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Abstract — As microprocessor design scales to nanometric 
technology, traditional post-silicon validation techniques are 
inappropriate to get a full system functional coverage. Physical 
complexity and extreme technology process variations introduce 
design challenges to guarantee performance over process, voltage, 
and temperature conditions. In addition, there is an increasingly 
higher number of mixed-signal circuits within microprocessors. 
Many of them correspond to high-speed input/output (HSIO) 
links. Improvements in signaling methods, circuits, and process 
technology have allowed HSIO data rates to scale beyond 10 
Gb/s, where undesired effects can create multiple signal integrity 
problems. With all of these elements, post-silicon validation of 
HSIO links is tough and time-consuming. One of the major 
challenges in electrical validation of HSIO links lies in the 
physical layer (PHY) tuning process, where equalization 
techniques are used to cancel these undesired effects. Typical 
current industrial practices for PHY tuning require massive lab 
measurements, since they are based on exhaustive enumeration 
methods. In this paper, direct and surrogate-based optimization 
methods, including space mapping, are proposed based on 
suitable objective functions to efficiently tune the transmitter and 
receiver equalizers. The proposed methodologies are evaluated by 
lab measurements on realistic industrial post-silicon validation 
platforms, confirming dramatic speed up in PHY tuning and 
substantial performance improvement. 

Index Terms — ANN, Broyden, channel, crosstalk, CTLE, DoE, 
equalization, Ethernet, eye diagram, FIR, HSIO, ISI, jitter, 
Kriging, metamodels, optimization, PCIe, post-silicon validation, 
receiver, SATA, SFP, signal integrity, space mapping, surrogates, 
system margining, transmitter, tuning, USB. 

I. INTRODUCTION

Technology scaling and advanced silicon packaging 

techniques are allowing high density integration. However, as 

process technologies scale down to nanometric dimensions, 

traditional IC design methods are challenged by the problem 

of increased silicon process variation. The combined effects of 

increased product complexity, performance requirements, and 

time-to-market (TTM) commitments have added tremendous 

pressure on post-silicon validation [1].  

A significant portion of the circuits to be validated in 

modern microprocessors corresponds to high-speed 

input/output (HSIO) links. Undesired effects such as jitter, 

inter-symbol interference (ISI), crosstalk and others, can create 

multiple signal integrity problems in HSIO circuits, making 

maximum bus speeds difficult to achieve in practice. This 

problem is aggravated by the fact that channel speeds keep 

increasing from one generation bus technology to the next one. 

This is of particular concern for HSIO interfaces, such as 

Peripheral Component Interconnect Express (PCIe), Serial 

Advanced Technology Attachment (SATA), Universal Serial 

Bus (USB), and Ethernet interfaces. 

Training algorithms and physical layer (PHY) tuning are 

two important components in modern HSIO links. PHY tuning 

knobs are usually embedded in the I/O links, and can be 

digitally tuned to appropriate values. Considering the large 

die-to-die process variations, as well as the typical fluctuations 

in operating conditions, board impedance, channel loss, and 

different add-in cards/DIMMs, the performance of HSIO links 

can exhibit large variation. PHY tuning provides a way to 

reconfigure I/O links to cancel various fluctuations. However, 

it is usually unknown in pre-silicon which configuration gives 

the overall best performance, becoming necessary to search for 

“optimal” PHY tuning knob configurations. Most current 

industrial practices to perform PHY tuning consist of 

exhaustive enumeration methods, turning them into the most 

time-consuming processes in post-silicon validation [2]. 

This paper presents several optimization techniques based 

on novel objective functions to optimize the transmitter (Tx) 

and receiver (Rx) equalizers in a server post-silicon validation 

platform. This paper essentially summarizes [2], [11] and [25]. 

The rest of the paper is organized as follows. Section II 

presents an overview on PHY tuning. Section III describes a 

holistic optimization approach that merges system margining 

and jitter tolerance measurements to optimize the Rx 

equalizer. An efficient optimization methodology is proposed 

in Section IV to find out the optimal coefficients for a 

reconfigurable finite impulse response (FIR) filter used on a 

Tx Ethernet interface. In Section V, a new optimization 

methodology is proposed to find optimal coefficients for the 

Tx and Rx in a PCIe equalization (EQ) process. In Section VI, 

a neural modeling approach is described to efficiently simulate 

the silicon equalizer Rx. In Section VII, the Broyden-based 

input space mapping algorithm is exploited to optimize the 

PHY tuning Rx equalizer. Finally, in Section VIII are 

discussed the overall results of the proposed techniques. 

