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Summary

In this paper, we consider a two-factor interest rate model with stochastic volatility
and we assume that the instantaneous interest rate follows a jump-diffusion process.
In this kind of problems, a two-dimensional partial integro-differential equation is
derived for the values of zero-coupon bonds. To apply standard numerical methods to
this equation, it is customary to consider a bounded domain and incorporate suitable
boundary conditions. However, for these two-dimensional interest rate models there
are not well-known boundary conditions, unlike option models. Here, in order to
approximate bond prices we propose new artificial boundary conditions which main-
tain the discount function property of the zero-coupon bond price. Then, we illustrate
the numerical approximation of the corresponding boundary value problem bymeans
of an Alternative Direction Implicit method which has been already applied for pric-
ing options. We test these boundary conditions with several interest rate pricing
models.

KEYWORDS:
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1 INTRODUCTION

The term structure of interest rates is one of the most important topics in the study of economics and finance. On the one hand,
it provides useful information concerning market expectations of future real activity and inflation, that is, the conventional final
targets of monetary policy. On the other hand, it is a very important subject in pricing models, risk management, hedging and
arbitrage. In fact, many researches focus on the dynamic models of the term structure.
Traditionally, interest rates are assumed to move continuously and, in the literature, diffusion processes are used to model their

behaviour10,27. However, different market phenomena, such as shocks or surprises, provide unexpected jumps in the interest
rates, as a result of this, the most realistic models use jump-diffusion stochastic processes to model interest rates11,22. Moreover,
pricing and hedging with jump-diffusion models is crucial, since ignoring jumps can produce hedging and pricing risk23.
It is widely known that one-factor interest rate models are very attractive for practitioners because of its simplicity and com-

putational convenience. However, these models have also unrealistic properties. Firstly, they cannot generate all the yield curve
shapes and changes that we can find in the markets. Secondly, the changes over infinitesimal periods of any two interest-rate
dependent prices will be perfectly correlated. Finally, as Hong and Li 17 show, none of their analyzed one-factor models ade-
quately captures the interest rate dynamics. Therefore, at least two factors are necessary in order to properly model the term

0Abbreviations: ADI method, Alternative Direction Implicit method; PIDE, partial integro-differential equation; HV method, Hundsdorfer-Verwer method; MHV
method, Modified Hundsdorfer-Verwer method; MC method, Monte Carlo method
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structure of interest rates. In fact, the number of factors must be a compromise between an efficient numerical implementation
and the capability of the model to fit the experimental data.
In the literature, the different functions describing the stochastic variables of the model are usually chosen to be affine: the aim

is to obtain a pricing problem with a feasible closed-form solution. However, when more realistic functions are considered15,
a feasible expression of the solution is not achieved. Then, numerical methods should be used to approximate the solution. In
such a case, we can underline two techniques. On the one hand, as zero-coupon bond prices can be obtained as expectations, the
Monte Carlo approach provides a valuable tool: by the law of large numbers, the integrals that describe the expected value of
the underlying random variables can be approximated by means of independent generated paths of such random variables. The
Monte Carlo method is simple, flexible, and can handle multiple sources of uncertainty. However, this technique provides low
accuracy approximations with a very high computational cost. On the other hand, we can also use numerical methods based on
the discretization of the differential equation in order to approximate its solution12. More specifically, if the model involves a
jump-diffusion process, we have to deal with a partial integro-differential equation with a final condition.
From a numerical point of view, in order to discretize the problem, first of all a bounded domain for the state variables must

be considered. Hence, suitable boundary conditions must be established. In bond pricing literature, only one-factor interest rate
models are usually investigated. In this case, the restriction of the equation when the interest rate is zero and an artificial Dirichlet
condition based on the behaviour of the solution for the maximum interest rate are incorporated5,8,13. However, there is a lack
of investigation when the number of state variables is greater than one.
If we analyse other financial derivatives, such as options, finite difference schemes are usually considered for pricing European

and barrier options in jump-diffusion models7. For the multifactor case, first, a transformation in the partial integro-differential
equation is usually made to eliminate the mixed derivative term. Then, several suitable methods are considered with very well-
known and established boundary conditions14,19,20. However, this is not applicable to general interest rate models.
In this paper, we focus on the approximation of zero-coupon bond prices in two-factor jump-diffusion models where the

