in the analysis. The number of bootstrap samples is given by

the ‘nboot’ argument, which is set to 1000 iterations by default.

Despite the fact that the selection of the candidate models using the Occam’s window

led to unsatisfactory results, the researchers can still apply this method at their own risk by

defining the ‘selection’ option equal to "Bayes". The "Freq" option corresponds to the
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frequentists 50% inclusion fraction approach and is set as the default preference.

The ‘cim’ argument is responsible for the method by which confidence intervals are

constructed. There are five options in total. The "Score" option is the default and corre-

sponds to the score based model-averaged tail area confidence interval construction method.

In addition to this option, the user can choose "Wald", "PL", "Wald-PL", or "Wald-S"

corresponding to the remaining four I-MATA methods that also demonstrated good cover-

age properties of the confidence intervals.

The nominal level of the confidence interval is set by the argument ‘ci’, and it is set

to 95% by default. The ‘par’ option is responsible for parallel computation used in model

fitting and ordering. Parallel computing is disabled by default, but can be enabled by the

user by setting it to "TRUE". This option greatly reduces the computation time if the number

of variables is large; however, with smaller models, it may take longer to load the functions

and activate all the cores than a regular, non-parallel calculation.

6.2.2 Secondary functions

The package MATACI contains a total of six secondary functions. While the ‘mataci’

function only brings together all the functions for model-averaging analysis, the other sup-

porting functions estimate the confidence intervals using the method specified by the user.

The auxiliary package rootSolve is responsible for optimizing the final function based

on either the profile-likelihood function (2.16) or the score function (4.6) (Soetaert and Her-

man, 2009). For its correct and fast operation, the optimization functions require starting

points from which the algorithm begins to search for the optimal solution. To find such

points, the secondary function ‘startpoints’ is defined. This function uses the transfor-

mation based approximation to MATA-W proposed by Yu et al. (2014) . The approximation

is performed automatically and does not require additional calculations from the user. This

approximation greatly reduces computational time for searching for confidence intervals.
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The built-in function ‘confint’ was used to estimate Wald or profile-likelihood con-

fidence intervals (Venables and Ripley, 2002). Since, in the public domain, a working

function that allows calculation of score based confidence intervals for a single regres-

sion model was not found, we used source code of ‘confint’ to write such a function.

The resulting function ‘ScoreRoot’ prepares the score function to be optimized in the

‘waldFcor’ function.

The ‘waldFcor’ function is used in the package to calculate confidence intervals using

the I-MATA-Ws and I-MATA-Wpl methods. To estimate confidence intervals based on the

I-MATA-Ws method, this function uses the previously mentioned ‘ScoreRoot’ function

on each candidate model. Then, using the obtained confidence intervals, it calculates the

standard errors, which replace the Wald standard errors within the Wald type MATA confi-

dence intervals estimation. To estimate the confidence intervals based on the I-MATA-Wpl

method, it uses the built-in ‘confint’ function with the option of calculating confidence

intervals based on the profile-likelihood approach. The further optimization process is no

different from I-MATA-Ws, except, of course, the standard errors used.

The remaining three supporting functions ‘waldF’, ‘profLF’, and ‘scoreF’ are respon-

sible for the model-averaged confidence intervals based on the Wald, profile-likelihood, and

score functions, respectively. The default algorithm from the ‘confint’ function was also

taken as the basis for these functions, but the main part of the code was rewritten so that the

confidence interval was calculated not on the basis of the single model, but rather on the

basis of all candidate models. Depending on the ‘selection’ argument, the main function

‘mataci’ refers to one of the listed functions to get the corresponding result. Since these

three functions are very similar in structure, in the future, most likely, they will be merged

into one.



115

6.2.3 MATACI output

The ‘mataci’ function generates a table that contains point estimates and confidence inter-

vals for each variable. In addition, the table presents either the percentages of time that the

variables were selected in the bootstrap process if the user chose the frequentists method,

or the posterior probabilities if the Bayesian method was chosen.

Figure 6.1: Example of inclusion fraction based MATA-S results provided by the mataci
function for low birth weight data.

It also informs the user about the time it took the function to estimate the confidence in-

tervals and the size of the set of candidate models used in model-averaging. When the

inclusion fraction approach is selected, the function also provides the proportion of boot-

strapped models that had convergence issues and variables that were fixed by the inclusion

fraction. An example of ‘mataci’ function output for a model with five variables is pre-

sented in Figure 6.1.
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6.3 Limitations and further updates

Since in this work we compared a variety of methods, the code for the simulation was

written with the practical purpose of testing the methods on a logistic model. The ‘mataci’

function was extracted from the general code, and rewritten so that it was convenient to use.

Unfortunately, in this version of the package, the ‘mataci’ function is able to perform only

tasks similar to those that we set up during the simulations.

First of all, the current version of the package can provide the MATA based confidence

intervals only for logistic regressions. Since we have demonstrated that the MATA based

methods are able to provide valid confidence intervals for variables in a logistic regression,

one would assume that they also should perform well for the linear, Cox, or Poisson regres-

sion models. Nevertheless, these models will appear in the next version of the package,

after their simulation analysis.

Since the AIC based MATA confidence intervals outperform the intervals based on

other criteria, the ‘mataci’ function uses the AIC criterion as the basis for the model

weighting (Turek and Fletcher, 2012). The same criterion is used in the stepwise regression

algorithm involved in the bootstrap process. In the next version, the pool of available

criteria will be expanded, which will make the package more flexible and customizable.

The BIC and AICc criteria will be added. The LASSO method will be available to use

instead of the stepwise selection approach within the bootstrap process, since LASSO is

often better at eliminating redundant variables.

In the present version, the percentage of the inclusion fraction method is fixed at 50%

for all variables. In the future version, we will add the ability to define the inclusion fraction

for each variable manually. The ability to define a lower bound for each variable will also

be added. When the option is applied, the variable that appeared less frequently than the

prespecified minimum will be excluded from further calculations. In addition to these

options, the possibility to protect pre-selected variables from bootstrap selection process
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will be added. Together these options allow the user to determine the framework in which

the ‘mataci’ function will work, such that in essence they represent prior knowledge.
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Chapter 7

ILLUSTRATIVE EXAMPLE

7.1 Introduction

The purpose of this chapter is to illustrate the proposed methods using the R-package de-

veloped in this thesis. Birth weight is an important factor in a person’s lifespan. Low

birth weight increases the chances of infant mortality or birth defects, and may increase the

chances of a serious disease in adulthood. A 1986 study conducted at Baystate Medical

Center in Springfield, MA aimed to determine risk factors associated with delivering a low

birth weight baby (Hosmer et al., 2013). Data on 189 women, 59 of whom had low birth

weight babies was collected as a part of this study. In this chapter, the data on the risk fac-

tors associated with a chance of having a low birth weight baby were used to demonstrate

the performance of the score based model-averaged tail area method and to compare it with

other confidence interval construction approaches.

The data contained a binary outcome variable (‘LOW’; 0, birth weight ≥ 2.5kg; 1,

birth weight < 2.5kg), and also included information about mother’s age (‘AGE’; years),

mother’s weight at her last menstrual period (‘LWT’; pounds), mother’s race (‘RACE’; 0,

White; 1, Black; 2, Other), whether she smoked during pregnancy (‘SMOKE’; 0, No; 1,

Yes), frequency of premature labour (‘PTL’; 0, 1, 2, ...), history of hypertension (‘HT’;

0, No; 1, Yes), presence of uterine irritability (‘UI’; 0, No; 1, Yes), and the number of

physician visits during the first trimester of pregnancy (‘FTV’; 0,1, 2, ...). Variables of
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interest ‘RACE’, ‘SMOKE’, ‘HT’, and ‘UI’ are considered as categorical variables.
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Figure 7.1: Visualization and summary statistics of all risk factors for children’s low birth
weight.
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7.2 Methods

The obstetric literature has shown that smoking, diet, timely visits to the doctor, and getting

prenatal care are important risk factors in pregnancy. The purpose of the original study was

to identify which of the possible risk factors could alter the chances of having a baby with a

normal weight among patients at the Baystate Medical Center. Considering all 8 variables

as potential risk factors, the total number of models for the usual averaging of models will

be 28 =256. However, the methods for selecting a group of candidate models for model-

averaging should significantly reduce the number of considered models.

The simulation results in Chapter 5 has shown that out of 19 methods only six methods,

the full model and five inclusion fraction based MATA methods, can be considered as

appropriate methods for construction of valid confidence intervals. Our goal is to estimate

point estimates and 95% confidence intervals for the risk factors and compare the results of

the proposed score based MATA methods with the full model, backward stepwise selection

with AIC and BIC penalty, zero-corrected backward selection method, LASSO, the Wald

type BMA method and the model-averaged tail area approaches based on the stepwise

exclusio (E-MATA) and Occam’s window (B-MATA) methods.

7.3 Results

The descriptive statistics for each potential risk factor is graphically visualised in Figure

7.1. From the bar charts we can see that the percentage of smoking habit, presence of

hypertension, or uterine irritability is lower in the group of mothers who delivered healthy

children. The physician visits during the first trimester of pregnancy and the number of

premature labors are count variables, thus they are also presented by bar charts. However,
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since the categorization will make the model too complex and unable to fit (Hosmer et al.,

2013) we considered them as continuous.

Table 7.1: Point estimates of low birth weight risk factors obtained by the full model
(FULL), stepwise AIC backward selection (STEP-AIC), stepwise BIC backward selection
(STEP-BIC), zero-corrected backward selection (ZERO-C), LASSO and Wald type BMA
(BMA-W).

β̂ FULL STEP-AIC STEP-BIC ZERO-C LASSO BMA-W

AGE -0.02 — — -0.02 -0.02 -0.01

LWT -0.01 -0.01 -0.02 -0.02 -0.01 -0.01
RACEWhite

a -0.99 -1.01 — -0.90 -0.97 -0.16

RACEBlack
a 0.29 0.34 — 0.29 0.31 0.03

SMOKE 0.97 0.98 — 0.92 0.95 0.30

PTL 0.57 0.56 — 0.61 0.57 0.37

HT 1.68 1.64 1.57 1.70 1.66 0.81
UI 0.71 0.71 — 0.66 0.70 0.25

FTV 0.06 — — 0.01 — 0.00

a ‘Other’ was used as a reference group.