This is the author's version of an article that has been published in this conference. Changes were made to this version by the 
publisher prior to publication. The final version is available at http://dx.doi.org/10.1109/TEST.2018.8624794 



 

BER Tester

Validation Platform

USB3 Port

Thermal Controller

3 meter cable

Host Test 
Fixture 2

Temperature control

BERT Automation

Rx

Tx

j=1, ,k knob
combinations

Eye Diagram
Measurements

Host Test 
Fixture 1

JTOL
Measurements

x 

U(x) 

Kriging Model

SILICON

 
Fig. 2. The holistic methodology test setup for USB system 
margining and JTOL optimization. From [2]. 

II. POST-SILICON PHY TUNING 

As mentioned before, modern process technologies 

introduce large silicon process variation. Different techniques 

exist to maximize yield based on statistical design for analog 

circuits, and these techniques usually fall into two categories: 

design-time optimization and post-silicon tuning [3].  

Design-time optimization techniques explore the design 

space at system- and device-level to maximize the yield. 

However, accurate simulation models for the complete system 

are computationally very expensive. On the other hand, post-

silicon tuning has been widely adopted to confront the silicon 

process variation. Tunable elements are proposed to adjust the 

analog circuit performance after chip fabrication [4], [5], 

allowing to reconfigure I/O links to cancel the effects of 

system channels’ variability [6]. PHY tuning settings include: 

parameters of an equalizer at the Tx, Rx, or both; the clock 

and data recovery circuit settings; variable gain amplifiers; 

baud-spaced FFE in the Tx, and the bias voltages or currents 

values, among others [7]. A typical system may have hundreds 

of combinations of EQ parameter values. Finding the optimal 

PHY settings that guarantee the bit error rate (BER) required 

by an industrial specification is called PHY tuning. 

III. HSIO RECEIVER EQUALIZATION BY SURROGATE BASED 

OPTIMIZATION 

To perform PHY tuning at the Rx, either Rx eye diagram 

margins [8] are measured and optimized, or jitter tolerance 

(JTOL) tests [9] are executed until measurements comply with 

the link specifications. Next, a trade-off analysis is done to 

arrive at a single set of EQ values that satisfy both test 

scenarios. In [2] we present a holistic approach to concurrently 

optimize Rx system margins and JTOL. 

A. System Test Setup 

The proposed holistic methodology was tested in a post-

silicon industrial environment, using an Intel server platform 

(see Fig. 1), comprised mainly of a host central processing unit 

(CPU) and a platform controller hub (PCH). Within the PCH, 

our methodology was tested on a USB3 Gen 1 HSIO link [10]. 

A new test setup was designed to combine both types of 

measurements, as shown in Fig. 2. We stress the Rx with a 

BER tester, sending a USB3 compliant pattern including all 

jitter impairments as per specification. The channel 

configuration is set as “far-end” using test fixtures and a 3-

meter cable. The host computer is capable of accessing Rx 

knobs and sending commands to the BER tester in order to 

increase the jitter amplitude and frequencies. Then, we 

measure the system margins based on a process called system 

margin validation (SMV) [11], which is a methodology to 

assess how much margin is in the design with respect to silicon 

processes, voltage, and temperature, by using an on-die test 

circuitry. We sweep the jitter amplitude at the specification 

frequencies to obtain JTOL results. The pass/fail criterion is 

given by the specification limits, known as JTOL mask.  

B. Objective Function Formulation 

Let Rm  2 denote the electrical system margins response, 

consisting of the width ew   and height eh   of the 

functional eye diagram, 
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Both the eye width and height are function of the EQ knobs 

settings (x), the operating conditions (), and the devices (). 

We aim at finding the optimal knobs x* to maximize the 

functional eye diagram area. However, depending on  and , 

the eye diagram can be decentered with respect to the eye-

width (asymmetry ewa), eye-height (asymmetry eha) or both. 

Hence, the objective function must consider the asymmetries. 

The area of the eye diagram and the asymmetries must be 

scaled by weighting factors w1, w2, w3   such they become 

comparable. Hence, an objective function is defined as 
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and the optimization problem for system margining is 

 * arg min ( )u
x

x x  (3) 

 
Fig. 1. An Intel post-silicon validation platform. 



 

 
Fig. 4. JTOL testing results: comparing the proposed methodology 
against the initial design and the trade-off approach. From [2]. 

