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Abstract 

In this article, we develop a mathematical framework to model crime and crime concentrations on 

a city road network. The model proposed is an advancement to similar frameworks inspired by a 

model introduced by Short et al. (2008). A significant modification introduced in our model is the 

use of spectral graph theory to represent the road network and to simulate diffusion throughout the 

network. The techniques discussed are tested in a simulation model of crime applied to the city of 

Vancouver, BC, Canada. The simulations presented are based off of empirical data of crime in 

Vancouver along with its street network. Results of the simulations present crime patterns that are 

consistent with crime patterns observed in the city.  

1. Introduction 

The significance of spatial-temporal criminology has culminated in research from disciplines in 

criminology, sociology, geography, psychology, computing science and mathematics. Simulating 

crime and modeling the dynamics of crime concentrations are significant areas of research in 

computing science and mathematics relating to spatial-temporal criminology. The value of 

research in these areas is in the predictive nature of modeling and simulations. How accurate a 

model or simulation is in predicting crime and crime concentrations is powerful in reducing the 

rate and spread of crime throughout a city. 

In recent years, several mathematical models have been developed with the intention of 

modeling the dynamics of crime concentrations of hot spots through mathematical diffusion 

(Chaturapruek et al., 2013; Pan et al., 2018; Short et al., 2008). These models are all inspired by 

a framework proposed by Short et al. (2008) and we will refer to this collection of papers as the 

diffusion papers for their application of diffusion in modeling crime hot spots.  

In our research, we are interested in studying the dynamics of these hotspots on a city’s road 

network. The model we present in this article is an advancement to the models developed in the 

diffusion papers. It draws from similar techniques used in these papers including framing crime 

hot spots from the perspective of mathematical diffusion.  

Although our model is similar to that of the diffusion papers, a key difference is that our model is 

applied directly to a city road network. In contrast, the diffusion papers model crime concentrations 

on both one and two dimensional lattices. In this article, we test our techniques by replicating crime 

in Vancouver, BC, Canada in a simulation model of crime. The methodology used in this 

simulation model is discussed and an error analysis between our results and the city’s crime data 

is presented. 
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2. Preliminaries 

2.1 Network Theory 

The underlying structure of our mathematical model is of course, a city road network. The study 

of networks has grown rapidly in the past several decades; especially with the advent of machine 

learning and social networks. The mathematical field in which discrete mathematicians study 

networks is called graph theory (West, 2000). We will, however, refer to graph theory as 

network theory in this article. A network in this field consists of three components: a set of 

points, the edges between them, and a relation defining the connectivity of the points. We note 

that points are also referred to as vertices or nodes and we say that two nodes are adjacent if 

there exists an edge between them. Additionally, we define the degree of a node to be the 

number of nodes adjacent to our given node.  

One method network theorists use to describe the connections between nodes is called an 

adjacency matrix which we denote as 𝒜. Given a graph 𝐺 with 𝑚 nodes, we number each node 

uniquely with the numbers 1, … , 𝑚 and create an 𝑚 × 𝑚 matrix with these nodes. The element of 

the 𝑖𝑡ℎ row 𝑗𝑡ℎ column, which we denote as 𝒜𝑖𝑗, is the same as the element of the 𝑗𝑡ℎ row 𝑖𝑡ℎ 

column, 𝒜𝑗𝑖 . Hence, 𝒜 is a symmetric matrix. If two nodes, 𝑖 and 𝑗 are adjacent, then we have 

that 𝒜𝑖𝑗 = 𝒜𝑗𝑖 = 1. All other indices are 0. That is for each pair of nodes, we have: 

𝒜𝑖𝑗 = 𝒜𝑗𝑖 = {
1;  𝑖 and 𝑗 are adjacent
0; otherwise.                  

 (1) 

A matrix related to the adjacency matrix is the weighted adjacency matrix, 𝒲. In a weighted 

adjacency matrix, connectivity is defined by the cost it takes to travel between 2 connected 

nodes. These costs replace the 1's in the matrix and weights can be thought of as distances, 

prices, and lengths of time. We will utilize a distance weighted adjacency matrix in our model. 