state variables are the instantaneous interest rate and the volatility. The numerical approach requires the discretization of a
multidimensional problem involving a partial integro-differential equation: so we have to discretize some differential terms and
a nonlocal integral term. As the problem has only a final condition, we introduce a bounded domain for the state variables. The
main difficulty is to fix appropriate boundary conditions compatible with the model. Here we propose such restrictions taking
into account the discount function property of the zero-coupon bond price. We illustrate the implementation of a numerical
method for the proposed boundary value problem by using a well-known ADI method: the Hundsdorfer-Verwer scheme20.
The paper is organized as follows. Section 2 describes a two-factor jump-diffusion model with stochastic volatility to price

interest rate derivatives. In Section 3, we propose suitable boundary conditions for the numerical approximation of this kind of
models, and we implement an ADI method for the emerging boundary value problem. In Section 4, we validate the numerical
technique by means of the approximation of the yield curves in two well-known term structure models. Section 5 collects the
conclusions.

2 THE JUMP-DIFFUSION MODEL

We present a two-factor jump-diffusion model for pricing zero-coupon bonds. Define (Ω, , {t}t≥0,) as a complete filtered
probability space which satisfies the usual conditions, where {t}t≥0 is a filtration2,6,25. We assume that the state variables are
the dynamics of the instantaneous interest rate, r, and the volatility, V . In order to take into account the abrupt changes of the
interest rates in the markets, we consider that such interest rate follows a jump-diffusion stochastic process. We suppose that the
volatility is a diffusion process1,16: r is right-continuous (cadlag6) and we denote the left limit r(t−) = limz↑t r(z) (however, for
notational clarity the pre-jump values r(t−) will be added only when necessary to avoid confusion and otherwise, they will be
assumed implied). Thus, these factors follow this joint stochastic process:

r(t) = r(0) +

t

∫
0

�r(r(z), V (z)) dz +

t

∫
0

V (z) dWr(z) +

t

∫
0

c(r(z−), V (z)) dq(z), (1)

V (t) = V (0) +

t

∫
0

�V (r(z), V (z)) dz +

t

∫
0

�V (r(z), V (z)) dWV (z), (2)
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where �r and �V are the drifts and �V the volatility of the implied volatility process. Moreover,Wr andWV areWiener processes,
and the impact of the jump is given by function c and the compound Poisson process q(t) =

∑N(t)
i=1 Xi, with jump times (�i)i≥1.

The Poisson process is represented byN(t)with intensity �(r, V ); andX1, X2,… is a sequence of identically distributed random
variables with a Normal probability distribution Π, (0, �X). We assume thatWr,WV are correlated with

[Wr,WV ](t) = �t,

but the jump size distribution and both standard Brownian motions are independent of N . We also assume that the jump mag-
nitude and jump arrival times are uncorrelated with the diffusion parts of the processes. Lastly, we suppose that the functions
�r, �V , �V , � and Π satisfy suitable regularity conditions3,24.
As in previous works16, we assume that the market is arbitrage-free. Then, there exists an equivalent martingale measure,

-measure, which is known as the risk-neutral measure (see the extended Girsanov-type measure transformation4,26). The state
variables of the model (1)-(2) under the risk-neutral measure are as follows:

r(t) = r(0) +

t

∫
0

�
r (r(z), V (z)) dz +

t

∫
0

V (z) dW 
r (z) +

t

∫
0

c(r(z−), V (z)) dq̃(z), (3)

V (t) = V (0) +

t

∫
0

�
V (r(z), V (z)) dz +

t

∫
0

�V (r(z), V (z)) dW

V (z), (4)

where �
r = �r −V �

Wr , �
V = �V − �V �

WV . The Wiener processes under -measure areW 
r andW 

V , and [W 
r ,W


V ](t) = �t.

Themarket prices of risk associated toWr andWV Wiener processes are �Wr(r, V ) and �WV (r, V ), respectively. The compensated
compound Poisson process under -measure is q̃(t) =

∑N(t)
i=1 Xi − �tE


X[X1], and �(r, V ) is the intensity of the Poisson

processN(t). Finally, we consider the function c(r, V ) = 1 in (3).
A zero-coupon bond price at time t, with maturity time T , t ≤ T , under the above assumptions, is

p(t, r, V ; T ) = E
⎡

⎢

⎢

⎣

exp
⎛

⎜

⎜

⎝

−

T

∫
t

r(u) du
⎞

⎟

⎟

⎠

|r(t) = r, V (t) = V
⎤

⎥

⎥

⎦

. (5)

