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Abstract

With the evolution of Real-Time Location Systems (RTLS), more affordable equipment is be-
coming available for tracking individuals with higher precision. This becomes an opportunity for
researchers in the area of sports analytics, opening the possibility of extracting new knowledge
related to player performance, movement patterns, among others. This knowledge, when applied
to football or hockey players, provides the trainer with new insights which may be crucial for the
improvement of the team’s performance.

This dissertation project has the aim of creating a tool to allow sports trainers to easily under-
stand how the team players are performing and to provide data scientists an easy way to employ
data mining methods in match data. This tool uses positional data from football athletes, and
can easily be extended to use data from other invasion-based team sports. After feeding the col-
lected data to the system, feature extraction is applied to the data which can followed by running
the off-the-shelf mining algorithms embedded in the system. The tool’s results include several
statistics and performance measures of players and are shown using appropriate data visualiza-
tion techniques and easy-to-understand measurements so that a trainer can quickly understand the
strengths and flaws of each player. Also, it includes an interface for running mining algorithms,
such as association rules mining, subgroup discovery, and a new method for discovering frequent
distributions.

In the end, the displayed results will allow trainers to acquire more knowledge about their
players and make more informed decisions, possibly leading to improved player management and
performance. Data scientists will also have an easy way to analyse sports data, which can translate
into having insights about the data more quickly.
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Resumo

Com a evolução de Real-Time Location Systems (RTLS), equipamento mais acessível fica disponível
para localizar indivíduos com maior precisão. Isto torna-se uma oportunidade para investigadores
na área de Sports Analytics, abrindo a possibilidade de extrair novo conhecimento relacionado
com o desempenho de jogadores, padrões de movimentação, entre outros. Este conhecimento,
quando aplicado a jogadores de futebol ou hoquéi, fornece o treinador com novas informações
que podem ser cruciais ao melhoramento do desempenho da equipa.

Este projeto de dissertação tem o objetivo de criar uma ferramenta de data mining que permite
a treinadores perceberem facilmente o desempenho dos jogadores da sua equipa bem como de
fornecer a cientistas de dados uma maneira fácil de aplicar métodos de data mining em dados de
jogos desportivos. Esta ferramenta utiliza dados posicionais de atletas de futebol, e pode ser facil-
mente estendida para outros desportos de equipa invasivos. Depois de inserir os dados recolhidos
no sistema, é aplicada feature extraction nos dados, que pode ser seguida da execução de algorit-
mos de data mining embebidos no sistema. Os resultados da ferramenta incluem várias estatísticas
avançadas e métricas de desempenho de jogadores, e são mostradas usando técnicas de visualiza-
ção de dados apropriadas e medições fáceis de compreender, de modo a que um treinador possa
rapidamente perceber os pontos fortes e fracos de um jogador. Para além disso, inclui uma inter-
face para correr algoritmos de data mining, como association rules mining, subgroup discovery e
um novo método para descobrir distribuições frequentes.

No final, os resultados mostrados irão permitir que treinadores obtenham mais conhecimento
acerca dos seus jogadores e que façam decisões mais informadas, possivelmente levando a uma
melhoria na gestão e desempenho dos jogadores. Cientistas de dados também terão uma maneira
fácil de analisar dados de desporto, que se pode traduzir em obter informações acerca dos dados
mais rapidamente.
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Chapter 1

Introduction

1.1 Context and Motivation

In recent years, sports have been a focus on data analysis [GH17]. Computer vision technology

has allowed recording data from the game without human intervention, and, in some leagues,

devices for the recording of games are already mandatory. The availability of match data is not

only beneficial for presenting statistics to the fans, but also to be used for further analysis. Sports

analytics have used this data to gain better insights on players’ and teams’ performance [GH17],

allowing teams to use that information to adapt training methods and game strategy for better

results.

Developments in the area of Real-Time Location Systems (RTLS) are leading to equipment

that is more accessible and reliable, which allows extracting higher precision data [NTO18]. Sports

analytics researchers can use that data for extracting new knowledge related to team/individual per-

formance, strategy effectiveness, etc. This knowledge, when combined with a proper dashboard,

can provide trainers with new insights which may be crucial for the team’s improvement.

