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Abstract 

Forward osmosis (FO) is an emerging technology for wastewater treatment and reclamation. 

However, membrane fouling remains a strong hindrance to FO application. We proposed a novel 

approach for alleviating FO membrane fouling via in situ removing Ca2+ binding with organic 

foulants using the EDTA-based adsorption layer. Results suggested that the EDTA-based adsorption 

layer can effectively remove the Ca2+ binding with sodium alginate, and its adsorption capacity 

correspondingly increased as a function of Ca2+ concentration in the feed solution. Owing to the 

effective extraction of Ca2+ from the fouling layer by the EDTA-based adsorption layer, water flux 

of FO membrane was significantly enhanced, and fouling layer became easily removed by physical 

flushing, suggesting a remarkable alleviation of FO membrane fouling. Mitigation of FO membrane 

fouling by the EDTA-based adsorption layer was attributed to the fact that the fouling layer structure 

became more porous and looser after in situ removing Ca2+ from the alginate-Ca2+ gel networks. 

This study demonstrated a novel fouling control strategy via in situ removing Ca2+ binding with the 

organic foulants, providing a new avenue for FO membrane fouling management. 

Keywords: Forward osmosis; Membrane fouling; EDTA; Organic foulants; Calcium 
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1. Introduction 

An emerging osmotically-driven membrane process, forward osmosis (FO) exhibits great 

promise to address global challenges in water-energy nexus [1-6]. FO utilizes a draw solution (DS) 

with high osmotic pressure to drive the water molecular from a feed solution (FS) with low osmotic 

pressure passing through a semi-permeable membrane [6-8]. Compared to pressure-driven 

nanofiltration (NF) or reverse osmosis (RO) processes, FO process shows several advantages 

including lower energy consumption [9], lower fouling propensity [10-12], and higher water 

recovery [13]. However, membrane fouling remains a critical hindrance to FO process as well as 

osmotic membrane bioreactor (OMBR), which results in a decline of water flux, an increased 

cleaning frequency and a shortened membrane life [14-21].  

FO membrane fouling is caused by deposition of suspended particles or colloids, 

microorganisms, organic macromolecules, sparingly soluble inorganic compounds, or their 

mixtures on (or even inside) the membrane [4, 17]. Organic fouling induced by macromolecular 

organic compounds such as alginate, protein, and natural organic matters is more complicated [22], 

not only because specific interactions between chemical functional groups on the FO membrane 

surface and those of the organic foulants may occur, but it was also found to be affected by the ionic 

composition of the feed solution [23]. As a result, many previous studies on FO membrane fouling 

are focused on organic fouling [4, 11, 23-27]. In these studies, it has been demonstrated that organic 

fouling of FO membrane is deteriorated with the presence of divalent cations, i.e., forming a dense, 

cross-linked organic fouling layer [6], and consequently resulting in a rapid flux decline [23]. It is 

hypothesized that if the divalent cations can be removed from the foulants on the FO membrane 

surface, the organic fouling layer might become loose and subsequently easily removed by a simply 

https://www.sciencedirect.com/topics/chemical-engineering/colloids
https://www.sciencedirect.com/topics/chemical-engineering/inorganic-compounds
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physical cleaning. 

Ethylenediaminetetraacetic acid (EDTA) is an aminopolycarboxylic acid, which is colorless 

and water-soluble. As a hexadentate ligand and a chelating agent, EDTA can bind to divalent metal 

ions such as Mg2+, Ca2+, Mn2+ and Fe2+ to form a stable water-soluble chelate [28-30]. Thereby, 

EDTA has been commonly used as a chelating agent in various aspects such as electroplating [31], 

phytoremediation [32], food safety [33], and soil remediation [34, 35]. Compared with other 

chelating agent, EDTA is more attractive owing to its cheap, convenient and practical. 

We are inspired by the combination of EDTA and Ca2+ to form a stable EDTA calcium chelate, 

where this concept can successfully extract Ca2+ from the foulants on the membrane surface. In this 

study, we attempt to combine EDTA with agar to prepare an EDTA-based adsorption layer for in 

situ extracting the Ca2+ binding with the organic foulants from the FO membrane surface, thereby 

for mitigating membrane fouling and facilitating subsequent membrane cleaning. Until now, studies 

on applying an EDTA-based adsorption layer for controlling organic fouling of FO membrane were 

rarely reported. The aim of this study is to evaluate the proof-of-concept for FO membrane 

mitigation through in situ removing Ca2+ combined with the organic foulants by the EDTA-based 

adsorption layer. 