Trivially p(T , r, V ; T ) = 1. Moreover, the yield curve can be obtained as

R(t, r, V ; T ) =
− ln(p(t, r, V ; T ))

T − t
. (6)

Using the Feynman-Kac Theorem, it can be shown that p(t, r, V ; T ) in (5) is the solution of the following partial integro-
differential equation with final condition:

pt + �
r pr + �


V pV +

1
2
V 2prr +

1
2
�2V pV V + �V �V prV − (r + �

)p + �
∞

∫
−∞

p(t, r + y, V ; T )f (y) dy = 0, (7)

p(T , r, V ; T ) = 1, (8)

for r > 0, V > 0, 0 ≤ t ≤ T , where f is the Normal density function

f (y) = 1

�X
√

2�
exp

(

−
y2

2�2X

)

.

In order to solve numerically the problem (7)-(8) it is customary to make a change of the time variable, � = T − t, to obtain
the following initial value problem

p� = �
r pr + �


V pV +

1
2
V 2prr +

1
2
�2V pV V + �V �V prV − (r + �

)p + �
∞

∫
−∞

p(�, r + y, V )f (y) dy, (9)

p(0, r, V ) = 1, (10)

where we have reduced the notation as p(�, r, V ) = p(�, r, V ; T ).
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With respect to the integral term in (9), which we denote as J (�, r, V ), we also make a change of variable obtaining the
following expression

J (�, r, V ) =

∞

∫
−∞

p(�, z, V )f (z − r) dz.

In most of the cases, a closed-form solution for the problem (9)-(10) is not available and then we have to consider numerical
methods in order to approximate the solution.

3 ARTIFICIAL BOUNDARY CONDITIONS AND NUMERICAL METHOD

Numerical techniques based on the discretization of the problem usually involve a bounded domain of the state variables. How-
ever, the problem (9)-(10) consists of a pure initial value problem. So, first, we need to restrict our attention to an appropriate
portion of the domain and incorporate suitable boundary conditions to the model.
From a mathematical point of view, different boundary conditions are usual: Dirichlet, Newmann or Robin data. However,

when we restrict our attention to an artificial bounded region, this kind of conditions can be inappropriate or inconsistent with
the modelization. Another valuable process consists of discretizing the restriction of the equation to the boundary. However,
here we propose a new kind of boundary conditions based on the financial meaning of the model, which are more efficient for
this kind of problems.
In the classical Mathematical Finance literature, in a continuous framework, the discount function takes the form of a negative

exponential function, and this is the case of the zero coupon bonds. In fact, the known standard solution for this kind of bond
pricing problems1, such as (7)-(8), has the form

p(t, r, V ; T ) = exp(A(T − t) + B(T − t)r + C(T − t)V ),

with A, B, and C as suitable functions satisfying A(T ) = B(T ) = C(T ) = 0. As a consequence, the logarithm of the zero-
coupon bond price should be linear with respect to the state variables. We want to mimic this behaviour in the general case. So,
we propose the following boundary conditions for the problem (9)-(10) on the boundary of the truncated domain [rmin, rmax] ×
[Vmin, Vmax]:

)2 ln p
)r2

(�, rmin, V ) = 0,
)2 ln p
)r2

(�, rmax, V ) = 0, (11)

)2 ln p
)V 2

(�, r, Vmin) = 0,
)2 ln p
)V 2

(�, r, Vmax) = 0. (12)

Therefore, we have to solve the problem (9)-(10) in the previous bounded domain with the boundary conditions (11)-(12).
In order to obtain the numerical solution of the pricing problem, first, we introduce a uniform meshgrid over the domain of

the state variables [rmin, rmax] × [Vmin, Vmax]. For positive integers mr and mV , we define the constant step sizes

ℎr =
rmax − rmin

mr
,

ℎV =
Vmax − Vmin

mV
.

Then, the grid points are defined as:

ri = rmin + iℎr, i = 0, 1,… , mr,
Vj = Vmin + jℎV , j = 0, 1,… , mV .

