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Optimal Grading∗

Robertas Zubrickas1

February 25, 2014

Abstract

The teacher-student relationship is modeled as an agency problem, where teach-

ers are concerned with human capital formation and students with ability signaling.

We distinguish between two cases depending on whether in ability inference the job

market can or cannot observe the grading rule applied. We show that many empir-

ical grading patterns, including grade compression and inflation, are all consistent

with optimal ability screening when grading rules are unobservable. With observ-

able grading rules, the teacher perfectly screens students’ abilities provided certain

conditions hold. We apply the model to discuss policy applications such as “No

Child Left Behind.”
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1 Introduction

In the economics literature, there is a dichotomy of views on the role of education. The

traditional view of human capital formation (Becker 1993) is challenged by the idea that

education serves the purpose of ability signaling (Spence 1973; Riley 1979; Bedard 2001).

In this paper, we take the standpoint that teachers are concerned with human capital,

whereas students with ability signaling. In particular, students treat knowledge acquired

as abstract, ephemeral, and, therefore, costly compared to the opportunities foregone.

Ability signals come in the form of grades, about which, in contrast to students, teachers

are impartial per se. The differing attitudes toward education create a conflict of interests

between teachers and students. This paper is an attempt to model the resulting agency

problem that, as we argue, can have a distinctive feature. With asymmetry in information

about the grading rules applied, grades can become costless incentives. We show that the

theoretical predictions of our model with costless grades closely match many empirical

grading patterns.

The teacher-student relationship is modeled as a monopolist screening problem akin

to Mussa and Rosen (1978). A teacher teaches a class of students with disparate abilities

for the subject taught. A student’s ability is his private information, and the higher the

ability, the lower the learning effort he needs to exert to attain a certain knowledge level.

The assumption is that the teacher has a technology – the exam test – that allows her

to assess accurately the knowledge levels attained by her students. The teacher sets up

a grading rule that assigns grades to exam scores, i.e., to knowledge levels. We solve for

the optimal grading rule that maximizes the expected knowledge level of a grade-minded
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student, where the utility value of a grade comes from its ability-signaling properties.

In determining the optimal grading rule, we distinguish between two cases depending

on whether the expected distribution of grades has an effect on their ability-signaling

values or not. The distribution matters when the job market observes the grading rule

applied and, thus, can make a correct inference about a student’s expected ability. In this

case, we show that the optimal grading rule perfectly screens abilities provided certain

conditions hold. But in the other case, related to the situation when the job market does

not observe the grading rule applied and makes inference using a commonly perceived

grading standard, perfect screening is no longer expected knowledge maximizing. With

unobservable grading rules, the signaling values of grades are fixed, which, consequently,

renders grades as costless incentives. We show that with costless grades the teacher rather

distorts the effort incentives of more able students than those of less able ones, yielding

coarse grading.

The predictions of the model with costless grades closely match many empirical grad-

ing patterns. First, the phenomenon of grade compression can be explained by the equi-

librium pooling that arises in our model. Second, in the dynamic version of the model

with many teachers and the job market adaptively adjusting its perception of grading

standards, we obtain the gradual deterioration of grading rules resulting in grade inflation.

Third, the dynamic model also explains the reduction in time spent for study by full-time

students, reported by Babcock and Marks (2011), in concurrence with increasing average

grades. Fourth, the model provides a rationale for the discretization of grading scales as

we obtain that in the long run no type is screened in equilibrium. Finally, we present

a comparative statics result that the more pessimistic a teacher is about her students’

abilities, the more lenient she is in grading. This theoretical prediction finds a strong
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empirical support from the literature on educational and psychological measurement that

shows that professors apply more stringent grading criteria in fields with more able stu-

dents, and vice versa (see Goldman and Widawski 1976; Strenta and Elliott 1987;

Johnson 2003). The latter evidence suggests that grading behavior is affected by class

composition, supporting our approach of ability screening.

The approach of this paper toward the teacher-student relationship and the suggested

explanation of the aforementioned empirical grading patterns are novel in the economics

literature. Unlike in this paper, many existing explanations tend to rely on arguments

that go beyond the classroom. For instance, McKenzie and Tullock (1981, Ch. 17) see

the expanding availability of education as a cause of grade inflation. They argue that

due to increasing competition universities engage in lowering grading standards in order

to attract more students, thus, creating conditions for grade inflation. The proponents

of this explanation may possibly overlook other channels for grade inflation that can

originate from the expanding availability of education. For instance, with more students

enrolled the distribution of abilities can become more skewed toward the lower end of

the ability space. According to our comparative statics result, teachers respond to this

change by applying more lenient grading rules in order to extract more effort from more

numerous low-ability students, thus, producing grade inflation. Without accounting for

changes in the composition of students, empirical studies can overestimate the effects

of competition among universities on grade inflation. The other related literature is

discussed in the next subsection.

Generally, the agency model studied here relates to a broader class of three-tier agency

problems with hidden information, where the interim tier’s objective is the alleviation of

informational asymmetries between the top and bottom tiers (see Lizzeri 1999). When
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the preferences of the interim and top tiers are misaligned with respect to the actions

of the bottom tier, the agency relationship between the interim and bottom tiers can

feature asymmetric transfer values. This asymmetry in transfer values can have important

implications for the form of incentive schemes at the bottom tier. Besides the example of

the teacher-student relationship, another example is job performance appraisal. As later

discussed in the text, the compression of appraisal ratings frequently observed in practice

(see Murphy and Cleveland 1995) can arise for the reasons similar to those behind grade

compression as postulated here, namely, the costlessness of rewards. A line manager

may find it rewarding to inflate appraisal ratings when he is not held accountable for the

resultant payroll cost.

The remainder of the paper is organized as follows. After a literature review, we

present a modeling framework in Section 2. The case of unobservable grading rules is

analyzed in Sections 3 and 4. In Section 3, we solve for the optimal grading rule in the

static model and in Section 4 we analyze the dynamics of grading rules under adaptive

expectations. Section 5 deals with the case of observable grading rules. In Section 6,

we relate our main findings to the grading patterns observed in practice and discuss

policy applications. The last section concludes the study. All omitted proofs are in the

appendix.

Related literature

An agency approach toward the teacher-student relationship is also taken in Dubey and

Geanakoplos (2010). They deal with the question of discretization of grades: what

grading scale, finer or coarser, a teacher should use in order to elicit maximal learning

effort from students. The teacher-student relationship is modeled as a game of status
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with stochastic output like in a tournament. In their model, a student’s utility of a grade

depends on the class ranking, status, resulting from the grade obtained. They find that

teachers should use coarse grading schemes and “pyramid” the allocation of grades: the

highest grade would be available to fewer students than the second-highest grade, and

so on. While their model provides a rationale for the discretization of grades, it is not

consistent, however, with the compression of highest grades and grade inflation. Thus,

besides status incentives, there may be other first-order motivators in the teacher-student

relationship.

In the strand of literature on the economic theory of educational standards, an agency

approach is applied toward designing high school graduation requirements (see Becker and

Rosen 1992; Costrell 1994, 1997; Betts 1998). In crude terms, a policy maker searches

for the passing test score that maximizes a specified social welfare function (typically,

human capital) taking into account the optimal response by learning-averse students.

Like in our model with observable grading rules, analysis is centered on the trade-offs of

incentive and sorting effects that a change in educational standards (e.g., a higher passing

score or an additional educational credential) can have on students’ learning behavior. In

this literature, however, the teacher-student relationship is not explicitly modeled, where

the assumption is of invariant grading rules applied by teachers. Significantly, a reform of

graduation requirements can have an effect on the form of a teacher’s objective function

and, accordingly, on the grading rules applied, which, in turn, may affect the achievement

of the projected goals of the reform. We illustrate this argument when discussing policy

applications later in the text.

Recently, the problems of grade compression and grade inflation have been approached

from the perspective of the informative content of grades that university administration
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chooses to disclose. The information disclosure policy is modeled as a mapping from

students’ abilities into ability signals under the assumption that students’ abilities are

observed by administration (unlike in our model). With the objective of maximizing

students’ average job placement, Ostrovsky and Schwarz (2010) show that administration

compresses ability signals sent to the job market if the mapping from student ability to job

desirability is concave. In the model, they require disclosure policies be consistent so that

a signal is equal to the expected ability of students entitled to the signal (as also imposed

in our model with observable grading rules). While giving an explanation for compressed

grades, their model, however, does not explain the emergence of inflated grades as pointed

out by Chan, et al. (2007). In the latter work, the consistency requirement is relaxed

so that schools can send inflated messages (as in our model with unobservable grading

rules). They show how competition among schools for better student placements can

further worsen the problem of compressed grades, ultimately resulting in inflated grades.

Yet, their model does not explain grade inflation as a dynamic process, i.e., the gradual

increase of grades over time, which our model does produce. Relatedly and similarly to our

argument but in the context of information disclosure, Yang and Yip (2003) argue that

grade inflation can arise from a free-rider problem between universities as the signaling

value of a transcript is based on “collective reputation.” However, this literature also

assumes the invariance of grading rules and, thus, cannot address the empirically observed

mismatch between students’ abilities and grades: At the same university, professors of

more able classes tend to apply more stringent grading rules notwithstanding identical

disclosure policies.