2. Materials and methods 

2.1. FO membrane 

Cellulose triacetate (CTA) FO membrane (supplied by Hydration Technologies Inc.) used in 

this study was fabricated from cellulose acetate embedded in a polyester woven mesh [4]. As 

reported in our previous study, its water permeability coefficients (A) and salt permeability 

coefficients (B) were 2.8×10-12 m/(s Pa) and 17.5×10-7 m/s, respectively [19]. Prior to experimental 
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tests, the FO membranes were soaked in deionized (DI) water and stored at 4 °C. 

2.2 EDTA-based adsorption layer preparation 

Considering the low solubility of EDTA in water, EDTA-2Na was chosen as the adsorption 

substrate. The procedure of preparing the EDTA-based adsorption layer was summarized in Fig. 1. 

Firstly, 0.5% wt EDTA-2Na was dissolved in DI water at 95 °C. And then, 3% wt agar was adding 

into the EDTA-2Na solution by stirring well with the glass rod. After that, the EDTA-agar mixture 

was poured into a mold whose size same as the CTA FO membrane (11.4 cm × 5.7 cm × 0.5 cm in 

dimension). When the solution temperature was cooled to the room temperature (25 ± 2 oC), the 

EDTA-based adsorption layer was obtained through removing from the mold.  

 

 

 

 

Fig. 1. Synthesis and characterization of the EDTA-based adsorption layer: (A) Flow chart of the 
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preparation of EDTA-based adsorption layer, (B) FTIR and (C) SEM images of the EDTA-based 

adsorption layer. The scale bar corresponds to 10 µm. 

2.3. FO and EDTA-based adsorption experiments  

Fouling behaviors of the FO membrane were evaluated in a bench-scale filtration system, as 

schematically shown in Fig. S1, Supporting Information. This test system included a cross-flow 

membrane cell with two symmetric flow channels (each of 85 mm × 39 mm × 2 mm in dimension). 

Membrane coupons were placed in the membrane cell between the two channels for the DS and FS, 

respectively. Two peristaltic pumps (Longer Precision Pump, China) were used to pump the DS and 

FS into the separate closed loops. The cross-flow velocity in both channels of the membrane cell 

was constant at 1.3 mm/s. Both DS and FS were kept at the temperature of 25 ± 2 oC. Change in the 

weight of FS was monitored by a digital balance (Mettler Toledo, China) and recorded in a computer 

by a data acquisition software (Mettler Toledo, China), which was converted into changes in water 

flux of FO membrane. 

A 4 M NaCl solution was used as the DS in both fouling and baseline experiments. Sodium 

alginate (75-100 kDa) was selected as the model organic foulant. The baseline experiment was 

conducted before the fouling experiment with the DI water as the FS and the 4 M NaCl as the DS. 

In order to evaluate the adsorption efficiency of EDTA-based layer for Ca2+ binding with the sodium 

alginate, the FO membrane was fouled by the sodium alginate and CaCl2 in sequence, which was 

different from the previous fouling protocol [4, 24]. The procedure of the FO membrane fouling 

tests was summarized in Fig. S2. Firstly, a new FO membrane coupon was sealed in the FO cell 

with active layer facing FS, and then a baseline experiment was performed for 4 h to obtain the 

initial flux of the FO membrane. After that, the fouling tests were started with 2 L of FS and DS. 
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With regard to the single organic fouling, the fouling filtration was operated for 48 h; while the 

enhanced organic fouling filtration was conducted with a CaCl2 solution for 24 h after the single 

organic fouling experiments operated for 24 h. As for the single organic fouling, the FS consisted 

of 200 mg/L sodium alginate, 20 mM NaCl, 20 mM Na2SO4 and 1 mM NaHCO3, while the FS was 

changed into the CaCl2 solution with three concentration levels of 1, 15 and 35 mM, respectively, 

for the tests of enhanced organic fouling by Ca2+. 

