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Programa de Doctorat en Estad́ıstica i Optimització

Recent statistical advances and applications of

species distribution modeling

by
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Resumen

Facultad de Ciencias Matemáticas

Departamento de Estad́ıstica e Investigación Operativa

Programa de Doctorado en Estad́ıstica y Optimización

En el mundo en que vivimos, producimos aproximadamente 2.5 quintillones de bytes

de datos por d́ıa. Esta enorme cantidad de datos proviene de las redes sociales,

Internet, satélites, etc. Todos estos datos, que se pueden registrar en el tiempo o en

el espacio, son información que puede ayudarnos a comprender la propagación de

una enfermedad, el movimiento de especies o el cambio climático. El uso de modelos

estad́ısticos complejos ha aumentado recientemente en el contexto del estudio de la

distribución de especies. Esta complejidad ha hecho que los procesos inferenciales

y predictivos sean dif́ıciles de realizar. El enfoque bayesiano se ha convertido en

una buena opción para lidiar con estos modelos, debido a la facilidad con la que se

puede incorporar la información previa, junto con el hecho de que proporciona una

estimación de la incertidumbre más realista y precisa.

En esta tesis, mostramos una visión actualizada del uso de las últimas

herramientas estad́ısticas que han surgido en la aplicación de modelos de dis-

tribución de especies (SDMs) en contextos reales desde una perspectiva bayesiana, y

desarrollamos nuevas herramientas metodológicas para resolver algunos problemas

estad́ısticos que aparecieron en ese proceso.

Con respecto a la aplicación de las últimas herramientas estad́ısticas en el con-

texto de los SDMs, los objetivos espećıficos han sido modelizar la producción de

ascosporas Plurivorosphaerella nawae en la hojarasca de caqui; estudiar los fac-

tores espaciales y climáticos asociados con la distribución de la mancha negra de

los ćıtricos causada por el hongo Phyllosticta citricarpa; analizar los efectos de

la estructura genética y la autocorrelación espacial en los cambios de rango de

distribución de las especies; y estudiar la distribución del delf́ın mular (Tursiops

truncatus). Dos objetivos han marcado la parte más metodológica de la tesis: una

http://www.uv.es
http://www.uv.es/matematiques
http://www.uv.es/eio
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revisión centrada en los problemas estad́ısticos en SDMs y la implementación de

la regresión de Dirichlet bayesiana en el contexto de la aproximación de Laplace

anidada integrada (INLA).

La tesis que aqúı presentamos es un compendio de ocho art́ıculos y a

continuación mostramos su estructura. En los cuatro primeros caṕıtulos presenta-

mos una introducción general que incluye una descripción de los objetivos (Caṕıtulo

1), la base de la metodoloǵıa empleada (Caṕıtulos 2 y 3) y una descripción de los re-

sultados obtenidos (Caṕıtulo 4). En los ocho caṕıtulos siguientes, mostramos todos

los art́ıculos que componen este compendio. Y por último, incluimos el Caṕıtulo 13,

donde se presentan algunas conclusiones y ĺıneas futuras de investigación, seguido

de una bibliograf́ıa genérica correspondiente a los caṕıtulos introductorios.
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Introduction

In the world that we live, we produce approximately 2.5 quintillion bytes of

data per day. This huge amount of data comes from social media, internet,

satellites, etc. All these data, which can be recorded in time or in space,

are information that can help us to understand the spread of a disease, the

movement of species or the climate change.

The use of complex statistical models has recently increased in the con-

text of species distribution behavior. This complexity has made the inferen-

tial and predictive processes challenging to perform. The Bayesian approach

has become a good option to deal with these models due to the ease with

which prior information can be incorporated along with the fact that it

provides a more realistic and accurate estimation of uncertainty.

This Thesis is devoted to provide an updated vision of the use of the

latest statistical tools that have been emerging in the application of species

distribution models (SDMs) in real contexts from a Bayesian perspective,

and to develop new methodological tools to solve some statistical problems

appeared in that process.

With regard to the application of the latest statistical tools in the con-

text of SDMs, the particular objectives have been to model the production

of Plurivorosphaerella nawae ascospores in persimmon leaf litter; to study

the spatial and climatic factors associated with the distribution of the citrus

xxxiii
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black spot disease caused by Phyllosticta citricarpa; to analyze the effects of

geographic genetic structure and spatial autocorrelation on species distribu-

tion range shifts; and to study the bottlenose dolphin (Tursiops truncatus)

distribution.

Two goals have guided the most methodological part of the Thesis: a

review with the focus in the statistical issues in Species Distribution model-

ing, and the implementation of Bayesian Dirichlet regression in the context

of the integrated nested Laplace approximation (INLA).

These two main objectives provide the following structure to the Thesis,

which is a compendium of eight papers. The first four chapters are devoted

to present a general introduction including a description of the objectives

(Chapter 1), the basis of the methodology employed (Chapters 2 and 3) and

a description of the results obtained (Chapter 4).

The next eigth chapters are dedicated to display all the papers which

compose this compendium. In particular, in Chapter 5, we present a pa-

per where a hierarchical Bayesian beta regression is constructed to fit the

dynamics of Plurivorosphaerella nawae ascospore production in the leaf lit-

ter. Chapters 6, 7 and 8 use geostatistical tools and hierarchical Bayesian

logistic regression models to study the spatial and climatic factors associ-

ated with the distribution of the citrus black spot disease. In Chapter 9,

we develop spatial hierarchical Bayesian beta regression models to analyze

the effects of geographic genetic structure and spatial autocorrelation on

species distribution range shifts. In Chapter 10, a non-stationary hierar-

chical Bayesian logistic model is employed to study the bottlenose dolphin

(Tursiops truncatus) distribution. Chapters 11 and 12 are devoted to cover

the most methodological part of this Thesis. We present a review with the

focus in the statistical issues in Species Distribution modeling (Chapter 11),

and a way to implement the Bayesian Dirichlet regression in the context of

the integrated nested Laplace approximation (Chapter 12).

The final part of the Thesis includes Chapter 13, where some conclu-

sions and future lines of research are presented, and a generic bibliography

corresponding to the introductory chapters.
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Chapter 1

Modeling the distribution of

species

1.1 Motivation

In many applied fields, the information on the presence/absence, abundance

or proportion of a species is usually linked to environmental variables with

the final objective of predicting where and how much of a species is likely

to be present in unsampled locations or time periods. The models that do

that are widely known as Species Distribution Models (SDMs).

This kind of models, where the spatio-temporal dynamics insight of

species or diseases is a key issue, has been widely used in research areas such

as ecology or plant epidemiology to study the risk associated with invasive

species (Fitzpatrick et al., 2007; Luo and Opaluch, 2011), the potential ef-

fects of climate change (Iverson et al., 2004; Araújo et al., 2005; Brown et al.,

2016), the design of protected areas, the protection of threatened species

(Roos et al., 2015) or the potential distribution of infectious diseases (Pe-

terson et al., 2002; Fatima et al., 2016; Juan et al., 2017; Mart́ınez-Minaya

et al., 2018), among many others.

In the last years, the complexity of the methods used in this context has

increased (see for example, Guisan and Thuiller, 2005; Elith and Leathwick,

1
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2 1.1. Motivation

2009). They are mainly based on the assumption that the observations

are conditionally-independent, while species distribution data often depict

residual spatial autocorrelation (Kneib et al., 2008; Beale et al., 2010). Al-

though the sampling is random, this spatial autocorrelation should be taken

into account since the observations are often close and subject to similar en-

vironmental features (Banerjee et al., 2014). For this reason, the inclusion

of spatial and spatio-temporal structures have grown enormously allowing

the model to deal with other components to model variability not explained

by the covariates.

However, the intricacy of the model is not only due to the effects included

in the linear predictor, but also because of the likelihood. SDMs that cor-

relate the occurrence or abundance of a species with abiotic variables (en-

vironmental variables) are typically used to investigate species-environment

relationships. However, just a few cases the important influence of biotic

interactions on especies is considered (Dormann et al., 2012). Pollock et al.

(2014), which model the co-ocurrence of different frog species using a mul-

tivariate normal likelihood, or Wolf et al. (2017), which uses a multinomial

likelihood for the study of the attack rates in a New Zealand intertidal

whelk predator, are examples about how the interactions between especies

are taken into account with a multivariate response. In particular, it is

common to have measures of a multivariate phenomenon lying in a bounded

interval that sum up to one. These data which mainly consist of proportions

or percentages of disjoint categories are widely known as compositional data

(Aitchison, 1982).

The combination of non-Gaussian data, in some cases multivariate data,

a linear predictor and unobserved latent variables usually makes estimation

and prediction computationally difficult. In the last years, Bayesian infer-

ence has become a good tool to deal with these complex models, because it

allows both the observed data and model parameters to be random variables,

resulting in a more realistic and accurate estimation of uncertainty. How-

ever, as usual in highly structured models, numerical approaches are needed

to estimate and predict. Markov Chain Monte Carlo methods (MCMC)

are so popular, but, the integrated nested Laplace approximation (INLA)
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1. Modeling the distribution of species 3

methodology (Rue et al., 2009) has become an alternative to MCMC, guar-

anteeing a higher computational speed for a particular case of models, the

Latent Gaussian models (LGMs).

1.2 Main objectives

In what follows, we present the objectives of this Thesis. All these objec-

tives have been developed in collaboration with different researchers from

different institutions. Around these objectives, five papers have been pub-

lished or accepted in indexed journals in the Journal Citation Reports (JCR,

Journal Citation Reports Social Sciences Edition, 2017), as well as a letter

to the editor of one of these journals, and two more are about to be sent to

other two JCR indexed journals.

This Thesis arose from a collaboration with a research institute inter-

ested in plant disease epidemiology issues. We started by applying SDMs in

this context, posteriorly, we extended it to the marine and vegetal species

area. During this time, new statistical problems related to the application

of SDMs in real contexts needing methodological development appeared. As

a consequence, this Thesis can be structured around two main objectives:

• Objective 1: applying SDMs in plant disease epidemiology, and ma-

rine and vegetal species distribution. This objective can be split in

four specific goals:

– Objective 1.1: modeling the production of Plurivorosphaerella

nawae ascospores in persimmon leaf litter. We considered a

Bayesian beta regression to solve the problem. The results are

about to be sent to a JCR indexed journal. As a subproduct

from this model, we have also constructed a warning system that

is about to be implemented in the Valencian Institute for Agri-

cultural Research (IVIA) in order to help farmers to take prompt

decisions on fungicide applications.

– Objective 1.2: study of the spatial and climatic factors associ-

ated with the distribution of the citrus black spot disease. The
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results obtained from this study (two papers and a letter to the

Editor) have been published in the European Journal of Plant

Pathology.

– Objective 1.3: analysis of the effects of geographic genetic

structure and spatial autocorrelation on species distribution

range shifts. A paper has been accepted in the journal Molecu-

lar Ecology Resources.

– Objective 1.4: the study of the bottlenose dolphin (Tursiops

truncatus) distribution. Regarding to this topic, a paper has been

accepted in the journal Ecological Modelling.

• Objective 2: developing new methodological tools to solve statistical

problems appeared in the application of SDMs in real contexts after

checking the state of the art of the statistical analysis of SDMs. As a

result, this objective has two specific aims:

– Objective 2.1: a review with the focus in the statistical issues in

species distribution modeling. This review has been published in

the journal Stochastic Environmental Research and Risk

Assessment.

– Objective 2.2: implementing Bayesian Dirichlet regression in

the context of the integrated nested Laplace approximation. The

methodological results along with their implementation in an R-

package are about to be sent to a JCR indexed journal.

1.3 Methods in SDMs

Environmental niche modeling, habitat modeling or Species distribution

modeling are just three ways to name an area whose mainly aim is to pre-

dict the distribution of a species across geographic space and time using

environmental data. Environmental data are most often climate data (e.g.

temperature, precipitation), but can include other variables such as soil

type, water depth or land cover.
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1. Modeling the distribution of species 5

The aim of these models is to characterize the distribution of species.

Usually, they deal with the ocurrence, the abundance or the relative abun-

dance of a species. As we have pointed out before, they study how envi-

ronmental conditions are related with the phenomenon. This is useful to

predict the presence or the abundance of a species under climate change

scenarios, or to predict the introduction of invasive species.

In the literature, there are different algorithms applied to classify species

distribution as a function of a set of environmental variables. There is a

group of methods which deal with presence only datasets, including maxi-

mum entropy algorithm, environmental distance, or envelope methods, such

as Maxent (Phillips et al., 2006).

The main idea of Maxent consists of expressing a probability distribution

where each grid cell has a predicted suitability of conditions for the species,

drawn from a set of environmental variables and georeferenced ocurrence

locations. With this method, we obtain maps with the representation of

the probability of presence. The environmental layers and a set of grid cells

jointly with a set of locations where the species has been observed determine

the model. The suitability of each grid cell for the presence of the especies

as a function of the environmental variables is expressed by the model. The

higher the value of the function at a particular grid cell, the more suitable

the conditions in the grid cells for that species. The resulting function is a

probability distribution over all the grid cells. This distribution is subject to

some constraints and it is selected as the one which has maximun entropy.

Another group of methods include machine-learning algorithms such as

Boosting Regression Trees, Classification Trees or Random Forests (Cutler

et al., 2007; Evans et al., 2011; Elith and Leathwick, 2017; Walker et al.,

2017). The last group relates to traditional Generalized Linear Models

(GLM) and this is our starting point.

1.4 Generalized linear models (GLM)

Generalized Linear Models (GLM) arose as a consequence of modeling diffi-

culties when data came from non-normal distributions such as binomial,
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gamma or Poisson distributions. With GLMs, phenomenons as animal

counts, abundances of species, biomass data or presence/absence of diseases

can be modeled. The main features of GLMs are:

• Response variables are independent Y1, . . . , Yn, and they have the same

distribution (parametric) in the exponential family.

• A parameter vector β = (β1, . . . , βp) and a design matrix V which

is formed by the covariates values are required. The product of the

parameter vector with the design matrix comprises the linear predictor

ηi.

• A diferenciable and monotonous function entitled link function g(·),
that relates the mean µi = E(yi) with the linear predictor ηi = Viβ,

i.e., g(µi) = ηi = Viβ.

Then, a GLM is usually represented by means of:

Yi | β ∼ p(Yi | ηi)
(1.1)

g(µi) = ηi = Viβ ,

where p() is the distribution of the response variable, and p(Yi | ηi) the

likelihood conditioned to the linear predictor.

It is worth noting that in GLMs there is a linear relationship between the

linear predictor and the covariates. However, in some cases the relationships

are not linear (Guisan et al., 2002). Generalized additive models (GAMs)

can be used to model so. GAMs are a semi-parametric extension of GLMs,

where in addition to linear functions, smooth terms are included in the

model. These smooth terms are frequently modeled through different types

of smoothing-splines, that allow fitting non-linear effects to the covariates.

It is also worth noting that, even though it does not belong to the expo-

nential family, there exist another probability distribution that is useful for

practitioners in the context of SDMs, the beta distribution. Its domain is

defined in the open interval (0, 1), and can be used to model the proportion

of a species in an area, or just to model some indexes which take values in
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1. Modeling the distribution of species 7

this interval. The model is constructed in the same way as presented for

GLMs (Equation 1.1), and it is widely known as Beta regression (Ferrari

and Cribari-Neto, 2004).

All these methods are based on the assumption that the observations

are conditionally-independent. But this is not always the case. It is often

that model residuals display non-independent patterns or structures that

covariates can not explain. The presence of correlated model residuals com-

promises the fit of the whole model and its quantification of uncertainty.

Depending on the process under study, the unobserved component can

take several correlation structures. For example, we may expect correlated

residuals within site if we have repeated measurements of a process at each

sampling site. In this case, an independent random effect for each site can

solve the problem. But, if this sampling is done over time, residuals can be

temporary correlated. Time series analysis can be useful to deal with these

processes.

The same can happen with space, model residuals are also prone to spa-

tial correlation (Kneib et al., 2008). In that case, we rely on Tobler’s princi-

ple “near things are more related than distant things” (Tobler, 1970). But

this spatial structure can vary depending on the nature of the data and its

spatial domain: if it is areal data, correlation structures are often specified

using conditional autoregressive models with a given order of neighbouring

regions (Besag et al., 1991). For the case where we deal with a continuous

space, correlation functions need also to be continuous over distance.

In this Thesis, we deal with spatial data in a continuous space, which

is usually known as point-referenced data or Geostatistal data. We discuss

more about continuous fields and continuous autocorrelation functions in

the following section.

1.5 Geostatistical data

Geostatistical or point-referenced data consist on a collection of data in a

fixed set locations over a continuous spatial field. A GLM can be constructed
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8 1.5. Geostatistical data

using the coordinates of these data as covariates to describe the spatial

variation of the variable of interest. Alternatively, the coordinates can be

incorporated by means of a GAM in order to describe the effect of the

location.

However, it is more natural to formulate mixed-effects regression models

in which the linear predictor is made of a trend plus a spatial variation

(Haining, 2003). Usually the trend is composed of fixed effects or smooth

terms on covariates, meanwhile, the spatial variation is usually modeled

using correlated random effects. To construct the general model with spatial

random effects, let’s define first what is the structure of this random effect.

A random spatial effect W (s) at a location s ∈ D can be considered as

a stochastic process characterized by a spatial index s which varies contin-

uously in the fixed domain D, where D is a fixed subset of r-dimensional

Euclidean space. If r = 1, these kind of processes have a rich presence in

the time series literature. In the spatial context, usually r is encountered

to be 2 (northings and eastings) or 3 (northings, eastings, and altitude). In

this Thesis, we assume r = 2 for the spatial processes.

Let w(si), i = 1, 2, . . . , n be a realization of W (s) at n locations. Let’s

suppose that data y(si) have been observed at locations si, i = 1, . . . , n. y(s)

may represent the presence/absence of a species or a disease, the abundance

of a species, or just the relative abundance of a species. If an underlying

spatial process generate this data, the parameters of this process can be

fitted by considering y(si) = w(si). Observe that it is conceptually sensible

to assume that the phenomenon can be measured at all possible sites in the

domain, and so, in practice, the data are only a partial realization of that

spatial process. That is, we only have measurements at a finite number of

locations out of an infinite number of possible locations.

The main problem when we deal with this kind of spatial process w(s)

is the inference and prediction at new locations, based upon this partial

realization. The main idea is to infer about the surface at an uncountable

number of locations despite only seeing the process in a finite number of

locations. In other words, we need to infer a distance based covariance

function that best represents the underlying spatial proccess of our data,

and then predict at unsampled locations using kriging (Cressie, 1990).
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1. Modeling the distribution of species 9

The spatial process w(s) is Gaussian if for any n ≥ 1 and any set of

sites s = {s1, . . . , sn}, w = {w(s1), . . . , w(sn)} has a multivariate normal

distribution with mean µ = E(w(s)) and a structured covariance matrix Σ.

Usually µ is assumed to be 0. In the literature, this process is widely known

as a Gaussian field (GF; Rue and Held, 2005). From now on, we assume

that the spatial process is a GF.

To model spatial dependence, it is usual to assume a probability distri-

bution for the data conditional on an unobserved random effect, which is a

GF. Then the model presented in Equation (1.1) with a spatial effect can

be rewritten as:

yi | β, wi ∼ p(yi | ηi) ,
ηi = Viβ + wi , (1.2)

w ∼ GF (0,Σ) ,

where w = {w(s1), . . . , w(sn)} = {w1, . . . , wn} is the spatial random term.

The key issue in spatial statistics is the covariance function C, which

determines the covariance between random variables in two different points,

and not only allows us to know how two points in space are correlated, but

also defines the covariance matrix Σ of the GF. If si and sj are two locations

in space, then the covariance function is defined as

C(w(si), w(sj)) = Cov(w(si), w(sj)) , (1.3)

and each element of the matrix Σij is defined as

Σij = C(w(si), w(sj)) . (1.4)

Despite we know how to define the covariance function, it is not always

easy to deal with it. This function depends on multiple characteristics. For

instance, how the species spreads out. If we want to model the distribution

of marine species in the sea, the spread of these species can be conditioned

for the ocean currents what can make the spatial effect dependent on the

direction. This leads us to define some properties which we have to take

into account when we deal with GFs.
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10 1.5. Geostatistical data

The first property is called weak stationarity or second-order sta-

tionarity. We say that the GF is second-order stationary if µ(s) ≡ µ and

Cov(w(s), w(s+h)) = C(h) for all h ∈ Rr such that s and s+h lie within

D. In other words, the covariance function in two different locations depends

on the distance vector between these two locations. An example could be

the spread of a pathogen in plants. If there is a road close to the crop,

maybe this pathogen could spread faster by the road in cars or trucks than

in the crop, it would depend on the direction. When this property does not

fulfill, we call the process non-stationary.

The second property is called isotropy. We say that the GF is isotropic

if the covariance function depends only on the Euclidean distance between

points, i.e., Cov(w(s), w(s+ h)) = C(‖h‖). For instance, if we think again

in the spread of a pathogen in a crop, it would mean that the spread does

not depend on the direction, just on the distance. If this property does not

fulfill, we call the process anisotropic.

In most of the usual spatial data analyses we assum that the process is

second-order stationary and isotropic. However, in the case of objective 1.4.

where there exist barriers in the space, and then the space is not continuous,

it is necessary to use another kind of processes. We will treat this case in

the Chapter 3.

When the process is stationary and isotropic, different covariance func-

tions have been proposed (Banerjee et al., 2014). However the Matérn class

of covariance functions seems to be the most flexible because it embraces

a number of covariance functions depending on the value of its smoothing

parameter. For two locations si and sj in D, the stationary and isotropic

Matérn covariance function is defined as:

Cov(w(si), w(sj)) = C(‖si − sj‖) ,

=
σ2
w

2ν−1Γ(ν)
(κ ‖si − sj‖)νKν(κ ‖si − sj‖), (1.5)

being ‖si − sj‖ the Euclidean distance between the two locations si, sj and

σ2
w the marginal variance. Moreover, Kν is the modified Bessel function of

the second kind and order ν > 0, which measures the degree of smoothness

of the process. Conversely, κ > 0 is a scaling parameter related to the
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1. Modeling the distribution of species 11

distance at which the spatial correlation becomes almost null, i.e., the range

(for more information on the Matérn covariance model see Handcock and

Stein, 1993; Stein, 1999). In Chapter 3, we show the relationship between

κ and the range. If ν = 1
2 then the covariance function is the exponential

covariance function, and if ν →∞, then we obtain the Gaussian covariance

function.

The covariance matrix of the GFs depends on two parameters κ and σ2
w.

This can be easily embraced in a hierarchical structure. Taking into account

that the covariance matrix of the GFs depends in these two parameters, κ

and σ2
w, Equation (1.2) becomes:

yi | β, wi ∼ p(yi | ηi) ,
ηi = Viβ +wi , (1.6)

w ∼ GF (0,Σ(κ, σ2
w)) .

1.6 STAR and hierarchical modeling

Until now, we have focused above all in spatial patterns, however, the tem-

poral variation could be equally important. The spread of a species can vary

in space and also in time. Then, spatial models can be extended to spatio-

temporal models including a time dimension. A more general structure for

modeling species which comprises all kind of models until now presented

can be constructed.

If y = (y1, . . . , yn) represents the observed values of the corresponding

response variable Y with mean µ = (µ1, . . . , µn), each µi can be easily linked

to a structured additive predictor ηi through a link function g(·), so that

g(µ) = η. The structured additive predictor ηi accounts for the effect of

various covariates in an additive way:

ηi = β0 +

M∑
m=1

βmvmi +

L∑
l=1

fl(zli) , (1.7)
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where β0 corresponds to the intercept; the coefficients β = {β1, . . . , βM}
quantify the (linear) effect of some covariates v = (v1, . . . ,vM ) on the re-

sponse; and f = {f1(·), . . . , fL(·)} are unknown functions of the covariates

z = (z1, . . . ,zL), and can assume different forms such as smooth nonlinear

effects of covariates, time trends and seasonal effects, random intercept and

slopes as well as temporal or spatial random effects. These models in which

usually the mean of the response variable yi is linked to a structured predic-

tor that accounts for the effects of various covariates in an additive way are

known as Structured Additive Regression (STAR) models (Fahrmeir and

Tutz, 2001).

Note also that, as we have previously introduced in Equation (1.7), the

model involves multiple parameters or random effects that can be connected

by the structure of the problem. This kind of models can be considered as

hierarchical models. Here, observable outcomes are modeled conditionally

on certain parameters, which in turn are given a probabilistic specification

in terms of further parameters and adding various levels of the modeling.

Hierarchical models provide a generalization of all the models presented in

this Thesis and allow us to deal with any kind of data that we can find when

we deal with SDMs.

Once we know the structure of the models is time to make inference.

Although other approaches can be used such as maximun likelihood or re-

stricted maximum likelihood, in this Thesis we focus on the Bayesian ap-

proach. The next chapter describes some of the basis of this approach and

how we can perform in practice the inferential and predictive task.
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Chapter 2

Species distribution

modeling using INLA

Analyzing the distribution of a species has the same concerns that one has

to face when modeling practical real problems: model specification, esti-

mation and prediction. The Bayesian approach provides a framework for

combining complex data models (such as SDMs) and expert opinion, and

it easily addresses model specification, and therefore inference and predic-

tion (Banerjee et al., 2014). This chapter is devoted to present a recent

but widely known tool to make computational Bayesian inference: the inte-

grated nested Laplace approximation (INLA).

2.1 Bayesian methodology to statistical inference

and prediction

The Bayesian approach to inference dates from the eighteenth century, when

a British clergymen, Thomas Bayes, and a French scientist presented a

simple but powerful mathematical treatment of the non-trivial problem of

statistical data analysis, the Bayes theorem (Bayes, 1764; Laplace, 1812):

13
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14 2.1. Bayesian methodology to statistical inference and prediction

Given two events A and B, this theorem states that

P (B | A) =
P (A | B)× P (B)

P (A)
, (2.1)

being P (B | A) the conditional probability of B given A, P (A | B) the

conditional probability of A given B, P (A) the probability of A, and P (B),

the probability of B.

The interest lies in the probability of the event B given that A occurs.

P (B) is calculated before A is observed, then the probability of observing A

given B is used to update the original P (B) so that P (B | A) is obtained.

The main idea is update the probability of B (P (B | A)) using the informa-

tion that the researcher has about B expressed in P (B) and combining it

with the result of an experiment P (A | B). With this theorem a new phi-

losophy was born. Initial beliefs could be evaluated, updated and modified

with new information.

However, in the context of SDMs, as we presented in the previous chap-

ter, we do not talk about events, we try to model some phenomenons, for

example the abundance or the presence/absence of a species, in terms of

some covariates (environmental covariates for instance) and random effects

(spatial, temporal, etc.). We assign a probability distribution to the re-

sponse variable that could be a Binomial, Poisson, Beta, etc. We denote

this probability distribution as p(y | x) being y a vector of realizations of

the response variable, and x as defined in previous chapter, the parameters

and random effects which the response variable is depending on. Moreover,

p(y | x) is called likelihood and reflects the information given by the data

under the model defined by x.

Besides the information given by the data (as frequentist approach does),

additional information such as expert knowledge or previous studies can be

included (Clark and Gelfand, 2006). This additional information is added in

the model giving probability distributions to x, in other words, parameters

are considered random variables. We denote priors as p(x). If there is not

previous knowledge about a parameter, prior distribution should be as less

informative as possible.
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2. Species distribution modeling using INLA 15

Lastly, using the Bayes theorem, prior distributions are combined with

the likelihood to get posterior distributions updating the information of the

parameters.

p(x | y) =
p(y | x) · p(x)

p(x)
∝ p(y | x) · p(x) . (2.2)

This process is well known as Bayesian inference and it has been a revo-

lution in many applied fields because, in addition to the information given

by the data (as frequentist approach does), other information such as expert

knowledge or previous studies can be included (Clark and Gelfand, 2006).

2.2 Hierarchical Bayesian models

Bayesian inference allows us to make inference for different kind of models,

from a simple linear regression to a spatio-temporal model. Nevertheless,

when we deal with complex models as we can find in the SDMs context,

new parameters are needed in the model.

For instance, the study phenomenon might be the presence/absence of

a particular species in some locations. We could try to explain this phe-

nomenon in terms of environmental variables and an spatial effect such

as the one introduced in Chapter 1. This spatial effect depends on new

parameters controlling the spatial similarity accross locations. These new

parameters are called hyperparameters and prior probability distributions

need to be assigned to make inference using the Bayesian paradigm.

The model is presented in terms of three entities, all of which have

stochastic elements: data, process (formed by parameters and random ef-

fects) and the hyperparameters. As stochasticity is relevant for each stage

of the process, we can think in terms of a joint distribution:

p(data, process, hyperparameters) ∝
∝ p(data | process, hyperparameters)

× p(process | hyperparameters)

× p(hyperparameters) .
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16 2.2. Hierarchical Bayesian models

The joint distribution on the left side is provided in terms of three pieces on

the right hand side. These pieces are usually easier to consider individually

rather than thinking about the entire joint distribution. These pieces define

each of the levels of a Hierarchical Bayesian model:

LEVEL 1 Likelihood p(y | x,θ1)

LEVEL 2 Prior distributions and random effects p(x | θ2)

LEVEL 3 Hyperprior distributions p(θ)

In the first level, the likelihood is depicted p(y | x,θ1). But likelihood is

conditioned to a random vector composed by the parameters and the random

effects of the model p(x | θ2). In the second level, prior distributions for this

random vector are asigned. In the last level, priors for the hyperparameters

θ = (θ1,θ2) are given p(θ).

In order to show how an SDM can be seen as a hierarchical Bayesian

model, we rewrite the model presented in Equation (1.6) as a hierarchical

Bayesian model:

• LEVEL 1: Likelihood.

yi | β, wi ∼ p(yi | ηi)
ηi = Viβ + wi

(2.3)

• LEVEL 2: Prior distribution for the parameters and random

effects

β ∼ p(β)

w ∼ GF (0,Σ(κ, σ2
w))

(2.4)

• LEVEL 3: Priors for the hyperparameters

κ ∼ p(κ)

σ2
w ∼ p(σ2

w)
(2.5)
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2. Species distribution modeling using INLA 17

In Figure 2.1 we can appreciate in a more clearly way this hierarchy.

Figure 2.1: Example of a hierarchical Bayesian model with fixed effects
and a continuous spatial effect.
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18 2.3. Computational Bayes

2.3 Computational Bayes

The main interest in the Bayesian approach is to do inference in the pa-

rameters and the hyperparameters, i.e., calculate p(x | y) and p(θ | y).

From a mathematical point of view, the inference step is easy, prior beliefs

about the unknown parameters are updated with available information in

observed data, but this simplicity becomes an ardous task when computing

the resulting posterior distributions (Rue et al., 2017).

The rise of new technologies has caused an explosion in the use of

Bayesian statistics in the last 20 years, being now its peak. The computa-

tional power attained has made possible the development of computing tools

in Bayesian practice. One of the most popular are the Markov Chain Monte

Carlo methods (MCMC), which cleverly construct a Markov chain whose

stationary distribution converges to the parameter posterior distribution.

MCMC has been widely implemented in general Bayesian software/pack-

ages, such as the BUGS language (Win/Open BUGS (Lunn et al., 2000) and

JAGS (Plummer et al., 2003)), Stan (Hoffman and Gelman, 2014) or BayesX

(Umlauf et al., 2015). However, the dependence between simulated values

due to the Markovian processes, and the computational cost that requires

(above all in the context of spatial statistics) can make this methodology

not appropiate in some situations.

On the other hand, the integrated nested Laplace approximation (INLA)

methodology (Rue et al., 2009), whose main idea is to approximate the

posterior distribution using the Laplace integration method, has become

an alternative to MCMC, guaranteeing a higher computational speed for a

particular case of models, the Latent Gaussian models (LGMs). The rest of

the chapter is devoted to explain how the INLA methodology works.

2.4 Latent Gaussian Models (LGMs)

The reason underneath the possibility of using INLA is based on the fact

that SDMs can also be seen as LGMs (Rue and Held, 2005), the class of

models which INLA is designed for (Rue et al., 2009). LGMs can be also
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expressed using a three-stage hierarchical Bayesian model formulation, in

which observations y can be assumed to be conditionally independent, given

a latent Gaussian random field x and hyperparameters θ1,

y | x,θ1 ∼
n∏
i=1

p(yi | xi,θ1) .

The versatility of the model class relates to the specification of the latent

Gaussian field

x | θ2 ∼ N (µ(θ2),Q−1(θ2)) ,

which includes all the latent (nonobservable) components of interest such

as fixed effects and random terms describing the underlying process of the

data. The hyperparameters θ = (θ1,θ2) control the Gaussian latent field

and/or the likelihood for the data.

The LGMs are a class generalising the large number of related variants

of additive and generalized models. If the likelihood p(yi | xi,θ) such that

yi only depends on its linear predictor ηi yields the generalized linear model

setup, the set {xi, i = 1, . . . , n} can be interpreted as ηi, being ηi the linear

predictor which is additive with respect to other effects

ηi = β0 +

M∑
m=1

βmvmi +

L∑
l=1

fl(zli) , (2.6)

where β0 corresponds to the intercept, the coefficients β = {β1, . . . , βM}
quantify the (linear) effect of some covariates v = (v1, . . . , vM ) on the re-

sponse, and f = {f1(·), . . . , fL(·)} are unknown functions of the covariates

z = (z1, . . . , zL) which are represented by Gaussian processes. If Gaussian

prior is assumed for the intercept and the parameters of the fixed effects, the

joint distribution of x = (η, β0,β,f1,f2, . . .) is then Gaussian. This yields

the latent field x in the hierarchical LGM formulation. Regarding to the

set of hyperparameters θ, it contains the parameters corresponding to the

variance, scale or correlation of the likelihood and the model components

(Martins et al., 2013).

In the INLA context, it is common to work with precision matrices Q

that are usually sparse and make the latent field not only be Gaussian, but
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also a sparse Gaussian Markov random field (GMRF; Rue and Held, 2005).

A GMRF is just a GF with additional conditional independence properties:

xj and x′j are conditionally independent given the remaining elements. This

provides the INLA methodology with nice computational properties.

2.5 The core of INLA: the Laplace method

The underpinnings of INLA are the Laplace approximations to the marginal

distributions of the parameters and hyperparameters of LGMs. As a result,

understanding the Laplace method is of relevant interest, which is what this

section is devoted.

2.5.1 Approximating integrals in general

The Laplace approximation is a technique used for the approximation of

integrals (Barndorff-Nielsen and Cox, 1989) of the form∫ b

a
exp{Mf(x)}dx , (2.7)

being f(x) some twice-differentiable function, M a large number, and the

integral endpoints a and b could possibly be infinite.

Let x0 be a global maximun of f , which it is not an endpoint of the

interval of integration. Let assume the second derivate is less than 0, i.e.,

f ′′(x) < 0. Using the Taylor series expansion of order 2, f(x) can be ex-

panded around x0,

f(x) = f(x0) + f ′(x0)(x− x0) +
1

2
f ′′(x0)(x− x0)2 +R , (2.8)

where R = O
(
(x− x0)3

)
. As f has a global maximun at x0, and since x0 is

not an endpoint, it is a stationary point, i.e., f ′(x0) = 0. The approximation

of f(x) around x0 can be rewritten as

f(x) ≈ f(x0)− 1

2
|f ′′(x0)|(x− x0)2 , (2.9)
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emphasising that the second derivative is negative at the global maximun

f(x0). Replacing this in Equation (2.7)∫ b

a
exp{Mf(x)}dx ≈

≈ exp{Mf(x0)}
∫ b

a
exp

{
−1

2
M |f ′′(x0)|(x− x0)2

}
dx . (2.10)

Note that the previous integrand is a Gaussian kernel, and so, if end-

points go from −∞ to +∞, it can be easily integrated. Note also that

endpoints can be assumed to be −∞ and +∞ because of the fast decay of

f far away from x0. By simplicity, let C = exp{Mf(x0)}, then:∫ b

a
exp{Mf(x)}dx ≈

≈ C

∫ b

a
exp{−M |f ′′(x0)|(x− x0)2/2}dx

= C

∫ b

a

exp

−1

2

 x− x0
1√

M |f ′′(x0)|

2 dx

= C

√
2π√

M |f ′′(x0)|

∫ b

a

√
M |f ′′(x0)|√

2π
exp

−1

2

 x− x0
1√

M |f ′′(x0)|

2 dx

≈ exp{Mf(x0)}

√
2π

M |f ′′(x0)|
, as M →∞ . (2.11)

This approximation can be extented to the multivariate case, i.e., if x is

a n dimension vector, then

∫
exp{Mf(x)}dx ≈

√
(2π)n

M | −H|
exp{Mf(x0)} , as M →∞ ,

being

Hij =
∂2

∂xi∂xj
f(x)

∣∣∣∣
x=x0

.
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In next section, we see how this method is employed with probability

density functions.

2.5.2 Approximating density functions

In this section, we present how the Laplace method can be used to ap-

proximate probability density functions. The idea is simple but powerful:

approximate the target density with a Gaussian by matching the mode and

the curvature at the mode.

Let g an unnormalized probability density function and the integral∫
R g(x)dx, the normalizing constant. We want to approximate the nor-

malized function

p(x) =
g(x)∫

R g(x)dx
. (2.12)

To do so, we also suppose that g has a stationary point in x0, and we work

using log(g), to look for an expression similar to (2.7):∫
R
g(x)dx↔

∫
R

exp{log(g(x))}dx . (2.13)

Once the integral is defined, Taylor’s theorem of second order in the mode

x0 of the function log(g), and the fact that d log(g(x0))
dx = 0 are used. We

denote σ̂ = −1
d2 log(g(x0))

dx2

, then log(g(x)) can be written as follows:

log(g(x)) ≈ log(g(x0))− 1

2σ̂2
(x− x0)2 . (2.14)

As a consequence, g(x) can be approximated as:

g(x) ≈ g(x0) exp

{
− 1

2σ̂2
(x− x0)2

}
= g(x0) exp

{
−1

2

(
x− x0

σ̂

)2
}

. (2.15)



“Thesis˙Joaquin” — 2019/6/10 — 8:51 — page 23 — #57i
i

i
i

i
i

i
i

2. Species distribution modeling using INLA 23

Then, the integral in Equation (2.13) can be easily computed.∫
R
g(x)dx =

=

∫
R

exp{log(g(x))}dx

≈
∫
R

exp{log(g(x0))− 1

2σ̂2
(x− x0)2}dx

=

∫
R

exp{log(g(x0))} exp

{
− 1

2σ̂2
(x− x0)2

}
dx

= g(x0)

∫
R

exp

{
− 1

2σ̂2
(x− x0)2

}
dx

= g(x0)
√

2πσ̂

∫
R

1√
2πσ̂

exp

{
−1

2

(
x− x0

σ̂

)2
}
dx

=
√

2πσ̂g(x0) .

Once the value of the integral is calculated, the normalized version of g(x)

is:

p(x) =
g(x)∫

R g(x)dx

≈
g(x0) exp

{
−1

2

(
x−x0
σ̂

)2}
√

2πσ̂g(x0)
=

1√
2πσ̂

exp

{
−1

2

(
x− x0

σ̂

)2
}

.

We conclude that p(x) can be approximated using a Gaussian distribution

with mean the mode x0 of the function p, and variance the Fisher’s infor-

mation −1
d2 log(g(x0))

dx2

, i.e.,

p(x) ≈ N

(
x0,

−1
d2 log(g(x0))

dx2

)
. (2.16)

To show how this approximation works, we present an example using a

beta distribution target. Our goal here is to approximate the beta density

through the normal approximation obtained using the Laplace method. Dif-

ferent parameters for the beta distribution are computed. In Figure 2.2, we
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depict the different approximations that we get.
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Figure 2.2: Gaussian approximation to the beta densities obtained using
the Laplace method.

As this approximation does not work in a proper way when we deal with

non simetric distributions, we present how this approximation is useful in

the INLA context.

2.5.3 Laplace method in the INLA context

In this subsection, we present the way in which INLA makes use of the

Laplace method. As above mentioned, the underpinnings of INLA are the

approximations of marginal distributions of the parameters. In particular,

if we are interested in computing a marginal distribution p(γ1) from a joint

distribution p(γ), this can be approximated by means of the definition of

conditional probability and then making a Gaussian approximation of the
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denominator obtained using the Laplace method p(γ−1 | γ1), that is:

p(γ1) =
p(γ)

p(γ−1 | γ1)

≈ p(γ)

pG(γ−1;µ(γ1),Q(γ1))

∣∣∣
γ∗−1=µ(γ1)

. (2.17)

If the distribution p(γ−1 | γ1) is close to a Gaussian density, the results

will be more accurate compared to a density that is very different from

a Gaussian. Resultantly, unimodality will be necessary to accomplish an

accurate approximation.

2.6 The integrated nested Laplace approximation

(INLA)

The main idea behind the INLA approach is to approximate the posterior

distribution of interest making use of the tools introduced in the previous

sections. In particular, the interest is to approximate the marginal pos-

teriors for the latent field p(xi | y) and the marginal posteriors for the

hyperparameters p(θj | y):

p(xi | y) =

∫
p(xi,θ,y)dθ ,

=

∫
p(xi | θ,y)p(θ | y)dθ , (2.18)

p(θj | y) =

∫
p(θ | y)dθ−j . (2.19)

Observe that in Equation (2.18) Bayesian theorem is used in order to be

able to compute p(xi | y) in terms of conditional distributions. The key is

to construct nested approximations. So, first, approximations to p(xi | θ,y)

and p(θ | y), i.e. p̃(xi | θ,y) and p̃(θ | y), are computed. Posteriorly, inte-

grating out in some integration points, the marginal posterior distributions
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are obtained:

p̃(xi | y) =

∫
p̃(xi | θ,y)p̃(θ | y)dθ , (2.20)

p̃(θj | y) =

∫
p̃(θ | y)dθ−j . (2.21)

The remaining of the Section deals with these two approximations.

2.6.1 Approximating the joint posterior of the hyperparam-

eters

The first step is to compute the approximation of the joint posterior of

hyperparameters p̃(θ | y). Posterior distribution of hyperparameters are

not usually Gaussian, reason why Rue et al. (2009) do not use directly the

Laplace method, and construct an approximation to

p(θ | y) ∝ p(y,x,θ)

p(x | θ,y)
. (2.22)

The approach requires the Gaussian approximation of the denominator,

i.e.,

p̃(θ | y) ∝ p(y,x,θ)

p̃G(x | θ,y)

∣∣∣∣
x=x(θ)∗

, (2.23)

being x(θ)∗ the mode of the posterior distribution p(x | θ,y).

Observe that we are approximating p(x | θ,y) using a Gaussian approx-

imation. This approximation makes sense because in most cases p(x | θ,y)
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is Gaussian or almost Gaussian:

p(x | θ,y) =

=
p(y | x,θ)p(x | θ)p(θ)

p(y,θ)

∝ p(x | θ)p(y | x,θ)

∝ exp

{
−1

2
xTQ(θ)x

}
·
n∏
i=1

p(yi|xi,θ)

= exp

{
−1

2
xTQ(θ)x+

n∑
i=1

log p(yi|xi,θ)

}

≈ (2π)−
n
2 |P (θ)|−

1
2 exp

{
−1

2
(x− µ(θ))TP (θ)(x− µ(θ))

}
(2.24)

where P (θ) = Q(θ) + diag(c(θ)), µ(θ) is the location of the mode, and the

vector c(θ) contains the negative second derivatives of the log-likelihood at

the mode with respect to xi.

2.6.2 Approximating p(xi | θ,y)

In this subsection, we explain how the approximations of the posterior den-

sity functions of the latent field are computed p̃(xi | θ,y). Rue et al. (2009)

proposed three differentes alternatives:

• Gaussian approximations. This is the fastest way to do so. It con-

sists on using the previous joint posterior distribution approximation

p̃G(x | θ,y) to compute the marginals,

p̃(xi | θ,y) ≈ N (µi(θ), σ2
i (θ)) ,

being µi(θ) the marginals means, and σ2
i (θ) the marginals variances.

This approximation often gives reasonable results, but there can be

error in the location and error due to the lack of skewness.

• Laplace approximations. Rue et al. (2009) proposed the use of the

Laplace method (subsection 2.5.3) in order to get a better accuracy.
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In particular,

p̃(xi | θ,y) ≈ p(x,θ,y)

p̃GG(x−i | xi,θ,y)

∣∣∣∣
x−i=x∗−i(xi,θ)

, (2.25)

being x−i the vector x with its i-th element excluded, pGG(x−i |
xi,θ,y) the Gaussian approximation to x−i | xi,θ,y and x∗−i(xi,θ)

the mode configuration. Observe that expression (2.25) implies that

p̃GG must be recomputed for each value of xi and θ, since its precision

matrix depends on xi and θ. This makes the algorithm more and more

expensive.

• Simplified Laplace approximation. In this approximation the nu-

merator and the denominator of the expression (2.25) are expanded

up to third order. This provides a correction for skewness in the ap-

proximation. The simplified Laplace gives the better trade of between

accuracy and computational speed.

2.6.3 Joining all the pieces together

Once p̃(xi | θ,y) and p̃(θ | y) are computed, the marginal posterior dis-

tributions p(xi | y) and p(θi | y) are approximated as it is pointed out in

expressions (2.20) and (2.21).

Each marginal posterior p̃(θi | y) can be obtained using an interpolation

algorithm based on the values of the density p̃(θ | y) evaluated in a set of

integrations points {θ(j)}. These points are obtained after a grid exploration

of p̃(θ | y) (See Rue et al., 2009, for a more detailed description of the

method).

Regarding to the marginal posterior of p(xi | y), it can be easily obtained

through a finite weighted sum:

p̃(xi | y) ≈
∑
j

p̃(xi | θ(j),y)p̃(θ(j) | y)∆j , (2.26)

for the same relevant integration points {θ(j)} with a corresponding set of

weights {∆j}.
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Until now, we have explained the basic ideas concerning the INLA

methodology and how to deal with GMRFs makes this methodology ex-

tremely fast. However, continuous spatial models can not be treated di-

rectly in this methodology. An extension was needed to fit those models.

This extension was proposed by Lindgren et al. (2011), and the next chapter

is devoted to explain it.

2.7 Model selection

In the Bayesian context, there are different ways to evaluate and compare

models in order to get that one that best represent the phenomenon of

interest (Schwarz et al., 1978; Geisser, 2013; Berger and Pericchi, 1996;

Spiegelhalter et al., 2002; Watanabe, 2010; Vehtari and Ojanen, 2012; Gel-

man et al., 2014). But moreover, practitioners also want their models to

have good predictive properties. Then, it is necessary to evaluate their fit-

ting and predictive accuracy, compare them and select the most appropiate

model for our particular data.

In this Thesis, we have usually had the problem of dealing with many

environmental covariates and we have proceeded as follows:

1. As we are in the Bayesian context, expert knowledge can be applied

to select the more relevant variables. This is the first stage in this

process.

2. Once some variables are removed of the analysis, if there are still more

than 7 or 8 possible covariates, Pearson correlations are calculated. If

the correlation between two variables is greater than 0.7, one of those

covariates is taken off the analysis (Dormann et al., 2012). Another

alternative in this step is to conduct a principal component analysis.

It is worth noting that the number of 7 or 8 appears from the fact that

the final number of models analyzed is computationally reasonable.

3. When the number of covariates is reduced and following the method

“Best subset selection” proposed by Heinze et al. (2018), all possible

models with the different covariates are fitted to posteriorly choose the
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best model according to an information criterion such as Deviance In-

formation Criteria (DIC; Spiegelhalter et al., 2002), a log score of the

conditional predictive ordinate (CPO; Geisser, 2013) or the Watanabe

Akaike Information Criterion (WAIC; Watanabe, 2010). If M repre-

sents the number of covariates among which we want to select the best

model, then there are 2M possible models. As above mentioned we

have been working with M = 7, 8 to keep reasonable computational

cost.

4. Posteriorly, if there are more than one model with similar information

criterions, the parsimony criterion is applied and models with less

amount of covariates are selected.

5. After selecting the best model, the importance of the covariates se-

lected are checked.
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Chapter 3

Continuous spatial processes

In Chapter 1 we have pointed out how a model with a continuous spa-

tial component can be formulated as a hierarchichal model. In Chapter 2

we have presented how to perform Bayesian inference in Latent Gaussian

Models (LGMs) using the integrated nested Laplace approximation (INLA).

This chapter is devoted to describe the common way to deal with Gaussian

Fields (GFs) in a continuous space with the INLA methodology. First at

all, the main problem in geostatistics is presented, followed by the existing

troubles to implement it in INLA. Secondly, the Stochastic Partial Differen-

tial Equation (SPDE; Lindgren et al., 2011) approach to solve this problem

is depicted, and finally, barrier models as proposed by Bakka et al. (2019)

are explained.

3.1 The big n problem

There is no doubt that continuous GFs play an important role in the context

of geostatistics (Cressie, 1990). As we have pointed out in Chapter 1, in the

context of stationary and isotropic processes, the covariance function is only

a function of the Euclidean distance between the locations. Despite of that,

a computation of the inverse covariance matrix Σ−1 and the determinant of

Σ is required to make inference and prediction. Due to the general cost of

31
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O(n3) to factorize dense n × n covariance matrices, these calculations can

become very expensive when the number of locations increases. In some

cases, it could be also unstable, due to the enormous number of operations

required. This problem in the literature is well known as “the big n problem”

(Banerjee et al., 2014).

The increasing popularity of the hierarchical Bayesian models has made

this issue more important. There have been different approaches to try to

solve this problem, but, with the INLA’s birth a new age begun. In Chapter

2, it has been hightlighted that INLA exploits the computation properties

of Gaussian Markov Random Fields (GMRFs) to fit a wide spectrum of

LGMs. Nevertheless, as spatial GFs are continuous and geostatistical data

are usually distributed irregularly, INLA can not deal with them directly.

3.2 The SPDE approach for stationary and

isotropic processes

In 2011, Lindgren et al. (2011) proposed an alternative approach by using

an approximate stochastic weak solution to a SPDE as a GMRF approxi-

mation to a GF with Matérn covariance structure. This allowed to reduce

computation cost from a magnitude of O(n3) to O(n3/2).