On the theoretical side, our basic model with unobservable grading rules is a ver-

sion of the monopolist screening model of Mussa and Rosen (1978), modified with free
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but bounded transfers from the principal to the agent. As we demonstrate, with free

transfers it is never optimal to screen most efficient types. Gains from screening do not

outweigh losses stemming from suppressed incentives for less able students imposed to

ensure incentive compatibility. In the framework of monopolist screening, the scenario

that, unlike the agent, the principal is indifferent to transfers is also studied in Guesnerie

and Laffont (1984). They distinguish between the “type A” and “type B” preferences of

the principal, where the difference is that a transfer enters only the latter (conventional)

preferences. The “type A” preferences are primarily used to analyze the social planner’s

problem of social welfare maximization. A transfer is equivalent, figuratively speaking,

to distributing money between two pockets of the same jacket, leaving the social welfare

intact. Therefore, the framework of Guesnerie and Laffont (1984) does not apply to the

problem studied here. In our model, the principal is actually of “type B” as she cares

only about her own utility but does not bear the cost of motivating the agent.

The property of free incentive transfers arises in the model of self-enforcing relational

contracts of Levin (2003). In a repeated relationship, compensation paid in a given period

does not affect incentives in later play and, as a result, risk-neutral parties can transfer

wealth between them at will. The dynamic enforcement constraint, however, puts a limit

on wealth transfers, which depends on the total discounted value of the relationship. With

a low discount factor and, thus, a low limit on transfers, the principal finds it optimal to

pool the most efficient types for reasons similar to those in our model: At the margin, the

benefit from screening is zero, but the shadow cost is positive. When the discount factor

is sufficiently high, which allows for almost unbounded wealth transfers, it is optimal for

the principal to elicit the socially desirable (first-best) effort levels from every agent type.

In other words, in effort elicitation the principal is either constrained by wealth transfers
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or by the first-best effort levels. In our model, however, the optimal effort levels from the

principal’s perspective do not coincide with the social optimum, taken to be the sum of

the teacher’s and students’ utilities, and are bounded only by available rewards (akin to

the wealth constraints in Levin (2003)). It implies that in our model the constraint on

transfers (grades) is always binding irrespective of its size.

In the literature quoted above as well as in the current paper, the central question is

that of pooling and separation of agent types. The same question arises in various contexts

with non-monetary transfers and which policy dominates depends on relative advantages.

In wage setting, Fang and Moscarini (2005) show that with workers overconfident in their

own skills no wage differentiation is a profit-maximizing policy due to a relatively larger

impact of negative morale effects that stem from differentiation. In credit rating agency,

Mathis, et al. (2009) show that when reputational concerns are not too strong credit

rating agencies find it profitable to apply lax appraisal standards and inflate credit ratings.

For the problem of conspicuous consumption Rayo (2013) characterizes necessary and

sufficient conditions when a monopolist producer chooses to screen perfectly consumer

types. The latter work closely resembles our model with observable grading rules and

will be referred to later in the text.

2 Framework

There is a teacher teaching a class of students a particular subject. Students select the

subject for exogenous reasons, e.g., it is compulsory in their curriculum.2 The teacher’s

2Arcidiacono (2004) empirically argues that students select their majors out of intrinsic preference.

At the same time, Sabot and Wakeman-Linn (1991) show that students’ choice of classes not required

for their majors is responsive to their grade expectations. Here, we do not model this possibility.
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goal is to pass on knowledge to the students. She has a technology, the exam test, that

allows her from a test score x ∈ [0, X] to assess the knowledge level attained by a student.

(The upper bound X is large enough to allow for an interior solution.) We assume that

the teacher’s technology is perfect in the sense that there is a deterministic and direct

relationship between test scores and knowledge levels. Students differ in their privately

known learning abilities θ, distributed in the population according to a distribution F (.)

over an ability space [θL, θH ], 0 < θL < θH . Achieving a test score x comes to a student

of ability θ at an effort cost of C(x)/θ, where C(.) ≥ 0 is an increasing, strictly convex,

and twice differentiable function with C(0) = 0 and C ′(0) = 0.3

The teacher uses grades r ∈ [0, 1] as incentives to motivate her students to perform

on the exam. The upper bound of 1 is assumed to be institutionally preset and so is

the grading framework: The assessment of student performance is done in the form of

grades only.4 The teacher-student relationship develops as follows. First, the teacher

sets up a grading rule, which is a set of direct score-grade allocations, {x(θ), r(θ)}, θ ∈

[θL, θH ]. Then, each student reports a type θ̂ ∈ [θL, θH ] or, equivalently, chooses an

allocation (x(θ̂), r(θ̂)). The teacher’s objective is to maximize her expected utility defined

as
∫
V (x(θ))dF (θ), where V ′(.) > 0. A student maximizes his utility of grade r less the

3The hidden information assumption can be replaced by a constraint that grades can only be con-

ditioned on a student’s exam score but not on his ability even if observed by the teacher (e.g., from

previous academic records). For classes of large size, the two approaches are equivalent.

4In the model, it is ultimately ability signals that the teacher rewards her students with and the form

of appraisal or a grading framework is immaterial as long as it spans the ability space. However, this

observation holds only if the teacher cannot type-discriminate her students by, e.g., sending confidential

recommendation letters. In this paper, we do not consider the latter possibility, which, though, seems to

be relevant for small size graduate classes. To model this situation, the message space of grades would

need to be augmented with types, the route left for future research.
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effort cost of C(x)/θ spent to obtain it.

We define the utility of a grade by the ability level signaled by the grade to the job

market. We start with the case when the utility of a grade is fixed, i.e., independent

of the grading rule applied or of the distribution of grades in the class. In particular, a

student’s utility of a grade r is given by ϕ(r), where ϕ : [0, 1] → [θL, θH ] is a publicly

observable grading standard. In the paper, this case is related to the situation when

the job market does not observe particular grading rules and relies on the commonly

perceived grading standard ϕ(.) for the purpose of ability inference.5 We also analyze

the case of unobservable grading rules in the dynamic setting with adaptive expectations.

Then, we consider the case when the job market observes the grading rule applied and

can make a correct inference about a student’s expected ability. Under this circumstance,

the utility of a grade is dependent on the grading rule and is set to be equal to the mean

of types receiving the grade.

Here, we impose some further structure on the model. The distribution function F (.) is

twice differentiable with its probability density function f(.) > 0. In addition, we assume

that the hazard rate, f(θ)/(1 − F (θ)), is non-decreasing in θ. Until further notice, we

let the teacher’s utility function be linear in test scores, V (x) = x. The teacher’s linear

utility can be interpreted that she equally cares about low- and high-ability students’

5This situation can arise when there are too many academic institutions for the job market

to distinguish among: The number of degree-granting institutions in the US gradually increased

from 563 in 1869–1870 to 4352 in 2007–2008, see Table 188 of 2009 Digest of Education Statistics,

http://nces.ed.gov/programs/digest/d09/tables/dt09 188.asp. Another justification for the assumption

of fixed grade values is that students can be ignorant about the distribution of abilities in the class

or they are of bounded rationality to discern the expected distribution of grades that results from the

grading rule set up by the teacher.
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performance. When discussing policy applications later in the text, the linear case serves

as a benchmark against the cases where 1) V (.) is convex (the teacher puts more weight

on high-ability students) and 2) V (.) is concave (the teacher puts more weight on low-

ability students). We make a technical assumption that the schedules of score and grade

allocations, {x(θ)} and {r(θ)}, are piecewise continuous functions. Finally, if a student

opts out of the class, then the job market assigns the ability of θL, which defines the

reservation utility of class participation.

3 Unobservable grading rules: Static model

In this section, we study a static teacher-student agency problem with grading rules

unobservable by the job market. Unobservability implies that the ability-signaling values

of grades are fixed and, thus, there is no interdependence of utilities across students.

As a result, the teacher finds grades not only costless but also abundant. Therefore, the

teacher-student relationship in this context turns alike a single-agent (i.e., single-student)

agency problem with hidden information. In particular, the teacher’s problem reduces to

screening ability types with the help of a grading rule. However, there is an important

difference with the canonical monopolistic screening problem. In our model, the transfer

(grade) enters only the student’s objective function.

Next, we characterize and solve the teacher’s problem of optimal grading, followed by

the discussion of the empirically relevant properties of the solution.

3.1 Teacher’s problem

By the Revelation Principle, we look for the grading rule that maximizes the student’s

expected knowledge among those rules that induce the student to reveal his type truth-
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fully:

max
{x(θ),r(θ)}

∫ θH

θL

x(θ)dF (θ)(1)

s.t.

ϕ(r(θ))− C(x(θ))

θ
≥ ϕ(r(θ̂))− C(x(θ̂))

θ
,(2)

ϕ(r(θ))− C(x(θ))

θ
≥ θL,(3)

0 ≤ r(θ) ≤ 1 for all θ and θ̂ in [θL, θH ] .(4)

Above, (2) is the student’s incentive compatibility constraint, (3) is the individual ratio-

nality constraint, and the last constraint imposes an upper bound on grades.

As grades do not enter the teacher’s objective function directly, we can transform the

problem by the one where the teacher rewards the student with ability signals ϕ̂ from

the closure of the range R(ϕ) of the grading standard ϕ(.). (We take the closure in order

to ensure the existence of a solution.) Given a signal schedule {ϕ̂(θ)}, the corresponding

grade schedule {r(θ)} can be inverted by {r(θ) = r : ϕ(r) = ϕ̂(θ)}. For analytical

convenience, we rewrite constraints (2) and (3) pre-multiplied by θ. Now, the teacher

looks for the grading rule {x(θ), ϕ̂(θ)} that maximizes her expected utility

max
{x(θ),ϕ̂(θ)}

∫ θH

θL

x(θ)dF (θ)(5)

s.t.