The point estimates from the six methods discussed in previous chapters are presented

in Tables 7.1 and 7.2. The point estimates from the full model, backward AIC based step-

wise selection, LASSO, and the frequentist model-averaging based on the inclusion fraction

set of candidate models were relatively close each other. ZERO-C and model-averaging

over candidate models selected by the backward selection and Occam’s window demon-

strated small deviations from the point estimates provided by the previous methods. The

stepwise selection based on BIC method removed most of the predictors from the final

model, and provided a parsimonious model with only two coefficients, the mother’s weight

at her last menstrual period and history of hypertension. If based on the results of the simu-

lations, we assume that the full model from Table 7.1 and I-MATA method from Table 7.2

are close to the true effect, then the larger bias toward zero was shown by the Wald type

BMA.

Confidence intervals with their corresponding widths were calculated by 19 methods,
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and split into Tables 7.3 to 7.6. Methods demonstrating appropriate confidence interval

performance across simulations are presented in Table 7.3. The order of the CI’s widths

is consistent with simulations presented earlier. Out of six presented methods, the score

function based I-MATA confidence intervals (I-MATA-S) have the narrowest width for all

risk factors and are followed by the I-MATA-Ws method. The full model and I-MATA-W

reported very close results with moderate width, consist with the results of simulations, the

profile-likelihood based methods demonstrated the largest confidence intervals out of these

six approaches.

Table 7.2: Point estimates of low birth weight risk factors obtained by the frequentist
model-averaging procedures based on the candidate models from backward selection (E-
MATA), Occam’s window (B-MATA) methods and 50% inclusion fraction (I-MATA).

β̂ E-MATA B-MATA I-MATA

AGE — -0.05 -0.02

LWT -0.02 -0.02 -0.02
RACEWhite

a -0.99 -1.01 -1.00
RACEBlack

a 0.30 0.29 0.33
SMOKE 1.00 1.00 0.98

PTL 0.62 0.68 0.56
HT 1.57 1.56 1.65
UI 0.77 0.84 0.71

FTV — -0.07 0.04

a ‘Other’ was used as a reference group.
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Table 7.3: Confidence interval
{

[L,U]
}

and width
{

WD
}

for low birth weight risk factors obtained by
the full model (FULL) and five I-MATA based methods; Wald based I-MATA-W, profile-likelihood
based I-MATA-PL, score function based I-MATA-S, Wald based method corrected by the profile-
likelihood I-MATA-Wpl, and Wald based method corrected by the score function I-MATA-Ws.

Coefficient FULL I-MATA-W I-MATA-PL I-MATA-S I-MATA-Wpl I-MATA-Ws

AGE
[-0.10, 0.05]

0.14
[-0.09, 0.05]

0.14
[-0.10, 0.05]

0.14
[-0.09, 0.05]

0.14
[-0.10, 0.05]

0.15
[-0.09, 0.05]

0.14

LWT
[-0.03, -0.001]

0.03
[-0.03, -0.002]

0.03
[-0.03, -0.003]

0.03
[-0.03, -0.002]

0.03
[-0.03, -0.003]

0.03
[-0.03, -0.002]

0.03

RACEWhite
a [-1.85, -0.13]

1.72
[-1.86, -0.14]

1.71
[-1.87, -0.16]

1.71
[-1.84, -0.16]

1.68
[-1.88, -0.16]

1.72
[-1.85, -0.15]

1.69

RACEBlack
a [-0.75, 1.34]

2.10
[-0.73, 1.38]

2.11
[-0.73, 1.38]

2.11
[-0.70, 1.36]

2.06
[-0.74, 1.39]

2.12
[-0.71, 1.36]

2.07

SMOKE
[0.17, 1.76]

1.59
[0.18, 1.77]

1.58
[0.20, 1.78]

1.58
[0.20, 1.75]

1.55
[0.20, 1.79]

1.59
[0.19, 1.76]

1.56

PTL
[-0.10, 1.24]

1.34
[-0.11, 1.24]

1.35
[-0.09, 1.26]

1.36
[-0.09, 1.23]

1.32
[-0.10, 1.27]

1.37
[-0.09, 1.23]

1.32

HT
[0.37, 2.99]

2.62
[0.34, 2.96]

2.62
[0.37, 3.03]

2.66
[0.39, 2.91]

2.51
[0.36, 3.04]

2.68
[0.39, 2.92]

2.53

UI
[-0.20, 1.62]

1.81
[-0.20, 1.62]

1.82
[-0.21, 1.61]

1.82
[-0.19, 1.60]

1.78
[-0.22, 1.62]

1.84
[-0.19, 1.60]

1.80

FTV
[-0.28, 0.39]

0.67
[-0.29, 0.38]

0.67
[-0.30, 0.37]

0.67
[-0.28, 0.37]

0.66
[-0.30, 0.37]

0.68
[-0.29, 0.37]

0.66

a ‘Other’ was used as a reference group.

Methods producing serious undercoverage of confidence intervals in the simulations

are presented in Tables 7.4 to 7.6. We have already pointed out that the point estimates

calculated by BMA-W were highly shifted towards zero relative to other methods. The

same trend can be detected in the estimation of the confidence intervals in Table 7.4. More-

over, the signs of the upper limit of the confidence interval for the ‘RACE’ effect (white vs.

other) and the lower limits for ‘SMOKE’ and ‘HT’ were reversed in relation to limits of

other methods. Such a difference may affect the final decision on the statistical significance

of the risk factor if one decides to rely on the values of the confidence intervals.
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Table 7.4: Confidence interval
{

[L,U]
}

and width
{

WD
}

for low birth weight risk factors
obtained by the stepwise AIC (STEP-AIC) based and stepwise BIC (STEP-BIC) based
selection methods, zero-corrected bootstrap (ZERO-C), LASSO and Wald type Bayesian
model-averaging (BMA-W).

Coefficient STEP-AIC STEP-BIC ZERO-C LASSO BMA-W

AGE — —
[-0.11, 0.00]

0.11
[-0.09, 0.05]

0.14
[-0.05, 0.03]

0.08

LWT
[-0.03, -0.002]

0.03
[-0.03, -0.004]

0.02
[-0.04, 0.00]

0.04
[-0.03, -0.001]

0.03
[-0.03, 0.01]

0.03

RACEWhite
a [-1.97, 0.00]

1.97
—

[-2.04, 0.00]
2.04

[-1.82, -0.12]
1.71

[-0.94, 0.63]
1.57

RACEBlack
a [-0.89, 1.51]

2.40
—

[-0.94, 1.53]
2.47

[-0.74, 1.35]
2.10

[-0.42, 0.49]
0.90

SMOKE
[0.20, 1.76]

1.57
—

[0.00, 1.94]
1.94

[0.16, 1.74]
1.58

[-0.60, 1.20]
1.81

PTL
[-0.11, 1.23]

1.34
—

[0.00, 1.87]
1.87

[-0.10, 1.24]
1.34

[-0.50, 1.23]
1.73

HT
[0.34, 2.94]

2.60
[0.28, 2.86]

2.56
[0.00, 3.41]

3.41
[0.36, 2.95]

2.59
[-0.95, 2.56]

3.52

UI
[-0.20, 1.61]

1.81
—

[0.00, 1.90]
1.90

[-0.20, 1.61]
1.81

[-0.65, 1.15]
1.80

FTV — —
[-0.42, 0.39]

0.81
—

[-0.05, 0.05]
0.10

a ‘Other’ was used as a reference group.

As for the other methods presented in the Tables 7.4 and 7.5, STEP-AIC and based on

it MATA methods exclude ‘AGE’ and ‘FTV’ from the model in a stepwise process, while

LASSO proposed to eliminate the ‘FTV’ only. Unlike other approaches, the zero-corrected

method based on 5,000 bootstrap iterations provided very wide intervals. Since the zero-

corrected method replaces the excluded effects with zeros, and uses the percentage method

for confidence interval estimation, the confidence intervals of most of the effects had zero as

their lower or upper limit, which can complicate the interpretation of confidence intervals.
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Table 7.5: Confidence interval
{

[L,U]
}

and width
{

WD
}

for low birth weight risk factors
obtained by five model-averaging CI construction methods using set of candidate mod-
els obtained from backward AIC selection approach; Wald based E-MATA-W, profile-
likelihood based E-MATA-PL, and score function based E-MATA-S.

Coefficient E-MATA-W E-MATA-PL E-MATA-S

AGE — — —

LWT
[-0.03, -0.002]

0.03
[-0.03, -0.00]

0.03
[-0.03, -0.00]

0.03

RACEWhite
a [-1.85, -0.12]

1.73
[-1.85, -0.14]

1.74
[-1.84, -0.13]

1.71

RACEBlack
a [-0.76, 1.37]

2.13
[-0.77, 1.37]

2.14
[-0.74, 1.35]

2.09

SMOKE
[0.19, 1.80]

1.60
[0.21, 1.81]

1.61
[0.20, 1.78]

1.58

PTL
[-0.06, 1.30]

1.36
[-0.04, 1.33]

1.36
[-0.03, 1.29]

1.32

HT
[0.26, 2.89]

2.63
[0.29, 2.96]

2.67
[0.32, 2.84]

2.52

UI
[-0.15, 1.68]

1.82
[-0.15, 1.68]

1.83
[-0.13, 1.66]

1.78
FTV — — —

a ‘Other’ was used as a reference group.

Comparing the widths of the confidence intervals in Table 7.3 with the widths esti-

mated by I-MATA-S or I-MATA-Ws, the I-MATA-S intervals were mostly shorter than the

intervals from other methods. The confidence intervals produced by the B-MATA meth-

ods were shorter than the analogous intervals obtained from the I-MATA methods (Table

7.3). However, based on the results of our simulation study, we would not recommed using

Occam’s window for construction of confidence intervals. The B-MATA methods based

on Occam’s window set of candidate models had to average 69 models and the E-MATA

methods averaged 64 models to get confidence intervals, while the I-MATA method used

only 4 models. The inclusion fraction estimation took 15 seconds to select a list of candi-

date models and another 5 seconds to estimate the score based confidence intervals. The
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methods that did not involve bootstrapping, such as stepwise selection methods, LASSO,

or BMA-W, produced confidence intervals in less than 5 seconds.

Table 7.6: Confidence interval
{

[L,U]
}

and width
{

WD
}

for low birth weight risk factors
obtained by three model-averaging CI construction methods using set of candidate mod-
els obtained from Occam’s window approach; Wald based B-MATA-W, profile-likelihood
based B-MATA-PL, score function based B-MATA-S, Wald based method corrected by the
profile-likelihood B-MATA-Wpl, and Wald based method corrected by the score function
B-MATA-Ws.