In Chapter 2 where the INLA basis were depicted, we saw that the

nice properties of INLA are due to the fact that it works with precision

matrices which usually are sparse. In line with this, Lindgren et al. (2011)

showed how to formulate continuously indexed spatial models with Matérn

covariance structure with sparse precision matrices as a weak solution to

the following linear fractional SPDE

(κ2 −∆)α/2(τw(s)) = U(s), s ∈ Rd, α = ν + δ/2, κ > 0, ν > 0, (3.1)

where ∆ is the Laplacian, α controls the smoothness, κ is the scale param-

eter, τ controls the variance, and U(s) is a Gaussian spatial white noise

process. The exact and stationary solution to this SPDE is the stationary
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GF w(s) with Matérn covariance introduced in Chapter 1

C(‖si − sj‖) =
σ2
w

2ν−1Γ(ν)
(κ ‖si − sj‖)νKν(κ ‖si − sj‖). (3.2)

According to Lindgren et al. (2011), the empirically derived definition for

the range is

r =

√
8ν

κ
, (3.3)

with r corresponding to the distance at which the spatial correlation is close

to 0.1, for each ν ≥ 1
2 .

The link between Equations (3.1) and (3.2) is given by the expressions
ν = α− δ

2 ,

σ2
w = Γ(ν)

Γ(α)(4π)δ/2κ2ντ2
.

But, as people usually work in a two dimensional space, dimension is as-

sumed to be 2, i.e., δ = 2, it follows that
ν = α− 1 ,

σ2
w = Γ(ν)

Γ(α)(4π)κ2ντ2
.

In R-INLA (www.r-inla.org), by default the smoothness parameter α is

fixed to 2, corresponding with ν = 1 (Blangiardo and Cameletti, 2015;

Lindgren and Rue, 2015). With this assumption, the range is given by

r =

√
8

κ
, (3.4)

while the variance is given by

σ2
w =

1

4πκ2τ2
. (3.5)

With the definition of these new parameters, the Matérn covariance function

presented in Chapter 1 and defined in Equation (3.2), can be expressed as

www.r-inla.org
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follows:

C(‖si − sj‖) = σ2
w

(√
8

r
‖si − sj‖

)
K1

(√
8

r
‖si − sj‖

)
. (3.6)

In Figure 3.1 we can observe how the Matérn correlation function varies

depending on the parameter range.
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Figure 3.1: Representation of the Matérn correlation function for dif-
ferent values of the range.

The solution to the SPDE is approximated using the finite element

method (Bathe, 2006) through a basis function representation defined on

a Delaunay triangulation (Hjelle and Dæhlen, 2006) of the domain D (Fig-

ure 10.1):

w(s) =
K∑
k=1

φk(s)w̃k , (3.7)

where K is the total number of vertices of the triangulation, {φk} is the set

of basis functions, and {w̃k} are zero mean Gaussian distributed weights.

The basis functions are defined to take values 1 at vertex k and 0 at all other

vertices. This is done to get a Markov structure. With Neumann boundary

conditions, the precision matrix obtained Q for the Gaussian weight vector
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Figure 3.2: Image extracted from Krainski et al. (2018): two dimen-
sional approximation illustration. A triangle and the areal coordinates
for the point in red (top left). All the triangles and the basis function for
two of them (top right). A true field for illustration (bottom left) and its

approximated version (bottom right).

w̃ = {w̃1, . . . , w̃K} is

Q = τ2(κ4C + 2κ2G+GC−1G) , (3.8)

being C a diagonal matrix with values Cii =
∫
φi(s)ds. G is a sparse matrix

with elements Gij =
∫
∇φi(s)∇φj(s)ds, being ∇ the gradient.

The resulting precision matrix Q is sparse, and its elements depend on

τ and κ. Thus w(s) represents the approximated solution in a weak sense

to the SPDE, and it is a GMRF with mean 0 and precision matrix Q (for a

detailled description of the solution, see Bakka et al., 2018; Krainski et al.,

2018).
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3.3 Non-stationary Gaussian processes

Until now, all the methodology presented regarding to spatial statistics has

focused above all in stationary and isotropic Gaussian processes. This is

an assumption so common in the context of SDMs (Pennino et al., 2013;

Paradinas et al., 2015; Rufener et al., 2017). However, there are some cases

where barriers exist, for example islands in the sea, mountains on land or

buildings in a city. These barriers block the spread of a species or a disease.

They not only break the stationarity of a GF, but also the continuity. In

this section, we focus on the approximation by Bakka et al. (2019), where a

model that takes into account the non-stationarity situations is presented.

In the case of the stationary GFs, the shortest Euclidean distance be-

tween two locations is the measure of interest. Nevertheless, when barriers

exist, it does not make sense. Bakka et al. (2019) propose an approximation

where in place of thinking about these shortest Euclidean distances, they

select a collection of all possible paths from one location to another. Then,

the dependency with paths crossing barriers are removed. In order to do so,

they used the SPDE approach presented by Lindgren et al. (2011) explained

in the previous section.

Bakka et al. (2019) present a system of two SPDEs where the first differ-

ential equation is devoted to model the spatial process as it is a stationary

and isotropic GF, and the second one presents the same Matérn structure,

but depending on other range, the range of the barrier area rb, which is

usually fixed.

In order to present the barrier model, a reparametrization of the previous

SPDE in terms of the parameters r and σw assuming that α = 2, ν = 1

and δ = 2 was conducted to have a better interpretability of the system of

SPDEs:

w(s)−∇ · r
2

8
∇w(s) = r

√
π

2
σw U(s), for s ∈ Ωn , (3.9)
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being ∇ =
(
∂
∂x ,

∂
∂y

)
the gradient. Thus, the barrier GF is a solution to the

system

w(s)−∇ · r
2

8
∇w(s) = r

√
π

2
σw U(s), for s ∈ Dn ,

w(s)−∇ ·
r2
b

8
∇u(s) = rb

√
π

2
σw U(s), for s ∈ Db ,

(3.10)

where Dn is the normal area and Db is the barrier area. Their joint union

gives the whole study area D. This system represents a local averaging of

nearby values. If there are two points separated by a barrier, the very small

range stops the local averaging on the barrier. It forces the dependency to

focus on moving around the barrier, via local averages in the non barrier

area.

The system is again solved by constructing a Delaunay triangulation of

the study area and applying the finite element method. To do it, Bakka

et al. (2019) reformulate Equations (3.10) as:(
1−∇r(s)

2

8
∇
)
w(s) = r(s)

√
π

2
U(s) ,

r(s) = rq on Dq , q = 1, 2 ,

(3.11)

with q = 1 representing the normal area and q = 2 the barrier area. The do-

main D is a disjoint union of D1 and D2 with Neumann boundary condition

on ∂D. Again, the spatial field approximation can be written as

w(s) =

K∑
k=1

φk(s)w̃k , (3.12)

and defining

• J a matrix whose elements are Jij =
∫
∇φi(s)∇φj(s)ds,

• Pq with elements (Pq)ij =
∫
Dq ∇φi(s)∇φj(s)ds,

• C̃q a diagonal matrix (C̃q)i,i =
∫
Dq φi(s)ds,

• A = J − 1
8

(
r2

1D1 + r2
2D2

)
, and
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• C̃ = π
2

(
r2

1C̃1 + r2
2C̃2

)
.

the resulting precision matrix Q depending on the r and σ2
w is obtained:

Q = AC̃−1A . (3.13)

3.4 SDMs as LGMs with a continuous GF

This section is devoted to depict how we can specify a SDM as a LGM

with a continuous GF. As we know by the previous chapter, a LGM is a

hierarchical Bayesian model whose latent field is a GMRF. We specify the

likelihood in the first stage, followed by the latent variables and random

components, and finishing with the specification of the hyperparameters.

Then the model with a continuous GF can be formulated as follows:

Likelihood

yi | β, wi ∼ p(yi | ηi)
ηi = Viβ +wi

GMRF

β0, . . . , βM ∼ N(0, τ−1
0 )

w ∼ N (0,Q−1(r, σ2
w))

Hyperparameters

r, σ2
w .

Observe that the matrix represented by Q(r, σ2
w) is the approximated pre-

cision matrix of the continuous GF that we have previously explained for

the stationary and isotropic case, and the barrier case.

Lastly, hyperpriors (priors for the hyperparameters) of r and σ2
w need

to be assigned. In this Thesis, we specify them in two different ways: using

basis functions as presented in Lindgren and Rue (2015), and in the most

recent works, we use the penalize complexity priors (Fuglstad et al., 2018).
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Chapter 4

Goals developed and Results

Up to this point, all the tools required to develop this Thesis have been

described. This chapter is devoted to give a more detailed explanation of

each of the objectives of this Thesis mentioned in Chapter 1, doing an in-

troduction to the problem, describing concisely the methodology employed,

and finally depicting the results.

4.1 Objective 1: SDMs in plant disease epidemi-

ology, and marine and vegetal species distri-

bution

As previously presented, the first goal of this Thesis was to apply SDMs to

analyze practical problems of plant disease epidemiology, and marine and

vegetal species distribution. Methodology described in Chapters 2 and 3

has been used by considering all the models as LGMs and applying INLA

along with the SPDE when necessary. The objective 1.1 was modeled by

means of a beta likelihood, some covariates and an unestructured random

effect, while objective 1.2 required a Bernoulli likelihood and a continuous

GF jointly with some covariates. In objective 1.3, a Bayesian spatial beta

regression was conducted, while objective 1.4 required a LGM with Bernoulli

39
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species distribution

likelihood and a barrier spatial effect. In what follows we present a more

detailed description of these four objectives.

4.1.1 Objective 1.1: modeling the production of Plurivo-

rosphaerella nawae ascospores in persimmon leaf lit-

ter

Circular leaf spot (CLS), caused by Plurivorosphaerella nawae, is a serious

disease of persimmon (Diospyros kaki) inducing necrotic lesions on leaves,

defoliation and fruit drop. The disease was detected in semi-arid areas

in Spain in 2008. Under Mediterranean conditions, P. nawae forms pseu-

dothecia in leaf litter during winter and ascospores are released in spring

infecting susceptible leaves. Persimmon growers in Spain are advised to

apply fungicides for the control of circular leaf spot during the period of

inoculum availability, which was defined based on ascospore counts under

the microscope. Fungicide programs are effective for CLS control only when

they coincide with the infection period, with the presence of ascospores, ad-

equate environmental conditions and susceptible leaves. Then, in order to

assist growers in scheduling fungicide sprays, a model of potential inoculum

availability of P. nawae was developed and evaluated.

Samples of leaf litter were collected weekly in L’Alcudia (Valencia, Spain)

from 2010 to 2015. Leaves were soaked, placed in a wind tunnel, and released

ascospores of P. nawae were counted under the microscope. Proportions

of released ascospores per year were computed. Environmental data were

monitored hourly in each orchard with an automated meteorological station

including sensors for temperature, relative humidity and rainfall. Following

Rossi et al. (2009) time was expressed in physiological units. To do so, three

different variables were calculated: accumulated degree days (ADD), ADD

taking into account the vapor pressure deficit (ADDvpd) and ADD taking

into account both the vapor pressure deficit and the rainfall (ADDwet).

Hierarchical Bayesian beta regression methods were used to fit the dy-

namics of ascospore production in the leaf litter. As we explained in Chap-

ter 1, the beta likelihood does not belong to the exponential family, but

it belongs to the LGM class of models. In addition to the physiological
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variables, a random effect year was included in the models. Following the

steps explained in Chapter 3 about the selection process, models covering

all possible combinations of climatic explanatory variables and the random

effect were fitted using the INLA methodology. The best was selected based

on the WAIC and LCPO.

Results showed that ADD and ADDvpd jointly with the random effect

year best described the dynamics of production of P. nawae ascospores.

The resulting best model is about to be implemented in a disease warning

system to schedule fungicide sprays for the control of circular leaf spot in

Spain.

This work has been presented in the following paper which will be sub-

mitted to an indexed journal as soon as the warning system is finished. The

paper is fully presented in Chapter 5 of this Thesis.

• J. Mart́ınez-Minaya, D. Conesa, A. López-Qúılez, J.L. Mira

and A. Vicent (2019). Bayesian Beta regression for modelling

potential inoculum availability of Plurivorosphaerella nawae

in persimmon leaf litter.

4.1.2 Objective 1.2: study of the spatial and climatic factors

associated with the distribution of citrus black spot

disease

Citrus black spot (CBS) is the main fungal disease affecting citrus crops,

and it is caused by the fungus Phyllosticta citricarpa. The Mediterranean

Basin is free of the disease and thus phytosanitary measures are in place to

avoid the entry of P. citricarpa in the EU territory. However, the suitability

of the climates present in the Mediterranean Basin for CBS establishment

and spread is debated.

Two different georeferenced datasets of CBS presence/absence in citrus

areas were assembled for the stages of the epidemic 1950 and 2014 in South

Africa. Climatic variables were obtained from the WorldClim database.

In order to fulfill the objective, two studies were conducted:



“Thesis˙Joaquin” — 2019/6/10 — 8:51 — page 42 — #76i
i

i
i

i
i

i
i

42
4.1. Objective 1: SDMs in plant disease epidemiology, and marine and vegetal

species distribution

4.1.2.1 A historical analysis of the disease spread in South Africa

In this study, a historical analysis of disease spread in South Africa was

done. Köppen-Geiger climate classification system (Köppen and Geiger,

1936) based on the updated version from Peel et al. (2007), and the As-

chmann Mediterranean-type climate (Aschmann, 1973) using the gridded

data from WorldClim were implemented.

To test the hypothesis that CBS presence occurs at random among grid

cells, which should be considered before carrying out further advanced mod-

elling studies, Moran’s I and Geary’s C analyses of spatial autocorrelation

were used. For both indices, contiguity-based neighbours were defined in

grid cells sharing edges or vertices.

Results showed that in 1950, CBS was still confined to areas of tem-

perate climates with summer rainfall (Cw, Cf), but spread afterwards to

neighbouring regions with markedly drier conditions. The hot arid steppe

(BSh) is the predominant climate where CBS develops in South Africa. The

disease was not detected in the Mediterranean-type climates Csa and Csb as

defined by the Köppen-Geiger system and the more restrictive Aschmann’s

classification criteria. However, arid steppe (BS) climates, where CBS is

prevalent in South Africa, are common in important citrus areas in the

Mediterranean Basin.

The most noticeable change in the environmental range occupied by

CBS in South Africa was the amount and seasonality of rainfall. Due to the

spread of the disease to dryer regions, the minimum annual precipitation in

CBS-affected areas declined from 663 mm in 1950 to 339 mm at present.

The minimum value precipitation of warmest quarter also declined from 290

to 96 mm.

Strong spatial autocorrelation in CBS distribution data was detected

being the Moran’s I equal to 1 with p− value < 0.0001, and the Geary’s C

equal to 0 with p− value < 0.0001.

Three conclusions were extracted from this work:
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• CBS in South Africa has expanded from its original geographic range

in summer rainfall areas to adjacent, more arid regions.

• The results contradict statements indicating that CBS occurs exclu-

sively in climates with summer rainfall.

• Further modeling studies were required to integrate the relative con-

tribution of environmental variables and the spatial structure of the

data.

This work was published in the following paper and is presented in Chap-

ter 6:

• J. Mart́ınez-Minaya, D. Conesa, A. López-Qúılez and A. Vi-

cent (2015). Climatic distribution of citrus black spot caused

by Phyllosticta citricarpa. A historical analysis of disease

spread in South Africa. European Journal of Plant Pathol-

ogy, 143, 69–83.

After this publication, Fourie et al. (2017) published a Scientific critique

to this paper. They concluded that the Mart́ınez-Minaya et al. (2015) study

relied on an approach that grossly overestimates the extent of the geograph-

ical area that could support P. citricarpa.

In 2017, we published a new letter refuting all the arguments presented

in Fourie et al. (2017). The resulting following paper is presented in Chapter

7:

• J. Mart́ınez-Minaya, D. Conesa, A. López-Qúılez and A. Vi-

cent. Response to the letter on “Climatic distribution of

citrus black spot caused by Phyllosticta citricarpa. A his-

torical analysis of disease spread in South Africa” by Fourie

et al. (2017). European Journal of Plant Pathology, 148,

503–508.

After publishing this letter, the discussion concluded and the results ob-

tained in the first paper were reafirmed. Indeed, the former paper (Mart́ınez-

Minaya et al., 2015) was selected for the European Food Safety Authority
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(EFSA) Panel on Plant Health (PLH) in order to update the EFSA Sci-

entific Opinion on the risk of P. citricarpa (EFSA, European Food Safety

Authority, 2016).

4.1.2.2 A Bayesian latent Gaussian model approach to the dis-

tribution of CBS

The role of climate as a limiting factor for the establishment and spread of

CBS to new areas had been widely debated, but previous studies did not

address the effects of spatial factors in the geographic distribution of the

disease.

In this work Moran’s I and Geary’s C were computed using different

distances for the neighbor relationships. LGMs with Bernoulli response

were fitted to analyze CBS presence/absence in 1950 or 2014 with the INLA

methodology. Due to the high collinearity of the environmental covariates,

principal components (PCs) or pre-selection of climatic variables based on

their correlation coefficients were used. A continuous GF as explained in

Chapter 3 was incorporated in the model.

In order to select the best model representing the phenomenon and

again following the steps in Chapter 2, models including a selection of cli-

matic explanatory variables with Pearson correlation (in absolute values)

smaller than 0.7 or PCs were fitted to the response variable (CBS pres-

ence/absence). Models covering all possible combinations of these climatic

explanatory variables or PCs were compared using the WAIC. Moreover,

the geostatistical spatial term was incorporated into these models and the

corresponding WAIC was calculated.

A validation dataset with CBS-present and CBS-absent grid cells was

assembled by random sampling without replacement from the 2014 dataset,

but excluding those grid cells used for model development in 1950. ROC

curve analysis was used to evaluate the predictive ability of the models

selected for the 1950 dataset.

Moran’s I and Geary’s C analyses indicated the presence of significant

spatial autocorrelation in CBS distribution data in 1950 and 2014. Both
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indices showed that spatial autocorrelation was stronger in 2014 than in

1950. Regarding to the fitted models, they indicated a positive relationship

between CBS presence and climatic variables or PCs associated with warm

temperatures and high precipitation. Nevertheless, in 1950, models that

also included a spatial effect outperformed those with climatic variables

only. Problems of model convergence were detected in 2014 due to the

strong spatial structure of CBS distribution data.

As a conclusion, although climate was advocated as the main factor

limiting the establishment and spread of CBS into new areas, our study

indicates that spatial proximity to affected areas was also relevant in the

geographic distribution of the CBS.

This work was published in the following paper and constitutes Chapter

8 of this Thesis:

• J. Mart́ınez-Minaya, D. Conesa, A. López-Qúılez and A. Vi-

cent (2018). Spatial and climatic factors associated with the

geographical distribution of citrus black spot disease in South

Africa. A Bayesian latent Gaussian model approach. Euro-

pean Journal of Plant Pathology, 151, 991–1007.

4.1.3 Objective 1.3: analysis of the effects of geographic ge-

netic structure and spatial autocorrelation on species

distribution range shifts

Global climate change (GCC) is a change in the pattern of weather, and

related changes in oceans, land surfaces and ice sheets, occurring over time

scales of decades or longer. It is clear that it is dramatically affecting the

distribution of many terrestrial, aquatic and marine organisms. Therefore,

multiple efforts are currently focused on the development of models to better

predict distribution range shifts due to GCC. In this paper, we proposed a

different way to model range shifts by including intraspecific genetic struc-

ture and spatial autocorrelation (SAC) of data in distribution range models.

The Iberian Peninsula was used as a study area. A collection of 301

geo-referenced populations of the annual plant Arabidopsis thaliana during
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12 years between 2000 and 2011 were employed. One representative indi-

vual (accesion) for population was used to analyse the genetic structure.

In previous studies, four genetic clusters had been inferred (Marcer et al.,

2016). Finally, for each accesion, the membership proportion to each of the

four genetic clusters were obtained. With these data, we wanted to depict

current and future distribution ranges for the four genetic clusters. Again

the WorldClim database was employed to get climatic variables.

With regard to the methodology, Bayesian spatial and non spatial beta

regression were constructed as we have previously explained. Also, in order

to compare with other methods, Maxent method was also applied. However,

as Maxent is only able to model presences, response variable had to be

transformed resulting in a loss of information.

In order to select the best model representing the phenomenon, we pro-

ceeded in a similar way to CBS: models including a selection of climatic

explanatory variables with Pearson correlation (in absolute values) smaller

than 0.7 were fitted to the response variable (membership proportion) for

each genetic cluster. Models covering all possible combinations of these se-

lected climatic explanatory variables and including the spatial effect were

compared using the WAIC and LCPO. Moreover, mean absolute error MAE

and root mean square error (RSME) of the best models were computed.

In order to predict, we used the Representative Concentration Pathways

(RCPs) which are four greenhouse gas concentration trajectories adopted

by the Intergovernmental Panel on Climate Change (IPCC). They describe

four possible climate futures, all of which are considered possible depending

on how much greenhouse gases are emitted in the years to come (van Vu-

uren et al., 2011). They describe four possible climate futures, although we

selected the two most extremes in the year 2070:

• RCP 2.6. It assumes that global annual emissions peak between

2010-2020, with emissions declining substantially thereafter.

• RCP 8.5. Emissions continue to rise throughout the 21st century.
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We obtained that spatial Beta regression models selected less bioclimatic

predictors than non-spatial models and Maxent models to define the distri-

bution range of the four genetic clusters. In addition, the MAE and RMSE

were lower for spatial than for non-spatial models for all genetic clusters in

which te comparison was possible. This indicated that spatial models had

lower average model prediction errors in the response variable.

With regard to the distribution range shifts with GCC, Maxent models

and Beta regression models were also used to quantify distribution range

shifts of all A. thaliana’s genetic clusters with different GCC models and

scenarios. The three modeling approaches yielded different GCC predictions

for each genetic cluster based on suitability shifts in distribution range pro-

jections.

For genetic cluster C1, important reductions in distribution range were

predicted for the two GCC scenarios with Maxent and non-spatial beta

regression models, whereas spatial beta regression models predicted slight

increases in distribution range. For genetic cluster C2, Maxent predicted

increasing and decreasing distribution ranges with RCP 2.6 and RCP 8.5,

respectively, whereas both beta regression models predicted slight fluctua-

tions in distribution range in both GCC scenarios. For genetic cluster C3,

Maxent showed very high increases in distribution range, particularly for the

RCP 8.5 scenario, whilst non-spatial beta regression models also predicted

slight fluctuations in distribution range in both GCC scenarios. Finally, for

genetic cluster C4, all approaches predicted increases in distribution range

in both GCC scenarios. Maxent gave higher increases in RCP 2.6 than in

RCP 8.5 and vice-versa for both beta regression models.

To conclude, Maxent and non-spatial beta regression models presented

some drawbacks, such as the loss of accessions with high genetic admixture

in the case of Maxent, and the presence of residual SAC for both. Spatial

beta regression models removed residual SAC, showed higher accuracy than

non-spatial beta regression models, and handled the spatial effect on model

outcomes. We concluded that these Hierarchical beta regression models en-

rich the toolbox of software available to evaluate GCC-induced distribution

range shifts considering both geographic genetic heterogeneity and SAC.
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This work was depicted in the following paper which has been accepted

in the journal Molecular Ecology Resources. The paper is fully presented in

Chapter 9 of this Thesis.

• J. Mart́ınez-Minaya, D. Conesa, C. Alonso-Blanco, M.J.

Fortin, X. Picó and A. Marcer (2019). A hierarchical

Bayesian Beta regression approach to study the effects of

geographic genetic structure and spatial autocorrelation on

species distribution range shifts.

4.1.4 Objective 1.4: study of the bottlenose dolphin (Tur-

siops truncatus) distribution

Worldwide, cetacean species have started to be protected, but they are still

very vulnerable to accidental damage from an expanding range of human

activities at sea. To properly manage these potential threats, a detailed

understanding of the seasonal distributions of these highly mobile popula-

tions is neccessary. To achieve this goal, a growing effort has been underway

to develop species distribution models (SDMs) that correctly describe and

predict preferred species areas.

However, accuracy is not always easy to achieve when physical barriers,

such as islands, are present. Indeed, as we have already explained, SDMs

assume, if only implicitly, that the spatial effect is stationary, and that cor-

relation is only dependent on the distance between observations and not on

the direction or a spatial coordinates. The application of stationary SDMs

in these cases could lead to incorrect predictions and, consequently, to unin-

formed decision making. In this study, we identified vulnerable habitats for

the bottlenose dolphin in the Archipelago de La Maddalena, Northern Sar-

dinia (Italy) using Bayesian hierarchical SDMs that account for the physical

barriers issue as explained in Chapter 3 and provide a full specification of

the associated uncertainty.

The study was conducted in waters withing 3 miles off the coast of

Archipielago de La Maddalena, Northern Sardinia (Italy). Random tran-

sects were performed from October 2007 to September 2008. Surveys were
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conducted by experts during light hours from 6.00 A.M. to 8.00 P.M., and to

identify species, observers scanned with both the naked eye and binoculars.

Geographical information were collected, jointly with presence/absence of

the species. Environmental variables were collected from the aqua-MODIS

sensor with a resolution of 2km (https://modis.gsfc.nasa.gov/).

The methodology here applied to estimate and predict overall occurrence

of bottlenose dolphins with respect to environmental is the one proposed by

Bakka et al. (2019) and previously explained in depth in the Chapter 4. It

basically consists on a spatial hierarchical Bayesian model where the spatial

component is estimated as a solution of two differential equations which

take into account the non-stationarity of the effect. Again, different models

were fitted, and in order to find the best the WAIC and LCPO were used.

Results showed that dolphin occurrence in the Archipelago de La Mad-

dalena was influenced by a seasonal effect in the area. In addition, it showed

that estimated dolphing occurence was higher during the winter season. On

the other hand, the spatial component seemed to reflect disturbance from

pleasure boating. Thus, an effective conservation programme should take

into account these findings: favourable areas for bottlenose dolphins should

be identified and protected as SACs (Special Areas of Conservation). Pro-

tection measures should be devoted to limiting the disturbance from recre-

ational boats, which is probably the main threat for this species in the area.

In conclusion, we proposed an approach which constitutes a major step

forward in the understanding of cetacean species in many ecosystems where

physical, geographical and topographical barriers are present.

This work was described in the following paper which has been accepted

in the journal Ecological Modelling. The paper is fully presented in Chapter

10 of this Thesis.

• J. Mart́ınez-Minaya, D. Conesa, H. Bakka and M.G. Pennino

(2019). Dealing with physical barriers in bottlenose dolphin

Tursiops truncatus distribution.

https://modis.gsfc.nasa.gov/
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4.2 Objective 2: developing new methodological

tools to solve statistical problems appeared in

the application of SDMs

In the second part of this Thesis we have focused in the development of

new statistical tools required in SDMs after performing an extensive study

of the state of the art of revelant statistical issues for SDMs. In particular,

we provide some advances in the compositional data context.

4.2.1 Objective 2.1: a review with the focus in the statistical

issues in Species Distribution modeling

As we have brought to light during this Thesis, the use of complex statis-

tical models has recently increased substantially in the context of SDMs.

In line with this, an important objective of this Thesis has been to re-

view some of the statistical challenges that can arise when the distribution

of the species is modeled using geostatistical or point-referenced data. In

particular, we reviewed the different sources of information and different ap-

proaches (frequentist and Bayesian) to model the distribution of a species.

In the context of Bayesian inference, we discussed the importance of the

INLA methodology under the assumption of Gaussian fields and hierachical

modeling, in order to compute the marginal posterior distributions of the

parameters involved in these kind of models. We finally discussed some im-

portant statistical issues that arise when researchers use species data: the

presence of temporal autocorrelation in the model presenting different spa-

tial and spatio-temporal structures, the problem of collecting data in SDMs

using preferential sampling, the spatial misaligment, the non-stationarity,

the imperfect detection and the excess of zeros.

We conclude that INLA is a powerful tool to deal with SDMs making it

possible to perform complex models with a minimum computational effort

while obtaining accurate estimates.

This work was published in the following paper and constitutes Chapter

11 of this Thesis:
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• J. Mart́ınez-Minaya, M. Cameletti, D. Conesa and M.G. Pen-

nino (2018). Species distribution modeling: a statistical re-

view with focus in spatio-temporal issues. Stochastic Envi-

ronmental Research and Risk Assessment, 32, 3227–3244.

4.2.2 Objective 2.2: implementing Bayesian Dirichlet re-

gression in the context of the integrated nested Laplace

approximation

Compositional data (Aitchison and Egozcue, 2005), consisting of propor-

tions or percentages of disjoint categories adding to one, play an important

role in many fields such as ecology, geology, biology, etc. Dirichlet regression

models are commonly used to analyse this kind of data relating them with

covariates of interest. From a Bayesian perspective, it has been implemented

in methodologies such as Jags or BayesX. However, in the context of R-INLA

it has not been yet, as, in general, R-INLA can not deal with multivariate

likelihoods. In this work, we propose an expansion of the INLA method

for fitting Dirichlet linear regression, giving a theoretical foundation and

describing the implementation as well as the use of the method. All these

findings have been implemented in an R package called dirinla, which will

be available soon.

The main idea of this approach is to approximate the effect of the log

likelihood on the posterior using the Laplace method. After applying it,

the multivariate initial observations are turned into independent Gaussian

pseudo-observations which R-INLA can deal with. This method can be used

for each multivariate likelihood whose second derivatives exist.

Different simulation studies and an application to a real example were

conducted in order to show the reliability of the method. Results were

compared with the software R-jags and they showed a good performance

not only in accuracy, but also in terms of speed of calculations.

To summ up, we have applied the Laplace method in order to find a

method which is able to deal with multivariate response, in particular with

a Dirichlet likelihood. Apparently, it works fine, but there is still work to
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do, adding the chance to deal with random effects and trying to apply it to

other multivariate likelihoods.

This completed work has been depicted in the following paper which will

be submitted to an indexed journal as soon as the package is finished. The

paper is fully presented in Chapter 12 of this Thesis.

• J. Mart́ınez-Minaya, F. Lindgren, A. López-Qúılez, D. Simp-

son and D. Conesa (2019). Modeling Dirichlet likelihoods

using the integrated nested Laplace approximation (INLA).
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Chapter 5

Bayesian Beta regression for

modelling potential inoculum

availability of

Plurivorosphaerella nawae

in persimmon leaf litter

In this chapter, we present the actual version of our paper “Bayesian

Beta Regression for Modelling Potential Inoculum Availability of Plurivo-

rosphaerella nawae in Persimmon Leaf Litter” by Joaqúın Mart́ınez-Minaya

(University of Valencia), David Conesa (University of Valencia), Antonio

López-Qúılez (University of Valencia), José Luis Mira (Valencian Institute

for Agricultural Research) and Antonio Vicent (Valencian Institute for Agri-

cultural Research). In order to keep the same structure of the chapters with

published papers, this chapter ends with the references used in this work.

Abstract

Circular leaf spot, caused by Plurivorosphaerella nawae, is a serious disease

of persimmon (Diospyros kaki) inducing necrotic lesions on leaves, defolia-

tion and fruit drop. The disease was initially restricted to humid regions in

Japan and Korea and in 2008 it was detected in semi-arid areas in Spain.

53
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Under Mediterranean conditions, P. nawae forms pseudothecia in leaf lit-

ter during winter and ascospores are released in spring infecting susceptible

leaves. Persimmon growers in Spain are advised to apply fungicides for the

control of circular leaf spot during the period of inoculum availability, which

was defined based on ascospore counts under the microscope. In order to

assist growers in scheduling fungicide sprays, a model of potential inoculum

availability of P. nawae was developed and evaluated. Samples of leaf litter

were collected weekly in L’Alcudia from 2010 to 2015. Leaves were soaked,

placed in a wind tunnel, and released ascospores of P. nawae were counted.

Hierarchical Bayesian beta regression methods were used to fit the dynamics

of ascospore production in the leaf litter. Results showed that accumulated

degree days and accumulated degree days taking into account the vapor

pressure deficit best described the dynamics of P. nawae ascospores. The

resulting best model is being implemented in a disease warning system to

schedule fungicide sprays for the control of circular leaf spot in Spain.

Keywords

Mycosphaerella nawae, INLA, warning system, accumulated degree days

5.1 Introduction

Circular leaf spot (CLF) disease of persimmon (Diospyros kaki Thunb.),

caused by Plurivorosphaerella nawae (= Mycosphaerella nawae), induces

necrotic lesions on leaves, chlorosis and defoliation. The presence of foliar

lesions and premature leaf drop induce early fruit maturation and abscission,

resulting in serious economic losses (Bassimba et al., 2017). The disease was

first described in humid areas in Japan and later in Korea (Ikata and Hitomi,

1929; Kang et al., 1993). The detection of CLS in Easter Spain was the first

report of the disease in a semi-arid area (Vicent et al., 2012).

The fungus forms pseudothecia in leaf litter during winter and ascospores

are produced as temperatures increase in spring (Kang et al., 1993). As-

cospores are wind-dispersed and infect persimmon leaves in the presence of
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a film of water and adequate temperatures. The main infection period in

Korea was from mid-May to the end of July (Kang et al., 1993; Kwon and

Park, 2004) and from the beginning of April to early July in Spain (Vicent

et al., 2012). The asexual stage of P. nawae was identified in Korea as

belonging to the genus Ramularia, but its role in field epidemics is not fully

understood (Kwon et al., 1998; Kwon and Park, 2004). In Spain, this sec-

ondary inoculum has not been observed (Vicent et al., 2012). The disease

is characterised by a long incubation period of about 4 months (Kwon and

Park, 2004; Vicent et al., 2012).

Fungicide schedules for the control of CLS in Korea consist of three to

four foliar applications during the critical infection period between mid-July

to early August. Although the efficacy of fungicide programs may differ de-

pending on the year, nearly complete disease control was obtained under ex-

perimental conditions (Kwon et al., 1998; Kwon and Park, 2004). In Spain,

two to four fungicide applications during the infection period in spring

showed also good efficacy for the control of CLS, whereas post-infection

sprays were ineffective (Bassimba et al., 2017; Berbegal et al., 2013). Cul-

tural practices, such as leaf litter removal and moving from flood to drip

irrigation systems, are also recommended to growers but their efficacy has

not been quantified so far (Vicent et al., 2011, 2012).

Fungicide programs are effective for CLS control only when they coin-

cide with the infection period, with the presence of ascospores, adequate

environmental conditions and susceptible leaves. The presence of airborne

ascospores is typically monitored using spore traps, either active volumetric

or passive (West and Kimber, 2015). Nevertheless, the predictive ability

of spore traps is somehow limited because they only detect the ascospores

when already released in the orchard air. In the case of P. nawae in Spain,

monitoring ascospore production in the leaf litter allowed to predict as-

cospore release 1–2 weeks in advance, so this method is routinely used to

schedule fungicide sprays for CLS control (Vicent et al., 2012). Samples of

leaf litter are collected weekly in affected persimmon orchards and soaked

in distilled water. Immediately after soaking, leaves are placed in a wind

tunnel until they dry. Ascospores released from the leaf litter are collected

on glass microscope slides and counted under the microscope (Vicent et al.,

2011). Although this method proved to be useful, it is time and resource
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consuming, requires specific laboratory equipment as well as trained person-

nel. Consequently, the extent of the area to be monitored and the density

of sampling network are rather limited.

Models for inoculum maturation in the leaf litter have been developed

for some ascomycetes, as a more efficient alternative to direct observations

of ascospore production and release (De Wolf and Isard, 2007). For in-

stance, Gadoury et al. (1982) proposed a linear regression with a probit

previous transformation to the proportion of ascospore discharge, Villalta

et al. (2001) depicted a linear regression with a logit previous transforma-

tion; Rossi et al. (2009) and Eikemo et al. (2011) compared linear regressions

with asymptotic, monomolecular, logistic and Gompertz transformations.

Nevertheless, most of these models rely on previous transformations of the

response variable and then fitted as a linear regression (Luley and McN-

abb Jr, 1991; Spotts et al., 1994) or fitting directly a nonlinear regression

(Navas-Cortés et al., 1998b; Rossi et al., 1999; Cooley et al., 2007; Legler

et al., 2014). However, as the proportion of discharge ascospores is being

modeled, there are other modelling methods available such as the beta re-

gression model, firstly introduced by Ferrari and Cribari-Neto (2004). Ba-

sically, this methodology consists on assuming that the response variable

conditioned to the linear predictor follows a beta distribution which is de-

pending on two parameters: a mean and a precision.

On the other hand, Bayesian hierarchical methods are becoming popular

in many fields as they may better address the intrinsic complexity typical

in many natural systems (Clark, 2005). In Bayesian inference, parameters

are treated as random variables and data are related to model parameters

using a likelihood function, getting the posterior distribution by combin-

ing the prior distribution and the likelihood function. However, getting

the posterior distribution is not always straightforward and numerical algo-

rithms are usually required. Markov Chain Monte Carlo (MCMC) methods

(Gilks et al., 1996) are widely used to obtain posterior distributions but

they involve computationally and time intensive simulations. The Inte-

grated Nested Laplace Approximation (INLA) approach was developed as

a computationally efficient alternative to MCMC in latent Gaussian models

(Tierney and Kadane, 1986; Rue et al., 2009).
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In this work, we propose the use of hierarchical Bayesian beta regression

models with random effects to estimate the production P. nawae ascospores

in persimmon leaf litter using the INLA methodology. These models will

assist to predict the dynamics of P. nawae inoculum in the orchards based

on environmental covariates, without the direct quantification of ascospores

in the leaf litter. This will facilitate a wider implementation of a decision

support system to optimize the fungicide programs for CLS control in Spain.

5.2 Materials and Methods

5.2.1 Field data

The study was conducted from 2010 to 2015 in a persimmon cv. Rojo Bril-

lante orchard severely affected by CLS at L’Alcúdia in Valencia Province,

Spain. Orchard was 11 yr old at the beginning of the study. Trees were

grafted on D. lotus L. rootstock. Orchard was drip irrigated and with a 5 m

across-row spacing and 4 m in-row spacing with a north-south row orienta-

tion. Plot size was 0.83 ha at L’Alcúdia. In the center of each orchard, an

experimental area of 0.2 hectares (10× 10 trees) remained untreated during

the 6-yr period of study.

Environmental data was monitored hourly with an automated meteoro-

logical station (Hobo U30, Onset Computer Corp.) including sensors for

temperature and relative humidity (Hobo S-THB, accuracies ± 0.2ºC, ±
2.5%), and rainfall (7852, Davis Instruments Corp, resolution 0.2 mm). En-

vironmental monitors were located at 1.5 m above the soil surface within

the row in the center of the experimental area.

Following Rossi et al. (2009) time was expressed in physiological units

calculated by three different methods, all of them based on sums of the daily

temperatures exceeding 0°C.

In particular, Accumulated Degree Days (ADD) were calculated as:

ADDi =

N(i)∑
j=biofix

Tj , (5.1)
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where i and j are the subscripts for observations and days respectively,

while Tj is the air temperature in each day (calculated as a mean of 24

hourly values). The biofix takes positive values when starting to count in

the current year, and negatives when calculated for the previous year.

In second place, Accumulated Degree Days that taking into account the

Vapor Pressure Deficit (ADDvpd) were calculated:

ADDvpdi =

N(i)∑
j=biofix

Tj · V PDj , (5.2)

being i the observation and j the subscript for days, with j = biofix to

N(i), and Tj is the air temperature in each day (daily T was calculated as a

mean of 24 hourly values) if Tj > 0, elsewhere Tj = 0. V PDj is a dichotomic

variable calculated as follows: when vapor pressure deficit (vpd)j ≤ 4hPa,

V PDj = 1, elsewhere V PDj = 0, being vpd calculated from temperature

an relative humidity (rh, %) as follows:

(vpd)j =

(
1− rhj

100

)
· 6.11 · exp

(
17.47 · Tj
239 + Tj

)
. (5.3)

Finally, a variable that incorporates information about rainfall was also

considered. In particular, it was denoted as ADDwet and as it can be seen

by its definition corresponds to the Accumulated Degree Days but taking

into account both the vpd and rainfall (R):

ADDweti =

N(i)∑
j=biofix

Tj ·WETj , (5.4)

being i the observation and j the subscript with j = biofix to N(i), and Tj
is the air temperature in each day (daily Tj was calculated as a mean of 24

hourly values) if Tj > 0, elsewhere Tj = 0. WETj is a dichotomic variable

calculated as follows: when Rj ≥ 0.2mm and vpdj ≤ 4hPa, WETj = 1,

elsewhere WETj = 0.

The dynamics of P. nawae ascospore production in the leaf litter was

studied from 2010 to 2015 in the persimmon orchard at L’Alcúdia described
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above. Dry leaves on the orchard floor were covered with a plastic mesh

(2× 2 m2, 5-by-5-mm openings) fixed with four stainless-steel pins. Plastic

nets were located in the center of the experimental area in each orchard

without overlying the soil area wetted by the drip irrigation system. Leaf

litter density under the plastic nets was adjusted to 350 g of dry leaves m2

(Vicent et al., 2011). A sample of 20 dry leaves was collected weekly in each

orchard and soaked for 15 min in distilled water. Immediately after soaking,

leaves were placed with the abaxial surface facing upward in a wind tunnel

for 30 min until they were visibly dry (Whiteside, 1974; Vicent et al., 2011).

During the process, air and water temperature was maintained at about

21°C.

Discharged ascospores were collected on a glass microscope slide (26×76

mm) coated with silicone oil (Merck). Spores were stained with lactophenol-

acid cotton blue and examined at 400X magnification. All ascospores

showing the morphological characteristics of P. nawae; spindle-shaped,

10−13×3−4 µm, hyaline, 2-celled with a medium or slightly supramedian

septum (Kwon et al., 1998), were counted in four microscope field tran-

sects. Isolations were arbitrarily performed each year using additional leaf

litter samples and collecting the ejected ascospores in Potato Dextrose Agar

(PDA) amended with 0.5 g L−1 streptomycin sulphate (PDAS). Identifica-

tion of the resulting fungal colonies was confirmed using a specific molecular

method for P. nawae (Berbegal et al., 2013). For each week, the cumula-

tive proportion of ascospores discharged was calculated based on the total

collected in each orchard and year.

5.2.2 Beta regression

Beta regression is commonly used for variables that assume values in the unit

interval (0,1) (Ferrari and Cribari-Neto, 2004). Beta distribution depends on

two scaling parameters Be(p, q). Beta distribution can also be parametrized

in terms of its mean p
p+q , a dispersion parameter p + q, and the variance

σ2 = µ(1−µ)
1+φ . This reparametrization supports the truncated nature of the

beta distribution, where the variance depends on the mean and maximun

variance is observed at the centre of the distribution whereas it is minimun
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at the edges. In addition, the dispersion of the distribution, for fixed µ,

decreases as φ. The density function is

π(y | µ, φ) =
Γ(φ)

Γ(µφ)Γ(φ(1− µ)
yµφ−1(1− y)(1−µ)φ−1 , 0 < y < 1 , (5.5)

where Γ is the gamma function.

Let y1, . . . , yn be independent beta variables, where each yi, i = 1, . . . , n,

with mean µ and unknown precision φ. These variables, representing pro-

portions (in our particular case, cumulative proportion of ascospores dis-

charged), can be linked to the linear predictor using a similar approach to

the generalized linear models (GLM) with the logit function.

ηi = g(µi) = β0 +

Nβ∑
j=1

βjxji +

Nf∑
k=1

fk(zki) + vi , i = 1, . . . , n (5.6)

where ηi enters the likelihood through a logit link, β0 is the intercept of the

model, βj are the fixed effects of the model, fk denote any smooth effects,

and vi represents unstructured error terms (random variables). The models

which we deal with in this work include only fixed effects and in some cases

an unstructured term corresponding to independent random effect year, but

they could also incorporate spatial or spatio-temporal effects (Paradinas

et al., 2018).

However, one of the main drawback of the beta distribution is its inca-

pability to provide a satisfactory description of the data at the extremes, i.e.

0 and 1. Several solutions have been presented in the literature, like adding

a small error value to the observations to satisfy this criterion (Warton and

Hui, 2011) or using zero and one inflated models (Liu and Kong, 2015). In

this study we adopt the approach by Ferrari and Cribari-Neto (2004), who

proposed a transformation which compresses the data symmetrically around

0.5, so, extreme values are affected more than values lying close to 0.5. In

particular, the transformed values are obtained as

y∗i =
yi · (n− 1) + 1

2

n
(5.7)
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5.2.3 Bayesian inference using the INLA approach

Once the model was determined, the next step was to estimate its parame-

ters. A Bayesian hierarchical approach was used to approximate the varia-

tion in the proportion of discharged ascospores with INLA (Rue et al., 2009).

This methodology uses Laplace approximations (Tierney and Kadane, 1986)

to get the posterior distributions in Latent Gaussian models (LGMs) (Rue

et al., 2009). LGMs are a particular case of the Structured Additive Regres-

sion (STAR) models, where the mean of the response variable is linked to

a structured predictor that accounts for the effects of various covariates in

an additive way. The prior knowledge of the additive predictor is expressed

using Gaussian prior distributions. In this context, all the latent Gaus-

sian variables can be seen as components of a vector known as the latent

Gaussian Field.

Vague Gaussian distributions were used here for the parameters in-

volved in the fixed effects βj ∼ N (0, 10−5), and a multivariate independent

Gaussian distribution for the random effect year, depending of a precision

parameter vi ∼ N (0,Q(τ)). Precision of the Beta distribution (φ) was

reparametrized as φ = exp(α) to assure that φ was a positive parameter.

We assumed, following Simpson et al. (2017), pc-priors on the logprecision

for both parameters.

The computational implementation R-INLA for R was used to perform

approximate Bayesian inference (R Core Team, 2018). Model selection was

conducted based on choosing the best subset of covariates (see, for instance,

Heinze et al. (2018) for adetailed revision of model selection procedures).

This method evaluates all 2k (where k represents the number of compo-

nents of the model: covariates and the random effect in our case) possi-

ble models and choose the best model according to an information crite-

rion. In this work we have used the Deviance Information Criterion (DIC),

which is a generalization of the Akaike Iinformation Ccriterion (AIC) de-

veloped for Bayesian model comparison (Spiegelhalter et al., 2002), and the

Watanable-Akaike Information Criteria (WAIC) (Watanabe, 2010). The

DIC and WAIC are the sum of two components, one quantifying model fit

and other evaluating model complexity. The predictive ability of the models
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was evaluated by cross validation using the Logarithmic Conditional Pre-

dictive Ordinate (LCPO) (Roos et al., 2011). Models with the lowest values

of DIC, WAIC and LCPO were selected. Lastly, the marginal posterior den-

sities for the parameters and predictive distributions for new observations

were obtained with the best model.

Best model was evaluated plotting observed values against the mean

of the poterior predictive distribution of µ (predicted). Linear regression

was fitted and R2 was computed. The Root Mean Square Error was also

calculated (RMSE).

5.3 Results

The model that included the variables ADD and ADDvpd as fixed effects,

and the variable year as a random effect showed lower DIC, WAIC and

LCPO (Table 5.1).

As expected, in the best model, ADD and ADDvpd were relevant (Fig-

ure 5.1), and they had a positive effect on the expected cumulative propor-

tion of ascospores discharged, being 0.285 the mean posterior distribution

and [0.271, 0.299] a 95% credible interval for the parameter corresponding to

the fixed effect ADD; and, 0.425 the mean posterior distribution and [0.360,

0.491] a 95% credible interval for the parameter corresponding to the fixed

effect ADDvpd, i.e., the cumulative proportion of ascospores increases when

ADD y ADDvpd are incremented (Table 5.2).

The posterior distribution of the hyperparameters was also computed

(Table 5.2 and Figure 5.1), showing that the random effect has a high pre-

cision, which means that does not have so much variance, but enough to be

important in our model. Mean of the posterior predictive distribution for µ

was also plotted (Figure 5.2).

In Figure 5.3, observed values against predicted values were represented

showing that the linear regression of predicted versus observed data ac-

counted for more than 90% of the total variance (R2 = 0.97). The RMSE

was also calculated resulting in a value equal to 0.0375.
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Table 5.1: Models for the cumulative proportion of Plurivorosphaerella
nawae ascospores discharged from persimmon leaf litter based on accu-
mulated degree-days (ADD), ADD taking into account vapor pressure
deficit (ADDvpd), ADD taking into account vapor pressure deficit and

rain (ADDwet), and a year random effect (v).

MODEL DIC2 WAIC3 LCPO4

1 +ADD1 +ADDvpd+ v -1166.204 -1163.821 -1.847
1 +ADD +ADDwet+ADDvpd+ v -1165.509 -1163.271 -1.846
1 +ADD +ADDwet+ v -1151.959 -1150.240 -1.825
1 +ADD + v -1135.662 -1132.912 -1.798
1 +ADD +ADDvpd -1119.148 -1117.161 -1.773

1 biofix = January 1, Tbase = 0ºC
2Deviance Information Criterion
3Watanabe-Akaike Information Criteria
4Logarithmic Conditional Predictive Ordinate

Table 5.2: Mean, standard deviation (sd), quantiles (Q) and mode for
the paramaters and hyperparameters (φ, τ) of the best model for the
cumulative proportion of Plurivorosphaerella nawae ascospores discharged
from persimmon leaf litter based on accumulated degree-days (ADD) and
ADD taking into account vapor pressure deficit (ADDvpd). φ is the
precision parameter of the likelihood and τ the precision of the random

effect year.

Parameters mean sd Q0.025 Q0.5 Q0.975 mode

Intercept -7.850 0.228 -8.239 -7.851 -7.400 -7.854
ADD 0.286 0.007 0.272 0.286 0.299 0.286
ADDvpd 0.425 0.033 0.360 0.424 0.491 0.424

Hyperpars mean sd Q0.025 Q0.5 Q0.975 mode

φ 23.477 2.446 18.942 23.392 28.532 23.272
τ 218.780 110.468 86.444 191.914 505.313 151.993
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Figure 5.1: Posterior distribution of the paramaters and hyperparame-
ters of the best model for the cumulative proportion of Plurivorosphaerella
nawae ascospores discharged from persimmon leaf litter based on accumu-
lated degree-days (ADD) and ADD taking into account vapor pressure
deficit (ADDvpd); φ is the precision parameter of the likelihood and τ

the precision of the random effect year.