θϕ̂(θ)− C(x(θ)) ≥ θϕ̂(θ̂)− C(x(θ̂)),(6)

θ(ϕ̂(θ)− θL)− C(x(θ)) ≥ 0,(7)

ϕ̂(θ) ∈ R(ϕ) for all θ and θ̂ in [θL, θH ] .(8)

In this section, we assume that the range of the grading standard ϕ(.) comprises the

whole type space, i.e., R(ϕ) = [θL, θH ].
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Applying the standard constraint-simplification techniques, constraints (6) and (7)

can be equivalently expressed as

θϕ̂(θ)− C(x(θ)) = θ2
L +

∫ θ

θL

ϕ̂(θ̃)dθ̃,(9)

ϕ̂(θ) is non-decreasing.(10)

First, in the optimum constraint (7) is binding for θ = θL, i.e., θLϕ̂(θL)−C(x(θL)) = θ2
L.

Second, constraint (6) implies both (9) and (10), where the former implication follows

from the integral form envelope theorem (see Milgrom and Segal 2002). Lastly, it is

straightforward to demonstrate that (9) and (10) imply (6) and (7).

Letting U(θ) = θϕ̂(θ)− C(x(θ)), the teacher’s problem becomes

max
{θL≤ϕ̂(θ)≤θH ,U(θ)}

∫ θH

θL

C−1 (θϕ̂(θ)− U(θ)) f(θ)dθ(11)

s.t.

U ′(θ) = ϕ̂(θ),(12)

ϕ̂(θ) is non-decreasing.(13)

This maximization problem can be analyzed as an optimal control problem with U(θ)

as a state variable and ϕ̂(θ) as a control variable. Its solution is presented in the next

proposition.

Proposition 1 Let R(ϕ) = [θL, θH ]. The grading rule {x(θ), ϕ̂(θ)} that solves optimiza-

tion problem (5) is characterized by

x(θ) = C ′−1

(
f(θ)θ2C ′(x(θ∗))

f(θ∗)θ∗2

)
,(14)

ϕ̂(θ) = θL +
C(x(θ))

θ
+

∫ θ

θL

C(x(θ̃))

θ̃2
dθ̃(15)

for θ in [θL, θ
∗), where

(16) θ∗ = min{θ : θf(θ)− (1− F (θ)) ≥ 0, θ ∈ [θL, θH ]},
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and by x(θ) = x∗ and ϕ̂(θ) = θH for θ in [θ∗, θH ], where x∗ is determined from

(17) θH −
C(x∗)

θ∗
−
∫ θ∗

θL

C(x(θ))

θ2
dθ = θL.

Before we discuss solution properties, it is worthwhile drawing a parallel to the re-

lated problem of single-object pricing. The pricing problem takes a form similar to that

of problem (5), with the teacher interpreted as a seller and the student as a buyer. Then,

{x(θ)} reads as a payment schedule, and {ϕ̂(θ)}, with its range normalized to [0, 1], as a

probability schedule of selling the object to different valuation types θ. There is, however,

an important difference. In our model, a score x enters the student’s utility in the non-

linear way, whereas in the standard pricing model a payment x enters the buyer’s utility

linearly. This difference has a significant effect on the outcome. In the pricing model, the

sale occurs with probability 1 to types θ ≥ θ∗ and with probability zero to the rest. But

in our model, the bang-bang outcome is suboptimal as, technically, the Hamiltonian is

not linear in the control variable. Intuitively, with increasing marginal costs of effort the

gain from eliciting positive effort levels from excluded types outweighs the corresponding

loss that comes from the reduction of the effort level of the supramarginal types. Thus,

if interpreted in the price-setting language, we obtain that the seller sells the object with

probability 1 to the same types, θ ≥ θ∗, but he also sells it to types θ < θ∗ with a positive

probability.
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3.2 Solution properties

Pooling at the top

Proposition 1 shows that in the teacher’s optimum an interval of types, [θ∗, θH ], is pooled

for a uniform allocation.6 In other words,

Result 1 The teacher compresses most efficient types for the highest grade.

More generally, if the principal does not bear or internalize the cost of rewarding

the agent, then the optimal contract pools most efficient agent types. This finding is

not surprising even though in contrast to the ubiquitous “no pooling at the top” prop-

erty of optimal contracts with monetary incentives (and also with status incentives, see

Moldovanu, et al. 2007; Dubey and Geanakoplos 2010). Suppose it is the case that

only the most efficient type receives the highest reward. To make this allocation incentive

compatible, the principal has to suppress incentives for other types in order to prevent

the most efficient type from misreporting. Now, consider the principal marginally “tilt-

ing up” the schedule of score allocations against the corresponding decrease in the score

allocation of the most efficient type. As this decrease is weighted with a very small prob-

ability, it is certainly outweighed by the sum of increases in test scores of the other types.

Thus, the principal finds it optimal to increase the probability mass of agent types that

are subject to the highest reward until the gains and losses described offset each other.

Referring back to the teacher-student relationship, we show next that pooling the

most efficient types becomes more prevalent when the distribution of abilities is skewed

toward the end of low types.

6The interval [θ∗, θH ] is not empty as the starting point θ∗ is bound to be strictly less than θH .

Because of f(.) > 0 we have θHf(θH)−(1−F (θH)) > 0. Then, due to the monotone hazard rate and the

continuity of F (.) there must be some θ < θH such that 0 ≤ θf(θ)−(1−F (θ)) < θHf(θH)−(1−F (θH)).
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Mismatch between grades and abilities

Consider two classes of students, A and B. In class A, students come from a population

where abilities are distributed according to FA(.) and in class B – according to FB(.)

over the same support. Denote the student types from the two classes by θA and θB,

respectively. Let θB be smaller than θA in the likelihood ratio order:

(18)
fB(θ)

fA(θ)
≤ fB(θ′)

fA(θ′)
if θ < θ′ for all θ, θ′ in [θL, θH ] ,

where fA(.) and fB(.) are the probability density functions of the corresponding distri-

butions. The interpretation of this stochastic dominance condition is that students from

class A are held more able than those from class B. Formally, this condition implies

that
∫ θ′′
θ′
θfA(θ)dθ/(FA(θ′′) − FA(θ′)) ≥

∫ θ′′
θ′
θfB(θ)dθ/(FB(θ′′) − FB(θ′)) for any interval

[θ′, θ′′] ⊆ [θL, θH ]. In words, for any restriction of the ability space the expected student

ability in class A is greater than that in class B.

Let {xA(θ), ϕ̂A(θ)} and {xB(θ), ϕ̂B(θ)} be the optimal grading rules in the two classes,

respectively. We can establish the following relationship

Result 2 If (18) holds, then ϕ̂B(θ) ≥ ϕ̂A(θ) for every θ in [θL, θH ].

In words, a teacher with lower expectations about her students’ abilities should be more

lenient in grading. The intuition behind leniency in grading in weaker classes comes from

the teacher’s attempt to extract more effort from more numerous lower-ability students,

and vice versa.

Example

Results 1 and 2 are illustrated in Figure 1. It depicts the optimal grading rules for

two classes, where ability types in class A are distributed over [0.5, 1.5] according to the
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distribution with fA(θ) = θ and in class B uniformly. The effort cost function takes the

form of C(x) = x2/2. The top diagram shows the optimal score schedules and the bottom

diagram the optimal grade schedules. In both classes, the teachers pool most efficient

student types, but the teacher of class A pools fewer types but against a higher score. In

class B, besides more pooling, we have flatter schedules.

[Insert Figure 1 here]

4 Unobservable grading rules: Dynamic model

According to Result 1, the grade perceived to reveal the highest ability is given to a range

of different ability types. Obviously, this outcome cannot be equilibrium in the long run

as over time adjustment in grading standards will necessarily take place to account for any

mismatch between students’ grades and their abilities. Here, we introduce an adjustment

process of grading standards into the model. In every period, the ability-signaling value of

a grade is set to be equal to the average ability of students who received the grade in the

previous period. The assumption is that the job market uses the empirical distribution of

students’ abilities and grades from the previous period to make inference about students’

abilities in the current period. In this section, first, we are interested in the dynamics of

the optimal grading rule under the adaptive expectations and, then, in the properties of

consistent grading standards, defined as

Definition 1 A grading standard ϕ(.) is consistent if ϕ(r) is equal to the mean of types

θ that receive the grade r under the grading rule {x(θ), ϕ̂(θ)} that solves (5) with ϕ(.).

To begin with, we expand the static model with unobservable grading rules in the

following way. There is a large number of teachers. In every period t ∈ {1, 2, ...}, each
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teacher teaches a class of students coming from the same population so that all teachers

face the identical grading problem. An individual teacher’s grading practice has no effect

on the dynamics of grading standards and, therefore, in every period a teacher maximizes

her current expected utility only. Specifically, in period t a teacher sets up a grading rule

{xt(θ), ϕ̂t(θ)} that solves (5) under the current grading standard ϕt(.). In period t + 1,

grading standards adjust according to

(19) ϕt+1(r) = E(θ : ϕ̂t(θ) = ϕt(r)).