The EDTA-based adsorption experiments were conducted after the fouling tests. As 

schematically shown in Fig. S3, Supporting Information, the fouled FO membranes were attached 

to the EDTA-based adsorption layer for 24 h during the in situ adsorption experiments. Just like the 

commonly used FO cell, the EDTA-based adsorption layer could have a sufficient physical contact 

with the fouled FO membrane and avoid destructing the fouling layer via adjusting the tightness of 

the four screws on the adsorption device. After that, the adsorption layer was removed into the eluent 

for 24 h. 1 M HCl was chosen as the eluent for removing Ca2+ from the EDTA-based adsorption 

layer. Meanwhile, the remaining foulants were removed from the FO membrane surface by 

sonication [36]. The extracted and remained Ca2+ concentrations were measured by an atomic 

absorption spectrometer (Shimadzu, Tokyo, Japan). The adsorption efficiency of Ca2+ was used for 

evaluating the EDTA-based adsorption layer. The specific descriptions on calculating adsorption 

efficiency of Ca2+ could be found in Section S1, Supporting Information. 

2.4. Analytical method 

Water flux through the FO membrane was obtained based on the weight change of the FS. 

After the fouling tests and the EDTA-based adsorption experiments, the water flux of the fouled 

and adsorbed FO membranes were determined by the FO cell for 4 h with the DI water as the FS 
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and the 4 M NaCl as the DS. In order to eliminate the impacts of initial water flux for different FO 

membranes, a normalized water flux was used for characterizing the fouled and adsorbed FO 

membranes. It was obtained through the determining flux dividing by the initial flux before fouling 

tests.  

The fouled FO membranes removed from the FO cell at the conclusion of experiment for 

characterization. A field-emission scanning electron microscopy (FE-SEM) (S4800, Hitachi, Japan) 

and an energy diffusive X-ray (EDX) analyzer (S4800, Hitachi, Japan) were used to capture the 

surface images and element compositions of the fouled and adsorbed FO membrane samples, 

respectively. Confocal laser scanning microscopy (CLSM) (LSM 710, ZEISS, Germany) was 

applied for analyzing the distributions of polysaccharides on the fouled and adsorbed FO membrane 

samples. Details of analytic methods of FE-SEM, EDX and CLSM analyses have been shown in 

our previous publication [19, 37]. 

3. Results and discussion 

3.1. Flux performance of FO membrane during the fouling tests 

A comparison of the results on FO membrane water flux profiles at different feed conditions 

is illustrated in Fig. 2. Water flux of FO membrane declined with the extension of the operating time 

regardless of the composition of the FS. However, the profile for FO membrane flux decline was 

significantly influenced by the foulants composition in the FS. Compared with the single organic 

fouling only induced by the sodium alginate, the flux decline became severer when Ca2+ was added 

into the FS. In addition, there was a noticeable water flux decline with an increase of the Ca2+ 

concentration. These experimental observations clearly showed that Ca2+ aggravated the organic 

fouling of FO membrane, which was consistent with previous literature [4, 24, 37]. This 
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phenomenon could be attributed to the fact that Ca2+ and alginate form complexes with unique 

structure, thereby resulting in a high density gel network [38-40].  

 

Fig. 2. Water flux profile of FO membranes during fouling filtration. FO fouling filtration was 

conducted with feed solution containing 200 mg/L sodium alginate, 20 mM NaCl, 20 mM Na2SO4 

and 1 mM NaHCO3, with varying calcium concentrations from 1 to 35 mM. Draw solution was 4 

M NaCl. The filtration was operated for 48 hours. 

3.2. Calcium removal and its impacts on the membrane fouling 

After the fouling tests of the FO membranes, Ca2+ was extracted from the fouled FO 

membranes by the EDTA-based adsorption layer. From Fig. 3 (a), the normalized water flux of the 

fouled FO membrane induced by only alginate sodium was similar before and after adsorbing by 

the EDTA-based layer. By contrast, the normalized water flux had a significant increase after 

adsorbing Ca2+ via the EDTA-based layer for the organic fouling with Ca2+, indicating an effective 

mitigation of FO membrane fouling. Variations of the normalized water flux for different fouling 

conditions were consistent with the adsorption efficiency of Ca2+ (Fig. 3 (b)). Specifically, there was 
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no Ca2+ adsorption for the single organic fouling while the adsorption efficiency was ranged from 

55.3% to 93.5% for the enhanced organic fouling with different concentrations of Ca2+. These 

results implied that the EDTA-based layer could effectively adsorb Ca2+ from the alginate bound 

foulants. As a result, organic fouling of the FO membrane could be alleviated via in situ removing 

Ca2+ from the fouling layer.  

