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Abstract In this paper we apply non-linear incentive strategies to sustain over time
an agreement. We illustrate the use of these strategies in a linear-quadratic trans-
boundary pollution differential game. The incentive strategies are constructed in
such a way that in the long run the pollution stock (the state variable) is close to
the steady state of the pollution stock under the cooperative mode of play. The non-
linear incentive functions depend on the emission rates (control variables) of both
players and on the current value of the pollution stock. The credibility of the incen-
tive equilibrium strategies is analyzed and the performance of open-loop and feed-
back incentive strategies is compared in their role of helping to sustain an agreement
over time. We present numerical experiments to illustrate the results.

1 Introduction

This paper revisits one of the mechanisms already proposed in the literature to en-
sure the sustainability over time of an agreement reached atthe starting date of a
game. An agreement will last for its whole intended durationif, at any intermedi-
ate instant of time, each player stands to receive a greater payoff being part of the
agreement rather than leaving it. A first approach proposed in the literature to sustain
over time an agreement is the design of an agreement which is time-consistent or
agreeable. In a time-consistent agreement the coordinatedpayoffs-to-go are greater
than the non-cooperative ones along the cooperative state trajectory, and hence, no
player finds it optimal to switch to his non-cooperative control at any intermedi-
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ate instant of time. An agreement is agreeable if the comparison condition holds
along any state trajectory. Time-consistent agreements are analyzed, among others,
in Petrosjan (1997), Petrosjan & Zenkevich (1996), Petrosjan & Zaccour (2003)
and Jørgensen & Zaccour (2001a, 2002); and agreeable agreements are studied, for
example, in Kaitala & Pohjola (1990, 1995) and Jørgensen et al. (2003, 2005).

The second approach that can be generally called equilibrium approach is to em-
body the cooperative solution with an equilibrium propertysuch that, by definition
each player will find it individually rational to stick to hispart of the coordinated
solution. One option to build a cooperative equilibrium is to use so-called trigger
strategies (Tolwinski et al. (1986), Haurie & Pohjola (1987)). These are strategies
based on the past actions in the game and they include a threatto punish, credibly
and effectively, any player who cheats on the agreement. These strategies are non-
Markovian because they are based on all past information of the game evolution to
the current time.

This paper examines the use of non-linear incentive strategies as another op-
tion to implement cooperative solutions by means of non-cooperative play. Ehtamo
& Hämäläinen (1986, 1989, 1993, 1995), Jørgensen & Zaccour (2001b), Martı́n-
Herrán & Zaccour (2005, 2009) and De Frutos & Martı́n-Herr´an (2015)), among
others, propose incentive strategies to support the cooperative solution in two-player
differential games. The incentive is designed in such a way that a coordinated out-
come becomes a Nash equilibrium. Incentive strategies are functions of the possible
deviation of the other player and recommend to each player toimplement his part of
the coordinated or agreed solution whenever the other player is doing so. One im-
portant characteristic of the incentive strategies is their credibility. The credibility
property of incentive strategies requires that each playersticks to the agreed-upon
incentive strategy and does not revert to the cooperative solution, even when the
other player chooses to break the agreement. If the incentive strategies are credible
no player will be tempted for unilaterally deviate from the agreed decision.

Incentive strategies have been extensively used in the differential games litera-
ture in different areas, especially environmental economics (Jørgensen & Zaccour
(2001b), Martı́n-Herrán & Zaccour (2005, 2009), Breton etal. (2008), and De Fru-
tos & Martı́n-Herrán (2015)) and marketing (Jørgensen & Zaccour (2003), Martı́n-
Herrán & Taboubi (2005), Jørgensen et al. (2006), Buratto &Zaccour (2009), De
Giovanni et al. (2016), Taboubi (2017) and De Giovanni (2018)). Many of these
works have not addressed the analysis of the credibility of the incentive strategies.
In general, this property cannot be studied analytically, even for games that belong
to the class of solvable games such as linear-state and linear-quadratic differential
games. All the papers previously cited, except De Frutos & Martı́n-Herrán (2015),
study games belonging to these classes and the incentive strategies are constructed
in such a way that the incentive equilibrium is the cooperative solution. Further-
more, the strategies are assumed to be linear and decision-dependent, i.e., each
player makes his current decision contingent on the currentdecision of his oppo-
nent. When the credibility property is analyzed the common conclusion is that cred-
ibility is assured only for sufficiently small values of the deviation from the agreed
solution.



Non-linear incentive equilibrium strategies 3

This result led us to consider whether the definition of less restrictive strategies
could help to guarantee the sustainability of an agreement over time. In De Frutos
& Martı́n-Herrán (2015) we consider state-dependent and decision-dependent equi-
librium strategies defined as non-linear functions of the control variables of both
players and the current value of the state variable. More importantly, we look for
an incentive strategy equilibrium such that the steady state of the optimal state tra-
jectory is close enough but not necessarily identical to thesteady state of the state
variable under the cooperative mode of play. We show that theincentive equilibrium
is credible in a larger region than the one associated with the usual linear incentive
strategies.