As it immediately follows from adjustment process (19), we can equivalently define a

consistent grading standard ϕt(.) as

Lemma 1 A grading standard ϕt(.) is consistent if and only if ϕt+1 = ϕt.

4.1 Dynamics

The job market’s temporal adjustments of its perception of grading standards have a

direct effect on available rewards at teachers’ disposal, so influencing teachers’ design

of grading rules. To illustrate the dynamics of grading rules, we start from that the

initial grading standard ϕ1(.) is a one-to-one strictly increasing mapping from grades to

abilities so that R(ϕ1) = [θL, θH ]. A teacher’s optimal grading rule {x1(θ), ϕ̂1(θ)} is given

by Proposition 1: pooling the types in [θ∗1, θH ], where θ∗1 = θ∗ from (16), and screening the

remaining types. In period t = 2, the range of rewards under the new grading standard

ϕ2(.) shrinks to R(ϕ2) = [θL, θ
∗
1] ∪ θ∗1, where θ∗1 = E(θ ∈ [θ∗1, θH ]) denotes the mean of

the types that receive the highest grade under {x1(θ), ϕ̂1(θ)}. Now, we solve problem (5)

with ϕ2(.) for the optimal grading rule {x2(θ), ϕ̂2(θ)} in period t = 2.

Because the range of rewards, R(ϕ2), consists of an interval and a distinct point,

the teacher searches for the starting point of the pooling-at-the-top interval, denoted by
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θ2, and signal allocations ϕ̂2(θ) for θ ≤ θ2 subject to ϕ̂2(θ) ≤ θ∗1. (Note that θ∗1 is the

second-highest reward the teacher can give under the grading standard ϕ2(.).) By the

integral form envelope theorem, the optimal score allocations x2(θ) for θ ≤ θ2 take the

form of

(20) x2(θ) = C−1

(
θϕ̂2(θ)−

∫ θ

θL

ϕ̂2(θ̃)dθ̃ − θ2
L

)
.

The types in (θ2, θH ] receive the signal allocation of ϕ(θ) = θ∗1 and their score allocation

is given by

(21) x2 = C−1

(
θ2θ∗1 −

∫ θ2

θL

ϕ̂2(θ̃)dθ̃ − θ2
L

)
.

The Lagrangian of the teacher’s problem is

(22) L(ϕ̂2(θ), θ2, µ(θ)) =

∫ θ2

θL

x2(θ)f(θ)dθ + x2(1− F (θ2)) + µ(θ)(θ∗1 − ϕ̂2(θ)),

where µ(θ) is the Lagrange multiplier on the constraint that ϕ̂2(θ) ≤ θ∗1 for θ ≤ θ2.

The optimal starting point, θ∗2, is characterized by the first-order condition

(23)
θ∗1 − ϕ̂2(θ∗2)

C ′ (x2)

1− F (θ∗2)

f(θ∗2)
= x2 − x2(θ∗2).

Condition (23) is analogous to pooling condition (16) in the case of the convex range

R(ϕ). Because C−1(.) is strictly concave, it implies that

(24)
θ∗2
(
θ∗1 − ϕ̂2(θ∗2)

)
C ′ (x2)

< x2 − x2(θ∗2) <
θ∗2
(
θ∗1 − ϕ̂2(θ∗2)

)
C ′ (x2(θ∗2))

.

Then, given (24), the first-order condition in (23) renders

(25)
1− F (θ∗2)

θ∗2f(θ∗2)
> 1,

which in turn implies θ∗2 < θ∗1. (Recall that (1 − F (θ∗1))/(θ∗1f(θ∗1)) = 1.) Thus, we get

more types pooled for the highest grade, which is due to the gap between the highest
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and second-highest rewards. The reason is that the teacher increases the mass of types

subject to the highest reward as inframarginal types are bound for significantly lower

rewards and, thus, lower scores.

Now consider the allocations for the remaining types, where the first-order condition

with respect to ϕ̂2(θ), θ ≤ θ∗2, is

(26)
θf(θ)

C ′(x2(θ))
−
∫ θ∗2

θ

f(θ̃)

C ′(x2(θ̃))
dθ̃ − 1− F (θ∗2)

C ′ (x2)
= µ(θ).

The last term of the left-hand side is strictly smaller than (θ∗2f(θ∗2))/C ′(x2(θ∗2)) because

of (23) and (24). Hence, at θ = θ∗2 the left-hand side of (26) is positive, implying that

µ(θ∗2) > 0 or ϕ̂2(θ∗2) = θ∗1. By the monotonicity of a score schedule and the continuity of

F (.), the multiplier µ(θ) stays positive for a range of types. The gains from a marginal

increase in effort levels for types close to θ∗2 outweigh the corresponding reductions of

effort levels for higher types. This implies a second interval of types pooled for θ∗1 and,

thus, a further coarsening of grading.

To complete the characterization of the optimal grading rule {x2(θ), ϕ̂2(θ)}, let θ∗2,2

denote the starting point of the second pooling interval, (θ∗2,2, θ
∗
2]. All the types in this

interval receive the allocation (x2(θ∗2), θ∗1). Types θ ≤ θ∗2,2 are screened and their optimal

score allocations x2(θ) are determined by (26) with µ(θ) = 0. The type θ∗2,2 is found from

(26) and (17) in Proposition 1, where θ∗ is replaced with θ∗2,2, x∗ with x2(θ∗2), and x(θ)

with x2(θ). Finally, the uniform score allocations, x2 and x2(θ∗2), are pinned down by

(23) and the corresponding incentive compatibility constraint.

In the next period, t = 3, the job market adopts a new grading standard, ϕ3(.)

according to (19). Then, teachers choose a new grading rule, {x3(θ), ϕ̂3(θ)}, that solves

problem (5) with ϕ3(.). The range of rewards available to teachers, R(ϕ3), consists of an

interval of types and two distinct points that are equal to the expected types of the two
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pooling intervals in {x2(θ), ϕ̂2(θ)}, respectively. A teacher looks for the optimal starting

points of two pooling intervals, in which types receive the two distinct ability signals,

respectively, and for signal allocations for the remaining types. But, as we show in the

proof of the next result, the teacher pools an additional interval of types. For the same

reason, this pattern reoccurs in subsequent periods: the teacher always pools a range of

types for the highest ability signal from the interval of available signals. We numerically

illustrate this dynamics later in the text.

The algorithm, described above, is repeated until a consistent grading standard is

obtained, i.e., ϕt+1 = ϕt. The convergence of the adjustment process can be immedi-

ately established when the optimal expected score decreases over time, E(xt) ≥ E(xt+1).

This property, together with the existence of a lower bound (the expected score in any

period cannot be lower than the expected score under complete pooling), implies that

the sequence {E(xt)} must converge. The convergence of {E(xt)} implies, in turn, the

convergence of the adjustment process and, thus, the existence of a convergent grading

standard ϕ(.). At the same time, the monotonicity property E(xt) ≥ E(xt+1) follows

from the revealed preference argument when in consecutive periods there is no improve-

ment in available ability signals at teachers’ disposal.7 Next, we discuss properties of a

consistent grading standard, followed by numerical analysis.

7In some irregular cases, the monotonicity property can, however, be violated. Consider a current

grading standard with two pooling intervals only and thus two grades available. If the cost function C(.)

is locally very convex, the teacher may find it optimal to pool fewer types for the highest reward compared

to the previous period. This would lead to an improvement in available rewards for the following period

and possibly a higher expected score. We do not explore such cases here.
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4.2 Consistent grading standards

The next result shows that the observations made when deriving the optimal grading

rule in period t = 2 can be generalized as the properties of a consistent grading standard.

This result will prove useful in characterizing these standards.

Result 3 Given a consistent grading standard, teachers

(i) do not separate any interval of types,

(ii) pool more types for the highest grade than in period t = 1.

As we show in the proof, a grading standard that perfectly screens an interval of types

cannot be consistent. If such an interval existed, the teacher would pool some types for

the highest ability signal available in this interval. Generally, effort extraction from lower

types dominates distortions imposed on higher types. Thus, when individual grading rules

are unobservable and separately have no effect on the dynamics of grading standards, the

practice of coarse grading will emerge over time. Part (ii) of Result 3 points to the

direction of grade inflation as the highest grade is assigned to more students. As already

mentioned in the discussion of the grading problem in period t = 2, this result is a

consequence of a gap that arises between the values of the highest and the second-highest

grades and the convexity of the cost function C(.). The dynamics of the pooling-at-the-

top interval is numerically explored in the next subsection.

Now, drawing on part (i) of Result 3, we are able to offer a succinct characterization of

consistent grading standards as it is sufficient to analyze standards with pooling intervals

only. We use a partition θ = (θ0, θ1, ..., θn−1, θn) of the type space,

(27) θL = θ0 ≤ θ1 ≤ ... ≤ θn−1 ≤ θn = θH ,
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to express a grading standard with n pooling intervals, [θi−1, θi], i = 1, ..., n. Let Θn

denote the set of all possible partitions θ satisfying (27). A grading standard θ ∈ Θn with

n distinct pooling intervals defines n distinct grades that a teacher finds at her disposal.

The ability-signaling values of these grades are given by the function ϕ : Θn → [θL, θH ]n,

where

(28) ϕi(θ) =

∫ θi
θi−1

θf(θ)dθ

F (θi)− F (θi−1)

is the expected ability in interval i, i.e., in [θi−1, θi], i = 1, ..., n. We write ϕ0(θ) = θL.