1.2 Objectives and Methodology

The objective of this dissertation project was to develop a data mining tool for aiding in sports

analytics. The tool provides football and hockey trainers with insights on how their team players

are performing. The tool uses spatiotemporal data of matches and/or training. One part of the

project was the application of feature engineering to the data. This is necessary before running the

data mining algorithms implemented in the tool. A second part of the project was the implementa-

tion of a data mining module which included algorithms in the domain of subgroup discovery and

spatiotemporal data mining. These have the objective of describing the players’ and team’s perfor-

mance, as well as discovering other aspects of the team players that can be useful for the trainer.

A third part of the project was the implementation of a data visualization module. This involved
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experimentation on the best ways of transmitting information to sports trainers. The method of

visualization should allow to quickly transmit the information obtained about the team, without

needing anyone to interpret the data other than the trainer.

1.3 Dissertation Structure

Besides the introduction, this dissertation contains 4 more chapters. In chapter 2, the state of the

art and related work is presented. Details about sports data and its features are described, as well

as existing tools used in the analysis of sports data. Also, a description of data mining methods is

included in this chapter. In chapter 3, it is presented a description of the tool that was developed

in the dissertation project. All the necessary modules, including the one that uses a new method

called Frequent Distributions, are detailed in this chapter. In chapter 4, the results are described

and interpreted. At the beginning of this chapter is included a description of the datasets, as well

as the transformations needed before using them. In chapter 5, we present the conclusions and

possible future improvements.
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Chapter 2

Literature Review

In machine learning, there are three types of learning: supervised, unsupervised and reinforcement.

Supervised learning involves training a model providing inputs labeled with the corresponding

classes. Then, the model learns how to associate the inputs to the corresponding classes, so that,

when given a input with no class, it can predict to which class it belongs. Unsupervised learning

involves models that try to find similarities between non-labeled inputs. Reinforcement learning

involves finding the best sequence of actions or path that leads to the highest reward. This sequence

is learned by trial and error and by having into account past results. The work in this project will

focus on unsupervised learning methods, such as clustering and subgroup discovery.

2.1 Clustering

Clustering is an area of Data Mining that studies the division of data into groups of objects (clus-

ters) that are meaningful, useful or both, based on the information found on the data [TSK05].

Objects in the same cluster should be related to one another, and should differ from the objects

assigned to other clusters. Also, a measure to evaluate the difference between two objects must be

chosen. (e.g. Euclidian distance, when the objects are points in space)

When trying to find meaningful clusters, objects with common characteristics are assigned

to the same clusters, which helps on finding a classification for the objects in the data [TSK05].

Clustering has been used in different fields, such as medicine [SLT+18], business [DGH+18] and

sports [BLC+14a]. When trying to find useful clusters, the objective is usually to find a cluster

prototype, which is the representative of the cluster. Cluster prototypes can be used to reduce the

number of individual objects to process in order to make the algorithms viable, or to compress the

data [TSK05].

Tan, Steinbach and Kumar [TSK05] propose a classification for different types of clusterings:

• Hierarchical or Partitional: Partitional is the most simple approach, when objects are just di-

vided into non-overlapping clusters. Hierarchical is when we have nested clusters, organised

as a tree.

3
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• Exclusive or Non-exclusive or Fuzzy: Exclusive is when an object can only be assigned to

one cluster, as opposed to Non-exclusive, when it can belong to multiple clusters. Fuzzy

clustering is when the belonging of an object to each cluster is measured between 0 and 1

(0 = certainly doesn’t belong, 1 = belongs completely)

• Complete or Partial: Complete clustering implies that all objects are assigned to a cluster,

as opposed to Partial, where objects may not be assigned to a cluster.

They also define several types of clusters:

• Well-separated clusters: Each object is more close to every other object in its cluster than to

any object outside its cluster.

• Prototype-based clusters: Each object is more close to the centre/prototype of its cluster

than to the centre/prototype of other clusters.

• Graph-based clusters: All objects in the cluster are interconnected, but have no connection

to any object outside their cluster.