Here, Pi,j(�) represents an approximation to p(�, ri, Vj). We consider a semidiscretization of the PIDE (9) by means of approx-
imations to the different terms at the inner grid points of the domain [rmin, rmax] × [Vmin, Vmax]. For the partial derivatives of p
with respect to r, we apply central difference formulas. For i = 1,… , mr − 1, j = 1,… , mV − 1,

)pi,j(�)
)r

≈
Pi+1,j(�) − Pi−1,j(�)

2ℎr
,

)2pi,j(�)
)r2

≈
Pi+1,j(�) − 2Pi,j(�) + Pi−1,j(�)

ℎ2r
.
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Analogous finite differences are considered for the partial derivatives of p with respect to V . In the case of the mixed derivative
)2p∕)r)V , we use the following formula which is obtained by successive application of the standard central finite difference for
the first derivative in the r and V variables

)2pi,j(�)
)r)V

≈
Pi+1,j+1(�) − Pi−1,j+1(�) + Pi−1,j−1(�) − Pi+1,j−1(�)

4ℎrℎV
, i = 1,… , mr − 1, j = 1,… , mV − 1.

All these finite difference approximations are of second order.
To compute numerically the integral term, we reduce the region of integration to a bounded interval: here, we consider the

same interval [rmin, rmax]. We approximate the integral by means of a quadrature rule7 with the step size ℎr,

Ji,j(�) = J (�, ri, Vj) ≈
mr
∑

l=0
Pl,j(�)

rl+ℎr∕2

∫
rl−ℎr∕2

f (z − ri) dz, i = 1,… , mr − 1, j = 1,… , mV − 1.

If we collect all these discretizations, we obtain a system of ordinary differential equations for the time derivatives P ′i,j(�),
i = 1,… , mr−1, j = 1,… , mV −1, involving the values of Pi,j(�), i = 0, 1,… , mr, j = 0, 1,… , mV . More precisely, we collect
all the approximations Pi,j(�), i = 0,… , mr, j = 0,… , mV , in a vector P(�) (we can use lexicographical order, for example).
Then, we define the functions F(1), F(2), F(D) and F(J ) with the components: for i = 1,… , mr − 1, j = 1,… , mV − 1,

F (1)i,j (P) = −1
2
(ri + �(ri, Vj))Pi,j + �

r (ri, Vj)
Pi+1,j − Pi−1,j

2ℎr
+ 1
2
V 2
j

Pi+1,j − 2Pi,j + Pi−1,j
ℎ2r

,

F (2)i,j (P) = −1
2
(ri + �(ri, Vj))Pi,j + �


V (ri, Vj)

Pi,j+1 − Pi,j−1
2ℎV

+ 1
2
�2V (ri, Vj)

Pi,j+1 − 2Pi,j + Pi,j−1
ℎ2V

,

F (D)i,j (P) = �(ri, Vj)Vj�V (ri, Vj)
Pi+1,j+1 − Pi−1,j+1 + Pi−1,j−1 − Pi+1,j−1

4ℎrℎV
,

F (J )i,j (P) = �(ri, Vj)
mr
∑

l=0

⎛

⎜

⎜

⎝

rl+ℎr∕2

∫
rl−ℎr∕2

f (z − ri) dz
⎞

⎟

⎟

⎠

Pl,j .

Now, F = F(1) + F(2) + F(D) + F(J ), and therefore,

P ′i,j(�) = Fi,j(P(�)), i = 1,… , mr − 1, j = 1,… , mV − 1. (13)

For the boundary points, we discretize the boundary conditions (11)-(12): we apply the forward (respectively, backward) finite
difference approximations for the first (respectively, last) grid point. For example, for r = r0 = rmin,

2 lnP0,j(�) − 5 lnP1,j(�) + 4 lnP2,j(�) − lnP3,j(�)
ℎ2r

= 0, j = 0,… , mV .

Using the exponential function we can explicit P0,j(�). Then, if we apply analogous approximations to each boundary, we obtain

P0,j(�) =

√

(P1,j(�))5P3,j(�)
(P2,j(�))4

, Pmr,j(�) =

√

√

√

√

(Pmr−1,j(�))
5Pmr−3,j(�)

(Pmr−2,j(�))
4

, j = 0,… , mV , (14)

Pi,0(�) =

√

(Pi,1(�))5Pi,3(�)
(Pi,2(�))4

, Pi,mV (�) =

√

√

√

√

(Pi,mV −1(�))
5Pi,mV −3(�)

(Pi,mV −2(�))
4

, i = 0,… , mr. (15)

Note that for the values P0,0, P0,mV , Pmr,0 and Pmr,mV we have two different expressions. In the practical implementation, we will
choose only one.
Finally, we discretize the time variable. We assume a constant time step size k = T ∕N and the temporal grid points �n = nk,

for n = 0, 1,… , N . Now, P n
i,j represents an approximation to Pi,j(�n). Starting from the grid restriction of the initial value

(10), we obtain a numerical approximation at the new time level �n+1, from the approximations at the previous time level �n.
To this end, we couple two different procedures. On the one hand, to compute the approximations at the inner grid points, we
apply a numerical time integrator to the previous system of ordinary differential equations (13) . On the other hand, to compute
the approximations at the boundary grid points, we use the technique of the artificial boundary condition discretization which
provides formulas (14)-(15).