Given a grading standard θ ∈ Θn with n distinct intervals, any feasible grading rule

can also be characterized by a partition θ′ ∈ Θn because at most n distinct grades are

available. The teacher’s expected utility from a grading rule θ′ is given by the function

G : Θn ×Θn → R defined as

(29) G(θ′;θ) =
n∑
i=1

πi(θ
′)xi(θ

′;θ),

where πi(θ
′) = F (θ′i)− F (θ′i−1) is the probability weight on the score

(30) xi(θ
′;θ) = C−1

(
i∑

j=1

θ′j−1(ϕj(θ)−ϕj−1(θ))

)
.

A grading standard θ is consistent if

(31) θ = arg max
θ′∈Θn

G(θ′;θ).

In particular, a consistent grading standard θ with n distinct pooling intervals exists only

if it is an interior solution to problem (31). In other words, it solves the system of n− 1

equations, derived from the first-order conditions with respect to θ′i, i = 1, ..., n− 1,

(32)
ϕi+1(θ)−ϕi(θ)

f(θi)

n∑
j=i+1

πj(θ)

C ′(xj(θ;θ))
= xi+1(θ;θ)− xi(θ;θ)

with (27) satisfied with strict inequalities.
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4.3 Numerical analysis

Here, we present a numerical analysis of the dynamics of grading rules done by extending

the two examples from the previous section. The main purpose is to show how our model

can produce grade inflation.8

Figure 2 illustrates the case when types are uniformly distributed over [0.5, 1.5]. The

optimal grading rule in period t is shown as a partition of the type space. The rightmost

interval stands for the pooling interval at the top, with its score allocation x indicated

above it. The screening interval is marked with “Screen.” As we can see, the screening

interval disappears already in period t = 3, with only two pooling intervals left, [0.5, 0.62]

and (0.62, 1.5]. Over time, the latter expands at the expense of the former yielding grade

inflation: In every period, the highest grade is given to more students and for a lower

score x. Ultimately, the consistent grading standard we get is the one that pools the

whole type space.

[Insert Figure 2 here]

Figure 3 illustrates the case when the distribution of types has a linear density func-

tion, f(θ) = θ. The dynamics of optimal grading rules is shown for six periods, all of

which follow the same pattern. The screening interval shrinks, an additional pooling

8To demonstrate grade inflation, we resort to numerical methods rather than analytical ones. Ana-

lytical analysis is hardly tractable in our model because of, among other things, non-convex and variable

choice set R(ϕ). Drawing on part (i) of Result (3), one analytical way to proceed would be to specify

the conditions when a teacher’s expected utility function G(θ′;θ) in (29) is supermodular in θ′ and has

increasing differences in all θ′i and θj . This would imply monotone comparative statics, which is the

expansion of pooling intervals. However, for G(θ′;θ) to have the desired properties, which are, equiva-

lently, non-negative cross derivatives, it requires imposing endogenous restrictions on the cost function

C(.) and distribution F (.).
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interval appears, and the pooling interval at the top expands with its score x decreasing.

For this example, the derivation of a consistent grading standard through iteration is not

attempted because of the increasing complexity of the problem. Instead, we use (32) to

calculate consistent grading standards. Several are possible, e.g., one with the partition

(0.5, 0.568, 0.649, 0.689, 0.792, 1.5) has five distinct pooling intervals.9

[Insert Figure 3 here]

5 Observable grading rules

This section deals with the situation when the job market observes the grading rule

applied and can correctly infer a student’s expected ability. In particular, the utility of

a grade is given by the average ability of students who receive the grade. Thus, unlike

in the case with unobservable grading rules, there is no independence of utilities among

students anymore. Here, a more lenient grading rule translates into lower values of grades

and, as a result, adversely affects students’ choice of learning effort. Below, we analyze

when this downside effect of lenient grading outweighs the upside effect – more effort

extraction from lower types. The model with observable grading rules closely resembles

the benchmark model of Rayo (2013) on the monopolistic signal provision of conspicuous

consumption, upon which we closely draw whenever possible.

Next, we start with defining the teacher’s problem of optimal grading under observable

grading rules and, then, discuss conditions for separation of students’ abilities.

9A consistent standard with more pooling intervals could not be found.
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5.1 Teacher’s problem

Given a grading rule {x(θ), r(θ)}, define a function γ : [θL, θH ]→ [θL, θH ] by

(33) γ(θ) = E
[
θ̂ : r(θ̂) = r(θ)

]
.

The value γ(θ) is equal to the mean of the types θ̂ for which the grading rule prescribes

the grade r(θ). When all types report truthfully, γ(θ) determines the expected ability

inferred by the market and, thus, a student’s utility from the grade r(θ). In definition

(33), the grade allocation r(.) can be equivalently replaced by the corresponding score

allocation x(.)

(34) γ(θ) = E [θ′ : x(θ′) = x(θ)] .

Therefore, it is sufficient to analyze grading rules in a reduced form, i.e., as {x(θ)} only.

The teacher’s problem is to find the score schedule {x(θ)} that maximizes

max
{x(θ)}

∫ θH

θL

x(θ)dF (θ)(35)

s.t.

θγ(θ)− C(x(θ)) ≥ θγ(θ̂)− C(x(θ̂)),(36)

θ(γ(θ)− θL)− C(x(θ)) ≥ 0, for all θ and θ̂ in [θL, θH ] ,(37)

where (36) and (37) are the student’s incentive compatibility and individual rational-

ity constraints, respectively, pre-multiplied by θ. Next, we start with transforming the

teacher’s problem (35) into the equivalent problem that is maximized with respect to

ability signal schedule {γ(θ)}. The set of feasible ability signal schedules under incentive

compatibility, which we denote by Γ, is characterized by the following condition

(38) γ(θ) = E[θ̂ : γ(θ̂) = γ(θ)],
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which is similar in meaning to (33).

As before, we replace all the incentive compatibility and individual rationality con-

straints with

x(θ) = C−1

(
θγ(θ)−

∫ θ

θL

γ(θ̃)dθ̃ − θ2
L

)
(39)

x(θ) is non-decreasing.(40)

From (39) the score allocation x(θ) is non-decreasing in θ if and only if γ(θ) is non-

decreasing. Thus, the teacher’s problem can be expressed as finding the signal schedule

{γ(θ)} that maximizes

max
{γ(θ)}∈Γ

∫ θH

θL

C−1

(
θγ(θ)−

∫ θ

θL

γ(θ̃)dθ̃ − θ2
L

)
dF (θ)(41)

s.t. γ(θ) is non-decreasing.

5.2 Solution properties

The teacher’s problem (41) can be interpreted as determining the intervals of pooling and

separation of types. Similarly to Rayo (2013), the teacher needs to take into account

three effects pooling has on the expected score relative to separation. First, student types

at the low end of a pooling interval can be made to exert a higher effort because their

type inferred is higher than that under separation. Conversely, the second effect is that

student types at the high end of the pooling interval will exert a lower effort than that

under separation. Finally, the third effect comes from changes in score allocations for

the supramarginal types (to the right from the pooling interval). All in all, the teacher

chooses to pool the types in a given interval if the joint outcome of the three effects is

positive.

Problem (41) with a linear cost function C(.) is analyzed in Rayo (2013). He provides
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a necessary and sufficient condition for the optimality of full separation of types, i.e.,

γ(θ) = θ. For our specification of the model with linear C(.), this condition requires

θ − (1 − F (θ))/f(θ) be non-decreasing for γ(θ) = θ to be the solution. However, with

a nonlinear cost function C(.) there is no succinct characterization of the full separation

condition. One of the factors determining the results for our model is whether the score

schedule in (39) is convex under separation. In particular, the convexity is a sufficient

condition for no pooling at the top.

Proposition 2 If {x(θ)} in (39) with γ(θ) = θ is convex over [θ, θH ], θL ≤ θ < θH , then

there is θ′ ∈ [θ, θH) such that γ(θ) = θ is the solution to (41) for all θ ∈ [θ′, θH ].

The idea of the proof is that, once the convexity condition is met, a grading rule

containing a uniform allocation at the top can be improved upon by separating those types

with distinct allocations. In terms of the three effects discussed above, with convexity

the second effect dominates the first one, whereas the third is absent (because there are

no supramarginal types). The convexity condition is equivalent to that the marginal

disutility from learning decreases in ability

(42)
d

dθ

(
Cx(x(θ))

θ

)
< 0

or, after differentiating and dropping the arguments,

(43) Cxx ≤
(
Cx
θ

)2

.

In other words, the score schedule {x(θ)} in (39) is convex under separation if the cost

function C(.) is not “too convex.” (For instance, this condition is met for a quadratic

cost function.)

The convexity condition in (43) is, however, not sufficient for γ(θ) = θ to be the

solution to the teacher’s problem. As in Rayo (2013), pooling may be, nevertheless,
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optimal on the interior of the type space. The decision to pool the types in a given

interval depends on the joint outcome of the three effects of pooling. The convexity

condition ensures that the sum of the first two effects is negative for pooling, but the

third effect is ambiguous and depends on the distribution F (.). The next proposition

states a necessary condition for the third effect to be negative, which together with the

convexity condition determines a sufficient condition for the optimality of full separation.

Proposition 3 If (43) holds and for any interval [θ1, θ2] ⊆ [θL, θH ] we have

(44)

∫ θ2
θ1
θdF (θ)

F (θ2)− F (θ1)
≥
∫ θ2
θ1
θdθ

θ2 − θ1

,

then γ(θ) = θ is the solution to (41).