Coefficient B-MATA-W B-MATA-PL B-MATA-S B-MATA-Wpl B-MATA-Ws

AGE
[-0.11, 0.02]

0.14
[-0.12, 0.02]

0.13
[-0.11, 0.02]

0.13
[-0.12, 0.02]

0.14
[-0.11, 0.02]

0.13

LWT
[-0.03, -0.002]

0.03
[-0.03, -0.002]

0.03
[-0.03, -0.003]

0.03
[-0.03, -0.003]

0.03
[-0.03, -0.003]

0.03

RACEWhite
a [-1.86, -0.16]

1.71
[-1.88, -0.17]

1.71
[-1.85, -0.17]

1.68
[-1.89, -0.17]

1.72
[-1.85, -0.16]

1.69

RACEBlack
a [-0.78, 1.35]

2.13
[-0.78, 1.35]

2.13
[-0.75, 1.33]

2.08
[-0.79, 1.36]

2.14
[-0.76, 1.34]

2.10

SMOKE
[0.17, 1.81]

1.63
[0.19, 1.82]

1.64
[0.18, 1.79]

1.61
[0.18, 1.83]

1.65
[0.18, 1.80]

1.62

PTL
[0.01, 1.35]

1.34
[0.03, 1.37]

1.34
[0.03, 1.33]

1.30
[0.02, 1.37]

1.35
[0.03, 1.34]

1.31

HT
[0.25, 2.88]

2.63
[0.28, 2.94]

2.66
[0.31, 2.83]

2.52
[0.27, 2.95]

2.68
[0.30, 2.83]

2.53

UI
[-0.06, 1.73]

1.79
[-0.06, 1.73]

1.79
[-0.04, 1.71]

1.75
[-0.07, 1.74]

1.80
[-0.05, 1.72]

1.77

FTV
[-0.40, 0.26]

0.66
[-0.41, 0.26]

0.66
[-0.39, 0.26]

0.65
[-0.41, 0.26]

0.67
[-0.39, 0.26]

0.65

a ‘Other’ was used as a reference group.

According to our simulation study, the inclusion fraction based MATA intervals ob-

tained from optimization of score function were stably providing the narrowest reliable

confidence intervals, whose narrow widths were also demonstrated in the low birth weight

example. Therefore, the score function based I-MATA approaches are recommended for

analysis of this data and construction of confidence intervals.
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Chapter 8

SUMMARY

We presented different confidence interval construction methods and discussed how

model uncertainty affects the inference validity of the existing confidence interval con-

struction methods in Chapters 1 and 2. In Chapters 3 and 4 we proposed frequentist method

for candidate model set selection and the score based model-averaged tail area confidence

interval construction method. Chapter 5 compared the methods using Monte Carlo simula-

tions for small sample sizes, demonstrating that the proposed methods provided valid and

balanced confidence intervals that have greater precision across all other methods. Chapter

6 described the R-package that allows one to apply the model-averaged tail area type meth-

ods on any data with a binary outcome. In Chapter 7, the methods compared in Chapter 5

are applied to a dataset from a real study. In this chapter, we summarize the main results of

our study and recommendations, discuss the limitations of this research, and the directions

for future research.

8.1 Introduction

The primary objective of this thesis was to develop and evaluate score function based con-

fidence interval construction methods for model-averaged estimators, as well as suggest

appropriate methods for selecting candidate models. The focus was on logistic regression

in a small sample and frequentist framework. We also discuss limitations of this study and

suggest potential areas for future research.
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8.2 Main findings and recommendations

In addition to five inclusion fraction based MATA methods, we also included 16 methods

in the simulation study for comparison in the context of logistic regression models. Some

of the methods share a similar underlining idea, but all together, except the Wald type

Bayesian model-averaged method, they represent a variety of methods in the frequentist

framework. The methods were compared based on empirical coverage, tail errors, and

averaged width of confidence intervals that reflected the validity, balance, and accuracy of

the produced intervals. In addition, we also compared averaged point estimates to ensure

their acceptability and the absence of serious bias.

The results showed that out of all compared methods only the full model and five 50%

inclusion fraction based methods stably produced balanced confidence intervals with em-

pirical coverage close to the nominal 95% coverage. This means that among the three

methods for candidate models set selection, the inclusion fraction with natural cut-off

point of 50% was the only method that provided adequate coverage properties of MATA

based methods. At the same time, it significantly reduced the set of models used in model-

averaging. We demonstrated that the simple 50% threshold is sufficient to get valid results;

however, if prior knowledge, hypothesis or scientific sense allows, the inclusion fraction

might be selected for each variable separately, which can change the final set of the models

and improve confidence interval accuracy.

Among the six methods that showed reliable confidence intervals, the inclusion frac-

tion based MATA-S method is recommended. The greater precision demonstrated by this

method, becomes more recognizable for small sample sizes, highly imbalanced outcome, or

high correlation among predictors. The score based model-averaging method was the most

computing intensive out of the acceptable methods but provided the best results. If one is

willing to sacrifice confidence interval accuracy for the sake of time, the MATA-Ws based

on inclusion fraction set of candidate models could be recommended. The substitution of

Wald standard errors by the score function based standard errors improved the confidence
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interval precision, even though its averaged width was always slightly larger than the width

of the MATA-S method. The corrected MATA intervals with the score standard errors not

only performed better than the profile-likelihood based MATA method, but also was com-

putationally less costly than the profile-likelihood variant of MATA approach. Overall, the

profile-likelihood based MATA method demonstrated very close results to the Wald-type

MATA, while the correction of Wald type MATA by the profile-likelihood standard errors

did not paid off. The averaged width of I-MATA-Wpl method was consistently larger than

the averaged width of other model-averaged tail area based methods. Although we do not

recommend using the profile-likelihood methods because of their compromised accuracy,

they can still be used for construction of valid confidence intervals.

The performance of Wald type intervals with the Bayesian model-averaging method

demonstrated the least reliable results out of all methods. While the rest of the failed meth-

ods only provided untrustworthy confidence intervals, the BMA-W method also showed

biased point estimates. Thus, it is not recommended to use this method to construct con-

fidence intervals. As for the STEP-AIC, STEP-BIC and LASSO methods that combined

model selection and sequential construction of the confidence intervals, since the intervals

provided by these methods usually are overoptimistic, we advice against using them if the

goal is to get valid inference for the predictors.

8.3 Study assumptions and limitations

In previous chapters we proposed the new score based model-averaged confidence interval

construction method and demonstrated its performance. The I-MATA-S method does not

need any assumptions about the distribution of regression coefficient estimates; however, it

relies on several assumptions related to the initial data. First, we assume that all variables

required for fitting the real model are available to be included into the set of the candidate

models, but we do not insist on the presence of the true model in the set of candidate

models. In addition, we need to assume that the full model can be fitted without any
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convergence issues. Both assumptions coupled with the 50% inclusion fraction method

allows the MATA-S method to construct valid intervals for each variable.

The simulation results in Chapter 5 showed that changes in the sample size, the num-

ber of predictors, correlation among predictors, and outcome probability may affect the

width of the confidence intervals constructed by the I-MATA-S method; however, the va-

lidity and balance of the constructed intervals and superiority in precision over other ap-

proaches remains unchanged. This indicates that the I-MATA-S method is very stable for

small samples and moderate correlation among predictors, but in cases of high-dimensional

modelling the 50% inclusion fraction step may not be applicable without appropriate ad-

justments, while MATA step might have some estimation difficulties with highly correlated

data. In addition, if the outcome probability is far from 50%, at least one of the considered

models may encounter the separation phenomenon, that makes model fitting problematic.

This phenomenon is known to affect confidence intervals through inflated standard errors

in single modelling, and we expect that it also may have a detrimental effect on the perfor-

mance of model-averaging methods.

We limited evaluation on the performance of the methods in the context of logistic

regression. Nevertheless, we believe that I-MATA-S and I-MATA-Ws methods can also be

successfully applied to other members of this group, such a Poisson or Cox regressions, in

a straightforward fashion.

8.4 Directions for future research

We showed that the 50% inclusion fraction based MATA methods outperformed the most

popular confidence interval construction methods, such as stepwise regression and LASSO

approach. We demonstrated that out of all evaluated model-averaging procedures, the

model-averaging based on score function provides the shortest, valid confidence intervals

and acceptable point estimates. We also pointed out the main limitations and parametric

assumptions of this study. In this study the maximal correlation between two predictors
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we tested was around 0.5, and the proposed method performed well under this condition.

However, we expect that averaging of regular regression estimates may lead to biased and

invalid inference in presence of multicollinearity. Therefore, the development and exten-

sion of the methodology for the I-MATA methods adjustment in violation of one of para-

metric assumptions, such as absence of multicollinearity or low-dimensionality of the data,

might be an interesting research area.

The application of the ridge regression method in model-averaging settings demon-

strated very promising results in terms of accurate predictions by Yeon et al. (2010) and

Zhao et al. (2018). However, the usefulness of the method for constructing of valid con-

fidence intervals remains to be explored. The application of ridge regression models in

I-MATA confidence interval construction procedure may correct the detrimental effect of

multicollinearity.

The low-dimensionality of the data and absence of separation phenomenon are two lim-

itations we mentioned in the previous section. Simulation studies of logistic regressions for

small samples sizes may face the phenomenon of separation. It is desirable to remove the

models, which had a separation problem from the simulation process, however this may

cause informative missingness of final results (Steyerberg et al., 2011). The Firth penalized

regression can overcome separation phenomenon. It corrects small-sample bias in point es-

timates. However, the Firth penalty affects the point estimates even if a model did not have

any convergence problems, thus application of it for all simulated models may affect the

reliability of simulation results. The selective application of the Firth correction requires

algorithm for detection of separation problem (van Smeden et al., 2016). A guidance on

the correct use of the Firth penalty in simulation and bootstrap processes is needed.

While the separation problem can be solved by the Firth penalized regression, the

model-averaging for high-dimensional data has only recently been studied (Puhr et al.,

2017). Ando and Li (2014) and Ando et al. (2017) proposed a two-stage model-averaging

procedure for linear and generalized linear models, respectively. The basic idea is to select
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the candidate models by splitting the predictors into groups based on the absolute marginal

correlation between the outcome and predictors, and keeping only groups with high corre-

lation. This technique demonstrated quite accurate results for estimation of the outcome,

but its performance in confidence interval construction was not studied. However, similar

correlation-based approaches might be useful in defining the candidate models for MATA-

based confidence intervals under high-dimensional settings. Besides this, the candidate

models set might be defined by selecting appropriate range for the shrinkage parameter in

penalized regressions.

