
Optimal thermal energy management of a distributed
energy system formed by a solar membrane distillation

plant and a greenhouse
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Abstract

The scarcity of water in Mediterranean countries in general and in Almeŕıa

(Southeast Spain) in particular could compromise one of its main economic

drivers; agriculture. One of the possible solutions consists on the combination

of thermal desalination technologies with greenhouse crop production. In this

sense, Membrane Distillation (MD) becomes an attractive technology since it

can be easily combined with solar energy, thus forming sustainable and efficient

plants. However, the combination of MD processes with greenhouses requires

adequate control systems able to manage the operation of the facility. In this

paper, a Distributed Model Predictive Controller (DMPC) is proposed for the

efficient operation of a distributed energy system composed by a Solar Mem-

brane Distillation (SMD) facility and a greenhouse. The controller is in charge

of calculating the optimal feed flow rates for each of the MD modules included

in the facility, according to the water requirements and the thermal efficiency

of the SMD plant, one of the main weak points of the technology. Simulation

results are presented showing how the DMPC approach converges to results

similar to those of an optimal centralized formulation. However, when consid-

ering plants of industrial size, only the DMPC approach can be used due to
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the high computational time required by the centralized controller. Finally, the

automatic operation is compared with a manual one (non optimal one), showing

that the thermal efficiency of the operation can be improved by 5 %, whereas

the water demand is satisfied. This means important savings at industrial scale.

Keywords: Process control, Distributed control, Model Predictive control,

Solar energy, Thermal efficiency, Agriculture.

1. Introduction

Almeŕıa is located in the Southeast Spain, in a semi-desertic zone with a

severe problem of water scarcity. Nevertheless, agriculture is one of the economic

drivers of this dry region, with more than 31034 greenhouse ha [1] thanks to

the availability of untapped water resources, rivers or aquifers and the use of5

drip irrigation and efficient control systems, combined with its high agricultural

potential due to the good climate conditions.

The development of a water-intensive agriculture has led this region to be

highly competitive in international markets, but also the intensification of irri-

gation, and the required infrastructures (reservoirs, dams, canals, wells, pools)10

have ecological and social impacts which, in some cases, are already irreversible

[2]. The development of irrigation in the Southeast of Spain is associated with

the overexploitation of aquifers of major rivers, which urgently demands solu-

tions to overcome this problem and make this economy sustainable regarding

the use of water. As pointed out by [1], the horticultural sector is in the right15

path towards a green economy and the desalination and reclaimed water should

be used for irrigation demand [3]. In fact, Spain is the leader in the use of distil-

late water for agriculture purposes [4], but two main drawbacks must be faced;

the increment of salinity and boron in the soil [5], and the associated costs [6].

This is the reason why, reverse osmosis (RO) is the usual technology and the20

most commercially extended [7]. In spite of that, membrane distillation (MD)

is a technology with potential which is gaining interest year after year [8]. Its

principal advantages are: it requires low-grade thermal energy so that it can be
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easily coupled with solar thermal systems [9], low electric power consumption,

does not usually require chemical pretreatment, the quality of the product is25

excellent and insensitive to feed-water salinity, feed flow rate and temperature,

which makes it suitable for zero-liquid discharge schemes. Due to this last ad-

vantage, MD can be used not only for desalting seawater, but also to produce

clean water from contaminated feedwater [10], thus being useful to improve the

quality of treated water for irrigation.30

Although MD processes coupled with solar systems (SMD) are today rela-

tively expensive compared to other desalination technologies [8], they could be

a feasible solution for small applications in those places with high solar irradi-

ance and water scarcity. Moreover, due to the low operating temperature, their

operation and maintenance is simple and they can be easily coupled to small35

production plants.

Towards sustainable irrigated crops, a solar distillation system, such as an

SMD, should be combined with an automatic control system. From the water

control point of view in greenhouses, there are two research lines that can be

combined: i) irrigation control techniques [11, 12, 13, 14] and ii) control strate-40

gies for the operation of the water generation source [15, 16]. If we consider a

water storage system for irrigation, the first research line covers from the storage

to the crop, while the second one deals with the control strategy from the water

generation system to the storage. As pointed out by [11], in order to make the

irrigation control strategies available for commercial purposes, the advantages45

of applying these strategies should be deeply analyzed. For example, in [14] a

model predictive controller (MPC) with an event-based controller is proposed

to maintain the soil humidity level, showing that it is possible to reduce 20 %

the use of water in comparison to typical on/off controllers. On the other hand,

if an adequate controller is applied to the water generation system, such as the50

one proposed in [16], in which an MPC is applied to an SMD facility, the costs

of the water produced (and related to the use of the pumping system) can be

reduced up to 10%.

Following the research line of advanced control strategies for the water gener-
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ation source such as the one described in [15], this paper proposes a Distributed55

MPC (DMPC) strategy to operate an SMD system and produce water for a

greenhouse. A controller based on an MPC technique [17] calculates the con-

trol law based on an objective function and a prediction model. In this case,

the DMPC includes prediction models of the energy source (a heat generation

system based on a solar field), the production system (membrane distillation60

units) and the consumption system (a greenhouse). Unlike [15], the objective

function includes not only the volume of distillate but also a thermal energy in-

dex which is one of the main drawbacks of the MD technology. In addition, the

proposed distillate generation system is a combination of different membrane

technologies, which adds complexity to the problem.65

In the proposed decentralized scheme [18] each agent solves an MPC problem

and exchanges information with other agents. With the application of this

technique the risk of failure is reduced because the system does not depend on

one centralized control. Moreover, the communications between the agents and

the centralized controller as well as and the computational power of a centralized70

approach are simplified, what could be essential in industrial plants in which

the number of agents involved in the problem is greater.