Literally, condition (44) states that the distribution F (.) stochastically dominates the

uniform distribution in the likelihood ratio order.10 Economically, this condition requires

that the sum of information rents obtained by the types pooled in [θ1, θ2] be larger than

the information rents obtained under separation. This leads to the third effect, i.e.,

changes in allocations for supramarginal types, being negative for pooling as compared

to separation. For the numerical examples studied above, conditions (43) and (44) both

hold implying the optimality of perfect screening with observable grading rules.

All in all, the observability of grading rules makes an enormous impact on the form

of the optimal grading rule. The compression of grades among the most efficient types

10The uniform distribution arises as a consequence of the assumption about the functional form of the

cost function: C(x)/θ. With a more general specification, C(x)/v(θ) with v(.) > 0 and v′(.) > 0, the

condition equivalent to (44) is ∫ θ2
θ1
θdF (θ)

F (θ2)− F (θ1)
≥

∫ θ2
θ1
θdv(θ)

v(θ2)− v(θ1)
.
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no longer holds with observability unless the cost function is very steep. In general, the

resultant interdependence of student utilities induces the teacher to differentiate student

types at a greater rate than in the case with unobservable grading rules. Gains from

lenient grading in the form of more effort extraction from lower types do not outweigh

losses arising from the degrading of grade values by the job market.

6 Discussion

First, we demonstrate that the findings of our models with unobservable grading rules

closely match the ubiquitously observed grading patterns of 1) grade compression, 2)

grade inflation, and 3) mismatch between students’ grades and their abilities. We also

relate our findings to the discretization of grades and the reduction of study time. Second,

we discuss policy applications.

6.1 Main findings

Grade compression

Grade compression stands for the practice of coarse grading when teachers tend to rely

on a few marks to assess students’ performance. Our model with unobservable grading

rules offers a rational explanation for this practice. The argument is based on the costless

nature of grades as incentives. First, the teacher finds it average knowledge maximizing to

compress the most efficient types for the highest reward as argued when deriving Result

1. Then, perfect screening is never optimal in the long run as we show by Result 3. With

unobservable grading rules, teachers face the commitment problem of not exploiting the

costlessness of grades even when grading standards are subsequently adjusted. Eventually,
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teachers are bound to expand the range of ability types that are subject to better grades

because of the diminished incentive effects of lower grades. This argument can also be

taken as an explanation for the usage of discrete grading scales.

Compressed rewards pertain not only to the teacher-student relationship. Consider,

for instance, the well-documented compression of ratings phenomenon at job performance

appraisals (see Murphy and Cleveland 1995; Prendergast 1999). Our static model

with costless rewards can also be related to this phenomenon. In firms practicing job

performance appraisal systems, a line manager rates the performance of her employees,

whose pay is determined by their ratings received. However, it is not a line manager that

bears the resultant payroll cost but the firm (or rather its residual claimants). Hence, if

a line manager has an interest in eliciting more effort from her employee then they may

find themselves in an agency relationship that features costless rewards. Along the same

lines of our argument for grade compression, the compression of ratings can arise in the

line manager’s optimum.

Grade inflation

The model with unobservable grading rules also addresses grade inflation, an increasing

frequency of high grades without an accompanying rise in student ability or effort.11 From

our analysis we can distinguish two contributing factors toward the increasing degree of

leniency in grading. The first factor pertains to shifts in the distribution of student

abilities toward the lower end of the ability space (Result 2). The second factor is the

aggravation of teachers’ commitment problem (Result 3).

Both factors can originate from the same source, namely, the expanding availability of

11See, e.g., Sabot and Wakeman-Linn (1991); Kuh and Hu (1999); Johnson (2003).
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education.12 In recent decades, due to an increasing number of educational institutions

and study programs, a larger number of study places has been offered with the impli-

cation that a larger number of low-ability applicants is enrolled.13 Subsequently, this

can lead to the emergence of the first factor discussed. Similarly, with more issuers of

educational certificates, individual grading rules carry a lesser weight on the perception

of the job market about grading standards applied, thus, resulting in the second factor –

the commitment problem.

Finally, the numerical analysis of the dynamic model with unobservable grading rules

shows a reduction in students’ test scores and, accordingly, learning effort levels over time.

This result is consistent with the empirical study of Babcock and Marks (2011), where

they report that over the period 1961–2003 time spent for study by full-time students in

the US gradually decreased from 40 to 27 hours.

Mismatch between grades and abilities

The model with unobservable grading rules is also consistent with the empirical obser-

vation that teachers of classes with less able students apply more lenient grading rules

and vice versa, see Goldman and Widawski (1976); Strenta and Elliott (1987); Johnson

(2003).14 Drawing on Result 2, this observation can be the outcome of the optimal design

12See footnote 5 for empirical evidence and McKenzie and Tullock (1981, Ch. 17) for other discussion.

13Wilson (1999) reports declining college entrance test scores. There is also a steadily increasing

number of students enrolled in US degree-granting institutions both in absolute and relative (as a

percentage of high school graduates) numbers: see Table 200 of 2009 Digest of Education Statistics,

http://nces.ed.gov/programs/digest/d09/tables/dt09 188.asp.

14Goldman and Widawski (1976) report a negative correlation between students’ Scholastic Aptitude

Test scores (a proxy measure of students’ abilities) and the grading standards in the classes the students

were majoring in. According to this study (conducted at the University of California, Riverside), the
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of grading rules and not necessarily the outcome of teachers’ rent-seeking behavior, as

sometimes is suggested (e.g., Johnson 1997). Our model predicts that in weak classes

the optimal grading rule makes high grades more easily attainable in order to elicit more

effort from more numerous lower-ability students. This, correspondingly, results in a

mismatch and low correlation between students’ grades and their abilities.

Concerning the normative side of the differential grading standards discussed, there

is a number of papers proposing grade adjustment mechanisms (see, e.g., Johnson 1997)

aimed at making grades more informative of students’ actual abilities. Without going

into the details of this literature, it is worth noting that it is typically assumed that the

reason for differential grading standards lies with some personal features of the instructor

(e.g., the adaptation level, unwillingness to spend office hours on dealing with students’

complaints about low grades, etc.). Therefore, proposed grade adjustment mechanisms

would attempt to correct for presumed instructor-specific factors failing to recognize

the possible endogeneity of those factors, which could lead mechanisms astray from the

projected goals.

Interestingly, Result 2 also points to the presence of indirect peer effects. A student’s

allocation (grade and score) depends on the teacher’s grading rule applied. At the same

time, the form of the grading rule depends on the student’s peers or rather their abil-

ities. Hence, peers can also matter indirectly – through the grading rule designed by

the teacher. An interesting research question would be the disentanglement of direct

(typically studied) and indirect (suggested here) peer effects.

negative correlation observed is the consequence of that professors in fields with more high-ability students

tend to grade more stringently. These empirical findings were confirmed by similar studies conducted at

Dartmouth College (Strenta and Elliott 1987) and at Duke University (Johnson 2003).
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6.2 Policy applications

Merit-pay programs for high school teachers have been recently introduced in different

countries to foster teachers’ incentives to elicit more effort from students, see Lavy (2002,

2009); Atkinson, et al. (2004); Lazear (2003). Typically, these programs offer monetary

bonuses to teachers if their students improve upon their previous performance as measured

by their scores on standardized tests. The goals pursued by the developers of such

programs range from improving average performance (in most cases) to reducing the gap

between bad and good performers as, e.g., in the “No Child Left Behind” initiative in

the US.

In terms of our modeling framework, incentives set by merit-pay programs can have

a direct effect on the form of the teacher’s utility function V (.). In the case of “No Child

Left Behind” the utility function V (.) can turn concave because the teacher would start

putting relatively more weight on the performance of lower-ability students. Then, with a

concave utility function V (.) the model with costless grades predicts that the gap between

low- and high-ability students would diminish as compared to the case of a linear utility.

However, this reduction would come from two directions: more effort from low-ability

students and less effort from those with high abilities.15 Hence, a negative externality

15Denote the optimal score schedule of the solution to the teacher’s problem (5) with a strictly concave

utility function V (.) by {xV (θ)}. With a reference to Proposition 1 and its proof, the optimal score

allocations xV (θ) for θ in [θL, θ
∗) are equal to

xV (θ) = C ′−1
(
f(θ)θ2V ′(xV (θ))C ′(xV (θ∗))

f(θ∗)θ∗2V ′(xV (θ∗))

)
.

Using the revealed preference argument and straightforward analytical manipulations, we can show that

xV (θ∗) < x(θ∗) and xV (θL) > x(θL), where x(θ∗) and x(θL) are the optimal allocations from the linear

case. Hence, with a strictly concave utility V (.), the range of scores contracts. And this contraction

comes from both directions: optimal allocations become lower for able students and higher for less able
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can arise from the introduction of such programs. In contrast, the gap between bad and

good performers can increase if the teacher’s utility function turns convex – as a result,

e.g., of a merit-pay program that rewards for excellence.