In addition to the adjacency matrix an important matrix we define for a graph 𝐺 is its degree 

matrix, denoted 𝒟. This is simply an 𝑚 × 𝑚 diagonal matrix whose diagonal is the degree of the 

nodes of 𝐺, where the degree of a node is defined to be the number of nodes adjacent to it. That 

is, for a node 𝑖, the 𝑖𝑡ℎ row 𝑖𝑡ℎcolumn of 𝒟, denoted 𝒟𝑖𝑖, is the degree of the node 𝑖. The matrix 

𝒟 is defined explicitly by: 

𝒟𝑖𝑗 = {
degree of a node 𝑖;  if 𝑖 = 𝑗          
0;                                 otherwise.  

 (2) 

Next, we define the graph's discrete Laplacian matrix, denoted with ℒ, to be the degree matrix 

subtracted by the adjacency matrix or, 

ℒ = 𝒟 − 𝒜. (3) 

Finally, we define the random walk normalized Laplacian denoted as ℒ𝑟𝑤 (Riascos & Mateos, 

2014).  This matrix is a modified Laplacian matrix where the elements of each row are divided 

by the degree of the node corresponding to said row. Figure (1) demonstrates these matrices in 

use. 
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Figure 1: An example of a network with 6 nodes and its adjacency, degree, and Laplacian 

matrices. 

In practice, one uses the adjacency matrix to determine the neighbouring nodes of a given point. 

For example, in Figure (1) we see that row 2 of the adjacency matrix has three 1's which correspond 

to its neighbours: 1, 3, 4. Once can find a cost radius by a similar means with the weighted 

adjacency matrix. In our model, we will apply the use of the weighted adjacency matrix, which we 

will refer to as the distance matrix, to define a search radius for our offenders. 

We note that the distance metric applied in the model is the taxicab metric or the Manhattan 

distance metric. This is because streets do not follow a uniform geometry in general and as such, 

we must consider distances along streets. Additionally, we will denote an arbitrary point on our 

network, a site, by the letter 𝑠. 

Using this distance matrix, network theorists can follow adjacencies to determine distances 

between intersections which do not have a direct road connecting them. The value in this is one 

can then determine distances between every intersection on the street network. In reality, 

individuals cannot take straight line paths to other areas and their mobility and distance travelled 

is constrained by the street network. On a street network, a distance radius from an intersection, is 

everywhere an individual can travel to from the given intersection within the defined radius. Under 

the setting of network theory, distances are measured by what is known as block distances 

describing the distances for paths between points. 
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2.2 Random Movement 

The driving mechanisms behind the diffusion papers’ models are some kind of a random 

walkers, our criminal agents. The models utilize three main types of random movement Biased 

Random Walks (BRW), Lévy Flights (LF) and Truncated Lévy Walks (TLW). For our framework, 

we utilize the latter of these three, the TLW. Movement determined by these three types of random 

motion are dictated by some sort of weight or attractiveness that varies from site to site with time. 

Hence, we denote this attractiveness at a given site s at time t to be 𝐴𝑠(𝑡). Therefore, a network 

with nodes 1 … m has an attractiveness field described by the vector below: 

 𝐴(𝑡) = [𝐴1(𝑡) … 𝐴𝑚(𝑡)]𝑇. (4) 

As mentioned, motion defined TLWs is a stochastic process. In a TLW, a random walker can take 

long steps based on a Truncated Lévy distribution (Pan et al., 2018). The probability distribution 

is defined by the probability of a random walker jumping from site a to b as  

 
𝑞𝑎→𝑏(𝑡) =

𝑤𝑎→𝑏(𝑡)

∑ 𝑤𝑎→𝑠(𝑡)𝑠=sites not equal to 𝑎
, 

(5) 

where we define 𝑤𝑎→𝑏 to be 

 

𝑤𝑎→𝑏(𝑡) = {

𝐴𝑏(𝑡)

𝑙𝜇𝑑(𝑎, 𝑏)𝜇
;  1 ≤ 𝑑(𝑎, 𝑏) ≤ 𝐿

0;                          otherwise.