DMPC techniques have been previously applied in multi-agent systems, spe-

cially in distributed energy systems [19, 20]. In particular, in the agricultural

field, these kind of controllers have been applied to control irrigation canals75

[21, 22, 23]. The goal in these cases was to maintain the desired water levels in

the different irrigation pools by acting over the canal gates. Since the dynamic of

the water level in a pool depends on the evolution of the other pools located over

long distances, the collaborative management included in the DMPC makes this

technique suitable for an optimal operation of irrigation canals. In the present80

work the DMPC technique is used to manage the operation of the MD modules

which act as agents of the distributed scheme. In this way, following the ideas

presented in [24, 25], optimal feed flow rates are calculated in each agent to

reduce the specific thermal energy and maintain the desired level of water for

irrigation purposes. Simulation results with the DMPC are presented focused85
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on the case in which the available resources (i.e. feed water flow) are limited.

Notice that in the MD modules employed in this work the maximum thermal

efficiency is achieved when they work at minimum feed flow rate, whereas the

maximum distillate production is achieved at maximum feed flow rate [26, 27].

Therefore, in the design phase, a tradeoff solution between the cost associated90

to pump the feed water (to increase the distillate production) and the thermal

efficiency should be considered. In these specific cases, the use of a suitable

controller could be very relevant for the successful implementation of these kind

of facilities.

The paper is organized as follows. In Section 2, the case of study is presented.95

The models are described in Section 3. The centralized and distributed control

algorithms are explained in Section 4. The performance of the controllers are

depicted and analyzed in Section 5. Finally, conclusions are summarized in

Section 6.

2. Case of study100

The facility studied in this work basically consists on a distributed energy

system composed by an SMD plant and a greenhouse (see Fig. 1). In this plant,

the greenhouse acts as consumer, demanding fresh water for the irrigation of

the crop, while the desalination plant acts as producer, providing the required

fresh water. In addition, a storage tank (3 m3) is used to connect both facilities.105

It should be remarked that the considered plant is a simulation use case based

on the two real facilities presented in the following subsections.

2.1. Solar distillation plant

The SMD plant (see Fig. 2) is located at Plataforma Solar de Almeŕıa (PSA,

www.psa.es, Southeast Spain), and it is one of the few MD plants totally de-110

scribed in the literature [28]. In this facility, the thermal energy required for the

distillation process is provided by a solar field composed of flat-plate collectors.

This solar field is directly connected to a storage tank (1,5 m3) that is used as
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Figure 1: Schematic diagram of the facility simulated as case of study.

Figure 2: SMD pilot plant at PSA. From top to bottom and from left to right: solar field,

Solar Spring module, and Aquastill module.

energy buffer system. Finally, the distillation module is coupled with the heat

generation circuit through a heat exchanger.115
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There are several commercial MD modules available at PSA, which are based

on different MD configurations. The two modules used in this work (see Fig. 2)

are the Aquastill unit, which is based on the air-gap Membrane Distillation

technology [27], and the Solar Spring one, which has a permeate-gap Membrane

Distillation configuration [26]. Notice that in the case of study (see Fig. 1) four120

MD units (two of each commercial module) have been considered, in order to

scale the distillate production of the desalination plant to the water requirements

of a greenhouse.

Inside the MD unit (see Fig. 3) the sea water is firstly pumped trough the

condenser channel of the module. Notice that, due to module design constraints,125

the feed flow rate has a limited operating range between 400 and 600 L/h.

Afterwards, the feed fluid passes trough the heat exchanger, where it is heated

with the recirculating fluid coming from the solar field, and then, it is circulated

into the evaporator channel of the module. The evaporator inlet temperature

varies between 60 and 80 oC, the upper limit is imposed by membrane materials,130

and the lower one is established because working at lower temperatures, the

module produces very little distillate. The temperature difference created at

both sides of the channels, produces a pressure difference that makes that the

vapour molecules travel from the evaporator channel to the condenser one. At

last, in the evaporator channel, the volatile components of the heated solution135

pass through a hydrophobic and micro-porous membrane (becoming distillate

after a condensation process), whereas non volatile molecules are rejected in the

form of brine.

Figure 3: Schematic diagram of a single MD unit.
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2.2. Greenhouse

The greenhouse (see Fig. 4) employed as reference in this work is located at140

the Experimental Station of Cajamar Foundation, situated also in the Southeast

of Spain (40 km far from the PSA). This environment is composed by a multi-

spam ”Almeria-type” greenhouse (orientation E-W), with a surface of 821 m2

and an area of cultivation of 616 m2. The greenhouse has a cover of polyethylene

equipped with an automatic ventilation system with side windows on the walls145

north and south, heating system fueled by biomass, diesel aerothermal system,

LEDs lights, humidification and dehumidification system by condensation with

a water extraction capacity of 900 L/day.

Figure 4: Greenhouse facilities. From left to right and from top to bottom: greenhouse,

dropper and tomato crop lines.

The crop grows in rows with orientation N-S, inside coconut coir bags, with

three droppers and six plants each. Throughout the crop season, several internal150

and external measurements were continuously monitored. Outside the green-

house, a weather station measures air temperature and relative humidity with

a ventilated sensor, solar radiation, photosynthetic active radiation, rain detec-

tor, CO2, wind direction, and wind speed. During the trials, several greenhouse

climate variables were measured, especially air temperature, relative humidity,155

solar radiation, PAR, soil and cover temperature, and CO2 concentration.

Irrigation was applied periodically throughout each day to each crop. The

irrigation frequency was controlled using a demand tray system; fixed volumes
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were applied. The demand tray system, using water-level sensors, is the most

commonly used system for automatically activated irrigation of soilless crops in160

SE Spain. A water-level sensor is installed in a small water reservoir in which

the water volume (and therefore the surface level) is in equilibrium with the

substrate water content. When the water level in the reservoir decreases to the

physical level of the sensor, as a result of crop uptake, irrigation is activated. The

physical height of the sensor is adjusted by the grower on the basis of measured165

drainage volumes and experience. This method can be used once the crop root

system is established. A microlysimeter was the system chosen to measure the

transpiration, drainage and crop water loss measurements. The device consists

of two electronic weighing scales connected to a personal computer. The first

(150 kg 1 g, Sartorius) records the weight of a bag with six plants, and a support170

structure. The second weighing scale (20 kg 0.5 g, Sartorius), which follows the

first, measures the drainage weight from the substrate bag. A more detailed

description of the greenhouse was presented elsewhere [29].