• Density-based clusters: Clusters are formed from a high density region of objects, and are

surrounded by a region of low density of objects, which is considered as noise.

• Shared-property clusters: Clusters are formed by objects that share a common property.

This is the generic definition of a cluster, which also includes the previous definitions.

The type of cluster should be decided according to the objective of the data analysis performed.

For example, the second and third types tend to have a globular shape, which is not suitable to all

situations, where should be considered the use of density-based clusters.

2.1.1 EM and K-means

One of the algorithms used in data mining approaches is the EM (Expectation-Maximization)

algorithm. As Bishop explains in his book [Bis16], this algorithm is used for "finding maximum

likelihood estimators in latent variable models". The EM algorithm fits in the clustering context

since the objective of clustering can be to find an estimation of the classes’ objects distribution.

One of the instances of this algorithm is the K-means clustering [Bis16]. This technique is used

to apply a complete exclusive clustering on the data which will partition it in K clusters, where

K is assumed to be given in the beginning. Also, the technique uses a distortion measure which

represents the distance of an object to the cluster’s centre. The process begins with the creation

of K points representing each cluster centre, generated randomly or by applying a initialization

process. Then, the process follows 2 steps, as defined in the EM algorithm:

1. E-step: For each point, evaluate the distortion measure relatively to each cluster centre and

assign the point to the cluster that resulted in the least distortion.

4
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2. M-step: Calculate the new centres for each cluster, based on the new assignments obtained

in the E-step.

Since random initialization can sometimes yield unsatisfactory results, Tan et al.[TSK05] give two

examples of a better method for the initialization: Cluster centres can be initialized by performing

several random runs, and choosing the one which produced better results; or by picking a small

sample of the dataset, performing a run, and using the centres obtained as the initial centres for

the whole-dataset run.

2.1.1.1 EP-MEANS

Henderson et al.[HGER15a] propose a method called EP-MEANS. This method clusters proba-

bility distributions regarding a target attribute. It is based in the K-means clustering algorithm

([Bis16]) and the Earth Mover’s Distance ([RTG98]). In their approach, they start by picking a set

of distributions of a target attribute. Then, they use the k-means algorithm to find the clusters of

the set of distributions, using the Earth Mover Distance to measure the distance between distribu-

tions. This method can be non-parametric if we use automatic methods of finding the number of

clusters, as described in the paper.

2.1.2 Clustering in spatiotemporal data

Spatiotemporal datasets contain spatial, temporal or spatiotemporal information. This information

can be, for example, a registry of the location of earthquakes in the past years [MPS18], the GPS

coordinates and timestamps of Tweets [LC18] or the recorded positions of vehicles [VBT09]. Us-

ing clustering methods in spatiotemporal datasets allowed, respectively, to predict the hotspots of

earthquakes, to predict the home location of tweeter users or to discover flock patterns in vehi-

cles. In this subsection, two clustering methods that are used in sports spatiotemporal data are

described: Minimum Entropy Data Partitioning and Subtrajectory Clustering.

2.1.3 Minimum Entropy Data Partitioning

One of the approaches used to extract knowledge from spatiotemporal datasets is the Minimum

Entropy Data Partitioning method [RER99]. We can view each cluster as a probability density

function (pdf) which models the probability of an object belonging to that cluster, given the object’s

attributes [BLC+14b]. These probability densities may overlap, which means that the assignment

of an object to a cluster may be similarly adequate for two different clusters. So, the objective of

the method is to minimize the overlaps between all clusters. To measure the amount of overlap

between two clusters, the Kullback-Lieber measure may be used [RER99, BLC+14b]. As shown

by Roberts et al.[RER99], minimizing the total overlap is equivalent to minimizing the entropy of

the clusters over all observed data. The less the entropy is, the more well-separated the clusters are.

In [RER99], they propose that the minimization of the entropy should be made like a Radial-Basis

function classifier. This means that:

5



Literature Review

Figure 2.1: Iteration of the minimum entropy data partitioning algorithm when trying to identify
the formation of a football team. Each cluster represents one role in the team’s strategic formation,
and are shown in the figure as coloured circles (Image obtained from [BLC+14a]).