 

(6) 

Here, 𝑙 is a fineness or spacing between points in space, 𝜇 is a constant between the numbers 1 

and 3 serving as the exponent of the underlying power law of the Lévy distribution and d(a,b) is 

the distance between sites a and b under the Manhattan distance metric bounded by a constant 𝐿, 

some maximum distance (Pan et al., 2018). TLWs are similar to Lévy Flights which allow for 

infinite jumps, the case for when 𝐿 → ∞. We argue that due to the constraints of a city, a random 

walker cannot take these leaps which was applied in a model by Chaturapruek et al. (2013). As 

such, we base our model on TLWs similar to a framework by Pan et al. (2018). Figure (2) 

presents examples of a TLW and a BRW, a type of random motion where step sizes are fixed. 

 

 
(a) 

 
(b) 

  

Figure 2: (a) Truncated Lévy Walk (b) Biased Random Walk  
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2.3 Diffusion on Networks 

Diffusion on networks follows conventional descriptions of diffusion on lattices.  Suppose we have 

some fluid and for any site s on our network, we define ℱ𝑠(𝑡) to be the amount of that fluid site 𝑠 

has at time t. Therefore, in a system with nodes 1 … m, the state of fluid allocation throughout the 

m nodes at time t is described by the vector below: 

 ℱ(𝑡) = [ℱ1(𝑡) … ℱ𝑚(𝑡)]𝑇 . (7) 

Suppose we pick a site p that has n-many neighbours. After a time increment of 𝛿𝑡, the substance 

spreads out evenly to all of p's neighbours. That is, ℱ𝑝(𝑡) loses ℱ𝑝(𝑡) units of fluid f while each of 

its neighbours receives ℱ𝑝(𝑡)/𝑛 units after a 𝛿𝑡 timestep. Moreover, ℱ𝑝(𝑡) increases by what its 

neighbours contributed after the given time step. This is done with ease by using the ℒ𝑟𝑤, the 

random walk normalized Laplacian using the update formula (Riascos & Mateos, 2014) 

 ℱ𝑝(𝑡 + 𝛿𝑡) = ℱ𝑝(𝑡) − ℒ𝑝
𝑟𝑤 ⋅ ℱ(𝑡) (8) 

where we see ℱ𝑝(𝑡) subtracted by the dot product of ℒ𝑝
𝑟𝑤, the pth row of the ℒ𝑟𝑤 matrix, and ℱ(𝑡), 

the state of the substance allocation throughout the entire network at time t. Furthermore, this 

generalizes to an operation which updates the entire system using the update formula below: 

 ℱ(𝑡 + 𝛿𝑡) = ℱ(𝑡) − ℒ𝑟𝑤ℱ(𝑡). (9) 

We illustrate an example of this in Figure (3), our graph in Figure (1) with an arbitrary initial state 

of substance allocation.  

Figure 3: Diffusion on a graph with 6 nodes  

(a) The graph with arbitrary initial conditions (b) The graph after one time step 𝛿𝑡  

3. Methodology 

We now proceed with an explanation of our methodology. The underlying system for each model 

has two main components -- stationary crime sites and criminal agents which move from site to 

site. This system evolves over time with time increments of 𝛿𝑡 > 0. For us, each site is a discrete 
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point on our road network. Hence, each site is represented as a node. To accurately portray offender 

movement, the road network must be subdivided into street segments of equal lengths 10m. This 

value 10m will be used in the TLW of criminal agents in our model. We will assume that after 

subdivision, the network will have 𝑚-many sites. 

As mentioned, these criminal agents are located at each site. We shall denote the number of 

offenders at site 𝑠 at time 𝑡 as 𝑛𝑠(𝑡). Therefore, the number of offenders throughout the whole 

system at time 𝑡 is described by the vector below: 

 𝑛(𝑡) = [𝑛1(𝑡) … 𝑛𝑚(𝑡)]𝑇 . (10) 

In addition to 𝑛(𝑡), the network has an underlying "attractiveness field" defined in Equation (4). 