Although the EDTA-based layer could effectively adsorb Ca2+ from the organic fouling layer 

of the FO membrane, the adsorption capacity and efficiency were limited by the feed concentration 

of Ca2+. The adsorption capacity and efficiency of Ca2+ correspondingly increased with the feed 

Ca2+ concentration (Fig. 3 (b)), which was driven by more Ca2+ binding with the alginate at a higher 

addition of Ca2+. It is notable that the adsorption efficiency was over 90% when the concentration 

of Ca2+ was up to 35 mM. Meanwhile, it was interesting to find that the Ca2+ adsorption efficiency 

was correlated well with the increase of the normalized water flux due to the Ca2+ adsorption, 

suggesting the significant contributions of Ca2+ to the organic fouling.   
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Fig. 3. EDTA-based adsorption layer performance in fouling mitigation: (A) Normalized water 

flux and (B) Adsorption capacity and efficiency at different fouling conditions. The FO fouling 

filtration conditions were described in Fig. 2. In situ Ca2+ adsorption was performed using the 

EDTA-based adsorption layer for 24 h, 1 M HCl as the eluent. 

3.3. Changes in fouling layer structure after in situ removing Ca2+ 

In order to evaluate the structure of fouling layer before and after Ca2+ adsorption via the 

EDTA-based adsorption layer, the morphology, element composition and structure of fouled FO 

membranes before and after adsorbing were analyzed by FE-SEM, EDX and CLSM, respectively. 

From Fig. 4, no obvious foulants were deposited on the FO membrane surfaces when only sodium 

alginate was used, while foulants deposition formed on the FO membrane surface when Ca2+ adding 

into the feed solution. This result further demonstrated that Ca2+ enhanced the organic fouling via 

forming alginate-Ca2+ gel networks. It is noteworthy to see that the alginate-Ca2+ gel networks 

became larger with the increase of Ca2+ concentration in the feed solution. After adsorbing Ca2+ via 

the EDTA-based adsorption layer, some gel networks on the enhanced organic fouling layer 
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disappeared regardless of the Ca2+ concentration, which was consistent with the increase of 

normalized water flux of FO membrane (Fig. 3 (a)). From the EDX analyses (Fig. S4 and Table S1), 

the relative weight percentage of Ca on the fouled FO membranes correspondingly increased with 

the increase of the adding Ca2+ concentration, further suggesting the occurrence of more severe 

“egg-box-shaped” gel networks on the FO membrane surfaces. After removing Ca2+, the relative 

weight percentage of Ca significantly reduced (Fig. S5 and Table S2). Both SEM and EDX results 

strongly proved the effective adsorption of Ca2+ from the fouling layer by the EDTA-based 

adsorption layer. 
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Fig. 4. FE-SEM images of the fouled (A) and adsorbed (B) FO membranes: (a) single organic 

fouling; (b) organic fouling + 1 mM Ca2+; (c) organic fouling + 15 mM Ca2+; (d) organic fouling + 

35 mM Ca2+. The scale bar equals to 50 µm. 

   We further examine the fouling structure to understand the impacts of the Ca2+ removal. Fouled 

FO membranes before and after the Ca2+ adsorption were analyzed by the CLSM observations. From 

Fig. 5, some aggregates of polysaccharides appeared on all the fouled FO membrane surfaces. The 

polysaccharide aggregates were formed assisting with the Ca2+ through forming “egg-box-shaped” 

gel networks. In addition, the aggregates of polysaccharides in some spots became more and larger 

with the increase of feed Ca2+ concentration, which was consistent with the increase of substratum 

coverage of polysaccharides (Table 1). It should be paid attentions that the deposited polysaccharide 

aggregates became less after adsorbing by the EDTA-based layer. It could be attributed to the fact 

that the Ca2+ was effectively removed from the fouling layer, resulting in a destruction of the 
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alginate-Ca2+ gel networks supported by the reduction of substratum coverage of polysaccharides 

(Table 1). In fact, some polysaccharides also detached from the FO membrane surface accompanied 

by the destruction of the alginate-Ca2+ gel networks, which was evident by the decrease of 

polysaccharides on FO membrane surface after EDTA-based adsorption (Table 1). Thus, the 

mitigation of the fouling induced by the combination of alginate and Ca2+ with the EDTA-based 

adsorption layer was mainly attributed to the destruction of the alginate-Ca2+ gel networks and 

subsequent reduction of the amount of the deposited polysaccharides.  