3. System Modeling

The case of study presented in the previous section is used to investigate the175

performance of a DMPC technique which manages the optimal operation of the

desalination plant to fulfill the water requirements of the crops while decreasing

the thermal energy consumption of the MD modules. Thus, a model capable of

accurately representing the behavior of both facilities is required.

3.1. SMD facility model180

The model of the SMD facility can be divided in two different components

coupled by means of a heat exchanger: (1) the heat generation system, formed

by the solar field and the storage tank, and (2) the desalination unit. The

model of the heat generation system was already presented in [16, 30]. In this

work, in order to simplify the simulations, temperature profiles at the entrance185

of the hot side of the heat exchanger have been employed. These temperature
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profiles were obtained simulating the model of the heat generation circuit with

real meteorological data from PSA, similar to the ones used in this work, and

using the operational strategy proposed in [16].

On the other hand, the heat exchanger was modeled with a first principles-190

based static model following the ideas proposed in [31]:

Ths,out−m = Ths,in − η1 · (Ths,in − Tcs,in), (1)

Tcs,out−m = Tcs,in + η2 · (Ths,in − Ths,out−m), (2)

where:

η1 =
1− eθ

1− ṁ1·cp,1
ṁ2·cp,2 e

θ
, (3)

η2 =
ṁ1 · cp,1
ṁ2 · cp,2

, (4)

θ = α ·Ahe ·
(

1

ṁ1 · cp,1
− 1

ṁ2 · cp,2

)
. (5)

All variables and constants are defined in the nomenclature table in the appen-

dices. The surface area of the heat exchanger (Ahe) is 3.15 m2. Moreover, as was

presented in [16], a time delay and a first order filter have been added to each195

output of the model in order to add the required dynamic to fit experimental

data. For the case of Tcs,out−m the time delay is 23 s and the representative

time constant is 40 s, while for Tcs,out−m the time delay is 15 s and the time

constant is 20 s.

As was mentioned in Section 2.1, two kinds of MD modules have been em-200

ployed in this work. The models of the MD units consists on static equations

obtained from experimental data, by means of the Response Surface Methodol-

ogy (RSM). The model of the first module, the Solar Spring one (SS-1 and SS-2

in Fig. 1), was presented in [26] and it is given by:

D = 10 · (−1.088 + 0.024 · Tcs,out − 0.018 · Tfeed − 0.001 · F

+ 0.00006 · Tcs,out · F),
(6)

4T = −0.201875 + 0.1385 · Tcs,out − 0.158 · Tfeed + 0.0049 · F. (7)

10



The model of the Aquastill module (AQ-1 and AQ-2 in Fig. 1) was developed205

in [27] and it is described by the following equations:

D = 24 · (0.135 + 0.003 · Tcs,out − 0.0204 · Tfeed − 0.001 · F

+ 0.00004 · Tcs,out · F),
(8)

4T = −0.739 + 0.078 · Tcs,out − 0.067 · Tfeed + 0.0019 · F. (9)

It should be mentioned that in equations (7) and (9), 4T is the tempera-

ture difference between the inlet evaporator channel temperature and the outlet

temperature of the condenser channel of the MD module, and D is the distillate

production. Notice that static models are used here because the MD modules210

have a fast dynamics. However, it can be observed that they are affected by the

temperature coming from the heat generation circuit (Tcs,out), and therefore,

by its dynamics.

Finally, the feed flow rate is controlled by the pump 1 that supplies flow

rates between 1600 and 2000 L/h. This feed flow rate is a shared resource215

between the four modules, and it is not enough to feed all the modules working

at maximum flow rate (maximum flow rate of each module 600 L/h). Notice

that this limitation could be a design decision, attending to the cost related to

pump the sea water, and to the fact that the maximum thermal efficiency is

achieved when the MD modules are run at the minimum feed flow rate, as will220

be shown in section 4.1. Then, valves V1, V2, V3 and V4, which vary their

opening between 0 and 1, divert part of the flow into the corresponding module

(see Fig. 1). Besides, V1 and V5, V2 and V6, V3 and V7, and V4 and V8, are

opened or closed at the same time and at the same value, in order to maintain

the same flow rate at the entrance of the two channels of each module.225

3.2. Greenhouse model

A simplified pseudo-physical climate model completely described in [29] has

been used for the purpose of this work. The state variables of the system are the

inside air temperature (Ta,int) and humidity (Ha,int). The three main external

systems interacting with the greenhouse are outside air, soil surface, and crop.230
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Thus, the greenhouse air temperature (Ta,int) can be modeled using the

following balance:

cp,aρa
Vg

Ass

dTa,int
dt

= Qsol,a +Qcnv,cv−a +Qcnv,ss−a −Qven −Qtrp,cr, (10)

where Qsol,a represents the radiative flux heating the inside air through the

cover, Qcnv,cv−a is the convective flux with the cover, Qcnv,ss−a is the convec-

tive flux with the soil surface, Qven is the heat lost by natural ventilation and235

infiltration, and Qtrp,cr is the latent heat effect of the crop transpiration. The

remaining variables are presented in Nomenclature (see the appendices).

Moreover, greenhouse inside absolute humidity (Ha,int), which is the amount

of water vapour in the greenhouse air, is modeled based on a vapour mass

balance [29]:240

ρa
Va

Ass

dHa,int

dt
= Ṁtrp,cr + Ṁhum − Ṁdehum − Ṁvent,int−ext, (11)

where Ṁtrp,cr is the crop transpiration flux, that is related with the amount of

water lost by plants in the transpiration process which must be recovered by irri-

gation, Ṁhum is the water flux provided by the humidification system, Ṁdehum is

the water flux removed by the dehumidifcacion system, and Ṁvent,int−ext is the

outflow by natural ventilation and infiltration. Notice also that the remaining245

variables are presented in Nomenclature (see the appendices).

It should be commented that the area of cultivation in the model was fixed

at 308 m2 in order to scale the water consumption of the greenhouse with the

production of the four MD modules.