5.4 Discussion

In the model selected, ADDvpd and ADD were the covariates driving the

maturation of P. nawae ascospores. There are many examples in the liter-

ature indicating that models for ascospore maturation should be corrected

for dry periods, by accumulating degree-days only when enough moisture

was available in leaf litter. Navas-Cortés et al. (1998b) considered only ADD

on rainy days (≥ 1mm) to predict the maturation of Mycosphaerella rabiei

pseudothecia in chickpea in Spain. Actually, they indicated that rain was es-

sential for the synchronization between M. rabiei ascospore availability and

vegetative growth of the host. In Norway, Stensvand et al. (2005) improved

model accuracy for V. inaequalis ascospore maturity in dry years by halting

degree-day accumulation if 7 consecutive days without rain occurred. When
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Figure 5.2: Representation of accumulated degree days (ADD) and the
ADD taking into account the vapor preasure deficit (ADDvpd) against
the cumulative proportion of Plurivorosphaerella nawae ascospores dis-
charged from persimmon leaf litter. Left: data. Right: mean of the

posterior predictive distribution for µ.

comparing different models for V. inaequalis ascospore maturation in differ-

ent areas, Eikemo et al. (2011) indicated that those adjusted for dry periods

were consistently the most accurate predictors of ascospore depletion.

During the periods of study, dews were much more frequent than rains.

In the case of P. nawae, wetness induced by dew was not sufficient for

ascospore discharge (Vicent et al., 2011), but in absence of rain it may favor

pseudothecial development and subsequent ascospore maturation. This was

described by Rossi et al. (1999) for V. inaequalis in Italy, where models

accounting for leaf litter wetness significantly improved estimates of airborne

ascospores. Furthermore, Mondal and Timmer (2002) demonstrated that

alternate wetting and drying of the leaf litter was necessary for the formation

of pseudothecia of Zasmidium citrigriseum.

The selection of the date from when degree-days are accumulated (i.e.

biofix), has been pointed out as a critical factor in the models for ascospore

maturation and release. In some cases, a date was chosen based on a specific

phenological stage of the host, such as bud break or green tip (MacHardy and

Gadoury, 1985; Eikemo et al., 2011). However, the synchrony between host

and fungal phenology may differ among regions. Often, the date of detection
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Figure 5.3: Observed values against mean of the posterior predictive dis-
tribution for µ (predicted) for the best model for the cumulative propor-
tion of Plurivorosphaerella nawae ascospores discharged from persimmon
leaf litter based on accumulated degree-days (ADD) and ADD taking
into account vapor pressure deficit (ADDvpd). Red line is the regression

line.

of the first mature pseudothecia or the first ascospore trapped has been

used as the biofix (Spotts et al., 1994; Eikemo et al., 2011). Nevertheless,

this approach relies upon the sensitivity of the detection methods used and,

more importantly, requires leaf litter sampling or deployment of spore traps.

Both methods are time and resource consuming, limiting the extent and
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density of the monitoring network. The most convenient approach to set

the biofix is to use a fixed calendar date (James and Sutton, 1982a), but

it was argued that it does not take into account the climatic differences

between regions (Llorente and Montesinos, 2004). Nevertheless, in our case,

we demonstrated analytically that the selection of the biofix was not relevant

in the beta regression models for the maturation of P. nawae ascospores

(Appendix 5.5). Hence, January 1 was chosen as the biofix because, in our

conditions, persimmon trees attain complete leaf fall always before this date

and so all the leaves are on the orchard floor.

In our model for P. nawae, like those for other ascomycetes, temperature

and moisture covariates were considered having a continuous positive effect

on ascospore development. However, the process resulting in ascospore for-

mation in the leaf litter can be divided in different phases, which may have

distinct temperature and moisture requirements. For M. rabiei, Gamliel-

Atinsky et al. (2005) defined pseudothecium ontogeny followed by initiation

of asci and ascospores, and finally ascospore maturation. Navas-Cortés et al.

(1998a) indicated that moisture was essential for pseudothecium ontogeny

in M. rabiei whereas cool temperatures were required for the initiation of

asci and ascospores. Actually, low temperatures and relatively long incu-

bation periods are generally needed for the onset of sexual reproduction in

many ascomycetes (Trapero-Casas et al., 1992). James and Sutton (1982b)

indicated that the development of asci and ascospores in V. inaequalis was

initiated in spring, after a dormant period which was not influenced by

temperature or moisture levels. Then, rapid maturation of ascospores was

favored by moisture and increasing temperatures. Knowledge about the

temperature and moisture requirements for each phase of ascospore forma-

tion in P. nawae may help to develop models with improved performance

for extrapolation to other areas.

Our models also corroborated previous studies in Spain indicating that

P. nawae adapted to semi-arid conditions by advancing the period of as-

cospore production to escape from the typical Mediterranean dry summer.

Consequently, ascospore production coincides with spring rains, from March

to June, under more favorable conditions for infection. On the other hand,
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lower winter temperatures in Korea delayed ascospore release to June-

August, concurring with the abundant summer rains typical of this area

(Kang et al., 1993; Kwon et al., 1995; Kwon and Park, 2004).

When comparing different methods to estimate the maturity and release

of V. inaequalis ascospores, Gadoury et al. (2004) found that cumulative

ascospore release in discharge tests from the leaf litter lagged behind that

measured by spore traps. This was mainly attributed to leaf litter decay,

which progressively reduced the overall ascospore population in the orchard

air. However, in those discharge tests, a fixed area of nearly 8 cm2 was

sampled from overwintered leaf litter, thus not accounting for leaf litter at-

trition. In our previous studies, discharge tests allowed detection of mature

ascospores of P. nawae in the leaf litter before they were released to air in

the orchard (Vicent et al., 2012). In contrast to apple leaves, persimmon

leaves are typically coriaceous and no substantial degradation of the leaf

litter was observed under the conditions of our study. Moreover, in our

case a fixed number of leaves instead of a predefined leaf area were sam-

pled and placed into the wind tunnel to extract the available ascospores.

Actually, discharge tests from the leaf litter are effectively used in Spain

to predict inoculum availability and schedule fungicide sprays for P. nawae

management.

Models for ascospore maturation in V. inaequalis are mainly aimed to

predict the duration of the period for primary inoculum, when fungicide ap-

plications need to be intensified. Thus, practical performance of the models

for V. inaequalis relies on their ability to accurately predict ascospore de-

pletion more that the exponential phase of ascospore production (Gadoury

et al., 2004; Eikemo et al., 2011). In the case of P. nawae in Spain, no sec-

ondary conidia have been observed and infections were caused by ascospores

formed in the leaf litter (Vicent et al., 2012). Therefore, accurate predictions

for the onset and conclusion of the primary inoculum in the leaf litter are

paramount for designing efficient fungicide spray programs. Interestingly,

beta regression models for P. nawae showed the highest accuracy in these

two events of interest, the start and the end of ascospore production period.
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5.5 Appendix

We evaluated analytically whether, for the same location and year, the se-

lection of the biofix is relevant or not in beta regression models. Let X1i and

X2i be two variables expressed in physiological units like ADDi, ADDvpdi
or ADDweti, with different biofix: biofix1 and biofix2 respectively, be-

ing biofix1 < biofix2 <date of the first observation. As X1i and X2i are

two variables expressed in physiological units, then, both of them can be

expressed as a sum of variables, i.e.,

X1i =

N(i)∑
j=biofix1

Zj , (5.8)

X2i =

N(i)∑
j=biofix2

Zj , (5.9)

being Zj the variable ADD, ADDvpd or ADDwet. As biofix1 < biofix2,

X1i can be rewritten as

X1i =

N(i)∑
j=biofix1

Zj

=

biofix2∑
j=biofix1

Zj +

N(i)∑
j=biofix2

Zj

= X2i +

biofix2∑
j=biofix1

Zj . (5.10)

With two beta regression models having both the same response variable,

but different covariates X1i or X2i, i.e.

ηi = β0 + β1X1i , (5.11)

ηi = β′0 + β′1X2i . (5.12)

the selection of the biofix is not relevant when β1 = β′1. From Equation

(5.11) and Equation (5.12), using the definition of X1i we obtain:
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ηi = β0 + β1X1i = β0 + β1

biofix2∑
j=biofix1

Zj + β1X2i . (5.13)

β0 + β1

biofix2∑
j=biofix1

Zj = β′0

β1 = β′1 .



“Thesis˙Joaquin” — 2019/6/10 — 8:51 — page 76 — #110i
i

i
i

i
i

i
i



“Thesis˙Joaquin” — 2019/6/10 — 8:51 — page 77 — #111i
i

i
i

i
i

i
i

Chapter 6

Climatic distribution of

citrus black spot caused by

Phyllosticta citricarpa. A

historical analysis of disease

spread in South Africa

In this chapter, we present a version of our paper “Climatic distribution

of citrus black spot caused by Phyllosticta citricarpa. A historical analysis

of disease spread in South Africa” by Joaqúın Mart́ınez-Minaya (University

of Valencia), David Conesa (University of Valencia), Antonio López-Qúılez

(University of Valencia) and Antonio Vicent (Valencian Institute for Agri-

cultural Research) published in European Journal of Plant Pathology, 143,

69–83. The chapter contains at the end the references used in this work.

Abstract

Citrus black spot (CBS), caused by Phyllosticta citricarpa, is one of the

main fungal diseases of citrus worldwide. The Mediterranean Basin is free

of the disease and thus phytosanitary measures are in place to avoid the

entry of P. citricarpa in the EU territory. However, the suitability of the

climates present in the Mediterranean Basin for CBS establishment and
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78 6.1. Introduction

spread is debated. As a case study, an analysis of climate types and en-

vironmental variables in South Africa was conducted to identify potential

associations with CBS distribution. The spread of the disease was traced

and georeferenced datasets of CBS distribution and environmental variables

were assembled. In 1950 CBS was still confined to areas of temperate cli-

mates with summer rainfall (Cw, Cf), but spread afterwards to neighbouring

regions with markedly drier conditions. Actually, the hot arid steppe (Bsh)

is the predominant climate where CBS develops in South Africa nowadays.

The disease was not detected in the Mediterranean-type climates Csa and

Csb as defined by the Köppen-Geiger system and the more restrictive As-

chmann’s classification criteria. However, arid steppe (Bs) climates, where

CBS is prevalent in South Africa, are common in important citrus areas in

the Mediterranean Basin. The most noticeable change in the environmental

range occupied by CBS in South Africa was the amount and seasonality of

rainfall. Due to the spread of the disease to dryer regions, the minimum

annual precipitation in CBS-affected areas declined from 663 mm in 1950 to

339 mm at present. The minimum value precipitation of warmest quarter

also declined from 290 mm to 96 mm. Strong spatial autocorrelation in CBS

distribution data was detected, so further modelling efforts should consider

the relative contribution of environmental variables and spatial effects to

estimate the potential geographical range of CBS.

Keywords

Guignardia citricarpa, risk assessment, species distribution, biogeography,

plant health

6.1 Introduction

Citrus black spot (CBS) is a serious disease caused by the fungus Phyllosticta

citricarpa (McAlpine) Van der Aa (syn. Guignardia citricarpa Kiely). The

pathogen was first reported in Australia and is currently present in the main

citrus-growing regions of southern and central Africa, South America and
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Asia (Kiely, 1948; Kotzé, 2000). In 2010 CBS was reported in Florida (USA)

and was the first detection in North America (Schubert et al., 2012). The

disease causes external blemishes on the rind which make the fruit unsuitable

for the fresh market. In some cases, CBS also induces premature fruit drop

resulting in severe crop losses (Araújo et al., 2013). Leaves are infected

by P. citricarpa but lesions are visible only on highly susceptible varieties,

such as lemons, or stressed trees. All commercial varieties of sweet orange,

mandarin, lemon and grapefruit are susceptible to the disease (Kotzé, 2000).

The pathogen reproduces through sexual ascospores formed in pseu-

dothecia in the leaf litter, but after completing a maturation process driven

by temperature and moisture (Fourie et al., 2013; Lee et al., 1973). Mature

ascopores are released from pseudothecia mainly by the effect of rain and

disseminated by air currents (McOnie, 1964b). Ascospores infect susceptible

fruit and leaves in the presence of moisture and adequate temperature, but

quantitative information on the environmental requirements for infection

are not known. The pathogen also reproduces asexually by conidia formed

in pycnidia on fruit lesions and twigs, which are disseminated by rain splash

(Spósito et al., 2011; Whiteside, 1967).

Cultural practices such as leaf litter management, irrigation and early

fruit harvesting are used for CBS management. However, fungicide sprays

are generally necessary for the economic control of the disease. Recent meta-

analysis studies indicated that highly effective fungicide spray programs for

CBS control are available (EFSA, European Food Safety Authority, 2014;

Makowski et al., 2014), but their implementation increases production costs

(Gebrehiwet et al., 2007).

Citrus-growing areas in the European Union (EU) are still free of CBS,

thus phytosanitary measures are in place to avoid the entry of P. citricarpa

(Anonymous, 2000). The import of citrus propagating material is banned

in the EU and elsewhere. The import of citrus fruit from CBS-affected

regions/orchards into the EU is allowed, but only under specific phytosani-

tary requirements. Orchards should be subjected to appropriate treatments

against P. citricarpa and harvested fruit should be free of CBS symptoms.

These measures are similar to those imposed by Japan (DAFF, Department

of Agriculture Forestry and Fisheries South Africa, 2014) and less stringent
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than those by USA, which prohibits the import of citrus fruits from CBS-

affected areas (Anonymous, 2014b). However, a long-standing dispute is

taking place about the appropriateness of EU phytosanitary regulations for

CBS.

One of the key issues debated is the suitability of the climates in the

EU citrus-growing areas for CBS establishment and spread. Two studies

conducted at global scale using the software CLIMEX indicated that the

climates in the Mediterranean Basin were not conducive for CBS develop-

ment (Paul et al., 2005; Yonow et al., 2013). However, a recent CLIMEX

study in the USA indicated that Mediterranean-type climate areas in Cali-

fornia would be favourable for CBS (Er et al., 2013). Mechanistic (process-

based) models were also used to estimate potential geographical range of

CBS. Since the specific environmental requirements for P. citricarpa infec-

tion are not known, a generic model for foliar fungal pathogens was used

(Magarey et al., 2005). One study did not consider the climates of the EU

as unsuitable for the establishment of P. citricarpa (EFSA, European Food

Safety Authority, 2008) but another indicated that CBS was not expected

to have an impact in areas with commercial citrus production in Europe

(Magarey et al., 2011). Recently, models for Phyllosticta spp. ascospore

maturation and release were developed (Fourie et al., 2013). These models

of inoculum availability were combined with the generic infection model,

indicating that environmental conditions in many EU citrus-growing areas

were suitable for CBS, though with a high degree of uncertainty (EFSA,

European Food Safety Authority, 2014).

This present study develops a historical analysis of CBS spread in South

Africa across geographic regions, climate types and selected environmental

variables to identify potential associations with disease distribution. South

Africa was selected as a case study due to its climate diversity, with citrus

regions covering up to ten different climate types. Moreover, good quality

datasets of CBS distribution were available for both the initial stages of the

epidemics and the current status. The objectives of this study were: (i) to

describe the climatic and environmental ranges of CBS in South Africa at

the beginning of the epidemic and at the present time, and (ii) to study the
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presence of spatial autocorrelation in CBS distribution data. This prepara-

tory work was part of a larger modelling project where the potential geo-

graphical range of CBS will be estimated based on relevant environmental

variables and spatial effects.

6.2 Materials and methods

6.2.1 CBS spread in South Africa

Scientific and regulatory references on CBS distribution in South Africa

were searched. A systematic literature review was performed on July 31

2014 with Web of Knowledge, CAB Abstracts and Google Scholar (all years)

combining the terms “citrus black spot”, “citricarpa” and “south africa”. In

the relevant papers retrieved, cited references and citing articles were also

reviewed. Phytosanitary regulations published by the Government Gazette

from South Africa, the Code of Federal Regulations from USA and the Offi-

cial Journal of the European Union were reviewed and relevant information

on CBS was compiled. Personal communications without supporting verifi-

able documentation were not considered in the present study.

Locations and dates (n = 54) where CBS was detected in South Africa

from 1940 to 1950 were extracted from the appendix 2 of Wager (1952)

and georeferenced. Since the coexistence of pathogenic and non-pathogenic

species of Phyllosticta in citrus was not discovered until a decade later

(McOnie, 1964c), reports of the pathogen in absence of CBS symptoms

were excluded from Wager (1952). A raster layer (299 × 259 pixels) of CBS

distribution in South Africa georeferenced to the coordinate system WGS84

was generated from the original map published by Paul (2005) and its sub-

sequent updates (Yonow et al., 2013; Anonymous, 2014a). Paul (2005) indi-

cated that areas of CBS presence and absence in commercial orchards and

backyard trees were mapped by six field specialists with extensive knowl-

edge of the disease onto a map of South Africa at a scale 1:106 (2 × 2 m).

Disease presence records, based on either identification of P. citricarpa or on

observation of CBS symptoms, were transcribed to a 29.7 × 45-cm map and

scanned. Data on CBS distribution were confirmed by 200 citrus growers
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82 6.2. Materials and methods

and researchers from South Africa at a citrus meeting in 2002. A map of the

CBS distribution in Australia was also available (Paul, 2005), but without

details and resolution of the original data, so it was not considered in the

present study.

6.2.2 Spatial autocorrelation

To test the hypothesis that CBS presence occur at random among grid cells,

which should be considered before carrying out further advanced modelling

studies, Moran’s Index (Moran’s I) and Geary’s C analyses of spatial auto-

correlation were used (Plant, 2012). Moran’s I values range from -1 indi-

cating perfect dispersion to 1 indicating perfect correlation (i.e. clustering).

The expected value of I in the absence of significant spatial autocorrela-

tion is around 0. The value of Geary’s C is 1 in the absence of spatial

autocorrelation and approaches zero for strong autocorrelation. For both

indices, contiguity-based neighbours were defined in grid cells sharing edges

or vertices.

6.2.3 Climate types and environmental variables

Environmental data from South Africa were acquired from the WorldClim

database (Hijmans et al., 2005), which reports gridded mean values from

the 1950-2000 period. A resolution of 5’ (arc min) was used in all datasets.

In addition to average monthly mean temperature and precipitation, a set

of derivative metrics available in WorldClim were used: minimum tem-

perature of coldest month (BIO6), mean temperature of wettest quarter

(BIO8), mean temperature of the coldest quarter (BIO11), annual precip-

itation (BIO12) and precipitation of warmest quarter (BIO18). A derived

variable was created with precipitation from October to January (spring-

summer in the southern hemisphere).

An algorithm was developed to implement the Köppen-Geiger climate

classification system (Köppen, 1936) based on the updated version from Peel

et al. (2007). This system considers the following parameters based on tem-

perature (ºC) and precipitation (mm): MAP = mean annual precipitation,
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MAT = mean annual temperature, Thot = mean temperature of the hottest

month, Tcold = mean temperature of the coldest month, Tmon10 = number

of months where the mean temperature is above 10, Pdry = mean precipita-

tion of the driest month, Psdry = mean precipitation of the driest month in

summer, Pwdry = mean precipitation of the driest month in winter, Pswet =

mean precipitation of the wettest month in summer, Pwwet = mean pre-

cipitation of the wettest month in winter, Pthreshold varies according to the

following rules: if 70% of MAP occurs in winter then Pthreshold = 2×MAT ,

if 70% of MAP occurs in summer then Pthreshold = 2×MAT+28, otherwise

Pthreshold = 2×MAT + 14. Summer and winter are defined as the warmer

and cooler, respectively, six-month period from October to March and April

to September (Table 6.1).

The definition of a Mediterranean-type climate developed by Aschmann

(1973) was also mapped applying an algorithm to the gridded data from

WorldClim. This classification considers the following parameters based

on temperature (ºC) and precipitation (mm): MAP = mean annual pre-

cipitation, MWP = mean winter precipitation, MAT = mean annual

temperature, Tcold = mean temperature of the coldest month, Trange =

range of mean monthly temperature. Winter was November to April

in the northern hemisphere and May to October in the southern hemi-

sphere. The Mediterranean-type climate should meet all the following

criteria: MWP ≥ 0.65 × MAP , 275 ≤ MAP ≤ 900, Tcold < 15 and

MAT ≥ 0.7 × Trange + 2.76. This last condition was set originally by As-

chmann (1973) as no more than 3% of the annual hours below 0°C. World-

Clim does not include hourly temperature data, thus the relationship be-

tween MAT and Trange developed by Klausmeyer and Shaw (2009) based on

a figure by Aschmann (1973) was used here. Although the present study was

focused in South Africa, climatic maps of the Mediterranean Basin were also

obtained to discuss the boundaries and geographic extent of Mediterranean-

type climates.

Raster layers with maps of CBS presence in 1950 and current CBS pres-

ence, CBS absence and low pest (disease) prevalence were overlapped onto
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Table 6.1: Description of Köppen-Geiger symbols and defining criteria
for arid and temperate climates (Peel et al., 2007).

Climate type Criteria1

B Arid MAP < 10× Pthreshold
W Desert MAP < 5× Pthreshold
S Steppe MAP ≥ 5× Pthreshold

h Hot MAT ≥ 18

k Cold MAT < 18

C Temperate Thot > 10 & 0 < Tcold < 18

s Dry Summer Psdry < 40 & Psdry < Pwwet/3

w Dry Winter Pwdry < Pswet/10

f Fully humid Not (Cs) or (Cw)

a Hot Summer Thot ≥ 22

b Warm Summer Not (a) & Tmon10 ≥ 4

c Cold Summer Not (a or b) & 1 ≤ Tmon10 < 4

1 MAP = mean annual precipitation, MAT = mean annual temperature, Thot =
mean temperature of the hottest month, Tcold = mean temperature of the cold-
est month, Tmon10 = number of months where the mean temperature is above 10,
Pdry= mean precipitation of the driest month, Psdry = mean precipitation of the
driest month in summer, Pwdry = mean precipitation of the driest month in win-
ter, Pswet = mean precipitation of the wettest month in summer, Pwwet = mean
precipitation of the wettest month in winter, Pthreshold = if 70% of MAP occurs
in winter then Pthreshold = 2 × MAT , if 70% of MAP occurs in summer then
Pthreshold = 2×MAT + 28, otherwise Pthreshold = 2×MAT + 14. Summer (win-
ter) is defined as the warmer (cooler) six-month period from October to March and
April to September. In all cases, temperature in C and precipitation in mm.

raster layers with climate types and environmental variables. The propor-

tion of grid cells in each climate type and CBS status was calculated. Me-

dian, minimum and maximum values of the environmental variables indi-

cated above were calculated for each CBS status and for each combination

of CBS status and climate type. The R software v.3.1.2 (R Core Team,

2013) with the packages spdep, rgdal, raster, and sp was used in all analysis
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(Bivand, 2014; Bivand et al., 2014; Hijmans, 2014; Pebesma and Bivand,

2005). When necessary, the presence of citrus orchards in some specific grid

cells was corroborated using the package RgoogleMaps (Loecher, 2014).

6.3 Results

6.3.1 CBS spread in South Africa

CBS was first described in South Africa in 1929 in citrus orchards near to

Pietermaritzburg, KwaZulu-Natal (Figure 6.1A). The disease was confined

to this location and it was considered of minor importance at that time

(Doidge, 1929). During the next ten years, CBS spread slowly and in 1940 it

was causing considerable damage in this area (Wager, 1952). The appendix

2 of (Wager, 1952) included details of an extensive survey conducted from

1940 to 1950. In 1945 the disease was first reported in Limpopo province

(Figure 6.1B) and in 1946, it was detected in Mpumalanga and North West

provinces (Figure 6.1C). Citrus-growing areas in Western Cape, Eastern

Cape and Gauteng provinces were surveyed and no symptoms of CBS were

observed. The Eastern Cape province was again surveyed in 1962 and 1963

by (McOnie, 1964a) and no signs of CBS were found.

The disease was cited by Kotzé (1981) as a major crop destroyer in the

provinces of KwaZulu-Natal, Mpumalangaa and Limpopo. P. citricarpa

was not among the list of regulated plant pathogens when the Agricultural

Pests Act was implemented in 1984, but the introduction of citrus plants

into the Western Cape, Eastern Cape and Northern Cape provinces was

banned by this phytosanitary regulation (Anonymous, 1984). No specific

data of CBS introduction in the Eastern Cape province was found, but Korf

(1998) indicated that lemon orchards in the Eastern Cape were continuously

protected against CBS with fungicides at that time.

In 2002 P. citricarpa was included on the list of regulated plant

pathogens in South Africa. The movement of citrus plants from KwaZulu-

Natal, Mpumalanga, Gauteng, Limpopo, North West and Eastern Cape to

the Western Cape, Northern Cape and Free State was banned due to CBS.
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86 6.3. Results

Figure 6.1: Geographic distribution of citrus black spot (CBS) caused
by Phyllosticta citricarpa in South Africa (Anonymous, 2014a; Doidge,
1929; Paul, 2005; Paul et al., 2005; Wager, 1952; Yonow et al., 2013).

Data for Lesotho and Swaziland were not available.

Within the Western Cape, the movement of citrus plants was also banned

from the easternmost to the westernmost magisterial districts due to CBS

(Anonymous, 2002, 2005a,b; DAFF, Department of Agriculture Forestry

and Fisheries South Africa, 2009).

A map of CBS distribution in South Africa (Figure 6.1D) was published

by Paul (2005) and Paul et al. (2005). CBS-affected areas were located in
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the same provinces indicated above and the Western Cape, Northern Cape

and Free State provinces were considered CBS-free areas. According to

internationally adopted standards, pest (disease) free status is recognized

in areas in which a specific pest (disease) does not occur as demonstrated by

scientific evidence and in which this condition is officially maintained (IPPC,

International Plant Protection Convention, 1995, 2007). The EU considers

the entire Western Cape province as a CBS-free area (Anonymous, 2006),

whilst the USA only recognizes disease freedom in the westernmost districts

of the province (APHIS, Animal and Plant Health Inspection Service USA,

2012).

In 2008, the magisterial districts of Christiana and Taung in the North

West province were considered CBS-free and Musina and Soutpansberg in

Limpopo, north of the 22º 50’S latitude or west of 29º 20’ E longitude,

were considered areas of low pest (disease) prevalence for CBS (Anony-

mous, 2008; DAFF, Department of Agriculture Forestry and Fisheries South

Africa, 2009). Low pest (disease) prevalence status is recognized in areas in

which a specific pest (disease) occurs at low levels and which is subjected to

effective surveillance, control or eradication measures (IPPC, International

Plant Protection Convention, 2005, 2007). The CBS distribution map of

Paul (2005) and Paul et al. (2005) was updated accordingly by Yonow et al.

(2013) (Figure 6.1D).

The CBS-free status of Western Cape, Northern Cape and Free State

provinces was documented by recent surveys (Carstens et al., 2012) and lim-

itations for the movement of citrus plants within the Western Cape province

due to CBS were lifted in 2014 (Anonymous, 2014a).

Data of CBS distribution in South Africa from the consolidated version

of the map (Anonymous, 2014a; Paul, 2005; Yonow et al., 2013) showed

a strong spatial autocorrelation (Moran’s I = 1, P < 0.0001; Geary’s C

= 0, P < 0.0001).

6.3.2 Climate types

Current citrus areas in South Africa were present in all ten climate types in

the country. According to the Köppen-Geiger system, arid desert climates
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(Bw) were present in citrus areas in Limpopo and Northern Cape provinces

(Figure 6.2a). Arid steppe climates (Bs) were present across citrus areas in

all provinces. Temperate climates with dry summer (Cs) were present only

in the Western Cape. Temperate climates with dry winter (Cw) were present

in citrus areas in Gauteng, KwaZulu-Natal, Limpopo, Mpumulanga and

North West provinces. Temperate climates without a dry season (Cf) were

present in citrus areas in the Eastern Cape, KwaZulu-Natal and Western

Cape provinces. Aschmann’s Mediterranean-type climate was restricted to

the Western Cape (Figure 6.2B).

In the Mediterranean Basin, arid steppe (Bs) climates were present in

Spain, Greece, Turkey, Cyprus, Syria, Israel, Libya, Tunisia, Algeria and

Morocco (Figure 6.3A). Climates of Mediterranean-type (Cs) climates were

present in Portugal, Spain, France including Corsica, Italy including Sicily

and Sardinia, Albania, Greece, Turkey, Syria, Israel, Cyprus, Malta, Libya,

Tunisia, Algeria and Morocco (Figure 6.3B). Aschmann’s Mediterranean-

type climate was present in all of the same countries with Cs climates except

Albania (Figure 6.3C).

The disease was first detected in South Africa in 1929 in a location with

a temperate climate with a dry winter and warm summer (Cwb). In 1950,

CBS was restricted to temperate climates with a dry winter (Cw) and fully

humid (Cf), with 79.6% of the locations of the Cw climates (hot summer

Cwa 57.4%; warm summer Cwb 22.2%) and 20.4% of the Cf climates (hot

summer Cfa 16.7%; warm summer Cfb 3.7%).

Considering the grid cells of current citrus-growing areas in South Africa,

55.9% were affected by CBS, 9.2% were of low prevalence, and 34.9% were

CBS-free (Figures 6.2A and 6.4). The hot arid steppe climate (Bsh) was

the predominant climate where CBS develops, with 20.7% of the grid cells

with disease present, 6.5% of low prevalence, and 1.4% CBS-free. The cold

arid steppe climate (Bsk) comprised 1.8% of grid cells with CBS present

and 5.7% CBS-free. The hot arid desert (Bwh) consisted of 2.3% grid cell

of low prevalence and 12.8% CBS-free.

Climates of Cw type covered 21.5% of grid cells with CBS present (Cwa

11.9% and Cwb 9.6%) and 0.4% with low prevalence (Figures 6.2A and 6.4).

Climates of Cf type encompassed 11.9% of grid cells with CBS present (Cfa
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7.1% and Cfb 4.8%) and 2.1% disease-free (Cfa 0.6% and Cfb 1.5%). The

disease was not detected in the cold arid desert (Bwk), Csa and Csb climates

with 1.9%, 3.2% and 7.9% of the grid cells, respectively. All grid cells with

Aschmann’s Mediterranean-type climate (11.9%) were CBS-free (Fig 6.1B).

6.3.3 Environmental variables

Minimum temperature of the coldest month in grid cells with CBS present

ranged from 2.3-11.3ºC in 1950 to 0.4-12.9ºC at present (Figure 6.5A). In

CBS-free areas it ranged from -0.7ºC to 9.5ºC. Mean temperature of the

coldest quarter ranged from 11.7ºC to 17.8ºC in grid cells where CBS was

present in South Africa in 1950, from 9.8ºC to 18.8 ºC in current areas of

CBS distribution, and from 6.2ºC to 15ºC in CBS-free areas (Figure 6.5C).

Mean temperature of the wettest quarter in grid cells with CBS present var-

ied from 20.3-25.1ºC in 1950 to 13.5-27.1ºC at present, with the maximum

in areas of low prevalence (Figure 6.5E). The range for this climate vari-

able in CBS-free areas was 6.8-27ºC. The range of annual precipitation in

CBS-affected areas was 663-1199 mm in 1950 and 317-1397 mm at present

(Figure 6.5B). The lowest mean annual precipitation was 317 mm in areas

of low prevalence and 339 mm in areas of CBS presence. In CBS-free areas,

the range of annual precipitation was 47-1033 mm. The precipitation of

warmest quarter in grid cells with CBS present varied from 290-656 mm in

1950 to 96-756 mm at present, with a range of 6-232 mm in CBS-free areas

(Figure 6.5D). The cumulative precipitation from October to January was

372-625 mm in CBS-affected locations in 1950, 121-728 mm in current areas

of CBS-distribution, and 9-320 mm in CBS-free areas (Figure 6.2F). When

not otherwise stated, values for areas of low prevalence where always higher

than the minimum and lower than the maximum indicated for current CBS

presence.

When climatic variables were analyzed along with climate types in the

current areas of CBS distribution, minimum temperature of coldest month

ranged from 0.4ºC in the Cwb climate to 12.9ºC in the Cfa climate (Table

6.2). Mean temperature of the coldest quarter ranged from 9.8ºC to 18.8ºC

in the Cfb and BSh climates, respectively. Mean temperature of wettest
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Figure 6.2: Climate types and citrus areas in relation to current dis-
tribution of citrus black spot (CBS) caused by Phyllosticta citricarpa in
South Africa. A Köppen-Geiger system. B Mediterranean-type climate

according to Aschmann (1973).
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quarter varied from 13.5ºC in the Cfb climate to 27.1ºC in the BWh cli-

mate. The lowest annual precipitation was 317 mm in the BWh climate

and the highest was 1397 mm in the Cwb climate. Precipitation of the

warmest quarter ranged from 96 mm in the BSh climate to 756 mm in the

Cwb climate. The minimum and maximum values of precipitation from Oc-

tober to January were 121 mm and 728 mm in the BSh and Cwb climates,

respectively.

In CBS-free areas, minimum temperature of coldest month ranged from

-0.7ºC in the BSk climate to 9.5ºC in the Csb climate (Table 6.2). Mean

temperature of coldest quarter ranged from 6.2ºC to 14.9ºC and mean tem-

perature of wettest quarter from 6.8ºC to 27ºC in the Csb and BWh cli-

mates, respectively. The lowest annual precipitation was 47 mm in the BWk

climate and the maximum was 1034 mm in the Csb climate. Precipitation

of warmest quarter ranged from 6 mm to 232 mm and precipitation from

October to January ranged from 9 mm to 320 mm in the BWk and Cfb

climates, respectively.

6.4 Discussion

Differences in the two datasets of CBS distribution should be taken into ac-

count to interpret the spread of CBS in South Africa. The 1950 dataset was

comprised of point coordinates obtained at the beginning of the epidemic

with a relative small sample size (n = 54). On the other hand, most recent

data were gridded areas with a relatively large sample size (n = 2065). Fur-

thermore, citrus areas in South Africa increased from 28.900 ha in 1961 to

73.900 ha in 2012 (FAO, Food and Agriculture Organization of the United

Nations., 2014) and regions in the Northern Cape province were not even

cropped with citrus in 1950 (Reuther et al., 1967). A resolution of 5’ was

selected for the present study, but similar results (not shown for the sake

of simplicity) were obtained with the 30’ resolution used in other studies

(Paul, 2005; Paul et al., 2005; Yonow et al., 2013)

Historical data on CBS distribution in South Africa illustrated the slow

epidemic development characteristic of this disease (Kotzé, 1981). It took
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Figure 6.3: Climate types in the Mediterranean Basin. BSk and
BSh (A) Csa and Csb (B) climate types of Köppen-Geiger system. C

Mediterranean-type climate according to Aschmann (1973).
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Figure 6.4: Proportion of grid cells according to the current status of
citrus black spot (CBS) caused by Phyllosticta citricarpa in South Africa
by Köppen-Geiger climate types (Anonymous, 2014a; Paul, 2005; Paul

et al., 2005; Yonow et al., 2013).

several decades from the detection of the first CBS focus in the country to

reach a relatively large geographic and climatic range (Figure 6.1). Data also

showed that CBS emerged in areas of climates with summer rainfall (Cw,

Cf) and later spread to neighbouring regions of arid steppe climate (Bs)

with markedly drier conditions. Currently, these arid climates represent the

major proportion of CBS-affected areas in the country (Figures 6.2A and

6.4).
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In general, the potential for natural spread of CBS by P. citricarpa as-

cospores and conidia is poorly understood. Spatial aggregation of CBS in

citrus orchards in Brazil indicated disease dispersion at short distances, be-

low 24.7 m, but neither ascospores nor conidia were monitored in this study

(Spósito et al., 2007). Under simulated wind-driven rain conditions, conidia

from inoculated citrus fruit were splashed 0.6 m high and 8 m distant (Per-

ryman et al., 2014). No information on the maximum distance movement

by airborne P. citricarpa ascospores or the minimum concentration needed

to initiate an epidemic was found. In other ascomycetes, it was reported

that most of the ascospores originated from an infectious source remained

within 50-90 m (Chandelier et al., 2014; Mondal et al., 2003). However,

the relatively low proportion of ascospores at the tail of the dispersal kernel

might contribute to disease spread over longer distances (Rieux et al., 2014).

Although the origin of CBS introductions remains generally unknown,

human-assisted movement of infected plant material is considered the most

important means of disease spread. The movement of citrus material in

South Africa was not regulated until 1984, but quantitative trade data

among provinces was not found. In any case, it seems conceivable that

larger amounts of plant material were moved from CBS-affected areas to

nearby regions than to distant provinces. Consequently, the potential for

introduction might have been higher in regions adjacent to CBS-affected

areas (Simberloff, 2009). The strong spatial autocorrelation detected in the

current CBS distribution data seem to support this hypothesis and suggest

that climate itself might not be the main factor limiting the spread of CBS

in South Africa. However, further modelling studies are necessary to weigh

the relative contribution of environmental variables and spatial effects in

disease distribution (Latimer et al., 2006).

6.4.1 Environmental variables

Among the ten climates present in citrus-growing areas in South Africa, the

only ones where CBS was not detected were the Mediterranean-type Csa and

Csb as well as the BWk arid cold dessert (Figures 6.2A and 6.4). However,

these three climates together represented only about 13% of the citrus area

in the country and are restricted to locations in the Western Cape and
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Figure 6.5: Median, minimum and maximum values of selected envi-
ronmental variables in areas of South Africa according to the status of
citrus black spot (CBS) caused by Phyllosticta citricarpa in 1950 and
2014. CBS presence in 2014 includes areas of low prevalence (Anony-
mous, 2014a; Paul, 2005; Paul et al., 2005; Wager, 1952; Yonow et al.,

2013).

Northern Cape furthest from CBS-affected areas (¿ 450 km). Based on the

data of Yonow et al. (2013), a similar pattern was present also in Australia.

Areas with Cs climates represented only around 12% of the citrus area

in this country and were located about 2500 km from CBS-affected areas

(results not shown). It was stated that CBS does not occur in Mediterranean
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climates (Yonow et al., 2013), which may be correct when considering only

the Mediterranean-type climates Csa and Csb defined by the Köppen-Geiger

system (Köppen, 1936; Peel et al., 2007) or the more restrictive Aschmann’s

classification (Aschmann, 1973; Klausmeyer and Shaw, 2009). However, this

assertion is inaccurate when considering the BSh and BSk types, where CBS

is most prevalent in South Africa currently (Figures 6.2A and 6.4). Climates

of the BS type are also common in the Mediterranean Basin (Figure 6.3A),

covering important citrus areas such as Souss, Haouz and Oriental regions

in Morocco, Cap Bon peninsula in Tunisia, and the provinces of Castellón,

Valencia, Alicante, Murcia and Almeŕıa in Spain with more than 70% of the

total citrus area in this country (MAGRAMA, Ministerio de Agricultura,

Alimentación y Medio Ambiente, 2013).

Studies with CLIMEX indicated that the potential distribution of CBS

was mainly limited by cold conditions (Paul et al., 2005; Yonow et al.,

2013), though these modelling approaches and their parameterization were

questioned (EFSA, European Food Safety Authority, 2008, 2014; Vicent

and Garćıa-Jiménez, 2008). A non-species-specific degree-day model also

predicted a delay in Phyllosticta spp. pseudothecium maturation in climates

with colder winters and springs (Fourie et al., 2013). Nevertheless, this

model is empirically based and so its performance outside the environmental

range of development is uncertain (EFSA, European Food Safety Authority,

2014). The minimum value of mean temperature of coldest quarter in South

Africa was 3.5ºC lower in the CBS-free than in the CBS-affected areas, but

with a wide range of overlap (Figure 6.5). When considering the minimum

temperature of coldest month, the difference between CBS-free and CBS-

affected areas was only 1ºC. The values for these two environmental variables

were 1.9ºC higher in 1950 than at present. In 1950 the disease had a narrow

range of mean temperature in wettest quarter between 20.3 and 25.1ºC, but

progressively expanded to cooler areas with a range of 13.5-27.1ºC.

The most noticeable change in the environmental range occupied by

CBS in South Africa since 1950 was the amount and seasonality of rain-

fall. Minimum values for the three precipitation variables analyzed were

always lower in CBS-free areas, but differences were strongly reduced when

CBS expanded to drier regions (Figure 6.5). Due to the spread of the dis-

ease from the original foci to neighbouring dry areas, the minimum annual
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precipitation in CBS-affected areas was about 50% lower; 663 mm in 1950

and 339 mm at present. Average annual rainfall in areas of low prevalence

with BWh climate in north of Limpopo province was 317-367 mm. Annual

rainfall values of 339-400 mm were recorded in areas where CBS is endemic

under BSh climate in the Eastern Cape and some regions in Limpopo (Fig-

ure 6.2A, Table 6.2). This shift in the rainfall pattern associated with the

geographical range of CBS was particularly illustrated by the precipitation

in the warmest quarter, which moved from a minimum value of 290 mm in

1950 to 96 mm at present. A similar trend was observed also in the pre-

cipitation from October to January (spring-summer), which is considered

the critical infection period of P. citricarpa in some regions of South Africa

(Kotzé, 1981; McOnie, 1964b).

The lowest values of summer rainfall in CBS-affected areas were observed

in the Eastern Cape province under BSk and BSh climates. Quantitative

data on CBS incidence and fungicide spray programs applied in this area

were not found. It was pointed out that CBS has a low impact in this region

(Fourie et al., 2013; Yonow et al., 2013), though according to international

standards, it is not officially considered among the areas of low pest (disease)

prevalence in South Africa (Anonymous, 2014a). In any case, as the data

from South Africa and other countries indicated, CBS is characterized by

slow epidemic development and past experiences warned that future impacts

cannot be directly inferred from its present status.

In conclusion, these results clearly demonstrated that CBS expanded in

South Africa from its original geographic range in summer rainfall areas

to arid regions in the nearby provinces of Limpopo and the Eastern Cape.

These results contradict overall statements indicating that CBS occurs ex-

clusively in climates with summer rainfall (Graham et al., 2014; Kotzé,

2000). Further modelling studies should integrate the relative contribution

of environmental variables together with the spatial structure of the data

to better estimate the potential geographical range of CBS.
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Table 6.2: Median, minimum and maximum values (in parentheses) of selected climatic variables by Köppen-
Geiger climate types in grid cells with presence or absence of citrus black spot caused by Phyllosticta citricarpa in

South Africa (Anonymous, 2014b; Paul, 2005; Yonow et al., 2013)

Climate type Min. temp. Mean temp. Mean temp. Annual Precipitation Precipitation

coldest month coldest quarter wettest quarter precipitation warmest quarter October to January

(ºC) (ºC) (ºC) (mm) (mm) (mm)

CBS present1

Arid Desert BWh 5.3 ( 4.7, 9.6) 16 (15.5, 18.2) 26.3 (25.3, 27.1) 339.9 (317.1, 366.9) 187.6 (175.7, 208.4) 207.5 (195, 225.9)

Steppe BSh 5.1 (1.5, 10.8) 15 (11.7, 18.8) 24.4 (18.6, 26.6) 554.2 (339.8, 719.1) 281.9 ( 96.2, 408.4) 317.1 (121.1, 391.1)

BSk 3.4 (1, 5.7) 12.3 (11.1, 13.8) 21.4 (17.9, 22.9) 582.5 (401.3, 630.9) 295 (113.1, 326.1) 342.4 (149, 383.8)

Temperate Dry winter Cwa 7.1 (1.5, 10.7) 15.2 (11.1, 18.1) 22.8 (21.2, 25.6) 776.8 (625.2, 1218.9) 395.7 (304.2, 666.7) 422.7 (341, 634.8)

Cwb 3.7 (0.4, 7.8) 12.2 (9.9, 14.9) 20.6 (16.9, 21.8) 887.8 (624.2, 1396.6) 437.3 (319.1, 756.3) 487.8 (376.3, 728.2)

Fully humid Cfa 10.5 (3.9, 12.9) 16.9 (12.4, 18.3) 23.1 (20.9, 25.2) 948.4 (492.4, 1131.4) 356 (167.7, 417.4) 447.1 (205.9, 520.4)

Cfb 5.1 (1, 9.1) 12.7 (9.8, 15.5) 20 (13.5, 21.4) 859.5 (501.6, 937.8) 365 (110.6, 427.8) 452.9 (169, 490.4)

CBS absent

Arid Desert BWh 2.9 (0.5, 6.5) 12.2 (10.1, 14.9) 24.9 (17.7, 27) 188.7 (55.4, 275.9) 79.4 (10, 106.7) 72.9 (10, 100.7)

BWk 7.4 (0.3, 8.6) 13.3 (9.7, 14.8) 14 (12.9, 23.1) 64.6 (47.3, 291.2) 9.5 (6, 115.2) 11.8 (8.9, 106.3)

Steppe BSh 1.3 (0.1, 7) 11.4 (10.6, 13.1) 23.5 (13, 24) 429.4 (242.2, 476.5) 199.8 (18.4, 223.7) 202.3 (32.9, 231.4)

BSk 4.2 (-0.7, 7.4) 11.4 (7.9, 13.9) 13.8 (7.9, 23.1) 399.3 (270.2, 499) 66.6 (22.5, 222.9) 102.5 (38.6, 236.9)

Temperate Dry summer Csa 5.9 (3.7, 6.8) 12.2 (10.7, 12.8) 13 (11.4, 13.5) 448.9 (354.3, 916.7) 39.9 (28.7, 77.3) 74.7 (52.2, 143.5)

Csb 5.1 (0.1, 9.5) 10.9 (6.2, 13.5) 11.1 (6.8, 13.6) 602 (288.6, 1033.5) 65 (31.6, 102.2) 119.5 (53.8, 187.5)

Fully humid Cfa 5.9 (4.9, 6.4) 13.1 (12.1, 13.5) 18 (14.2, 18.9) 545.6 (495.1, 559.8) 113.9 (92.8, 118.5) 156.6 (134.6, 158.6)

Cfb 5.7 (2.9, 7.9) 11.8 (9.8, 13.7) 13.2 ( 9.8, 17.1) 520.4 (441.1, 920.2) 95.1 (69.9, 232) 134.2 (115.4, 319.8)
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Chapter 7

Response to the letter on

“Climatic distribution of

citrus black spot caused by

Phyllosticta citricarpa. A

historical analysis of disease

spread in South Africa” by

Fourie et al. (2017)

In this chapter, we present a version of our paper “Response to the letter on

“Climatic distribution of citrus black spot caused by Phyllosticta citricarpa.

A historical analysis of disease spread in South Africa” by Fourie et al.

(2017)” by Joaqúın Mart́ınez-Minaya (University of Valencia), David Conesa

(University of Valencia), Antonio López Qúılez (University of Valencia) and

Antonio Vicent (Valencian Institute for Agricultural Research) published in

European Journal of Plant Pathology, 148, 503–508. The chapter contains

at the end the references used in this work.
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Abstract

In a previous study, Mart́ınez-Minaya et al. (2015) performed an analysis

of climate-based distribution of citrus black spot (CBS) in South Africa.

It was found that CBS was initially confined to humid areas with summer

rainfall, but later spread to arid steppe and even desert climates. A strong

spatial autocorrelation of CBS distribution was found. Fourie et al. (2017)

take a critical view of our study, but without presenting any analysis of

results to refute our findings. Furthermore, Fourie et al. (2017) appear

to have misunderstood our work, since many of their criticisms relate to

the potential distribution of CBS in Europe, which is beyond the scope of

our original study. Fourie et al. (2017) highlight the limitations of climate

classifications in species distribution modelling. However, this was made

explicit in our study, indicating that it was a preparatory work and further

advanced modelling studies, including spatial effects, will be needed. Fourie

et al. (2017) incorrectly assume that we used all of South Africa as the

background in the spatial autocorrelation analysis. However, only citrus

areas were used and a strong spatial autocorrelation was detected at all

distances evaluated. Contrary to what Fourie et al. (2017) suggest, similar

climate distributions of CBS were obtained at 5′ and 30′ resolution, and also

with the national land-cover map of South Africa. The figure comparison

presented by Fourie et al. (2017) appears to ignore the fact that the maps we

used were grid cells of 10 × 10 km and not the line polygons they suggest.

Therefore, we consider the conclusions from the Mart́ınez-Minaya et al.

(2015) remain entirely valid.

Keywords

Guignardia citricarpa, spatial autocorrelation, mapping
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Fourie et al. (2017) devote the greater proportion of their letter discussing

the potential global distribution of citrus black spot (CBS), caused by Phyl-

losticta citricarpa (McAlpine) van der Aa, with a particular emphasis in

European citrus-producing regions. However, it was clearly stated in the ti-

tle and the objectives of our study (Mart́ınez-Minaya et al., 2015) that it was

limited to South Africa. Mart́ınez-Minaya et al. (2015) stated that “maps of

the Mediterranean Basin were also obtained to discuss the boundaries and

geographic extent of Mediterranean-type climates”. However, climatic suit-

ability of the Mediterranean Basin for CBS was not analysed nor discussed

in our study. Therefore, our response will not address those comments of

Fourie et al. (2017) relating to the potential distribution of CBS in Europe.

For a detailed discussion on this interesting topic, we recommend a recent

report by EFSA, European Food Safety Authority (2016), where our study

and others were thoroughly assessed by an independent panel of scientists.

We focus our response primarily on the methodological issues raised by

Fourie et al. (2017), as they might affect the conclusions of Mart́ınez-Minaya

et al. (2015). To complement the results obtained by Mart́ınez-Minaya et al.

(2015), an additional raster layer was assembled with the map published by

Paul (2005) and its subsequent updates (Yonow et al., 2013; Anonymous,

2014), but including only those grid cells of the class “cultivated commercial

permanent orchards” in the 2013-2014 South African national land-cover

(NLC) dataset (DEA, Department of Environmental Affairs South Africa,

2015). As in Mart́ınez-Minaya et al. (2015), a resolution of 5′ and the

coordinate system WGS84 were used with the raster package for R (Hijmans,

2014).

Fourie et al. (2017) indicate that CBS distribution patterns in South

Africa depended on the point of introduction and the movement of infected

plant material, which we agree is self-evident. Furthermore, Fourie et al.