• We start with a fixed set of pdf’s.

• Each cluster is the weighted sum of the pdf’s in the set.

• The classifier updates the weights in each iteration in order to minimize the entropy.

Bialkowski et al.[BLC+14b, BLC+14a] used a variation of the minimum entropy data parti-

tioning method to identify football formations. The dataset used in their work comprises player

tracking data for an entire season. They propose that a team has several unique roles (which will be

our clusters), and that only one player can be in a role in each time-frame of the data. The method

involves going through all time-frames and, for each of them, assign a player uniquely to a role,

using the Hungarian Method [HGER15b]. Next, the method updates the roles’ distributions in a

way that minimizes the entropy between roles. The results reveal a 75.33% correct classification

rate of the team’s formations. A graphical example of the method can be found in Figure 2.1.

2.1.4 Subtrajectory Clustering

Another approach used to extract knowledge from spatiotemporal datasets is Subtrajectory clus-

tering [BBG+11]. This method tries to find clusters of subtrajectories in a given set of trajectories.

In order to cluster trajectories, we need a way to measure the distance between trajectories. Two

different distance measures between trajectories are the Hausdorff distance and the Fréchet dis-

tance.

The Hausdorff distance between two curves P and Q (δH(P,Q)) is expressed by the following

equation [AKW04]:

δH(P,Q) = max(δ̃H(P,Q), δ̃H(Q,P))

6
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Figure 2.2: The Hausdorff distance between curves is small, while the Fréchet distance is large.

Where δ̃H(P,Q), called directed Hausdorff distance, is defined as:

δ̃H(P,Q) = max
x∈P

min
y∈Q
‖x− y‖

In an informal way, the Hausdorff distance can be explained in two simple steps: First, for each

point in the first curve, we obtain the minimum distance to the second curve. Then, amongst the

list of minimum distances, we pick the maximum.

The Fréchet distance between two curves P and Q (δF(P,Q)) is expressed by the following

equation [AKW04]:

δF(P,Q) = in f
ρ σ

max
t∈[0,1]

‖P(ρ(t))−Q(σ(t))‖

ρ and σ range over continuous and non-decreasing functions with ρ(0) = σ(0) = 0 and ρ(1) =

σ(1) = 1. Gudmundsson et al.[GW14] explains the concept intuitively: If we imagine a person

walking his dog on a leash, the Fréchet distance is the smallest length of leash that allows the

person and the dog to walk along their paths, while being able to change their speed or pause, but

not backwards.

The advantage of the Hausdorff distance is that it is much easier to compute than the Fréchet

distance. However, it does not have into consideration the course of the curves. This translates

in having a distance that is too small for trajectories that do not resemble each other [AKW04]

(See Figure 2.2). Since the Fréchet distance has better results considering trajectories, an approx-

imated version for polygonal curves (called discrete Fréchet distance) is used in some works like

[BBG+11] and [GW14]. On this version, instead of calculating the distance in all the points, it is

only calculated in the vertices of the polygonal curves.

Another important definition is the free space diagram (See Figure 2.3) [BBG+11]. Consider

we have the polygonal curves f and g, with n and m vertices, respectively. Also, let f be a

polygonal curve with n vertices p1, ..., pn. We can define φ f as a map: [1,n] −→ Rc, where i ∈
1, ...,n maps to point pi and c is the dimension of the points. The equation for the free space
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Figure 2.3: Curves f and g, and distance d on the left. On the right there is the resulting free space
diagram.

diagram of curves f and g, with distance d (Fd( f ,g)) is the following:

Fd( f ,g) = {(s, t) ∈ [1,n]× [1,m] : |φ f (s),φg(t)| ≤ d}

where (s, t) represents a tuple in the diagram. In this diagram, each axis represents each one of

the curves, and going along the axis represents going along the corresponding curve. The white

area represents the tuples in which the Euclidian distance between the points phi f (s) and phig(t)

is less or equal than d. Alt and Godau [AG95] showed that the Fréchet distance between f and g

is less than d when there is a monotone path between the tuples (0,0) and (n,m) in the free space

diagram.