4. Control system250

The main idea is to develop a control algorithm able to make an optimal

distribution of the feed flow rate between the MD modules, according to the

water demand of the greenhouse and the thermal efficiency of the MD modules

at each instant. For this purpose, DMPC controllers become an attractive

approach since in industrial applications the number of MD modules required255
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increases significantly, and the application of a centralized controller could be

very difficult in terms of computational power and communications.

In what follows, the performance of each MD module with respect to distil-

late production and thermal efficiency is showed and analyzed. Based on this

analysis, first, the centralized controller is formulated, and then, the distributed260

approach is presented. After that, the simulation results and some conclusions

are presented.

4.1. Optimal operation of the MD modules

Before presenting the development of the control system, it is important to

analyze and even visualize the performance of each module, in order to clarify265

the way in which the control system has been designed. Two of the most

important metrics used to describe the performance of membrane distillation

modules are the distillate production and the thermal efficiency. Thus, in this

section, 3D response surface plots of each module are presented, showing the

behavior of the two metrics with respect to the evaporator inlet temperature270

and the feed flow rate, the two most important variables influencing them.

On the one hand, the value of the distillate production can be directly ob-

tained, just measuring the quantity of distillate produced at each sample time.

On the other hand, the thermal efficiency of the process must be estimated using

one of the performance metrics presented in the literature. In this case, the Spe-275

cific Thermal Energy Consumption (STEC) has been selected [28, 27, 26]. This

metric provides the quantity of thermal energy required to produce a volume

unit of distillate, and it can be calculated as follows:

STEC (kWh/m3) =
F · ρfeed · cp,2 · (Tcs,out − Tcs,in)

cf ·D
. (12)

Notice that all the variables involved in the previous equation are defined in

Nomenclature.280

Fig. 5 shows the 3D response surface plots. Regarding the distillate produc-

tion, it can be observed that the maximum value is obtained when operating at

maximum feed flow rate and evaporator inlet temperature for both modules (see

13
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Figure 5: 3D response surfaces. (1) Distillate production of Aquastill module, (2) distillate

production of Solar Spring module, (3) STEC of Aquastill module, and (4) STEC of Solar

Spring module

Fig. 5-1 and Fig. 5-2). However, in the case of STEC, which must be minimum

to obtain a higher thermal efficiency in the process, the optimal operating points285

are reached in both cases working at maximum evaporator inlet temperature

and minimum feed flow rate (see Fig. 5-3 and Fig. 5-4). In addition, comparing

the two modules, it can be seen that the Aquastill module has a higher distillate

production and thermal efficiency than the Solar Spring one. So, to summarize,

the most important conclusions which will be the basis for the development290

of the control system are: i) the evaporator inlet temperature should be the

highest possible (notice that it depends on solar irradiance) to obtain optimal

performance, ii) contrary operating conditions are required in the feed flow rate

to maximize the distillate production and thermal efficiency in both modules,

and iii) the Aquastill module produces more distillate and it is more efficient295

than the Solar Spring one.

4.2. Centralized control approach

MPC is a control technique widely used in both industry and academy. MPC

can include, but not only, optimal control, dead time, multivariable processes
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and uses the future setpoints if they are available [32]. By using a finite receding300

control horizon strategy it also allows to deal with constraints and nonlinear

processes. MPC controllers use the following structure and features (see Fig. 6):

• Explicit use of a process model to predict the process behaviour in the

future ŷ(t+ j|t).

• Minimization of a cost function with the aim to calculate the control305

signal u(t|t). This objective function usually tries to maintain the process

as close as possible to a determine reference w(t+ j|t).

• Use of a finite receding control horizon which means that a set of control

signals is calculated for the whole horizon (u(t|t), u(t+ 1|t), ..., u(t+Nu−

1|t)) but only the first control signal is applied and the rest are rejected.310

Figure 6: MPC strategy.

The main differences among MPC strategies lie in both, the process model

and the noise model, and the cost function. These differences can cause distinct

behaviours in a feedback loop.
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In this way, due to many advantages when compared to other control strate-

gies [32], the MPC strategy has been chosen as the most suitable one for this315

work. Therefore, assuming a prediction and control horizons with length N and

Nu, respectively, the cost function for a particular system can be formulated as

follows:

J =

N∑
j=1

δ · [ŷ(t+ j|t)− w(t+ j|t)]2 +

Nu−1∑
j=0

λ · [∆u(t+ j)]2, (13)

where the prediction of the system output and the desired reference, ŷ(t +

j|t) and w(t + j|t) respectively, are estimated for sample time t + j with the320

information available at sample time t. On the other hand, ∆u(t + j) is the

variation of the control action at sample time (t + j) whereas δ and λ are

weighting factors that penalize the future tracking errors and control efforts,

respectively, along their horizons.

Regarding constraints, mainly three kinds of constraints can be found that

concern to system outputs and control actions:

∆umin ≤ ∆u(t) ≤ ∆umax, ∀t ≥ 0, (14a)

umin ≤ u(t) ≤ umax, ∀t ≥ 0, (14b)

ymin ≤ y(t) ≤ ymax, ∀t ≥ 0. (14c)

In the previous equations, the first constraint, Eq. (14a), limits the control effort325

in order to avoid abrupt changes in the actuator that may cause any disruption.

The second one, Eq. (14b), makes reference to physical hard constraints of the

actuator. Finally, the third constraint, Eq. (14c), gives the lower and the upper

limit, ymin and ymax respectively, of the output variable (also applicable to

predicted future values).330

In this work, the cost function presented in Eq. (13) has been modified

according to the problem at hand. Thus, for the centralized control approach,
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the cost function is given by:

J =

N∑
j=1

ζ · ŷSTEC(t+j|t)+

N∑
j=1

δ ·[wtank(t+j)− ŷtank(t+j|t)]+
Nu−1∑
j=0

λ·∆u(t+j),

(15)

where ζ = (1-δ), ŷSTEC is the mean value of the STEC of the four MD modules,

ŷtank is the level of the tank and wtank is the minimum allowed level of the tank.335

In addition, it should be remarked that the set of inputs u is composed by the

feed flow rate of each of the MD modules, what means according to Fig. 1,

u=[FAQ−1 FSS−1 FSS−2 FAQ−2].