6 GÓMEZ-VALLE ET AL

For the numerical time integration, we use a suitable modification of the HV method adapted to this boundary problem: the
MHV method. Note that the original HV method18 is well-established in the literature for option valuation20.
Therefore, the general time step provides Pn+1 from Pn for n = 0,… , N − 1, as follows

• Stage 1

Y 0i,j = P
n
i,j + kFi,j(P

n), i = 1,… , mr − 1, j = 1,… , mV − 1, (16)

• Stage 2

Y 1i,j = Y
0
i,j + �kF

(1)
i,j (Y

1 − Pn), i = 1,… , mr − 1, j = 1,… , mV − 1, (17)

Y 10,j =

√

√

√

√

(Y 11,j)
5Y 13,j

(Y 12,j)
4
, Y 1mr,j =

√

√

√

√

√

(Y 1mr−1,j)
5Y 1mr−3,j

(Y 1mr−2,j)
4

, j = 0,… , mV , (18)

Y 1i,0 =

√

√

√

√

(Y 1i,1)
5Y 1i,3

(Y 1i,2)
4
, Y 1i,mV =

√

√

√

√

√

(Y 1i,mV −1)
5Y 1i,mV −3

(Y 1i,mV −2)
4

, i = 1,… , mr − 1, (19)

• Stage 3

Y 2i,j = Y
1
i,j + �kF

(2)
i,j (Y

2 − Pn), i = 1,… , mr − 1, j = 1,… , mV − 1, (20)

Y 20,j =

√

√

√

√

(Y 21,j)
5Y 23,j

(Y 22,j)
4
, Y 2mr,j =

√

√

√

√

√

(Y 2mr−1,j)
5Y 2mr−3,j

(Y 2mr−2,j)
4

, j = 0,… , mV , (21)

Y 2i,0 =

√

√

√

√

(Y 2i,1)
5Y 2i,3

(Y 2i,2)
4
, Y 2i,mV =

√

√

√

√

√

(Y 2i,mV −1)
5Y 2i,mV −3

(Y 2i,mV −2)
4

, i = 1,… , mr − 1, (22)

• Stage 4

Ỹ 0i,j = Y
0
i,j +

1
2
kFi,j(Y2 − Pn), i = 1,… , mr − 1, j = 1,… , mV − 1, (23)

• Stage 5

Ỹ 1i,j = Ỹ
0
i,j + �kF

(1)
i,j (Ỹ

1 − Y2), i = 1,… , mr − 1, j = 1,… , mV − 1, (24)

Ỹ 10,j =

√

√

√

√

√

(Ỹ 11,j)
5Ỹ 13,j

(Ỹ 12,j)
4
, Ỹ 1mr,j =

√

√

√

√

√

(Ỹ 1mr−1,j)
5Ỹ 1mr−3,j

(Ỹ 1mr−2,j)
4

, j = 0,… , mV , (25)

Ỹ 1i,0 =

√

√

√

√

√

(Ỹ 1i,1)
5Ỹ 1i,3

(Ỹ 1i,2)
4
, Ỹ 1i,mV =

√

√

√

√

√

(Ỹ 1i,mV −1)
5Ỹ 1i,mV −3

(Ỹ 1i,mV −2)
4

, i = 1,… , mr − 1, (26)

• Stage 6

P n+1
i,j = Ỹ 1i,j + �kF

(2)
i,j (P

n+1 − Y2), i = 1,… , mr − 1, j = 1,… , mV − 1, (27)

P n+1
0,j =

√

√

√

√

√

(P n+1
1,j )

5P n+1
3,j

(P n+1
2,j )

4
, P n+1mr,j

=

√

√

√

√

√

(P n+1
mr−1,j

)5P n+1
mr−3,j

(P n+1
mr−2,j

)4
, j = 0,… , mV , (28)