As its name suggests, the site's "attractiveness" is an offender's beliefs about the vulnerability and 

intrinsic value of criminal opportunity at the site at a given time. We assume that this attractiveness 

consists of the sum of a static background attractiveness 𝐴𝑠
0 and a dynamic attractiveness 𝐵𝑠(𝑡) 

forming: 

 𝐴𝑠(𝑡) = 𝐴𝑠
0 + 𝐵𝑠(𝑡). (11) 

Here, the dynamic attractiveness term 𝐵𝑠(𝑡) represents the component associated with repeat 

victimization and the broken window effect. Therefore, the system's attractiveness A(t), static 

attractiveness 𝐴𝑠
0, and dynamic attractiveness 𝐵𝑠(𝑡), can be represented by the following vectors 

in Equations (4), (12), and (13): 

 𝐴0 = [𝐴1
0 … 𝐴𝑚

0 ]𝑇 (12) 

 𝐵(𝑡) = [𝐵1(𝑡) … 𝐵𝑚(𝑡)]𝑇 . (13) 

We note that 𝐴0 can be uniform or can vary across the network. 

Hence, each site s has an associated vector, a qualitative description, representing the 

“attractiveness” at time 𝑡 and the number of criminal agents. This vector is defined to be the pair 

(𝐴𝑠(𝑡), 𝑛𝑠(𝑡)). The whole system then, can be defined similarly by Equations (4) and (10). This 

system evolves from starting state with an initial distribution of criminal agents and an 

attractiveness field over the road network. After a time increment, the system will evolve with the 

following four step process.  

Step 1. Generate criminals on the network based off of a Normal Distribution for expected number 

of crimes for a given time increment. For example, a time step could represent a month and so, the 

expected number of crimes would have to reflect expected criminal events in the time span of a 

month. 

Step 2. Allow each criminal to search for crimes moving using TLWs. At every site they visit, each 

criminal decides to whether or not they will commit a crime with the probability 

 𝑝𝑠(𝑡) = 1 − 𝑒−𝐴𝑠(𝑡)𝛿𝑡. (14) 

If they choose not to commit a crime, they continue searching upwards of a maximum number of 

searches. If the offender reaches this limit, we assume they have been stuck searching in a given 
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area and we force said criminal to commit a crime at their last visited site. This limit reduces 

computational load and accounts for finite time. 

Step 3. Once all agents have committed their offences or have run out of steps, they will be 

immediately removed from the system. This can be thought of the agent fleeing the site of the 

crime. For each site s, we define 𝐸𝑠(𝑡) to be the number of crimes committed there at time t. If a 

crime is committed at site s at time t, we increment 𝐸𝑠(𝑡) by 1. So, the vector  

 𝐸(𝑡) = [𝐸1(𝑡) … 𝐸𝑚(𝑡)]𝑇 (15) 

determines the number of crimes committed throughout the system at time t and is determined by 

the events in Step 2. 

Step 4. Finally, after every criminal agent has committed a crime and the vector 𝐸(𝑡) is updated, 

the dynamic term is updated by the following update rule (Short et al., 2008) 

 𝐵(𝑡 + 𝛿𝑡) = [𝐵(𝑡) − 𝜂ℒ𝑟𝑤𝐵(𝑡)](1 − 𝜔𝛿𝑡) + 𝜃𝐸(𝑡) (16) 

where 𝜂, 𝜔, and 𝜃 are absolute constants each serving different purposes. The constant 𝜂 ∈ (0,1) 

represents the strength of the near-repeat victimization effect, 𝜔 is the decay rate, and 𝜃 is the 

amount by which local attractiveness at each site gets increased by given the occurrence of a 

criminal event. Here, the 𝐵(𝑡) − 𝜂ℒ𝑟𝑤𝐵(𝑡) term accounts for partial diffusion of attractiveness 

after a 𝛿𝑡 time step. Additionally, the (1 − 𝜔𝛿𝑡) terms accounts for the decay of perceived 

attractiveness at each site. Therefore, we find that the update rule diffuses the attractiveness of a 

given site to its neighbours, decays over time, and gains attractiveness based on near-repeat 

victimization. 