With the help of our models, we can also address the problem whether university ad-

ministration should restrict teachers’ choice of grading rules by imposing relative grading

such as grading on a curve. In the case of observable grading rules, grading on a curve is

superfluous if not harmful when there is a homogenous group of students; a similar pre-

diction is also made by Dubey and Geanakoplos (2010). However, under a more realistic

scenario of unobservable grading rules, grading on a curve could possibly fix teachers’

commitment problem. But then, the question is what goal university administration

pursues. If it is the maximization of students’ knowledge, then grading on a curve or

the disclosure of grade distributions would be a desirable policy. But if administration

aims for a higher average job placement, then, as argued by Chan, et al. (2007) and

Ostrovsky and Schwarz (2010), compressed grades are a sought-after outcome. In this

case, administration would not provide incentives for teachers to differentiate among their

students, thus, refraining from grading on a curve and disclosing any information about

class grade distribution.16

7 Conclusion

In this paper, we approach the teacher-student relationship from the perspectives of

ability screening and knowledge maximization. We show that many empirical grading

students.

16For more discussion and empirical implications of making academic transcripts more informative,

see Bar, et al. (2009).
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patterns such as grade compression, grade inflation, or mismatch between students’ grades

and abilities are consistent with the predictions of our agency model that has grades as

costless incentives. When the job market makes a judgment about students’ grades based

on a standard other than the actual grading rule applied, a teacher chooses a lenient

grading rule to induce more effort from less able students, thus, yielding coarse grading.

This effect turns more important in less able classes, and vice versa. When the job market

adaptively adjusts its perception of grading standards, the practice of coarse grading can

unravel over time until the point when no type is screened. In their attempts to motivate

students, teachers are bound to increase leniency in grading because of depreciating values

of grades arising from the commitment problem, which has ultimately implications for

grade inflation. Finally, we suggest that the modeling framework presented here can serve

as microfoundations for the purpose of policy applications.

Department of Economics, University of Zurich, Switzerland

Appendix

Proof of Proposition 1

Omitting monotonicity constraint (13) and the constraint ϕ̂(θ) ≥ θL, the Hamiltonian of

the reduced problem is

(45) H(ϕ̂, U, λ, µ, θ) = C−1 (θϕ̂− U) f(θ) + λϕ̂+ µ(θH − ϕ̂),

where λ(θ) is the co-state variable associated with (12) and µ(θ) is the Lagrange multiplier

for ϕ̂(θ) ≤ θH . The necessary conditions for the optimal control problem, which are also
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sufficient because C−1(.) is concave, imply that

θf(θ)

C ′(x(θ))
+ λ(θ)− µ(θ) = 0,(46)

f(θ)

C ′(x(θ))
= λ′(θ),(47)

U ′(θ) = ϕ̂(θ),(48)

λ(θH) = 0,(49)

where x(θ) = C−1(θϕ̂(θ)−U(θ)). The condition (47) follows from Pontryagin’s maximum

principle and (49) is the transversality condition.

From (46) and (49), we get µ(θH) > 0 implying that ϕ̂(θH) = θH . The state variable

U(θ), which is the student’s net utility, is strictly increasing in θ and also continuous as

(upward) jumps cannot be optimal for the teacher (she wants to keep the net utility as

low as possible). Then, by the continuity of U(θ) and the assumed piecewise continuity

of the control variable, the co-state variable λ(θ) is continuous. This implies that the

multiplier µ(θ) remains positive for an interval of types that are pooled for the highest

reward. Denote this interval by (θ∗, θH ] and the corresponding uniform allocation by

(x∗, θH). From (47) and (49), we obtain that for θ > θ∗

(50) λ(θ) = −1− F (θ)

C ′(x∗)
,

which renders (46) to satisfy

(51)
θf(θ)

C ′(x∗)
− 1− F (θ)

C ′(x∗)
> 0.

The last expression implies that the starting point of the pooling interval θ∗ is given by

(52) θ∗ = min{θ : θf(θ)− (1− F (θ)) ≥ 0, θ ∈ [θL, θH ]}.

As a consequence, we can establish that µ(θ) = 0 for θ ≤ θ∗.
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Suppose that θ∗ > θL holds (if θ∗ = θL, all types are pooled). For θ ≤ θ∗ (46) becomes

(53)
θf(θ)

C ′ (x(θ))
−

(∫ θ∗

θ

f(θ̃)

C ′(x(θ̃))
dθ̃ − 1− F (θ∗)

C ′ (x∗)

)
= 0,

where the expression in the brackets stands for λ(θ) obtained from (47). Differentiating

with respect to θ renders

(54) 2
f(θ)

C ′ (x(θ))
+ θ

d

dθ

(
f(θ)

C ′ (x(θ))

)
= 0.

Solving for x(θ), θ ∈ [θL, θ
∗], we get

(55) x(θ) = C ′−1

(
f(θ)θ2C

′(x(θ∗))

f(θ∗)θ∗2

)
.

To find the allocation x(θ∗), consider (46) at θ = θ∗

(56) λ(θ∗) = − θ∗f(θ∗)

C ′(x(θ∗))
.

From (50) the right-hand limit of λ(θ) is

(57) lim
θ→θ∗

λ(θ) = −1− F (θ∗)

C ′(x∗)
.

By the continuity of the co-state variable we obtain that x(θ∗) = x∗, which implies that

the optimal score schedule is continuous.

The optimal signal allocations ϕ̂(θ) for θ ∈ [θL, θ
∗) are most easily determined from

the integral form envelope condition applied to initial incentive compatibility constraint

(2):

(58) ϕ̂(θ) = θL +
C(x(θ))

θ
+

∫ θ

θL

C(x(θ̃))

θ̃2
dθ̃.

Given ϕ̂(θ∗) = θH , we can from (58) at θ = θ∗ integrate out the score allocation x∗.

Next, we establish that the omitted monotonicity constraint holds. For this purpose

it suffices to show that the score schedule x(θ) in (55) is non-decreasing. Because C ′(.)
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is increasing, so is its inverse C ′−1(.). Hence, for x(θ) to be non-decreasing we need that

the argument of C ′−1(.) in (55) is non-decreasing in θ, i.e., d [f(θ)θ2] /dθ ≥ 0. From (52)

it follows that f(θ)θ/(1− F (θ)) < 1 for θ in [θ, θ∗), and from the monotone hazard rate:

f ′(θ) > −f 2(θ)/(1 − F (θ)). The two properties together ensure that d [f(θ)θ2] /dθ ≥ 0

holds, implying that x′(θ) ≥ 0. The omitted constraint ϕ̂(θ) ≥ θL holds from (58).�

Proof of Result 2

Let θ∗i denote the starting point of the pooling-at-the-top interval in class i, i = A,B,

defined by (16) in Proposition 1. If θ∗B = θL, then the proposition holds trivially. Suppose

θ∗B > θL. Because the likelihood-ratio stochastic order implies the hazard-rate order (see

Shaked and Shanthikumar 1994), which is fA(θ)/(1 − FA(θ)) ≤ fB(θ)(1 − FB(θ)) for

every θ, it immediately follows that θ∗A ≥ θ∗B. In the less able class B, there is more

pooling at the top. Thus, we have ϕ̂B(θ) = θH ≥ ϕ̂A(θ) for θ ∈ [θ∗B, θH ].

Consider the optimal score schedules {xA(θ)} and {xB(θ)} and suppose that they

are not identical (otherwise, the proposition holds trivially). Because the schedules are

continuous, they must cross at least once. (Otherwise, the lower score schedule would

not be optimal.) Let θ be the left-most crossing point. We separately consider two cases:

1) θ ≥ θ∗B, and 2) θ < θ∗B.

In case 1, θ ≥ θ∗B, it must be that either xB(θ) > xA(θ) or xB(θ) < xA(θ) for θ < θ.

The latter is impossible because then we never have xB(θ) > xA(θ) required for the

optimality of {xB(θ)} as xB(θ) stays constant for θ ≥ θ while xA(θ) is non-decreasing.

Thus, it must be that xB(θ) > xA(θ) for θ < θ. From (15) in Proposition 1 it follows

that ϕ̂A(θ) < ϕ̂B(θ) for θ < θ∗B ≤ θ, proving the proposition for case 1.
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In case 2, θ < θ∗B, by (14) in Proposition 1 we have

(59) C ′−1
(
fA(θ)θ2MA

)
= C ′−1

(
fB(θ)θ2MB

)
,

where Mi = C ′(x∗i )/(fi(θ
∗
i )θ
∗2
i ), i = A,B. It yields

(60)
fA(θ)

fB(θ)
=
MB

MA

.

Due to the assumed likelihood-ratio stochastic order, we get fA(θ)/fB(θ) ≥ MB/MA for

all θ > θ implying that xA(θ) ≥ xB(θ) for all θ ≥ θ and xA(θ) < xB(θ) for all θ < θ.

Hence, by (15) in Proposition 1, it follows that ϕ̂A(θ) < ϕ̂B(θ) for θ ≤ θ.

What remains to be proved is ϕ̂A(θ) ≤ ϕ̂B(θ) for θ ∈ (θ, θ∗B). To invoke a contradic-

tion, suppose that for some θ̃ ∈ (θ, θ∗B) we have ϕ̂A(θ̃) > ϕ̂B(θ̃). Because xA(θ) ≥ xB(θ)

for θ ≥ θ̃ > θ, then due to (15) in Proposition 1 we must have ϕ̂A(θ) > ϕ̂B(θ) for all

θ ≥ θ̃. But it is a contradiction because ϕ̂A(θ) ≤ ϕ̂B(θ) for θ ∈ [θ∗B, θH ] as shown above.�

Proof of Result 3

First, we show that a consistent grading standard ϕt(.) with (some) perfect screening

of types is impossible (Part (i)). To invoke a contradiction, suppose there exists such a

consistent grading standard ϕt(.) that screens the types in an interval [θL, θt,1] and pools

types in intervals (θt,1, θt,2], (θt,2, θt,3], ..., (θt,n, θH ]. (There must be some pooling at the top

as we have previously shown.) The closure of its range is R(ϕt) = [θL, θt,1]∪θt,1∪ ...∪θt,n,

where θt,i = E(θ ∈ (θt,i, θt,i+1]), i = 1, ..., n and θt,n+1 = θH . Setting the starting point

of the screening interval at a point other than θL has no impact on the argument that

follows.