The focus of this follow-up paper is to analyze nonlinear incentive strategies
if the players use open-loop strategies instead of stationary Markovian strategies
as previously assumed. We compare the performance of open-loop and feedback
incentive strategies when maintaining an agreement over time and we study the
credibility of the incentive strategies when one of the players deviates from the
incentive equilibrium. The two information structures arecompared for the well-
known linear-quadratic transboundary pollution differential game proposed in Ploeg
& Zeeuw (1992) and Dockner & Long (1993). We present numerical experiments
to illustrate the results.

The rest of the paper is organized as follows. In Section 2 we briefly recall the
formulation of the linear-quadratic transboundary pollution differential game, its
cooperative solution, the open-loop non-cooperative Nashstrategies, as well as the
steady-state pollution stocks under cooperative and non-cooperative modes of play.
In Section 3 we define the incentive strategies and equilibrium, and in Section 4 we
analyze their credibility. Section 5 concludes.

2 A linear-quadratic transboundary pollution differentia l game

For simplicity in the exposition and with the objective of comparing our results with
those obtained in De Frutos & Martı́n-Herrán (2015), we focus on a particular linear-
quadratic model that has been extensively studied in the environmental economics
literature. The formulation is borrowed from Ploeg & Zeeuw (1992) and Dockner
& Long (1993). Let playeri’s optimization problem be given by1:

max
ui

{

Wi(u1,u2,x0) :=
∫ ∞

0

[

ui

(

Ai −
1
2

ui

)

−
1
2

ϕix
2
]

e−ρt dt

}

(1)

s.t.:ẋ= β (u1+u2)−αx, x(0) = x0, (2)

whereβ ,Ai andϕi , i ∈ {1,2} are positive parameters and 0< α < 1. The control
variableui is the emissions of player (country)i and the state variablex represents
the accumulated stock of pollution and its dynamics is defined by the linear ordinary

1 To simplify the notation we will drop the explicit dependence on the time variable when no
confusion can arise.
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differential equation (2), where parameterα denotes the natural absorption rate.
The state dynamics says that the variation in the pollution stock level is the sum
of emissions, scaled by parameterβ , minus what is absorbed by nature. Assuming
that emissions are a proportional by-product of industrialactivities, the objective
of player i is given by the difference between revenues from industrialactivities
and pollution damage costs. Functionui

(

Ai −
1
2ui

)

represents the concave revenue
function of playeri. Pollution induces damage costs, given by1

2ϕix2, assumed to
depend on accumulated pollution. Parameterρ is a positive constant discount rate.

If countries (players) use open-loop strategies they choose a time profile of ac-
tions at the beginning of the game and commit themselves to retain these prean-
nounced profiles from the rest of the game. If countries choose state-dependent de-
cision rules as their strategies, they choose emission strategies that are functions
of the pollution stock. State-dependent Markovian strategies imply that, whenever
country i makes a decision that results in a change in the pollution stock, coun-
try j immediately reacts. This action and reaction pattern implies more competitive
behavior and the outcome of the game is further from the cooperative level

In this paper we assume that the players restrict their-selves to open-loop strate-
gies (Haurie et al. (2012)), meaning that the players base their decisions only on time
and an initial condition. An open-loop strategy selects thecontrol action according
to a decision ruleµi , which is a function of the initial statex0: ui(t) = µi(x0, t).
Because the initial state is fixed, there is no need to distinguish betweenui(t) and
µi(x0, t). Using an open-loop strategy means that the player commits,at the ini-
tial time, to a fixed time path for his control, i.e., his choice of control at each
instant of time is predetermined. More precisely, the set ofadmissible controls
for Playeri, i = 1,2, Ui is defined as the set of non negative absolutely continu-
ous functionsui = ui(t) defined inR+ = [0,+∞) with values inR+ such that if
(u1,u2) ∈ U = U1×U2, the initial value problem (2) possesses a unique solution
defined inR+. The pair(uN

1 ,u
N
2 ) ∈ U is an open-loop Nash equilibrium for the

differential game (1)-(2) if

W1(u
N
1 ,u

N
2 )≥W1(u1,u

N
2 ), W2(u

N
1 ,u

N
2 )≥W2(u

N
1 ,u2)

for all u1 andu2 such that(u1,uN
2 ) ∈ U and(uN

1 ,u2) ∈ U .
If players agree to cooperate they solve an optimal control problem in which they

jointly maximize the aggregate payoff

W1+W2 =
∫ ∞

0

2

∑
i=1

[

ui

(

Ai −
1
2

ui

)

−
1
2

ϕix
2
]

e−ρt dt,

subject to dynamics (2). Martı́n-Herrán & Zaccour (2009) proved that the coop-
erative optimal controls readuc

i = γi +β (acx+ bc) where superscriptc stands for
cooperation and coefficientsac andbc are the quadratic and linear coefficients of
the quadratic value function. These coefficients can be found in Martı́n-Herrán &
Zaccour (2009) (page 272) and allow us to compute the steady-state pollution stock
under cooperation:
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xc
ss=

β (ρ +α)(A1+A2)

(ρ +α)α +2β 2(ϕ1+ϕ2)
. (3)

Next proposition characterizes the Nash equilibrium if theplayers do not coop-
erate and use open-loop strategies.