In practice, we advise seeding simulations with empirical data for more realistic results. For 

example, in our model, we update 𝐸(𝑡) using real crime data and using time increments which 

reflect the expected number of crimes. Tables 1 and 2 outline our fields and parameters 

respectively while Figure (4) summarizes our four-step. 

Fields 

Dynamic 

Attractiveness 

𝐵(𝑡) = [𝐵1(𝑡) … 𝐵𝑚(𝑡)]𝑇 

Static 

Attractiveness 
𝐴0 

Attractiveness 

field 

𝐴(𝑡) = [𝐴1(𝑡) … 𝐴𝑚(𝑡)]𝑇 

𝐴𝑠(𝑡) = 𝐴0 + 𝐵𝑠(𝑡)     

Offenders 

 
𝑛(𝑡) = [𝑛1(𝑡) … 𝑛𝑚(𝑡)]𝑇 

Criminal 

events 
𝐸(𝑡) = [𝐸1(𝑡) … 𝐸𝑚(𝑡)]𝑇 

Table 1: Fields 

 

Parameters 

Truncation limit  𝐿 > 0 

Fineness ℓ > 0 

Lévy Distribution Constant 𝜇 ∈ (1,3) 

Discrete time increment 𝛿𝑡 > 0 

Diffusivity  𝜂 ∈ (0,1] 
Random-walk normalized 

Laplacian of network 
ℒ𝑟𝑤 

Decay rate 𝜔 ∈ (0,1) 

Effect of near-repeat 

victimization 
𝜃 > 0 

Table 2: Parameters 
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Figure 4: Summary of four step process.  

4. Simulations of Crime 

4.1 Initialization and Parameterization of the Model 

In practice, one can use our model to simulate criminal events which are specific to a given city. 

To do so, one requires access to data related to the road network and crimes for their city of 

interest. The available crimes data should be geocoded so that it can be used on the geography of 

the road network. Our research focused on the city of Vancouver and so, in this technical 

appendix, the results from this research will be used as an example. 

Firstly, the road network of interest must contain sites for the criminal agents to travel to and 

commit their crimes. In our example, generate sites on the network by subdividing Vancouver’s 

network into 10m segments and crime sites are located at each end of the segments. Once the 

network data is introduced, one can initialize the attractiveness field for the network.  

Initially, the attractiveness field should be non-existent. That is, it is zero throughout the 

network. Parameterization in Equation (16) will vary, however Table 3 outlines parameters we 

used in our example. Moreover, choice of 𝛿𝑡 is dependent on crime data. That is, if the crime 

data is available for every given day, then 𝛿𝑡 = 1 should be used to represent 1 day. Similarly, 

𝛿𝑡 = 30 for a month should be used to represent 30 days. 

Suggested Parameters 

𝜃 0.1 

𝜔 1/40 

𝜂 0.01, 0.1, or 1 

Table 3: Suggested parameters for Equation (16) 
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The vector 𝐸(𝑡) is also dependent on the available crime data. Crime data must be organized by 

time and must be geographically located on the closest available site on the network. Each 

increment in time of this data will be equal to 𝛿𝑡 and 𝐸(𝑡) will be updated by the crime data. No 

criminal agents should be put on this network during this initialization state. 

The result of this initialization and parameterization will be unique Attractiveness fields which 

we refer to as seeds. These seeds will be what the simulations of crime with our criminal agents 

will be run on. We present seeds used in our research in Figure (5). 

Figure 5: Seeds of crime concentrations used in simulations. 
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4.2 Error analysis 

Of course, different parameters will lead to different results in simulations. To determine optimal 

parameters, one should perform an error analysis to determine the accuracy of a seed. To 

measure the magnitude of this error we perform a Mean-Squared Error (MSE) analysis. A 

smaller MSE implies greater accuracy in a given simulation, in contrast to a simulation with a 

higher MSE.  

However, due to the randomness of the criminal agents, we advise performing a Monte Carlo 

Algorithm on each seed with at least 200 trials and averaging the MSE over all trials. Trials should 

be grouped by different seeds to test for performance changes when changing parameters. By 

performing the Monte Carlo Algorithm on these different groupings, one accounts for all the 

randomness between trials for simulations to derive a more accurate error term. 