4.3. Distributed control

In this work, a system composed by M subsystems or agents, i.e, the MD340

modules, is considered. Then, for each agent i, Eq. (15) can be rewritten as

follows:

Ji =

N∑
j=1

ζ ·ŷSTEC(t+j|t)+

N∑
j=1

δ·[wtank(t+j)−ŷtank(t+j|t)]+
Nu−1∑
j=0

λi ·∆ui(t+j).

(16)

Regarding to the constraints, as has been pointed out before, each agent i

can have its own constraints as it is shown in Eqs. (14). However, this work is

concerned with a plant that is formed by interconnectingM dynamic subsystems345

which share a common resource. Let M = {1, . . . ,M} be the set of agents or

subsystems. In this case, the shared resource is the water flow supplied from the

feed water tank and, to impose a limit to it, a new constraint which couples all

the subsystems must be considered. Such a constraint can be defined as follows:

M∑
i=1

ui(t+ j) ≤ b, ∀j = 1, . . . , N, (17)

where b is the allowable resource. For the problem at hand, this constraint is

related to the total feed water flow supplied from the feed water tank to the

whole system, which could be limited by design decisions as previously men-

tioned. Then, the optimization problem for the whole system, that is, including
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the M subsystems, can be formulated as follows:

P (t) : min f(∆ui) =

N∑
j=1

ζ · ŷSTEC(t+ j|t)+

+

N∑
j=1

δ · [wtank(t+ j)− ŷtank(t+ j|t)] +

M∑
i=1

Nu−1∑
j=0

λi ·∆ui(t+ j) (18a)

s.to :

M∑
i=1

ui(t+ j) ≤ b, ∀j = 1, . . . , N (18b)

umin ≤ ui(t+ j) ≤ umax, ∀j = 1, . . . , N. (18c)

Notice that, the optimization problem P (t) defined by Eq. (18) would consist350

of a set of M decoupled subproblems if it were not for the coupling constraint

in Eq. (18b). The first term, ySTEC in Eqs. (15) and (16), which is related to

the mean STEC of the four MD modules, is added to maximize the thermal

efficiency of the operation of the SMD plant. On the other hand, the tank level,

ytank, should not have a value lower than 1500 L, that is, ytank ≥ 1500, this355

value has been chosen since it ensures the supply of the greenhouse for two days

without MD production, as the average consumption per day is around of 750 L.

However, setting this constraint as a hard constraint makes the optimization

problem unfeasible, thus, a soft constraint has been added to the second term

of both Eqs. (15) and (16), where wtank is set to 1500 L for the whole prediction360

horizon.

It should be remarked that the two terms involved in the objective function

require contrary operating conditions, since to maximize the thermal efficiency,

the MD modules must be run at the minimum feed flow rate value, whereas to

maximize the distillate production to increase the tank level, the MD modules365

must be fed at the maximum flow (see Section 4.1). Nevertheless, not always

the two objectives have to be maximized at the same time, so the following
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function is used to set the weighting factors ζ and δ:

ζ =



0 if x ≤ c,

d · x+ e if c < x < f,

1 if x ≥ f.

(19)

In this function, x is the level of the tank at instant time t, c and f are specific

levels of the tank, and d and e are the factors of a first order polynomial. It370

should be remembered that δ= (1-ζ). Therefore, if the tank level is below c,

only the part related with increasing the level of the tank is considered in the

objective function. Conversely, if the level of the tank is above f , the objective

function is aimed at maximizing the STEC, whereas if the level of the tank is

between c and f the two objectives are considered, calculating the weighting375

factors by means of a first order polynomial, thus obtaining a soft transition

between the two objectives and avoiding chattering problems in the control

signals.

Additionally, it should be commented that, among the set of constraints

presented in Eq. 18, only the constraint related to the physical limitations of380

the actuators has been included in the problem, since it is the only limitation

imposed by the system as the feed flow rate of the MD modules must be between

400 and 600 L/h, which is umin equal to 400 and umax equal to 600 L/h.

The procedure that each agent or subsystem i must perform at each iteration

l within a sample period t is the following [24]: read the decisions of the neigh-385

bors, coordinate its iterations, and calculate its own control actions by solving

problem P (t). To this aim, the agent will need to receive from the upstream

agent the residual feed water flow and from the downstream agent, the previous

control signal ui+1(t−1), the latest prediction for output ŷi+1(t), and the latest

control increment ∆ui+1(t)l.390

Upon satisfying a convergence criterion, i.e. the difference between the re-

sults of two iterations is less than a minimum established threshold ε, or reaching
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the maximum number of iterations σ, the obtained control values are applied

in the valves, the horizon is shifted to the next sample time, and the process is

repeated. This procedure is given in pseudo-code in Algorithm 1.395

Algorithm 1: Distributed optimization performed by agent i during the

iteration l at sample time t

if agent i cannot revise its decisions in iteration l then

∆ui(t)
l+1 = ∆ui(t)

l

else
• Agent i receives the available feed water flow from the upstream

agent i− 1 and ∆ui+1(t)l from the downstream agent i+ 1;

• Agent i solves problem P (t) to obtain ∆ui(t)
l+1 and the

prediction of available feed water flow;

Finally, to solve this optimization problem, function fmincon which can be

found in the MATLAB Optimization Toolbox [33] has been used.

5. Results and discussion

This section shows the results of the simulation experiments carried out to

evaluate the effectiveness of the proposed control strategy. The schematic di-400

agrams showing how the simulations were performed for the centralized and

distributed approaches are presented in Figs. 7 and 8. As can be seen, the ex-

perimental campaign was performed using temperature profiles of the heat gen-

eration circuit of the SMD plant (Ths,in in Figs. 7 and 8), as mentioned above.