(2017) point out that “P. citricarpa has had abundant opportunity over

many years for range expansion, including the recorded movement of cit-

rus trees from CBS-endemic areas (Powell, 1930; Kiely, 1948; Ramón-Laca,

2003)”. Only the reference by Powell (1930) relates to South Africa, and
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CBS was not mentioned in the publication, as the disease was only reported

in South Africa in 1929 (Doidge, 1929). Powell (1930) indicated that citrus

was first introduced in the Western Cape in 1654, from where the crop pro-

gressively expanded east. Recent phytosanitary regulations in South Africa

still consider the Western Cape to be a CBS-free area, whereas most citrus

regions in the east are CBS-affected (Anonymous, 2014). Therefore, Pow-

ell (1930) cannot be considered by any means as a valid reference for the

movement of citrus trees from CBS-endemic areas in South Africa. As indi-

cated by Mart́ınez-Minaya et al. (2015), “the movement of citrus material

in South Africa was not regulated until 1984, but quantitative trade data

among provinces was not found”. Fourie et al. (2017) do not provide any

additional data or reference on this subject.

Fourie et al. (2017) indicate that the use of climate classifications is the

most simplistic of all the species distribution models available, and so the

biological relevance of climate zones should be carefully considered. We

were fully aware of this point, as EFSA, European Food Safety Authority

(2014) already indicated that global climate zones are based on factors and

thresholds that are broad and not necessarily representative of those that

are critical for the pathogen and its host. This point was stated explicitly by

Mart́ınez-Minaya et al. (2015) in the objectives: “This preparatory work was

part of a larger modelling project where the potential geographical range of

CBS will be estimated based on relevant environmental variables and spatial

effects”, and in the conclusions: “Further modelling studies should integrate

the relative contribution of environmental variables together with the spatial

structure of the data to better estimate the potential geographical range of

CBS”. Fourie et al. (2017) do not acknowledge these statements in their

letter.

Mart́ınez-Minaya et al. (2015) indicated that “A map of the CBS dis-

tribution in Australia was also available (Paul, 2005), but without details

and resolution of the original data, so it was not considered in the present

study”. However, Fourie et al. (2017) criticize our study for not considering

CBS data from Australia and claim that both CBS distribution maps, Aus-

tralia and South Africa, had a similar level of detail. For South Africa, Paul

(2005) indicated that “areas of CBS presence and absence in commercial
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orchards and backyard trees were mapped by six field specialists with ex-

tensive knowledge of the disease onto a map of South Africa at a scale 1:106

(2 × 2 m). Disease presence records (. . .) were transcribed to a 29.7 × 45

cm map and scanned. Data on CBS distribution were confirmed by 200 cit-

rus growers and researchers from South Africa at a citrus meeting in 2002”.

However, for Australia, Paul (2005) only indicated that “Information on the

presence of CBS in Australia was obtained from the Australian Plant Pest

Database” and “A map of the known occurrence of CBS in Australia was

drawn up from these data”. Hence, the paucity of details in Paul (2005)

on the original data from Australia when compared with those from South

Africa is self-evident.

With regard to our analysis of spatial autocorrelation of CBS distribu-

tion in South Africa, Fourie et al. (2017) point out that “Mart́ınez-Minaya

et al. (2015) used all of South Africa as the background for the analysis

(. . .). Had Mart́ınez-Minaya et al. (2015) used citrus production regions

as the background for the autocorrelation analysis, the apparent levels of

spatial autocorrelation can be expected to decrease significantly”. Fourie

et al. (2017) make these serious assertions without presenting any analy-

sis of spatial autocorrelation of the data. Furthermore, it is an incorrect

assumption of Fourie et al. (2017) that we used all of South Africa as the

background. Moran’s I and Geary’s C analyses were performed with the

2014 dataset considering only grid cells in citrus areas, assigning a value

of 0 for CBS absence and 1 for CBS presence or low prevalence. Indeed,

Moran’s I and Geary’s C were not calculated for the 1950 dataset because

only CBS presence, and not CBS absence, was available for that year.

In addition to the Moran’s I and Geary’s C calculated with contiguity-

based neighbours by Mart́ınez-Minaya et al. (2015), we present all the values

for these indices at increasing distances (Figure 7.1). The presence of strong

spatial autocorrelation in the current CBS distribution data in citrus areas

in South Africa was evident in both, the dataset used by Mart́ınez-Minaya

et al. (2015) and the one assembled based on the NLC map. As pointed out

by Mart́ınez-Minaya et al. (2015), further modelling efforts should consider

not only environmental variables, but also the spatial dependence of CBS

distribution data in South Africa. Ignoring this dependence may lead to
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inaccurate model parameterization and inadequate quantification of uncer-

tainty (Banerjee et al., 2014).

In Mart́ınez-Minaya et al. (2015), a raster layer of CBS distribution in

South Africa was generated from the map published by Paul (2005) and its

subsequent updates (Yonow et al., 2013; Anonymous, 2014). As indicated

in the Material and Methods of Mart́ınez-Minaya et al. (2015), and also

noted in the acknowledgments, all data were georeferenced to the coordi-

nate system WGS84 by a mapping specialist. In their letter, Fourie et al.

(2017) point out that CBS distribution maps in Paul et al. (2005) are ad-

equate for modelling at 30′ scale, but not at a 5′ scale used in our study.

Mart́ınez-Minaya et al. (2015) stated that “similar results (not shown for

the sake of simplicity) were obtained with the 30′ resolution”. To demon-

strate this, we now present the proportion of grid cells according to CBS

status by Köppen-Geiger climate types (Köppen, 1936) at both the 30′ and

5′ resolution obtained by Mart́ınez-Minaya et al. (2015) (Figure 7.2). As

previously indicated and as can now be seen, similar results were obtained

at both scales. Furthermore, comparable results were derived from the

dataset assembled using the NLC map at 5′ resolution, where only grid cells

with “cultivated commercial permanent orchards” were considered (Figure

7.2c). In this dataset, no commercial citrus areas were located under the

arid cold desert (BWk) climate, which were indeed considered as CBS-free

by Mart́ınez-Minaya et al. (2015).

Fourie et al. (2017) plot side by side Figure 7.1d of Mart́ınez-Minaya

et al. (2015) and Figure 7.1a of Yonow et al. (2013), stating that “polygons

depicting CBS distribution were clearly coarser that those of Yonow et al.

(2013)”. Although Mart́ınez-Minaya et al. (2015) made it explicit in Mate-

rial and Methods, Fourie et al. (2017) apparently misunderstood that our

maps were in fact grid cells and not line polygons as in Yonow et al. (2013).

Each grid cell represented a 5′ square of about 10×10 km, which was evident

from the scale bars in both Figure 7.1 and Figure 7.2 of Mart́ınez-Minaya

et al. (2015). Values of CBS status and environmental variables were for the

grid centroids, always contained within the polygons of the map published

by Paul (2005) and its subsequent updates (Yonow et al., 2013; Anony-

mous, 2014). Fourie et al. (2017) persist in this misapprehension stating

that “CBS-present polygons also extended into neighbouring countries and
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Figure 7.1: Moran’s I and Geary’s C values at increasing distances. The
blue lines represent the dataset used by Mart́ınez-Minaya et al. (2015)
from Paul (2005) and its subsequent updates (Yonow et al., 2013; Anony-
mous, 2014). The red lines represent the same dataset but including only
grid cells of the class “cultivated commercial permanent orchards” from
the 2013-2014 South African national land-cover map (DEA, Department

of Environmental Affairs South Africa, 2015).

even into the ocean”. Again, it should be noted that grid cells and not

polygons were represented by Mart́ınez-Minaya et al. (2015). Moreover,

the WorldClim database includes only land areas and not oceans (Hijmans

et al., 2005). Also, as clearly indicated in Mart́ınez-Minaya et al. (2015),

our study was limited to South Africa. For more in-depth information on

this point, the functions ’getData’ and ’crop’ in the raster package for R as

used in our study should be examined (Hijmans, 2014).



“Thesis˙Joaquin” — 2019/6/10 — 8:51 — page 114 — #148i
i

i
i

i
i

i
i

114

Fourie et al. (2017) state that “it is clear that CBS occurs in the BSh

climate zone in South Africa, and is essentially absent from BSk climates”.

Again, Fourie et al. (2017) make this strong assertion without presenting

any analysis of the data. Presence of CBS under the cold arid steppe climate

(BSk) was obtained by Mart́ınez-Minaya et al. (2015) at 5′ and 30′ resolu-

tions, as well as here with the dataset assembled using the NLC map (Figure

7.2). Fourie et al. (2017) focus more directly on the BSk climate, but they

appear to overlook that the hot arid steppe climate (BSh), which is the pre-

dominant climate under which CBS is becoming established in South Africa

(Figure 7.2), is also a climate type occurring in important citrus-producing

areas in the Mediterranean Basin (Fig. 3a of Mart́ınez-Minaya et al. (2015)).

From a biogeographical perspective, it is more remarkable that P. cit-

ricarpa thrives under the hot arid desert climate (BWh) found in parts

of South Africa (2.3% of grid cells), although Fourie et al. (2017) made

no comments on this fact. The arid desert areas where CBS is present

in South Africa are located in northern Limpopo province (Figure 7.2a of

Mart́ınez-Minaya et al. (2015)), as clearly specified by phytosanitary regu-

lations “The Limpopo province, towns of Musina and Soutpansberg - north

of 22º 50’S or west of 29° 20’ E ” (Anonymous 2014). These areas have low

pest (disease) prevalence for CBS (Anonymous 2014), so they are subject to

effective surveillance, control or eradication measures (IPPC, International

Plant Protection Convention, 2005, 2007). The presence of CBS in desert

areas demonstrates that P. citricarpa is able to complete its disease cycle

under arid conditions typical of the BWh climate classification. Indeed,

with the dataset assembled using the NLC map, annual rainfall as low as

340 mm was recorded in areas were CBS is endemic, similar to the values

reported by Mart́ınez-Minaya et al. (2015).

The incorrect assumptions made by Fourie et al. (2017) in respect to our

methods, their apparent misinterpretations of our results, and taking into

account the methodological clarifications and additional evidence we present

here, we consider that the conclusions of Mart́ınez-Minaya et al. (2015) are

indeed correct, valid, and stand, further demonstrating the facts that: i)

CBS in South Africa has expanded from its original geographic range in

summer rainfall areas to adjacent, more arid regions; ii) the results con-

tradict statements indicating that CBS occurs exclusively in climates with
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Figure 7.2: Köppen-Geiger climate types and citrus-growing areas in re-
lation to the distribution of citrus black spot (CBS) caused by Phyllosticta
citricarpa in South Africa. The dataset used by Mart́ınez-Minaya et al.
(2015) from Paul (2005) and its subsequent updates (Yonow et al., 2013;
Anonymous, 2014) shown at 30′ (a) and 5′ (b) resolution, and (c) the same
dataset at 5′ resolution but including only grid cells of the class “cultivated
commercial permanent orchards” in the 2013-2014 South African national
land-cover map (DEA, Department of Environmental Affairs South Africa,

2015).
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summer rainfall (Fourie et al., 2017; Graham et al., 2014; Kotzé, 2000); and

iii) further modelling studies are required to integrate the relative contribu-

tion of environmental variables and the spatial structure of the data.
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Chapter 8

Spatial and climatic factors

associated with the

geographical distribution of

citrus black spot disease in

South Africa. A Bayesian

latent Gaussian model

approach

In this chapter, we present a version of our paper “Spatial and climatic

factors associated with the geographical distribution of citrus black spot

disease in South Africa. A Bayesian latent Gaussian model approach” by

Fourie et al. (2017)” by Joaqúın Mart́ınez-Minaya (University of Valencia),

David Conesa (University of Valencia), Antonio López-Qúılez (University

of Valencia) and Antonio Vicent (Valencian Institute for Agricultural Re-

search) published in European Journal of Plant Pathology, 143, 69–83. The

chapter contains at the end the references used in this work.

119



“Thesis˙Joaquin” — 2019/6/10 — 8:51 — page 120 — #154i
i

i
i

i
i

i
i

120

Abstract

Citrus black spot (CBS), caused by Phyllosticta citricarpa, is the main fun-

gal disease affecting this crop and quarantine measures were have been im-

plemented. The role of climate as a limiting factor for the establishment

and spread of CBS to new areas has been debated, but previous studies did

not address the effects of spatial factors in the geographic distribution of the

disease. The effects of climatic and spatial factors were studied using South

Africa as a case study, due to its diversity of climates within citrus-growing

regions. Georeferenced datasets of CBS presence/absence in citrus areas

were assembled for two stages of the epidemicsepidemic: 1950 and 2014.

Climatic variables were obtained from the WorldClim database. Moran’s

I and Geary’s C analyses indicated that CBS distribution data presented

significant spatial autocorrelation, particularly in 2014. Collinearity was de-

tected among climatic variables. Spatial logistic regressions, particular case

of latent Gaussian models, were fitted to CBS presence/absence in 1950 or

2014 with Integrated Nested Laplace Approximation methodology. Princi-

pal components (PCs) or pre-selection of climatic variables based on their

correlation coefficients were used to cope with collinearity. Spatial effects

were incorporated with a geostatistical term. In general, the models indi-

cated a positive relationship between CBS presence and climatic variables

or PCs associated with warm temperatures and high precipitation. Nev-

ertheless, in 1950, models that also included a spatial effect outperformed

those with climatic variables only. Problems of model convergence were de-

tected in 2014 due to the strong spatial structure of CBS distribution data.

The consequences of ignoring spatial dependence to estimate the potential

geographical range of CBS are discussed.

Keywords

Guignardia citricarpa, geostatistics, INLA, biogeography, risk assessment
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8.1 Introduction

Citrus black spot (CBS) disease, caused by the fungus Phyllosticta citri-

carpa (McAlpine) van der Aa (synonym Guignardia citricarpa Kiely), is the

most important fungal disease affecting this crop worldwide. The pathogen

causes external blemishes on the fruit rind and induces premature fruit drop,

resulting in serious quality and yield losses (Mart́ınez-Minaya et al., 2015).

When complementary mating types are present, the pathogen reproduces

through sexual spores (ascospores) formed in the leaf litter after a matura-

tion process driven mainly by temperature and moisture (McOnie, 1964b;

Tran et al., 2017). Once mature, ascospores are discharged from the leaf

litter and disseminated by air currents (McOnie, 1964b). Ascospores infect

susceptible fruit, twigs and leaves in the presence of moisture and conducive

temperatures. The pathogen also reproduces by asexual spores (conidia),

which are rain-splashed mainly from lesions in citrus fruit and twigs (Per-

ryman et al., 2014). Ascospores have been deemed as the main source of

inoculum in South Africa (McOnie, 1964b), but studies in Brazil and Florida

(USA) have suggested that conidia are epidemiologically important under

certain conditions (Hendricks et al., 2017; Spósito et al., 2008; Wang et al.,

2016). The application of chemical fungicides is generally needed for CBS

control (Makowski et al., 2014), resulting in increased environmental and

economic costs of citrus production.

The CBS disease is currently present in important citrus-growing regions

of Australia, Asia, Africa and America. Quarantine measures have been es-

tablished by several countries, such as South Africa, USA, Japan and the

European Union (EU), to prevent the entry of P. citricarpa into areas that

are still free of the pathogen (Mart́ınez-Minaya et al., 2015). According to

the International Plant Protection Convention (IPPC) and the World Trade

Organization (WTO), phytosanitary regulations should be based on a sci-

entific pest risk analysis (PRA). PRAs are based on standardized protocols

aimed at estimating the likelihood of disease introduction (i.e. entry and

establishment) and subsequent spread in order to devise the most efficient

options as regards risk reduction. Maps describing host availability and cli-

matic suitability for disease development are a key component of PRAs to

set bounds on potential introductions into new areas (Venette et al., 2010).
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Paul et al. (2005) estimated the potential global geographical range of

CBS using CLIMEX. They concluded that climates in the Mediterranean

Basin were not suitable for CBS and, therefore, phytosanitary measures

for P. citricarpa in the EU were not necessary. However, Paul et al. (2005)

were not able to predict the presence of the disease in the arid citrus-growing

areas of the Eastern Cape province in South Africa, where CBS is endemic.

In a subsequent study, Yonow et al. (2013) modified the parameters of Paul

et al. (2005) allowing CLIMEX to predict the presence of CBS in this region.

Using a new set of CLIMEX parameters, Er et al. (2013) predicted climatic

suitability for CBS in arid areas of Mediterranean-type climates in California

(USA).

A mechanistic (process-based) generic infection model (Magarey et al.,

2005) was used to obtain maps of climate suitability for CBS. This generic

infection model consisted of parameters for temperature and wetness dura-

tion, and it was specifically developed for exotic pathogens, like P. citricarpa,

on which there is little biological information. One study using this model

concluded that the climates of the EU cannot be considered as unsuitable for

the establishment of P. citricarpa (EFSA, European Food Safety Authority,

2008), whereas another study indicated that CBS was not expected to have

an impact in areas with commercial citrus production in Europe (Maga-

rey et al., 2011). Nevertheless, due to the paucity of biological information

available for P. citricarpa, the results obtained with process-based models

were highly uncertain (EFSA, European Food Safety Authority, 2014).

Empirical models for Phyllosticta spp. ascospore maturation and release

(Fourie et al., 2013) have been combined with the generic infection model

so as to restrict predictions only to the periods of potential ascospore avail-

ability. One study using these models indicated that climatic conditions

in many EU citrus-growing areas were suitable for CBS (EFSA, European

Food Safety Authority, 2014), whereas another suggested that only a few

isolated locations in Europe have a low to marginal risk of P. citricarpa es-

tablishment (Magarey et al., 2015). However, in this latter study, infection

events were dramatically diminished, only those associated with rains being

considered. Nevertheless, as indicated above, large uncertainties have been

associated with these models and their applications (EFSA, European Food

Safety Authority, 2016).
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Correlative statistical models are widely used in different areas of bio-

geography, such as conservation, resource management, global warming and

biological invasions (Franklin, 2009). However, their use for risk assess-

ment in plant pathology is still limited and few studies are available for dis-

eases caused by fungi or oomycetes (Elith et al., 2013; Meentemeyer et al.,

2008; Narouei-Khandan et al., 2017). Typically, correlative species distri-

bution models explore the relationships between species occurrences and

climatic variables to produce maps of predicted distributions of the tar-

get organisms. Without enough biological and epidemiological information

for process-based models, correlative species distribution models may help

to identify climatic variables that are associated with CBS and, therefore,

demarcate locations that would allow disease establishment.

Several statistical methods are used for species distribution modelling

based on presence/absence data, such as generalized linear models (GLM)

and generalized additive models (GAM) (Franklin, 2009). In many cases,

species distribution models are used without considering the spatial depen-

dence of the data, assuming that the geographical range is only driven by

climate and the disease is in equilibrium with these factors. However, this

assumption is often violated when disease spread is constrained due to dis-

persal barriers and/or absence of susceptible host plants. Moreover, ignoring

spatial autocorrelation may lead to inaccurate parameter estimates, inade-

quate quantification of uncertainty, and thus poor predictive power. With

spatially explicit hierarchical Bayesian models it is possible to introduce the

effect of spatial dependence (Latimer et al., 2006). These complex models

have usually been fitted with Markov chain Monte Carlo (MCMC) meth-

ods that are computationally costly, especially for large spatial datasets. In

the specific case of latent Gaussian models, Approximate Bayesian inference

with integrated nested Laplace approximations (INLA) is a much faster and

computationally efficient alternative to MCMC (Lindgren et al., 2011; Rue

et al., 2009).

The main objective of this study was to analyse the spatial and climate

effects that influence the probability of CBS occurrence in South Africa.

South Africa was used here as a case study because it is the only country

with commercial citrus production under ten climate types, covering a wide

range of environmental conditions. This information will help risk managers
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to better understand the factors associated with the potential establishment

and spread of CBS into new areas.

8.2 Materials and Methods

8.2.1 Datasets

Spatially gridded datasets including presence and absence of CBS in citrus-

growing areas in South Africa were assembled for 1950 and 2014. A raster

layer (5′ arc min resolution) of citrus distribution in South Africa was gen-

erated by a mapping specialist from the map of citrus trees in South Africa

published by Powell (1930), based on the census carried out in 1927 and

restricted to the boundaries of South Africa (Figure 8.1a). Grid cells with

citrus were classified as CBS-present (n = 28) and CBS-absent (n = 776)

based on the survey included in Appendix 2 of Wager (1952), which was

conducted from 1940 to 1950. This latter year was used to denote the

dataset. Since the coexistence of pathogenic and non-pathogenic species

of Phyllosticta in citrus was not discovered until a decade later (McOnie,

1964c), reports of the pathogen in absence of CBS symptoms were excluded

from Wager (1952).

For 2014, the spatially gridded South African national land-cover (NLC)

dataset 2013-2014 was used (DEA, Department of Environmental Affairs

South Africa, 2015), but including only those grid cells of the class “cul-

tivated commercial permanent orchards” enclosed within the citrus areas

of the map by Paul (2005) and its subsequent updates (Anonymous, 2014;

Yonow et al., 2013). A raster layer of 5′ arc min resolution was assembled

with CBS-present (n = 620) and CBS-absent (n = 313) grid cells (Fig-

ure 8.1b) (Anonymous, 2014; DEA, Department of Environmental Affairs

South Africa, 2015; Paul, 2005; Yonow et al., 2013). Phytosanitary barriers

for the internal movement of citrus plants in South Africa (Figure 8.1b) were

gathered from official governmental regulations (Anonymous, 1984, 2002),

as reviewed by (Mart́ınez-Minaya et al., 2015).
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Spatially gridded climatic data (5′ arc min resolution) from South Africa

were acquired from the WorldClim database, which included mean monthly

values for the period 1950-2000 (Hijmans et al., 2005). In addition to the

19 climatic variables available in WorldClim, precipitation from October to

January and accumulated degrees (ADD) from July to October (i.e. average

of Tmax and Tmin for each month with Tbase = 10 ºC) were also calculated

(Table 8.1). The coordinate system WGS84 was used in all spatially gridded

datasets with the raster package for R 3.2.5 (Hijmans, 2014; R Core Team,

2016).

8.2.2 Spatial autocorrelation, collinearity and PCA

To test the hypothesis that the response variable (i.e. CBS presence/ab-

sence) occurs at random among citrus grid cells, Moran’s I and Geary’s

C analyses of spatial autocorrelation were used (Plant, 2012). For each

dataset, 1950 and 2014, CBS-present citrus grid cells were coded with a 1

and CBS-absent citrus grid cells were coded with a 0. Grid cells without

citrus were not considered in the analyses. Both indices were calculated

by contigüity and at increasing distances from 20 to 900 km. Moran’s I

values range from −1, indicating perfect dispersion, to 1 indicating perfect

correlation (i.e. clustering). The expected value of Moran’s I in the absence

of significant spatial autocorrelation is around 0. The value of Geary’s C

is 1 in the absence of spatial autocorrelation and approaches 0 for strong

autocorrelation.

Pearson’s correlation coefficient was used to detect collinearity among

the 21 climatic explanatory variables included in the analysis. Pairwise

correlations were classified as |r| ≤ 0.7 or |r| > 0.7 according to Dormann

et al. (2012a), who proposed this threshold of correlation as an appropriate

indicator for when collinearity begins to severely distort model estimation

and subsequent prediction.

Principal component analysis (PCA) was used to obtain independent lin-

ear combinations of 20 climatic variables in order to summarize most of the

variation in each dataset. The climatic variable temperature annual range

was not taken into account in the PCA, because it is a linear combination of
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the variables maximum temperature of the warmest month and minimum

temperature of the coldest month (Table 8.1). Principal components (PCs)

were extracted sequentially according to the amount of variation explained.

The relationship between the individual variables and the extracted PCs

was expressed by a Varimax rotated component matrix with Kaiser’s nor-

malization. Values approaching unity indicated a greater contribution of the

variable to the component (Chatfied and Collins, 2013). In addition, two

95% confidence ellipses were plotted for pairwise PCs, one for CBS-present

grid cells and another for CBS-absent grid cells (Johnson and Wichern,

2002).

8.2.3 Models

A Bayesian hierarchical spatial approach was used to model the variation

in the proportion of the presence. This approach can be considered as a

spatial extension of a generalized linear model in the sense that a stochastic

spatial effect is added to the linear predictor. Note also that this approach

is highly suitable for situations in which data are observed at continuous

locations occurring within a defined spatial domain. Nevertheless, the main

interest when dealing with this kind of model is to predict the response in

unsampled locations, usually known as kriging in honour of Krige’s (Krige,

1951) seminal work. From the Bayesian point of view, this prediction can

be performed via predictive distributions that easily allow the incorporation

of uncertainty within the model parameters.
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Table 8.1: Climatic variables (BIO) and three linear combinations (PC) extracted with principal component

analysis (PCA) in the 1950 and 2014 datasets and their explained variability.

Climatic variables1

1950 2014

PC1 PC2 PC3 PC1 PC2 PC3

BIO1 Annual mean temperature 0.180 0 0.976 0.133 0.133 0.978

BIO2 Mean diurnal range (mean of monthly (max temp - min temp) 0.932 -0.203 0 -0.307 0.900 0

BIO3 Isothermality (BIO2/BIO7) 0 0.433 0 0.661 0.106 0.328

BIO4 Temperature seasonality (standard deviation * 100) 0.887 -0.313 -0.150 -0.594 0.667 -0.258

BIO5 Max temperature of warmest month 0.558 -0.361 0.695 -0.526 0.453 0.651

BIO6 Min temperature of coldest month -0.666 0 0.726 0.139 -0.638 0.716

BIO8 Mean temperature of wettest quarter 0.447 0.408 0.647 0.451 0.367 0.741

BIO9 Mean temperature of driest quarter -0.323 -0.448 0.518 -0.635 -0.533 0

BIO10 Mean temperature of warmest quarter 0.365 -0.106 0.909 -0.159 0.298 0.915

BIO11 Mean temperature of coldest quarter -0.236 0.136 0.958 0.273 -0.172 0.943

BIO12 Annual precipitation -0.287 0.896 -0.137 0.873 -0.400 0

BIO13 Precipitation of wettest month 0.156 0.925 0 0.927 0 0

BIO14 Precipitation of driest month -0.876 -0.242 -0.230 0 -0.887 -0.184

BIO15 Precipitation seasonality (Coefficient of variation) 0.719 0.522 0.250 0.408 0.664 0.287

BIO16 Precipitation of wettest quarter 0.129 0.936 0 0.930 -0.130 0

BIO17 Precipitation of driest quarter -0.879 -0.238 -0.259 0 -0.889 -0.216

BIO18 Precipitation of warmest quarter 0.166 0.970 0 0.929 0.102 0.302

BIO19 Precipitation of coldest quarter -0.606 -0.434 -0.289 -0.384 -0.599 -0.511

AP Precipitation from October to January 0.125 0.974 0 0.948 0 0.231

ADD Accumulated degrees from July to October with Tbase = 10 ºC 0.177 0.200 0.928 0.312 0.104 0.912

% variability: 37.4 25.9 22.1 40.3 29.2 17.1

1Temperature variables in ºC and precipitation variables in mm. The variable temperature

annual range (BIO7) was not included in the PCA because it is a linear combination of

BIO5 and BIO6
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In line with Muñoz et al. (2013), let Zi be the binary response variable

representing the presence (1) or absence (0) of CBS at location i. Then,

its conditional distribution is Zi | πi ∼ Ber(πi), πi being the probability of

CBS presence at location i. As usual with GLMs, the mean of the response

variable was linked to the linear predictor and to the stochastic spatial

effect by means of the logit link function defined as logit(πi) = log
(

πi
1−πi

)
.

In particular,

logit(πi) = Xiβ +Wi , (8.1)

β being the regression coefficientes vector, X the covariates matrix and Wi

the spatially structured random effect. The geostatistical term W was as-

sumed to be a multivariate Gaussian distribution whose covariance matrix

σ2
WH(φ) depends on the distance between locations, and with hyperparam-

eters σ2
W and φ representing the variance and range of the geostatistical

term, respectively. Once the model had been determined, posterior distri-

butions had to be obtained. As in the Bayesian framework, parameters were

treated as random variables and prior knowledge had to be incorporated us-

ing the corresponding prior distributions. These priors were specified jointly

with random effects, the final level of the Bayesian hierarchical model being

the expression of the prior knowledge about the hyperparameters.

When dealing with Bayesian hierarchical models, posterior distributions

for the parameters and hyperparameters do not usually have any analytic

expression, therefore numerical approximations are needed. In the partic-

ular case of latent Gaussian models, INLA is a computationally efficient

alternative to MCMC. Latent Gaussian models are a particular case of the

Structured Additive Regression (STAR) models, where the mean of the re-

sponse variable is linked to a structured predictor that accounts for the

effects of various covariates in an additive way. The prior knowledge of the

additive predictor is expressed using Gaussian prior distributions. In this

context, all the latent Gaussian variables can be seen as components of a

vector known as the latent Gaussian Field (Rue et al., 2009).

To fit and predict the particular case of continuously indexed Gaussian

Fields with INLA, as in our case, W , an additional module is required.

Lindgren et al. (2011) proposed an explicit link between Gaussian Markov

Random Fields (Rue and Held, 2005) and continuous Gaussian Fields with
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a Matérn covariance structure via a weak solution to a stochastic partial

differential equation (SPDE). Under this approximation, the geostatistical

spatial term is reparameterized as follows, W ∼ N (0,Q(κ, τ)), depending

on two different parameters, κ and τ , determining the range of the effect and

the total variance, respectively. More precisely, the range is approximately

φ =
√

8
κ and the variance is σ2

w = 1
4πκ2τ2

(Lindgren et al., 2011).

As mentioned above, the final step is to specify the prior distributions

for the parameters and hyperparameters. Normal vague priors with mean 0

and precision 10−4 were used for the regression coefficients vector. Although

internally INLA works with κ and τ , priors for the geostatistical term were

specified in terms of φ and σW using the reparameterizations log(φ) and

log(σW as independent Gaussian distributions (Lindgren and Rue, 2015).

To conclude, the full model was stated as follows:

Zi | πi ∼ Ber(πi)

logit(πi) = Xiβ +Wi ,

βj ∼ N (0, 10−4) , W ∼ N (0,Q(φ, σW ) ,

log(φ) ∼ N (mφ, qφ) ,

log(σW ) ∼ N (mσW , qσW ) ,

where mφ was chosen automatically such that the range of the field was

about 20% of the diameter of the region, and mσW was chosen so that the

corresponding variance of the field was 1 (in particular, mφ = 1.476 and

mσW = 0). Finally, the precisions of the prior distributions for log(φ) and

log(σW ) were qφ = 0.1 and qσW = 0.1.

Models including a selection of climatic explanatory variables with

|r| ≤ 0.7 or PCs were fitted to the response variable (CBS presence/ab-

sence). Models covering all possible combinations of climatic explanatory

variables with |r| ≤ 0.7 or PCs were compared using the Watanabe Akaike

Information Criterion (WAIC), which uses the posterior densities more effec-

tively than the traditional Deviance Information Criterion (Gelman et al.,

2014; Watanabe, 2010). The models including climatic explanatory vari-

ables or PCs displaying the lowest WAIC were selected. The geostatistical
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spatial term was incorporated into these models as described above and the

corresponding WAIC was calculated.

A validation dataset with CBS-present (n = 385) and CBS-absent (n =

259) grid cells (Figure 8.7) was assembled by random sampling without

replacement from the 2014 dataset, but excluding those grid cells used for

model development in 1950. Receiver operating characteristic (ROC) curve

analysis was used to evaluate the predictive ability of the models selected

for the 1950 dataset. CBS presence/absence was considered as the binary

classification variable. The mean of the predictive posterior distribution of

πi obtained with each model was evaluated as a continuous estimator of

this binary classification variable. ROC curves showed the proportion of

correctly classified absences (specificity) in the x-axis and the proportion

of correctly classified presences (sensitivity) in the y-axis as the continuous

variable moved over its range of values (i.e. from 0 to 1). The area under del

ROC curve (AUC) was calculated by trapezoids using the pROC package

for R (Robin et al., 2011).

8.3 Results

8.3.1 Spatial autocorrelation, collinearity and PCA

Moran’s I and Geary’s C analyses indicated the presence of significant spatial

autocorrelation (P < 0.0001) in CBS distribution data in 1950 and 2014

(Figure 8.2). Both indices showed that spatial autocorrelation was stronger

in 2014 than in 1950. In 1950, Moran’s I was highest from contigüity to

50 km, with a maximum of 0.33. Spatial autocorrelation decreased with

distance and values of Moran’s I close to zero, approaching a random spatial

pattern, were obtained from 600 km onwards. In 2014, values of Moran’s I

equal to one (indicating perfect correlation) were obtained from contigüity

and distances between 20 and 180 km, with values higher than 0.79 from 190

to 900 km. In 1950, the lowest value of Geary’s C was 0.69 for contigüity and

values close to one, indicating an absence of spatial autocorrelation, were

obtained with distances greater than 600 km. In 2014, values of Geary’s C

were lower than 0.21 in all cases.
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132 8.3. Results

A high degree of collinearity was detected among the climatic vari-

ables, with 189 out of a total of 210 pairwise correlations being significant

(P < 0.05) in 1950 (Figure 8.8). Pairwise correlations with |r| > 0.7 were

detected: 17 among the temperature variables, 13 among the precipitation

variables and only 3 among the temperature and precipitation variables.

In 2014, 193 pairwise correlations were significant (P < 0.05). Those with

|r| > 0.7 were 17 among the temperature variables, 13 among the precipita-

tion variables and only 3 among the temperature and precipitation variables

(Figure 8.9).
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Figure 8.2: Moran’s I (a) and Geary’s C (b) values for contigüity and
at increasing distances, with orange lines for 1950 and red lines for 2014.

Three PCs were extracted from the 1950 dataset, explaining 85.4% of

the variability, with PC1 = 37.4%, PC2 = 25.9% and PC3 = 22.1%. The

temperature variables with the most influence in PC1 were the mean diurnal

range and temperature seasonality with positive coefficients of 0.932 and

0.887, respectively (Table 8.1). The precipitation of the driest month and

the driest quarter made a negative contribution to PC1, with coefficients of

−0.876 and −0.879, respectively. Precipitation seasonality made a positive

contribution to PC1, with a coefficient of 0.719. When plotted onto the

map of South Africa, the lowest values of PC1 coincided mainly with the

Indian Ocean coastal areas (Figure 8.3a). Temperature variables did not

contribute much to PC2 (Table 8.1). Annual precipitation, precipitation of
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the wettest month and quarter made a strong positive contribution to PC2,

with coefficients greater than 0.89. Precipitation in the warmest quarter and

from October to January also made a strong positive contribution to PC2,

with coefficients greater than 0.97. The highest values of PC2 were obtained

in the eastern half of South Africa (Figure 8.3b). Precipitation variables

were not very influential in PC3 (Table 8.1). Annual mean temperature, of

the warmest and the coldest quarters, as well as ADD from July to October

made a strong positive contribution to PC3, with coefficients greater than

0.90. Lower values of PC3 were obtained with increasing altitudes (Figures

8.3c and 8.10a). CBS presences and absences were not clearly separated

when plotting the values of the PCs for each citrus grid cell (Figure 8.11).

Three PCs were extracted from the 2014 dataset, explaining 86.6% of

the variability, with PC1 = 40.3%, PC2 = 29.2% and PC3 = 17.1%.

Precipitation variables made the greatest contributions to PC1 (Table 8.1).

The coefficient for annual precipitation was 0.87 and those for precipitation

of the wettest month, wettest quarter, warmest quarter, and from October

to January were greater than 0.92. Like PC2 in 1950, the highest values

of PC1 in 2014 were obtained in the eastern half of South Africa (Figure

8.3d). In PC2, mean diurnal range made a strong positive contribution,

whereas precipitation in the driest month and quarter had a strong negative

influence (Table 8.1). The geographic representation of PC2 in 2014 was

similar to that of PC1 in 1950, with the lowest values along the Indian

Ocean coast (Figure 8.3e). Precipitation variables had little influence on

PC3 (Table 8.1). Annual mean temperature, ADD from July to October, as

well as mean temperature of the warmest and coldest quarters made a strong

positive contribution to PC3, with coefficients greater than 0.91. Similarly

to 1950, PC3 had lower values at higher altitudes (Figures 8.3f and 8.10a).

CBS presences and absences were clearly discriminated when plotting the

values of PC1 and PC3 for each citrus grid cell (Figure 8.11), with a small

area of overlap corresponding to some citrus areas in the Eastern Cape,

Western Cape, the North West and Northern Cape (Figure 8.12).
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8.3.2 Model fit and evaluation

In 1950, six climatic variables were selected with |r| ≤ 0.7: maximum tem-

perature of the warmest month, minimum temperature of the coldest month,

mean temperature of the driest quarter, ADD from July to October, annual

precipitation, and precipitation of the coldest quarter (Figure 8.10). The

model that included the maximum temperature of the warmest month and

annual precipitation showed the lowest WAIC with a value of 177.51 (Table

8.3). When a geostatistical term was included in this model, the WAIC was

reduced to 126.14 (Table 8.2). Both climatic variables had positive esti-

mates of their parameters. When PCs for 1950 were considered, the model

retaining all three PCs had the lowest WAIC of 198.19 (Table 8.3). When

a geostatistical component was included in this model, the WAIC was re-

duced to 131.26 (Table 8.2) and all three PCs had positive estimates of their

parameters.

In 2014, the same six climatic variables with |r| ≤ 0.7 were selected

(Figure 8.10). The model that included the maximum temperature of the

warmest month, precipitation of the coldest quarter, and ADD from July

to October had the lowest WAIC with a value of 49.57 (Table 8.3). In this

model, the maximum temperature of the warmest month and precipitation

of the coldest quarter had negative estimates of their parameters, whereas

that of ADD from July to October was positive (Table 8.2). When PCs

were included, the lowest WAIC of 100.70 was obtained with the model

retaining only PC1 and PC3, but similar to the WAIC of 101.98 with the

model including all three PCs (Table 8.3). Both PC1 and PC3 had positive

estimates of their parameters (Table 8.2). In 2014 it was not possible to

include the geostatistical term in the models due to the fact that CBS

presences and absences were completely separated on the map.

Similar predictive distributions were obtained with the models for 1950

including the maximum temperature of the warmest month and annual pre-

cipitation or three PCs (Figures 8.4ac). The highest probabilities were ob-

tained along the coast of Kwazulu-Natal and part of the Eastern Cape, as

well as in inland areas of Mpumalanga and Limpopo, with values of up to

0.93. The standard deviation associated with the predictive distributions of
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Table 8.2: Best models for 1950 and 2014 with climatic variables (BIO),
principal components (PC) and geostatistical term (W ).

Modelsa WAICb

Mean Sd

1950

1 +BIO5 +BIO12 177.51
Intercept -26.593 5.401
BIO5 0.478 0.146
BIO12 0.012 0.002

1 + PC1 + PC2 + PC3 198.19
Intercept -4.481 0.391
PC1 -0.64 0.24
PC2 1.325 0.231
PC3 0.515 0.209

1 +BIO5 +BIO12 +W 126.14
Intercept -95.237 35.005
BIO5 2.151 0.859
BIO12 0.031 0.009

1 + PC1 + PC2 + PC3 +W 131.26
Intercept -5.933 4.137
PC1 2.037 2.732
PC2 5.539 2.588
PC3 4.62 2.257

2014

1 +BIO5 +BIO19 +ADD 49.57
Intercept 48.91 11.716
BIO5 -2.886 0.616
BIO19 -0.126 0.028
ADD 0.77 0.159

1 + PC1 + PC3 100.70
Intercept 7.934 1.211
PC1 9.145 1.259
PC2 8.242 1.156

aMaximum temperature of warmest month (BIO5 ), minimum temperature of
coldest month (BIO6), mean temperature of driest quarter (BIO9), accumulated
degrees (ADD) from July to October with Tbase = 10 °C, annual precipitation
(BIO12) and precipitation of coldest quarter (BIO19).
bWatanabe Akaike Information Criterion. Lower values of WAIC reflect a better
model fit balanced with model complexity.
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these models was lower than 0.168, with the highest uncertainty in the ar-

eas of higher probability (Figures 8.4bd). The predictive distribution of the

model with the two climatic variables and a geostatistical term was similar

to those of the previous two models, but with a much higher probability

in Kwazulu-Natal (Figure 8.4e). Larger standard deviation was associated

with this model, with values of up to 0.41 around the areas of high prob-

ability and in the central regions of the country (Figure 8.4f). The model

including three PCs and a geostatistical term predicted larger areas with

a high probability of 0.99, entirely covering Kwazulu-Natal and regions in

Mpumalanga, Limpopo and North West provinces (Figure 8.4g). Areas of

high uncertainty were also much larger with this model, with values of stan-

dard deviation up to 0.44, particularly in the eastern half of the country

(Figure 8.4h).

In 2014, similar predictive distributions were obtained with the mod-

els including PC1 and PC3 or the maximum temperature of the warmest

month, precipitation of the coldest quarter, and ADD from July to October

(Figures 8.5ac). High probabilities up to unity were obtained in Kwazulu-

Natal, Mpumalanga, Limpopo, Gauteng, parts of the Eastern Cape, North

West and Free State, as well as in coastal areas in the Western Cape and

Northern Cape. The standard deviation associated with these predictive

distributions was lower than 0.34, with the highest uncertainty around the

areas of higher probability (Figures 8.5bd).

When the predictive distributions of the models for 1950 were evaluated

against the distribution of CBS in 2014, excluding those grid cells used

for model development, the highest AUC of 0.986 was obtained with the

model including three PCs and a geostatistical term (Figure 8.6). The

model with only three PCs had an AUC of 0.929. The model including the

maximum temperature of the warmest month and annual precipitation had

an AUC of 0.839, which was reduced to 0.821 when a geostatistical term

was incorporated.
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8.4 Discussion

Correlative species distribution models rely on the assumption that the or-

ganism modelled is in equilibrium with its environment within the region

of study. Hence, the species occurs in all suitable environmental conditions

(i.e. throughout the suitable environmental space), although not neces-

sarily occupying the geographic space completely. This assumption is of-

ten violated in the case of biological invasions, where potentially suitable

habitats were not yet reached by the species because of colonization time

lag and/or dispersal constraints (Barve et al., 2011; Elith and Leathwick,

2009). It has been stated that CBS probably attained its full potential

distribution in South Africa because the disease had many opportunities

to invade citrus areas throughout the country (Yonow et al., 2013). CBS

is certainly much more widespread nowadays in South Africa than in 1950

(Figure 8.1), but the assumption that CBS is in equilibrium with the en-

vironmental conditions and occurs in all suitable habitats in the country is

questionable (EFSA, European Food Safety Authority, 2008; EFSA, Euro-

pean Food Safety Authority, 2014, 2016). In fact the movement of citrus

material in South Africa was not regulated until 1984, although quantitative

trade data among provinces was not found (Mart́ınez-Minaya et al., 2015).

Since then, internal phytosanitary barriers have been in place to impede the

movement of citrus material and avoid the spread of P. citricarpa to other

regions in the country (Figure 8.1b). The presence of dispersal constraints

for more than three decades cannot be overlooked when interpreting CBS

distribution in South Africa and the resulting model outcomes.

Process-based models comprising the entire environmental space of the

species are thought to be more adequate for non-equilibrium scenarios (Dor-

mann et al., 2012b), but they still rely on disease prevalence data to interpret

model outputs and define thresholds for climate suitability. For instance,

(Magarey et al., 2015) defined a specific output threshold to be able to con-

sider a location suitable for CBS based on the values for sites with moderate

disease prevalence, which was the Eastern Cape in their study. However,

the crucial role of an accessible area fully applies to process-based models

as well. Different thresholds for moderate disease prevalence might be cho-

sen considering past, present or future disease distribution data. Moreover,
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Figure 8.4: Mean (red) and standard deviation (blue) of the predic-
tive posterior distribution for the probability of citrus black spot (CBS)
presence with the best models of 1950 including climatic variables (a,b),
principal components (c,d), climatic variables + geostatistical term (e,

f) and principal components + geostatistical term (g, h).
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CBS is characterized by slow epidemic development and thus future impacts

cannot be directly inferred from its present status (Kotzé, 1981). Besides,

mechanistic models for CBS are seriously affected by large uncertainties due

to the lack of biological and epidemiological data (EFSA, European Food

Safety Authority, 2014, 2016).

The consideration of true absences is also a controversial issue in species

distribution models. In many cases, only presence data are available and

models such as Maxent are preferred, which generate random pseudo-

absences from an area around presence records. When the species being

modelled is in its early stages of invasion, presence-only models are some-

times preferred because absences may not be associated with climatic un-

suitability (Dupin et al., 2011). However, with pseudo-absences the accuracy

of the model can be overestimated and reliable absence data are considered

more appropriate for model validation (Václav́ık and Meentemeyer, 2012).

In the case of the logistic regression used here, true absences are required

for both model development and evaluation.

Disease presences in the 1950 dataset were obtained from Wager (1952),

who surveyed the citrus-growing areas in South Africa for CBS. Neverthe-

less, molecular techniques for pathogen detection were not available at that

time and, therefore, the possibility of missing CBS presences in a latent

asymptomatic stage cannot be excluded. The map of citrus distribution

in South Africa in 1927 (Powell, 1930) had a reasonable level of detail.

However, it looks as if some citrus areas in the Eastern Cape might be

overrepresented (Figure 8.1a), potentially increasing the number of CBS

absences. More recent surveys for CBS in South Africa should comply

with international standards (IPPC, International Plant Protection Con-

vention, 1995, 2005, 2007), which ideally reduce the risk of imperfect de-

tections and sampling bias (Guillera-Arroita et al., 2015). Although we re-

stricted our data to only citrus areas (Anonymous, 2014; Paul, 2005; Yonow

et al., 2013), the NLS class “cultivated commercial permanent orchards” also

comprises other crops (DEA, Department of Environmental Affairs South

Africa, 2015), which potentially increases CBS presences and/or absences

in the 2014 dataset. On the other hand, the NLS dataset does not consider

ornamental or back-yard citrus trees, thereby potentially reducing CBS pres-

ences and/or absences. In any case, since no other contrasting data sources



“Thesis˙Joaquin” — 2019/6/10 — 8:51 — page 141 — #175i
i

i
i

i
i

i
i

8. Spatial and climatic factors associated with the geographical distribution of
citrus black spot disease in South Africa. A Bayesian latent Gaussian model
approach 141

Figure 8.5: Mean (red) and standard deviation (blue) of the predictive
posterior distribution for the probability of citrus black spot (CBS) pres-
ence with the best models of 2014 including climatic variables (a,b) or

principal components (c,d).

were found, we consider that our analyses were based on the best infor-

mation available. Further refinements of our models could be possible if

more accurate datasets of CBS distribution in South Africa become accessi-

ble. Likewise, recent updates of the WorldClim database could also be used

(Fick and Hijmans, 2017).

Significant spatial autocorrelation of CBS distribution was detected in

1950 and 2014 (Figure 8.2). Furthermore, the geostatistical term was rele-

vant in the regression models for 1950, climatic variables or PCs also being

included as explanatory variables (Table 8.2). Spatial autocorrelation occurs

when disease observations in different locations are not independent from

each other. Dispersal barriers, spatially structured gradients or intrinsic

spread processes usually lead to spatial autocorrelation in species distribu-

tion data (Franklin, 2009). The strong spatial autocorrelation detected in

CBS distribution data both in 1950 and 2014 suggests that climate itself
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Figure 8.6: Receiver operating characteristic (ROC) curves and area
under the curve (AUC) obtained with the 2014 validation dataset with
the best models for the probability of citrus black spot presence in 1950
including climatic variables (a), principal components (b), climatic vari-
ables + geostatistical term (c) and principal components + geostatistical

term (d).

might not be the main factor limiting the spread of CBS in South Africa.

The natural spread of CBS through P. citricarpa spores is poorly under-

stood. Under laboratory conditions, conidia from inoculated citrus fruit
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were splashed 0.6 m high and to a distance of at least 8 m by simulated wind-

driven rain (Perryman et al., 2014). No information is available on the dis-

tances airborne ascospores of P. citricarpa can spread. The drivers of CBS

invasions worldwide remain generally unknown, but human-assisted move-

ment of infected citrus material is considered the most important means of

disease introduction and spread. Regardless of the mechanisms involved in

the invasion process, the presence of significant spatial aggregation indicated

a higher probability of CBS presence in grid cells near affected areas.

Ignoring spatial autocorrelation in the models can decrease the precision

of parameter estimates and falsely reject the null hypothesis of no effect. In

addition, the selection of explanatory variables may be biased towards those

that are more autocorrelated, such as climatic gradients. Consequently,

certain variables as well as more variables in general are likely to be retained,

thereby making the resulting model potentially misleading (Chapman, 2010;

F. Dormann et al., 2007; Franklin, 2009). Previous studies with CLIMEX

to estimate the potential geographic distribution of CBS did not consider

spatial autocorrelation (Er et al., 2013; Paul et al., 2005; Yonow et al.,

2013). These studies were conducted on a much broader geographic scale

and so consequences of ignoring spatial dependence are believed to be less

problematic (Franklin, 2009). However, the presence of dispersal constraints

like phytosanitary barriers (Figure 8.1b) and other local range-confining

processes may have limited the area and environments accessible to CBS

anyway. Moreover, none of these CLIMEX studies involved formal statistical

inference for parameter estimation and so they are difficult to compare with

our models.

Collinearity arises when two or more explanatory variables in a model

are linearly related, which is common when climatic variables are consid-

ered. With collinearity, parameter estimates may be unstable with inflated

standard errors and thus inference may be biased and select the wrong ex-

planatory variables. Moreover, the effects of two collinear explanatory vari-

ables cannot be separated and model extrapolation may be seriously flawed

(Dormann et al., 2012a). PCA is one of the most common ways to manage

collinearity among explanatory variables in correlative species distribution

models (Dupin et al., 2011; Manel et al., 2001; Kriticos et al., 2014; Petit-

pierre et al., 2012). In our case, the use of PCs as explanatory variables
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in the models allowed us to integrate the contribution of a relatively large

set of climatic variables with serious collinearity problems (Figures 8.8 and

8.9). Nevertheless, better model fit (i.e. lower WAIC) was obtained includ-

ing a threshold-based pre-selection of climatic explanatory variables with

pairwise correlations |r| ≤ 0.7 (Dormann et al., 2012a).

In general, the regression analyses performed in our study indicated a

positive relationship between CBS presence and climatic variables or PCs

associated with warm temperatures and high precipitation (Tables 8.1 and

8.2). Indeed, it has been stated that CBS thrives mainly in warm wet

climates (Yonow et al., 2013), although the disease is also present in arid

desert conditions (Mart́ınez-Minaya et al., 2015). Some of the previous

studies with CLIMEX suggested that the potential distribution of CBS could

be limited by cold conditions (Paul et al., 2005; Yonow et al., 2013), although

these modelling approaches and their parameterization have been subject

to debate (EFSA, European Food Safety Authority, 2008; EFSA, European

Food Safety Authority, 2014). In our models, degrees accumulated during

the period of ascocarp formation and ascospore maturation in South Africa

(i.e. July to October) were positively related with CBS presence (Table 8.2).