Let xt(θ) denote the score allocation for θ in [θL, θt,1] and xt,i be the uniform score

allocation for types in (θt,i, θt,i+1], i = 1, ..., n. As before, the score allocations are de-
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termined by the integral form envelope theorem given signal allocations (as in (20) and

(21)). The teacher’s maximization problem can be expressed by the Lagrangian

L(ϕ̂t(θ), {θ̂t,i}ni=1, λ(θ)) =

∫ θ̂t,1

θL

xt(θ)f(θ)dθ + λ(θ)(θt,1 − ϕ̂t(θ)) +(61)

+
n∑
i=1

xt,i(F (θ̂t,i)− F (θ̂t,i+1)) +
n∑
i=1

µi(θ̂t,i+1 − θ̂t,i),

which has to be maximized with respect to the starting points of pooling intervals,

{θ̂t,i}ni=1, signal allocations ϕ̂t(θ) for θ ≤ θ̂t,1. As before, λ(θ) is the Lagrange multi-

plier on the constraint θt,1 ≥ ϕ̂t(θ) for θ ≤ θ̂t,1; µi is the Lagrange multiplier on the

constraint θt,i+1 ≤ θt,i, i = 1, ..., n (i.e., pooling intervals must not overlap).

Because ϕt(.) is consistent, {θt,i}ni=1 and ϕ̂t(θ) need to satisfy the first-order conditions,

which with respect to θ̂t,1 and ϕ̂t(θ) are, respectively,

θt,1 − θt,1
f(θt,1)

n∑
i=1

F (θt,i+1)− F (θt,i)

C ′(xt,i)
= xt,1 − xt(θt,1),(62)

θf(θ)

C ′ (xt(θ))
−
∫ θt,1

θ

f(θ̃)

C ′
(
xt(θ̃)

)dθ̃ − n∑
i=1

F (θt,i+1)− F (θt,i)

C ′(xt,i)
= λ(θ).(63)

The summation term appears in these conditions because θ̂t,1 and ϕ̂t(θ) enter the expres-

sions for the optimal score allocations for all θ ≥ θt,1. As θt,1 < θt,2 by construction, it

must be that µ1 = 0. Based on the same convexity argument applied for the case of t = 2

when deriving (24), we can show that

(64) xt,1 − xt(θt,1) <
θt,1
(
θt,1 − θt,1

)
C ′ (xt(θt,1))

.

Then, the summation term in (62) is strictly smaller than θt,1f(θt,1)/C ′(xt(θt,1)), which

implies that the left-hand side of (63) is strictly positive for some θ < θt,1. As a result,

the teacher cannot find it optimal to screen all the types in [θL, θt,1], which contradicts

that the grading standard ϕt(.) is consistent.
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To prove Part (ii), consider the first-order condition with respect to θt,n, the starting

point of the pooling-at-the-top interval,

(65)
θt,n − θt,n
f(θt,n)

1− F (θt,n)

C ′(xt,n)
= xt,n − xt,n−1.

We have that the difference

(66) xt,n − xt,n−1 <
θt,n
(
θt,n − θt,n

)
C ′ (xt,n)

,

which from (65) implies (1− F (θt,n))/(f(θt,n)θt,n) < 1. Thus, θt,n < θ∗1.�

Proof of Proposition 2

Suppose that the score schedule in (39) with γ(θ) = θ is convex over some non-empty

interval [θ, θH ]. Let {γ∗(θ)} solve (41) and {x∗(θ)} be the optimal score schedule. Suppose

that {x∗(θ)} pools an interval [θ′, θH ], θ′ ∈ [θ, θH), for the score x∗ equal to

(67) x∗ = C−1

(
θ′θ −

∫ θ′

θL

γ∗(θ̃)dθ̃ − θ2
L

)
,

where θ =
∫ θH
θ′

θdF (θ)/(1 − F (θ′)). Now consider the following signal schedule {γ̂(θ)}:

γ̂(θ) = γ∗(θ) for θ < θ′ and γ̂(θ) = θ for θ in [θ′, θH ]. Denote the score schedule defined

by (39) with {γ̂(θ)} by {x̂(θ)}.

Noting that x̂(θ) = x∗(θ) for θ < θ′ the difference in the teacher’s expected utility

levels from implementing {x̂(θ)} and {x∗(θ)} is equal to

(68)

∫ θH

θ′
x̂(θ)dF (θ)− x∗(1− F (θ′)).

By the hypothesis the score schedule {x̂(θ)} is convex over [θ′, θH ], thus, by the Jensen’s
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inequality we have∫ θH

θ′
x̂(θ)dF (θ) =

∫ θH

θ′
C−1

(
θγ̂(θ)−

∫ θ

θL

γ̂(θ̃)dθ̃ − θ2
L

)
dF (θ)(69)

≥ C−1

(
θγ̂(θ)−

∫ θ

θL

γ̂(θ̃)dθ̃ − θ2
L

)
(1− F (θ′))(70)

= C−1

(
θγ̂(θ)−

∫ θ′

θL

γ∗(θ̃)dθ̃ −
∫ θ

θ′
γ̂(θ̃)dθ̃ − θ2

L

)
(1− F (θ′))(71)

> C−1

(
θγ̂(θ)−

∫ θ′

θL

γ∗(θ̃)dθ̃ − γ̂(θ)(θ − θ′)− θ2
L

)
(1− F (θ′))(72)

= C−1

(
θ′γ̂(θ)−

∫ θ′

θL

γ∗(θ̃)dθ̃ − θ2
L

)
(1− F (θ′))(73)

= x∗(1− F (θ′)),(74)

where the last inequality follows from γ̂(.) and C−1(.) being increasing. Thus, the differ-

ence in (68) is positive, which implies that pooling at the top cannot be optimal if the

score schedule under separation is convex.�

Proof of Proposition 3

Let {γ∗(θ)} solve (41) and {x∗(θ)} be the optimal score schedule. Suppose that {x∗(θ)}

contains pooling intervals and denote the right-most pooling interval by [θ1, θ2]. By

Proposition 2 it must be that θ2 < θH . Now consider the following signal schedule

{γ̂(θ)}: γ̂(θ) = γ∗(θ) for θ < θ1 and γ̂(θ) = θ for θ in [θ1, θH ]. Denote the score schedule

defined by (39) with {γ̂(θ)} by {x̂(θ)}.

The difference in the teacher’s expected utility levels from implementing the score

schedules {x̂(θ)} and {x∗(θ)} is equal to

(75)

∫ θ2

θ1

(x̂(θ)− x∗(θ)) dF (θ) +

∫ θH

θ2

(x̂(θ)− x∗(θ)) dF (θ).

The first term of the difference in (75) is positive, which follows from the Jensen’s inequal-

ity applied to the score schedule {x̂(θ)}, which is convex over [θ1, θ2]. For θ ∈ (θ2, θH ],
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the score allocations x̂(θ) and x∗(θ) are, respectively, given by

x̂(θ) = C−1

(
θγ̂(θ)−

∫ θ

θL

γ̂(θ̃)dθ̃ − θ2
L

)
(76)

= C−1

(
θγ̂(θ)−

∫ θ1

θL

γ∗(θ̃)dθ̃ −
∫ θ2

θ1

γ̂(θ̃)dθ̃ −
∫ θ

θ2

γ̂(θ̃)dθ̃ − θ2
L

)
(77)

and

(78) x∗(θ) = C−1

(
θγ∗(θ)−

∫ θ1

θL

γ∗(θ̃)dθ̃ −
∫ θ2

θ1

γ∗(θ̃)dθ̃ −
∫ θ

θ2

γ∗(θ̃)dθ̃ − θ2
L

)
.

Since γ̂(θ) = γ∗(θ) for θ ∈ [θL, θ1) ∪ (θ2, θH ], we get that x̂(θ) ≥ x∗(θ) if and only if

(79)

∫ θ2

θ1

γ̂(θ̃)dθ̃ ≤
∫ θ2

θ1

γ∗(θ̃)dθ̃.

As γ∗(θ) = E(θ ∈ [θ1, θ2]) =
∫ θ2
θ1
θdF (θ)/(F (θ2) − F (θ1)) for θ in [θ1, θ2], the latter

condition becomes

(80)

∫ θ2
θ1
θdθ

θ2 − θ1

≤
∫ θ2
θ1
θdF (θ)

F (θ2)− F (θ1)
,

which is (44) in the proposition. Thus, when (44) holds together with convexity condition

(43), the difference in (75) is positive. This implies that the optimal score schedule {x∗(θ)}

cannot pool the types in [θ1, θ2] nor, analogously, in any other interval.�
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Figure 1: Optimal grading rules
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Figure 2: Dynamics of grading rules with f(θ) = 1
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Figure 3: Dynamics of grading rules with f(θ) = θ
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