We did not consider the effect of missing data on model-averaging, but we believe that

this topic deserves further research. The missing observations may affect the selection

of candidate models, and in turn impact performance of confidence intervals. Cavanaugh

and Shumway (1998) proposed using the expectation-maximization algorithm to estimate

a variant of AIC in presence of missing data. Their AIC variant allows one to select the

models in case of incomplete outcome data, and it also can be used for model-averaging.

Claeskens and Consentino (2008) proposed modification of the AIC for cases when the

covariate data is incomplete. While these two AIC variants require estimation of the like-

lihood function with expectation maximization algorithm, Hens et al. (2006) proposed

weighted AIC that uses inverse selection probabilities for reweighing the complete observa-

tions by analogy with the weighted Horvitz-Thompson estimator. Schomaker et al. (2010)

compared the results of a single model selection based on the weighted AIC and frequentist

model-averaging after multiple imputation. It was shown that model-averaging over im-

puted data provides slightly better estimation efficiency than the single model. Schomaker

and Heumann (2014) suggested using multiple imputation inference over bootstrapped

datasets to estimate confidence intervals. Schomaker and Heumann (2018) demonstrated

that using multiple imputation inference after bootstrapping provides better results than

doing bootstrap after multiple imputation, since the latter imposes symmetry on the esti-

mated intervals. Brand et al. (2019) showed that even single imputation nested within the

bootstrap percentile method may provide valid inferences. The AIC adjusted for data miss-
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ingness and multiple imputation can be used to extend the MATA methods to data with

missing observations.

The selection of candidate models is also an important part of the model-averaging pro-

cedure. We demonstrated that the AIC backward selection based 50% inclusion fraction

approach is able to significantly reduce the number of considered models, while saving the

prespecified coverage probability of MATA based confidence intervals. However, we think

that better candidate models set selection procedures are still desirable. One of the possi-

ble ways to improve the candidate models set is to use more advanced variable selection

techniques rather than simple backward stepwise selection.

This thesis focused on methods for cross-sectional data. Longitudinal studies in prac-

tice are popular. Implementation of the model-averaging approaches in these settings would

be valuable. In the last decade many different model-averaging techniques for longitudi-

nal data were developed. For example, Fan and Wang (2015) applied the BMA method

to the set of longitudinal regression models with autoregressive errors and demonstrated

its acceptable performance in future predictions. Zhang et al. (2014) proposed the model-

averaging procedure for linear mixed-effects models under the frequentist setting to pro-

vide asymptotically optimal estimators in terms of minimization of squared errors. Addi-

tional information on model-averaging methods in mixed models can be found in Fletcher

(2018). The FMA method based on the leave-subject-out cross-validation approach (Gao

et al., 2016) demonstrated good prediction properties in both longitudinal and time series

data; however, no corresponding methods are currently available for constructing confi-

dence intervals in the context of longitudinal data. Yang et al. (2017) proposed FIC for the

generalized estimating equation approach using the quasi-likelihood function, as well as

the modified confidence intervals for focused averaged estimator developed by Hjort and

Claeskens (2003). The extension and modification of MATA methodology to longitudinal

settings, and comparison of its performance with existing methods both for prognostic and

diagnostic purposes in finite and small samples is a promising area for future research.
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Appendix A

A.1 Data generation

# Data generation function
copulaData=function(n, p, rho){
# rho=0.5; p=3;

if (p==3){
if(rho==0.5){

myCop=normalCopula(param=c(0.63, 0.5,
0.63), dim=3, dispstr="un");

}else{
myCop=normalCopula(param=c(rho), dim=3, dispstr="ex")};

out=rCopula(n, myCop);
out[, 1]=qnorm(out[, 1], mean=0, sd=1);
out[, 2]=qbinom(out[, 2], size=1, prob=0.5);
out[, 3]=qnorm(out[, 3], mean=0, sd=1);

}else if(p==5){ if(rho==0.3){
# rho=0.3; p=5;

myCop=normalCopula(param=c(0.38, 0.3, 0.38, 0.3,
0.38, 0.45, 0.38,
0.38, 0.3,
0.38), dim=5, dispstr="un");

}else if(rho==0.5){
# rho=0.5; p=5;

myCop=normalCopula(param=c(0.63, 0.5, 0.63, 0.5,
0.63, 0.71, 0.63,
0.63, 0.5,
0.63), dim=5, dispstr="un");

}else{
myCop=normalCopula(param=c(rho), dim=5, dispstr="ex")};
out=rCopula(n, myCop);
out[, 1]=qnorm(out[, 1], mean=0, sd=1);
out[, 2]=qbinom(out[, 2], size=1, prob=0.5);
out[, 3]=qnorm(out[, 3], mean=0, sd=1);
out[, 4]=qbinom(out[, 4], size=1, prob=0.5);
out[, 5]=qnorm(out[, 5], mean=0, sd=1);

}else if(p==10){if(rho==0){
#rho=0; p=10;

myCop=normalCopula(param=c(0), dim=10, dispstr="ex");
}else if(rho==0.3){

# rho=0.3; p=10;
myCop=normalCopula(param=

c(0.38, 0.3, 0.38, 0.3, 0.38, 0.3, 0.38, 0.3, 0.38,
0.38, 0.45, 0.38, 0.45, 0.38, 0.45, 0.38, 0.45,
0.38, 0.3, 0.38, 0.3, 0.38, 0.3, 0.38,
0.38, 0.45, 0.38, 0.45, 0.38, 0.45,
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0.38, 0.3, 0.38, 0.3, 0.38,
0.38, 0.45, 0.38, 0.45,
0.38, 0.3, 0.38,
0.38, 0.45,
0.38), dim=10, dispstr="un");

}else if(rho==0.5){
# rho=0.5; p=10;

myCop=normalCopula(param=
c(0.63, 0.5, 0.63, 0.5, 0.63, 0.5, 0.63, 0.5, 0.63,

0.63, 0.71, 0.63, 0.71, 0.63, 0.71, 0.63, 0.71,
0.63, 0.5, 0.63, 0.5, 0.63, 0.5, 0.63,
0.63, 0.71, 0.63, 0.71, 0.63, 0.71,
0.63, 0.5, 0.63, 0.5, 0.63,
0.63, 0.71, 0.63, 0.71,
0.63, 0.5, 0.63,
0.63, 0.71,
0.63), dim=10, dispstr="un");

}else{
myCop=normalCopula(param=c(rho), dim=10, dispstr="ex");

}
out=rCopula(n, myCop);
out[, 1]=qnorm(out[, 1], mean=0, sd=1) ;
out[, 2]=qbinom(out[, 2], size=1, prob=0.5);
out[, 3]=qnorm(out[, 3], mean=0, sd=1);
out[, 4]=qbinom(out[, 4], size=1, prob=0.5);
out[, 5]=qnorm(out[, 5], mean=0, sd=1);
out[, 6]=qbinom(out[, 6], size=1, prob=0.5);
out[, 7]=qnorm(out[, 7], mean=0, sd=1);
out[, 8]=qbinom(out[, 8], size=1, prob=0.5);
out[, 9]=qnorm(out[, 9], mean=0, sd=1);
out[, 10]=qbinom(out[, 10], size=1, prob=0.5);
out=out[, c(2, 1, 4, 3, 5, 6, 8, 7, 9, 10)];

}else{
myCop=normalCopula(param=c(rho), dim=p, dispstr="ex");
out=rCopula(n, myCop)};

out=data.frame(out);
names(out)=sprintf("V%d", 1:p);
return(data=out)}

### Data generation
#Different scenarios
#N (Prevalence=50%)
#n=100; rho=0.5; p=5; int=-0.15;
#n=300; rho=0.5; p=5; int=-0.15;
#n=500; rho=0.5; p=5; int=-0.15;
#Prevalence (10%, 30%, 50%)
#n=500; rho=0.3; p=5; int=-2.7;
#n=500; rho=0.3; p=5; int=-1.15;
#n=500; rho=0.3; p=5; int=-0.15;
#rho (Prevalence=30%)
#n=300; rho=0; p =5; int=-1.42;
#n=300; rho=0.3; p=5; int=-1.28;
#n=300; rho=0.5; p= 5; int=-1.18;
#p (Prevalence=30%)
#n=500; rho=0.5; p=3; int =-1.23;
#n=500; rho=0.5; p=5; int=-1.15;
#n=500; rho=0.5; p=10; int=-1.18;
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data=copulaData(n=n , p=p, rho=rho);
if(p==3){

True= c(int, 0.01, 0.5, -1);
data[, c(1, 3)]=t((t(data[, c(1, 3)]) -

apply(data[, c(1, 3)], 2, mean)) /
apply(data[, c(1, 3)], 2, sd));

}else{if( p==5 ){
True=c(int, 0, 0.01, -0.2, 0.5, -1);
data=data[, c(1, 3, 2, 4, 5)];
data[, c(1, 2, 5)]=t((t(data[, c(1, 2, 5)]) -

apply(data[, c(1, 2, 5)], 2, mean)) /
apply(data[, c(1, 2, 5)], 2, sd));

names(data)=sprintf("V%d", 1:p);
}else{if(p==10)

True=c(int, 0, 0, 0, 0, 0.01, -0.2, 0.5, -0.7, -1, 2.5);
data[, c(2, 4, 5, 8, 9)]=t((t(data[, c(2, 4, 5, 8, 9)]) -

apply(data[, c(2, 4, 5, 8, 9)], 2, mean)) /
apply(data[, c(2, 4, 5, 8, 9)], 2, sd));

names(data)=sprintf("V%d", 1:p)}};
z=as.matrix(cbind(rep(1, n), data)) %*% True;
pr=1 / (1+exp(-z));
y=rbinom(n=n, size=1, prob=t(pr));
mean(y);
#Data set
data=data.frame((cbind(y, data)));