The holistic approach is realized by adding a JTOL penalty 

function to (3), such that we find EQ knobs settings that 

optimize the functional eye diagram and simultaneously 

satisfies the JTOL specified mask. The JTOL system response, 

RJ  , consists of measurements of the sinusoidal jitter 

amplitude, 

 ),,(),,( JAJJ δψxSδψxRR   (4) 

where SJA is the sinusoidal jitter amplitude. The new 

optimization problem is then defined as 
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x
x x   subject to 0)( xg  (5) 

where g(x) = SJAspec SJA; SJAspec is the JTOL spec mask. 

We can define an objective function that covers both the 

electrical margining system and the JTOL system responses, 
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where r0
g   is a penalty coefficient and G(x) is the JTOL 

penalty vector function defined as, 

  )(,max)( xgxG 0  (7) 

C. Surrogate Model and Optimization 

To minimize (6), a surrogate-based optimization strategy is 

followed. Kriging [12] is selected as the underlying modeling 

technique, given its adequacy for dealing with multiple optima 

and non-continuous responses. Our implementation uses the 

Matlab Kriging toolbox DACE [13]. To enhance the efficiency 

of our approach, DoE is applied for sampling data. 

D. Results 

The Rx knobs settings obtained through the optimization 

process were verified by measuring both the Rx inner eye 

height/width and jitter tolerance of the PCH. The optimized 

knobs setting showed an improvement of 175% on eye 

diagram area as compared to the initial knobs setting, and a 

34% improvement as compared with the traditional (tradeoff) 

approach, as shown in Fig. 3. Similarly, the jitter tolerance 

results showed a substantial improvement with margins well 

above the specification limit template, as seen in Fig. 4. The 

efficiency of this approach was also demonstrated by a 

significant time reduction on post-silicon validation. While the 

traditional process requires days for a complete optimization, 

the method proposed here can be completed in a few hours. 

The technique can easily be applied to other interfaces such as 

SATA and PCIe, as demonstrated in [2]. 

IV. ETHERNET TRANSMITTER EQUALIZATION BY DIRECT 

OPTIMIZATION 

Transceiver modules, such as some Ethernet protocols like 

the 10-Gigabit Small Form Factor Pluggable (XFP/SFP) and 

Enhanced SFP (SFP+), are regulated by specifications that 

ensure consistency between suppliers with requirements for 

eye mask measurements. These eye mask definitions specify 

Tx output performance in terms of voltage amplitude and time 

[14]. Per Ethernet IEEE standard [15], the equalization for 

SFP+ Tx may be accomplished with a feedforward equalizer 

(FFE) 3-tap FIR filter. The filter response can be adjusted by 

controlling the tap number and coefficients values. 

Several FIR filter coefficients optimization techniques have 

been reported [16], [17], [18]; however, all of them are 

applied at design simulation level. SFP+ Tx FIR filter is not 

self-adaptive, and then PHY tuning is required during post-

silicon validation, being the current practice based on 

exhaustive enumeration methods. 

In [19], we propose a simple yet efficient optimization 

technique for a reconfigurable FIR filter used in a SFP+ Tx, by 

defining an effective objective function and by using direct 

numerical optimization in a post-silicon validation platform. 

A. System Test Setup 

The test setup is shown in Fig. 5. The eye diagram of the 

device under test (DUT) is measured at the end of the SFP+ 

connector using subminiature cables connected to a high-

speed, real time oscilloscope. The oscilloscope has enough 

bandwidth capabilities to measure at least the 5th harmonic of 

the incoming signal and capabilities for S-parameters de-

embedding to eliminate cables insertion loss. A computer 

executes the algorithm using a fully automated control by 

accessing the DUT through the test access points registers for 

the FFE coefficients, sending instruments commands for eye 

diagram, jitter, and histogram measurements on the scope. 

 
Fig. 3. Eye width vs eye height: comparing proposed methodology 
against the initial design and the trade-off approach. From [2]. 



 

B. System Measurements 

The definition for eye height is derived from computing the 

difference between the inner 3 points on the inside of the 

histograms of the one and zero levels, as shown in Fig. 6, 

where  is the standard deviation of the histograms. The eye 

width is essentially the effective distance between the inner 

two 3 points on the time histograms. To compute jitter, time 

variances of the rising and falling edges of an eye diagram at 

the crossing point are captured (see Fig. 6). The time 

histogram is analyzed to determine the amount of jitter. The 

peak-to-peak jitter is defined as the full width of the histogram, 

meaning all data points present. 

C. Objective Function Formulation and Optimization 

Let RE  3 denote the signal integrity system response, 

which consists of the eye amplitude histogram mean high hH, 

the histogram mean low hL, and the total jitter JT on the eye 

diagram, 

  TTLH ),(),(),(),( ψxψxψxψxRR JhhEE   (8) 

RE is a function of the PHY tuning settings x  N (FIR tap 

coefficients) and the operating conditions . The eye height eh 

  is obtained from 

 LLHHh 3),(h3),(h),(e    ψxψxψx  (9) 

where H and L are the standard deviation of the histogram 

mean high and the histogram mean low, respectively. 