The empirical ADD model by (Fourie et al., 2013) predicted an earlier

release of Phyllosticta spp. ascospores with warmer winters and springs,

which might be associated with more favourable climate conditions for CBS

establishment. However, this empirical model included both P. citricarpa

and the non-pathogenic species P. capitalensis Henn., which is also widely

established in relatively cold regions (Wikee et al., 2013).

Several studies have demonstrated that models for species in the early

stages of invasion are more likely to underpredict potential distribution than

models in advanced stages of invasion, where the equilibrium assumption is

more plausible (Dupin et al., 2011; Václav́ık and Meentemeyer, 2012). In

our case, relatively high accuracy was obtained with the models for the 1950

dataset, representing the early stages of CBS epidemics in South Africa. An

AUC of 0.929 was obtained with the model including PCs and an AUC of

0.986 resulted when a geostatistical term was also incorporated (Figure 8.6).

According to the criteria put forward by Swets (1988), these AUC values are

indicative of rather high accuracy. However, despite their good accuracy,

none of our models were able to predict subsequent CBS invasions in citrus
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areas in the Eastern Cape and north of Limpopo (Figure 8.4), where the

disease thrives under more arid conditions (Mart́ınez-Minaya et al., 2015).

Citrus areas in the north of Limpopo are considered of low pest (disease)

prevalence (Anonymous, 2014), which implies that CBS occurs at low levels

and is subjected to effective surveillance, control or eradication measures

(IPPC, International Plant Protection Convention, 2005, 2007). It has been

claimed that CBS has low or moderate prevalence in the Eastern Cape

(Fourie et al., 2013; Magarey et al., 2015), but this region is not officially

considered an area of low CBS prevalence (Anonymous, 2014). Moreover,

Schutte (1995) indicated that in the Eastern Cape lemons were sprayed with

fungicides for CBS control. This has been confirmed by more recent reports,

indicating that fungicide applications for CBS control have increased in the

Eastern Cape and lemons must be frequently sprayed (Grout, 2015).

Citrus-growing areas in the Eastern Cape are the only ones affected by

CBS nowadays that were left outside the phytosanitary barrier established

in 1984 (Figure 8.1b). Considering the long lag phase of CBS epidemics

(Kotzé, 1981) and that fungicides were applied for its control in the Eastern

Cape in the 1990s (Schutte, 1995), it is conceivable that this region was

already affected several years before, but perhaps at very low levels or still

in an asymptomatic stage. Indeed, Kotzé (1981) indicated that P. citri-

carpa may be present for many years in a particular area before symptoms

appear. Consequently, citrus areas in the Eastern Cape might have been

inadvertently considered as CBS-free when designing the phytosanitary bar-

rier in 1984. Interestingly, when representing PC1 and PC3 associated with

precipitation and warm temperatures in 2014, citrus areas in the Eastern

Cape currently affected by CBS overlapped with some CBS-free areas in the

Western Cape, Northern Cape and North West provinces (Figure 8.12). Al-

though the models for 2014 did not incorporate a geostatistical term, those

including climatic variables or PCs displayed relatively high probabilities of

CBS occurrence in these particular areas (Figure 8.5). Therefore, intensive

surveys would be recommended to keep them free from disease.

Although climate has been advocated as the main factor limiting the es-

tablishment and spread of CBS into new areas (Magarey et al., 2015; Paul

et al., 2005; Yonow et al., 2013), our study indicates that spatial proximity
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to affected areas is also relevant in the geographic distribution of the disease

in South Africa. Indeed, some historical evidence illustrated that too much

hope had been pinned on climate as a limiting factor for CBS (Kotzé, 1981).

In his detailed study, Wager (1952) indicated that CBS was first reported in

South Africa by Doidge (1929) in a relatively cool mist-belt area with high

rainfall. As at that time it was assumed that CBS required this type of con-

ditions, no concern was therefore felt for its possible spread to other parts of

South Africa (Wager, 1952). However, from 1940 to 1950 the disease spread

to neighbouring citrus regions under much drier conditions. Based on this,

Wager (1952) concluded that the old concept of CBS requiring cool, moist,

or mist-belt conditions for its development was wrong. McOnie (1964a) sur-

veyed the citrus areas in the Eastern Cape and concluded that P. citricarpa

was absent due to unfavourable climatic conditions. However, the pathogen

was later reported in the Eastern Cape and fungicide sprays are currently

applied for CBS control (Grout, 2015; Schutte, 1995). In Zimbabwe, White-

side (1965) stated that CBS may not become really serious under local

climatic conditions. Nevertheless, the disease reached epidemic proportions

in 1978 (Kotzé, 1981). More recently, Guarnaccia et al. (2017) reported,

for the first time, the presence of P. citricarpa in the Mediterranean Basin,

under dry-summer climate conditions. The future will determine whether

current models for the potential geographical distribution of CBS can stand

the test of time.
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8.6 Supplementary material

Figure 8.7: Validation dataset with citrus black spot (CBS) presences
(n = 385) and absences (n = 259) in 2014, excluding those grid cells used

for model development in 1950.
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Figure 8.10: Maps of a altitude; b maximum temperature of the
warmest month (BIO5); c minimum temperature of the coldest month
(BIO6); d mean temperature of the driest quarter (BIO9); e annual pre-
cipitation (BIO12); f precipitation of the coldest quarter (BIO19); and
g accumulated degrees (ADD) from July to October with Tbase = 10 ºC
for South Africa obtained from the WorldClim database (Hijmans et al.,

2005).
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Figure 8.11: Scatterplots of the principal components for 1950 (a,b,c)
and 2014 (d,e,f). Red dots are grid cells with citrus black spot (CBS)

presence and green dots denote those with CBS absence.
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Figure 8.12: Scatterplot of the principal components PC1 and PC3
in 2014 with their corresponding 95% confidence ellipses (a), and a map
representing the grid cells within the area of overlap of the two ellipses
(b). Red dots are grid cells with citrus black spot (CBS) presence and

green dots denote those with CBS absence.
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160 8.6. Supplementary material

Table 8.3: Best models for 1950 and 2014 with climatic variables (BIO),
principal components (PC) and geostatistical term (W )

Models1 WAIC2

1950

Clim + spatial 1 +BIO5 +BIO12 +W 126.14
Climatic 1 +BIO5 +BIO12 177.51

1 +BIO5 +BIO12 +BIO9 +BIO19 +ADD 178.07
1 +BIO12 +BIO9 +BIO19 +ADD 178.26
1 +BIO5 +BIO12 +BIO19 178.85
1 +BIO6 +BIO12 +BIO9 +BIO19 +ADD 178.93
1 +BIO5 +BIO12 +BIO9 178.95
1 +BIO5 +BIO12 +ADD 179.01
1 +BIO5 +BIO6 +BIO12 +BIO9 +BIO19 +ADD 179.57
1 +BIO5 +BIO6 +BIO12 179.61
1 +BIO12 +ADD 179.73

PC + spatial 1 + PC1 + PC2 + PC3 +W 131.26
PC 1 + PC1 + PC2 + PC3 198.19

1 + PC1 + PC2 202.2
1 + PC2 + PC3 202.44
1 + PC2 208.52
1 + PC1 + PC3 235.49
1 + PC1 236.56
1 + PC3 244.15
1 245.06

2014

Climatic 1 +BIO5 +BIO19 +ADD 49.57
1 +BIO5 +BIO6 +BIO19 +ADD 52.23
1 +BIO6 +BIO9 +BIO12 +BIO19 +ADD 63.77
1 +BIO6 +BIO12 +BIO19 +ADD 65.68
1 +BIO5 +BIO6 +BIO19 70.11
1 +BIO6 +BIO12 +BIO19 70.52
1 +BIO6 +BIO9 +BIO12 +BIO19 72.1
1 +BIO5 +BIO6 +BIO9 +ADD 72.79
1 +BIO5 +BIO6 +BIO9 +BIO12 +ADD 73.67
1 +BIO5 +BIO6 +ADD 77.68

PC 1 + PC1 + PC3 100.7
1 + PC1 + PC2 + PC3 101.98
1 + PC1 + PC2 439.13
1 + PC1 520.41
1 + PC2 + PC3 892.93
1 + PC3 946.62
1 + PC2 1144.74
1 1192.49

1Maximum temperature of warmest month (BIO5), minimum temperature of coldest month
(BIO6), mean temperature of driest quarter (BIO9), accumulated degrees (ADD) from
July to October with Tbase = 10ºC, annual precipitation (BIO12) and precipitation of
coldest quarter (BIO19). 2Watanabe Akaike Information Criterion.
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Chapter 9

A hierarchical Bayesian Beta

regression approach to study

the effects of geographic

genetic structure and spatial

autocorrelation on species

distribution range shifts

In this chapter, we present a preliminary version of our paper “A hierar-

chical Bayesian Beta regression approach to study the effects of geographic

genetic structure and spatial autocorrelation on species distribution range

shifts” by Joaqúın Mart́ınez-Minaya (University of Valencia), David Conesa

(University of Valencia), Marie-Josée Fortin (University of Toronto), Carlos

Alonso-Blanco (CSIC), F. Xavier Picó (CSIC) and Arnald Marcer (CREAF

and Autonomous University of Barcelona) which has been accepted in the

journal Molecular Ecology Resources. The chapter contains at the end the

references used in this work.
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Abstract

Global climate change (GCC) may be imposing distribution range shifts

in many organisms worldwide. Multiple efforts are currently focused on

the development of models to better predict distribution range shifts due

to GCC. We addressed this issue by including intra-specific genetic struc-

ture and spatial autocorrelation (SAC) of data in distribution range mod-

els. Both factors reflect the joint effect of eco-evolutionary processes on the

geographic heterogeneity of populations. We used a collection of 301 geo-

referenced accessions of the annual plant Arabidopsis thaliana in its Iberian

Peninsula range, where the species shows a strong geographic genetic struc-

ture. We developed spatial and non-spatial hierarchical Bayesian models

(HBMs) to depict current and future distribution ranges for the four ge-

netic clusters detected. We also compared the performance of HBMs with

Maxent (a presence-only model). Maxent and non-spatial HBM presented

some shortcomings, such as the loss of accessions with high genetic admix-

ture in the case of Maxent and the presence of residual SAC for both. As

spatial HBMs removed residual SAC, these models showed higher accuracy

than non-spatial HBMs and handled the spatial effect on model outcomes.

The ease of modelling and the consistency among model outputs for each

genetic cluster was conditioned by the sparseness of the populations across

the distribution range. Our HBMs enrich the toolbox of software available

to evaluate GCC-induced distribution range shifts considering both genetic

heterogeneity and SAC, two inherent properties of any organism that should

not be overlooked.

Keywords

Arabidopsis thaliana, geographic genetic structure, global climate change,

hierarchical Bayesian models, Maxent, spatial autocorrelation.
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9.1 Introduction

Climate and land-use changes recorded in practically all Earth’s bioclimatic

zones are dramatically affecting the distribution of many terrestrial, aquatic

and marine organisms. Since the turn of the century, various global meta-

analyses have quantified the fingerprint that global climate change (GCC)

has already left on distribution ranges (Parmesan and Yohe, 2003; Perry

et al., 2005; Parmesan, 2006; Chen et al., 2011; MacLean and Beissinger,

2017) and extinction rates (Urban, 2015; Wiens, 2016). At present, models

are including some improvements to better predict changes in species dis-

tribution ranges due to GCC. Such improvements are aimed at considering

all the possible organisms’ responses to GCC, such as shifts in dispersal

ability, phenology and physiology of life-history traits (Bellard et al., 2012;

Lenoir and Svenning, 2015). However, precise data on these responses are

lacking for many organisms because of the intensive amount of labour and

data n eeded to estimate them properly for multiple populations across large

areas of the distribution range. Nonetheless, modelling approaches clearly

have to go beyond presence-background models and related approaches (e.g.

presence-absence models, random pseudo-absence point models) using cur-

rent and future climatic conditions to increase their accuracy and reliability

(Guisan et al., 2017). In this study, we address this issue by considering

two important biological aspects that should be considered when modelling

current distribution range of terrestrial organisms and their GCC-induced

shifts.

Firstly, demographic processes (i.e. extinction/colonisation dynamics

and dispersal ability) and adaptation to local environmental conditions de-

termine the extent of population stratification, that is, geographically dis-

tributed allele frequencies depicting subpopulations or clusters at different

spatial scales (Anderson et al., 2010). Molecular data are commonly used

to infer the number of genetically differentiated clusters and their degree of

admixture (Pritchard et al., 2000; Falush et al., 2003). In addition, it is very

informative to determine whether such genetic clusters are geographically

distributed across the species distribution range (Rosenberg et al., 2005;

Novembre et al., 2008). This is because we can interpret the number of

genetic clusters, their geographic distribution and their degree of admixture
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as the result of all demographic processes and adaptive forces acting on pop-

ulations. This paradigm has steadily gained ground in studies estimating

future distribution range shifts due to GCC by means of species distribu-

tion models (SDMs, Bálint et al., 2011; Jay et al., 2012; D’Amen et al.,

2013; Yannic et al., 2014; Gotelli and Stanton-Geddes, 2015; Diniz-Filho

et al., 2016; Marcer et al., 2016; Ikeda et al., 2017; Lima et al., 2017; Mi-

lanesi et al., 2018), stressing the need to consider the genetic heterogeneity

inherent in organisms.

From a methodological viewpoint, working with intra-specific patterns

of genetic diversity implies the combination of presence-only data, which

commonly feed SDMs such as Maxent, with genetic structure data, which

are mostly expressed as genetic cluster membership proportions (ranging

between 0 and 1) that inform on the degree of genetic admixture (Serra-

Varela et al., 2017). The problem arises when admixture information is lost

because individuals have to be assigned to a single cluster, generally the

one with the highest membership proportion according to some arbitrary

threshold in order to run presence-only SDMs (Gotelli and Stanton-Geddes,

2015; Marcer et al., 2016; Ikeda et al., 2017). In doing that, the amount

of data and information lost depends on the genetic structure of the study

organism. For instance, species with a pronounced genetic structure will

likely have individuals with high genetic cluster membership proportions,

which facilitates the assignment of individuals to single genetic clusters. In

contrast, individual assignment to single genetic clusters will exhibit higher

uncertainty for weakly genetically structured organisms (e.g. high levels

of individual genetic admixture), posing problems for the development of

SDMs to study the effects of GCC on their patterns of geographic genetic

structure. Either way, we lose valuable information that may reduce the

value and impact of GCC model outcomes and therefore our understanding

of the GCC effects on biodiversity.

The second biological aspect worth considering when modelling distribu-

tion ranges is the presence of spatial autocorrelation (SAC) in data and the

problems that SAC poses for statistical and ecological interpretation. SAC

can be defined as the dependence between close observations in space (Leg-

endre and Legendre, 2012), and it may be caused by exogenous factors (e.g.
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historical processes and autocorrelated environmental variables) and/or en-

dogenous factors (e.g. dispersion) (Dale and Fortin, 2014). While variables

representing exogenous factors may be readily available to researchers, vari-

ables describing endogenous factors representing important biological pro-

cesses are more difficult to obtain (Belmaker et al., 2015). Overall, SAC

is recognised as a major challenge when predicting species distributions

(Dirnböck and Dullinger, 2004; de Oliveira et al., 2014) because it results in

several modelling flaws, such as violation of the assumption of independent

error, inflated estimations of model performance, bias in model selection,

or inferential problems (Legendre, 1993; Dale and Fortin, 2002; Dormann,

2007; F. Dormann et al., 2007; Fortin and Dale, 2009; Beale et al., 2010;

Swanson et al., 2013; Wagner and Fortin, 2013). To a certain extent, SAC

can be dealt with data filtering, although often at a high cost of data loss.

For these reasons, taking SAC into account in GCC models is considered as

mandatory (Latimer et al., 2006; Beguin et al., 2012; Record et al., 2013;

Swanson et al., 2013; Crase et al., 2014).

Here, we use hierarchical Bayesian models (HBMs), which account for

the geographic distribution of intra-specific genetic diversity and the pres-

ence of SAC, to analyse current distribution range as well as the effect of

GCC on its shifts. To that end, we use a collection of 301 natural pop-

ulations of the annual plant Arabidopsis thaliana occurring in the Iberian

Peninsula, the region of the distribution range with the highest genomic di-

versity (The 1001 Genomes Consortium, 2016). Genome-wide markers are

used to infer Iberian A. thaliana’s geographic genetic structure by estimat-

ing genetic cluster membership proportions. In order to better understand

the potential of our model, we compare three approaches, Maxent and two

Bayesian, representing a gradient of complexity in the treatment of intra-

specific genetic data and SAC. In particular, (1) presence-only SDMs (Max-

ent) that do not take SAC into account and based on binary data for ge-

netic cluster membership proportions, (2) non-spatial hierarchical Bayesian

models (HBMs) not accounting explicitly for SAC and based on continuous

data for genetic cluster membership proportions, and (3) spatially-explicit

HBMs accounting for SAC and based on continuous data for genetic clus-

ter membership proportions. Although HBMs represent well-established

methods for statistical inference in several research fields, the application



“Thesis˙Joaquin” — 2019/6/10 — 8:51 — page 166 — #200i
i

i
i

i
i

i
i

166 9.2. Materials and Methods

of Beta regression to climate-driven shifts in species distribution range is

not common (see Mart́ınez-Minaya et al., 2018). In particular, we promote

the use of Beta regressions where data fitting can be achieved using in-

tegrated nested Laplace approximation (INLA) rather than Markov chain

Monte Carlo (MCMC) methods. We discuss our results in terms of the

relevance of intra-specific genetic variation and SAC to better interpret and

contextualise the implications of GCC on species distribution range shifts,

but also identifying the limitations and caveats of our approach.

9.2 Materials and Methods

9.2.1 Source populations and genetic structure

We used a collection of 301 natural populations of the annual plant Ara-

bidopsis thaliana distributed across the Iberian Peninsula (ca. 800 × 700

km2; 36.00º N – 43.48º N, 3.19º E - 9.30º W; Figure 9.1a). This set of pop-

ulations belongs to a long-term project pursuing a permanent collection of

natural populations from the western Mediterranean Basin (Spain, Portugal

and North Africa) intended to unravel A. thaliana’s evolutionary ecology,

functional genetics, and response to GCC (see Marcer et al., 2018, and ref-

erences therein). Distance among populations and altitudes had a range of

1 – 1,038 km (mean ± SD = 360.9 ± 200.2 km) and 1 - 2,662 m.a.s.l (mean

± SD = 786.5 ± 391.3 m.a.s.l.), respectively, including a wide array of wild

and humanised environments (Picó et al., 2008; Méndez-Vigo et al., 2011;

Manzano-Piedras et al., 2014).

Populations included in this study come from field surveys that spanned

12 years (2000 - 2011). We sampled seed from several individuals from each

population. Every year and a few months after every survey, field-collected

seed was multiplied by the single seed descent method in a glasshouse at

the Centro Nacional de Biotecnoloǵıa (CNB-CSIC) in Madrid. Multiplied

seeds were stored in dry, dark conditions in cellophane bags at room tem-

perature, storing conditions that can preserve A. thaliana seeds for years.

In this study, we employed one representative individual (accession here-

after) per population to analyse the genetic structure of A. thaliana in the
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Iberian Peninsula. Importantly, accessions exhibited common phenotypes

within their populations based on flowering time and/or the vernalization

requirement for flowering, which are traits under strong selection in Iberian

A. thaliana (Méndez-Vigo et al., 2013) that appear to be mediated by vari-

ation in temperature (Méndez-Vigo et al., 2011; Vidigal et al., 2016). This

procedure increased the odds of using accessions best suited to their local

environments and, therefore, common genotypes in the populations.

Nuclear genetic data were obtained from 250 genome-wide single nu-

cleotide polymorphisms (SNPs) previously used to genetically characterise

Iberian A. thaliana (Picó et al., 2008; Gomaa et al., 2011; Méndez-Vigo

et al., 2011; Manzano-Piedras et al., 2014; Marcer et al., 2016). In short,

SNPs were selected based on their polymorphism shown in Central Europe,

the Iberian Peninsula and in a worldwide collection of accessions, and geno-

typed using the SNPlex technique (Applied Biosystems, Foster City, CA,

USA). These SNPs are located across the genome at putatively neutral re-

gions spaced at 0.5 Mb average intervals (range = 0.11 Kb – 1.82 Mb). All

accessions were genetically different from each other.

Genetic structure was assessed using the Bayesian model-based cluster-

ing algorithm implemented in STRUCTURE v.2.3.3 (Falush et al., 2003),

as previously described (Méndez-Vigo et al., 2011, 2013). In brief, model

settings included haploid multilocus genotypes, correlated allele frequencies

between populations and a linkage model. Each run consisted of 50,000

burn-in MCMC iterations and 100,000 MCMC after-burning repetitions for

parameter estimation. To determine the K number of ancestral populations

and the ancestry membership proportions of each accession in each popu-

lation, the algorithm was run 20 times for each defined number of groups

(K value) from 1 to 10. The number of distinct genetic groups was deter-

mined by testing the differences between the data likelihood for successive

K values using Wilcoxon tests for two related samples. The final K num-

ber was estimated as the largest K value with significantly higher likelihood

than that of K-1 runs (two-sided P < 0.005). This was supported by a high

similarity among the ancestry membership matrices from different runs of

the same K value (H’=0.99). The average symmetric similarity coefficient

H’ among runs and the average matrix of ancestry membership proportions,

derived from the 20 runs, were calculated with CLUMPP v.1 (Jakobsson and
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Rosenberg, 2007). This analysis inferred four genetic clusters in the Iberian

Peninsula (Figure 9.1), in agreement with previous studies on A. thaliana’s

genetic structure (Picó et al., 2008; Gomaa et al., 2011; Méndez-Vigo et al.,

2011; Manzano-Piedras et al., 2014; Marcer et al., 2016).

9.2.2 Climatic variables and GCC scenarios

We selected a total of eight bioclimatic predictors to define the climatic

space: BIO1 (annual mean temperature), BIO2 (mean diurnal range),

BIO3 (isothermality), BIO4 (temperature seasonality), BIO8 (mean tem-

perature of the wettest quarter), BIO12 (annual precipitation), BIO15

(precipitation seasonality) and BIO18 (precipitation of the warmest quar-

ter). These bioclimatic predictors were selected because their pairwise

correlation coefficients were less than 0.7, a threshold value commonly

used to avoid unacceptable co-linearity among independent variables (Pino

et al., 2005). We used the dismo R package (Hijmans et al., 2017) to

retrieve these climate layers from the Digital Atlas of the Iberian Penin-

sula (http://www.opengis.uab.cat/wms/iberia/), which provides inter-

polated surface layers of mean monthly data obtained from 2,285 weather

stations for the period 1951 - 1999. We refer to this time period as year

2000.

We chose the year 2070 as the scenario to evaluate A. thaliana’s distri-

bution range shifts due to GCC. In order to use the most and least conserva-

tive GCC scenarios, we selected the representative concentration pathways

(RCP) 2.6 and 8.5 (Van Vuuren et al., 2011), respectively. In addition, we

averaged four climate models: HadGEM2-ES (Met Office Hadley Centre,

UK), MRI-CGCM3 (Meteorological Research Institute, Japan), MIROC-

ESM (Agency for Marine-Earth Science and Technology, Atmosphere and

Ocean Research Institute, The University of Tokyo and National Institute

for Environmental Studies, Japan), and NorESM1-M (Norwegian Climate

Centre, Norway). Data for 2070 were downloaded from the WorldClim

Global Climate Database v.1.4 (Hijmans et al., 2005). The resolution of the

climatic spaces for the years 2000 and 2070 was 1 km.

http://www.opengis.uab.cat/wms/iberia/
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9.2.3 Climatic variables and GCC scenarios

SDMs link information on the presence/absence or abundance of a species

to environmental variables to predict where it is likely to be present in un-

sampled locations or time periods (Guisan and Thuiller, 2005; Elith and

Leathwick, 2009). In the last years, the quantity and the quality of the

datasets have substantially increased, resulting in a higher complexity of

the statistical issues that have to be addressed when an SDM is created.

As a result of this increasing complexity, the performance of the SDM in-

ferential and predictive processes are becoming more challenging, forcing

researchers to develop new sophisticated statistical techniques (see a re-

view in Mart́ınez-Minaya et al., 2018). Given the flood of methodologies

developed to address this issue, we compared SDMs obtained with two con-

trasting approaches: a presence-only model (Maxent) and the hierarchical

Bayesian Beta regressions (with and without a spatial term).

9.2.4 Maxent

We used Maxent v.3.3.3k (Phillips et al., 2006; Elith et al., 2011) to model

the current and future distribution of A. thaliana’s genetic clusters. As

Maxent uses presence-only data, we assigned each of the 301 accessions to

its predominant genetic cluster using a cut-off value of 0.5 to each genetic

cluster membership proportion given by STRUCTURE (as in Marcer et al.,

2016). As a result, the number of accessions per genetic cluster was reduced

resulting in a low of 35 for genetic cluster C4 to a high of 103 accessions for

genetic cluster C1 (Figure 9.1b). The mean (± SE) membership proportions

to each genetic cluster were 0.66 ± 0.01 (range = 0.51 - 0.92) for genetic

cluster C1, 0.74 ± 0.02 (range = 0.52 - 0.96) for genetic cluster C2, 0.89 ±
0.02 (range = 0.56 - 0.97) for genetic cluster C3, and 0.77 ± 0.02 (range =

0.51 - 0.94) for genetic cluster C4. Eighty-two accessions (27.2%) did not

have any genetic cluster membership proportion higher than 0.5 and could

not be included in the Maxent models, stressing one of the limitations of

this approach when dealing with accessions with high genetic admixture. We

fitted all possible models determined by the set of combinations between the

eight climatic predictors without considering interactions. We then ranked



“Thesis˙Joaquin” — 2019/6/10 — 8:51 — page 170 — #204i
i

i
i

i
i

i
i

170 9.2. Materials and Methods

these models according to the five-fold cross-validated area-under-the-curve

(AUC) metric and chose the most parsimonious one among the best five

(Table 9.4). Then, we ran again the chosen model with all data points to

obtain the final model. Maxent was used with default parameters with the

exception of features, which were limited to the hinge type, making it similar

to a Generalized Additive Model (Elith et al., 2011).

9.2.5 Hierarchical Bayesian Beta regression

Spatial and non-spatial HBMs were also used to model the current and fu-

ture distribution of A. thaliana’s genetic clusters. In particular, spatial and

non-spatial Beta regressions were conducted to estimate the genetic cluster

membership probability, which in this particular context, can be thought of

as the habitat suitability for each genetic cluster. In contrast to Maxent,

Beta regressions allowed us to model each genetic cluster separately using

all genetic information available, that is, the genetic cluster membership

proportions of all 301 accessions. In other words, no data were excluded.

The class of Beta regression models is commonly used to model vari-

ables that assume values in the unit interval (between 0 and 1; Ferrari and

Cribari-Neto, 2004), such as the case of membership probabilities of genetic

clusters. A Beta distribution depends on two scaling parameters, Beta(a, b),

which can be parameterised in terms of its mean, µ, a dispersion parameter,

φ = a + b and the variance, σ2 = µ(1−µ)
1+φ . This parameterisation better

supports the truncated nature of the Beta distribution because the variance

depends on the mean, which translates into maximum variance at the cen-

tre of the distribution and minimum variance at the edges. In addition, the

dispersion of the distribution for a fixed µ decreases as φ increases. We did

not transform the data to avoid the problems posed by extreme values, as

proposed elsewhere (Cribari-Neto and Zeileis, 2010), because data fell far

enough from the extremes of the Beta distribution.

As we were interested in depicting the relationship between the genetic

cluster membership probabilities and the bioclimatic predictors, we linked

the mean and the precision of the response variable to the linear bioclimatic

predictors via suitable link functions. In particular, if Yi represents the
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genetic cluster membership probability at location i, then its conditional

distribution is Yi | µi, φi ∼ Beta(µi, φi), where µi and φi are the Beta

distribution parameters at location i. We used the logit and log links for

µi and φi, respectively. The mean was linked to climatic covariates (non-

spatial term) and, in the case of spatial models, to a stochastic spatial

effect (spatial term). The precision was assumed to be not dependent of

any effect. The resulting model with a spatial term is known as a point-

referenced spatial Beta regression (Paradinas et al., 2016, 2018). It is highly

suitable for situations in which data are observed at continuous locations

occurring within a defined spatial domain:

logit(µi) = Xiβ +Wi , (9.1)

log(φi) = θ .

where β is the vector of regression coefficients (β0, β1, . . . , βc), Xi is the

vector corresponding to the ith row of the design matrix whose first element

is 1 (the one multiplying the intercept β0), the covariate values at location

i being the remaining elements, and Wi is the spatially structured random

effect at each location i. W is assumed to be a multivariate Gaussian

distribution whose covariance matrix, σ2
WH(ϕ), depends on the distance

between locations, and its parameters, σ2
W and ϕ, represent the variance

and range of the spatial effect, respectively.

In the context of HBMs, parameters were treated as random variables

and prior knowledge was incorporated using the corresponding prior distri-

butions. These priors were specified in the second stage jointly with random

effects. In the third and final level of the hierarchy, prior knowledge about

the hyper-parameters was expressed. This hierarchical structure can also

be considered as a latent Gaussian model (Rue and Held, 2005).

As posterior distributions for the parameters and hyper-parameters do

not have an analytic expression, numerical approximations are usually

needed. In the case of latent Gaussian models, integrated nested Laplace

approximation (INLA; Rue et al., 2009) is a computationally efficient alter-

native to the MCMC method. However, to fit and predict the particular

case of continuously indexed Gaussian fields with INLA, W in our case,
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an additional module is required. Lindgren et al. (2011) proposed an ap-

proach using an approximate stochastic weak solution to a stochastic partial

differential equation (SPDE) as a Gaussian Markov random field (GMRF)

approximation to continuous Gaussian fields with Matérn covariance struc-

ture, a highly flexible and general family of functions in spatial statistics

(Rue and Held, 2005). The Markov property allowed the use of a precision

sparse matrix, enabling efficient numerical algorithms. Under this approxi-

mation, the spatial effect is re-parameterised as follows:

W ∼ N (0,Q(κ, τ)) . (9.2)

Here, W depends on two different parameters, κ and τ , which determine the

range of the effect and the total variance, respectively. More precisely, the

range is approximately ϕ =
√

8
κ and the variance is σ2

W = 1
4πκ2τ2

(Lindgren

et al., 2011).

We specified prior distributions for the parameters and hyper-

parameters. In particular, normal vague priors with mean 0 and precision

10−4 were used for the vector of regression coefficients. Although internally

INLA works with parameters κ and τ , we specified the spatial effect in

terms of ϕ and σW using the re-parameterisations log(ϕ) and log(σW as

independent normal vague distributions (Lindgren et al., 2015).

Overall, the full model was stated as follows:

Yi | µi, φi ∼ Beta(µi, φi)

logit(µi) = Xiβ +Wi

log(φi) = θ

β0, β1, . . . , βc ∼ N (0, 10−4) (9.3)

W ∼ N (0,Q(ϕ, σW )

log(ϕ) ∼ N (mϕ, qϕ)

log(σW ) ∼ N (mσW , qσW )

θ ∼ logGamma(0, 0.1)
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where mϕ was automatically chosen so that the prior mean of ϕ was about

50% the diameter of the study geographic region, while mσW was chosen in

a way that the corresponding variance of the field was 1. For our analysis,

this resulted in mϕ = 13.517 and mσW = 0. Finally, the default a priori

precisions for log(ϕ) and log(σW ) distributions were qϕ = 0.25 and qσW =

0.25, respectively.

These latter values, qϕ and qσW , express the large uncertainty about the

parameters before the analysis, resulting in quite non-informative hyper-

priors. This is important because it allows the range to take values between

0 and the total diameter of the Iberian Peninsula. In contrast to Max-

ent, HBMs can take space into account when modelling distribution ranges,

which gives the possibility to evaluate its mean effects and uncertainty. As

mentioned above, once the inference is done, the main interest becomes to

predict the response in un-sampled locations. To do that, we applied the

SPDE by constructing a Delaunay triangulation (Hjelle and Dæhlen, 2006)

covering the whole Iberian Peninsula (Figure 9.5).

9.2.6 Model selection, distribution range shifts and residual

SAC

HBMs were run with and without the spatial component with the R-INLA

package (Lindgren et al., 2015) in order to quantify its effects on distribu-

tion range shifts with GCC and to be compared with Maxent outcomes.

We fitted all possible models given by the set of combinations among the

eight climatic predictors without interactions. To select the best model, we

used LCPO = 1
N

∑N
i=1 log(CPOi) as a summary statistic of the conditional

predictive ordinate (CPO; Geisser, 1993), which gives an overall measure of

predictive performance (Hooten and Hobbs, 2015). CPO is defined as the

cross-validated predictive density at a given observation. CPO can be used

to compute predictive measures, such as the logarithmic score (Gneiting and

Raftery, 2007) or the cross-validated mean Brier score (Schmid and Griffith,

2005). Among the best five models for each genetic cluster we selected the

most parsimonious one, that is, the one with the least number of predictors.

Model quality estimators, such as the deviance information criterion (DIC;

Spiegelhalter et al., 2002) and the Watanabe–Akaike information criterion
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(WAIC; Watanabe, 2010) were also computed. We also measured accuracy

of spatial and non-spatial HBMs by means of mean absolute error (MAE)

and root mean squared error (RMSE). Lower values of MAE and RMSE

indicate better accuracy. The comparison between Maxent and HBMs in

terms of accuracy can be misleading because Maxent used sub-samples of

data for each genetic cluster whereas HBMs were always based on the entire

data set (Figure 9.1).

Figure 9.1: (a) Geographic position of the 301 A. thaliana accessions of
study for the four genetic clusters detected in the Iberian Peninsula. Dot
size is proportional to the genetic cluster membership proportion. For each
accession, the four genetic cluster membership proportions sum to 1. (b)
Geographic position of selected accessions after applying the membership
proportion threshold of 0.5. The number of accessions included per genetic

cluster is also indicated.

We compared distribution range shifts due to GCC when taking the

spatial component into account (spatial HBM), when excluding the spatial

component (non-spatial HBM), and Maxent. We added the probabilities

calculated across the whole study area by each model for each time frame

and GCC scenario to quantify the geographic extent of the suitability of

each genetic cluster for each methodology. These probabilities were used to

calculate the percentage loss or gain of suitability for each model and GCC

scenario.

All models mentioned above were checked for residual SAC. We cal-

culated the residuals for model predictions between observed and predicted
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values and tested for residual SAC using the spdep R package (Bivand et al.,

2013; Bivand and Piras, 2015). In order to calculate residual SAC in Max-

ent, we followed the methodology used elsewhere (De Marco Jr et al., 2008;

Václav́ık and Meentemeyer, 2009). Basically, we estimated the Moran’s I

coefficient of autocorrelation with 10,000 MCMC iterations. Models with

P-values > 0.05 were considered as SAC free. As expected, spatial HBM did

not show residual SAC, while non-spatial HBM did. All Maxent models,

except for genetic cluster C4, also retained residual SAC (Table 9.5).

9.3 Results

9.3.1 Current distribution range

We compared the performance of three modelling approaches, Maxent and

HBMs with and without the spatial component, to depict the current dis-

tribution range of four A. thaliana’s genetic clusters using eight selected

bioclimatic predictors. Maxent models included between four and seven bio-

climatic predictors per genetic cluster (Table 9.1). With these predictors,

Maxent yielded a clear geographic distribution of genetic cluster ranges in

the Iberian Peninsula (Figure 9.2a), as found in earlier studies using the

same approach but with different data (Marcer et al., 2016).

In the case of Bayesian models, spatial and non-spatial HBMs produced

broadly similar geographic distributions of genetic clusters to those gener-

ated by Maxent models, particularly for genetic clusters C1 and C4 (Figure

9.2a). In the case of genetic cluster C2, the spatial HBM depicted a rather

continuous distribution in NE Spain, which clearly differed from those given

by Maxent and non-spatial HBM showing the truncated distribution that

this genetic cluster actually has in the wild (Figure 9.2a). In general, spatial

HBMs and Maxent models showed more compact distribution ranges than

non-spatial HBMs, the former with more dramatic transitions between low

and high probability values in all genetic clusters (Figures 9.2a and 9.6).

The exception was genetic cluster C3, whose predicted distribution range

with non-spatial HBMs was rather blurred in comparison with that obtained

with Maxent (Figure 9.2a). In fact, it was not possible to fit spatial HBMs
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for genetic cluster C3 because the results were inconsistent. When using

vague hyper-priors for the range of the spatial effect, the resulting mean

of the posterior distribution of the range was larger than the whole study

area. On the contrary, when using more informative priors, results were

different and very much conditioned by prior selections. Thus, the spatial

effect for genetic cluster C3 did not provide further explanation than what

can already be explained by the bioclimatic predictors.

For all genetic clusters, the uncertainty of the predictive mean for non-

spatial HBMs was lower and more evenly distributed across space than

that for spatial HBMs (Figure 9.2b). The main reason for this apparent

reduction in uncertainty is that spatial models are reflecting the intrinsic

variability of the Beta-distributed data, variability that is not reflected by

non-spatial models. As a result, the distribution of means and standard

deviations for spatial HBMs was more pronounced than those for non-spatial

HBMs (Figure 9.2 and Table 9.6). Nonetheless, the values of the mean of

the posterior distribution of the precision parameter, which are inversely

proportional to the variance of the data, were larger in the spatial HBMs,

reflecting their acceptable behaviour (Table 9.7). In the case of spatial

HBMs, these models allowed the visualisation of the spatial effects, which

clearly were more intense at the centre of the genetic cluster distribution

ranges (Figure 9.3). Uncertainty of the mean of the spatial effect was greater

for genetic cluster C4 than for the other two genetic clusters (Figure 9.3).

Overall, spatial HBMs selected less bioclimatic predictors than non-spatial

HBMs and Maxent models to define the distribution range of the four genetic

clusters (Tables 1 and S5), particularly for genetic cluster C4. Finally, the

combination of bioclimatic predictors used by Maxent models and spatial

and non-spatial HBMs was quite different (Table 9.1).

Mean absolute error (MAE) and root mean squared error (RMSE) were

lower for spatial compared to non-spatial HBMs for all genetic clusters in

which the comparison was possible (Table 9.2). This indicated that spatial

HBMs had lower average model prediction errors in the response variable.
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Figure 9.2: (a) Predicted current distributions (year 2000) for each
A. thaliana’s genetic cluster and methodology (Maxent, non-spatial and
spatial HBMs). Darker and lighter intensities indicate higher and lower
suitability, respectively. (b) Uncertainty of non-spatial and spatial HBMs.
Darker and lighter intensities indicate higher and lower uncertainty, re-
spectively. Grey maps for genetic cluster C3 indicate that the spatial

HBMs were not acceptable.
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Table 9.1: Bioclimatic variable percentage contributions to the fit of the best Maxent models and β coefficients
of the best non-spatial and spatial HBMs for the distribution range of each genetic cluster of A. thaliana in the
Iberian Peninsula. Bioclimatic variables: BIO1; Annual mean temperature, BIO2; Mean diurnal range, BIO3;
Isothermality, BIO4; Temperature seasonality, BIO8; Mean temperature of the wettest quarter, BIO12; Annual
precipitation, BIO15; Precipitation seasonality, and BIO18; Precipitation of the warmest quarter. For Maxent, the
number of occurrence points was 103, 43, 38, and 35 for genetic clusters C1, C2, C3 and C4, respectively. For

non-spatial and spatial HBMs, models included all 301 occurrence points.

Cluster Model Bioclimatic predictors

BIO1 BIO2 BIO3 BIO4 BIO8 BIO12 BIO15 BIO18

C1 Maxent 64.07 – – 9.73 17.30 – 1.74 7.16

Non-spatial HBMs – – 5.773 -0.565 -0.104 – -0.050 -0.009

Spatial HBMs 0.147 – – – -0.071 – – –

C2 Maxent – 3.01 – 20.06 7.50 – – 69.43

Non-spatial HBMs -0.112 – – 0.373 0.104 -0.001 – 0.014

Spatial HBMs – – – – -0.044 -0.002 0.025 0.010

C3 Maxent 19.76 – 33.11 – – – 38.42 8.70

Non-spatial HBMs – – – 0.288 – 0.001 – -0.006

Spatial HBMs – – – – – – – –

C4 Maxent 22.65 2.52 – 11.54 – 20.18 – 43.11

Non-spatial HBMs 0.197 – – – – – 0.021 0.004

Spatial HBMs 0.164 – – – – – – –
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Table 9.2: Mean absolute error (MAE) and root mean squared error (RMSE) for spatial and non-spatial HBMs
applied to each genetic cluster of A. thaliana in the Iberian Peninsula. The spatial effect term (W ) is also indicated

in spatial HBMs.

Cluster HBM Model MAE RMSE

C1 Non-spatial Y ∼ β0 + BIO3 + BIO4 + BIO8 + BIO15 + BIO18 0.174 0.210

Spatial Y ∼ β0 + BIO1 + BIO8 + W 0.134 0.171

C2 Non-spatial Y ∼ β0 + BIO1 + BIO4 + BIO8 + BIO12 + BIO18 0.116 0.153

Spatial Y ∼ β0 + BIO8 + BIO12 + BIO15 + BIO18 + W 0.070 0.095

C3 Non-spatial Y ∼ β0 + BIO4 + BIO12 + BIO18 0.217 0.268

Spatial – – –

C4 Non-spatial Y ∼ β0 + BIO1 + BIO15 + BIO18 0.148 0.189

Spatial Y ∼ β0 + BIO1 + W 0.096 0.128
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Table 9.3: Predicted cumulative probabilities for the entire Iberian Peninsula and percentage change, with respect
to values in 2000, per genetic cluster, GCC scenario and modelling approach for each of the genetic clusters of A.

thaliana in the Iberian Peninsula.

Cluster GCC Maxent Non-spatial HBMs Spatial HBMs

Cum. Prob. % Change Cum. Prob. % Change Cum. Prob. % Change

C1 2000 5255.60 – 7277.59 – 7106.33 –

RCP 2.6 3155.53 -39.96 6063.70 -16.68 7505.95 5.62

RCP 8.5 1250.86 -76.20 4003.50 -44.99 8468.49 19.17

C2 2000 3020.12 – 4917.93 – 5318.48 –

RCP 2.6 3746.01 24.04 5072.67 3.15 4953.02 -6.87

RCP 8.5 2726.87 -9.71 4961.37 0.88 5194.97 -2.32

C3 2000 4540.23 – 6092.25 – – –

RCP 2.6 6167.06 35.83 5984.34 -1.77 – –

RCP 8.5 8372.54 84.41 6343.11 4.12 – –

C4 2000 4473.78 – 6698.21 – 6428.20 –

RCP 2.6 5939.25 32.76 7894.27 17.86 7527.49 17.10

RCP 8.5 4916.06 9.89 10378.67 54.95 8975.59 39.63
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9.3.2 Distribution range shifts with GCC

Maxent models and HBMs were also used to quantify distribution range

shifts of A. thaliana’s genetic clusters under different GCC models and sce-

narios. The three modelling approaches yielded different GCC predictions

for each genetic cluster based on suitability shifts in distribution range pro-

jections (Table 9.3, Figure 9.4 and S3). Overall, Maxent showed a trend

of predicting more dramatic changes in distribution range due to GCC for

all genetic clusters compared to spatial and non-spatial HBMs (Table 9.3

and Figure 9.4). For genetic cluster C1, important reductions in distri-

bution range were predicted for the two GCC scenarios with Maxent and

non-spatial HBMs, whereas spatial HBMs predicted slight increases (Table

9.3 and Figure 9.4). For genetic cluster C2, Maxent predicted increasing

and decreasing distribution ranges with RCP 2.6 and RCP 8.5, respectively,

whereas both HBMs predicted small fluctuations in distribution range in

both GCC scenarios (Table 9.3 and Figure 9.4). For genetic cluster C3,

Maxent showed very large increases in distribution range, particularly for

the RCP 8.5 scenario, whilst non-spatial HBMs predicted slight fluctua-

tions in distribution range in both GCC scenarios (Table 9.3 and Figure

9.4). Finally, for genetic cluster C4, all approaches predicted increases in

distribution range in both GCC scenarios. Maxent gave higher increases in

RCP 2.6 than in RCP 8.5 and vice-versa for both HBMs (Table 9.3 and

Figure 9.4).

9.4 Discussion

Distribution range shifts represent the most important effect of GCC on

biodiversity because of their ecological implications and the potentially

detrimental socio-economic impact on society. GCC models for distribu-

tion range shifts have to increase their sophistication by adding realism to

the model outcomes, yet without losing interpretability or increasing un-

certainty. In this study, we address this issue by developing hierarchical

Bayesian models (HBMs) for the annual plant Arabidopsis thaliana incorpo-

rating two of these elements, which are inherent to practically all organisms:

the geographic distribution of intra-specific genetic variation and the spatial
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Figure 9.4: Predicted distributions in year 2070 for each A. thaliana’s
genetic cluster and methodology (Maxent, non-spatial and spatial HBMs)
under the two GCC scenarios (RCP 2.6 and RCP 8.5). For the sake of
completeness, predicted current distributions in year 2000 given in Fig. 2
are also shown. Darker and lighter intensities indicate higher and lower
suitability, respectively. Grey maps for genetic cluster C3 indicate that

the spatial HBMs were not acceptable.

autocorrelation in data. Importantly, both geographic genetic structure and

spatial autocorrelation can be considered as indicators of eco-evolutionary

forces shaping species’ distribution range, such as colonization/extinction

dynamics, dispersal ability, local adaptation and historical factors.
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9.4.1 Current distribution range

The selection of the modelling approach may have significant repercussions

when considering a species as a genetically heterogeneous organism, whose

geographic distribution of its genetic variation may have major implications

for understanding the effects of GCC on its distribution range. In the case

of Maxent, and of any modelling technique dealing with binary response

variables, a major problem is the loss of data resulting from the conversion

of a continuous variable (i.e. the genetic cluster membership proportions

characterising each individual) into a binary variable (i.e. the assignment

of each individual to the genetic cluster with the highest membership pro-

portion) (Gotelli and Stanton-Geddes, 2015; Marcer et al., 2016). In our

study, binarization of genetic data had an important cost in terms of data

loss as 82 of 301 accessions did not reach the minimum membership pro-

portion of 0.5 required to be assigned to a genetic cluster. As a result,

the number of accessions per genetic cluster used in Maxent was reduced

(Figure 9.1b). In contrast, HBMs did not have this limitation and used the

whole set of 301 accessions also including genetic admixture among the four

genetic clusters detected in the Iberian Peninsula. It must be emphasised

that accessions exhibiting genetic admixture are quite relevant in biological

terms. For example, they may indicate the existence of contact zones be-

tween genetic lineages where important processes affecting the distribution

range may take place, such as the balance between selection and dispersal

against hybrids (Barton and Hewitt, 1985). For this reason, HBMs represent

a better choice to model distribution ranges of intra-specific genetic lineages

if it is undesirable to discard accessions with too much genetic admixture.

Broadly speaking, Maxent and the Bayesian modelling approaches were

consistent in depicting the current geographic distribution of the four genetic

clusters of Iberian A. thaliana (Figs 1 and 2). The exception was the genetic

cluster C3, in which non-spatial HBM blurred the distribution range and

spatial HBM was not able to produce results due to unacceptable outcomes

in a Bayesian framework. Interestingly, the genetic cluster C3 is strongly

differentiated from the rest of clusters found in the Iberian Peninsula, as well

as across the whole species’ distribution range. In fact, the genetic cluster

C3 is considered as the relict cluster with a long evolutionary history (Picó
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et al., 2008; Brennan et al., 2014; The 1001 Genomes Consortium, 2016;

Durvasula et al., 2017). The relict nature of the genetic cluster C3 is also

supported by its scattered distribution across the Iberian Peninsula, a geo-

graphic distribution that is interpreted as the result of Iberian glacial refugia

(Picó et al., 2008; Brennan et al., 2014; Marcer et al., 2016), whereas the rest

of the genetic clusters exhibit geographically marked distributions, likely as

a result of more recent demographic histories. Overall, this result indicates

that modelling the distribution range of genetic clusters or species with scat-

tered distributions may be difficult no matter what modelling approach is

applied. For the particular case of genetic cluster C3, characterised by the

high genetic membership proportions of their accessions and the relatively

low admixture with other genetic clusters, Maxent predicts its distribution

best.

For the rest of genetic clusters with marked geographic distributions

(NW, NE and SW Iberian Peninsula for genetic clusters C1, C2 and C4,

respectively), Maxent and Bayesian approaches were able to model their cur-

rent distribution ranges. However, they exhibited some differences among

genetic clusters. For example, genetic cluster C2 exhibits a disjunct distri-

bution due to a major geographic barrier (i.e. the Ebro river valley in NE

Spain), which was clearly depicted by Maxent (Figure 9.2). It is worth not-

ing that such disjunt distribution is not a sampling problem, but the result

of the low occurrence of the species confirmed after repeated field campaigns

in the region. Bayesian Beta regression approaches, particularly the spatial

HBM, blurred, albeit not totally erasing, the disjunct distribution of this ge-

netic cluster. In contrast, Maxent and Bayesian Beta regression approaches

were more consistent for genetic clusters C1 and C4, which exhibited more

compact distributions. Overall, we conclude that the continuity of clusters’

distribution range increases its suitability to be modelled by alternative

means.