P n+1
i,0 =

√

√

√

√

(P n+1
i,1 )

5P n+1
i,3

(P n+1
i,2 )

4
, P n+1

i,mV
=

√

√

√

√

√

(P n+1
i,mV −1

)5P n+1
i,mV −3

(P n+1
i,mV −2

)4
, i = 1,… , mr − 1, (29)

where � is a positive parameter. In the numerical experiments, in the next section, we assume � = 1 −
√

2
2
, as in the original

work of in’t Hout 21 .
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Note that stages 2, 3, 5 and 6 are implicit: we have to compute intermediate values Y by means of a nonlinear system that
can be written as Y = G(Y). Function G collects, on the one hand, the equations linking the inner values Yi,j , i = 1,… , mr − 1,
j = 1,… , mV − 1 (see, for example, equation (17) in stage 2) with all the components of Y. On the other hand, the equations
related to the boundary values

Y0,j , Ymr,j , j = 0,… , mV ,
Yi,0, Yi,mr , i = 1,… , mr − 1,

(see, for example, equations (18)-(19) in stage 2). In order to solve it, we consider an iterative procedure: starting from an initial
guess Y0) (for example, a suitable choice is Y0) = Pn) then, we compute, for � = 0, 1,…

Y�+1) = G(Y�)).

At each iteration � = 0, 1,…, we propose: first, computing the components of Y�+1) at the inner grid points

Y �+1)i,j = Gi,j(Y�)), i = 1,… , mr − 1, j = 1,… , mV − 1;

second, computing the boundary values

Y �+1)0,j = G0,j(Y�)), Y �+1)mr,j
= Gmr,j(Y

�)), j = 0,… , mV ,

Y �+1)i,0 = Gi,0(Y�)), Y �+1)i,mV
= Gi,mV (Y

�)), i = 1,… , mr − 1.

This iteration is repeated until the convergence is achieved. In practice, until the norm of the difference between two consecutive
iterants is sufficiently small (less than a prescribed tolerance).

4 NUMERICAL EXPERIMENTS

In this section, we test the artificial boundary conditions and the MHV method proposed in Section 3 on several interest rate
models. The first one possesses an explicit expression of its solution that we can use in order to compare the approximations.
For the second one, we do not know a closed-form solution.

Test problem 1: We study the term structure model proposed by Andersen et al. 1 that considers two state variables: the
instantaneous interest rate, which follows a jump-diffusion process, and its volatility, which follows a diffusion process. It is the
following affine model

dr = (k1(� − r) − �1V )dt +
√

V dW 
r + d

⎛

⎜

⎜

⎝

N(t)
∑

i=1
Xi

⎞

⎟

⎟

⎠

,

dv = (k2(� − V ) − ��2V )dt + �
√

V dW 
V ,

and the zero-coupon bond price is

p(t, r, V ; T ) = e A(T−t)+B(T−t)r+C(T−t)V ,

(see the work of Andersen et al. 1 for the expressions of A, B and C , and the estimated values of the parameters).
In order to approximate this solution with the MHV method, first, we change the time variable as in (9). Then, we have to

apply the numerical method to the following PIDE

p� = (k1(� − r) − �1V )pr + (k2(� − V ) − ��2V )pV +
1
2
V prr +

1
2
�2V pV V + ��V prV

− (r + �)p + �
∞

∫
−∞

p(�, r + y, V )f (y)dy, (30)

with the initial condition (10). Second, we introduce the artificial boundary conditions (11)-(12), then, previously we have to
consider a truncated domain at the state variables. This domain window should be chosen wide enough to describe faithfully
the dynamic of the model. However, if the window is too wide, the computational cost will increase, and the method will lose
efficiency. Therefore, in the numerical experiments we make a balance between both difficulties to fix the domain window.
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Taking into account the financial meaning of the state variables, we chose [rmin, rmax] × [Vmin, Vmax] = [−0.02, 0.48] × [0, 0.5],
which is suitable to represent the dynamics of the problem.
In our first experiment we approximate the zero-coupon bond prices for several maturities, then, we compare the computed

yield values that we obtain by means of (6), with the exact ones, at the grid points. In the simulations, we take the same step
sizes for both state variables and, to show the convergence, we consider successive refinements of the step sizes dividing them
by two. In Table 1 , we present the numerical errors for the yields at maturity T = 10 over the mesh grid: more specifically,
we show the maximum error over the grid points (the maximum norm). We observe that there exist values of the step sizes
which do not provide satisfactory approximations: as usual in the literature a relation between the step sizes is necessary. Note
that in each column the errors do not change practically: we do not obtain an increase in the accuracy under time refinement.
However, in each row the errors go to zero as the step in the state variables decrease. Therefore, the error mainly comes from the
discretization of the state variables. In order to observe the order of convergence, it is usual to compare the errors in the same
diagonal. In this table, we show the experimental order of convergence in brackets, and we observe that it is of the second order.