Since we want to maximize the eye diagram, our initial 

objective function consists simply of eh, however, as the eye 

width is a function of the total jitter JT, we must consider JT in 

the objective function formulation. eh and JT must be scaled by 

weighting factors w1, w2,   such that they become 

comparable. Therefore, the objective function is defined as 

    ),(),()( T2h1 ψxψxx Jwewu   (10)

 
The optimization problem for the signal integrity system is  
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We now modify the optimization problem such that the 

optimal set of coefficients maximizes the eye diagram without 

exceeding the mask limits. The new optimization problem can 

be defined through a constrained formulation, 
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where Vub
H and Vlb

L are the eye mask specification limits: 

voltage high upper bound, and voltage low lower bound, 

respectively. A more convenient unconstrained formulation 

can be defined by adding a penalty term, as 

     2
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where 0
l   is a penalty term and L(x) is the eye mask limit 

penalty function defined as 

  )(),(,0max)( 21 xxx llL   (16) 

Our final objective function to optimize eye diagram and 

meet eye mask specification is 

 )(minarg*
xx

x
U  (17) 

We find the optimal set of FIR coefficients values x* by 

solving (17) with (15) using the Nelder-Mead method. 

D. Results 

When the FIR input signal becomes a pseudo-random bit 

sequence (PRBS) of length (231 1) with a 10.3125 Gbps data 

rate, the resultant eye diagram is shown in Fig. 7. The eye 

diagram is significantly distorted, with an eye height and eye 

width of 270 ticks and 189 ticks, respectively. Fig. 7 also 

shows the zero crossing points on the horizontal axis are not 

compressed enough, leading to high jitter measurements. 

After applying the proposed optimization process, we get 

optimal Tx EQ coefficients in just 35 iterations. The optimized 

coefficients substantially improve eh and ew, as shown in Fig. 

8, being now 864 ticks and 257 ticks, respectively, which 

corresponds to a 252% improvement as compared to that one 

with the initial coefficients. The efficiency of this approach 

was also confirmed by a dramatic time reduction in post-

silicon validation, from 4 days in the traditional process based 

on exhaustive search, to just 2 hours in the proposed method. 

V.  PCIE TRANSCEIVER EQ BY DIRECT OPTIMIZATION 

PCIe is one of the most complex HSIO interfaces [20]. PCIe 

is a packet based high-speed point-to-point interconnection 

 
Fig. 5. Test setup for SFP+ Tx optimization. From [19]. 
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technology that evolves with new computer industrial demands 

[21], and it is the primary interface for a CPU to connect with 

I/O devices.  

The PCIe specification defines an adaptive mechanism for 

EQ to determine the optimum value of the Tx and Rx EQ 

coefficients within a fixed time limit. Testing every 

coefficients combination using an exhaustive enumeration 

method to find the best one is very time consuming. To speed 

up this selection, the current practice is to find a subset of 

coefficient combinations during post-silicon validation, and 

then program it into the system BIOS. The current industrial 

method to find the best subset of coefficients consists of using 

maps of EQ, which are intuitive visual indicators that help 

experienced post-silicon validation engineers to find the 

optimal coefficient combination by inspection. 

In [22], we propose a simple yet efficient optimization 

methodology to find the optimal subset of coefficients for the 

Tx and Rx in a PCIe equalization process, here summarized. 

A. Tx and Rx Equalizers 

Most Tx serializer-deserializer implementations comprise a 

FFE 3-tap FIR filter. Cm, C0, and Cp represent the three filter 

taps coefficients. The EQ topology at the Rx may be a 

combination of a continuous-time linear equalizer (CTLE) that 

works independently of the clock recovery circuit, and a 

decision feedback equalizer (DFE). The CTLE is a simple 

one-tap coefficient (Cr) continuous-time circuit with high-

frequency gain boosting, whose transfer function can 

compensate the channel response [23]. 

B. Transmitter Equalization Coefficient Matrix 

The values of the Tx coefficients are subjected to the 

following protocol constraints: 

 0,0,0tosubject1 pm0p0m  CCCCCC (18) 

These constraints are implemented by determining only Cm 

and Cp, being C0 implied by (18). Additionally, the 

coefficients range and tolerance are constrained by some 

requirements, as follows. 

