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Abstract— Modern computer servers require cutting edge 
technologies to meet their expected high performance. Among 
several relevant disciplines, power delivery (PD) is a key player 
in this regard. Efficient and reliable statistical methods to reduce 
cost while keeping adequate server’s performance are highly 
demanded from the PD perspective. This paper addresses a 
feasible statistical methodology based on design of experiments 
(DoE) for evaluating platform’s power delivery ingredients. Our 
methodology explores voltage regulator’s intrinsic parameters, 
compensation networks, non-linear compensation parameters, 
and the amount of bulk capacitors. Our statistical approach aims 
at identifying those variables with the largest impact on 
computer server’s PD performance, as well as optimizing them at 
the system level while achieving cost reduction. 
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I. INTRODUCTION

Server’s performance imposes severe demands for higher 
bandwidths, low cost power solutions, and high computing 
performance. Thus, modern computer servers require cutting 
edge technologies to meet all the above expectations. In this 
regard, power delivery (PD) requires some tradeoff decisions 
to select an adequate voltage regulator, a suitable and 
affordable decoupling solution, and a robust stack up design to 
handle sharp load current demands, while keeping silicon 
under expected performance. 

Several authors have explored different PD methodologies, 
such as establishing target impedance across a wide frequency 
range to select the decoupling capacitor solutions needed by the 
power distribution network (PDN) [1, 2], as well as time 
domain approaches [3] and jitter analysis [4, 5] for estimating 
voltage drop and voltage margins to come up with robust 
design solutions. 

Industrial PD design is still considered an “art”; as it is a 
heavily heuristic process and very dependent on engineer’s 
expertise. Identifying which variables are most impactful to the 
PDN space is a highly complex task, usually performed in 
practice by parametric sweeps, exhaustive enumeration, and 
engineering knowledge and experience. To the best of our 
knowledge, formal statistical methodologies based on design of 
experiments (DoE) for the optimization of the PDN have never 
been reported. Our contribution in this papers aims at filling 
that gap. In particular, our paper focuses on solving computer 
server´s PD system by optimizing voltage regulator´s (VR) 
tuning parameters as well as its bulk capacitors solution. 

 In Section II, we conceptually describe how design of 
experiments (DoE) can be exploited to develop PD behavioral 
models. Section III presents a DoE simulation approach 
identifying the most important variables impacting the whole 
VR solution. Section III follows the same DoE methodology 
but as applied to the physical VR implementation incorporating 
laboratory measurements. Section IV makes a comparison 
between both scenarios, simulation and physical 
implementation, with the aim of performing system 
optimization using response surface methods (RSM). Finally, 
Section V makes conclusions from the experimental work, and 
sets future directions to improve PD design. 

II. MODELING POWER DELIVERY BY DOE
DoE has been adopted in some disciplines closely related to 

PDN design, such as I/O’s electrical validation and verification 
[6] and signal integrity (SI) analysis [7, 8], where designers
statistically assess cases to find the best channel configuration
with the best equalization recipe to avoid loss of information
from one buffer to another. However, PD has not taken full
advantage of such methodologies.

Similarly to the SI and electrical validation realm, PD 
designers are looking for the best power channel’s recipe 
capable to maintain its voltage level within expected ratings 
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under any loading circumstance. PD engineers typically require 
complex and detailed PDN simulation models to predict with 
sufficient accuracy the power channel’s behavior, which makes 
simulation very computationally intensive, taking up to several 
days to obtain a PDN behavior. 

From the above perspective, classical parametric sweeps 
and exhaustive enumeration are usually prohibitive. Here we 
propose using advanced DoE techniques, such as fractional 
factorial design (FFD) [9], Taguchi, etc., that can reduce 
significantly the amount of simulations needed, enabling PD 
engineers to efficiently identify the most impactful variables 
within the PDN. In DoE, the objective is to efficiently obtain a 
behavioral model for a certain output of interest, such it 
describes with sufficient accuracy the actual system’s behavior. 
This behavioral approximation is typically implemented by a 
linear regression model 

 y(x) = β0 + β1x1 + β2x2 + β12x1x2 + … + ε (1) 

where y(x) is system’s output of interest, β’s are parameters to 
be determined during the DoE analysis, x1, x2, etc., are the 
model variables that represent the selected system factors A, B, 
etc., and ε is the statistical error. Variables x1 and x2 are defined 
in a coded scale from −1 to +1 (low and high corner levels, 
respectively, for A and B), and x1x2 represents the interaction 
between x1 and x2. 

III. DOE FOR POWER DELIVERY: SIMULATION APPROACH 
To illustrate our methodology, we select a similar VR 

design to that one in [10] as the test vehicle to meet some 
voltage requirements: silicon’s Vmin = 1.5 V and Vmax = 2 V, 
under any loading condition (di/dt). 