k∖ℎr = ℎV 1.2500e-1 6.2500e-2 3.1250e-2

5.0000e-2 1.0614e-02

2.5000e-2 1.0594e-02

1.2500e-2 1.0589e-02 2.8512e-03
(1.9)

6.2500e-3 1.0588e-02 2.8485e-03
(1.9)

3.1250e-3 1.0588e-02 2.8478e-03 7.4785e-04
(1.9) (1.9)

1.5625e-3 1.0587e-02 2.8477e-03 7.4766e-04
(1.9) (1.9)

TABLE 1 Errors for 10-year maturity yields obtained with the MHV method in test problem 1. In brackets, the experimental
order of convergence comparing the diagonal entries.

Our next goal is to prove the efficiency of the MHV method. To this end, we measure this property by comparison of the
accuracy offered with respect to the computational cost required. Again, mr = mv, that we denote asM .
In Figure 1 , we present the results through a log-log efficiency chart where the vertical axis measures the errors in yields

(in the maximum norm) and the horizontal axis corresponds to the cost (in CPU time). The stars joined by a solid line are the
results of the method withM = 4, 8, 12, 16, 20 andN = 100, 200, 300, 400, 500.
On the other hand, we compare the results with those obtained with another numerical technique very common in this kind

of problems. In the finance literature, when a closed-form solution of a PIDE like (30) is unknown, it is usually expressed as the
conditional expectation (5) by the Feynman-Kac Theorem. Then, zero-coupon bond prices are usually approximated by means
of MCmethod. This method approximates this expectation with a great number of paths of the state variables r and V . However,
this method involves a high computational cost and produces a low accuracy. For the test problem, we have carried out many
computations with different numbers of simulations, denoted by S. In Figure 1 , the stars joined by the dashed line are the
results with the MC method for S = 2000, 4000, 16000, 52000, 60000. We observe that for a similar computational cost, the
MC method produces higher errors than the MHV method. In fact, in order to obtain 3 decimals of accuracy with this method
we need a day of CPU time. However, with the MHV method this accuracy is obtained in less than a second of computation.
In order to analyze the advantages of the previous artificial boundary conditions, we also price the same zero-coupon bonds

with the HVmethod considering other usual boundary conditions: the restriction of the PIDE to the boundary, that we discretize
by means of backward and forward finite difference formulas.
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FIGURE 1 Log-log efficiency chart for the 10-year yield approximations with the MHV and MC methods in test problem 1.

volatility
0 0.1 0.2 0.3 0.4 0.5

yi
el

d

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06
r=5.5%

interest rate
0 0.05 0.1

yi
el

d

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

v=0.175

FIGURE 2 3-year yield profiles as function of the volatility when r = 0.05 (left), and the interest rate when V = 0.175 (right)
with the HV and MHV methods in test problem 1.

Figure 2 , depicts some profiles of the 3-year yield. The left picture shows the yield as a function of the volatility along the
whole interval, for a fixed value of the interest rate (in this case, r = 0.05: a common value of the interest rates in the financial
market). The right picture plots the yield as a function of the interest rate only along a truncated interval with financial relevance,
for a fixed value of the volatility (in this case, V = 0.175: a common value of the volatility in the financial market). The exact
solution of the PIDE is represented by a solid line, the approximations with the usual boundary conditions by plus signs and
the approximations using the new boundary conditions by asterisk signs. We observe that the approximations obtained with the
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(M,N) ||R(2M, 2N) − R(M,N)||∞ (
ℎ) ||R(M,N) − R̃(S)||∞

(4,40) 1.1244e-04
(8,80) 7.8211e-05 3.8774e-05
(16,160) 2.0571e-05 (1.9) 2.7688e-05
(32,320) 5.5835e-06 (1.9) 2.4761e-05

TABLE 2 Numerical results for the 10-year yields in test problem 2. Second column: comparison of consecutive approxima-
tions obtained with the MHV method (experimental order of convergence in brackets). Third column: comparison of the MHV
approximations with the MC approximations (S = 80000).