The coefficients must support all eleven values for the 

presets, and their respective tolerances, as defined by the Tx 

preset ratios table in the PCIe specification [21].  

In order to keep the output-transmitted power constant with 

respect to coefficients, a full swing (FS) indicates the 

maximum differential voltage that can be generated by the Tx, 

 p0m CCCFS   (19) 

The flat level voltage should always be greater than the 

minimum differential voltage that can be generated by the Tx, 

indicated as the low frequency (LF) parameter, 

 LFCCC  pm0  (20) 

When the above constraints are applied, the resulting 

coefficients space may be mapped onto a triangular matrix, as 

shown in Fig. 9, where several EQ maps, one per Cr value, are 

superimposed. Cm and Cp coefficients are mapped onto the y- 

and x-axis, respectively. Each matrix cell corresponds to a 

valid combination of Cm and Cp coefficients, and u(x*) 

correspond to a combination of Cm, Cp and Cr that results in an 

eye diagram qualified as optimum. 

Three EQ maps are generated for each of Cr value, and each 

lane and device pairing may require one or more EQ maps. 

Current industrial methods, used by experienced validation 

engineers, consists of visually analyzing each EQ map to select 

the coefficients Cm and Cp for the FIR filter in the Tx, and Cr 

for the CTLE in the Rx, that correspond to an eye qualified as 

optimum. However, this has to be done by ensuring at the 

same time that the responses around the best Cm-Cp matrix cell 

are at least 80% the value of that matrix cell (see Fig. 9). Due 

to the large number of EQ maps, finding the optimal subset of 

coefficients is usually a very challenging task. 

C. Objective Function Formulation and Optimization 

We aim at finding the optimal set of coefficients to 

maximize the functional eye diagram based on the margin 

response. Here we follow our work in [2] to define the 

corresponding initial objective function. 

As described in previous section, we need to ensure the 

optimal system margin response is within a suitable area in the 

coefficients search space of the EQ map. In order to satisfy 

this requirement, the four margin responses around u(x*) must 

be at least 80% of the value of u(x*), as shown in Fig. 9, where 

ui,j are the objective function values for the i-th Cm and j-th Cp 

values, being Cm and Cp the vectors of Tx FIR pre-cursor and 

post-cursor values, respectively, and Cr is the vector of Rx 

CTLE coefficient values. This avoids selecting an optimal 

solution with a too high sensitivity. 
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Fig. 7. Eye diagram over mask before optimization. From [19]. 
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Fig. 8. Eye diagram over mask after optimization. From [19]. 



 

We now modify the optimization problem such that the 

optimal set of coefficients maximizes the system margins 

response without exceeding the limit of 0.8u(x*) in the 

vicinity. The optimization problem can be defined through a 

constrained formulation, 
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where Cmi* and Cpi* are the set of coefficients that maximize the 

margins response for each of the Cr values. 

A more convenient unconstrained formulation can be 

defined by adding a penalty term, as 
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where 0
l   is the penalty coefficient and L(x) is a corner 

limits penalty function, defined as 

  )(),(),(),(,0max)( 4321 xxxxx llllL   (27) 

Then, we aim at finding the optimal set of coefficients 

values x* by solving (17) with (26) as objective. 

The combination of pattern search and the Nelder-Mead is a 

good approach to deal with our objective function (26) that 

contains many local minima. We start the optimization with 

pattern search, which serves for exploring the design space 

until finding a potential region where the global minimum is 

located. Then, the solution found by pattern search is used as 

seed for the Nelder-Mead method, which further minimizes the 

objective function for a more precise solution. 

D. System Test Setup 

The system under test is an Intel post-silicon validation 

platform. The PCIe link is exercised at the packet level with a 

protocol add-in test card which emulates the external device, 

as shown in Fig. 10. Measurements are based on the SMV 

process. The optimization algorithm described in the previous 

section is implemented in Python, using the SciPy [24] 

modules for Nelder-Mead and pattern search algorithms. 

E. Results 

Through the optimization process defined in Section V.C, 

we arrive to a set of Tx and Rx coefficients in just 47 

iterations, as shown in Fig. 11, which are executed in 4 hours. 

A comparison on eye diagrams between the proposed 

methodology against the initial design and the exhaustive 

method is shown in Fig. 12. The optimized equalization 

coefficients yield an eye diagram with an eh and ew being now 

30 ticks and 27 ticks, respectively, which corresponds to an 

improvement of 35% on eye diagram area as compared to that 

one with the initial coefficients. Even though the optimized 

coefficients show an eye diagram area decrease of 6% as 

compared to the exhaustive method, the efficiency of this 

approach is demonstrated by the reduction of the eye diagram 

asymmetries, and a significant time reduction in post-silicon 

validation. While the exhaustive method requires a few days 

for EQ maps data collection and analysis for a complete 

optimization (prone to human errors), the method proposed 

here can be completed in just 4 hours. 