Spatial HBMs, along with Maxent for genetic cluster C4, did not show

residual spatial autocorrelation, which is a desirable property to avoid in-

accurate parameter estimates and inadequate quantification of uncertainty

(Latimer et al., 2006; Beguin et al., 2012; Record et al., 2013; Crase et al.,

2014). In addition, spatial HBMs exhibited lower average model prediction
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errors than non-spatial HBMs. Hence, and from a purely statistical view-

point, the higher rigour of spatial HBMs, in terms of higher accuracy and

efficient removal of residual spatial autocorrelation, confers them a clear

advantage (Swanson et al., 2013; Crase et al., 2014). Spatial HBMs also al-

lowed the assessment of the spatial effects on distribution range, which were

quite compact and with high intensities at the distribution range centre (Fig-

ure 9.3). Such patterns may account for the lower number of bioclimatic

predictors selected by spatial HBMs in comparison with non-spatial HBMs

and Maxent. As a matter of fact, the reduction of predictors represents

a common shortcoming of spatial distribution models that, in some cases,

may jeopardise the biological interpretation of the environmental factors

underlying current distribution ranges (Beale et al., 2010; Swanson et al.,

2013). We want to emphasise, however, that the five best spatial HBMs

for each genetic cluster included additional variables compared to the best

model, and all models were quite similar in terms of DIC, WAIC and LCPO

values (Table 9.8). Thus, we have different options to identify environmen-

tal drivers of current distribution ranges. Furthermore, the reduction of

predictors in spatial models may not reduce the models’ interpretability.

9.4.2 Distribution range shifts with GCC

Taking spatial effects into account had a profound effect on the predictions

of distribution range shifts due to GCC for A. thaliana’s genetic clusters in

the Iberian Peninsula. In general, spatial HBMs exhibited more conservative

patterns of change compared to Maxent and non-spatial HBMs (Figure 9.4).

This result is in agreement with other research suggesting that environment-

only models forecast substantially greater range shifts compared to mod-

els incorporating spatial effects (Swanson et al., 2013; Crase et al., 2014).

The rationale is that organisms exhibiting a high spatial autocorrelation in

the environmental drivers accounting for their distribution ranges will have

larger areas with similar climates, which will also make GCC effects more

predictable and homogeneous across space (Nadeau et al., 2017). For this

reason, genetic clusters or species with continuous distributions not only

increase the ease of modelling, but also facilitate the assessment of the spa-

tial autocorrelation on distribution range shifts. Overall, there is no denying
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that considering spatial autocorrelation adds realistic biological elements for

understanding the long-term effects of GCC on biodiversity (De Marco Jr

et al., 2008; Swanson et al., 2013; Crase et al., 2014; Cardador et al., 2014).

Nevertheless, it must be noted that we are assuming that spatial autocor-

relation and its underlying forces remain relatively constant during climate

change. Clearly, this assumption, although beyond the scope of this study,

will need to be addressed in the future.

In general, the outcomes generated by the three modelling approaches

for GCC scenarios were quite different. Such a disparity in model outcomes

may indicate the differential effects of environmental drivers and the sources

of spatial autocorrelation on the GCC response of genetic clusters, but also

the effect of geographic distribution of each genetic cluster on model perfor-

mance. In fact, the problems affecting the modelling of current distribution

ranges, namely the disjunct and scattered geographic distributions of genetic

clusters C2 and C3, respectively, also affected the predictions of distribution

range shifts with GCC. For example, in the case of genetic cluster C2, spa-

tial HBM predicted a rather continuous distribution in NE Spain when it is

more reasonable to expect that the barrier separating the two major nuclei

of populations both sides of the Ebro river valley will be expanded with

warming, as predicted by Maxent. Furthermore, the GCC effects on genetic

cluster C3 are the tougher to predict. Although Maxent increased the po-

tential distribution range of this genetic cluster over the Iberian Peninsula,

as relict organisms exhibiting scattered distributions, the future of the C3

cluster may simply depend on the effect of GCC on the preservation of its

habitats as they are today. In fact, populations of genetic cluster C3 may

exhibit strong local adaptation (Méndez-Vigo et al., 2013), constraining the

ability of relict genotypes to colonise novel habitats.

In contrast, interpreting the problems of the GCC effects on distribution

range shifts for the other two genetic clusters with continuous distributions

was totally different. For example, genetic cluster C1 has a continuous dis-

tribution across the NE Iberian Peninsula, which is characterised by Atlantic

and continental climates. GCC models excluding spatial effects, i.e. Maxent

and non-spatial HBMs, indicate that GCC will restrict A. thaliana to north-

ern and mountainous areas, which is a typical scenario of migration towards

environments that will probably retain similar characteristics in the future.
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In contrast, spatial HBMs yielded a totally different outcome, indicating

that genetic cluster C1 will maintain and even increase its current distri-

bution range (Figure 9.4). The strong spatial effects detected by spatial

HBMs for genetic cluster C1 may account for this result, as the response of

A. thaliana to GCC is also expected to be more homogeneous. Recent exper-

imental data from transplant experiments using accessions from this genetic

cluster indicate that this scenario may be plausible, as A. thaliana performed

well in warmer environments, highlighting the potential of this genetic clus-

ter to cope with warming (Exposito-Alonso et al., 2018). The same applies

to genetic cluster C4, which is also distributed continuously in the typically

Mediterranean SW Iberian Peninsula. In this case, however, all modelling

approaches predicted its expansions with GCC, although some discrepan-

cies among modelling approaches were recorded (Figure 9.4). Although we

lack experimental evidence of the effects of warming on performance of C4

A.thaliana accessions, we believe that such expansion with GCC is highly

probable, as the genetic cluster C4 mostly occupies the warmest Iberian

region.

9.4.3 Conclusions

We developed hierarchical Bayesian Beta regression models to explore the

current distribution range and its GCC-induced shifts for an organism with

a marked geographic genetic structure, which represents the outcome of

historical, ecological and evolutionary forces probably acting in concert.

For this reason, the effects of GCC have to be understood as a mosaic of

responses varying in extent and intensity determined by the complexity of

the geographic genetic structure exhibited by study organisms. Rather than

predicting mere contractions or expansions for a single organism, we should

expect a reshuffling of the genetic diversity and its geographic structure with

GCC, which is obviously more difficult to predict. The HBMs developed

here enrich the toolbox of software available to deal with such expectation.

From a statistical viewpoint, our HBMs allow the modelling of each

genetic cluster avoids the binarization of genetic cluster membership pro-

portions, required by Maxent, which may imply an important data loss.
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This has the advantage that populations with high admixture can be in-

cluded in HBMs. In addition, our HBMs can take the spatial autocorrela-

tion of data into account, which not only improves the statistical properties

of the model (i.e. removal of residual SAC) but also adds realism, as spa-

tial autocorrelation may represent the result of eco-evolutionary processes

shaping distribution ranges. Despite such desirable properties, our simula-

tions of current and future distribution ranges of the four genetic clusters

of Iberian A. thaliana indicated that the ease of modelling is strongly re-

lated to the continuity of their distributions. Furthermore, the biological

knowledge of the study organism, namely, the identification of relict genetic

lineages based on whole-genome sequencing, the detection of void areas af-

ter years of extensive field sampling, and the experimental quantification of

plant performance with warming, emerges as an essential element in the un-

derstanding of model outputs. Finally, we believe that further work should

also be conducted to validate model outputs by independent means (i.e. as-

signment of new A. thaliana populations to genetic clusters based on model

predictions).

We conclude by stressing the importance of developing better models

to forecast the effects of GCC on organisms’ distribution range worldwide.

Such predictive tools, and the comparison thereof, may lead to the mitiga-

tion of the inevitable impact of GCC on biodiversity. However, we have to

keep increasing our comprehension of the evolutionary (e.g. physiological

adaptive responses) and demographic (e.g. extinction/colonization dynam-

ics and dispersal ability) factors accounting for the response of organisms

to environmental changes imposed by GCC.
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Table 9.4: The best five Maxent models for each genetic cluster according to five-fold cross-validated AUC. We
provide the model formula, the mean area under the curve (AUC) and its standard deviation (SD). The best model
among the best five according to parsimony is indicated. The number of occurrences after applying a threshold cut

value of 0.5 was 103, 43, 38 and 35 for genetic cluster C1, C2, C3 and C4, respectively.

Cluster Model AUC SD

C1 Y ∼ β0 + BIO1 + BIO3 + BIO4 + BIO8 + BIO15 + BIO18 0.812 0.028

C1 Y ∼ β0 + BIO1 + BIO4 + BIO8 + BIO15 + BIO18 0.812 0.029

C1 Y ∼ β0 + BIO1 + BIO3 + BIO4 + BIO8 + BIO12 + BIO15 0.811 0.029

C1 Y ∼ β0 + BIO1 + BIO2 + BIO4 + BIO8 + BIO12 + BIO15 0.811 0.029

C1 Y ∼ β0 + BIO1 + BIO3 + BIO4 + BIO8 + BIO15 0.811 0.029

C2 Y ∼ β0 + BIO1 + BIO2 + BIO4 + BIO8 + BIO18 0.910 0.039

C2 Y ∼ β0 + BIO1 + BIO2 + BIO4 + BIO8 + BIO12 + BIO18 0.909 0.039

C2 Y ∼ β0 + BIO1 + BIO2 + BIO3 + BIO4 + BIO8 + BIO18 0.908 0.040

C2 Y ∼ β0 + BIO2 + BIO3 + BIO4 + BIO8 + BIO18 0.908 0.039

C2 Y ∼ β0 + BIO2 + BIO4 + BIO8 + BIO18 0.908 0.039

C3 Y ∼ β0 + BIO1 + BIO2 + BIO3 + BIO8 + BIO15 + BIO18 0.809 0.073

C3 Y ∼ β0 + BIO1 + BIO2 + BIO3 + BIO15 + BIO18 0.808 0.073

C3 Y ∼ β0 + BIO1 + BIO3 + BIO8 + BIO15 + BIO18 0.808 0.073

C3 Y ∼ β0 + BIO1 + BIO3 + BIO15 + BIO18 0.808 0.072

C3 Y ∼ β0 + BIO1 + BIO2 + BIO3 + BIO8 + BIO12 + BIO15 + BIO18 0.808 0.073

C4 Y ∼ β0 + BIO1 + BIO2 + BIO4 + BIO12 + BIO18 0.864 0.047

C4 Y ∼ β0 + BIO1 + BIO2 + BIO4 + BIO8 + BIO12 0.863 0.044

C4 Y ∼ β0 + BIO1 + BIO2 + BIO3 + BIO8 + BIO12 0.863 0.049

C4 Y ∼ β0 + BIO1 + BIO2 + BIO4 + BIO8 + BIO12 + BIO18 0.863 0.047

C4 Y ∼ β0 + BIO1 + BIO2 + BIO3 + BIO4 + BIO12 + BIO18 0.863 0.048
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200 9.5. Supplemental Information

Table 9.5: Results for the Moran’s I test on residual spatial autocorrela-
tion (SAC) for each modelling approach and genetic cluster. Models with
P-value > 0.05 are considered as residual SAC free. Spatial HBM for C3

is indicated by dashes because it did not produce acceptable results.

Method Cluster Moran’s I P-value SAC free

Maxent C1 0.0747 0.0158 No
Maxent C2 0.3553 0.0001 No
Maxent C3 0.7953 0.0001 No
Maxent C4 0.0544 0.0626 Yes

Non-spatial HBM C1 0.0775 0.0001 No
Non-spatial HBM C2 0.0795 0.0001 No
Non-spatial HBM C3 0.0417 0.0094 No
Non-spatial HBM C4 0.1021 0.0001 No

Spatial HBM C1 0.0147 0.1011 Yes
Spatial HBM C2 0.0141 0.0982 Yes
Spatial HBM C3 – – –
Spatial HBM C4 -0.0015 0.4148 Yes
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Table 9.6: The best five non-spatial (A) and spatial HBMs (B) for each genetic cluster according to LCPO. We
provide the model formula, the deviance information criterion (DIC), the Watanabe-Akaike information criterion
(WAIC), and the logarithmic conditional predictive ordinates (LCPO). For each genetic cluster, the best model
among the best five according to parsimony is indicated. For spatial models, the spatial effect term (W ) is also
indicated in the formula. Spatial HBM for C3 is indicated by dashes because it did not produce acceptable results.

(A) Non-spatial HBMs

Cluster Model DIC WAIC LCPO

C1 Y ∼ β0 + BIO3 + BIO4 + BIO8 + BIO15 + BIO18 -212.81 -213.39 -0.354

C1 Y ∼ β0 + BIO3 + BIO4 + BIO8 + BIO12 + BIO15 + BIO18 -213.01 -213.38 -0.354

C1 Y ∼ β0 + BIO2 + BIO4 + BIO8 + BIO12 + BIO15 + BIO18 -212.73 -212.87 -0.353

C1 Y ∼ β0 + BIO2 + BIO4 + BIO8 + BIO15 + BIO18 -212.43 -212.80 -0.353

C1 Y ∼ β0 + BIO2 + BIO3 + BIO8 + BIO15 + BIO18 -212.02 -212.60 -0.353

C2 Y ∼ β0 + BIO1 + BIO4 + BIO8 + BIO12 + BIO15 + BIO18 -456.02 -454.53 -0.755

C2 Y ∼ β0 + BIO1 + BIO4 + BIO8 + BIO12 + BIO18 -454.12 -452.62 -0.752

C2 Y ∼ β0 + BIO1 + BIO3 + BIO4 + BIO8 + BIO12 + BIO15 + BIO18 -454.01 -452.61 -0.752

C2 Y ∼ β0 + BIO1 + BIO2 + BIO4 + BIO8 + BIO12 + BIO15 + BIO18 -454.04 -452.59 -0.752

C2 Y ∼ β0 + BIO1 + BIO2 + BIO3 + BIO8 + BIO12 + BIO15 + BIO18 -453.03 -451.67 -0.750

C3 Y ∼ β0 + BIO4 + BIO12 + BIO18 -356.48 -356.84 -0.593

C3 Y ∼ β0 + BIO1 + BIO4 + BIO12 + BIO18 -356.06 -356.72 -0.593

C3 Y ∼ β0 + BIO1 + BIO2 + BIO4 + BIO12 + BIO18 -355.14 -355.93 -0.591

C3 Y ∼ β0 + BIO1 + BIO3 + BIO12 + BIO18 -355.27 -355.80 -0.591

C3 Y ∼ β0 + BIO1 + BIO3 + BIO4 + BIO12 + BIO18 -354.78 -355.56 -0.591

C4 Y ∼ β0 + BIO1 + BIO15 + BIO18 -379.14 -377.35 -0.627

C4 Y ∼ β0 + BIO1 + BIO8 + BIO15 + BIO18 -378.19 -376.57 -0.625

C4 Y ∼ β0 + BIO1 + BIO2 + BIO3 + BIO4 + BIO15 + BIO18 -378.23 -376.15 -0.625

C4 Y ∼ β0 + BIO1 + BIO4 + BIO15 + BIO18 -377.62 -375.81 -0.624

C4 Y ∼ β0 + BIO1 + BIO3 + BIO15 + BIO18 -377.42 -375.71 -0.624
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(B) Spatial HBMs

Cluster Model DIC WAIC LCPO

C1 Y ∼ β0 + BIO1 + BIO3 + BIO8 + W -262.07 -262.46 -0.434

C1 Y ∼ β0 + BIO1 + BIO8 + W -261.30 -261.71 -0.434

C1 Y ∼ β0 + BIO1 + BIO2 + BIO8 + W -261.25 -261.52 -0.433

C1 Y ∼ β0 + BIO1 + BIO3 + BIO4 + BIO8 + W -261.09 -261.47 -0.433

C1 Y ∼ β0 + BIO1 + BIO2 + BIO3 + BIO8 + W -261.07 -261.32 -0.432

C2 Y ∼ β0 + BIO2 + BIO8 + BIO12 + BIO15 + BIO18 + W -616.66 -616.29 -1.014

C2 Y ∼ β0 + BIO8 + BIO12 + BIO15 + BIO18 + W -616.07 -615.55 -1.012

C2 Y ∼ β0 + BIO1 + BIO2 + BIO8 + BIO12 + BIO15 + BIO18 + W -615.45 -614.96 -1.011

C2 Y ∼ β0 + BIO4 + BIO8 + BIO12 + BIO15 + BIO18 + W -615.11 -614.83 -1.010

C2 Y ∼ β0 + BIO3 + BIO8 + BIO12 + BIO15 + BIO18 + W -615.62 -613.85 -1.010

C3 – – – –

C3 – – – –

C3 – – – –

C3 – – – –

C3 – – – –

C4 Y ∼ β0 + BIO1 + W -492.78 -475.08 -0.779

C4 Y ∼ β0 + BIO1 + BIO2 + W -493.30 -475.13 -0.778

C4 Y ∼ β0 + BIO1 + BIO3 + W -492.88 -474.65 -0.777

C4 Y ∼ β0 + BIO1 + BIO4 + W -492.30 -474.26 -0.777

C4 Y ∼ β0 + BIO1 + BIO2 + BIO15 + W -491.88 -474.07 -0.777
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Table 9.7: Summary of posterior distributions for the best non-spatial
(A) and spatial HBMs (B) for each genetic cluster according to the log-
arithmic conditional predictive ordinates (LCPO). The mean, standard
deviation (SD), quantiles (0.025, 0.5 and 0.975) and the mode are given.
Results of spatial HBM for C3 is not given as it did not produce acceptable

results.

(A) Non-spatial HBMs

C1 Mean SD 0.025 q 0.5 q 0.975 q Mode

β0 4.3073 1.8921 0.5817 4.3108 8.0106 4.3178

BIO3 5.7731 2.8855 0.1521 5.7570 11.4781 5.7247

BIO4 -0.5653 0.1232 -0.8077 -0.5652 -0.3240 -0.5648

BIO8 -0.1040 0.0156 -0.1348 -0.1040 -0.0733 -0.1039

BIO15 -0.0501 0.0060 -0.0620 -0.0501 -0.0383 -0.0500

BIO18 -0.0091 0.0015 -0.0120 -0.0091 -0.0063 -0.0091

C2 Mean SD 0.025 q 0.5 q 0.975 q Mode

β0 -3.6781 0.8329 -5.3233 -3.6750 -2.0516 -3.6687

BIO1 -0.1117 0.0328 -0.1757 -0.1118 -0.0469 -0.1121

BIO4 0.3729 0.0916 0.1944 0.3724 0.5540 0.3713

BIO8 0.1042 0.0244 0.0563 0.1042 0.1519 0.1042

BIO12 -0.0011 0.0003 -0.0018 -0.0011 -0.0004 -0.0011

BIO18 0.0137 0.0019 0.0100 0.0136 0.0174 0.0136

C3 Mean SD 0.025 q 0.5 q 0.975 q Mode

β0 -3.1345 0.8826 -4.8767 -3.1314 -1.4107 -3.1252

BIO4 0.2875 0.1184 0.0568 0.2869 0.5213 0.2857

BIO12 0.0012 0.0003 0.0006 0.0012 0.0018 0.0012

BIO18 -0.0062 0.0014 -0.0089 -0.0062 -0.0035 -0.0061

C4 Mean SD 0.025 q 0.5 q 0.975 q Mode

β0 -4.9265 0.4764 -5.8607 -4.9270 -3.9904 -4.9281

BIO1 0.1972 0.0290 0.1405 0.1971 0.2543 0.1970

BIO15 0.0212 0.0059 0.0096 0.0212 0.0327 0.0212

BIO18 0.0036 0.0012 0.0012 0.0036 0.0059 0.0036
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(B) Spatial HBMs

C1 Mean SD 0.025 q 0.5 q 0.975 q Mode

β0 -2.2260 1.5085 -5.4395 -2.2065 0.9344 -2.1654

BIO1 0.1472 0.0507 0.0501 0.1464 0.2490 0.1447

BIO8 -0.0713 0.0317 -0.1343 -0.0710 -0.0100 -0.0704

C2 Mean SD 0.025 q 0.5 q 0.975 q Mode

β0 -1.9800 1.0121 -4.1034 -1.9534 -0.0309 -1.9139

BIO8 -0.0442 0.0209 -0.0854 -0.0441 -0.0033 -0.0440

BIO12 -0.0015 0.0005 -0.0025 -0.0015 -0.0005 -0.0015

BIO15 0.0255 0.0111 0.0039 0.0254 0.0474 0.0253

BIO18 0.0095 0.0032 0.0033 0.0095 0.0160 0.0094

C4 Mean SD 0.025 q 0.5 q 0.975 q Mode

β0 -3.4532 0.6466 -4.7086 -3.4608 -2.1490 -3.4711

BIO1 0.1635 0.0378 0.0910 0.1630 0.2393 0.1618

Table 9.8: Mean posterior distribution for the hyper-parameter φi =
exp θ for each of the best non-spatial and spatial HBMs for each genetic

cluster (C1, C2, C3 and C4).

Model C1 C2 C3 C4

Non-spatial HBMs 3.645 6.232 2.171 3.879

Spatial HBMs 4.651 13.228 – 6.891
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Figure 9.5: Delaunay triangulation used in HBMs to predict the re-
sponse variable in un-sampled locations.

Figure 9.6: Density distributions of predicted genetic cluster member-
ship probabilities for the whole of the study area for each modelling ap-
proach. Maxent densities must be interpreted as suitability for popula-
tions with a higher than 0.5 cluster coefficient. Small coloured triangles
indicate the 0.75 percentile of the corresponding coloured distribution.



“Thesis˙Joaquin” — 2019/6/10 — 8:51 — page 206 — #240i
i

i
i

i
i

i
i

206 9.5. Supplemental Information

Figure 9.7: Density plots of predicted current (year 2000) and future
distributions of suitability values across the Iberian Peninsula for each
genetic cluster and modelling approach. Small coloured triangles indicate

the 0.75 percentile of the corresponding coloured distribution.
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Chapter 10

Dealing with physical

barriers in bottlenose

dolphin (Tursiops truncatus)

distribution

In this chapter, we present the actual version of our paper “Dealing with

physical barriers in bottlenose dolphin Tursiops truncatus distribution” by

Joaqúın Mart́ınez-Minaya (University of Valencia), David Conesa (Univer-

sity of Valencia), Haakon Bakka (King Abdullah University of Science and

Technology) and Maria Grazia Pennino (Spanish Institute of Oceanogra-

phy), which has been accepted in the Journal Ecological Modelling. In order

to keep the same structure of the chapters with published papers, this chap-

ter ends with the references used in this work.

Abstract

Worldwide, cetacean species have started to be protected, but they are still

very vulnerable to accidental damage from an expanding range of human

activities at sea. To properly manage these potential threats we need a

detailed understanding of the seasonal distributions of these highly mobile

populations. To achieve this goal, a growing effort has been underway to

develop species distribution models (SDMs) that correctly describe and pre-

dict preferred species areas. However, accuracy is not always easy to achieve

207
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when physical barriers, such as islands, are present. Indeed, SDMs assume,

if only implicitly, that the spatial effect is stationary, and that correlation is

only dependent on the distance between observations and not on the direc-

tion or a spatial coordinates. The application of stationary SDMs in these

cases could lead to incorrect predictions and, consequently, to uninformed

decision making. In this study, we identify vulnerable habitats for the bot-

tlenose dolphin in the Archipelago de La Maddalena, Northern Sardinia

(Italy) using Bayesian hierarchical SDMs that account for the physical bar-

riers issue and provide a full specification of the associated uncertainty. The

approach we propose constitutes a major step forward in the understanding

of cetacean species in many ecosystems where physical, geographical and

topographical barriers are present.

Keywords

Archipelago de La Maddalena, cetaceans, hierarchical Bayesian spatial mod-

els, INLA, SPDE

10.1 Introduction

Globally, the importance of cetaceans as keystone and umbrella species is

being increasingly recognized as protected areas designed on top predator

distributions have been demonstrated to be highly efficient, leading to higher

biodiversity levels and more ecosystem benefits (Sergio et al., 2008). How-

ever, cetacean populations have been facing various threats including deple-

tion of resources, habitat loss, interactions with commercial fisheries, dis-

eases produced by pollution and physical and acoustic disturbances caused

by vessel traffic (Pennino et al., 2017).

Among cetaceans the bottlenose dolphin (Tursiops truncatus) is a vul-

nerable species Bearzi et al. (2012) that is more susceptible to anthropogenic

activities due to its occurrence in coastal waters where most threats occur.

This species is protected by the EU Habitats Directive 92/43/EEC and its
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coastal ecotype is present in the ACCOBAMS (Agreement on the Conser-

vation of Cetaceans in the Black Sea, Mediterranean Sea and contiguous

Atlantic area) region Notarbartolo di Sciara (2002).

The protection of cetacean habitats, particularly those of bottlenose dol-

phins, should be a priority issue for marine conservation, given that protect-

ing these areas constitutes an indirect measure toward global sea manage-

ment (Pennino et al., 2016a). In order to achieve this goal, it is essential to

have a solid understanding of the relationship that the species has with its

habitat and apply robust analyses of existing information and databases to

identify Special Areas of Conservation (SAC) (Pennino et al., 2016a). SACs

should be designed around specific sensitive areas, where local bottlenose

dolphins are known to have their centers of distribution (Gnone et al., 2011).

In this context, Species Distribution Models (SDMs) can be a useful

tool to achieve these objectives given that they link spatial occurrence or

species abundance data with multivariate environmental data that can esti-

mate the relationship between the species and its habitat, and subsequently

predict spatial occurrence or species abundance in un-sampled locations or

time-periods Mart́ınez-Minaya et al. (2018). Nonetheless, environmental

conditions alone may not sufficiently explain species distribution as spa-

tially intrinsic ecological processes, such as competition or predation, can

also contribute.

Therefore, SDMs that incorporate spatial random effects to account for

unexplained spatial dependence in data have been gaining increasing inter-

est in marine ecology. Indeed, spatial random components could account

for the spatial correlation driven by unmeasured covariates. SDMs usually

assume, if only implicitly, that the spatial random effect is stationarity, i.e.

that correlation is only dependent on the distance between the points, and

not on the direction or the spatial coordinates Bakka et al. (2019). However,

this assumption could be erroneous in areas where there are physical bar-

riers such islands, thus leading to potentially biased predictions of species

distributions.

Consequently, biased estimations and predictions of species distribution

can lead to both uninformed decision making and inefficient management of

natural resources Bakka et al. (2019). This is a fundamental issue in marine
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ecology, where identification of vulnerable habitats (e.g., protected marine

areas, nurseries, etc.) is one of the most common conservation management

tools used to sustain the long-term viability of species populations.

In this paper we identify sensitive habitats for the bottlenose dolphin

in the Archipelago de La Maddalena, Northern Sardinia (Italy) using a

hierarchical Bayesian approach for spatial SDMs that account for physical

barriers. As a tool to approximate the posterior distributions, we use the

integrated nested Laplace approximation (INLA) Rue et al. (2009). The

spatial effect that accounts for the physical barriers is included and measured

by the approximation to a system of stochastic partial differential equations

proposed by Bakka et al. (2019).

The Maddalena Archipelago is included within the Pelagos Cetacean

Sanctuary, which is the only pelagic Marine Protected Area (MPA) for

marine animals in the Mediterranean Sea. The bottlenose dolphin is one

of the most common cetacean species in this area (Notarbartolo di Sciara,

2002), with a population of 71 photo-identified individuals (Pennino et al.,

2013), of which 22 have been defined as residents (individuals sighted in all

seasons during that one year and at least five times).

In line with all these, an improved understanding of the spatial distribu-

tion of the bottlenose dolphin in this area could contribute to management

of this vulnerable species.

10.2 Materials and methods

10.2.1 Study area

This study was conducted in waters within 3 miles off the coast of Archipe-

lago de La Maddalena, Northern Sardinia (Italy). This area is within a

National Park located in the strait of Bonifacio, between the islands of

Sardinia and Corsica, and is part of the Pelagos Cetacean Sanctuary that

was established by Italy, France and Monaco in 1999.
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The type of seabed of the inner shelf (from 0 to 70 m in depth) is mainly

composed of rocky or sandy substrata covered with Posidonia seagrass (Posi-

donia oceanica, Delile, 1813) beds. A high hydrodynamism characterizes

this area that, together with shallow depth and limited tidal range, gener-

ate very clean waters. The general aspect of the coast is indented, with small

promontories, bays and narrow channels. The topography of the bottom is

variable with large cracks, reefs and small islands.

10.2.2 Field and Study Methods

In order to equally monitor the area, random transects were performed from

October 2007 to September 2008 on-board a zodiac boat with a speed of 8-10

knots. Surveys were conducted by experts during light hours from 6.00 A.M.

to 8.00 P.M. To identify species, observers scanned with both the naked eye

and binoculars (7 x 50 and 8 x 42). To ensure the same visibility across the

study area, surveys were only performed when the sea-state was less than

3 (Douglas sea force scale) and in clear conditions with no precipitation.

Data collected included sighting occurrence, date and geographical location.

Geographical information were collected every minute using a GPS, logged

to a computer equipped with “Mapsource” software (Garmin GPS device,

2010).

To avoid harassing the dolphins, sightings were performed from a re-

spectful distance (no closer than 30 meters), with binoculars or telephoto

lenses to get a good view of the animals. If the dolphins approached the

boat, the course was maintained to avoid sudden changes in direction or

speed that could injure the animals.

10.2.3 Environmental variables

Bottlenose dolphin distribution was modeled using five environmental vari-

ables selected for being known to affect their habitat: three oceanographic

variables —Sea Surface Temperature (SST in C), Sea Surface Salinity (SSS

in PSU) and Chlorophyll-a concentration (CHL in mg/m3)— and two topo-

graphic covariates —depth (in meters) and slope (in degrees)—. SST, SSS
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and CHL are strongly related to marine system productivity as they can af-

fect nutrient availability, metabolic rates and water stratification. All these

variables were derived from the aqua-MODIS sensor, as monthly values with

a resolution of 2 km (https://modis.gsfc.nasa.gov/).

With respect to the importance of these selected variables, it is worth

noting that these topographic covariates have frequently been used as pre-

dictors of cetacean species distribution (Panigada et al., 2008; Mannocci

et al., 2014). Also, bathymetry-derived terrain variables, such as the slope

of the seabed, are indicative of seabed morphology and have been widely

used as predictors of cetacean distribution (Lauria et al., 2015; Fonseca

et al., 2017; Pennino et al., 2016a). Usually low slope values correspond

to a flat ocean bottom (areas of sediment deposition), while higher values

indicate consolidate substrata (i.e., rocky substrate) Fonseca et al. (2017).

Bathymetric variables were derived from the MARSPEC database (avail-

able at http://www.marspec.org) with a spatial resolution of 1 km (Sbrocco

and Barber, 2013). To maintain the same spatial resolution, all environ-

mental data were gridded at 2 km using the raster package (Hijmans and

van Etten, 2015) in the R software (R Core Team, 2018).

Collinearity between explanatory environmental variables was checked

using a Draftsman’s plot and the Pearson correlation index. The variables

were not highly correlated (r = 0.6), and thus were considered in further

analyses. Finally, all explanatory variables were centered and standardized

following the approach of Gelman (2008).

10.2.4 Statistical model

The recently published hierarchical Bayesian spatial model that accounts

for barriers (Bakka et al., 2019) was used to estimate and predict over-

all occurrence of bottlenose dolphins with respect to environmental predic-

tors. Given that our data are composed of the presences and absences of

bottlenose dolphins, the response variable Yi can be assumed to follow a

Bernoulli distribution with a mean of πi that can take on values of 1 or 0

depending on whether the habitat is suitable (Yi = 1) or not (Yi =0) for
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the species. As usual in Generalized Linear Models, each πi can be easily

linked to a structured additive predictor ηi through a link function g(·), so

that g(π) = η. The structured additive predictor η accounts for the effect

of various covariates and the spatial effect in an additive way:

ηi = β0 +
M∑
m=1

βmxmi + u(si) , (10.1)

where β0 corresponds to the intercept; the coefficients β = {β1, . . . , βM}
quantify the effect of the possible factors and covariates x = (x1, . . . ,xM )

on the response; and u(si) denotes the spatial random effect.

SDMs usually assume stationarity in the spatial random effect u(si).

In other words, the spatial autocorrelation only depends on the distance

between points (see, for instance Pennino et al., 2013; Paradinas et al.,

2015; Rufener et al., 2017). Nevertheless, if there are physical barriers,

such as islands, this assumption can be erroneous, thus prompting biased

predictions. As a consequence, we suppose that the spatial random effect

in the model depends also on the direction and the geographic coordinates,

i.e., u(s) is a non-stationary spatial random effect. Using the approximation

of Bakka et al. (2019), it can be estimated as the continuous weak solution

to the following system of stochastic differential equations:

u(s)−∇ · r
2

8
∇u(s) = r

√
π

2
σuW(s), for s ∈ Ωn ,

u(s)−∇ ·
r2
b

8
∇u(s) = rb

√
π

2
σuW(s), for s ∈ Ωb ,

(10.2)

Where r and rb are the ranges for the normal and barrier areas respectively,

σu is the marginal standard deviation of u, ∇ =
(
∂
∂x ,

∂
∂y

)
,W(s) denotes the

white noise, Ωn is the normal terrain, Ωb is the barrier, and their disjoint

union gives the whole study area.

Unlike stationary spatial effects, the underlying idea is to construct a

Gaussian Markov Random Field (GMRF) locally, with one governing equa-

tion for the normal area (sea), and another for the barrier area (earth).

The prior spatial effect only depends on two unknown hyperparameters, the

standard deviation (σu) and the range in the normal area (r), because the
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range in the barrier area (rb) is fixed at close to zero. As a result, the sys-

tem in (10.2) represents a local averaging of nearby values. If there are two

points separated by a landmass, the very small range stops the local aver-

aging on the barrier. It forces the dependency to focus on moving around

the barrier, via local averages in the water area. The system of differential

equations in (10.2) can be solved by constructing a Delaunay triangulation

of the study area (Figure 10.1) and then applying the finite element method

as explained in Bakka et al. (2019).

Figure 10.1: Map of the study area with sightings locations (red dots).
Triangulation used to calculate the GMRF for the SPDE approach.

In addition to the environmental variables and the spatial effect, a fac-

tor representing the actual season was included in the model to account

for temporal variability. Default priors were assigned for all fixed-effect pa-

rameters, which are approximations of non-informative priors designed to

have little influence on the posterior distribution. PC priors Simpson et al.

(2017) that followed the parametrization depicted in Fuglstad et al. (2018)

were allocated for the only two hyperparameters in the model and define the
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covariance structure of u(s): σu and r. We set the median of the prior range

to 0.3 (the extent of the area in geographic coordinates) and the median for

the marginal standard deviation to 1.

10.2.5 Bayesian inference with INLA

All the models were fitted, i.e. posteriors of the model parameters computed,

using the Integrated Nested Laplace Approximation (INLA) methodology

(Rue et al., 2009), implemented in the R package INLA (https://www.r-

inla.org). In INLA, the Bernoulli likelihood is approximated by a Laplace

approximation, and the posterior for all parameters, conditionally on the

two hyperparameters σ, r for the spatial field, can be computed quickly by

sparse matrix algorithms. The posterior for the hyperparameters are found

by exploring this two dimensional space, and is fast due to its low dimension.

After representative values of the hyper-parameters have been chosen, these

are integrated out to give a full posterior distribution for all the parameters

and the spatial effect in the model.

Bayesian posterior distributions, unlike the mean and confidence inter-

vals produced by classical analyses, enable simple probability statements

about the unknown parameters. Thus, the region bounded by the 0.025

and 0.975 quantiles of the posterior distribution has an intuitive interpre-

tation: for a specific model, the unknown parameter has a 95% chance of

falling within this range of values.

As the interest was to analyze the probability of finding a dolphin in all

the study area, a grid of prediction locations were included in the model

fitting. At each grid, the posterior predictive distribution of the probability

of observing the dolphin was obtained.

10.2.6 Model selection

Model selection was conducted based on choosing the best subset of co-

variates (see, for instance, Heinze et al. (2018) for a detailed revision of

model selection procedures). This method evaluates all 2k (k is the number
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of components of the model: covariates and random effects, such as the

spatial effect) possible models and choose the best model according to an

information criterion, in our case, the Watanabe Akaike Information Cri-

terion (WAIC) (Watanabe, 2010) and the mean logarithmic of the approx-

imated Conditional Predictive Ordinate (LCPO) (Gneiting and Raftery,

2007). While WAIC values indicate the goodness of fit of the models, the

LCPO evaluates the predictive capacity. Lower values for both WAIC and

LCPO represent the best compromise between fit and parsimony. If the

models are similar in terms of WAIC and LCPO, following the parsimony

criterion, the model with less amount of covariates is selected.

10.3 Results

Between October 2007 and September 2008, bottlenose dolphins were

sighted in 93 of the 206 surveys of the study area. More specifically, 34

sightings occurred in winter, 29 in spring, 8 in summer and 22 in autumn.

The total sighting rate was about 0.45, 0.97 for the winter season, 0.32 in

spring, 0.19 in summer and 0.57 in autumn (Table 10.1). Due mainly to

atmospherically reasons the survey effort was not homogeneous in all the

seasons, recording is maximum during the spring and summer period. Nev-

ertheless almost 20% of the effort was distributed in every season, except in

spring when the 44% of the effort took place (Table 10.1).

Table 10.1: Numerical summary of the survey effort and sighting rate
by season.

Season Sightings N. surveys Sighting rate (%) Seasonal effort (%)

Winter 34 35 97.14 16.99
Spring 29 91 31.86 44.17
Summer 8 42 19.04 20.39
Autumn 22 38 57.89 18.45

Total 93 206 45.14 100

Regarding the hierarchical Bayesian SDMs, in addition to the five envi-

ronmental variables, the season factor and the non-stationary spatial effect
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were considered to select the best model. A total of 128 models were fit-

ted. Table 10.2 displays the best 20 models and their WAIC and LCPO

ordered by LCPO. As noticed, the presented 20 models were very similar in

terms of WAIC and LCPO, and so these models can be considered equiva-

lent. Thus, the parsimony criterion was employed in order to select the best

model among those having equivalent values of WAIC and LCPO. The final

selected model was the one with only one covariate, the seasonal effect.

After selecting this model we also investigated the importance of the

covariates not selected. In particular, Bayesian estimation of the regression

coefficients associated to the covariates not selected was negligible, in the

sense that all the posterior distributions of the regression parameters were

centered around zero and with variances smaller that the ones provided in

the priors. This was a clear proof that those covariates should not be part

of the final selected model.

Results in Table 10.3 showed that winter is the season with the highest

estimated dolphin occurrence (posterior mean = 4.46; 95% CI = [2.32, 7.25])

with respect to the reference level (autumn season). Conversely, summer and

spring seasons show lower estimated dolphin occurrence than the reference

level (respectively, posterior mean = -2.37; 95% CI = [-3.71, -1.18] and

posterior mean = -0.79; 95% CI = [-1.74, 0.14]).

The median for the posterior predictive distribution of the probability of

occurrence showed higher values in the whole area during the winter season

(Figure 10.2d). Conversely, in autumn and spring, a higher probability of

occurrence (close to 1 in line with the high sighting rate observed) was found

in the Northwest area (Figures 10.2a and 10.2c). Similarly, in summer, the

most frequented area was the Northwest, but with probabilities of presence

close to 0.5 (Figure 10.2b).

The spatial effect that indicates the intrinsic variability of the distri-

bution of bottlenose dolphins after excluding environmental variables was

consistent with the probability maps (Figure 10.3). Moreover, the mean of

the range of the spatial effect of the normal area was about 0.157 geograph-

ical degrees, that are equivalent to 17.48 km. The physical meaning of this

value is that sightings of dolphins that are this distance or greater apart are

not spatially correlated.
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Table 10.2: Model comparison. The acronyms are: Seasonal factor (S),
Sea Surface Temperature (SST in C), Sea Surface Salinity (SSS in PSU)
and Chlorophyll-a concentration (CHL in mg/m-3), two topographic co-
variates - depth (in meters) and slope (in degrees) and the non-stationary

spatial effect (u). Models are ordered by LCPO.

Models WAIC LCPO

1 1 + S + SST + u 185.33 0.453
2 1 + S + SSS + SST + u 185.57 0.454
3 1 + S + u 186.43 0.455
4 1 + S + SSS + u 186.37 0.456
5 1 + S + CHL + SSS + u 185.71 0.456
6 1 + S + CHL + SSS + SST + u 185.11 0.456
7 1 + S + SST + slope + u 186.57 0.456
8 1 + S + SSS + SST + slope + u 185.68 0.456
9 1 + S + SST + depth + u 186.59 0.456

10 1 + S + SSS + SST + depth + u 186.49 0.457
11 1 + S + CHL + SSS + slope + u 185.97 0.458
12 1 + S + SSS + slope + u 186.87 0.458
13 1 + S + CHL + SSS + SST + slope + u 184.52 0.459
14 1 + S + CHL + u 185.75 0.459
15 1 + S + slope + u 187.86 0.459
16 1 + S + CHL + SSS + SST + depth + u 186.05 0.459
17 1 + S + SSS + depth + u 187.91 0.459
18 1 + S + CHL + SSS + depth + u 187.13 0.459
19 1 + S + SSS + SST + depth + slope + u 187.28 0.460
20 1 + S + SST + depth + slope + u 188.04 0.460

10.4 Discussion

Seasonal sensitive habitats for the bottlenose dolphin in the Archipelago

de La Maddalena were identified using hierarchical Bayesian SDMs that ac-

count for physical barriers. The proposed model showed that dolphin occur-

rence in the Archipelago de La Maddalena is influenced by a seasonal effect

in the area. Our findings agree with those obtained by Brotons et al. (2008)
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Table 10.3: Mean, standard deviation, quantiles and mode for the pa-
rameters and hyperparameters of the best model. Summer, Spring and
Winter are the three levels of the factor Season (the remaining one being
the reference level Autumn). σu represents the standard deviation of the

spatial effect and r the range of the normal (non-barrier) area.

Parameters mean sd Q0.025 Q0.5 Q0.975 mode

Intercept 0.455 2.237 -3.942 0.424 5.049 0.397
Summer -2.375 0.643 -3.708 -2.351 -1.182 -2.304
Spring -0.794 0.480 -1.744 -0.792 0.141 -0.788
Winter 4.460 1.263 2.315 4.342 7.253 4.098

Hyperparameters mean sd Q0.025 Q0.5 Q0.975 mode

σu 2.254 1.408 1.165 2.242 4.470 2.199
r 0.157 1.624 0.065 0.152 0.434 0.137

in the Balearic Islands, Campana et al. (2015) in the Western Mediter-

ranean Sea, and Pennino et al. (2015) and (Pennino et al., 2016a) in our

study area. Indeed, estimated dolphin occurrence is higher during the win-

ter season and especially compared to spring and summer. Several possible

reasons, either isolated or combined, could explain this seasonal variation.

Natural seasonal movement of dolphins could be related to prey availability

or reproduction patterns. Moreover, the intense nautical traffic in summer

that characterizes this area could encourage these animals to move to areas

where there are fewer pleasure boats and where the risk of collision and the

noise is lower (Pennino et al., 2016b).

Another important factor driving dolphin occurrence is the spatial com-

ponent, which is highest in the western zone. In this area, bottlenose dol-

phins show a residential attitude with their center of distribution in the

identified favourable areas. The spatial effect usually captures the impact of

important missing predictors and accounts for ecological processes (e.g., pre-

dation or competition) that may affect the spatial arrangement of a species

(Roos et al., 2015). In our case, the spatial effect was not directly related

to any environmental variable included in the final model but it could be

reflecting disturbance from pleasure boating.
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Figure 10.2: Posterior predictive distribution of the probability of pres-
ence: 95% credible intervals (First and third panel respectively) and the
median (central panel) for the different seasons. a: autumn, b: summer,

c: spring and d: winter.

An effective conservation programme should take into account these find-

ings: favourable areas for bottlenose dolphins should be identified and pro-

tected as SACs (Special Areas of Conservation). Indeed, bottlenose dolphins

are listed in Annex II of the Habitats Directive that specifically requires the

identification of the SACs (Cañadas et al., 2005). SACs should be designed

around special sensitive areas, such as the ones identified in this study.

Protection measures should be devoted to limiting the disturbance from

recreational boats, which is probably the main threat for this species in the

area.
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Figure 10.3: Mean and standard deviation for posterior distribution of
the spatial effect u.

Spatial ecology has a direct applied relevance to cetaceans management,

but it also has a broad ecological significance. Although it may be compli-

cated to define the boundaries of habitats of these highly mobile species, it

represents the first step towards facilitating effective spatial management.

However, using a non-accurate approach could culminate in misidentifica-

tion in both the posterior distributions of the fixed and random effects and in

species habitat predictions, therefore leading to inappropriate management

measures that can sometimes be irreversible Bakka et al. (2019).

In line with this, we have used here a hierarchical Bayesian spatial model

that simultaneously deals with the presence of physical, geographical and

topographical barriers, spatial autocorrelation issues and different sources

of uncertainties. Our modeling is based on the novel approach by Bakka

et al. Bakka et al. (2019), and allows us to analyze sparsely binary spatial

data. Some advantages result from using our proposal. The first is a re-

sult of the Bayesian methodology itself, that is, that all multiple sources of

uncertainty associated with both the observed data and ecological process

can be included in the analysis, thus resulting in more robust statistical

inference. Moreover, the posterior predictive distribution of the probability

of finding the species turns out to be a very suitable tool that allows us to

express our uncertainties associated with the entire species habitat predic-

tion phenomenon and to explicitly describe the associated spatio-temporal
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variability. The second advantage is that the proposal provides an accu-

racy that would not be easy to achieve when physical barriers are present.

The application of stationary models in these cases could lead to uncertain

predictions, and consequently to uninformed decision making. The third

advantage is that we can present a map of the spatial effect along with its

corresponding uncertainty. The final advantage is the computational gain

from the use of the INLA approach, which allows us to easily make inferences

and predictions within a highly structured model.

Finally, regarding the database used in this study, it worth to be men-

tioned that it has some flaws, especially due to the non-standardized sam-

pling effort and limited field quantitative information (i.e. total and seasonal

nautical mileage traveled). This can probably have affected the sighting

rate per season, and so, the resulting predictive maps. Nevertheless, it is

well known that collecting data at sea presents many logistic and financial

challenges in particular due to find suitable seagoing vessels for data collec-

tion and atmospherically and oceanographic reasons. However, determining

cetacean distribution is essential for proposing conservation policies and any

advance in this sense is an improvement of the management and conserva-

tion of their populations. In conclusion, this approach constitutes a major

step forward in the understanding of species in many aquatic ecosystems

where physical, geographical and topographical barriers are present.
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Chapter 11

Species distribution

modeling: a statistical

review with focus in

spatio-temporal issues

In this chapter, we present a version of our paper “Species distribution mod-

eling: a statistical review with focus in spatio-temporal issues” by Joaqúın

Mart́ınez-Minaya (University of Valencia), Michela Cameletti, David Conesa

(University of Valencia) and Maria Grazia Pennino (Spanish Institute of

Oceanography) which has been published in Stochastic Environmental Re-

search and Risk Assessment, 32, 3227–3244. The chapter contains at the

end the references used in this work.

Abstract

The use of complex statistical models has recently increased substantially in

the context of species distribution behavior. This complexity has made the

inferential and predictive processes challenging to perform. The Bayesian

approach has become a good option to deal with these models due to the ease

with which prior information can be incorporated along with the fact that

it provides a more realistic and accurate estimation of uncertainty. In this

paper, we first review the sources of information and different approaches

(frequentist and Bayesian) to model the distribution of a species. We also

227



“Thesis˙Joaquin” — 2019/6/10 — 8:51 — page 228 — #262i
i

i
i

i
i

i
i

228 11.1. Introduction

discuss the Integrated Nested Laplace approximation as a tool with which to

obtain marginal posterior distributions of the parameters involved in these

models. We finally discuss some important statistical issues that arise when

researchers use species data: the presence of a temporal effect (presenting

different spatial and spatio-temporal structures), preferential sampling, spa-

tial misalignment, non-stationarity, imperfect detection, and the excess of

zeros.

Keywords

Geostatistics, hierarchical Bayesian models, INLA, point processes, prefer-

ential sampling, SPDE

11.1 Introduction

Understanding spatio-temporal dynamics of species or diseases is a key is-

sue in many research areas such as ecology or epidemiology. Indeed, the

so-called Species Distribution Models (SDMs), which link information on

the presence/absence or abundance of a species to environmental variables

to predict where (and how much of) a species is likely to be present in

unsampled locations or time periods, are important tools in many applied

fields.

In the particular case of ecology, SDMs have been implemented in dif-

ferent theoretical and practical cases, including the identification of criti-

cal habitats (Zhang, 2007; Zhang W, 2008; Paradinas et al., 2015; Rufener

et al., 2017; Sadykova et al., 2017), the study of the risk associated with

invasive species (Fitzpatrick et al., 2007; Luo and Opaluch, 2011), the po-

tential effects of climate change (Iverson et al., 2004; Araújo et al., 2005;

Brown et al., 2016), the design of protected areas, the protection of threat-

ened species (Parviainen et al., 2008; Roos et al., 2015), the distribution

of bioclimatic indices (Barber et al., 2017), the reintroduction of vulnera-

ble species (Danks and Klein, 2002; Martinez-Meyer et al., 2006; Hendricks

et al., 2016), the delineation of hot spots of biodiversity and species richness
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(Jiménez-Valverde and Lobo, 2007; Gotelli et al., 2009; Goetz et al., 2014),

the potential distribution of infectious diseases(Peterson et al., 2002; Fatima

et al., 2016; Juan et al., 2017; Mart́ınez-Bello et al., 2017; Mart́ınez-Minaya

et al., 2018), among many others.

SDMs have also been used in many other contexts, for instance evolu-

tionary biology, where they have been applied to topics such as speciation

or hybrid zones (Kozak et al., 2008); in humans epidemiology, to predict

the spread of diseases in humans (Gosoniu et al., 2006), in veterinary epi-

demiology (González-Warleta et al., 2013; Barber et al., 2016), in plants

epidemiology (Meentemeyer et al., 2011; Václav́ık and Meentemeyer, 2009;

Neri et al., 2014; White et al., 2017), etc.

Several review papers on SDMs already exist (see for example, Guisan

and Thuiller, 2005; Elith and Leathwick, 2009), but most of them are focused

on the modeling of species data, maintaining a more general overview of the

statistical critical issues. Our intention in this review is to describe in more

detail some of the statistical issues that arise when dealing with SDMs.

In addition, the quantity and the quality of available datasets has sub-

stantially increased over the past ten years, resulting in a higher complexity

of the statistical issues that have to be addressed when a SDM is performed.