Proposition 1. Assuming interior solutions, the pair(uN
1 (t),u

N
2 (t)) is an open-loop

Nash equilibrium of the differential game (1)-(2), where

uN
i (t) = Ai −

ϕixN
ss

ρ +α
−β (x0− xN

ss)
ϕi

ρ +α − ξ
eξ t

,

ξ =
ρ −

√

(ρ +2α)2+(ϕ1+ϕ2)β 2

2
,

and superscript N stands for Nash equilibrium.
The optimal state trajectory is

xN(t) = (x0− xN
ss)e

ξ t + xN
ss,

where xNss denotes the steady state given by:

xN
ss=

(ρ +α)β (A1+A2)

(ρ +α)α +β 2(ϕ1+ϕ2)
. (4)

Proof. We define the current-value Hamiltonian of playeri

H i(x,u1,u2,λi) = ui

(

Ai −
1
2

ui

)

−
1
2

ϕix
2+λi(β (u1+u2)−αx),

whereλi is thei-th player costate variable associated with the state variable,x.
Assuming interior solution, the sufficient conditions for optimality derived from

the Pontryagin maximum principle include

∂H i

∂ui
= Ai −ui +β λi = 0,

ẋ = β (u1+u2)−αx, x(0) = x0,

λ̇i = ρλi −
∂H i

∂x
= (ρ +α)λi +ϕix, lim

t→∞
e−ρtλi(t) = 0.

Solving the system of linear ordinary differential equations and taking into account
the initial and transversality conditions, the expressions of uN

i (t) andxN(t) in the
statement can be easily derived.⊓⊔

As usual in this kind of models the non-cooperative solutionleads to emission
levels greater than those prescribed by the cooperative solution. The comparison
of (3) and (4) clearly shows that the steady state of the pollution stock is lower
if players cooperate than if they do not. Then, one can assumethat if one player
deviates from the cooperative solution, he is choosin an emission level greater than
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that corresponding to the cooperative solution. The general main objective of this
paper is the design of an incentive strategy implying that the players will not depart
importantly from their part of the coordinated solution. Specifically, the long-run
pollution stock will be near the long-run pollution stock attained under cooperation.

3 Incentive Equilibria

For the sake of completeness, let us recall the definition of an incentive equi-
librium. The admissible incentive strategies for Playeri are functionsψi defined
in R+ ×R+ ×R+ such that for every(u1,u2) ∈ U , (Ψ1(t),Ψ2(t)) ∈ U where
Ψi(t) = ψi(u1(t),u2(t),x(t)), i = 1,2, with x(t) the solution of (2). We denote by
Γi the set of admissible strategies for Playeri.

Definition 1. A pair ψ1(v1,v2,x), ψ2(v1,v2,x) with ψi ∈ Γi , i = 1,2, is an incentive
equilibrium at(u∗1,u

∗
2) ∈ U = U1×U2 iff for all u1 ∈ U1 andu2 ∈ U2,

W1(u
∗
1,u

∗
2)≥W1(u1,ψ2(u1,u

∗
2, x̂)), W2(u

∗
1,u

∗
2)≥W2(ψ1(u

∗
1,u2, x̌),u2),

where x̂ and x̌ satisfy ˙̂x = β (u1 + ψ2(u1,u∗2, x̂))−α x̂, and ˙̌x = β (ψ1(u∗1,u2, x̌) +
u2)−α x̌, respectively, with ˆx(0) = x̌(0) = x0. Furthermore,u∗1 =ψ1(u∗1,u

∗
2,x

∗), u∗2 =
ψ2(u∗1,u

∗
2,x

∗), where ˙x∗ = β (u∗1+u∗2)−αx∗, with x∗(0) = x0.

An incentive equilibrium is thus characterized by the following pair of optimal
control problems

max
ui∈Ui

Wi(ui ,u
∗
j ) =

∫ ∞

0

(

ui

(

Ai −
1
2

ui

)

−
1
2

ϕix
2
)

e−ρt dt, (5)

s.t.: ẋ= β (ui +ψ j(ui ,u
∗
j ,x))−αx, x(0) = x0, (6)

with u∗i = argmaxui Wi(ui ,u∗j ), i, j = 1,2, i 6= j. The equilibrium conditionu∗i =
ψi(u∗i ,u

∗
j ,x

∗), i, j = 1,2, i 6= j, has to be satisfied.
The linear incentive strategies previously proposed in theliterature are a particu-

lar case of Definition 1. This literature (except De Frutos & Martı́n-Herrán (2015))
assumes that the incentive equilibrium is the cooperative solution, (uc