MHV method are the closest to the exact yields, they are practically the same. On the one hand, from the left picture the higher
the volatility is, the higher the difference. But, from the right picture, the differences between the exact yields and those obtained
with the usual boundary conditions increase slightly when the interest rates decrease. We have observed in our computations
that, for greater values of the maturity the different behaviour is more remarkable.

Test problem 2: We study the interest rate model proposed by Cotton et al. 9 . In this case, we have two state variables, the
interest rate and another variable which provides the volatility of the interest rates. However, following (3), we add a jump term
in the interest rate stochastic process. Then, the stochastic processes in this model are

dr = (k1(� − r) − �g(s))dt + g(s)dW 
r + d

⎛

⎜

⎜

⎝

N(�)
∑

i=1
Xi

⎞

⎟

⎟

⎠

,

ds = k2(� − s)dt + �
√

Y dW 
s .

In this case, we do not know a closed-form solution in order to compare the numerical approximations obtained by means of the
MHV method. For the numerical experiments, we consider the parameter values estimated in Cotton et al. 9 , and we assume
that the volatility of the interest rate is the positive function g(s) = e s. Then, for pricing the corresponding zero-coupon bonds,
we have to solve the PIDE:

p� = (k1(� − r) − �es)pr + k2(� − s)ps +
1
2
e2sprr +

1
2
�2spss + ��sprs − (r + �)p + �

∞

∫
−∞

p(�, r + y, s)f (y) dy,

with the initial conditions (10).
We apply the proposed MHVmethod: we take the same truncated domain used in the previous test problem. We calculate the

zero-coupon bond prices with a maturity equal to 10 years. In order to analyze the convergence of the approximations, taking
into account that the solution is unknown, we compute the experimental order of convergence by means of the comparison
between two consecutive prices obtained by the refinement of the step sizes. Denoting by R(2M, 2N) the approximation at the
meshgrid of the yield obtained by the MHV method with mr = mV = M , for the state variables, and N , for the time variable,
we compute the experimental order of convergence in the standard way


ℎ = log2
||R(4M, 4N) − R(2M, 2N)||∞
||R(2M, 2N) − R(M,N)||∞

. (31)

Second column of Table 2 shows the results, which are compatible with the expected order of convergence observed in the
previous test problem. Finally, we compare the approximations provided by the MHV method with those computed with the
MC method, denoted by R̃(S), where S is the amount of simulations. Last column of Table 2 offers this comparison when
S = 80000, a sufficiently large number to assure that the approximation is hard to improve with the MC method. We observe
the convergence of the MHV approximations to the same values obtained with the MC method.
All the implementations have been done using MATLAB.
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5 CONCLUSIONS

In the finance literature, interest ratemodels are usually considered to be affine because a closed-form solution is always known. If
the functions of the stochastic processes are assumed to be more realistic, an exact solution of the model is, in general, unknown.
In such cases, numerical methods are the most important way to approximate the solution. On the one hand, the MC method is
one of the most common techniques in the zero-coupon bond pricing. Although, it is very expensive from a computational point
of view and not very accurate. On the other hand, other kind of methods, such as finite difference methods, require a bounded
region for the state variables. However, this kind of problems typically involves a pure initial value problem.
When the interest rate is the single state variable, different numerical methods have been proposed for solving the pricing

equation, jointly with well-stablished boundary conditions. Nevertheless, this is not the situation when there are two or more
state variables: the usual conditions for the one-factor models expand the error from the boundary to all the integration interval.
In this paper, we focus on approximating zero-coupon bond prices in a two-factor jump-diffusion model, where the state

variables are the interest rates and the volatility. The problem consists of a partial integro-differential equation with a final
condition. Then, for its numerical approximation, we introduce artificial boundaries in the domain that must be discretized.
Here, we propose new boundary conditions based on the discount function properties of the bond prices. We discretize these
boundary conditions and show how to incorporate them in an ADI method in order to approximate the solution.
An extensive numerical simulation in two different interest rate models shows that this new numerical procedure is a very

valuable tool in the approximation of this kind of financial derivatives: it provides approximations of second order, is more
efficient than the MC method and fits the profile of the solutions better than other artificial boundary conditions. Besides, this
technique can be adapted easily to other numerical methods.
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