A.2 Function MATACI

mataci=function(formula, data, nboot=1000, selection="Freq",
cim="Wald", ci=0.95, par=F){

trms=terms(formula, data=data);
variables=attr(trms, "term.labels");
out=all.vars(formula)[1];
n=dim(data)[1];
rownames(data)=NULL;
dataN=as.matrix(data[c(variables ,out)]);
alpha=(1-ci)/2;
forname=c("(Intercept)",variables);
if (selection=="Freq"){

tic("Total")
tic("Bootstrapping")
cl=makeCluster(detectCores());
clusterExport(cl, c("dataN", "n", "formula","variables"), envir=

environment());
repl1=parLapply(cl=cl, 1:nboot, function(i, dataA=dataN,

smpl=n, ...){
#Resampling
dataB=dataA[sample(nrow(dataA), size=smpl, replace=TRUE), ];
p=dim(dataB)[2];
forname=variables;
#Formula for fitting
formulaZS=formula;
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mus=glm(formulaZS , family=binomial, data=data.frame(dataB));
#Stepwise selection
Sl.us=step(mus, direction="backward", trace=F, k=2);
options(warn=2);
test=try(glm(Sl.us$formula, family=binomial,

data=data.frame(dataB)));
options(warn=1);
war=inherits(test, "try-error");
Slstep.us=summary(Sl.us);
ZCus=coef(Sl.us);
ZC0us=setdiff(c("(Intercept)", forname), names(ZCus));
ZCus=as.data.frame(ZCus);
colnames(ZCus)="A";
ZCzero.us=t(rep(0, length(ZC0us)));
colnames(ZCzero.us)=ZC0us;
ZCzero.us=data.frame(t(ZCzero.us));
colnames(ZCzero.us)="A";
Est.LS.us=rbind(ZCzero.us, ZCus);
CEst.LS.us=cbind(Est.LS.us, rownames(Est.LS.us));
Fest.ZS.us=CEst.LS.us[match(c("(Intercept)", forname),

CEst.LS.us$‘rownames(Est.LS.us)‘), ][, 1];
names(Fest.ZS.us)=c("(Intercept)", forname);
return(list(Fest.ZS.us=Fest.ZS.us, war=war))})

stopCluster(cl);
p=length(variables)+1;
beta.Step.zero=t(matrix(unlist(lapply(repl1, "[[", "Fest.ZS.us")),

nrow=p));
war=as.numeric(t(matrix(unlist(lapply(repl1, "[[", "war")),

nrow=1)));
toc()
tic("Model averaging")
message("The proportion of misconvergence is ",

round(mean(war),2),"%");
b=data.frame(cbind(beta.Step.zero, war));
beta.Step.zero=b[which(b$war==0), ];
beta.Step.zero=beta.Step.zero[, 1:(p)];
colnames(beta.Step.zero)=forname;
beta.Step.zero[is.na(beta.Step.zero)]=0;
ind.Austin=apply(ifelse(beta.Step.zero==0, 0, 1), 2, mean);
Prob=round(ind.Austin * 100, 2);
inc.frac=names(ind.Austin)[which(ind.Austin >= 0.5)];
if (length(inc.frac)==length(forname)){

minInc=names(ind.Austin)[which(ind.Austin==min(ind.Austin))];
inc.frac=setdiff(forname, minInc)};

#Model averaging
if (par==F){
options(na.action="na.fail");
rank="AIC";
MAdata=data.frame(dataN);
if(length(inc.frac)<=1){

m.inc=glm(formula, family=binomial, data=MAdata);
MA.inc=dredge(global.model=m.inc, rank=rank);
allModelsList=lapply(attributes(MA.inc)$model.calls, formula);
atr.inc=lapply(allModelsList , function(x, data) glm(x,

data=data.frame(data), family="binomial"), data=MAdata) ;
}else{

m.inc=glm(formula, family=binomial, data=MAdata);
MA.inc=dredge(global.model=m.inc, rank=rank, fixed=inc.frac[-1]);
allModelsList=lapply(attributes(MA.inc)$model.calls, formula);
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atr.inc=lapply(allModelsList , function(x, data) glm(x,
data=data.frame(data), family="binomial"), data=MAdata)}

}else{
MAdata=data.frame(dataN);
m.inc=glm(formula, family=binomial, data=MAdata);
cl=makeCluster(detectCores());
clusterExport(cl,c("dataN","m.inc","p"),envir=environment());
clusterExport(cl,c("n","inc.frac","MAdata"),envir=environment());
clusterEvalQ(cl, library(MuMIn));
rank="AIC";
options(na.action="na.fail");
MAdata=data.frame(dataN);
if(length(inc.frac)<=1){

MA.inc=pdredge(global.model=m.inc, rank=
rank, cluster=cl);

allModelsList=lapply(attributes(MA.inc)$model.calls, formula);
atr.inc=parLapply(cl=cl, allModelsList , function(x, data) glm(x,

data=data.frame(MAdata), family="binomial"));
}else{

MA.inc=pdredge(global.model=m.inc, rank=rank, fixed=
inc.frac[-1], cluster=cl);

allModelsList=lapply(attributes(MA.inc)$model.calls, formula);
atr.inc=parLapply(cl=cl, allModelsList , function(x, data) glm(x,

data=data.frame(MAdata), family="binomial"))}
stopCluster(cl)};
message("The model averaging is done over ",length(allModelsList)," 

models");
######################
#MATA after INCLUSION#
######################
start.Inc=startpoints(attrib=atr.inc, modnames=forname, forname=

forname);
if(cim=="Wald"){

confi=waldF(fitted=atr.inc, mma=m.inc, alpha=alpha,
startL=start.Inc[, 1], startU=start.Inc[, 2]);

}else if(cim=="Score") {
confi=scoreF(fitted=atr.inc, mma=m.inc, alpha=alpha,

startL=start.Inc[, 1], startU=start.Inc[, 2]);
}else if(cim=="PL"){

confi=profLF(fitted=atr.inc, mma=m.inc, alpha=alpha,
startL=start.Inc[, 1], startU=start.Inc[, 2]);

}else if(cim=="Wald-S"){
confi=waldFcor(fitted=atr.inc, mma=m.inc, alpha=alpha,

startL=start.Inc[, 1], startU=start.Inc[, 2], metci="S");
}else if(cim=="Wald-PL"){

confi=waldFcor(fitted=atr.inc, mma=m.inc, alpha=alpha,
startL=start.Inc[, 1], startU=start.Inc[, 2], metci="PL");}

ci.lower=confi[, 1];
ci.upper=confi[, 2];
Est=start.Inc[, 3];
Est=Est[forname];
toc()
toc()
##########################
#Bayesian Model Averaging#
##########################

}else if(selection=="Bayes"){
#BMA
tic("Total")
b=bic.glm(formula, data=data.frame(dataN), OR=20,
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glm.family="binomial");
Prob=c(100, b$probne0);
L.BMA=b$n.models;
message("The model averaging is done over ",L.BMA," models");
test.MRX=MRX=b$mle[1:L.BMA, ];
test.MRX.se=b$se[1:L.BMA, ];
formular=apply(data.frame(test.MRX)[-1] != 0, 1, function(x)

as.character(paste(c(paste(c(out, "∼1"), collapse=""),
variables[x]), collapse="+")));

if (any((apply(data.frame(test.MRX) != 0, 1, sum)==0)==1)){
zeroPred=apply(data.frame(test.MRX) !=0 , 1, sum)==0;
formular[which(zeroPred==1)]=as.character(paste(

c(out, "∼1"), collapse=""))};
modelBMA=list();
if(L.BMA > 1){

for (i in 1:L.BMA){
modelBMA[[i]]=formular[i]};

}else{
nn=names(test.MRX)[which(test.MRX != 0)];
modelBMA=ifelse(any(nn=="(Intercept)")==T, paste(ifelse(

length(nn)==1, paste(c(out, "∼1"), collapse=""), paste(
c(out, "∼1+"), collapse="")), paste(nn[-1], collapse="+"),
sep=""), paste(paste(c(out, "∼-1+"),
collapse=""), paste(nn, collapse="+"), sep=""))};

allModelsResults=lapply(modelBMA, function(x, data) glm(x,
data=data.frame(data), family="binomial"), data=dataN);

nn=names(b$postmean)[which(b$postmean != 0)];
bmodel=ifelse(any(nn=="(Intercept)")==T, paste(ifelse(length(nn)==1,

paste(c(out, "∼1"), collapse=""), paste(c(out, "∼1+"),
collapse="")), paste(nn[-1], collapse="+"), sep=""),
paste(paste(c(out, "∼-1+"), collapse=""),
paste(nn, collapse="+"), sep=""));

bmam2=glm(bmodel, family=binomial, data=as.data.frame(dataN));
###########
start.BMA=startpoints(attrib=allModelsResults , modnames=nn, forname=

forname);
if(cim=="Wald"){

confi=waldF(fitted=allModelsResults , mma=bmam2, alpha=alpha,
startL=start.BMA[, 1][nn], startU=start.BMA[, 2][nn]);

}else if(cim=="Score") {
confi=scoreF(fitted=allModelsResults , mma=bmam2, alpha=alpha,

startL=start.BMA[, 1][nn], startU=start.BMA[, 2][nn]);
}else if(cim=="PL"){

confi=profLF(fitted=allModelsResults , mma=bmam2, alpha=alpha,
startL=start.BMA[, 1][nn], startU=start.BMA[, 2][nn]);

}else if(cim=="Wald-S"){
confi=waldFcor(fitted=allModelsResults , mma=bmam2, alpha=alpha,

startL=start.BMA[, 1][nn], startU=start.BMA[, 2][nn],
metci="S");

}else if(cim=="Wald-PL"){
confi=waldFcor(fitted=allModelsResults , mma=bmam2, alpha=alpha,

startL=start.BMA[, 1][nn], startU=start.BMA[, 2][nn],
metci="PL")};

toc()
ci.lower=confi[, 1];
ci.lower=ci.lower[forname];
names(ci.lower)=forname;
ci.lower[is.na(ci.lower)]=NA;
ci.upper=confi[, 2];
ci.upper=ci.upper[forname];
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names(ci.upper)=forname;
Est=start.BMA[, 3];
Est[is.na(ci.upper)]=NA;
ci.upper[is.na(ci.upper)]=NA};
results=cbind(Estimates=Est, CI.lower=ci.lower,
CI.upper=ci.upper, Prop=Prob);
colnames(results)=c("Estimates", paste(round(100*alpha, 2), "%",
sep=""), paste(round(100*(1-alpha), 2), "%", sep=""),"Prop")
return(results)};