1,u
c
2), and

the following affine function has been usually proposed as incentive strategy (see,
for example, Ehtamo & Hämäläinen (1986) and Martı́n-Herrán & Zaccour (2005,
2009)):

ψ j(ui ,u j ,x) = ψ j(ui) = uc
j +D j(ui −uc

i ), i, j = 1,2, i 6= j, (7)

with D j , j = 1,2, denoting an appropriate non-zero constant.
However, in this paper, as in De Frutos & Martı́n-Herrán (2015), we look for

an incentive strategy equilibrium(u∗1,u
∗
2) such that the steady state of the pollution

stock of the system when the incentive strategies are used,x∗ss, is greater but close to
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this value under cooperation,xc
ss , and lower than the steady-state value under non-

cooperation,xN
ss. In De Frutos & Martı́n-Herrán (2015) the players use feedback

strategies,2 while in this paper they use open-loop strategies and the results under
both information structures are compared.

For the sake of completeness, let us recall the form of the incentive functionsψ j ,
j = 1,2, in Definition 1 we choose to attain the purpose:

ψ j(ui ,u j ,x) = (uc
j +D j(ui −uc

i ))φ(x− xc
ss,ε)+u j(1−φ(x− xc

ss,ε)), (8)

whereε > 0 is a small positive parameter andφ(x,ε) is a smooth function satisfying

φ(x,ε) = 0, if x≤ ε; φ(x,ε) = 1, if x≥ 2ε. (9)

The definition of the non-linear incentive in (8) and the cutoff function in (9)
show that the incentive strategy is exclusively implemented if one player deviates
from the cooperative outcome (and emits at a greater level) and, therefore, at some
time t the trajectoryx(t) is abovexc

ss. If x(t) is far fromxc
ss, then the linear incentive

in (7) applies and pushes the players’ emissions in such a waythat the pollution path
returns close to the steady-state value under cooperation,xc

ss. Conversely, the non-
linear incentive strategy (8) whenx(t) is close enough toxc

ss (the distance measured
by parameterε) allows the players to choose any time path.

The next proposition characterizes the incentive equilibrium if the non-linear
incentive in (8) is used and the players restrict themselvesto open-loop strategies.

Proposition 2. If the incentive strategy is defined by (8), then the open-loop inte-
rior incentive equilibrium(u∗1(t),u

∗
2(t)) satisfies the equilibrium conditions u∗

i =
ψi(u∗i ,u

∗
j ,x

∗), i, j = 1,2, i 6= j together with the following set of optimality condi-
tions:

ui = Ai +β (1+D jφ(x− xc
ss,ε))ξi ,

ẋ = β (ui +ψ j(ui ,u j ,x))−αx, x(0) = x0, (10)

ξ̇i =

(

ρ +α −β
∂ψ j

∂x
(ui,u j ,x)

)

ξi +ϕix, lim
t→∞

e−ρtξi(t) = 0, i = 1,2, i 6= j,

whereξi denotes the costate variable of player i.

Proof. Let define the Hamiltonian for playeri as

Hi(ui ,u j ,ξi ,x) = ui

(

Ai −
1
2

ui

)

−
1
2

ϕix
2+ ξi(β (ui +ψ j(ui ,u j ,x))−αx).

Assuming interior strategies, the maximum principle optimality conditions read:

2 The pollution stock and emission time-paths for the Nash andincentive equilibria as well as the
payoffs when the players use feedback strategies presentedlater in this paper have been taken from
De Frutos & Martı́n-Herrán (2015).
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∂Hi

∂ui
(ui ,u j ,ξi ,x) = 0,

ξ̇i = ρξi −
∂Hi

∂x
, lim

t→∞
e−ρtξi(t) = 0, i = 1,2, i 6= j,

ẋ = β (ui +ψ j(ui ,u j ,x))−αx, x(0) = x0.

From these conditions, those in the statement of the proposition immediately follow.
⊓⊔

The non-linear incentive equilibrium cannot be analytically characterized and
numerical methods are required for the analysis of these incentive strategies. To nu-
merically solve the system of optimality conditions (10) wefirst introduce a large
T > 0 and substitute the transversality condition limt→∞ e−ρtξi(t) = 0 by the ap-
proximate boundary conditionξi(T) = 0, i = 1,2. The resulting boundary value
problem is solved by means of a collocation method implemented in the MATLAB
subroutinebvp4c.m, see Kierzenka & Shampine (2001). The procedure is repeated
with a largerT until no differences between approximate solutions are found.

For illustration purposes we consider a symmetric example and fix the following
values of the parameters:A1 = A2 = 0.5,ϕ1 = ϕ2 = 1, α = 0.2,β = 1, ρ = 0.1. The
thresholdε in the cut off function in (9) is set toε = 0.025 and the initial pollution
stock was set tox0 = 0. The parameterD j in (8) was set toD j = 1, j = 1,2 as in
Martı́n-Herrán & Zaccour (2009).