These temperature profiles were connected with a simulator that emulated the405

behavior of the MD modules and the greenhouse by using the models presented

in Section 3. For simulating the model of the greenhouse, meteorological data

from Experimental Station of Cajamar Foundation were employed, on the day

July 20, 2017. In addition, in the simulations, both control approaches used lin-

earized models of the system around the operating point u for predicting ŷSTEC410
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and ŷtank, which are obtained at each sampling time by means of the technique

presented in [34]. Notice that the linear models are calculated only once in

the distributed approach (see Fig. 8) since the strategy has been implemented

in only one computer, but in real implementations they must be calculated as

many times as the number of agents included in the optimization problem. It415

should be remarked that the linearized models have been used in the controllers

instead of the nonlinear ones due to the high computational effort required for

solving the optimization problem with the nonlinear ones. In this way, the con-

trollers have to cope with uncertainties caused by disturbances, modeling errors

and neglected dynamics. Besides, the use of two different kinds of MD modules,420

with different behaviours, increases the complexity of the automatic operation.

Figure 7: Centralized approach simulation scheme.

Figure 8: Distributed approach simulation scheme.

21



In the experiments, the maximun feed flow rate provided by pump 1 (see

Fig. 1) was limited to 2000 L/h (as mentioned in Section 3.1), that is b=2000 L/h,

trying to mimic the conditions that would occur in industrial cases. It must be

bear in mind that in this case of study only four modules are required to fulfill425

the water requirements of the pilot greenhouse. This pilot configuration was

chosen since it accurately represents practical situations, and facilitates the vi-

sualization of the results. However, when considering greenhouses of industrial

size, the number of commercial MD modules considerably augments, and the

feed flow rate may be limited either by design (as mentioned in Section 3.1)430

or operational constraints, requiring adequately control algorithms to deal with

these situations.

The MD modules come into operation when the evaporator inlet tempera-

ture is higher than 60 oC (low operational limit of the modules), and are turned

off when it is lower than 60 oC. This strategy has been implemented using the435

procedure presented in [16], in which mean values are used instead of instant

ones for checking, thus avoiding chattering problems. In this way, the MD mod-

ules are started after reaching 60 oC, specifically at 63.6 oC with the condition

used in the simulations. Moreover, as initial point, valves V1, V2, V3 and V4

were fixed at 0.5, what corresponds to a feed flow rate of 475 L/h in each MD440

module, and the initial level of the distillate tank was 1600 L.

Regarding the controller set up, the sampling time was 10 minutes, selected

taking into account the representative time constants of the crop transpiration

inside the greenhouse and that of the temperature of the heat generation circuit

of the SMD plant. The horizons were selected considering traditional recom-445

mendations in MPC controllers, Nu�N , and N larger enough to contemplate

the transient part of the response, thus ensuring a stable closed loop perfor-

mance. The final values were N = 6 and Nu = 2. In the same way, λ was

fixed at 0.1, which was chosen after exhaustive simulation until obtaining the

desired closed loop response. Moreover, σ was fixed to 200. This parameter is450

related to the maximum number of iterations of the DMPC algorithm at each

sample time. In this way, it was chosen big trying that the DMPC algorithm

22



stops when reaching the threshold criterion instead of this one.

On the other hand, c was fixed to 1510 L whilst g at 1620 L. The first

value was chosen since c should be slightly higher than the minimum tank level455

(1500 L), thus allowing to the controller to take into consideration as much

as possible the thermal efficiency term in the objective function. Conversely,

g must be chosen to allow a soft change between the two objectives included

in the objective function. Thus, comprehensive simulations were carried out

with several values of g, showing that with values of g closer to the ones of c,460

abrupt changes in the control signals can be obtained which can cause chattering

problems. Besides, the thermal efficiency index was not considerable improved.

The factors of the polynomial were fixed at [d, e]=[0.0091, -13.6383], which

were obtained by interpolating between c and g. Finally, the controller was

implemented in a PC with Intel Core i5-6500T CPU 2.50 GHz with 8 GB of465

RAM in MATLAB code.

The simulation results are presented as follows: i) the convergence of the

DMPC approach to optimal solutions is checked by comparing the results ob-

tained with the DMPC algorithm with those of the centralized approach, ii)

the use of the DMPC approach is justified, by scaling the problem to plants of470

industrial size, and measuring the maximun time spent by the DMPC and the

centralized formulations for solving the control problem, and iii) the benefits

of the automatic operation is presented by comparing its performance with a

non-optimal management of the facility, a manual operation.

5.1. Convergence of the DMPC approach to optimal solutions475

This section presents the simulations performed in order to check the con-

vergence of the DMPC approach to optimal solutions. It should be commented

that the distributed controller is an approximation of the centralized one, and

the theoretical optimal solution must be the same that the one obtained with

the centralized algorithm. For this reason, the same test has been carried out480

with the centralized and the distributed algorithm in order to graphically and

quantitatively compare both approaches.
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The results of the simulations for the centralized and distributed controllers

are shown in Figs. 9 and 10 respectively. Notice that, both the inlet temperature

of the heat exchanger for the hot side (see Figs. 9-1 and 10-1) and the greenhouse485

consumption (see Figs. 9-4 and 10-4) depend directly on the solar irradiance.

Although the global irradiance curve has not been included in the graphics

for the sake of simplicity, in Almeŕıa, in a Summer day, the solar midday is

around 2.00 pm. In this way, it can be observed how the water consumption of

the greenhouse (see Figs. 9-4 and 10-4) is maximum around this instant time.490

However, the temperature at the inlet of the heat exchanger is maximum later

due to the volume of water accumulated in the storage tank placed between the

solar field and the heat exchanger (see Figs. 9-1 and 10-1). Consequently, the

distillate production of the four MD modules reaches the maximum also later

since it depends on this temperature (see Figs. 9-4 and 10-4).495
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Figure 9: Results obtained with the centralized approach. (1) Temperature at the entrance

of the heat exchanger, hot side (Ths,in), and temperature leaving the cold side of the heat

exchanger (Tcs,out), (2) MD modules feed flow rates (FAQ−1, FSS−1, FSS−2, and FAQ−2)

(3) mean distillate production of the four MD modules (D) and mean STEC (STEC), and

(4) tank level, objective (minimum allowed level of the tank), greenhouse water consumption,

and MD production.