A.3 Support functions

startpoints=function(attrib, modnames, forname){
coefB=lapply(attrib, coef);
aicB=lapply(attrib, function(x) x$aic);
www=list();
mn1=length(attrib);
pm=length(modnames);
for (g in 1:mn1){

www[[g]]=rep(aicB[[g]], pm);
names(www[[g]])=names(coefB[[g]])};

AICe=Mrank1=SMrank=w=wu=ww=wuu=indi=list();
for (g in 1:pm){

AICe[[g]]=lapply(www, function(x) unlist(x[which(names(x)==
modnames[g])]))};

mACIe=lapply(AICe, function(x) rep(min(unlist(x)), mn1));
for (g in 1:pm){

Mrank1[[g]]=Map(’-’, AICe[[g]], mACIe[[g]])};
SMrank=lapply(Mrank1, function(x) sum(exp(-0.5*unlist(x))));

for (g in 1:pm){
wu[[g]]=lapply(Mrank1[[g]], function(x){

if(length(x)==0) {x=NA}else{x=x}})};
for (g in 1:pm){wuu[[g]]=lapply(wu[[g]],

function(x) exp(-0.5*((unlist(x)))))};
for (g in 1:pm){ww[[g]]=lapply(wuu[[g]],

function(x) unlist(x)/SMrank[[g]])};
w=ww;;
m=matrix(unlist(w), ncol=pm);
m[is.na(m)]=0;
colnames(m)=modnames;
summ=lapply(attrib, summary);
std.err=lapply(summ, function(x)
as.numeric(t(x$coefficients[, "Std. Error", drop=FALSE])));
MRX=as.data.frame(matrix(c(rep(0, (pm)*mn1)), ncol=pm));
colnames(MRX)=c(modnames);
MRX.se=MRX;
for (i in 1:(mn1)){

coef=coefB[[i]];
l=length(coef);
se1=std.err[[i]];
nam=names(se1)=names(coef);
coef=coef[modnames];
names(coef)=modnames;
coef[is.na(coef)]=0;
coefo=coef[which(coef!=0)];
if (length(coefo)==0){

coefo=rep(0, l)
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names(coefo)=nam};
MRX[i, ]=coef;
se1=se1[modnames];
names(se1)=modnames;
se1[is.na(se1)]=0;
MRX.se[i, ]=se1};

try.lower=as.matrix(MRX/MRX.se-qnorm(0.975, 0, 1));
try.lower[which(!is.finite(try.lower))]=0;
try.lower=m*try.lower;
try.upper=as.matrix(MRX/MRX.se-qnorm(0.025, 0, 1));
try.upper[which(!is.finite(try.upper))]=0;
try.upper=m*try.upper;
W.se=as.matrix(m/MRX.se);
W.se[which(!is.finite(W.se))]=0;
MATAF.lower=apply(try.lower, 2, sum)/apply(W.se, 2, sum);
MATAF.lower[which(!is.finite(MATAF.lower))]=0;
MATAF.lower=MATAF.lower[forname];
names(MATAF.lower)=forname;
MATAF.lower[is.na(MATAF.lower)]=0;
MATAF.upper=apply(try.upper, 2, sum)/apply(W.se, 2, sum);
MATAF.upper[which(!is.finite(MATAF.upper))]=0;
MATAF.upper=MATAF.upper[forname];
names(MATAF.upper)=forname;
MATAF.upper[is.na(MATAF.upper)]=0;
MATAF.Est=apply(m*MRX, 2, sum);
MATAF.Est=MATAF.Est[forname];
names(MATAF.Est)=forname;
MATAF.Est[is.na(MATAF.Est)]=0;
return(cbind(MATAF.lower, MATAF.upper, MATAF.Est))};

ScoreRoot=function(t, parms){
var=parms$var;
fitted=parms$fitted;
coefB=coef(fitted);
nonA=!is.na(coefB);
Pnames=names(coefB);
pv0=t(as.matrix(coefB));
mf=model.frame(fitted);
Y=model.response(mf);
n=NROW(Y);
O=model.offset(mf);
if (!length(O)) O=rep(0, n) ;
W=model.weights(mf);
if (length(W)==0L) W=rep(1, n) ;
X=model.matrix(fitted);
fam=family(fitted);
B=coefB[var];
LP= X[, nonA, drop=FALSE] %*% coefB[nonA]+O;
a=nonA;
a[which(names(a)==var)]=FALSE;
Xi=X[, a, drop=FALSE];
pi=Pnames[which(Pnames==var)];
bi=t;
o=O+X[, var] * bi;
fm=glm.fit(x=Xi, y=Y, weights=W, etastart=LP,
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offset=o, family=fam, control=fitted$control);
LP=Xi %*% fm$coefficients+o;
ri=pv0;
ri[, names(coef(fm))]=coef(fm);
ri[, pi]=bi;
d=length(ri);
u=vector();
IF=matrix(rep(0, dˆ2), d, d);
r=as.vector(ri);
for (k in 1:d){

u[k]=sum((Y-(exp(X%*%r)/(1+exp(X%*%r))))*X[, k]);

for (l in 1:d){
In=(sum(X[, l]*X[, k]*exp(X%*%r)/(1+exp(X%*%r))ˆ2));
IF[k, l]=In}}

S=u%*%solve(IF)%*%u;
S=max(S, 0);
z=S-qchisq(0.95, df=1);
return(z)};

scoreF=function (fitted, mma, alpha=0.025, startL, startU){
coefB=lapply(fitted, coef);
nonA=lapply(coefB, function(x) !is.na(x));
aicB=lapply(fitted, function(x) x$aic);
www=list();
for (g in 1:length(coefB)){

len=length(coefB[[g]]);
re=rep(aicB[[g]], len);
www[[g]]=re;
names(www[[g]])=names(coefB[[g]])};

Pnames=lapply(coefB, names);
pv0=lapply(coefB, function(x) t(as.matrix(x)));
p=lapply(Pnames, length);
which=lapply(p, function(x) 1:x);
summ=lapply(fitted, summary);
mf=lapply(fitted, model.frame);
mfy=model.frame(mma);
Fnames=names(B0 <- coef(mma));
Fwhich=1:length(Fnames);
Y=model.response(mfy);
n=NROW(Y);
O=lapply(mf, model.offset);
O=lapply(O, function(x){

if (!length(x)) x=rep(0, n)});
W=lapply(mf, model.weights);
W=lapply(W, function(x){

if (length(x)==0L) x=rep(1, n)});
X=lapply(fitted, model.matrix);
fam=lapply(fitted, family);
scor=vector("list", length=length(Fwhich));
names(scor)=Fnames[Fwhich];
for (i in Fwhich) {

a=nonA;
var=Fnames[i];
an=length(a);
AICe=lapply(www, function(x) x[which(names(x)==var)]);
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pe=lapply(coefB, function(x) x[which(names(x)==var)]);
tl=startL[i];
tu=startU[i];
parametersu=list(an=an, var=var, AICe=AICe, nonA=nonA, coefB=coefB,

O=O, a=a, X=X, Pnames=Pnames, W=W, fitted=fitted, fam=fam,
pv0=pv0, alpha=alpha, errb="u", pointest=pe);

parametersl=list(an=an, var=var, AICe=AICe, nonA=nonA, coefB=coefB,
O=O, a=a, X=X, Pnames=Pnames, W=W, fitted=fitted, fam=fam,
pv0=pv0, alpha=alpha, errb="l", pointest=pe);

topot=function(t, parms){
an=parms$an;
var=parms$var;
nonA=parms$nonA;
errb=parms$errb;
coefB=parms$coefB;
O=parms$O;
a=parms$a;
X=parms$X;
Pnames=parms$Pnames;
W=parms$W;
fitted=parms$fitted;
fam=parms$fam;
pv0=parms$pv0;
alpha=parms$alpha;
pointest=parms$pointest;
Xi=pi=bi=d=u=IF=LP=mark=B=S=Sm=r=ri=o=fm=indi=list();
maicB=min(unlist(AICe));
Mrank1=Map(’-’, AICe, maicB);
SMrank=sum(exp(-0.5*unlist(Mrank1)));
w=lapply(Mrank1, function(x) exp(-0.5*(x))/SMrank);
for (g in 1:an){

if(length(pointest[[g]])==0) w[[g]]=0};
for (j in 1:an){

if (is.element(var, names(a[[j]]))==T){
B[[j]]=coefB[[j]][var];
LP[[j]]=X[[j]][, nonA[[j]], drop=FALSE] %*%

coefB[[j]][nonA[[j]]]+O[[j]];
a[[j]][which(names(a[[j]])==var)]=FALSE;
Xi[[j]]=X[[j]][, a[[j]], drop=FALSE];
pi[[j]]=Pnames[[j]][which(Pnames[[j]]==var)];
bi[[j]]=t;
o[[j]]=O[[j]]+X[[j]][, var] * bi[[j]];
fm[[j]]=glm.fit(x=Xi[[j]], y=Y, weights=W[[j]],

etastart=LP[[j]], offset=o[[j]], family=fam[[j]],
control=fitted[[j]]$control);

LP[[j]]=Xi[[j]] %*% fm[[j]]$coefficients+o[[j]];
ri[[j]]=pv0[[j]];
ri[[j]][, names(coef(fm[[j]]))]=coef(fm[[j]]);
ri[[j]][, pi[[j]]]=bi[[j]];
d[[j]]=length(ri[[j]]);
u[[j]]=vector();
IF[[j]]=matrix(rep(0, d[[j]]ˆ2), d[[j]], d[[j]]);
r[[j]]=as.vector(ri[[j]]);
for (k in 1:d[[j]]){

u[[j]][k]=sum((Y-(exp(X[[j]]%*%r[[j]])/
(1+exp(X[[j]]%*%r[[j]]))))*X[[j]][, k]);

for (l in 1:d[[j]]){
In=(sum(X[[j]][, l]*X[[j]][, k]*exp(X[[j]]%*%r[[j]])/

(1+exp(X[[j]]%*%r[[j]]))ˆ2));
IF[[j]][k, l]=In}}
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S[[j]]=u[[j]]%*%solve(IF[[j]])%*%u[[j]];
S[[j]]=max(S[[j]], 0);
Sm[[j]]=sign(B[[j]]-bi[[j]])*sqrt(S[[j]]);
mark[[j]]=1;

}else{
S[[j]]=0; Sm[[j]]=0; mark[[j]]=0};