  

  

 

Fig. 5. CLSM images of the fouled (A) and adsorbed (B) FO membranes: (a) organic fouling + 1 

mM Ca2+; (b) organic fouling + 15 mM Ca2+; (c) organic fouling + 35 mM Ca2+. 
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Table 1 Structural parameters of the fouling layer before and after adsorption obtained from 

CLSM images via PHLIPa. 

a Values are given as mean values ± standard deviation (number of measurements: n=3).  

3.4. Impacts of removing Ca2+ on cleaning efficiency 

We also examine the physical cleaning efficiency after EDTA-based adsorption. Fouled and 

adsorbed FO membranes at the FS condition of sodium alginate and 35 mM Ca2+ were backwashed 

in the FO cell for 0.5 h with the 0.5 M NaCl as the FS and the DI water as the DS according to 

previous literature [11, 41]. There was no obvious variation of the normalized water flux for the 

fouled FO membrane after the backwashing; by contrast, it significantly increased from 0.71 to 0.89 

for the adsorbed FO membrane after backwashing (Fig. S6). It suggested that the EDTA-based 

adsorption could enhance the physical cleaning of the fouled FO membranes. Such evidence 

strongly suggested that the EDTA-based adsorption not only mitigated the FO membrane fouling 

but also enhanced the membrane cleaning via changing the structure of the fouling layer. 

3.5. Mechanisms on the in situ mitigating FO membrane fouling 

With aforementioned experimental results, we conceptualized the mechanisms on the in situ 

mitigating FO membrane fouling (Fig. 6). For a fouled FO membrane with the alginate-Ca2+ gel 

networks, EDTA-based adsorption layer can directly destruct this structure by removing the 

 Fouling layer 

Average amount of 

polysaccharide 

(µm3/µm2) 

Substratum coverage 

(%) 

Mean thickness 

(µm) 

Before 

adsorption 

organic fouling + 1 mM Ca2+ 14.78 ± 0.33 38.69 ± 1.48 52.34 ± 4.76 

organic fouling + 15 mM Ca2+ 15.84 ± 0.38 44.32 ± 0.93 55.89 ± 0.73 

organic fouling + 35 mM Ca2+ 18.03 ± 0.69 61.39 ± 0.64 57.54 ± 3.09 

After 

adsorption 

organic fouling + 1 mM Ca2+ 14.05 ± 0.24 33.86 ± 0.16 52.07 ± 2.75 

organic fouling + 15 mM Ca2+ 15.21 ± 1.01 41.35 ± 0.71 54.39 ± 1.71 

organic fouling + 35 mM Ca2+ 16.68 ± 1.25 52.40 ± 3.53 54.52 ± 1.59 
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alginate-bound Ca2+ via the chelation of the EDTA functional groups. As a result, after extraction 

of the alginate-bound Ca2+ from the organic fouling layer, the fouling layer structure became loose 

because of destruction of the alginate-Ca2+ gel networks and detachment of the deposited 

polysaccharides, both of which mitigated FO membrane fouling and further enhanced the cleaning 

efficiency. Moreover, the EDTA-based layer can be reused for adsorbing Ca2+ after being 

regenerated by HCl based on the results that the Ca2+ adsorption efficiencies of the fouled FO 

membrane at the FS condition of 200 mg/L sodium alginate and 35 mM Ca2+ were 93.51% and 

90.03% for the new and the reused layers, respectively. However, considering the possible damage 

of HCl to its structure during several regenerations, its lifespan should be further evaluated in future 

works. 

 

Fig. 6. Mechanisms of Ca2+ adsorption from the alginate Ca2+ gel networks by the EDTA-based 

layer. 

4. Conclusions 

The EDTA-based adsorption layer can effectively alleviate organic fouling of FO membrane 

via in situ adsorbing Ca2+ from the fouling layer. The success in alleviating organic fouling of the 

FO membrane demonstrated the feasibility of fouling control strategy via directly extracting Ca2+ 
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from the fouling layer. Extracting Ca2+ from the fouling layer played a critical role in altering 

membrane fouling layer structure, which shed light on novel fouling control and management. In 

addition, the EDTA-based layer exhibits higher adsorption efficiency owing to the stronger 

chelation of EDTA. 
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