As pointed out before, the automatic operation starts when the temperature
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Figure 10: Results obtained with the distributed approach (ε = 10−4). (1) Temperature

at the entrance of the heat exchanger, hot side (Ths,in), and temperature leaving the cold

side of the heat exchanger (Tcs,out), (2) MD modules feed flow rates (FAQ−1, FSS−1, FSS−2,

and FAQ−2) (3) mean distillate production of the four MD modules (D) and mean STEC

(STEC), and (4) tank level, objective (minimum allowed level of the tank), greenhouse water

consumption, and MD production.

at the inlet of the evaporator channel of each MD module is higher than 60 oC

(see Figs. 9-1 and 10-1). This condition is checked using the model of the heat

exchanger, as was presented in [16]. In this moment the tank level is 1575 L

(notice that the greenhouse consumes water before the modules are started),500

therefore, in the objective function both the distillate production and the STEC

objectives are taken into account with the weighting factors calculated by means

of the polynomial. For this reason, in the first sampling time, the controllers

increase the feed flow rate diverted for the Aquastill modules, and decrease that

delivered for the Solar Spring ones (see Figs. 9-2 and 10-2). This procedure is505

continued in the following sampling times, until saturating the control signals.

In this way, the MD modules which have a higher distillate production and a

lower STEC (Aquastill ones) are fed at the maximun feed flow rate (600 L/h),

whereas the Solar Spring modules are feed at minimum fed flow rate (400 L/h).

With this optimal distribution, the mean distillate production of the four MD510
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modules is augmented, while the mean STEC is decreased (see Figs. 9-3 and 10-

3), thus achieving optimal performance and maintaining the desired level in the

distillate tank. Around 16 h, the water consumption of the greenhouse decreases

and the level of the tank increases (see Figs. 9-4 and 10-4). Thus, in the objective

function, the weighting factor of the part related with the STEC augments in515

accordance with the polynomial, and the feed flow rates of the Aquastill modules

are reduced by the controller (see Figs. 9-2 and 10-2). Around 17.30 h, the level

of the distillate tank is over 1620 L, what produces that only the part related

with the STEC is considered in the objective function. Accordingly, the feed flow

rates of the Aquastill modules are decreased faster until reaching the minimum520

value (see Figs. 9-2 and 10-2), in order to increase the thermal efficiency of the

operation (see Figs. 9-4 and 10-4).

Controller STEC Distillate

[kWh/m3] [L]

No 190.35 1719.00

MPC 180.56 1733.82

DMPC (ε = 10−1) 180.57 1733.80

DMPC (ε = 10−2) 180.57 1733.80

DMPC (ε = 10−3) 180.57 1733.80

DMPC (ε = 10−4) 180.56 1733.81

DMPC (ε = 10−5) 180.56 1733.82

Table 1: Comparison between an operation with the centralized MPC controller, an operation

with several DMPC configurations varying ε, and an operation without controller, with static

setpoint in valves V1, V2, V3 and V4 equal to 0.5.

Notice that the performance of both controllers is very similar, and the dif-

ferences between them can be observed only in the control signals during the

transients. They are caused by the way in which the control signals are cal-525

culated by the DMPC algorithm (see Algorithm 1). However, these differences

hardly affect the overall performance of the system in terms of distillate produc-

tion and thermal efficiency (see Figs. 9 and 10). This fact can be quantitatively
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checked in table 1, in which the mean STEC of the operation and the distillate

produced by the four MD modules are summarized for the centralized MPC530

case, and for several DMPC cases with different values of ε. All the simulations

were performed using the same operating conditions than the ones employed in

the Figs. 9 and 10. Thus, as can be seen in table 1, for a ε equal to 10−5, the

same results in terms of STEC and distillate production than in the centralized

approach are obtained. In the same way, when increasing ε, the results are still535

almost the same, until reaching the value of 10−1, which is the limit. With this

value, the controller still provides a stable response and an optimal distribution

of the feed flow rate. However, with ε higher than 10−1, the algorithm converges

to solutions distant from the optimal ones.

5.2. Justification of the use of the DMPC approach540

One of the main advantages of the DMPC approach is that the optimization

problem that must be solved by each agent is simple and small, independently

of the number of agents involved in the system. This fact influence in the time

spent by the algorithm to reach a stationary solution. In this way, the time spent

in solving the optimization problem with the centralized and the distributed545

approach has been also analyzed. Notice that the facility used in this work is a

small pilot plant, so that, the centralized formulation of the problem is favored.

Conversely, if facilities of industrial size are considered, the number of MD

modules required to fulfill the water requirements increases considerably, and

therefore, the computation time. For this reason, several simulations have been550

carried out increasing the number of hectares of crops that must be irrigated

by the SMD plant, thus allowing to analyze the maximum time spent for each

algorithm in solving the optimization problem in a sampling time (see Fig. 11).

As can be seen in Fig. 11, and as it was pointed out before, the centralized

approach is slightly favoured when considering facilities of small size (i.e 1 or 2555

hectares). Conversely, if considering large crops surfaces, the time spent by the

centralized approach exponentially increases making that with 16 ha the time is

almost equal to the sampling time, so that, the algorithm does not provide an
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Figure 11: Maximum time spent for each algorithm in solving the optimization problem in a

sampling time depending on the number of hectares that must be irrigated. The number of

MD modules required for each case is also showed. These simulations have been performed

fixing ε = 10−4 in the distributed algorithm.

optimal solution within the required time period. Notice that the time required

by the distributed approach also augments depending of the number of hectares560

but in a linear way, thus allowing to obtain optimal solutions for large facilities in

the required time period, which is one of the main advantages of this algorithm

and one of the main reasons for choosing this algorithm for this application. It is

also important to remark that, the expansion of the algorithm for larger plants

is very easy, as the introduction of a new agent in the problem requires changes565

only in the neighboring agents, without reprogramming the entire algorithm.