VI. HSIO RECEIVER COARSE SURROGATES MODELING 

In [25], we propose a metamodeling approach, based on 

artificial neural networks (ANN), to efficiently simulate the 

silicon Rx equalizer. The model is generated using a frugal set 

of training data exploiting several DoE approaches to reduce 

the number of test cases. We evaluate the neural model 

performance by comparing with actual measured responses. 

The proposed methodology is illustrated by modeling two 

industrial HSIO topologies: USB3 Gen 1 and SATA Gen 3. 

A. ANN Topology 

Multilayer perceptrons are feedforward networks widely 

used as the preferred ANN topology. Since a 3-layer 
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Fig. 9. EQ map coefficients search space for optimization [22]. 
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Fig. 10.  PCI Express setup: an Intel server post-Si validation [22]. 



 

perceptron (3LP) is in principle sufficient for universal 

approximation [26], we use a 3LP to implement our 

neuromodel, with n inputs (equal to the number of Rx knobs), 

h hidden neurons, and m outputs (number of system responses 

of interest). The required complexity of the ANN, determined 

by h, depends on the generalization performance for a given 

set of training and testing data [27]. Following [28], we 

gradually increase h during training for regularization. 

B. ANN Modeling and Training 

Here we follow our work in [2] to define the corresponding 

objective function. The ANN is trained to find an optimal 

vector of weighting factors w, such that the ANN response, 

denoted as Rs, is as close as possible to the fine model 

response for all x, ,  in the region of interest, 

 ),,(),,,( fs δψxRwδψxR   (28) 

The ANN main input-output relationship is denoted as 

 )(xfR s  (29) 

We aim to develop a fast and accurate ANN model for f by 

training the ANN with a set of measured learning data. The 

learning data are pairs of (xL, tL), with L = 1, 2…, l, where tL 

contains the desired outputs or targets (obtained from 

measurements) for the ANN model at the xL inputs, with l as 

the total number of learning samples. During training, we keep 

fixed the system at voltage/temperature (VT) nominal 

conditions and without changing the external devices. Under 

these conditions,   and   remain constant. Therefore, the 

ANN model during training is treated as 

 ),(ss wxRR LL   (30) 

The ANN performance during training is evaluated by 

computing the difference between ANN outputs and the 

targets for all the learning samples, 

   LLLL twxRwE  ,)( s  (31) 

where EL is the learning error matrix.  

Following [28], the problem of training the ANN is 

formulated as 

 
FL )(minarg wEw

w
  (32) 

To control the generalization performance while solving 

(32), we use T testing base points (xT) not used during training. 

The scalar learning and testing errors are given by  

  
FLLLL fs , RwxR   (33) 

  
FTTTT fs , RwxR   (34) 

where RfT and RsT are the output matrices of the fine model and 

ANN model, respectively, at the T testing base points, and RfL 

is the fine model response at the L learning base points. 

The 3LP is trained by using the Bayesian regularization [29] 

method available in MATLAB Neural Network Toolbox. The 

algorithm for training the ANN is shown in [25]. We first 

define the learning ratio to split the pairs of inputs and targets 

into the learning and testing datasets. Then, we use a 

decoupling network process with initial set of inputs and 

outputs to compute initial weighting factors w0 and 

corresponding initial error T
old. We start training the 3LP with 

just one hidden neuron (h = 1), and calculate the 

corresponding learning and testing errors. We keep increasing 

the complexity of the ANN (h) until the generalization 

performance starts to deteriorate [25]. 

C. Experimental System Configuration and DoE Approaches 

The system under test is a server post-silicon validation 

platform, comprised of a CPU and a PCH. Within the PCH, 

our methodology was tested on two different HSIO links: 

USB3 Super-speed Gen 1 and SATA Gen 3. The measurement 

system is based on the SMV process. 

We employ three different DoE techniques to explore the 

desired solution space with a reduced number of test cases. For 

each test case, we use seven input variables that represent Rx 

knobs (n = 7), which are settings used in three main Rx 

circuitry blocks (CTLE, VGA, and CDR), and then we retrieve 

the eye measurements from the system under test. The 

employed DoE techniques are: 1) Box Behnken (BB), which is 

type of second order response surface methodology (RSM) 

[30], using 62 experiments; 2) orthogonal arrays (OA) [31], 

using an L27(39) array in order to capture non-linear effects in 

the objective function by only running 27 experiments; and 3) 

Sobol [32] low-discrepancy sequence to sample the solution 

space. Given the quasi-Monte Carlo sampling approach of 

 
Fig. 12. Eye diagram results: comparing the proposed methodology 

(Rf(x*)) against the initial design (Rf
(x0)) and the exhaustive method 

(Rf(x*exhaustive)). From [22]. 