Now that we have the definitions in how to measure the distance between two trajectories,

we can proceed to identifying the subtrajectory clusters. Buchin et al.[BBG+11] define three

parameters in a subtrajectory cluster SC(m, l,d). m is the number of non-identical subtrajectories

in the cluster, l is the minimum length for any of the subtrajectories, and d is the maximum distance

between subtrajectories. They also define two vertical lines in the free space diagram, ls and lt . In

[BBG+11], they start by showing how to cluster subtrajectories in only one trajectory T . They say

that there are m cluster curves between ls and lt in Fd(T,T ) such that:

• The m curves are not identical between each one of them, and all start at ls and end at lt

• Each curve is monotonically increasing in both coordinates from ls to lt

• The y-coordinates of two curves overlap in at most one point.

For the clustering algorithm, it is needed a data structure that stores a representation of the free

space diagram as a directed labeled graph. Summarily, this algorithm consists of sweeping through

Fd , and recording the clusters that are according to the parameters specified. To cluster for subtra-

jectories in a set of trajectories, only minor changes are needed [BBG+11]. Link all trajectories in

one long trajectory, and only consider cluster curves which start and end in the same trajectory.
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Huang et al.[HLW13] define a new trajectory pattern which they call frequent sub-trajectories

with time constraints. In their experiment, they could discover patterns of this type in Tencent Mi-

croblog data sets by performing a variant of subtrajectory clustering that includes time constraints.

In the field of sports, Gudmundsson and Wolle [GW14] developed a tool that used Buchin et

al.algorithm for analysing players’ and ball movement in football. The objectives of this tool are

reporting the most common patterns formed by the ball between defense and offense and report the

most common movements of a player/group of players. In their experiments, they found out that it

is harder to have clusters when the Fréchet distance is smaller. On the other hand, a large Fréchet

distance increases the appearances of longer clusters. Also, Gudmundsson and Wolle [GW14]

developed another tool to correlate the clusters found in the subtrajectory clustering tool. The

general idea behind the tool is that players 1 and 2 have correlated movements if there are several

subtrajectories in the clusters for 1 and 2 that overlap in time. They view each subtrajectory

cluster as a set of time intervals, where the start and end times are the initial and end points of each

trajectory in the cluster. They define a set of time intervals as locally correlated if there exists

at least one point that is contained in every interval. Also, they define that k players are globally

correlated if the number of local correlation sets λ between k clusters is greater or equal than a

threshold θ . Formally, the definition of global correlation by Gudmundsson and Wolle [GW14]

is:

• T1, ...,Tk are a set of k trajectory clusters

• θ is a positive threshold

T1, ...,Tk are globally correlated if there are C1, ...,Cλ local correlation sets which satisfy the fol-

lowing:

• λ ≥ θ

• |Cm|1≤i≤λ = k

• For each Ti, 1≤ i≤ k, and C j, 1≤ j ≤ λ , there exists a time interval ti such that ti ∈ Ti∩C j

• For all 1≤ i 6= j ≤ λ , Ci 6=C j

To discover this correlations, a sweeping-line approach is used.

2.2 Subgroup Discovery

Subgroup discovery is an area of Data Mining that studies ways of finding smaller exceptional

models inside a general model. This exceptional models should be statistically "interesting", which

means they should contain a number of samples that is sufficiently large, but at the same time

being very distinct from the general model [Hel16]. These subgroups are represented by a group

of attributes that produce unusual distributions when related. To measure how "interesting" a

subgroup is, a quality measure is employed. Quality measures should have into account that a
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subgroup is more interesting the more it is distant from the general group and the more samples

the subgroup contains.

The general methodology for Subgroup discovery algorithms is described by Helal [Hel16].

Firstly, there is the phase of subgroup candidate generation. The objective of this phase is search-

ing for new and more specific subgroups that may have a better quality measure value. Secondly,

there is the pruning phase, where candidates are excluded based on a predefined criteria. Finally,

there is the post-processing step, where the candidates are evaluated with a quality measure, al-

lowing to distinguish which subgroups are the most interesting.