Using the above parameters values, we have represented in Figure 1 the phase
diagram of the optimality system (10) in the symmetric case.The variables are the
pollution stock in the abscissas axis and emissions in the ordinates axis. The system
possesses a unique steady state (represented by a circle in the figure) which is a
saddle point. In the figure the stable variety is highlightedin red colour. This curve
represents, for a given initial condition, the unique nonlinear symmetric open-loop
incentive equilibrium. Note that, for simplicity, in the figure the positivity conditions
on emissions have not been imposed.

Fig. 1 Pollution stock-
emissions phase diagram in
the symmetric case. In red the
stable variety of the unique
equilibrium of (10). Param-
eters valuesA1 = A2 = 0.5,
ϕ1 = ϕ2 = 1, α = 0.2, β = 1,
ρ = 0.1, ε = 0.025,D j = 1,
j = 1,2.
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Figure 2 shows the optimal pollution and emission time-paths for five different
modes of play. The solid red lines represent the cooperativestate (left) and con-
trol (right) optimal time-paths. The optimal time-paths corresponding to the non-
cooperative Nash equilibrium are represented using solid (black) and dashed (black)
lines for the feedback and open-loop information structures, respectively. Finally,
solid (green) and dashed (green) lines are the optimal time-paths for the open-loop
and feedback incentive equilibrium strategies, respectively. A first message from
Figure 2 (left) is that the incentive strategies attain their objective of approaching
the long-run cooperative level of the pollution stock. Furthermore, for the same
thresholdε in the cutoff function the open-loop incentive equilibriumis closer to the
cooperative optimal time-paths than the feedback incentive equilibrium. The transi-
tion to the steady state in the open-loop case is smoother than in the feedback case.
This effect is clearer in the case of emissions (right chart). The main difference is in
the short run. The emissions in the feedback incentive equilibrium are initially very
high, while they are much lower in the open-loop case. However, after a very short
period of time, the first ones decrease sharply, while the second ones begin their
fall later. The times at which the emissions start to declinetowards their stationary
levels depend on the value of parameterε in the cutoff function. The smallerε, the
earlier the emissions should begin their fall in order to attain a steady state closer
to the cooperative steady-state. In the long run the emissions in both open-loop and
feedback incentive equilibria are very similar to the cooperative emissions.
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Fig. 2 Nash, Incentive and Cooperative pollution stock and emission time-paths

4 Credibility

In this section we focus on the study of the credibility of theincentive strategies. The
incentive strategies are credible if playerj deviates unilaterally from his incentive
equilibrium action,u j = u∗j (x), then, it will be more beneficial for playeri to follow



10 Javier de Frutos and Guiomar Martı́n-Herrán

the incentive strategy, rather than to stick toui = u∗i (x). Hence, if the credibility
property is satisfied there will not be any temptation for unilateral deviation from
the pairu j = u∗j (x), j = 1,2.

Definition 2. A pair of incentive equilibrium strategiesψ1(v1,v2,x), ψ2(v1,v2,x),
with ψi ∈ Γi, i = 1,2, is credible in a setU1×U2 ⊂ U1×U2 iff given u1 ∈U1 and
u2 ∈U2 there exist ˆu1 ∈ U1 andǔ2 ∈ U2 such that

W1(ψ1(û1,u2, x̂),u2)≥W1(u
∗
1,u2), W2(u1,ψ2(u1, ǔ2, x̌))≥W2(u1,u

∗
2), (11)

wherex̂ andx̌ satisfy ˙̂x= β (ψ1(û1,u2, x̂)+u2)−α x̂ and ˙̌x= β (u1+ψ2(u1, ǔ2, x̌))−
α x̌, respectively, with ˆx(0) = x̌(0) = x0.

A sufficient, although obviously not necessary, condition for credibility is that for
all u1 ∈U1 andu2 ∈U2

W1(ψ1(u
∗
1,u2, x̂),u2)≥W1(u

∗
1,u2); W2(u1,ψ2(u1,u

∗
2, x̌))≥W2(u1,u

∗
2),

wherex̂ andx̌ are defined as in Definition 2, with ˆu1 = u∗1 andǔ2 = u∗2.
Note that, in the case of linear incentive strategies,ψ j is given by (7). Then,

Definition 2 reduces toWi(ψi(u j),u j) ≥ Wi(u∗i ,u j), ∀u j ∈ U j with u∗i = uc
i , for

i = 1,2, which is the credibility definition usually proposed in the literature (see, for
example, Jørgensen and Zaccour (2003), Martı́n-Herrán and Zaccour (2005, 2009)).