In addition, it should be remarked that, apart from the benefits achieved in

the time spent in solving the optimization problem, the DMPC approach stands

out by the following general advantages of these kind of algorithms: i) the risk of

failure is reduced because the system does not depend on a centralized controller,570

so that, the supply of the greenhouse is not compromised, ii) the communication

between agents is easier, because each agent is connected only with its neighbors,

what would simplify the communication network in an industrial facility.
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5.3. Benefits of the optimal operation

The results obtained with the MPC controllers were compared with an op-575

eration using static control signals in valves V1, V2, V3 and V4 of 0.5. To

perform this comparison, the same operating conditions than those considered

in section 5.1 were employed. The results of this simulation are presented in

table 1. The mean STEC for an operation with static values in the valves was

190.35 kWh/m3, whereas the total distillate production was 1719 L. When a580

controller was used for making an optimal distribution of the feed flow rate,

almost 10 kWh (around 5 %) less of thermal energy was required to produce

1 m3 of distillate, while the total distillate production increased in more than

14 L.

To analyse the energy savings achieved by means of the proposed MPC585

approach, the results obtained in this case of study have been extrapolated

to industrial cases. According to the studio performed in [35], a tomato crop

growth has a water requirement of 4110 m3/ha during a season. In addition, if

the water consumed by the humidification system is considered (200 L/m2 in a

season [36]), the water necessities increase even more. In Fig. 12 the absolute590

thermal energy savings have been plotted for the case of a tomato crop growth

(considering also the humidification system) depending of number of hectares

that must be irrigated.
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Figure 12: Absolute energy savings in a season depending on the number of hectares that

must be irrigated. The number of MD modules required for each case is also showed.
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It should be pointed out that the improvements achieved by means of the

control system are almost constant independently of the operating conditions,

since the worst operating conditions are reached when there are passing clouds595

or the level of the global irradiance is low. However, an adequate control system

over the solar field [16] and the appropriate use of an storage system reduce the

effect of irradiance disturbances over the MD system. It should be also remarked

that these savings could be considered in the design phase, allowing to reduce

the costs associated with the oversizing of the thermal energy sources. In the600

same way, it could be very relevant in the daily operation, specially in the

cases in which non-renewable sources are used (i.e boilers), since a considerable

amount of fuel, biomass, multi-fuel, or any type of power can be saved, thus

reducing the daily operating costs.

6. Conclusions605

This paper has addressed the optimal management of a distributed energy

system composed of a solar membrane distillation facility and a greenhouse,

connected by means of a buffer system. The scenario comprises the generation

of thermal energy using flat plate solar collectors, and the distribution of this

energy between the different MD modules included in the SMD plant to fulfill610

the greenhouse water demand.

A DMPC has been employed for the optimal operation of the plant. In this

control approach, each agent solves a simple and easy MPC problem, exchang-

ing information only with the neighborhood agents, and making an optimal

distribution of the available resources as a whole. Besides, in the cost function615

defining the optimization problem two weighted objectives were considered. The

first one is aimed at maximizing the thermal efficiency of the SMD system, which

is identified as one of the main weak point of this technology. The second one

is related to the level of the intermediate buffer located between SMD facility

and the greenhouse, which must be higher than a specific minimum value to620
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guarantee the water supply to the greenhouse. Based on these objectives, the

control algorithm computes the optimal distribution of the feed flow rate for

each MD module.

Simulation experiments using real meteorological data from Plataforma Solar

de Almeŕıa and Experimental Station of Cajamar Foundation were performed625

to evaluate the proposed control technique. These experiments focused on eval-

uating the controller when the resources are limited, situations that could be

reached in industrial facilities due to operational or design constraints.

The results show that the DMPC controller is suitable for managing these

kind of facilities, improving the thermal efficiency of the facility by 5 % in com-630

parison with a manual operation, and maintaining the level of the intermediate

tank above the objective. These thermal energy savings mean that for an indus-

trial size cultivation area, i.e 8 ha, 49430 kWh/season less of thermal energy is

required, what could be very relevant in both the design phase and the daily op-

eration, specially when considering also non-renewable sources to feed the MD635

modules. Besides, the results were also compared with a centralized controller,

showing that the performance of both approaches is very similar. However, the

computational effort and the communications are considerably reduced with the

distributed approach, what implies that in industrial cases, in which the num-

ber of MD modules included in the plant and therefore the number of agents640

involved in the optimization problem significantly increases, the problem can

only be solved by using the DMPC approach.
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Nomenclature

Symbol Description Units

A Surface area m2

cf Conversion factor 3.6·106 s·W/(h·kW)

cp Specific heat capacity J/(kg·oC)

D Distillate production L/h

F Feed flow rate L/h

H Absolute humidity kg water/kg air

ṁ Mass flow rate kg/s

Ṁ Mass flow rate per square meter kg/(s·m2)

Q Heat flux W/m2

T Temperature oC

V volume m3

α Heat exchanger transfer coefficient 689.30 W/(m2·K)

δ Weighting factor for the tracking error -

∆T Temperature difference oC

ε Convergence factor -

ζ Weighting factor for the STEC -

η Auxiliary factor for the calculation -

of the outlet heat exchanger temperatures -

θ Heat exchanger auxiliary factor -

λ Weighting factor for the control action

ρ Density kg/m3

σ Maximum number of iterations -
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Subscript Description

a Air

cnv Convective

cr Crop

cs, in Input at the cold side of the heat exchanger

cs, out Output at the cold side of the heat exchanger

cv Cover

dehum Dehumidification

ext Exterior

feed Feed MD water

g Greenhouse

he Heat exchanger

hs, in Input at the hot side of the heat exchanger

hs, out Output at the cold side of the heat exchanger

hum Humidification

i ith MD module in the plant

int Interior

m Model output

sol Solar

ss Soil surface

trp Transpiration

ven Ventilation

1 Relative to the hot side

of the heat exchanger (demineralized water fluid)

2 Relative to cold side

of the heat exchanger (sea water fluid)
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midficación. In: IX Congresso Ibérico de Agroengenharia. 2017,.770

38

http://dx.doi.org/10.3182/20070822-3-ZA-2920.00035

	Introduction
	Case of study
	Solar distillation plant
	Greenhouse

	System Modeling
	SMD facility model
	Greenhouse model

	Control system
	Optimal operation of the MD modules
	Centralized control approach
	Distributed control

	Results and discussion
	Convergence of the DMPC approach to optimal solutions
	Justification of the use of the DMPC approach
	Benefits of the optimal operation

	Conclusions