Moreover, a detailed spatial and temporal description of the modeled phe-

nomenon is becoming mandatory in many research fields. As a consequence

of this increasing complexity, the performance of the SDM inferential and

predictive processes are becoming more challenging, forcing researchers to

develop new sophisticated statistical techniques. Accordingly, new modeling

approaches continue to be developed because using only geographic infor-

mation systems (GIS) tools is not totally satisfactory because of the type of

spatial data usually available. Indeed, over time model complexity has gen-

erally increased over time from the use of simple environmental matching

(two good examples are BIOCLIM, Busby, 1991, and DOMAIN, Carpenter

et al., 1993) to the use of models incorporating more complex non-linear

relationships between species presence and the environment, such as gener-

alized additive models (Guisan et al., 2002), neural networks (Park et al.,

2003), or multivariate adaptive regression splines (Leathwick et al., 2005).
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But more importantly, although most of the methods described in pre-

vious reviews (see for example, Guisan and Thuiller, 2005; Elith and Leath-

wick, 2009) have increased in their complexity, they are based on the as-

sumption that the observations are conditionally-independent, while species

distribution data often depict residual spatial autocorrelation (Kneib et al.,

2008; Beale et al., 2010). In this review, we will focus on the fact that the

spatial autocorrelation should be taken into account in species distribution

models, even if the data were collected in a standardized sampling, since the

observations are often close and subject to similar environmental features

(Muñoz et al., 2013). Other complications also arise in the modeling of the

species due to imperfect survey data such as observer error, gaps in the

sampling, missing data, the spatial mobility of the species (Latimer et al.,

2006) and the fact that data have been collected over long periods of time.

As a consequence, ignoring these issues in this type of analysis could lead

to misleading results.

As a consequence, the use of spatial and spatio-temporal models has

grown enormously, allowing the incorporation of all these issues into the

modeling process (Banerjee et al., 2014). Although there are other types of

spatial data that could describe the behavior of a species (see for instance,

Gelfand et al., 2010, for a detailed description of the three types of spatial

data), we will focus in this review on geostatistical or point-referenced data

that derive from those situations where the concern is to analyze spatially

continuous phenomena. Bearing in mind that we want to include the effect

of possible covariates in the modeling or to apply it to situations in which the

stochastic variation in the data is known to be non-Gaussian, we will deal

with the model-based geostatistics approach (Diggle and Ribeiro, 2007).

This combination of non-Gaussian data, a linear predictor and unob-

served latent variables usually makes estimation and prediction computa-

tionally difficult. Bayesian inference proves to be a good option to deal

with spatial hierarchical models because it allows both the observed data

and model parameters to be random variables (Banerjee et al., 2014), re-

sulting in a more realistic and accurate estimation of uncertainty. Another

advantage of the Bayesian approach is the ease with which prior information

can be incorporated. Note that prior information can usually be very helpful

in discriminating spatial autocorrelation effects from ordinary non-spatial
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linear effects (Gaudard et al., 1999). But, as is usual in Bayesian complex

models, inference needs numerical approaches. Among them, in this review

we will emphasize on the use of the integrated nested Laplace approxima-

tion (INLA) methodology (Rue et al., 2009) and software (http://www.r-

inla.org) as an alternative to Markov chain Monte Carlo (MCMC) methods,

the main reason being the speed of calculation.

To summarize, our intention in this review is to describe in more detail

the main statistical issues that arise when dealing with these models. In

particular, in Section 11.2 we focus on the statistical aspects of the available

data, while Section 11.3 discusses the basic structure of these models and

how to perform inference. In particular, we provide a critical review of the

Bayesian approach along with a detailed description of INLA. Our review

also includes a discussion on some of the particularities appearing when

dealing with them, including temporal correlation, preferential sampling,

spatial misalignment, non-stationarity, imperfect detection and excess of

zeros in Section 11.4. Finally Section 11.5 concludes. To be noted is that

we have tried to be simple in the notation so that the paper is readable by

a large community of scientists.

11.2 Sources of information in SDMs

SDMs require basically two types of data input: data describing the observed

species’ distribution, and data describing the landscape and the environmen-

tal characteristics in which the species can be found. In this Section we first

present biological data, i.e. the observed species distribution, and then the

environmental data and the usual covariates that characterize the species

distribution.

11.2.1 Biological data

The first type of data, which usually represent the response variable, can

be either presence-only (i.e. records of localities where the species has been

observed), presence/absence (i.e. records of presence and absence of the
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sampling localities), abundance data (i.e. the quantity of the species at the

sampling locations), or proportional data (i.e. the proportion of the species

at the sampling locations). Consequently, biological data can be measured

at nominal (e.g. presence/absence type), ordinal (e.g. ranked abundance),

ratio (e.g. frequency of detection) or continuous (e.g. abundance, richness)

levels, which impacts on the selection of the appropriate types of modeling

algorithms to use, and subsequently the measurement level of model of this

kind (e.g. probability or suitability of occurrence, type, expected mean).

Presence-only data lack absence observations, so that this type of dataset

is unsuitable for many of the commonly used species distribution algorithms,

unless pseudo − absences are assigned to unsampled portions of the study

area. Inclusion of pseudo − absences records can seriously bias analyses.

Indeed, methods used to generate pseudo-absences and their effects on model

performance are an open research field in the species distribution context

(Barbet-Massin et al., 2012; Iturbide et al., 2015).

With respect to abundance, this could be expressed as a continuous

variable (biomass of the species) or as count data (number of individuals).

Abundance data reflect the quantitative spatial distribution of the species

within the area of interest, while presence/absence information can be used

to measure the relative occurrence of species, thereby giving a different ap-

proximation. Although abundance data provide greater information for con-

servation and management purposes, they are less common, because occur-

rence data are easier and less expensive to be collected. Indeed, abundance

estimations are sensitive to detectability, and sampling methods seldom de-

tect all individuals present in an area. Consequently, many research studies

rely on approximations of species abundance from species occurrence, al-

though whether abundance can be inferred from such information has been

questioned, because detection is not perfect and occurrence probability may

not be linearly related to density (Nielsen et al., 2005; Joseph et al., 2006).

Proportional data are also widely used in many ecological processes. The

traditional approach in ecology is based on Gaussian linear models with

previous transformation in the proportions. However, model parameters

cannot be easily interpreted in terms of the original response, and measures

of proportions typically display asymmetry: hence, inferences based on the
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normality assumption can be misleading (Ferrari and Cribari-Neto, 2004).

Beta regression has recently appeared as a good alternative to deal with

data of this type, allowing bounded estimates and intervals with model pa-

rameters that are directly interpretable in terms of the mean of the response

(Paradinas et al., 2016, 2017b).

Also to be noted is that different species do not behave independently.

There are several species whose abundance (or presence) is constrained by

competition: a large increase in one is unavoidably linked to declines in

others. In these cases, the response variable should be considered by using

a joint distribution. The models used for data of this type are known as

joint species distribution models (Clark et al., 2014; Pollock et al., 2014;

Hui, 2017; Taylor-Rodriguez et al., 2017).

All these types of biological data describing the observed species’ dis-

tribution can be obtained in a variety of ways, such as museum collection,

designed field surveys, related activities (i.e. fisheries) or on-line resources.

11.2.2 Environmental data

With respect to the explanatory variables that could help to describe the

species behavior, a wide range of environmental variables have been usu-

ally incorporated in SDMs. These variables are commonly related to cli-

mate (e.g. temperature, precipitation), topography (e.g., elevation, aspect,

bathymetry, slope of the seabed), land cover type or seabed type in marine

ecosystems. Variables tend to describe primarily the abiotic environment,

although there is potential to include biotic interactions within the model-

ing.

These variables can be collected in situ, but they are usually derived

from remoted sensing data. CRU (New et al., 2002), WorldClim (Hijmans

et al., 2005), and MARSPEC (Sbrocco and Barber, 2013) are all examples

of spatially explicit datasets of climatic remote sensing conditions. These

datasets encompass climatic information based on interpolations from global

weather stations. However, interpolations are only as good as the underlying

data, and uneven geographical coverage leads to high model uncertainty,
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especially in developing countries where few weather stations are in place

(Daly, 2006; He et al., 2015). When uncertainty in spatial climate variables

is not accounted for, coefficient estimates tend to be biased, and this leads

to poor performances of the SDMs, as recently shown with simulations by

Stoklosa et al. (2015). This problem, also known as misalignment, is treated

in this review in section 11.4.3.

11.3 Inference

In what follows, after presenting the traditional methods that have been used

to perform inference in SDMs, we first discuss the hierarchical modeling as

one of the most flexible and encompassing approaches to deal with them.

The second subsection presents the Bayesian framework as a good option

for dealing with hierarchical models. The final subsection deals with the

INLA approach to approximating the marginal posterior distributions of

the parameters involved in the SDMs.

11.3.1 Gaussian Fields and hierarchical modeling

A number of alternative modeling algorithms have been applied to classify

species distribution as a function of a set of environmental variables. A

first group of methods developed to deal with presence-only datasets in-

cludes maximum entropy algorithm, environmental distance, similarity, and

envelope methods such as MAXENT (Phillips et al., 2006), Gower met-

ric, Mahalanobis distance, and ecological niche factor analysis, all of which

describe some measure of habitat suitability.

A second group involves machine-learning algorithms that are iterative

in nature, such as artificial neural networks. These ‘ensemble’ methods

(e.g. Boosting Regression Trees, Classification Trees and Random Forests)

generally involve developing multiple models on different subsets of the data,

the results of which are averaged (Franklin, 2010).
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A third group of methods relates to traditional regression and includes

generalized linear models (GLM) and their non-parametric extension, gen-

eralized additive models (GAM), both of which can handle several mea-

surement levels of the response variable by using a different link function

(e.g. logistic for presence/absence or log for counts). GAM and a related

method, multivariate adaptive regression splines (MARS), are more flexible

than GLM as they are fitted using smoothing and piecewise linear splines,

respectively, and are particularly useful for identifying the shape of species

responses (Leathwick et al., 2005). MARS is computationally faster than

GAM and the results are more easily converted to map predictions in a GIS;

however, the currently used algorithms require normally distributed error

terms. This makes MARS unsuitable for use with presence/absence data

unless the basis functions are extracted and used to parameterize a GLM

(Leathwick et al., 2005). Rodŕıguez de Rivera and López-Qúılez (2017)

present a comparison of these three groups of methodologies stating that

GAM models gave the best results.

However, most of the above mentioned methods are based on the as-

sumption that the observations are conditionally-independent. But this is

not always the case beacause data of species distribution usually present

residual spatial autocorrelation (Kneib et al., 2008). GAMs and MARS can

model spatial and temporal autocorrelation using smoothing splines. A very

powerful and flexible alternative is to incorporate this spatial relationship

by considering the species distribution data as point-referenced or geostatis-

tical data. Data of this type appear in those situations where the interest is

to analyze spatially continuous phenomena. The most basic format for data

of this kind is a pair composed by the spatial location coordinates defined

throughout a continuous study region and the measurement value observed

in the location. Geostatistical data require methods that make it possible

to relate the species data with potential related covariates by quantifying

the spatial dependence. However, one of the main interests in geostatistics

concerns predicting the underlying process on those non-observed locations

(Cressie and Wikle, 2011; Banerjee et al., 2014).

Geostatistical or point-referenced data can be seen as realizations of a

spatial process (random field) {y(s), s ∈ D} characterized by a spatial index

s which varies continuously in the fixed domain D. This process is called a
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Gaussian field (GF) if for any n ≥ 1 and for each set of locations (s1, . . . , sn),

the vector (y(s1), . . . , y(sn)) follows a multivariate Normal distribution with

mean µ = (µ(s1), . . . , µ(sn)) and with covariance matrix Σ defined by a co-

variance function C(·, ·), such that Σij = Cov(y(si), y(sj)) = C(y(si), y(sj)).

If the mean is constant in space, i.e. µ(si) = µ for each i, and the generic

spatial covariance matrix element depends only on the difference vector

(si−sj) ∈ R2, the spatial process is second-order stationary. In addition, if

the covariance function only depends on the Euclidean distance ‖si − sj‖,
the process is said to be isotropic.

In a hierarchical framework, the first step in defining a model for

a random field is to identify a probability distribution for the observa-

tions available at n spatial locations and represented by the vector y =

(y(s1), . . . , y(sn)) = (y1, . . . , yn) (the notation is simplified and the index i

is used for denoting the generic spatial points si). At the first level of the

hierarchy, we usually select a distribution from the exponential family, char-

acterized by a set of parameters. These parameters are linked with a linear

predictor which also includes a latent GF denoted by ξ(s) whose covariance

function Σ depends on two parameters: σ2 which represents the variance

(partial sill in kriging terminology) and the range φ of the spatial effect.

Computational costs required to estimate these parameters are high

when we deal with the spatial covariance function because the generated

matrices are dense. This problem is known as the “big n problem” (Baner-

jee et al., 2014; Jona Lasinio et al., 2012) and despite computational power

today, it is still a computational bottleneck in many situations. A compu-

tationally effective alternative is given by the stochastic partial differential

equation (SPDE) approach proposed by Lindgren et al. (2011) (see Section

11.3.3).

In addition to the spatial pattern, the temporal variation could be

equally important because the phenomenon can vary not only in space but

also in time (see Hefley and Hooten, 2016, for a comprehensive overview of

modeling species distribution with a spatio-temporal perspective). Then,

extending the spatial case to the spatio-temporal case including a time

dimension, the process indexed by space and time can be defined as
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{y(s, t), (s, t) ∈ D ⊂ R × R}, and is observed at n spatial locations and

at T time points.

The general structure for modeling the spatial distribution of species

is given by the following formulation and notation. If y = (y1, . . . , yn)

represents the observed values of the corresponding response variable Y

with mean µ = (µ1, . . . , µn), each µi can be easily linked to a structured

additive predictor ηi through a link function g(·), so that g(µ) = η. The

structured additive predictor η accounts for the effect of various covariates

in an additive way:

ηi = β0 +
M∑
m=1

βmxmi +
L∑
l=1

fl(zli) , (11.1)

where β0 corresponds to the intercept; the coefficients β = {β1, . . . , βM}
quantify the (linear) effect of some covariates x = (x1, . . . ,xM ) on the re-

sponse; and f = {f1(·), . . . , fL(·)} are unknown functions of the covariates

z = (z1, . . . ,zL), and can assume different forms such as smooth nonlinear

effects of covariates, time trends and seasonal effects, random intercept and

slopes as well as temporal or spatial random effects. Note that this general

structure can also be seen as a Generalized Additive Mixed Model (GAMM).

Also to be noted is that here it is assumed that covariates are observed at

the same locations of the response variable. The situation where covari-

ates are observed in locations different from those of the response variable

(misalignment) will be discussed in Section 11.4.3.

In many statistical applications, in particular, in SDMs, the model in-

volves multiple parameters that can be regarded as related or connected in

some way by the structure of the problem, implying that a joint probability

model for these parameters should reflect their dependence (Gelman et al.,

2014). It is common to model such a problem hierarchically, with observ-

able outcomes modeled conditionally on certain parameters, which in turn

are given a probabilistic specification in terms of further parameters, adding

various levels of the modeling and thus defining a hierarchical model (HM).

Note that Hierarchical models provide a generalization of all the models

presented here; and moreover that they are able to deal with all the types

of the data that we can be found when dealing with SDMs. Table 11.1
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Table 11.1: Matching of models presented and data types. LM: linear
models. LMM: linear mixed models. GLM: Generalized linear models.
GLMM: Generalized linear mixed models. AM: additive models. AMM:
additive mixed models. GAM: Generalized additive models. GAMM:
Generalized additive mixed models. HM: Hierarchical models. By con-
struction, these models are nested: LM < GLM < GAM < GAMM <

HM.

Explanatory Response variable distribution

Variable(s) NORMAL OTHER DIST. EXP. FAMILY

LP LM GLM
R. effects LMM GLMM

Non-Lin. effects AM GAM
R. effects + Non-Lin. effects AMM GAMM

describes all the models mentioned in this subsection along with a diagram

emphasizing their nested nature.

Although other approaches can be used such as maximum likelihood

(MLE; Le Cam, 1990), restricted maximum likelihood (RMLE; Bartlett,

1937), quasi-maximum likelihood (QMLE; Cox and Reid, 2004), the method

of moments (Bowman and Shenton, 2006), the generalized method of mo-

ments (GMM; Hansen, 1982), M-estimators (Shapiro, 2000), the maximum

spacing estimation (MSE; Anatolyev and Kosenok, 2005), etc., here we will

focus on the Bayesian approach to making inference for hierarchical models

with a linear predictor of the form (11.1).

11.3.2 Bayesian approach

The use of the Bayesian framework as a way to make inference has increased

in the past 50 years and it has been applied in different areas, such as so-

cial sciences (Jackman, 2009), medicine and public health (Berry and Stangl,

1999), finance (Rachev et al., 2008), ecology (McCarthy, 2007), bioinformat-

ics (Mallick et al., 2009), health economics (Baio, 2012), physical sciences

(Andreon and Weaver, 2015) and econometrics (Gómez-Rubio et al., 2014).
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Bayesian reasoning is based on the assumption that parameters are random

variables, and prior knowledge has to be incorporated via the corresponding

prior distributions of the said parameters. Bayes’ theorem is the tool that

combines prior information with the likelihood yielding the posterior distri-

butions. To be noted is that the Bayesian approach is perfectly suited for

complex spatial models such as SDMs because it allows model parameters

to be random variables, resulting in a more realistic and accurate estimation

of uncertainty.

SDMs are a very good example of a hierarchical structure that can be ex-

pressed as a hierarchical Bayesian model (Wikle and Hooten, 2010; Hefley

and Hooten, 2016). They can be structured in three levels: the first one

refers to the data and is conditioned on the process and parameters in what-

ever aspects of the process are appropriate. The second level contains the

latent components, which can be spatial and/or dynamic and the stochas-

tic form can be univariate or multivariate. Finally, the third stage defines

the priors for the parameters on which the latent processes depend. The

parameters in this level are also known as hyperparameters.

The approach most commonly used to perform Bayesian inference for

spatial species distribution models is based on MCMC methods (Gelfand

et al., 2006); they are flexible computational tools which can be easily

adapted to any kind of inferential problem. The software most frequently

used to implement MCMC algorithms are WinBUGS (Lunn et al., 2000;

Brooks et al., 2011), OpenBUGS (Lunn et al., 2009) and JAGS (Plummer,

2016), which can also be run within other programs like R (through the

R2OpenBUGS, R2WinBUGS, BRugs and rjags packages), Stata and SAS. Alter-

natively other R packages are BayesX (Brezger et al., 2003), CARBayes (Lee,

2013), stocc (for binary data only), spatcounts (for count data only),

CARramps (for Gaussian data only), and spdep (for Gaussian data only).

Several hierarchical models including ecological processes (habitat suitabil-

ity, spatial dependence and anthropogenic disturbance) and observation pro-

cesses (species detectability) can also be performed using the hSDM package

of R developed by Vieilledent et al. (2014). Functions in this R package use

an adaptive Metropolis algorithm (Robert and Casella, 2011) in a Gibbs

sampler (Gelfand and Smith, 1990) to obtain the posterior distribution of

model parameters. The Gibbs sampler is written in C code and compiled
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to optimize computation efficiency. Thus, the hSDM package can be used

for very large data-sets while drastically reducing the computation time.

However, with hSDM it is not possible at present to model spatio-temporal

or proportion response variables.

Despite their generalized use, to be noted is that MCMC methods still

have many challenges to deal with (like the so-called “big n problem” men-

tioned above; see Banerjee et al. 2014; Jona Lasinio et al. 2012). Indeed,

they can be extremely slow and even computationally unfeasible especially

when the models are extremely complex (with many random effects or hier-

archical levels) or when big datasets are considered in the space-time setting.

As a result, other options have appeared to make inference in SDMs.

Taking advantage of the hierarchical structure of SDMs, Golding and Purse

(2016) propose the use of an empirical Bayesian approach. In particular,

they maximize the marginal posterior density of the model, which, in their

words, enables the incorporation of prior knowledge over hyperparameters

whilst being much less computationally intensive than fully Bayesian infer-

ence.

Here, we will focus on the integrated nested Laplace approximation

(INLA) methodology (Rue et al., 2009), as a computational effective al-

ternative to MCMC. Our choice is due to two considerations: the speed of

calculation, and the ease with which model comparison can be performed.

11.3.3 INLA and SPDE framework

The INLA methodology is now a well-established tool for Bayesian inference

in several research fields, including ecology, epidemiology, econometrics and

environmental science (Rue et al., 2017). It can be used through R with the

R-INLA package. For more details on INLA for spatial and spatio-temporal

models we refer the reader to Blangiardo et al. (2013) and Blangiardo and

Cameletti (2015), where practical examples and code guidelines are also

provided.

The reason why INLA can be used is that SDMs can be seen as latent

Gaussian models (Rue and Held, 2005), for which the class of models INLA
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is designed. After identifying the distribution for the observed data, we

can link its corresponding mean to the linear predictor as in Eq.(11.1). If

conditional independence is assumed, the distribution of the n observations

is given by the likelihood

p(y | θ,ψ) =

n∏
i=1

p(yi | θi,ψ) , (11.2)

where θ represents the set of latent (nonobservable) components of interest

θ = {β0,β,f}, also known as the latent field, and ψ = (ψ1, . . . , ψK) de-

notes the vector of K hyperparameters. As we can observe in Eq. (11.2),

each data point yi is connected to one element θi in the latent field. This

assumption can be relaxed, and each observation can be connected with a

linear combination of elements in θ (Martins et al., 2013). In addition, the

multiple likelihood case can also be taken into account.

In the context of latent Gaussian models, assumed is a multivariate

Normal prior distribution on θ with mean 0 and precision matrix Q(ψ),

i.e, θ ∼ N(0,Q−1(ψ)) with density function given by

p(θ | ψ) = (2π)−n/2|Q(ψ)|1/2 exp

(
−1

2
θ′Q(ψ)θ

)
, (11.3)

being | · | the matrix determinant and ′ the transpose operation. When the

precision matrix Q(ψ) is sparse a GF becomes a Gaussian Markov ran-

dom field (GMRF, Rue and Held, 2005). Interestingly, when making infer-

ence with GMRFs, linear algebra operations are performed using numerical

methods for sparse matrices, and this yields computational benefits.

In spite of the wide acceptance of INLA, its precision and its computa-

tional efficiency in many latent Gaussian models (see for instance, Martino

et al., 2011; Schrödle et al., 2011; Ruiz-Cárdenas et al., 2012, for a descrip-

tion of how to use INLA in spatio-temporal disease mapping, in state-space

models and in survival models, respectively), INLA cannot be directly ap-

plied when dealing with models that incorporate geostatistical data (that

is, continuously indexed Gaussian Fields). The underlying reason is that a

parametric covariance function needs to be specified and fitted based on the

data, which determines the covariance matrix Σ and enables prediction in
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unsampled locations. But from the computational perspective, the cost of

factorizing the dense covariance matrix Σ is cubic in its dimension. Despite

current computational power, in many situations it is still challenging to

factorize it for computing the inverse and the determinant.

Lindgren et al. (2011) proposed an alternative approach by using an

approximate stochastic weak solution to a Stochastic Partial Differential

Equation (SPDE) as a GMRF approximation to a continuous Gaussian

Field (GF) with Matérn covariance structure. Specifically, they used the

fact that a Gaussian Field ξ(s) with Matérn covariance is a solution to the

linear fractional SPDE

(κ2 −∆)α/2(τξ(s)) =W(s), s ∈ Rd, α = ν + δ/2, κ > 0, ν > 0, (11.4)

where ∆ is the Laplacian, α controls the smoothness, κ is the scale param-

eter, τ controls the variance, and W(s) is a Gaussian spatial white noise

process. The exact and stationary solution to this SPDE is the stationary

GF ξ(s) with Matérn covariance function given by:

Cov(ξ(si), ξ(sj)) = C(ξi, ξj) (11.5)

=
σ2

2ν−1Γ(ν)
(κ||si − sj ||)νKν(κ||si − sj ||),

being ||si − sj || the Euclidean distance between two locations si, sj ∈ Rd,
and σ2 the marginal variance. Moreover, Kν is the modified Bessel func-

tion of the second kind and order ν > 0, which measures the degree of

smoothness of the process. This parameter is usually kept fixed due to its

poor identifiability. Conversely, κ > 0 is a scaling parameter related to

the distance at which the spatial correlation becomes almost null, i.e., the

range (for more information on the Matérn covariance model see Handcock

and Stein, 1993; Stein, 1999). Typically, as pointed out in Lindgren et al.

(2011), the empirically derived definition for the range is r =
√

8ν
κ , with r

corresponding to the distance at which the spatial correlation is close to 0.1,

for each ν ≥ 1
2 .

The link between equations (11.4) and (11.6) is given by the expressions

ν = α − δ
2 , and σ2 = Γ(ν)

Γ(α)(4π)δ/2κ2ντ2
. In the particular case where the
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dimension is 2, i.e., δ = 2, it follows that ν = α− 1 and σ2 = Γ(ν)
Γ(α)(4π)κ2ντ2

.

Finally, in R-INLA, the Gaussian field ξ(s) is found numerically as a weak

solution to the SPDE in (11.4), and by default the smoothness parameter

α is fixed to 2, corresponding with ν = 1. With this assumption, the range

is given by φ ≈ r =
√

8/κ, while the variance is given by σ2 = 1/(4πκ2τ2).

Bayesian geostatistical analysis using R-INLA has already been applied

in various contexts. Along with introducing the geostatsinla package for

performing geostatistics with INLA in an easy way, Brown (2015) applies

it in the context of mapping the Loa loa filiarasis disease (a dataset pre-

viously cited in Diggle and Ribeiro, 2007). Moreover, Karagiannis-Voules

et al. (2013) have used Bayesian geostatistical negative binomial models to

analyze reported incidence data of cutaneous and visceral leishmaniasis in

Brazil covering a 10-year period, while González-Warleta et al. (2013) have

used Bayesian geostatistical binomial models to predict the probability of

infection of paramphistomosis in Galicia (NW Spain). In the context of

fisheries, Bayesian geostatistical analysis using R-INLA has also been used

to predict the presence/absence, the abundance, or the proportion of fish

species (Muñoz et al., 2013; Pennino et al., 2013, 2014, 2016a,b; Paradinas

et al., 2015, 2016; Cosandey-Godin et al., 2015; Quiroz et al., 2015; Roos

et al., 2015; Rufener et al., 2017).

11.4 Extending statistical modeling of species dis-

tribution

There are a number of additional potential sources of bias and error that

should be carefully considered when analyzing and modeling species distri-

bution data. Errors may arise through the incorrect identification of species,

or inaccurate spatial referencing of samples. Biases can also be introduced

because collectors tend to sample in easily accessible locations. Here we

discuss some of these issues.
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11.4.1 Temporal autocorrelation

As mentioned above, in addition to the spatial pattern, the temporal varia-

tion could be equally important because the phenomenon may vary not only

in space but also in time. This happens in problems such as the evolution of

epidemics (Stein et al., 1994; Hefley et al., 2017b), the spatio-temporal evo-

lution of temperature (Hengl et al., 2012) or the understanding of the spatial

dynamism of species over time (Wikle, 2003; Hooten et al., 2007; Hooten

and Wikle, 2008; Paradinas et al., 2015, 2017a; Williams et al., 2017).

As pointed out by Cressie and Wikle (2011), temporal correlation de-

pends on the same principle as spatial correlation: temporally close observa-

tions tend to be more related than temporally distant ones. Consequently,

model fitting and predictions improve when a temporal term is added. How-

ever, temporal and spatial scales are different and the spatio-temporal anal-

ysis is more complicated than the simple addition of an extra dimension to

the continuous spatial domain.

In the context of species distribution modeling, most studies (surveys,

plant coverage surveys, air pollution surveys, etc.) have been repeated pe-

riodically for long periods of time (Gitzen, 2012; Aizpurua et al., 2015).

Although the main interest is the spatial evolution of the system under

study, it must be considered that it varies not only in space but also in

time. Here we focus on this most common situation of discrete and regular

time observations. For situations in which data are collected in irregular

time-lags - that is, when the issue is handling continuous-time data - a good

option is to consider 1D SPDE models with a second order B-Spline basis

representation (Lindgren and Rue, 2008, 2015).

The spatio-temporal behavior of the data can vary depending on the

nature of the process under study and the available sampling resolution. In

particular, the basic model in (11.1) can be rewritten by splitting the f term

into two terms, one indicating different possible spatio-temporal structures,

and the other indicating any other latent model or non-linear effect. If yit
represents the response variable analyzed at location si (i = 1, . . . , n) at

time t (t = 1, . . . , T ), then the mean of the response variable µit is linked to
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the linear predictor with a link function g(·), as

ηit = g(µit) = β0 +
M∑
m=1

βmxmit +
K∑
k=1

fk(zkit) + uit , (11.6)

where β0 corresponds to the intercept; the coefficients β = {β1, . . . , βM}
quantify the linear effect of some covariates on the response; uit represents

the spatio-temporal structure of the model; zkit is the value of the k-th

explanatory variable at a given location si and time t; and f represents any

latent model applied to the covariates.

Among other structures, and following Paradinas et al. (2017a), we com-

ment here on four basic structures for uit, each one allowing for different

degrees of flexibility in the temporal domain of the spatio-temporal model.

Paradinas et al. (2017a) provide a figure that schematically illustrates all

these structures:

• Opportunistic spatial distribution: this flexible structure con-

sists in expressing uit as different spatial realizations wt =

{w1t, . . . , wit, . . . , wnt} of the same spatial field for each time unit t,

while sharing a common covariance function (same κ and τ) to avoid

overfitting:

uit = wit ,

wt ∼ N(0,Q−1(κ, τ)) .
(11.7)

This structure is a good approximation for processes where the spa-

tial distribution varies considerably among different time units and

unrelatedly among neighboring times. This structure has been used

in Cosandey-Godin et al. (2015) and in Paradinas et al. (2015).

• Persistent spatial distribution with random intensity changes

over time: when the pattern of spatial variation persists over time,

but with possibly varying scales of intensity, a time structure is intro-

duced into the model using a zero mean Gaussian random noise effect

vt. In this case, uit is decomposed in a common spatial realization

wit along with an independent random noise effect vt that absorbs the
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different mean intensities at each time t:

uit = wit + vt ,

wt ∼ N(0,Q−1(κ, τ)) , (11.8)

vt ∼ N(0, τ−1
v ) .

For processes where the spatial component persists in time, this struc-

ture may be the most suitable. It has been used by Pennino et al.

(2014) and in Paradinas et al. (2015).

• Persistent spatial distribution with temporal intensity trend:

the process could show a temporal progression in its mean. To model

that, a temporal trend effect h(t) can be added to the linear predic-

tor. In this case, uit is decomposed into a common spatial realization

wi and an independent temporal structured trend h(t) to absorb the

temporal progression of the process:

uit = wi + h(t) ,

w ∼ N(0,Q−1(κ, τ)) .
(11.9)

This structure is highly recommended in situations where a temporal

tendency is present. It was proposed by Paradinas et al. (2016) to

identify intra-annual trends in fishery discards.

• Progressive spatio-temporal distribution: this structure incor-

porates both spatial and temporal correlation of the data to accom-

modate those cases where the spatial realizations change in a related

manner over time. Here, uit is decomposed into a common spatial

realization wit and an autoregressive temporal term rit expressing the

correlation among temporal neighbors of order K:

uit = wit + rit ,

wt ∼ N(0,Q−1(κ, τ)) , (11.10)

rit ∼ N

(
K∑
k=1

ρkri(t−k), τ
−1
r

)
.



“Thesis˙Joaquin” — 2019/6/10 — 8:51 — page 247 — #281i
i

i
i

i
i

i
i

11. Species distribution modeling: a statistical review with focus in
spatio-temporal issues 247

This structure is preferred when the spatial realization varies between

different times but not as much as in (11.7). Indeed, the structure

has been used by Cameletti et al. (2011, 2013) and also by Cosandey-

Godin et al. (2015).

Note that this list is only an overview of the different spatio-temporal

structures which allow us to discern the nature of the general spatial be-

havior of the process over time. Unfortunately, the temporal resolution of

spatio-temporal datasets is typically too low to fit most of the highly struc-

tured models.

11.4.2 Preferential sampling

In studies on species distributions, collecting data on the species of inter-

est is not a trivial problem. With the exception of a few studies, species

distribution models rely on opportunistic data collection due to the high

cost and time-consuming nature of collecting data in the field, especially

on a large spatial scale. As an example, studies on bird monitoring data

are often collected by volunteers who concentrate the sampling process on

areas where they expect to find species of interest. These types of oppor-

tunistically collected data tend to suffer from a specific complication: the

sampling process that determines the data locations and the species obser-

vations are not independent (Diggle et al., 2010). Statistical models used

for species distribution usually assume, if only implicitly, that sampling is

non-preferential and that the selection of the sampling locations does not

depend on the values of the spatial variable. However, opportunistic data

are a clear example of preferential sampling, that occurs because sampling

locations are deliberately chosen in areas where the values of the species

of interest are thought likely to be particularly high or low (Diggle et al.,

2010).

Hence, applying standard geostatistical methods to preferentially sam-

pled data potentially yields biased results if the choice of monitoring loca-

tions is not accounted for in the modeling process. A possible approach to

correct this issue is to interpret the data as a marked point pattern (Fortin

and Dale, 2005; Diggle, 2013) where the sampling locations form a point
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pattern and the observations taken in those locations are the marks. By

assuming that the intensity of the point process depends on the amount of

species of interest, the marks and the pattern become not independent.

A preferential sampling model can be considered as a two-part model

that share information. Firstly, it is supposed that the observed locations

(s1, . . . , sn) come from a non-homogeneous Poisson process with intensity

Λi = exp {α1 + wi}, i.e., a log-Gaussian Cox process (LGCP; Fortin and

Dale, 2005; Diggle, 2013) is assumed, being α1 the intercept of the LGCP

and wi the spatial effect of the model and i = 1, . . . , n the index corre-

sponding to the si location. Secondly, the species characteristic (usually

the abundance) yi is assumed to follow an exponential family distribution

(such as a Normal or a Gamma distribution when dealing with abundances,

although other options such as exponential, lognormal, etc., could clearly be

possible), whose mean is related with the spatial term using a link function

g(·), g(µi) = α2+βwi, being α2 the intercept of the model and wi the spatial

term shared with the LGCP, but scaled by β to allow for the differences in

scale between the abundances and the LGCP. More formally, the model can

be expressed as follows:

yi ∼ F(µi, γ
2)

g(µi) = α2 + βwi (11.11)

w ∼ N(0,Q−1(κ, τ))

where w = {w1, . . . , wn}, the precision matrix Q(κ, τ) is computed inter-

nally by the SPDE approach and represents the GMRF approximation to

the continuous GF (see Illian et al., 2012; Krainski et al., 2017; Pennino

et al., 2017, for details about how to implement these models within INLA),

and F (µ, γ) represents a distribution coming from the Exponential family

with mean µ and variance γ2.

11.4.3 Spatial misalignment

A crucial issue in studying the effect of environmental physical factors on

species distribution concerns spatial misalignment (Clark and Gelfand, 2006;

Gelfand et al., 2010) (Foster et al., 2012; Miller, 2012).
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This occurs when the response biological variable (e.g. presence/absence

of the species) is observed in locations which are different from the spatial

points where covariate data are available. Additionally, it can happen that

covariates have a different spatial scale if they are defined at the area or cell

grid level (as in the case of remote sensing data).

The näıve solution for spatial misalignment is a two-stage approach: the

first step consists in the prediction of the covariate in the spatial locations

where the response variable is observed (through a geostatistical model by

means of kriging or inverse-distance weighting) or in the downscaling of

the gridded covariate to the point-level resolution (usually considered is the

value of the cell where the spatial point is located). Then, at the second

stage, these predicted values are plugged into the linear predictor (11.1) as

known constants. The problem with this approach is that it does not take

account of the uncertainty related to the covariate spatial estimation of the

first stage, with the consequence of erroneous inference of the statistical

model and a potential biased estimate of the environmental variable effect

on the response variable (Foster et al., 2012).

A solution to incorporate the spatial prediction uncertainty in SDMs con-

sists in implementing one of the so-called errors-in-variables models (Carroll

et al., 2016) which can be estimated in a frequentist (by means of the EM-

algorithm) or Bayesian framework (with MCMC or INLA). If we assume

for example that the predicted covariate is a noisy version of the true one,

a classic measurement error model can be adopted (Stoklosa et al., 2015).

Otherwise, a Berkson-error model can be considered if the predicted covari-

ate is a smoothed (i.e. less variable) version of the true variable (Foster

et al., 2012). As reported in Stoklosa et al. (2015) “Which of these two

types of error models to consider will depend on what the analyst believes

to be the ‘true underlying explanatory variable’, and how the data were col-

lected/measured. The analyst must take into account: how and whether the

species responds to a particular climate observation (Berkson); or that it

might respond to an average, such that relatively minor deviations from this

are immaterial (classical)”.

Another alternative to the two-stage approach is the joint modeling strat-

egy implemented in Barber et al. (2016) to evaluate the presence of the
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Fasciola hepatica in Galicia (Spain) using the annual mean temperature as

covariate. In this case a spatial geostatistical model is specified for the co-

variate and is estimated jointly with the species distribution models in a

Bayesian context. The joint model is specified as follows

yi ∼ Bernoulli(πi)

logit(πi) = β0 + β1φi + wi

w ∼ N(0,Q−1(κ, τ)) (11.12)

xi
iid∼ N(φi, σ

2
x)

φ ∼ N(0,Q−1(γ, δ))

where πi is the probability of occurrence at site si, xi is the covariate of

interest whose spatial distribution is specified through its mean (a realiza-

tion of the Matérn Gaussian process φ depending on the parameters γ and

δ), and through its variance σ2
x, which is introduced to express any pos-

sible measurement error. The model also includes another spatial process

for the response represented by w. This kind of model pertains to the la-

tent Gaussian model family and can be estimated using the SPDE-INLA

approach (see Blangiardo and Cameletti, 2015, Chap. 8 and Muff et al.,

2015). The advantage is that this joint model allows to properly propagate

all the uncertainty related to the covariate prediction; on the other it can

be extremely computationally expensive especially when there is more than

one explanatory variable.

Finally, another alternative is the one proposed by Gómez-Rubio and

Rue (2017) that, using a more general approach, deals with missing values

in the covariates, based on fitting conditional latent Gaussian models where

covariates are imputed using a Metropolis-Hastings algorithm.

11.4.4 Non-stationarity

The Matérn spatial covariance function C(·, ·) specified by Eq. (11.6) enjoys

the second-order stationarity and isotropy property, i.e. it depends only on

the distance between the spatial locations and not on the direction or the

coordinates. In some situations, this stationarity assumption, which is very
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convenient to simplify the inferential procedures, may not be suitable. For

example, for some applications it is not realistic to assume that the spatial

dependence structure is the same throughout the domain considered, espe-

cially when geographical elements or physical barriers (river, lakes, islands,

etc.) exist. In such situations characterized by spatial heterogeneity and

barriers, it may be more reasonable to adopt a non-stationary Gaussian field

(see Gelfand et al. 2010, Chapter 9 and Risser 2016 for a review).

In ecological applications, heterogeneity in space (i.e. non-stationarity)

occurs when a latent global process is also affected by some underlying local

processes (Miller, 2012). A local modeling technique to include this hetero-

geneity in SDMs is given by the geographically weighted regression (GWR)

characterized by covariate coefficients which vary spatially and are specific

for each spatial location; a spatial kernel function is used to define spatial

neighborhoods (see e.g. Brunsdon et al. 1998; Windle et al. 2010; Holloway

and Miller 2015; Liu et al. 2017). Some authors do not completely agree

with the use of these models due to the large degree of multicollinearity

that their coefficients tend to exhibit, as well as strong positive spatial au-

tocorrelation. As an alternative, spatial filtering provides a methodology

for dealing better with multicollinearity, while accounting for spatial au-

tocorrelation (see e.g. Griffith 2008). The Bayesian counterpart of GWR

models, which are usually estimated by weighted least squares, is given by

spatially-varying coefficients models (Gelfand et al., 2003; Finley, 2011).

In the SPDE framework non-stationarity is achieved by allowing the

Matérn covariance function parameters to vary smoothly over space ac-

cording to a log-linear function: thus, we will have σ2(s) for the marginal

variance in (11.6) and r(s) for the spatial range (Ingebrigtsen et al., 2014;

Lindgren and Rue, 2015). Bakka et al. (2016) extend this approach to solve

specifically the barrier problem for SDMs. In particular, they force the

spatial correlation to go around the barriers (and not through them) by

means of a partition of the considered spatial field - in a normal and in a

barrier area - and in the specification of two corresponding non-stationary

processes with different range parameters (in particular for the barrier re-

gion the range parameter is almost zero). The application considered in

Bakka et al. (2016) regards fish larvae data in the Finnish archipelago.
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11.4.5 Imperfect detection

Studies on species abundance and distribution are often imperfect due to

observer error (Nichols et al., 2000), species rarity (Dettmers et al., 1999) or

because detection varies with confounding variables such as environmental

conditions (Gu and Swihart, 2004; Pennino et al., 2016b). When detection is

imperfect, additional steps are usually needed to improve inference. Indeed,

failure to do so could result in biased estimation and erroneous conclusions.

In recent years, new models called site-occupancy (Hoeting et al., 2000;

MacKenzie et al., 2002) for presence-absence data and N-mixture models

(Royle, 2004) for abundance data have been developed to solve this prob-

lem. These models combine two processes: an ecological process to describe

habitat suitability and an observation process to take imperfect detection

into account. To estimate detectability, these models use information from

repeated observations at several sites. Detectability may vary with site

characteristics such as habitat variables, or survey characteristics such as

weather conditions, since suitability relates only to site characteristics. Var-

ious studies showing the advantages of site occupancy and N-mixture mod-

els over classical models that do not consider the problem of detectabil-

ity can be found in the literature: Royle (2004); Dorazio et al. (2006) for

birds, MacKenzie et al. (2002) for amphibians or Pennino et al. (2016b)

for cetaceans. In addition to the detectability problem, a variety of meth-

ods have been developed to correct for the effects of spatial autocorrelation

(Latimer et al., 2006; Johnson et al., 2013; Hefley et al., 2017a).

A Bayesian version for site-occupancy spatial models and N-mixture

spatial models could also be implemented to take simultaneously account of

both imperfect detection and spatial autocorrelation. To describe Bayesian

site-occupancy spatial models, let zi be a random variable describing habitat

suitability at site si. It can take the value 1 or 0 depending on the habitat

suitability, i.e. zi = 1 or zi = 0, thus a Bernoulli distribution is assumed

with parameter πi. Several visits at time t = 1, . . . , T can happen at site

i. Let yit be a random variable representing the presence of the species at

site i and time t. The species is observed at site i (
∑

t yit ≥ 1) only if the

habitat is suitable (zi = 1). The species is unobserved at site i (
∑

t yit = 0)

if the habitat is not suitable (zi = 0), or if the habitat is suitable (zi = 1)
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but the probability αit of detecting the species at site si and time t is lower

than 1. Then, yit follows a Bernoulli distribution of parameter ziαit, and

the model is expressed as follows

Ecological process:

zi ∼ Bernoulli(πi) ,

logit(πi) = β0 +

M1∑
m=1

βmx
(1)
mi + wi ,

(11.13)

Detection process:

yit ∼ Bernoulli(zi αit) ,

logit(αit) = γ0 +

M2∑
m=1

γmx
(2)
mit ,

(11.14)

where {β0, . . . , βM1} and {γ0, . . . , γM2} are the parameters that quantify the

linear effects of some covariates (x
(1)
1 , . . . ,x

(1)
M1

) and (x
(2)
1 , . . . ,x

(2)
M2

) in the

ecological and observation process respectively. These covariates are usually

variables refereed to site characteristics such as habitat variables or survey

characteristics such as weather conditions. w = (w1, . . . , wn) represents the

spatial effect in the ecological process. Normally, this spatial effect is a

Gaussian process that can be incorporated as geostatistical terms (in the

way already introduced in Section 11.3), but other options are possible (such

as CAR Normal distributions, as in Pennino et al. (2016b)). The R-package

hSDM, which make inference using MCMC, can be used easily to fit some of

these models. In addition, the inlabru package also handle the problem of

detectability (Yuan et al., 2016).

With respect to N-mixture models, which are used for count data with

imperfect detection, they implement a Poisson distribution for the ecological

process, while using a Binomial distribution for the observability process

(Royle and Nichols, 2003; Dodd Jr and Dorazio, 2004; Royle, 2004). The

structure of the model is similar to the site-occupancy model, in particular:
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Ecological process:

Ni ∼ Poisson(λi) ,

log(λi) = β0 +

M1∑
m=1

βmx
(1)
mi + wi ,

(11.15)

Detection process:

yit ∼ Bernoulli(Ni αit) ,

logit(αit) = γ0 +

M2∑
m=1

γmx
(2)
mit .

(11.16)

The R-package hSDM allow us to fit some of these models. In addition, the

INLA group is developing some methods to fit N-mixture models (Meehan

et al., 2017).

11.4.6 Excess of zeros

The study of datasets with zero excess has an important role in the liter-

ature, particularly, in species distribution modeling (Agarwal et al., 2002;

Ver Hoef and Jansen, 2007; Neelon et al., 2013), becoming highly relevant

in recent years especially. Bayesian softwares like INLA already contain

different functions to handle situations with zero excess. Generally, these

situations are a source of overdispersion caused by a disagreement between

the data and the distribution assumed: there are more zeros in the dataset

than the proposed distribution could reasonably explain.

Zero-inflated models are a widely known tool for dealing with this prob-

lem. These models assume that the data follow a finite mixture of a degen-

erate distribution with all its mass at zero with a discrete distribution with

support in Z+∪{0} (Yau et al., 2003). If 1−πi represents the probability of

species presence, πi the probability of the species absence, i.e., p(yi|πi) = πi
and p(yi > 0) = 1 − πi, and h a probability mass function (pmf) of some

parametric discrete distribution with support on Z+ ∪ {0}, the distribution
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of yi has the following mixture density:

p(yi|πi, µi,ψ1) = πiδ0 + (1− πi)h(yi|µi,ψ1) , (11.17)

being δ0 the Dirac delta function, µi and ψ1 hyperparameters depending

on h, and h is a pmf coming from a Poisson, binomial or negative-binomial

(note that this latter distribution is one of those considered to account for

overdispersion). The model is completed when linking πi and µi with the

linear predictors by means of:

logit(πi) = η
(1)
i = α(1) +

M(1)∑
m=1

β(1)
m x

(1)
mi +

L(1)∑
l=1

f
(1)
l (z

(1)
li ) ,

g(µi) = η
(2)
i = α(2) +

M(2)∑
m=1

β(2)
m x

(2)
mi +

L(2)∑
l=1

f
(2)
l (z

(2)
li ) ,

(11.18)

where logit denotes the link function between the linear predictor η
(1)
i and

the probability of absence πi, and g(·) is an appropriate link for the mean

of h.

An alternative to these models is given by hurdle models (Mullahy, 1986;

Cameron and Trivedi, 1998), where data are assumed to follow a finite

mixture of a degenerate distribution with all its mass at zero and a zero

truncated discrete distribution. That is, unlike the zero inflated models, in

hurdle models, all observed zeros come from the zero-degenerate distribu-

tion. Following the same notation of Eq. (11.17), a hurdle model can be

expressed as follows:

p(yi|πi, µi,ψ1) = πiδ0 + (1− πi)h(yi|µi,ψ1)I[yi>0] . (11.19)

As in (11.18), the hurdle model is completed when linking πi and µi with

their corresponding linear predictors.

However, the response variable is not always a discrete variable. Semi-

continuous processes like rain, plant coverage, chemical concentrations, etc.,

are measured in the [0,∞) interval having high proportions of zero values,

and there are neither an appropriate probability distribution nor a trans-

formation available to fit them adequately. To model processes of this type,
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an extension of hurdle models for continuous data is required (Aitchison,

1955; Quiroz et al., 2015). Again, data are modeled as two independent

sub-processes: one determines whether the response is zero, and the other

determines the intensity when the response is non-zero using a continuous

well known distribution like the log-Normal or the Gamma (Stefánsson,

1996; Brynjarsdóttir and Stefánsson, 2004; Paradinas et al., 2017b). In this

case, hurdle models are defined as a finite mixture of a degenerate distri-

bution with point mass at zero and a distribution with support on R+. If

h is a pdf of some parametric continuous distribution with support on R+

(e.g. Gamma, log-Normal or log-logistic), the hurdle model for yi (now

assumed to be a continuous distribution) has the same mixture density as

in (11.19). Although there exist an extensive list of zero-inflated or hurdle

models dealing with correlated discrete data in many fields (Agarwal et al.,

2002; Ver Hoef and Jansen, 2007), this approach has not been widely used

with continuous responses.

It is worth noting that all the models commented upon in this section are

a mixture of two processes, and in almost all cases, they are modeled inde-

pendently (Neelon et al., 2013; Balderama et al., 2016). However, generally

both sub-processes are related: low intensities are linked to low probabilities

of presence and vice versa. Shared component modeling (SCM) is a good

tool to deal with it by combining information both from the two subpro-

cesses (Paradinas et al., 2017b).

11.5 Discussion

This paper has reviewed some of the statistical challenges that can arise

when the distribution of the species is modeled using geostatistical or point-

referenced data. In particular, after describing in detail data and methods

commonly used to model species distribution, we have focused on com-

plex issues and we have discussed how they can be solved using Bayesian

hierarchical spatio-temporal models. Specifically, in this review we have fo-

cused on the Bayesian approach and the INLA methodology (Rue et al.,

2009) because they have several benefits with respect to the classic geosta-

tistical methods. INLA makes it possible to perform complex models with
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a minimum computational effort while obtaining accurate estimates. Its

importance in the context of SDMs can be even more appreciated with the

appearance of the recent project inlabru which has been created to develop

and implement innovative methods to model spatial distribution and change

from ecological survey data (https://sites.google.com/inlabru3.org/

inlabru). In addition, classic geostatistical methods typically overestimate

their predictive accuracy by using plug-in estimations of parameters in their

predictive equations. (Diggle and Ribeiro, 2007). On the contrary, inference

about uncertainty, based on the observations and models, is a byproduct of

the model predictions when the Bayesian framework is employed.

However, some limitations can arise when the INLA approach is used.

For example, INLA can not handle missing values in spatially structured

covariates. This issue can be framed in the misalignment problem discussed

in Section 11.4.3; this means that it could be overcome by applying a two-

stage or joint modeling approach that allows prediction of the covariate

values in the locations where they were not measured. As mentioned above,

an alternative is the one proposed by Gómez-Rubio and Rue (2017) that,

using a more general approach, deals with missing values in the covariates,

based on fitting conditional latent Gaussian models where covariates are

imputed using a Metropolis-Hastings algorithm.