 
Fig. 11. Objective function values across iterations. From [22]. 



 

Sobol, the solution space is better explored as the number of 

samples increases, at the expense of increasing test time on the 

real system. Therefore, we use three different Sobol DoE, 

denoted as Sobol50, Sobol100, and Sobol150, with 50, 100, 

and 150 samples, respectively. 

System margining testing is very time consuming when 

running many test cases for PHY tuning. A single test case 

with 3 repetitions can take up 20 minutes, and then running a 

Sobol150 can take up 50 hours of testing for a single VT 

corner. The objective of comparing several DoEs is to find a 

suitable sampling strategy that provides adequate ANN model 

performance with the least amount of testing time. 

D. Neural Modeling Results 

Comparing the generalization error of the already trained 

neural model (at w*) for different DoEs, we found that the 

three Sobol cases provide the best generalization performance, 

and the best accuracy is achieved with Sobol150 (as expected). 

However, Sobol50 is able to achieve acceptable accuracy with 

only 50 samples. Considering the learning performance of the 

neural training algorithm for SATA. The best performance is 

achieved with h = 3 for the eye width ANN, achieving a 

maximum relative learning error of 3.65%, and 7.63% for the 

relative testing error. For the eye height ANN, best 

performance is achieved with h = 4, yielding 7.98% of 

learning error and 6.75% of testing error. Thus, the 

metamodels are able to reach above 90% of accuracy with 

these limited sampling points. 

The neural model response at w* and h = 3 for ew and h = 4 

for eh from Sobol50 is compared in Fig. 13a and Fig. 13b, 

respectively, with the fine model (real measurements), by 

using 30 testing base points not used during training, in order 

to test the generalization performance. It is observed that the 

neural model effectively simulates the actual physical 

measurements with a total relative error of 1.7% for the ew 

response and 2.5% for the eh response. In other words, the 

ANN metamodel is able to predict margins with up to 95% of 

accuracy when using equalization settings not used during the 

ANN training. The technique can easily be applied to other 

interfaces, such as USB3 Super-speed Gen 1, as shown in [25]. 

VII. HSIO RECEIVER EQUALIZATION BY SPACE MAPPING 

OPTIMIZATION 

In [33], we reported how the Broyden-based input space 

mapping (SM) algorithm, better known as aggressive SM 

(ASM) [34], [35], is used for the first time in HSIO PHY 

tuning optimization. Our SM approach takes advantage of a 

coarse surrogate model developed following [36]. In our case, 

the fine model is a measurement-based post-silicon validation 

industrial platform, while the coarse model is based on a 

Kriging surrogate technique. Our approach is illustrated by 

optimizing the PHY tuning Rx equalizer settings for a SATA 

Gen 3 channel topology. 

A. Broyden-based Input Space Mapping 

SM optimization methods belong to the general class of 

surrogate-based optimization algorithms [37]. They are 

specialized on the efficient optimization of computationally 

expensive models. The most widely used SM approach to 

efficient design optimization is the ASM or Broyden-based 

input space mapping algorithm [35]. ASM efficiently finds an 

approximation of the optimal design of a computationally 

expensive model (fine model) by exploiting a fast but 

inaccurate surrogate representation (coarse model) [35]. ASM 

aims at finding a solution that makes the fine-model response 

close enough to the desired response. 

B. Fine Model 

Our fine model is an Intel server post-silicon validation 

platform, as shown in Fig. 14. Within the PCH, our 

methodology is applied to a HSIO link SATA Gen3 [38]. The 

measurement system is based on the SMV process. We follow 

our work in [2] to define the corresponding objective function. 

We use five input variables that represent the SATA Rx 

PHY tuning coefficients, which are settings used in three main 

Rx circuitry blocks (CTLE, VGA, and CDR). ew   and eh  

 are obtained from measured parameters, 

 ),,(),,(),,( wlwrw δψxδψxδψx eee 

 

(35)

 
 ),,(),,(),,( hlhhh δψxδψxδψx eee 

 

(36)

 
where ewr   and ewl   are the eye width-right and eye 

width-left measured parameters, respectively, and ehh   and 

ehl   are the eye height-high and eye height-low parameters, 

respectively. 