In our research, we tested the effects of diffusiveness, truncation limits, and the scale of different 

time steps on the error of our simulations. The error of our simulations was determined by 

comparing it directly to data for crime in Vancouver in June 2019 (see Figure (6)). Each of these 

tests had the same 𝜃 and 𝜔 values outlined Table (3) to maintain consistency between tests. The 

values of the diffusiveness 𝜂, truncation limit 𝐿, and time steps 𝛿𝑡 are outlined in Table (4). These 

tests resulted in the error graph found in Figure (7) with the most accurate result corresponding to 

parameters 𝜂 = 0.1, 𝐿 = 2000, and 𝛿𝑡 = 1. 

 

Figure 6: Most accurate trial from simulations. 
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Variable Parameters 

𝜂 0.01, 0.1, 1 

𝐿 100, 250, 500, 1000, 2000 

𝛿𝑡 1, 30 

Table 4: Values of parameters which varied between tests 

5. Discussion of Results 

We now present results from computer simulations of our framework. These results illustrate the 

effects of different parameterizations in the model and the magnitude of errors when compared to 

crimes in June 2019 (See Figure (6)). To determine the magnitude of these errors, we perform 

what is called a Mean-Squared Error (MSE) Analysis across the network. A lower MSE 

corresponds to a more accurate parameterization while a higher MSE corresponds to a less accurate 

one.   

From the MSE analysis in Figure (7), we find that the MSE corresponding to a discrete time 

increment of 𝛿𝑡 = 30 decreases as we increase the Truncation limit 𝐿. With the maximum 

Truncation Limit in this discrete time increment, we see increased accuracy with high values of 

diffusivity as well. In fact, the most accurate simulations corresponded to trials which ran with a 

Truncation limit of 𝐿 = 2000 and diffusivity 𝜂 = 1. As 𝜂 = 1 is the highest possible value for 

diffusivity, it appears that this would be the optimal value for 𝛿𝑡 = 30. 

 
(a) 

 
(b) 

Figure 7: Mean-Squared Error of Truncation for different values of 𝛿𝑡.  

(a) 𝛿𝑡 = 30 (b) 𝛿𝑡 = 1. 

 

Similarly, for 𝛿𝑡 = 1, we find that the MSE decreases as we increase the Truncation limit 𝐿 as 

well. However, we find that the results of diffusiveness are not similar with this discrete time 

increment. In fact, greater diffusiveness, 𝜂 = 1, lead to greater errors than in lower levels of 

diffusiveness, 𝜂 = 0.01 and 0.1, as Truncation limits increased. With Truncation limits smaller 

than 500, the results from these trials had errors less predictable than that of 𝛿𝑡 = 30. Despite this, 

for limits greater than 500 there is a more predictable trend which is in line with the errors we saw 

for 𝛿𝑡 = 30. We also see the errors leveling out at 𝐿 = 2000. 
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In light of this however, each simulation run with the smaller time increment yielded errors smaller 

than all results obtained from the discrete time increment of 30. The most accurate of these 

simulations corresponds to the values of 𝐿 = 2000 and 𝜂 = 0.1. In Figure (8), we present the trial 

with the smallest MSE for 𝛿𝑡 = 1. Comparing Figures (6) and (8), one can see apparent visual 

similarities between our simulation and the Vancouver crime in June 2019. 

 

Figure 8: Most accurate trial from simulations. 

This increase in accuracy could be justified by the short amount of time between crimes 

corresponding to the effects of near-repeat victimization. That is, the effects of near-repeat 

victimization are most prominent within a short time window after a criminal event. Clearly, 1 day 

is a much smaller time window than 30 days. We argue that the accuracy of smaller diffusiveness, 

𝜂 = 0.1, in the smaller time increments, 𝛿𝑡 = 1, is in line with the value for 𝜂 = 1 for the time 

increment of 30. That is, they represent similar amounts of spreading within the same time period 

with differences in scale and magnitude.  
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