We would like to remark that, due to space limitations, we have not

fully reviewed the several complications that can derive from the sampling

process. Indeed, we have only focused on the preferential sampling problem

(Diggle et al., 2010), which, as previously mentioned, refers to the possibility

that the sample design is stochastically dependent on the studied process.

Nevertheless, other types of sampling procedures could produce different

issues that should be taken into account in the statistical analysis. For

example, one of the most popular methods used in ecology to estimate

an animal population’s size is the capture-recapture method that involves

capturing, marking and releasing an initial sample of individuals (Otis et al.,

1978; McInerny and Purves, 2011). Subsequently, a second sample of animal

individuals is obtained independently and it is noted how many of them in

that sample were marked. To model data of this type, a feasible solution

could be the implementation of Bayesian hierarchical N-mixture models

https://sites.google.com/inlabru3.org/inlabru
https://sites.google.com/inlabru3.org/inlabru


“Thesis˙Joaquin” — 2019/6/10 — 8:51 — page 258 — #292i
i

i
i

i
i

i
i

258 REFERENCES

described in Section 11.4.5, which are currently being developed in INLA

(Meehan et al., 2017).

Finally, an important point to consider is that INLA is not the only

computational approach to making inference for Bayesian spatio-temporal

models. In recent years, other approaches that also make it possible to

achieve accurate species distribution models results, such as stan (Stan

Development Team, 2015; Monnahan et al., 2017), have been widely used.
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Dorazio, R. M., Royle, J. A., Söderström, B., and Glimskär, A. (2006). Esti-

mating species richness and accumulation by modeling species occurrence

and detectability. Ecology, 87(4):842–854.

Elith, J. and Leathwick, J. R. (2009). Species distribution models: Ecolog-

ical explanation and prediction across space and time. Annual Review of

Ecology, Evolution, and Systematics, 40:677–697.

Fatima, S. H., Atif, S., Rasheed, S. B., Zaidi, F., and Hussain, E. (2016).

Species distribution modelling of Aedes aegypti in two dengue-endemic

regions of Pakistan. Tropical Medicine & International Health.

Ferrari, S. L. P. and Cribari-Neto, F. (2004). Beta regression for modelling

rates and proportions. Journal of Applied Statistics, 31(7):799 – 815.

Finley, A. O. (2011). Comparing spatially-varying coefficients models for

analysis of ecological data with non-stationary and anisotropic residual

dependence. Methods in Ecology and Evolution, 2(2):143–154.

Fitzpatrick, M. C., Weltzin, J. F., Sanders, N. J., and Dunn, R. R. (2007).

The biogeography of prediction error: why does the introduced range of

the fire ant over-predict its native range? Global Ecology and Biogeogra-

phy, 16(1):24–33.

Fortin, M.-J. and Dale, M. R. (2005). Spatial Analysis: A Guide for Ecolo-

gists. Cambridge University Press.

Foster, S. D., Shimadzu, H., and Darnell, R. (2012). Uncertainty in spatially

predicted covariates: is it ignorable? Journal of the Royal Statistical

Society: Series C (Applied Statistics), 61(4):637–652.



“Thesis˙Joaquin” — 2019/6/10 — 8:51 — page 263 — #297i
i

i
i

i
i

i
i

11. Species distribution modeling: a statistical review with focus in
spatio-temporal issues 263

Franklin, J. (2010). Mapping Species Distributions: Spatial Inference and

Prediction. Cambridge University Press.

Gaudard, M., Karson, M., Linder, E., and Sinha, D. (1999). Bayesian spatial

prediction. Environmental and Ecological Statistics, 6(2):147–171.

Gelfand, A. E., Diggle, P. J., Fuentes, M., and Guttorp, P. (2010). Handbook

of Spatial Statistics. Chapman & Hall.

Gelfand, A. E., Kim, H.-J., Sirmans, C. F., and Banerjee, S. (2003). Spa-

tial modeling with spatially varying coefficient processes. Journal of the

American Statistical Association, 98(462):387–396.

Gelfand, A. E., Silander, J. A., Wu, S., Latimer, A., Lewis, P. O., Rebelo,

A. G., Holder, M., et al. (2006). Explaining species distribution patterns

through hierarchical modeling. Bayesian Analysis, 1(1):41–92.

Gelfand, A. E. and Smith, A. F. (1990). Sampling-based approaches to

calculating marginal densities. Journal of the American Statistical Asso-

ciation, 85(410):398–409.

Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B. (2014). Bayesian

Data Analysis, volume 2. Chapman & Hall/CRC Boca Raton, FL, USA.

Gitzen, R. A. (2012). Design and Analysis of Long-term Ecological Moni-

toring Studies. Cambridge University Press.

Goetz, S. J., Sun, M., Zolkos, S., Hansen, A., and Dubayah, R. (2014). The

relative importance of climate and vegetation properties on patterns of

North American breeding bird species richness. Environmental Research

Letters, 9(3):034013.

Golding, N. and Purse, B. V. (2016). Fast and flexible bayesian species

distribution modelling using gaussian processes. Methods in Ecology and

Evolution, 7(5):598–608.
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Chapter 12

Modeling Dirichlet

likelihoods using the

integrated nested Laplace

approximation (INLA)

In this chapter, we present the actual version of our paper “Modeling

Dirichlet likelihoods using the integrated nested Laplace approximation

(INLA)” by Joaqúın Mart́ınez-Minaya (University of Valencia), Finn Lind-

gren (University of Edinburgh), Antonio López-Qúılez (University of Valen-

cia), Daniel Simpson (University of Toronto) and David Conesa (University

of Valencia). In order to keep the same structure of the chapters with pub-

lished papers, this chapter ends with the references used in this work.

Abstract

Dirichlet regression models can be used to analyze a set of variables lying in a

bounded interval that sum up to one exhibiting skewness and heteroscedas-

ticity, without having to transform the data. These data which mainly con-

sist of proportions or percentages of disjoint categories are widely known

as compositional data and are common in areas such as ecology, geology,

and psychology. Bayesian inference has become a popular tool to deal with

complex models, but numerical approaches for this are needed. Markov

chain Monte Carlo (MCMC) methods have seen widespread use, however,

277
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the integrated nested Laplace approximation (INLA) is an alternative to

MCMC, that for a large class of models provides higher accuracy for a lim-

ited computational budget. However, the implemented R-INLA package can

not deal with multivariate likelihoods, such as, in particular, the Dirichlet

likelihood. In this work, we propose an expansion of the INLA method for

Dirichlet regression, giving a theoretical foundation and describing the im-

plementation as well as the application of Dirichlet regression. This method

is being implemented in the package dirinla in the R-language.

Keywords

Hierarchical Bayesian models, INLA, Dirichlet regression, multivariate like-

lihood

12.1 Introduction

Compositional data (Aitchison and Egozcue, 2005), consisting of propor-

tions or percentages of disjoint categories adding to one, play an important

role in many fields such as ecology, geology, etc. Due to the complexity in

some cases, some form of statistical analysis is essential for the adequate

investigation and interpretation of the data.

In the literature, different approaches have been presented to deal with

them, but the first clear and unified approximation was presented by Aitchi-

son (1986), whose methods were based in the idea that “information in

compositional vectors is concerned with relative, not absolute magnitudes”,

and the use of logratios emerged as the preferred method to deal with the

unit-sum constraint (Aitchison, 1981, 1982, 1983, 1984).

However, logratio analysis is not the only methodology to deal with

compositional data, the Dirichlet regression was presented as an alternative

to deal with them (Hijazi and Jernigan, 2009). If the number of categories

are two, the model used is well known as beta regression. Both of them

have been used in many papers yielding reasonable and interpretable results

(Ferrari and Cribari-Neto, 2004; Hijazi and Jernigan, 2009). In addition,
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different packages have been made in R (R Core Team, 2018) in order to

analyze compositional data using beta regression and Dirichlet regression

(Cribari-Neto and Zeileis, 2010; Maier, 2014). All of these packages have

been constructed using frequentist methods.

But, in the last years, Bayesian inference has become a good tool to

deal with complex models, but as usual in Bayesian inference, numerical

approaches are needed. Markov chain Monte Carlo (MCMC) methods have

been so popular, however, the integrated nested Laplace approximation

(INLA) methodology (Rue et al., 2009) and software R-INLA (http://www.r-

inla.org) has become an alternative to MCMC, guaranteeing a higher com-

puting speed for the particular case of latent Gaussian models (LGMs).

Until now, different Bayesian approaches have been developed in order

to deal with compositional data using Dirichlet regression models. These

methods have been implemented in different R-packages: BayesX (Klein

et al., 2015), Stan (Sennhenn-Reulen, 2018), Bugs (van der Merwe, 2018)

or R-JAGS (Plummer, 2016). However, R-INLA does not allow to deal with

compositional data when the number of categories is bigger than 2. In

this work, we present a way to deal with this kind of data using the INLA

methodology which has been implemented in the R-package dirinla.

The remaining of the paper is structured as follows. Section 12.2 intro-

duces basics of the Dirichlet regression. Section 12.3 gives a basic under-

standing about LGMs and the INLA methodology. In Section 12.4, the new

approach is depicted followed by an introduction to the package dirinla in

Section 12.5. In Sections 12.6 and 12.7 simulations and real data examples

are conducted to compare with R-JAGS. Finally, Section 12.8 concludes.

12.2 Hierarchical Dirichlet regression

12.2.1 Dirichlet distribution

The Dirichlet distribution is the generalization of the widely known beta

distribution, and it is defined by the following probability density
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p(y | α) =
1

B(α)

C∏
c=1

yαc−1
c , (12.1)

where α = (α1, . . . , αC) is known as the vector of shape parameters

for each category, αc > 0 ∀c, yc ∈ (0, 1),
∑C

c=1 yc = 1, and B(α) is the

multinomial beta function, which serves as the normalizing constant. The

multinomial beta function is defined as
∏C
c=1 Γ(αc)/Γ(

∑C
c=1 αc). The sum

of all αs, i.e., α0 =
∑C

c=1 αc is usually interpreted as a precision parameter.

Beta distribution is the particular case when C = 2. In addition, each

variable is marginally beta-distributed with α = αc and β = α0 − αc.

Let y ∼ D(α) denote a realization of a variable which is Dirichlet-

distributed. The expected values are E(yc) = αc/α0, the variances are

Var(yc) = [αc(α0 − αc)]/[α2
0(α0 + 1)] and the covariances are Cov(yc, yc′) =

(−αcαc′)/[α2
0(α0 + 1)].

12.2.1.1 Dealing with zeros and ones

The Dirichlet variable is defined in the open interval (0, 1), nevertheless,

data may come from the interval [0, 1]. In order to deal with this issue, a

transformation was proposed in Smithson and Verkuilen (2006) to deal with

zeros and ones in beta distributions, and posteriorly extended to Dirichlet

distributions in Maier (2014).

y∗ =
y(N − 1) + 1/C

N
. (12.2)

This transformation compresses the data symmetrically around 0.5 from

a range of m = 1 to (N − 1)/N , so extreme values are affected more than

values lying close to 1/2. Additionally, as it is pointed out in Maier (2014),

if N →∞ the compression vanishes, that is, larger data sets are less affected

by this transformation.

From now on, we suppose that our response variable take values in the

open interval (0, 1). If not, this transformation is done.
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12.2.2 Dirichlet regression

Let Y be a matrix with C rows and N columns denoting N observations

for the different categories C of the C dimensional response variables Y•n ∼
D(αn). Let ηcn be the value of the linear predictor for the ith observation

in the cth category, so η is a matrix with C rows and N columns. Let V (c),

c = 1, . . . , C, represent a matrix with dimension N × Jc which contains the

covariates values for each individual and each category, so V
(c)
n• shows the

covariates values for the nth observation and the cth category. Let β be a

matrix with Jc rows and C columns representing the regression coefficients

in each dimension, then the model is set up as:

g(αcn) = ηcn = V
(c)
n• β•c , (12.3)

where g(·) is the link-function, in this case as αc > 0 ,∀c = 1, . . . , C, the

log(·) is employed. The regression coefficients β•c are a column vector with

Jc elements.

The previous equation (12.3) can be rewritten in a vectorized form. Let

η̃ =

η•1...

η•N


︸ ︷︷ ︸
CN×1

denotes a restructured linear predictor. Then, the model in matrix notation

can be set up as:

η̃ = Ax , (12.4)

being A the matrix with covariates properly constructed with CN rows and∑C
c=1 Jc columns, x is a vector formed by the regression coefficientes with∑C
c=1 J

c rows and 1 column.
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12.3 INLA for Latent Gaussian Models (LGMs)

In this section, we start with a brief explanation about the LGMs (subsection

12.3.1), followed by the main idea of the Laplace approximation (subsection

12.3.2) and finishing with the INLA methodology (subsection 12.3.3).

12.3.1 LGMs

The reason underneath the possibility of using INLA is based on the fact

that the mostly of the models can also be seen as LGMs (Rue and Held,

2005), the class of models which INLA is designed for (Rue et al., 2009).

The statistical inference is obtained using a three-stage hierarchical model

formulation, in which observations y can be assumed to be conditionally

independent, given a latent Gaussian random field x and hyperparameters

θ1,

y | x,θ1 ∼
N∏
n=1

p(yn | xn,θ1) .

The versatility of the model class relates to the specification of the latent

Gaussian field

x | θ2 ∼ N (µ(θ2),Q−1(θ2))

which includes all the latent (nonobservable) components of interest such

as fixed effects and random terms describing the underlying process of the

data. The hyperparameters θ = (θ1,θ2) control the latent Gaussian field

and/or the likelihood for the data.

The LGMs are a class generalising the large number of related variants

of additive and generalized models. If the likelihood p(yn | xn,θ) such that

“yn only depends on its linear predictor ηn” yields the generalized linear

model setup, the set {xn, n = 1, . . . , N} can be interpreted as ηn, being ηn
the linear predictor which is additive with respect to other effects,

ηn = β0 +
∑
j

vnjβj +
∑
k

fk,n , (12.5)
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where β0 is the intercept, v represents the fixed covariates with linear effects

{βj}, and the terms {fk} represent specific Gaussian processes. Each fk,n is

the contribution of the model components fk to the nth linear predictor (Rue

et al., 2017). If Gaussian prior is assumed for the intercept and the param-

eters of the fixed effects, the joint distribution of x = (η, β0,β,f1,f2, . . .)

is then Gaussian. This yields the latent field x in the hierarchical LGM

formulation. Regarding to the set of hyperparameters θ, it comprises the

parameters of the likelihood and the model components. Usually, these

parameters include some kind of variance, scale or correlation parameters.

In general, the latent field is not only Gaussian, but also it is a sparse

Gaussian Markov random field (GMRF) (Rue and Held, 2005). A GMRF

is just a Gaussian with additional conditional independence properties: xj
and x′j are conditionally independent given the remaining elements. This

provides the INLA methodology with nice computational properties.

12.3.2 Laplace Approximation

Laplace approximation (Barndorff-Nielsen and Cox, 1989) is a technique

used to approximate integrals with the next form:

In =

∫
exp(nf(x))dx , as n→∞ . (12.6)

The main idea is to approximate the target with a Gaussian distribution,

matching the mode and the curvature at the mode.

If x0 is the point where f(x) has its maximum, then

In ≈
∫

exp(n(f(x0) +
1

2
(x− x0)2f ′′(x0)))dx

= exp(nf(x0))

√
2π

−nf ′′(x0)
= Ĩn . (12.7)

If nf(x) is interpreted as the sum of log-likelihoods and x as the unknown

parameter, the Gaussian approximation will be exact as n→∞.
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If we are interested in computing a marginal distribution p(γ1) from a

joint distribution p(γ), the approximation works as follows:

p(γ1) =
p(γ)

p(γ−1 | γ1)

≈ p(γ)

pG(γ−1;µ(γ1),Q(γ1))

∣∣∣
γ∗−1=µ(γ1)

, (12.8)

where the fact that p(γ−1 | γ1) is Gaussian is exploited. If the posterior is

close to a Gaussian density, the results will be more accurate compared to a

density that is very different from a Gaussian. In this context, uni-modality

is necessary since the integrand is being approximated with a Gaussian.

12.3.3 INLA

The main idea of INLA approach is to approximate the posteriors of interest:

the marginal posteriors for the latent field p(xm | y) and the marginal pos-

teriors for the hyperparameters p(θk | y). These posteriors can be written

as

p(xm | y) =

∫
p(xm | θ,y)p(θ | y)dθ , (12.9)

p(θk | y) =

∫
p(θ | y)dθ−k . (12.10)

The nested formulation is used to compute p(xm | y) by approximating

p(xm | θ,y) and p(θ | y), and then using numerical integration to integrate

out θ. Similarly, approximating p(θ | y) and integrating out θ−k, p(θk | y)

can be computed.

The marginal posterior distributions in equations (12.9) and (12.10) are

computed using the Laplace approximation presented in subsection 12.3.2.

In Rue et al. (2009), it is shown that the nested approach yields a very

accurate approximation if applied to LGMs.

All this methodology can be used through R with the R-INLA pack-

age. For more details about R-INLA we refer the reader to Blangiardo and
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Cameletti (2015); Zuur et al. (2017); Wang et al. (2018); Krainski et al.

(2018), where practical examples and code guidelines are provided.

However, despite the advantages of R-INLA implementation, there are

some limitations. For instance, R-INLA is not able to work with multivari-

ate response variables, as it can not associate more than one data to only

one individual. So, in order to fit the Dirichlet regression, we propose an ex-

tension of the paper Rue et al. (2009) for models with multivariate response

variable and multiple linear predictors.

12.4 Inference in multivariate likelihoods

12.4.1 Motivation

The INLA methodology is a tool which allows deal with a widely range of

LGMs, since the most simple linear regression models until models with mul-

tiple likelihoods and multiple linear predictors. However, when a multivari-

ate response is required and several linear predictors are needed to explain

it, the implemented R-INLA methodology has some limitations. Although,

in this section we depict a general method for the case of the multivariate

response, we focus on the particular case of the Dirichlet likelihood. In order

to make this likehood handy, we propose:

1. Approximate the effect of the log likelihood on the posterior using the

Laplace approximation.

2. Convert the multivariate initial observations in to independent Gaus-

sian pseudo-observations which R-INLA can deal with.

3. As R-INLA can deal with independent Gaussian observations, we can

call R-INLA.
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12.4.2 The approximation

In this section, we present the theorical fundaments to approximate the log-

likelihood function log p(Y | x,θ) using the Laplace approximation getting

conditioned independent Gaussian pseudo-observations.

In order to do so, let ηn := η•n denote the linear predictor corresponding

to the nth observation yn := Y•n, we define l(y | x) = − log p(y | x) for

any y and x. In particular, we denote l(yn | ηn) = − log p(yn | ηn) the

log-likelihood function expressed for the nth observation, being yn and ηn
vectors with C components.

Let η0n be a vector. We define the gradient of l in η0 as g0ηn =

∇ηn(l)(η0n,yn), and the Hessian of l in η0. H0ηn can be either the true Hes-

sian (∇2
ηn(l)(η0n,yn)) or the expected Hessian (Eyn|ηn(∇2

ηn(l)(η0n,yn))) in

η0n. Let L0n be the result of applying the Cholesky factorization to H0ηn,

H0ηn = L0nL0
T
n .

Theorem 12.1. If Laplace approximation (subsection 12.3.2) is applied for

l(yn | ηn) in vector η0n, then the vector

z0n := L0
T
n (η0n −H0η

−1
n g0ηn) = L0

T
nη0n −L0

−1
n g0ηn , (12.11)

is conditionally independent Gaussian distributed (see Appendix 12.9 for the

proof):

l(yn | ηn) ≈ C1 +
1

2
[z0n −L0

T
nηn]T [z0n −L0

T
nηn] , (12.12)

i.e. z0n | ηn ∼ N (L0
T
nηn, Id) and z0nk | ηn ∼ N ([L0

T
nηn]k, 1), and the

constant value of the expression is l(yn | η0n)− 1
2g0η

T
n (H0η

−1
n )Tg0ηn.

The observation vector yn has been converted into Gaussian condition-

ally independent pseudo-observations z0n. Note that this theorem can be

expanded to multiple observations. In order to do so, we present the follow-

ing notation.
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Notation 12.2.

η̃0 =

η0•1...

η0•N


︸ ︷︷ ︸
CN×1

, g0η̃ =

g01
...

g0N


︸ ︷︷ ︸
CN×1

, L0 =

L01 0
. . .

0 L0N


︸ ︷︷ ︸

CN×dN

,

H0η̃ =

H0η1 0
. . .

0 H0ηN


︸ ︷︷ ︸

CN×CN

.

Proposition 12.3. Using the previous notation, the matrix

z̃0 := L0
T η̃0 −L0

−1g0η̃ (12.13)

is conditionally independent Gaussian distributed by columns,

z̃0 | η̃ ∼ N(L0
T η̃, ICN ) . (12.14)

Note that this approximation has been constructed for a generic η̃0, but,

as we are interested in building a Gaussian approximation of the effect of the

likelihood on the posterior distribution, η̃0 has been chosen as the posterior

mode of l(x | Y ) in η̃0. In what follows, we depict the different steps in

order to compute the marginals posterior distributions of the latent field.

12.4.3 The algorithm

In this section we present the computational approach of this method to

compute the posterior marginals of the latent Gaussian field, p(xn | Y ),

n = 1, . . . , N . The approximation is computed in three steps. The first

step computes the mode of the posterior distribution of the latent field x0

and the mode of the posterior distribution of the linear predictor η̃0. The

second step computes the conditionally independent Gaussian observations

in order to call R-INLA. Last step consists on calling R-INLA to get the

posterior distributions of the latent field.



“Thesis˙Joaquin” — 2019/6/10 — 8:51 — page 288 — #322i
i

i
i

i
i

i
i

288 12.4. Inference in multivariate likelihoods

• Computing the mode in x of p(x | Y ). The mode x0 in x of

− log(p̃(x | Y )) is computed using a quasi-Newton method with line

search strategy. As we can see in previous sections, the likelihood

function can be approximated with a quadratic expression being z̃0
defined as in expression (12.13). On the other hand, as we are in

the context of LGMs, prior distribution for x is multivariate Gaus-

sian with precision matrix Qx. Thus, the minus log-posterior density

approximation of x is computed as follows:

l(x | z̃0,θ) = l(Y | η̃) + l(x | θ) (12.15)

≈ C1 +
1

2
{[z̃0 −L0

TAx]T [z̃0 −L0
TAx] + xTQxx} .

The target function to optimize is l(x | z̃0,θ), always keeping in

mind that z̃0 is depending on x0. To compute the quasi Newton-

Raphson method, calculate the gradient and the Hessian of the ex-

pression (12.15) is needed. Note that this method works when first

and second derivatives exist.

∂l(x | z̃0,θ)

∂x
= −ATL0(z̃0 −L0

TAx) +Qxx ,

∂2l(x | z̃0,θ)

∂x∂xT
= +ATH0η̃A+Qx . (12.16)

The Newton-Raphson algorithm with line search strategy and Armijo

conditions is employed in order to find the mode x0. In each iteration

of the algorithm, the Hessian, the gradient, the conditionally indepen-

dent Gaussian quasi-observations has to be computed in each iterative

point until the method converges. Once the method reachs the mode

x0, η̃0 can be easily calculated as η̃ = Ax.

• Calculating the conditionally independent Gaussian pseudo-

observations z̃0. At the modal configuration, the Hessian matrix

H0η̃ is computed. If the submatrix corresponding to the nth in-

divual H0ηn is negative definite, the expected Hessian is required

to guarantee H0η̃ to be positive definite. Following the approxima-

tion previously presented, the Cholesky factorization is computed in
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H0η̃ = L0L0
T . Gradient (g0η̃) is also calculated in η̃0. According to

the equation (12.13), the scale and rotation of the original observations

are done to get the pseudo-observations z̃0.

• Call R-INLA. Lastly, as we have conditionally independent Gaussian

observations, we are able to call R-INLA and make inference.

After depicting the complete method, we focus on the dirinla package

to fit Dirichlet regression models.

12.5 The R-package dirinla

This section is devoted to show how the approximation works for the case

of the Dirichlet regression using the dirinla package. This is not available

to install from Comprehensive R Archive Network (CRAN), but it will be

available soon.

In order to illustrate how this package can be useful for practitioners, we

present an example of a Dirichlet regression simulation with 50 data, four

different categories and one different covariate per category. The model that

we want to simulate to posteriorly fit is:

Yn ∼ Dirichlet(α1n, . . . , α4n) , n = 1, . . . , 50

log(α1n) = β01 + β11v1n

log(α2n) = β02 + β12v2n

log(α3n) = β03 + β13v3n (12.17)

log(α4n) = β04 + β14v4n

being −1.5, 1, −3, 1.5 the values for the intercepts β01, β02, β03, β04; and 2,

−3 , −1, 5 for the slopes β11, β12, β13, β14. All these parameters compose

the latent field. Covariates are simulated from a Uniform distribution (0,1).

To posteriorly fit the model, Gaussian prior distributions are assigned with

precision 10−4 to all the elements of the Gaussian field.
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12.5.1 Data simulation

This subsection is devoted to present how the simulation of the data is

conducted.

• First, we simulate the covariates from a Uniform(0,1).

R> set.seed(1000)

R> N <- 50

R> V <- as.data.frame(matrix(runif((10)*N, 0, 1), ncol=10))

R> names(V) <- paste0(’v’, 1:4)

• We define the formula that we want to fit in order to keep the values

of the different categories in a list. Posteriorly this object is used to

construct the A matrix. We use the function formula_list() from

the package dirinla.

R> formula <- y ~ 1 + v1 | 1 + v2 | 1 + v3 | 1 + v4

R> (names_cat <- formula_list(formula))

The output is a list indicating the covariates in each category:

$‘category 1‘

[1] "intercept" "v1"

$‘category 2‘

[1] "intercept" "v2"

$‘category 3‘

[1] "intercept" "v3"

$‘category 4‘

[1] "intercept" "v4"

• We fix the values of the parameters which take part of the latent

field, and that we want to fit. As we have previously depicted, these

parameters are −1.5, 1, −3, 1.5 for the intercepts β01, β02, β03, β04;

and 2, −3 , −1, 5 for the slopes β11, β12, β13, β14 respectively.

R> x <- c(-1.5, 1, -3, 1.5, 2, -3 , -1, 5)
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• We call the function data_stack_dirich() of the package dirinla to

construct the A matrix presented in previous sections. This function

uses the inla.stack() structure of the package R-INLA. As a conse-

cuence the returning object is an inla.stack object. Observe that

the arguments are the response variable y (in this case it has not been

generated yet), the names of the categories covariates, a matrix with

the values of the covariates data, the number of categories d and the

number of data N.

R> C <- length(names_cat)

R> data_stack_construct <-

data_stack_dirich(

y = as.vector(rep(NA, N*C)),

covariates = names_cat,

data = V,

d = C,

n = N )

R> A_construct <- data_stack_construct\$A

R> A_construct[1:8,]

The sparse matrix A is then easily computed:

[1,] 1 . . . 0.3278787 . . .

[2,] . 1 . . . 0.7267993 . .

[3,] . . 1 . . . 0.5993679 .

[4,] . . . 1 . . . 0.3224284

[5,] 1 . . . 0.7588465 . . .

[6,] . 1 . . . 0.6820559 . .

[7,] . . 1 . . . 0.4516818 .

[8,] . . . 1 . . . 0.5613199

• The next step is calculate the linear predictor as η̃ = Ax using the

parameters fixed in the latent field. Moreover, using the exponential

transformation, it is easy to get α parameters of the Dirichlet distri-

bution.

R> eta <- A_construct %*% x

R> alpha <- exp(eta)

R> alpha <- matrix(alpha,
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ncol = C,

byrow = TRUE)

• The last stage is generate the response variable using the function

rdirichlet() of the package DirichletReg.

R> y <- rdirichlet(n, alpha)

R> colnames(y) <- paste0("y", 1:C)

R> head(y)

In the output, a matrix with the response variable, and we can see

that each row is summing up to one.

y1 y2 y3 y4

[1,] 0.0216425724 8.269851e-04 1.646888e-12 0.9775304

[2,] 0.0174529730 1.600423e-03 4.366696e-18 0.9809466

[3,] 0.0004755623 3.226895e-02 2.841956e-07 0.9672552

[4,] 0.0034944201 1.558691e-03 3.755472e-13 0.9949469

[5,] 0.0027955541 8.049758e-06 4.523045e-14 0.9971964

[6,] 0.0012871593 4.840909e-04 2.125868e-38 0.9982287

Once the data is simulated, it is time to show how to fit the model.

12.5.2 Fitting the model

In order to fit the model using the dirinla package, we just need to call

the main function dirinlareg. This function is the core of the package and

it carries out all the steps presented in Section 12.4.

R> model.inla <- dirinlareg(

formula = y ~ 1 + v1 | 1 + v2 | 1 + v3 | 1 + v4 ,

y = y,

data.cov = V,

prec = 0.0001)

where we just need to specify the formula, the response variable Y in a

matrix format (in that case ,with dimension 50× 4), the data.frame with
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the covariates data.cov and lastly, the precision of the Gaussian priors

(prec) for the latent field x. If we want to follow the process step by step,

we can add the instruction verbose = TRUE.

Once the model is computed, we can see a summary of the posterior

distribution of the fixed effects just employing the function summary to the

object generated which is dirinlareg class. Some model selection criteria

are also displayed: Deviance Information Criterion (Spiegelhalter et al.,

2002), Watanabe-Akaike information criteria (Gelman et al., 2014), and the

- mean of the logarithm of the conditional predictive ordinate (Gneiting

and Raftery, 2007). Lastly, the number of observations and the number of

categories are also depicted.

dirinlareg(formula = y ~ 1 + v1 | 1 + v2 | 1 + v3 | 1 + v4,

y = y,

data.cov = V, prec = 1e-04, verbose = TRUE)

---- FIXED EFFECTS ----

=======================================================================

Category 1

-----------------------------------------------------------------------

mean sd 0.025quant 0.5quant 0.975quant mode

intercept -1.423 0.2864 -1.985 -1.423 -0.861 -1.423

v1 1.948 0.4711 1.023 1.948 2.872 1.948

=======================================================================

Category 2

-----------------------------------------------------------------------

mean sd 0.025quant 0.5quant 0.975quant mode

intercept 0.829 0.2453 0.3473 0.8289 1.310 0.829

v2 -3.037 0.4363 -3.8932 -3.0365 -2.181 -3.037

=======================================================================

Category 3

-----------------------------------------------------------------------

mean sd 0.025quant 0.5quant 0.975quant mode

intercept -3.044 0.3064 -3.645 -3.044 -2.4425 -3.044

v3 -1.054 0.5196 -2.074 -1.054 -0.0344 -1.054

=======================================================================

Category 4

-----------------------------------------------------------------------

mean sd 0.025quant 0.5quant 0.975quant mode

intercept 1.507 0.3220 0.8749 1.507 2.139 1.507

v4 4.896 0.4442 4.0242 4.896 5.768 4.896

=======================================================================

DIC = 4103.375 , WAIC = 3393.1158 , LCPO = 1695.9688
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Number of observations: 50

Number of Categories: 4

With the command model.inla$marginals_fixed and

model.inla$summary_fixed), a representation and a summary of the

fixed effects marginals can be obtained (Figure 12.1).
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Figure 12.1: Marginal posterior distributions of the latent field for the
different categories. Real values are indicated with a red line. The amount

of data is 50.

Also, the posterior distribution for the scale parameters of the

Dirichlet α are computed. With model.inla$marginals_fixed and

model.inla$summary_fixed a representation and a summary for each

category can be obtained. Parameter means and precision are also obtained

doing model.inla$marginals_means or model.inla$summary_means
for the means, and model.inla$marginals_precision or

model.inla$summary_precision for the precision.

12.6 Simulation studies

This section provides examples of applications of the INLA approach for

Dirichlet regression models using dirinla package, in comparison with a

widely used method for Bayesian inference using MCMC algorithms, R-JAGS
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(Plummer, 2016). For each example, we have obtained three approxima-

tions: firstly, we have employed R-JAGS with number of iterations enough

to guarantee chains convergence; secondly, we have used INLA methodol-

ogy through the R package dirinla; and lastly, we have employed a “long”

R-JAGS with a big amount of iterations in order to get really good represen-

tation of the posterior distributions. The computations have been performed

on a processor Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz. For each sim-

ulation, we propose three different datasets with the same parameters but

with a different number of observations: 50, 100 and 500.

12.6.1 Simulation 1

We start by illustrating the posterior approximation comparison of the la-

tent field x in a quite simple example. It is based on a Dirichlet regression

with four categories and just one parameter per category, the intercept.

Yn ∼ Dirichlet(α1n, . . . , α4n) , n = 1, . . . , N

log(α1n) = β01

log(α2n) = β02

log(α3n) = β03 (12.18)

log(α4n) = β04

The different datasets with the structure in expression (12.18) have been

simulated. The values β0c with c = 1, . . . , 4 have been −2.4, 1.2, −3.1, 1.3

respectively. In order to fit the model, some vague prior distributions for

the latent field have been settled, in particular p(xm) ∼ N (0, τ = 0.0001).

As the response values are not so close to 0 and 1, no transformation has

been needed.

For the purpose of fitting the model with MCMC algorithms, the number

of iterations used with R-JAGS has been 1000 with a burning of 100, thin

5 and 3 chains for the three different simulated datasets. On the contrary,

in order to have a really good representation of the posterior, long R-JAGS

has been performed using 1000000 of iterations with a burning of 100000,

thin 5 and 3 chains.
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In Figures 12.2, 12.3 and 12.4, the marginal posterior distributions for

the β0c with 1, . . . , 4 are displayed showing that the approximation perfor-

mance is almost perfect comparing with models fitted using R-JAGS and

with the real value.
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Figure 12.2: Marginal posterior distributions of the latent field for the
different categories, and using different methodologies R-JAGS, dirinla

and long R-JAGS, when the amount of data is 50.
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Figure 12.3: Marginal posterior distributions of the latent field for the
different categories, and using different methodologies R-JAGS, dirinla

and long R-JAGS, when the amount of data is 100.

As we know, one of the great advantage of the Laplace approximation is
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Figure 12.4: Marginal posterior distributions of the latent field for the
different categories, and using different methodologies R-JAGS, dirinla

and long R-JAGS, when the amount of data is 500.

the low computational cost required. Here, despite the previous process be-

fore to call R-INLA implemented in the R-package dirinla, the approxima-

tion presented has been faster than long R-JAGS in all the cases as depicted

in Table 12.1. R-JAGS with an enough number of iterations to guarantee

convergence is faster than dirinla in some cases.

N R-JAGS dirinla long R-JAGS

50 2.945 4.336 2869.940
100 21.335 14.232 9839.647
500 28.454 41.082 30383.49

Table 12.1: Computational time in seconds for the different simulated
data and with the different methodologies.

12.6.2 Simulation 2

In this second example, we illustrate the posterior approximations of the la-

tent field x in a Dirichlet regression where a different covariate per category
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is included.

Yn ∼ Dirichlet(α1n, . . . , α4n) , i = 1, . . . , N

log(α1n) = β01 + β11v1n

log(α2n) = β02 + β12v2n

log(α3n) = β03 + β13v3n (12.19)

log(α4n) = β04 + β14v4n

Again, simulations for N = 50, 100 and 500 have been done with the

previous structure. Values for β0c and β1c for c = 1, . . . , 4 have been

−1.5, 1,−3, 1.5, 2,−3,−1, 5 respectively, and covariates have been generated

from a Uniform distribution with mean in the interval (0, 1). Vague prior

distributions for the latent field have been established p(xn) ∼ N (0, τ =

0.0001). As the data generated did not present zeros and ones, any trans-

formation has been needed.

When N = 50, the number of iterations used in R-JAGS has been 1000

with a burning of 100, thin 5 and 3 chains. Different conditions have been

introduced when N = 100 and N = 500, the number of iterations has been

2000 with a burning of 200, thin 5 and 3 chains. On the contrary, in the case

of long R-JAGS, the conditions employed have been 1000000 of iterations

with a burning of 100000, thin 5 and 3 chains.

Marginal posterior distributions have been depicted in the Figures 12.5,

12.6, 12.7. all the posteriors capture the real value in a proper way. With

regard to the comparison of dirinla with R-JAGS and long R-JAGS, pos-

teriors have similar shape, which it is pointing out that our method perfor-

mance is correct.

In Table 12.2 computational times are displayed, showing that in most

cases, the INLA methodology guarantees a faster computational speed.
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Figure 12.5: Marginal posterior distributions of the latent field for the
different categories, and using different methodologies R-JAGS, dirinla

and long R-JAGS, when the amount of data is 50.
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Figure 12.6: Marginal posterior distributions of the latent field for the
different categories, and using different methodologies R-JAGS, dirinla

and long R-JAGS, when the amount of data is 100.

12.7 Real example: Glacial tills

Similarly to the previous section, here we provide an example with real data

using the INLA approach for Dirichlet regression models, and we compare

it with R-JAGS and long R-JAGS.
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Figure 12.7: Marginal posterior distributions of the latent field for the
different categories, and using different methodologies R-JAGS, dirinla

and long R-JAGS, when the amount of data is 500.

N R-JAGS dirinla long R-JAGS

50 5.715 6.664 4916.804
100 21.335 14.232 9839.647
500 133.973 54.873 57347.919

Table 12.2: Computational time in seconds for the different simulated
data and with the different methodologies.

The data of this real example has been extracted from Aitchison (2003).

The aim has been to do a pebble analysis of glacial tills. The total number

of pebbles in each of 92 samples has been counted and the pebbles has been

sorted into four categories,

• A: red sandstone,

• B: gray sandstone,

• C: crystalline,

• D: miscellaneous.



“Thesis˙Joaquin” — 2019/6/10 — 8:51 — page 301 — #335i
i

i
i

i
i

i
i

12. Modeling Dirichlet likelihoods using the integrated nested Laplace
approximation (INLA) 301

The percentages of these four categories and the total pebble counts have

been recorded. The glaciologist has been interested in describing whether

the compositions are in any way related to abundance.

With the purpose of analyzing this compositional data, a Dirichlet re-

gression has been proposed. If Yn represents a multivariate response with

the proportion of red sandstone, gray sandstone, crystalline, and miscella-

neous, then the model is written as follows

Yn ∼ Dirichlet(α1n, . . . , α4n) , n = 1, . . . , N

log(α1n) = β01 + β11Pcountn

log(α2n) = β02 + β12Pcountn

log(α3n) = β03 + β13Pcountn (12.20)

log(α4n) = β04 + β14Pcountn

where Pcountn is the covariate pebble counts for the i individual divided

by 100. Vague prior distributions for the latent field has been settled, in

particular p(xn) ∼ N (0, τ = 0.0001). As the data presented zeros and ones,

the transformation introduced in 12.2.1.1 has been computed.

The number of iterations used in R-JAGS has been 1000 with a burning

of 100, thin 5 and 3 chains. On the contrary, in order to have a really

good representation of the posterior, long R-JAGS has been performed using

1000000 of iterations with a burning of 100000, thin 5 and 3 chains.

In the Figure 12.8, the marginal posterior distribution for β0c and β1c,

c = 1, . . . , 4 are displayed. We can notice that in most cases distributions

obtained with R-JAGS match perfectly with the posteriors obtained using

R-INLA. Regarding to the computational time, R-JAGS took 11.489 seconds,

dirinla 7.030 and long R-JAGS 11588.554.

12.8 Discussion and Future Work

In this paper, the INLA methodology is extended to fit a model with a multi-

variate likelihood, the Dirichlet regression. The main idea is to approximate
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Figure 12.8: Posterior distributions of the latent field for the different
categories.

it by likelihoods that can be fitted by R-INLA, in this particular case, using

a Gaussian likelihood. In Simpson et al. (2016) a similar way was employed:

they constructed a Poisson approximation to the true log-Gaussian Cox pro-

cess likelihood to perform inference on a regular lattice over the observation

window, counting the number of points in each cell. They implemented this

technique in the R package inlabru (Bachl and Lindgren, 2018).

With regard to the computational aspect, here, we are presenting some

results in order to fit models with just fixed effects. But there is still work

to do. As we are converting original multivariate observations in condition-

ally independent Gaussian observations which only depends on the linear

predictor, we expect to be able to incorporate random effects to the model,

in particular, all the random effects which R-INLA can deal with allowing

the user to fit spatial, temporal and spatio-temporal models.

But it is not the only challenge for the future. This approximation has

been presented for a Dirichlet likelihood, but we expect to extend it for other

multivariate likelihoods such as Multivariate normal regression (Anderson

et al., 1958) or Multinomial regression (Menard, 2002).
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12.9 Appendix

12.9.1 Each observation

Let ηn := η•n denotes the linear predictor corresponding to the nth obser-

vation yn := Y•n, we define l(y | x) = − log p(y | x) for any y and x. In

particular, we denote l(yn | ηn) = − log p(yn | ηn) the log-likelihood func-

tion expressed for the nth observation, being yn ∈ RC and ηn ∈ RC . Using

the Taylor series expansion in vector η0n, we obtain the approximation.

l(yn | ηn) ≈
≈ l(yn | η0n) + [∇ηn(l)(η0n,yn)]T [ηn − η0n]

+
1

2
[ηn − η0n]T [∇2

ηn(l)(η0n,yn)][ηn − η0n]

= l(yn | η0n) + g0η
T
n [ηn − η0n] +

1

2
[ηn − η0n]TH0ηn[ηn − η0n] (12.21)

= C1 +
1

2
[ηn − (η0n −H0η

−1
n g0ηn)]TH0ηn[ηn − (η0n −H0η

−1
n g0ηn)] ,

where g0ηn = ∇ηn(l)(η0n,yn) and H0ηn is either the true Hessian

(∇2
ηn(l)(η0n,yn)) or the expected Hessian(Eyn|ηn(∇2

ηn(l)(η0n,yn))). C1 is

a constant whose value is l(yn | η0n)− 1
2g0η

T
n (H0η

−1
n )Tg0ηn. Now we con-

sider the Cholesky factorization of H0ηn, H0ηn = L0nL0
T
n and rewrite

expression (12.21) as follows:

l(yn | ηn) ≈ (12.22)

≈ C1 +
1

2
[L0

T
nηn −L0

T
n (η0n −H0η

−1
n g0ηn)]T

[L0
T
nηn −L0

T
n (η0n −H0η

−1
n g0ηn)] .

Defining

z0n := L0
T
n (η0n −H0η

−1
n g0ηn) = L0

T
nη0n −L0

−1
n g0ηn , (12.23)

a conditionally Gaussian approximation is constructed.

log p(yn | ηi,θ) ≈ −C1 −
1

2
[z0n −L0

T
nηn]T [z0n −L0

T
nηn] .(12.24)
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Thus, z0n | ηn ∼ N (L0
T
nηn, Id), i.e., z0ik | ηn ∼ N ([L0

T
nηn]k, 1). The

observation vector yn has been converted into conditionally independent

Gaussian pseudo-observations z0n. This approximation can be expanded to

the whole dataset.

12.9.2 N observations

First at all, we rewrite l(Y | η) for all the observations N as in equation

(12.22).

l(Y | η) ≈

≈ NC1 +
1

2

n∑
n=1

[L0
T
nηn −L0

T
n (η0n −H0η

−1
n g0ηn)]T (12.25)

[L0
T
nηn −L0

T
n (η0n −H0η

−1
n g0ηn)] .

Using the notation

η̃0 =

η0•1...

η0•N


︸ ︷︷ ︸
CN×1

, g0η̃ =

g01
...

g0N


︸ ︷︷ ︸
CN×1

, L0 =

L01 0
. . .

0 L0N


︸ ︷︷ ︸

CN×CN

,

H0η̃ =

H0η1 0
. . .

0 H0ηN


︸ ︷︷ ︸

CN×CN

,

and we rewrite equation (12.25) as follows:

l(Y | η̃) ≈

≈ NC1 +
1

2
[L0

T η̃ −L0
T (η̃0 −H0η̃

−1g0η̃)]T (12.26)

[L0
T η̃ −L0

T (η̃0 −H0η̃
−1g0η̃)] .
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Defining

z̃0 := L0
T (η̃0 −H0η̃

−1g0η̃) = L0
T η̃0 −L0

−1g0η̃ , (12.27)

we obtain p(z̃0 | η̃),

z̃0 | η̃ ∼ N (L0
T η̃, ICN ) , (12.28)

and the observation vector Y•n has been turned into Gaussian conditionally

independent pseudo-observations z̃0, a likelihood which R-INLA can deal

with.
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Chapter 13

Final remarks and future

work

In this Thesis we have sought to provide an updated vision of the use of the

latest statistical tools that have been emerging in the application of species

distribution models (SDMs) in real contexts from a Bayesian perspective.

The applications presented have arisen from questions proposed by experts

in various areas. Our second big aim has been to develop new methodolog-

ical tools to solve some statistical problems that have appeared during the

application of SDMs in those real problems. In particular:

1. In order to model the production of Plurivorosphaerella nawae as-

cospores in persimmon leaf litter, we have proposed a hierarchical

Bayesian beta regression method, which is going to be implemented

in a warning system to help farmers of the Valencian Comunity to

optimize fungicide sprays for disease control.

2. In order to study the spatial and climatic factors associated with the

geographic distribution of the citrus black spot disease, in addition to

a climate descriptive analysis, we have developed a spatial hierarchical

Bayesian logistic model which help experts to a better understanding

of the phenomenon.

309
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This study leads us to the conclusion that, although climate was advo-

cated as the main factor limiting the establishment and spread of CBS

into new areas, our study indicates that spatial proximity to affected

areas was also relevant in the geographic distribution of the CBS.

3. In order to analyze the effects of geographic genetic structure and

spatial autocorrelation on species distribution range shifts, we have

developed spatial hierarchical Bayesian beta regression models .

With this study, we have seen that, Maxent and non-spatial beta

regression models presented some drawbacks, such as the loss of ac-

cessions with high genetic admixture in the case of Maxent, and the

presence of residual spatial autocorrelation (SAC) for both. Spatial

beta regression models removed residual SAC, showed higher accuracy

than non-spatial beta regression models, and handled the spatial effect

on model outcomes.

We conclude that these hierarchical beta regression models enrich the

toolbox of software available to evaluate GCC-induced distribution

range shifts considering both geographic genetic heterogeneity and

SAC.

4. In order to study the bottlenose dolphin (Tursiops truncatus) distribu-

tion, a non-stationary hierarchical Bayesian logistic models has been

employed. This approach constitutes a major step forward in the un-

derstanding of cetacean species in many ecosystems where physical,

geographical and topographical barriers are present, and it leads us to

the conclusion that an effective conservation programme should take

into account these findings: favourable areas for bottlenose dolphins

should be identified and protected as SACs (Special Areas of Conser-

vation). Protection measures should be devoted to limiting the dis-

turbance from recreational boats, which is probably the main threat

for this species in the area.

5. In order to learn about the statistical problems of interest in the SDMs

context, we have performed a detailed review of some statistical issues

in species distribution modeling. We conclude that INLA is a pow-

erful tool to deal with SDMs making it possible to perform complex
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models with a minimum computational effort while obtaining accurate

estimates.

6. In order to implement the Bayesian Dirichlet regression in the INLA

context, we have presented an approximation using the Laplace

method, showing again that this deterministic tool to do Bayesian

inference is extremely powerfull.

In overall, in this PhD, we have proposed a number of model structures

that have quite effectively tackled some challenges in areas such as ecology or

plant disease epidemiology. In addition, we have proposed a methodology to

deal with compositional data in the INLA context, the Dirichlet regression.

However, the scope of research is still extensive. Here is a list of topics that

we consider of special interest in this context.

1. Apply the models proposed in this Thesis to different areas or other

problems in ecology or plant disease epidemiology, for example, to

study the factors associated with the distribution of Xylella fastidiosa,

which is a lethal plant disease pathogen affecting olives and almonds

in Spain, or, the study of the Mediterranea Sea biodiversity.

2. Extent the Dirichlet regression to models with random effects, where

all the possibilities addressed in R-INLA package or inlabru (https:

//sites.google.com/inlabru.org/inlabru) package can be incor-

porated to the model.

3. Extent the approximation that we have done for the Dirichlet regres-

sion to other regressions with multivariate response: multinomial, mul-

tivariate normal, etc.

https://sites.google.com/inlabru.org/inlabru
https://sites.google.com/inlabru.org/inlabru
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Marquéz, J. R. G., Gruber, B., Lafourcade, B., Leitão, P. J., et al. (2012a).

Collinearity: a review of methods to deal with it and a simulation study

evaluating their performance. Ecography, 36(1):27–46.

Dormann, C. F., Schymanski, S. J., Cabral, J., Chuine, I., Graham, C.,

Hartig, F., Kearney, M., Morin, X., Römermann, C., Schröder, B., et al.
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J. M. (2013). Modeling sensitive elasmobranch habitats. Journal of Sea

Research, 83:209–218.

Peterson, A. T., Sánchez-Cordero, V., Beard, C. B., and Ramsey, J. M.

(2002). Ecologic niche modeling and potential reservoirs for chagas dis-

ease, Mexico. Emerging Infectious Diseases, 8(7):662–667.

Phillips, S. J., Anderson, R. P., and Schapire, R. E. (2006). Maximum en-

tropy modeling of species geographic distributions. Ecological Modelling,

190(3):231–259.



“Thesis˙Joaquin” — 2019/6/10 — 8:51 — page 319 — #353i
i

i
i

i
i

i
i

13. Final remarks and future work 319

Plummer, M. (2003). JAGS: A program for analysis of Bayesian graphical

models using Gibbs sampling. In Proceedings of the 3rd international

workshop on distributed statistical computing. Vienna, Austria.

Pollock, L. J., Tingley, R., Morris, W. K., Golding, N., O’Hara, R. B.,

Parris, K. M., Vesk, P. A., and McCarthy, M. A. (2014). Understanding

co-occurrence by modelling species simultaneously with a Joint Species

Distribution Model (JSDM). Methods in Ecology and Evolution, 5(5):397–

406.

Roos, N. C., Carvalho, A. R., Lopes, P. F., and Pennino, M. G. (2015). Mod-

eling sensitive parrotfish (Labridae: Scarini) habitats along the Brazilian

coast. Marine Environmental Research, 110:92–100.

Rossi, V., Salinari, F., Pattori, E., Giosuè, S., and Bugiani, R. (2009).
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