C. Coarse Model 

Here, we follow our work in [36] to develop a coarse 

 
a) 

 
b) 

Fig. 13. Neural model generalization performance using Sobol50 for 

a) SATA eye width; b) SATA eye height. 



 

surrogate model for a HSIO link SATA Gen3. By using the 

PHY tuning setting coefficients as inputs x and the 

corresponding eye height and width as outputs Rc, we select a 

Kriging surrogate modeling technique [12] with a Sobol [32] 

DoE approach with only 50 samples. 

D. Objective Function 

We want to find the optimal set of PHY tuning settings x 

that maximize the functional eye diagram area. Therefore, our 

objective function is given by 

   ),,(),,()( hw δψxδψxx eeu   (37) 

During SM optimization, both  and  are kept fixed. 

E. ASM Optimization Results 

After applying the Broyden-based input SM algorithm [35], 

we arrive to a space-mapped solution, xSM, in just 6 iterations 

(or fine model evaluations). The set of Rx EQ coefficients 

contained in xSM makes the measured SATA Rx inner eye 

height and width of the PCH as open as that one predicted by 

the optimized coarse surrogate model. The SM solution (xSM) 

found makes an improvement of 85% on the fine model eye 

diagram area as compared to that one with the initial settings 

(xc
(0)), and a 33% improvement as compared to that one with 

the optimal coarse model solution (xc
*), as shown in Fig. 15. 

The efficiency of this approach is also demonstrated by a 

very significant time reduction in post-silicon validation and 

PHY tuning Rx equalization. While the traditional industrial 

process requires days for a complete empirical optimization, 

the method proposed here can be completed in a few hours. 

The technique can easily be applied to other interfaces like 

USB and PCI express. 

VIII. DISCUSSION AND CONCLUSION 

In this paper, we proposed direct and surrogate-based 

optimization methods, including space mapping, based on 

suitable objective functions to efficiently tune the Tx and Rx 

equalizers coefficients. The experimental results, based on real 

industrial validation platforms, demonstrated the efficiency of 

the proposed methods, showing a substantial improvement as 

compared with the current industrial practice, and accelerating 

the typical required time for equalizers tuning. 

A holistic optimization approach that merges system 

margining and jitter tolerance measurements for PHY tuning 

was demonstrated. The experimental results demonstrated the 

efficiency of the method to deliver optimal margins while 

ensuring jitter tolerance compliance, showing a substantial 

improvement for both system margins and jitter tolerance as 

compared with the current industrial practice, and dramatically 

accelerating the typical time required for PHY tuning. 

It was also proposed a direct optimization approach based 

on a suitable objective function formulation to efficiently tune 

the Tx FIR filter for the Ethernet SFP+ interface. The 

optimized coefficients were evaluated by measuring the real 

eye diagram of the physical system, showing a great mitigation 

of the ISI effects, and accelerating the typical required time for 

Tx coefficients tuning.  

A direct optimization approach for PCIe link equalization 

was also proposed based on a suitable objective function 

formulation to efficiently tune the Tx FIR filter and Rx CTLE 

EQ coefficients to mitigate ISI and other undesired channel 

effects, and successfully comply with the PCIe specification. 

The optimized EQ coefficients were evaluated by measuring 

the real eye diagram of the physical system, demonstrating a 

great mitigation of the ISI and channel effects, and 

significantly enhancing current PCIe Tx/Rx tuning industrial 

practices in post-silicon validation. 

A metamodeling technique based on artificial neural 

networks was also presented to efficiently simulate the effects 

of the Rx EQ circuitry in industrial HSIO links. Through the 

proposed neural modeling procedure, an efficient surrogate 

model is found that approximates the system with a reduced 

set of testing and training data. 
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Fig. 14. An Intel server post-Si validation platform exploiting 

Broyden-based input space mapping design optimization. From [33]. 

 
Fig. 15. Comparison between the system fine model responses at the 

initial Rx EQ coefficients, xc
(0), at the optimal coarse model solution, 

xc
*, and at the space-mapped solution found, xSM. From [33]. 



 

Finally, it was also described how the Broyden-based input 

space mapping algorithm can be used to efficiently optimize 

the PHY tuning Rx equalizer settings by exploiting a low-cost 

low-precision Kriging model, and a measurement-based post-

silicon validation platform as the fine model. The experimental 

results, based on a real industrial validation platform, 

demonstrated the efficiency of the method, showing a 

substantial performance improvement and a dramatic 

acceleration of the typical required time for PHY tuning. 

Ultimately, the present paper is based on the doctoral 

dissertation [39]. 
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