Based on the VR design described in [10], parameters 
investigated in the simulation are given in Table I. We consider 
not only intrinsic VR compensation parameters but also some 
VR-external factors. For the first set, we focus our study on the 
proportional-integral-derivative (PID) controller’s variables (ki, 
kd, kp), non-linear coefficients (NL-C), adaptive transient 
response (ATR), and auto-phasing schemes enabling and 
disabling VR’s phases at some point in time (APh). On the 
second set we consider the quantity of bulk capacitors (BlkC) 
and the slew rate (SR) (here defined as the di/dt slope of the 

transition from minimum current (Imin) to maximum current 
(Imax)). 

From Table I, there are nine factors to investigate, requiring 
a total of 29 = 512 simulations to find system’s most significant 
factors. However, we use the FFD technique to reduce the 
number of simulations by “confounding” some of these factors.  

Returning to our simulation’s test bench scenario, we 
selected a 2IV

(9-4) = 32 experiments. We use resolution IV since 
it suitable for designs in which none of the main effects is an 
alias of another main effect or neither two factor interactions, 
but two factor interactions are aliases between them. Typically, 
it receives the name of “confusion of factors”. Additionally, we 
use a factorial 2(9-4) because only five of the main factors are 
not confounded, and they correspond to Yates order for 
generating the test bench, while the remaining four factors are 
generated by the following confounded factors [9]: F = 
±BCDE, G = ±ACDE, H = ±ABDE, and J = ±ABCE. 

We use only time domain simulations in SIMetrix/Simplis2 
simulator to obtain test bench results under different VR and 
PD settings. Once results are collected, an analysis of variance 
(ANOVA) is performed to get some linear regression equations 
at the output of interest including its effects. The, from Pareto’s 
analysis, it is possible to identify what variables are more 
important and hence simplify the equations obtained from 
ANOVA, yielding 

 Vmin ≈ 0.960 + 0.001722x2 (2) 

 Vmax ≈ 2.791 − 0.0026x2 − 0.0806x8 (3) 

It is interesting to note that both model equations are 
depending on a derivative parameter (x2 = kd), while Vmax adds 
one more dependency with the quantity of bulk capacitors (x8 = 
BlkC). 

IV. DOE FOR POWER DELIVERY: PHYSICAL APPROACH 
Based on our findings obtained in Section III, a laboratory 

verification with the same PD design on a physical platform 
implementation is conducted to validate if the dependencies are 
the same. Since the physical VR module has more factors 
available for configuration, we focus our interest on those 
factors similar to the ones used in the simulation approach. 
Table II shows the codification for each factor. 

Following exactly the same DoE procedure used in Section 
II, the resulting model equations describing system’s behavior 
for Vmin and Vmax are: 

 Vmin ≈ 1.3676 + 0.001826x8 (4) 

 Vmax ≈ 2.019 − 0.000047x1 − 0.000297x2 (5) 

                                                           
2SIMetrix/Simplis 7.20e (x64), Copyright © 2014 Simplis Technologies 

Ltd, 78 Chapel Street, Thatcham, Berkshire, RG18 4QN, UK, 
http://www.simetrix.co.uk/site/index.html 

TABLE I.  VARIABLES USED TO BUILD THE FFD FOR SIMULATION 
SCENARIO 

Factor Equivalent Variable (−1) (+1) 
A = (x1) kp 100 250 
B = (x2) kd 250 450 
C = (x3) ki 100 250 
D = (x4) kfp 100 250 
E = (x5) APh no yes 
F = (x6) NL-C no yes 
G = (x7) ATR no yes 
H = (x8) BlkC 29% 100% 
J = (x9) SR (1-1000 A/µs) slow fast 

 



where x8 = kj_atrl is one of the non-linear factors, while from 
PID’s side, some compensation factors like x1 = kp and x2 = kd 
resulted meaningful. It should be highlighted that the quantity 
of bulk capacitors is not too relevant among the factors of the 
physical implementation. This fact indicates that it would be 
possible to look into a favorable scenario that reduces the 
quantity of capacitors needed. To validate that, we expanded 
our model to incorporate this additional factor, as follows 

 Vmin ≈ 1.3676 + 0.001826x8 + 0.0198e−6x9 (6) 

 Vmax ≈ 2.019 − 0.000047x1 − 0.000297x2 + 0.0091e−6x9 (7) 

It is seen that this new DoE model is now dependent on the 
number of bulk capacitors, x9. 

V. SYSTEM OPTIMIZATION: SIMULATION AND LABORATORY 
In the previous two sections we described the methodology 

to find the most significant factors of a PD system for both 
scenarios: simulation and its physical implementation. As it is 
observed that there are some coincidences and discrepancies on 
the model equations obtained from the simulation and 
laboratory measurements.  