Definition 2 requires conditions (11) to be checked in some subset of admis-
sible controlsU1 ×U2 ⊂ U1 ×U2. In order to be able to analyze the credibility
properties of the non-linear incentive strategies we assume that the set of possible
deviations is restricted to convex combinations of the cooperative controluc

i and

the non-cooperative Nash equilibriumu(n)i : Ui = {ui = θuc
i +(1− θ )uN

i }. Next ta-
bles allow us to illustrate the credibility of the non-linear incentive strategies and to
compare this property for the open-loop and feedback information structures.

Tables 1-4 show the players’ payoffs when they play either open-loop (first two
columns) or feedback (last two columns) strategies (superscriptsol and f , respec-
tively). Each row presents the different strategies used bythe players in each case.

Wol
1 Wol

2 W f
1 W f

2
U1 = uN

1 ,U2 = uN
2 3.14×10−3 3.14×10−3 −3.68×10−1 −3.68×10−1

U1 = u∗1,U2 = u∗2 1.68×10−2 1.68×10−2 3.91×10−4 3.91×10−4

U1 = u∗1,U2 = uN
2 8.30×10−4 2.16×10−2 −5.81×10−1 3.74×10−1

U1 = ψ1(u∗1,u
N
2 ,x),U2 = uN

2 2.16×10−3 2.39×10−3 −3.72×10−1 −3.79×10−1

Table 1 Players’ payoffs under open-loop and feedback strategies.Player 2 deviates touN
2

The first row in Table 1 shows the players’ payoffs when they donot cooperate
and play the open-loop or the feedback Nash equilibrium. Thesecond row presents
these payoffs when they follow their open-loop or feedback incentive strategies.
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Both players and under both information structures improvetheir payoffs with re-
spect to the non-cooperative Nash levels. In the third row the payoffs are no longer
identical for both players, when player 1 continues to play his part of the incentive
equilibrium, while player 2 deviates to his part of the non-cooperative Nash equi-
librium. Let us note that it could be considered irrational that player 2 implements
a strategy that would provide him a smaller payoff than that associated with the in-
centive strategy. Table 1 shows that the deviation from the incentive equilibrium to
uN

2 provides a greater payoff to the deviating player, i.e.W2(u∗1,u
N
2 ) > W2(u∗1,u

∗
2).

The credibility of the incentive equilibrium requires the existence of a feasibleu1

such thatW1(ψ1(u1,uN
2 ,x),u

N
2 )>W1(u∗1,u

N
2 ). The fourth row in Table 1 shows that

last inequality is satisfied in particular foru1 = u∗1. Furthermore, the deviating player
(player 2) is penalized becauseW2(ψ1(u∗1,u

N
2 ,x),u

N
2 )<W2(u∗1,u

∗
2). In fact, deviating

from the incentive strategy player 2 even worsens his payoffcompared to his payoff
in the non-cooperative case:W2(ψ1(u∗1,u

N
2 ,x),u

N
2 ) < W2(uN

1 ,u
N
2 ). All these results

apply when the players use either open-loop or feedback strategies.
Table 1 also allows us to compare the relative improvement ofthe players’ pay-

offs when moving from their non-cooperative mode of play to the incentive equilib-
rium as well as the relative loss with respect to the cooperative solution both under
open-loop and feedback strategies. Because we are analyzing a completely symmet-
ric game, each player under cooperation receives half of thetotal cooperative payoff.
The individual cooperative payoff is given byWc

1 = Wc
2 = 2.64×10−2. Let us de-

note byWNol
i andWN f

i the players’ payoffs when the open-loop and feedback Nash
equilibrium, respectively, is played (first row in Table 1).Equivalently, let us denote
by W∗ol

i andW∗ f
i the players’ payoffs when the open-loop and feedback incentive

equilibrium, respectively, is implemented (second row in Table 1).
The comparison of the Nash equilibrium payoffsWNol

i andWN f
i with the individ-

ual cooperative payoffWc
i shows that if the players implement the feedback Nash

equilibrium the payoffs are much smaller than if the open-loop Nash equilibrium
is played, which is, already, a 88.1% lower than the cooperative ones. This loss of
welfare is a well-known consequence of the non-cooperativemode of play that can
be mitigated if the players agree to follow incentive strategies (both open-loop or
feedback), as can be seen in the second row of Table 1. The payoffs when the incen-
tive equilibrium is played compared to the payoffs under cooperation account for a
fall of a 36.7% and a 98.5%, under open-loop and feedback strategies, respectively.
If the incentive equilibrium payoffs are compared to the non-cooperative Nash pay-
offs they show an increase of more than one order of magnitudein both cases, being
four times greater in the open-loop than in the feedback case. These results clearly
show that the players can find neatly advantageous the use of non-linear incentive
strategies.