Sm[[j]]=pnorm(Sm[[j]])};
if (errb=="u"){

z=sum(unlist(Sm)*unlist(w)*unlist(mark))-alpha;
}else{

z=sum((1-unlist(Sm))*unlist(w)*unlist(mark))-alpha};
return(z)};

options(warn=2);
test=try(multiroot(topot, start=tl, maxiter=1000, useFortran=T,

parms=parametersl));
options(warn=1);
war=inherits(test, "try-error");
if (war==T){

l=uniroot(topot, lower=tl, upper=tu, extendInt="yes",
maxiter=1000, tol=1e-5, parms=parametersl)$root;

}else{
l=multiroot(topot, start=tl, maxiter=1000, useFortran=T, ctol=

1e-5, parms=parametersl)$root};
options(warn=2);
test=try(multiroot(topot, start=tu, maxiter=1000, useFortran=T,

parms=parametersu));
options(warn=1);
war=inherits(test, "try-error");
if (war==T){

u=uniroot(topot, lower=tl, upper=tu, maxiter=1000,
extendInt="yes", tol=1e-5, parms=parametersu)$root;

}else{
u=multiroot(topot, start=tu, maxiter=1000, useFortran=T,

ctol=1e-5, parms=parametersu)$root};
med=u;
if (l>u){u=l; l=med};
scor[[i]]=data.frame(rbind(l, u));
colnames(scor[[i]])=NULL};

CI=matrix(rep(0, 2*length(Fwhich)), ncol=2);
for(i in Fwhich){

CI[i, ]=t(scor[[i]])};
rownames(CI)=Fnames;
colnames(CI)=c("lower", "upper");
return(CI)};

profLF=function(fitted, mma, alpha=0.025, startL, startU){
coefB=lapply(fitted, coef);
nonA=lapply(coefB, function(x) !is.na(x));
aicB=lapply(fitted, function(x) x$aic);
www=list();
for (g in 1:length(coefB)){

len=length(coefB[[g]]);
re=rep(aicB[[g]], len);
www[[g]]=re;
names(www[[g]])=names(coefB[[g]])};

Pnames=lapply(coefB, names);
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pv0=lapply(coefB, function(x) t(as.matrix(x)));
p=lapply(Pnames, length);
which=lapply(p, function(x) 1:x);
summ=lapply(fitted, summary);
std.err=lapply(summ, function(x) as.numeric(t(x$coefficients[,

"Std. Error", drop=FALSE])));
for (i in 1:length(nonA)){names(std.err[[i]])=Pnames[[i]]};
mf=lapply(fitted, model.frame);
mfy=model.frame(mma);
Fnames=names(B0 <- coef(mma));
Fwhich=1:length(Fnames);
Y=model.response(mfy);
n=NROW(Y);
O=lapply(mf, model.offset);
O=lapply(O, function(x){

if (!length(x)) x=rep(0, n)});
W=lapply(mf, model.weights);
W=lapply(W, function(x){

if (length(x)==0L) x=rep(1, n)});
X=lapply(fitted, model.matrix);
OriginalDeviance=lapply(fitted, deviance);
DispersionParameter=lapply(summ, function(x) x$dispersion);
fam=lapply(fitted, family);
scor=vector("list", length=length(Fwhich));
names(scor)=Fnames[Fwhich];
for (i in Fwhich) {

a=nonA;
var=Fnames[i];
an=length(a);
pe=lapply(coefB, function(x) x[which(names(x)==var)]);
AICe=lapply(www, function(x) x[which(names(x)==var)]);
spe=lapply(std.err, function(x) x[which(names(x)==var)]);
tl=startL[i];
tu=startU[i] ;
parametersu=list(an=an, var=var, AICe=AICe, nonA=nonA, coefB=coefB,

O=O, a=a, X=X, Pnames=Pnames, W=W, fitted=fitted, fam=fam,
pv0=pv0, alpha=alpha, errb="u", pointest=pe);

parametersl=list(an=an, var=var, AICe=AICe, nonA=nonA, coefB=coefB,
O=O, a=a, X=X, Pnames=Pnames, W=W, fitted=fitted, fam=fam,
pv0=pv0, alpha=alpha, errb="l", pointest=pe);

topot=function(t, parms){
an=parms$an;
var=parms$var;
nonA=parms$nonA;
coefB=parms$coefB;
O=parms$O;
a=parms$a;
X=parms$X;
AICe=parms$AICe;
errb=parms$errb;
Pnames=parms$Pnames;
W=parms$W;
fitted=parms$fitted;
fam=parms$fam;
pv0=parms$pv0;
alpha=parms$alpha;
pointest=parms$pointest;
Xi=pi=bi=d=u=IF=LP=LPm=mark=B=LPj=S=Sm=r=ri=o=fm=indi=list();
maicB=min(unlist(AICe));
Mrank1=Map(’-’, AICe, maicB);
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SMrank=sum(exp(-0.5*unlist(Mrank1)));
w=lapply(Mrank1, function(x) exp(-0.5*(x))/SMrank);
for (g in 1:an){

if(length(pointest[[g]])==0) w[[g]]=0};
for (j in 1:an){

if (is.element(var, names(a[[j]]))==T){
LPm[[j]]=logLik(fitted[[j]]);
B[[j]]=coefB[[j]][var];
LP[[j]]=X[[j]][, nonA[[j]], drop=FALSE]%*%

coefB[[j]][nonA[[j]]]+O[[j]];
a[[j]][which(names(a[[j]])==var)]=FALSE;
Xi[[j]]=X[[j]][, a[[j]], drop=FALSE];
pi[[j]]=Pnames[[j]][which(Pnames[[j]]==var)];
bi[[j]]=t;
o[[j]]=O[[j]]+X[[j]][, var] * bi[[j]];
fm[[j]]=glm.fit(x=Xi[[j]], y=Y, weights=W[[j]], etastart=

LP[[j]], offset=o[[j]], family=fam[[j]], control=
fitted[[j]]$control);

S[[j]]=mark[[j]]=(fm[[j]]$deviance - OriginalDeviance[[j]])/
DispersionParameter[[j]];

if(mark[[j]]<0) S[[j]]=0;
Sm[[j]]=sign(B[[j]]-bi[[j]])*sqrt(S[[j]]);
mark[[j]]=1;

}else{
S[[j]]=0; Sm[[j]]=0; mark[[j]]=0;};

Sm[[j]]=pnorm(Sm[[j]])};
if (errb=="u"){z=sum(unlist(Sm)*unlist(w)*unlist(mark))-alpha;
}else{z=sum((1-unlist(Sm))*unlist(w)*unlist(mark))-alpha};
return(z)};

options(warn=2);
test=try(multiroot(topot, start=tl, maxiter=1000, useFortran=T,

parms=parametersl));
options(warn=1);
war=inherits(test, "try-error");
if (war==T){

l=uniroot(topot, lower=tl, upper=tu, extendInt="yes",
maxiter=1000, tol=1e-5, parms=parametersl)$root;

}else{
l=multiroot(topot, start=tl, maxiter=1000, useFortran=T, ctol=

1e-5, parms=parametersl)$root};
options(warn=2);
test=try(multiroot(topot, start=tu, maxiter=1000, useFortran=T,

parms=parametersu));
options(warn=1);
war=inherits(test, "try-error");
if (war==T){

u=uniroot(topot, lower=tl, upper=tu, maxiter=1000, extendInt=
"yes", tol=1e-5, parms=parametersu)$root;

}else{
u=multiroot(topot, start=tu, maxiter=1000, useFortran=T, ctol=

1e-5, parms=parametersu)$root};
med=u; if (l>u){u=l; l=med};
scor[[i]]=data.frame(rbind(l, u));
colnames(scor[[i]])=NULL;};

CI=matrix(rep(0, 2*length(Fwhich)), ncol=2);
for(i in Fwhich){

CI[i, ]=t(scor[[i]]);};
rownames(CI)=Fnames;
colnames(CI)=c("lower", "upper");
return(CI)};
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waldF=function (fitted, mma, alpha=0.025, startL, startU){
coefB=lapply(fitted, coef);
aicB=lapply(fitted, function(x) x$aic);
www=list();
for (g in 1:length(coefB)){

len=length(coefB[[g]]);
re=rep(aicB[[g]], len);
www[[g]]=re;
names(www[[g]])=names(coefB[[g]])};

nonA=lapply(coefB, function(x) !is.na(x));
Pnames=lapply(coefB, names);
pv0=lapply(coefB, function(x) t(as.matrix(x)));
p=lapply(Pnames, length);
which=lapply(p, function(x) 1:x);
summ=lapply(fitted, summary);
std.err=lapply(summ, function(x) as.numeric(t(x$coefficients[,

"Std. Error", drop=FALSE])));
for (i in 1:length(nonA)){names(std.err[[i]])=Pnames[[i]]};
mf=lapply(fitted, model.frame);
mfy=model.frame(mma);
Fnames=names(B0 <- coef(mma));
Fwhich=1:length(Fnames);
Y=model.response(mfy);
n=NROW(Y);
O=lapply(mf, model.offset);
O=lapply(O, function(x){

if (!length(x)) x=rep(0, n)});
W=lapply(mf, model.weights);
W=lapply(W, function(x){

if (length(x)==0L) x=rep(1, n)});
X=lapply(fitted, model.matrix);
fam=lapply(fitted, family);
scor=vector("list", length=length(Fwhich));
names(scor)=Fnames[Fwhich];
for (i in Fwhich) {

a=nonA;
var=Fnames[i];
an=length(a);
AICe=lapply(www, function(x) x[which(names(x)==var)]);
pe=lapply(coefB, function(x) x[which(names(x)==var)]);
spe=lapply(std.err, function(x) x[which(names(x)==var)]);
tl=startL[i];
tu=startU[i];
parametersu=list(an=an, AICe=AICe, var=var, nonA=nonA, n=n, coefB=

coefB, O=O, a=a, X=X, p=p, Pnames=Pnames, W=W, fitted=fitted,
fam=fam, pv0=pv0, alpha=alpha, errb="u", pointest=pe, spe=spe);

parametersl=list(an=an, AICe=AICe, var=var, nonA=nonA, n=n, coefB=
coefB, O=O, a=a, X=X, p=p, Pnames=Pnames, W=W, fitted=fitted,
fam=fam, pv0=pv0, alpha=alpha, errb="l", pointest=pe, spe=spe);

topot=function(t, parms){
an=parms$an;
var=parms$var;
nonA=parms$nonA;
coefB=parms$coefB;
O=parms$O;
a=parms$a;
X=parms$X;
n=parms$n;
errb=parms$errb;
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Pnames=parms$Pnames;
AICe=parms$AICe;
W=parms$W;
fitted=parms$fitted;
fam=parms$fam;
pv0=parms$pv0;
alpha=parms$alpha;
pointest=parms$pointest;
spe=parms$spe;
p=parms$p;
Xi=pi=bi=d=u=IF=LP=LPm=mark=B=LPj=S=Sm=SE=r=ri=o=fm=indi=list();
maicB=min(unlist(AICe));
Mrank1=Map(’-’, AICe, maicB);
SMrank=sum(exp(-0.5*unlist(Mrank1)));
w=lapply(Mrank1, function(x) exp(-0.5*(x))/SMrank);
for (g in 1:an){

if(length(pointest[[g]])==0) w[[g]]=0};
for (j in 1:an){

if (is.element(var, names(a[[j]]))==T){
B[[j]]=coefB[[j]][var];
SE[[j]]=spe[[j]];
bi[[j]]=t;
S[[j]]=Sm[[j]]=(B[[j]]-bi[[j]])/SE[[j]] ;