Both scenarios indicate that a good PID compensation 
recipe is needed (kp and kd resulted significant factors), while 
the laboratory approach added one more non-linear parameter 
that needs fine tuning (kj_atrl). Also, in the case of the 
laboratory, the quantity of bulk capacitors was initially not too 
relevant, indicating a great opportunity to reduce costs. We 
adjusted our DoE linear regression model to include bulk 
capacitors as one more factor to consider in the physical PD 
optimization.  

To optimize power delivery’s system response from 
simulation and from the laboratory, we solve an optimization 
problem that minimizes a suitable objective function u(x) with 
respect to variables x, exploiting our response surface model 
y(x) [9] (see flow diagram in Fig. 1), as follows: 

 x* = arg minx u(x) (8) 

 u(x) = [Vmin – y(x)] + [y(x) − Vmax] (9) 

Central composite design (CCD) [9] is one of various RSM 
techniques. CCD consists on a factorial design 2k or a FFD 
with nF runs, 2k axial runs or star and nc central runs. The 
fundamental deployment of a CCD is based on sequential 
experimentation, i.e., it is used a 2k design to adjust the first 
order model. Since such model usually presents lack of 
adjustment, then, axial runs are added to incorporate some 
quadratic terms in the model. In this work we selected CCD as 
the method to develop the RSM models. 

From Fig. 1, the first optimization step uses steepest 
descent to establish the direction that maximizes the system. 
Finally, the second step consists on applying the CCD 
technique to enhance the model around the optimal solution. 

Table III, summarizes results before and after optimization 
for both scenarios (PD simulation and physical PD 
implementation). As it is observed in Table III, physical power 
delivery implementation needs 14% more capacitors than the 
simulation, although, still making feasible a 29% reduction of 
capacitors needed. Both scenarios (simulation and physical 
implementation) are evaluated under fast SR conditions before 
and after optimization. 

From Table III, it is clear that silicon’s Vmin and Vmax 
requirements are met, although, we need to ensure these results 
are valid from the VR’s perspective. To ensure whether these 
results meet VR’s voltage boundaries, it is needed to estimate 
maximum and minimum VR output voltage allowed. 

The following equations estimate these requirements: 

0 1 1 2 2 12 1 2 

 
Fig. 1. Flow diagram illustrating the sequence followed in the 
implementation of RSM optimization technique. 

TABLE II.  VARIABLES USED TO BUILD THE FFD FOR PHYSICAL 
IMPLEMENTATION 

Factor Equivalent Variable (−1) (+1) 
A = (x1) kp 100 250 
B = (x2) kd 250 450 
C = (x3) ki 100 250 
D = (x4) kfp 100 250 
E = (x5) ATRh1 no yes 
F = (x6) ATRh2 no yes 
G = (x7) ATR_kp 0 56 
H = (x8) Kj_atrl 0 56 
J = (x9) BlkC 29% 100% 

K = (x10) SR (1-1000 A/µs) slow fast 
 



 VRminb = Vnom – (Imax * LL) – VRAC_DC (10) 

 VRmaxb = Vnom + (Imax * LL) + VRAC_DC (11) 

where VRminb and VRmaxb are VR output voltage boundaries, 
Vnom is the nominal voltage given for the power rail’s channel, 
Imax is the maximum current load, LL is the load line or 
equivalent resistance seeing by the system3, and VRAC_DC is the 
AC plus DC tolerance the VR can support, for this particular 
case ±22 mV. Using (11) and (12), the calculated output 
voltage boundaries are VRminb = 1.58 V and VRmaxb = 1.98 V. 
Hence, from Table III, it is observed that the optimization 
results are marginally meeting minimum and maximum VR’s 
voltage boundaries. 

VI. CONCLUSION 
DoE proved to be an effective technique to find the most 

significant factors for PD analysis and design, as well as to 
perform PDN optimization. Our simulations and physical 
laboratory measurements showed sufficiently good agreement 
for the optimized PDN. With this methodology, it is possible to 
reduce costs, since, from our physical platform implementation 
it was possible to remove 29% of the capacitors at the expense 
of a finding better VR’s tuning recipe. As further step, a 
detailed DoE study on the frequency domain is desirable to 
ensure acceptable VR’s stability criteria and bandwidth. 
Finally, more computationally efficient optimization 
techniques, such as those based on space mapping approaches, 
will be addressed in future work to enhance our power delivery 
design process. 
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 Environment’s scenario kp kd kj_atrl BlkC SR Vmin (V) Vmax (V) Peak to peak (mV) 

Simulation 
before 135 330 N/A 100% fast 1.64 1.85 209.95 

after 135 275 N/A 57% fast 1.57 1.89 313.80 

Laboratory 
before 180 420 0 100% fast 1.62 1.82 196.80 

after 124 450 38.5 71% fast 1.58 1.88 300.00 

 