Tables 2-4 present the different payoffs when player 2 deviates from the incentive
equilibrium to different convex combinations of his cooperative control,uc

2, and his
part of the non-cooperative Nash equilibrium,uN

2 . In Tables 2, 3 and 4 the weight
assigned to the non-cooperative part decreases from 0.75 to0.5 and to 0.25, respec-
tively. Concerning the rationality property of player 2, these tables show that it is
rational that player 2 deviates from the incentive equilibrium when he changes to
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a strategy in which no-cooperation is weighted at least as cooperation. However,

Table 4 shows that it is irrational that player 2 deviates tou(3)2 = 0.75uc
2+0.25uN

2

or to u(3)2 = uc
2 not showed in the table. These results are applicable both for the

open-loop and feedback incentive strategies.
The last two rows in Tables 2-4 allow to analyze the credibility of the in-

centive strategies when player 2 deviates tou(i)2 , i = 1,2,3. Player 1 implements

U1 = ψ1(u1,u
(i)
2 ,x) with eitheru1 = u∗1 (third row) oru1 = uN

1 (fourth row). Com-
paring the entries in the third (fourth) row with those in thesecond, it can be deduced
that the incentive equilibrium is credible in the same scenarios when it is rational
for player 2 to deviate (Tables 2 and 3) and is not credible when the deviation is
irrational for player 2 (Table 4). The results are qualitatively similar for open-loop
and feedback strategies.

Finally, from the comparison ofW2(ψ1(u1,u
(i)
2 ,x),u(i)2 ) andW2(u∗1,u

∗
2) for u1 ∈

{u∗1,u
N
1 } in Tables 2-3 we can deduce that deviating from the incentivestrategy

player 2 always worsens his payoff compared to his payoff in the incentive equi-

librium. More precisely, ifu2 = u(1)2 = 0.25uc
2 + 0.75uN

2 both choices for player
1, u1 = u∗1 or u1 = uN

1 lead to a payoff for player 2 lower thanW2(u∗1,u
∗
2) re-

gardless of whether players use open-loop or feedback strategies. Ifu2 = u(2)2 =
0.5uc

2+ 0.5uN
2 , the same comment applies for the feedback case. In the open-loop

case the choiceu1 = u∗1 for player 1, although being credible, it does not penalize
enough player 2 with respect to his payoff in the incentive equilibrium. However, if

player optimizes his choice by moving tou1 = uN
1 , thenW1(ψ1(uN

1 ,u
(2)
2 ,x),u(2)2 ) >

W1(ψ1(u∗1,u
(2)
2 ,x),u(2)2 )>W1(u∗1,u

∗
2) andW2(ψ1(uN

1 ,u
(2)
2 ,x),u(2)2 )<W2(u∗1,u

∗
2).

Wol
1 Wol

2 W f
1 W f

2
U1 = u∗1,U2 = u∗2 1.68×10−2 1.68×10−2 3.91×10−4 3.91×10−4

U1 = u∗1,U2 = u(1)2 1.08×10−2 2.01×10−2 −3.58×10−1 2.70×10−1

U1 = ψ1(u∗1,u
(1)
2 ,x),U2 = u(1)2 1.23×10−2 1.22×10−2 −1.14×10−1 −1.54×10−1

U1 = ψ1(uN
1 ,u

(1)
2 ,x),U2 = u(1)2 1.36×10−2 1.01×10−2 −9.22×10−2 −3.92×10−1

Table 2 Players’ payoffs under open-loop and feedback strategies.Player 2 deviates tou(1)2 =
0.25uc

2+0.75uN
2

Wol
1 Wol

2 W f
1 W f

2
U1 = u∗1,U2 = u∗2 1.68×10−2 1.68×10−2 3.91×10−4 3.91×10−4

U1 = u∗1,U2 = u(2)2 2.01×10−2 1.76×10−2 −1.54×10−1 1.34×10−1

U1 = ψ1(u∗1,u
(2)
2 ,x),U2 = u(2)2 2.02×10−2 1.75×10−2 −3.02×10−2 −4.75×10−2

U1 = ψ1(uN
1 ,u

(2)
2 ,x),U2 = u(2)2 2.26×10−2 5.01×10−3 1.23×10−1 −4.46×10−1

Table 3 Players’ payoffs under open-loop and feedback strategies.Player 2 deviates tou(2)2 =
0.5uc

2+0.5uN
2
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Wol
1 Wol

2 W f
1 W f

2
U1 = u∗1,U2 = u∗2 1.68×10−2 1.68×10−2 3.91×10−4 3.91×10−4

U1 = u∗1,U2 = u(3)2 2.88×10−2 1.44×10−2 5.29×10−2 −4.87×10−2

U1 = ψ1(u∗1,u
(3)
2 ,x),U2 = u(3)2 2.87×10−2 1.45×10−2 2.08×10−2 −6.00×10−3

U1 = ψ1(uN
1 ,u

(3)
2 ,x),U2 = u(3)2 3.12×10−2 −1.41×10−4 2.91×10−1 −5.19×10−1

Table 4 Players’ payoffs under open-loop and feedback strategies.Player 2 deviates tou(3)2 =
0.75uc

2+0.25uN
2

Figure 3 for the open-loop strategies and Figure 4 for the feedback strategies
show the time paths of the emission rates and the pollution stock for the non-
cooperative, cooperative and incentive strategies used bythe players, as well as
the strategies when player 2 deviates to his part of the non-cooperative equilib-
rium, while player 1 sticks to his part of the incentive equilibrium. These time paths
allow us to analyze the credibility of the incentive strategies. The optimal paths
when the non-cooperative Nash equilibrium or the cooperative solution is played
are represented using solid black and red lines, respectively. Those associated with
the incentive equilibrium are depicted using solid blue line. Finally, the solid green
line shows the time paths when player 2 deviates while player1 plays the incentive
strategy.