}else{S[[j]]=0; Sm[[j]]=0};
Sm[[j]]=pt(Sm[[j]], df=n-length(coefB[[j]]))};

if (errb=="u"){z=sum(unlist(Sm)*unlist(w))-alpha;
}else{z=sum((1-unlist(Sm))*unlist(w))-alpha};
return(z)};

options(warn=2);
test=try(multiroot(topot, start=tl, maxiter=1000, useFortran=T,

parms=parametersl));
options(warn=1);
war=inherits(test, "try-error");
if (war==T){

l=uniroot(topot, lower=tl, upper=tu, extendInt="yes",
maxiter=1000, tol=1e-5, parms=parametersl)$root;

}else{
l=multiroot(topot, start=tl, maxiter=1000, useFortran=T, ctol=

1e-5, parms=parametersl)$root};
options(warn=2);
test=try(multiroot(topot, start=tu, maxiter=1000, useFortran=T,

parms=parametersu));
options(warn=1);
war=inherits(test, "try-error");
if (war==T){

u=uniroot(topot, lower=tl, upper=tu, maxiter=1000, extendInt=
"yes", tol=1e-5, parms=parametersu)$root;

}else{
u=multiroot(topot, start=tu, maxiter=1000, useFortran=T, ctol=

1e-5, parms=parametersu)$root};
med=u; if (l>u){u=l; l=med};
scor[[i]]=data.frame(rbind(l, u));
colnames(scor[[i]])=NULL};

CI=matrix(rep(0, 2*length(Fwhich)), ncol=2);
for(i in Fwhich){CI[i, ]=t(scor[[i]])};
rownames(CI)=Fnames;
colnames(CI)=c("lower", "upper");
return(CI)};
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waldFcor=function (fitted, mma, alpha=0.025, startL, startU, metci="S"){
if (metci=="S"){

varN=length(coef(mma));
Fnames=names(coef(mma));
modN=length(fitted);
Pnames=lapply(lapply(fitted, coef), names);
CiL=CiU=coefB=list();
for(j in 1:modN){

if(length(Pnames[[j]])==0){
CiL[[j]]=NULL;
CiU[[j]]=NULL;
coefB[[j]]=NULL;

}else{
al=au=rep(0, length(Pnames[[j]]));
for(i in 1:length(Pnames[[j]])){

paraml=list(fitted=fitted[[j]], errb="l", var=Pnames[[j]][i]);
paramu=list(fitted=fitted[[j]], errb="u", var=Pnames[[j]][i]);
tl=startL[Pnames[[j]]][i];
tu=startU[Pnames[[j]]][i];
al[i]=multiroot(ScoreRoot , start=tl, maxiter=1000, useFortran=

T, parms=paraml)$root;
au[i]=multiroot(ScoreRoot , start=tu, maxiter=1000, useFortran=

T, parms=paramu)$root};
CiL[[j]]=al; CiU[[j]]=au;
coefB[[j]]=coef(fitted[[j]])}} ;

coefB=lapply(fitted, coef);
sel=lapply(mapply(’-’, CiL, coefB, SIMPLIFY=T), function(x) abs(x)/

qnorm(0.975));
seu=lapply(mapply(’-’, CiU, coefB, SIMPLIFY=T), function(x) abs(x)/

qnorm(0.975));
}else{

coefB=lapply(fitted, coef);
ci=lapply(fitted, confint);
se=lapply(mapply(’-’, ci, coefB, SIMPLIFY=T), function(x) abs(x)/

qnorm(0.975));
for (i in 1:length(coefB)){

if(length(coefB[[i]])==1){
se[[i]]=t(se[[i]]);
rownames(se[[i]])=names(coefB[[i]])}};

sel=lapply(se, function(x) x[, 1]);
seu=lapply(se, function(x) x[, 2]);
for (i in 1:length(coefB)){

if(length(coefB[[i]])==1){
names(seu[[i]])=names(coefB[[i]]);
names(sel[[i]])=names(coefB[[i]])}}};

aicB=lapply(fitted, function(x) x$aic);
www=list();
for (g in 1:length(coefB)){

len=length(coefB[[g]]);
re=rep(aicB[[g]], len);
www[[g]]=re;
names(www[[g]])=names(coefB[[g]])};

nonA=lapply(coefB, function(x) !is.na(x));
Pnames=lapply(coefB, names);
pv0=lapply(coefB, function(x) t(as.matrix(x)));
p=lapply(Pnames, length);
which=lapply(p, function(x) 1:x);
summ=lapply(fitted, summary);
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std.err=lapply(summ, function(x) as.numeric(t(x$coefficients[,
"Std. Error", drop=FALSE])));

for (i in 1:length(nonA)){names(std.err[[i]])=Pnames[[i]]};
mf=lapply(fitted, model.frame);
mfy=model.frame(mma);
Fnames=names(B0 <- coef(mma));
Fwhich=1:length(Fnames);
Y=model.response(mfy);
n=NROW(Y);
O=lapply(mf, model.offset);
O=lapply(O, function(x){

if (!length(x)) x=rep(0, n)});
W=lapply(mf, model.weights);
W=lapply(W, function(x){

if (length(x)==0L) x=rep(1, n)});
X=lapply(fitted, model.matrix);
fam=lapply(fitted, family);
scor=vector("list", length=length(Fwhich));
names(scor)=Fnames[Fwhich];
for (i in Fwhich) {

a=nonA;
var=Fnames[i];
an=length(a);
AICe=lapply(www, function(x) x[which(names(x)==var)]);
pe=lapply(coefB, function(x) x[which(names(x)==var)]);
spel=lapply(sel, function(x) x[which(names(x)==var)]);
speu=lapply(seu, function(x) x[which(names(x)==var)]);
tl=startL[i];
tu=startU[i];
parametersu=list(an=an, AICe=AICe, var=var, nonA=nonA, n=n, coefB=

coefB, O=O, a=a, X=X, p=p, Pnames=Pnames, W=W, fitted=fitted,
fam=fam, pv0=pv0, alpha=alpha, errb="u", pointest=pe, spe=seu);

parametersl=list(an=an, AICe=AICe, var=var, nonA=nonA, n=n, coefB=
coefB, O=O, a=a, X=X, p=p, Pnames=Pnames, W=W, fitted=fitted,
fam=fam, pv0=pv0, alpha=alpha, errb="l", pointest=pe, spe=sel);

topot=function(t, parms){
an=parms$an;
var=parms$var;
nonA=parms$nonA;
coefB=parms$coefB;
O=parms$O;
a=parms$a;
X=parms$X;
n=parms$n;
errb=parms$errb;
Pnames=parms$Pnames;
AICe=parms$AICe;
W=parms$W;
fitted=parms$fitted;
fam=parms$fam;
pv0=parms$pv0;
alpha=parms$alpha;
pointest=parms$pointest;
spe=parms$spe;
p=parms$p;
Xi=pi=bi=d=u=IF=LP=LPm=mark=B=LPj=S=Sm=SE=r=ri=o=fm=indi=list();
maicB=min(unlist(AICe));
Mrank1=Map(’-’, AICe, maicB);
SMrank=sum(exp(-0.5*unlist(Mrank1)));
w=lapply(Mrank1, function(x) exp(-0.5*(x))/SMrank);
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for (g in 1:an){
if(length(pointest[[g]])==0) w[[g]]=0};

for (j in 1:an){
if (is.element(var, names(a[[j]]))==T){

B[[j]]=coefB[[j]][var];
SE[[j]]=spe[[j]][var];
bi[[j]]=t;
S[[j]]=Sm[[j]]=(B[[j]]-bi[[j]])/SE[[j]];

}else{S[[j]]=0; Sm[[j]]=0};
Sm[[j]]=pt(Sm[[j]], df=n-length(coefB[[j]]))} ;

if (errb=="u"){z=sum(unlist(Sm)*unlist(w))-alpha;
}else{z=sum((1-unlist(Sm))*unlist(w))-alpha};
return(z)};

options(warn=2);
test=try(multiroot(topot, start=tl, maxiter=1000, useFortran=T,

parms=parametersl));
options(warn=1);
war=inherits(test, "try-error");
if (war==T){

l=uniroot(topot, lower=tl, upper=tu, extendInt="yes",
maxiter=1000, tol=1e-5, parms=parametersl)$root;

}else{
l=multiroot(topot, start=tl, maxiter=1000, useFortran=T, ctol=

1e-5, parms=parametersl)$root};
options(warn=2);
test=try(multiroot(topot, start=tu, maxiter=1000, useFortran=T,

parms=parametersu));
options(warn=1);
war=inherits(test, "try-error");
if (war==T){

u=uniroot(topot, lower=tl, upper=tu, maxiter=1000, extendInt=
"yes", tol=1e-5, parms=parametersu)$root;

}else{
u=multiroot(topot, start=tu, maxiter=1000, useFortran=T, ctol=

1e-5, parms=parametersu)$root};
med=u; if (l>u){u=l; l=med};
scor[[i]]=data.frame(rbind(l, u));
colnames(scor[[i]])=NULL};

CI=matrix(rep(0, 2*length(Fwhich)), ncol=2);
for(i in Fwhich){CI[i, ]=t(scor[[i]])};
rownames(CI)=Fnames;
colnames(CI)=c("lower", "upper");
return(CI)};
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