Figure 3 shows that when player 2 deviates from the incentiveequilibrium and
follows his part of the non-cooperative Nash equilibrium the emission time-paths are
described by the black solid line starting around 0.1. When player 1 responds using
the incentive strategyU1 =ψ(u∗1,u

N
2 ,x) his emission time-path initially starts around

0.15 and follows the incentive equilibrium strategy, decreasing up to a minimum
level. When player 1 realizes that the pollution stock is farfrom the pollution stock
under cooperation departs from his part of the incentive equilibrium and increases
the emissions up to a level similar to the non-cooperative level. From this point on
the emission time-paths run very closely. This behavior translates into a pollution
stock time-path associated with the strategiesU1 = ψ(u∗1,u

N
2 ,x) andU2 = uN

2 that
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Fig. 3 Credibility open-loop incentive strategies
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initially evolves between the time-paths for the non-cooperative Nash equilibrium
and the incentive equilibrium. The time path initially increases at a speed greater
than that corresponding to the Nash equilibrium. From a timeon the incentive strat-
egy used by player 1,U1 = ψ(u∗1,u

N
2 ,x), allows to approximate the pollution stock

time-path under non-cooperation.
Figure 4 collects the different feedback strategies. The deviating player (player

2) initially follows the discontinuous green line startingaround 0.22, corresponding
to the emission time-path forU1 = ψ(u∗1,u

N
2 ,x) andU2 = uN

2 . This time path evolves
quite close to the non-cooperative emission time-path. Letus note that although
in Figure 4 we display the time paths associated with the different strategies, the
players are using feedback strategies, and as such they are taking their optimal de-
cisions depending on the value of the state variable (the pollution stock). Hence, the
discontinuous green line does not coincide with the continuous black line because
player 1 is playingU1 = ψ(u∗1,u

N
2 ,x) instead ofuN

1 , implying a different value of
the pollution stock. Player 1’s emissions (continuous green line) start around 0.33
and sharply decrease imitating the incentive equilibrium time-path up to a point
in time where the trajectory reaches the discontinuous green line. From this time
on the emission time-paths for both players coincide and evolve close to the non-
cooperative emission time-path. The main difference with respect to the previous
case is that in the case of open-loop strategies player 1 reduces his emissions too
sharply and then he has to raise them during an intermediate period of time to follow
a trajectory similar to the non-cooperative case. However,in the case of feedback,
the decrease in emissions towards values close to those of the non-cooperative sce-
nario is monotonous and smoother. As the right chart in Figure 4 shows the pollution
stock whenU1 = ψ(u∗1,u

N
2 ,x) andU2 = uN

2 is not far away from the non-cooperative
pollution stock even in the short term.
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5 Concluding remarks

This paper examines the use of non-linear incentive strategies as another option to
sustain over time an agreement by means of non-cooperative play. Incentive strate-
gies have been extensively used in the differential games literature in different areas
and have been proposed to support the cooperative solution in two-player differ-
ential games. The incentive is designed in such a way that a coordinated outcome
becomes a Nash equilibrium. If the incentive strategies arecredible no player will
be tempted for unilaterally deviate from the agreed decision. As far as we know all
the previous literature on incentive strategies, except DeFrutos & Martı́n-Herrán
(2015), studies games belonging to the linear-state or linear-quadratic classes and
the incentive strategies are constructed in such a way that the incentive equilibrium
is the cooperative solution. Furthermore, the strategies are assumed to be linear and
decision-dependent, i.e., each player makes his current decision contingent on the
current decision of his opponent. Most of the previous workshave not addressed the
analysis of the credibility of the incentive strategies.

This paper is a follow-up of De Frutos & Martı́n-Herrán (2015) and assumes
state-dependent and decision-dependent equilibrium strategies defined as non-linear
functions of the control variables of both players and the current value of the state
variable. We relax the definition of incentive equilibrium in the sense that we look
for an incentive strategy equilibrium such that the steady state of the optimal state
trajectory is close enough, but not necessarily identical,to the steady state of the
state variable under cooperation. We show that the definition of less restrictive
strategies helps to guarantee the sustainability of an agreement over time. We an-
alyze a well-known linear-quadratic transboundary pollution differential game and
present numerical experiments to illustrate the results. We compare the incentive
equilibrium strategies, its credibility and the players’ payoff when players use open-
loop strategies and when they focus on stationary Markovianstrategies.
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