Helal [Hel16] also explains the three most common approaches for algorithms in subgroup

discovery: Exhaustive Search Based, Beam Search Based and Genetic Algorithm Based. Exhaus-

tive search based, as the name suggests, sweeps through all of the search space, verifying the

suitability of each candidate. As expected, this is very resource intensive, and should only be

used in small search spaces. Beam search based works iteratively, and is an alternative to Ex-

haustive search when the search space is too large. In this type of search, there is the concept of

"beam", which is a limited-size container with the best partial solutions until that iteration. On

each iteration, new candidates are generated from the candidates in the beam, by incrementing the

number of constraints. Only the ones with the quality measure above a certain threshold are kept

as candidates for the next iteration. Since this type of search does not explore all of the search

space, it saves substantially more resources than exhaustive search, but has the disadvantage that a

solution may not be found. Genetic Algorithm based uses the genetic algorithm heuristics, which

are based on natural evolution. We start with a set of candidates with different descriptions and

the corresponding quality measure value. From the starting set, the best candidates are chosen,

based on their quality measures, and part of their descriptions are combined/switched, creating a

new generation of candidates. Over the generations, there is an improvement of quality measure

of the candidates, eventually getting to a solution.

Different pruning techniques can be used in subgroup discovery algorithms. Helal [Hel16]

mentions three major types of pruning: Minimum support pruning, which involves removing the

candidates that do not have enough samples in the dataset to support them; Optimistic estimate

pruning; and Quality Constraint pruning, in which candidates which do not have more quality

measure value than a certain threshold are removed. Also, different quality measures can be

chosen for the algorithms, and the author mentions that unusualness and the Piatetsky-Shapiro

measure are the most popular ones.

In [Hel16], Helal gives several examples where Beam Search based Subgroup Discovery was

used in spatial data analysis, in diverse contexts. Also, in the context of sports, a Beam search

based approach was used by de Leeuw [dLMK18] to define the pace profiles of runners that

perform better in marathons and a subgroup discovery algorithm was used by Meerhoff [MdLGK]

in football matches to try to discover the gameplay decisions of a team that lead to losses of ball

possession.
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2.3 Data Analytics in Sports Data

In recent years there is an increase in the collection of spatiotemporal data and the research in the

sports area [BLC+14a, GW14, GH17, YLC+14]. In this section, a brief explanation will be given

about which data is collected, and what are the features that are extracted from it. According to a

recent survey (2017) [GH17], most of the match data regarding player trajectories and events logs

is collected from football and basketball, which is reflected in the great quantity of research done

in this two sports.

2.3.1 Data Collection

Nowadays there are a number of systems which can capture the spatiotemporal data from matches

[GH17]. Leagues such as the NBA and the German Football League already capture data from

all games, while other teams just capture the match data in their stadiums. Usually, these systems

involve high-definition cameras positioned around the field which read the players’ positions in

real time, and in a post-processing stage, additional annotations such as faults are added manually

or semi-automatically [GW14]. However, computer vision is not the only method of reading the

players’ positions. There exist also device tracking systems that make use devices attached to the

players and/or ball/puck, which transmit the objects position using GPS or RFID technology.

2.3.2 Characteristics and Metrics

Spatiotemporal data extracted from matches has specific properties which are convenient in the

field of research. In the case of team sports, players have an underlying structure, which corre-

sponds to their formation/strategy, the number of agents is small since we only have the players,

the ball, and possibly the referee, player positional data has a high sampling rate (at the time when

[GW14] was published, the sampling rate was 10-25 samples per second) and have a small tempo-

ral and spatial range, and have a high interaction between agents [GH17]. Team sports data usually

has two types of data collected: player/ball trajectories and event logs [GH17]. These two types

of data can provide insights on the data individually, but they are best used in combination. For

example, we can infer a team’s formation from the player trajectories. However, this formation

can differ whether the team is attacking or defending, which can be determined by the event log.

Player and ball trajectories are represented in the data as location points with a timestamp as-

sociated with it (relative to the match duration). From this data, we can directly infer, for example,

the players’ orientation and speed [GH17], or indirectly, for example, the maximum distance in

high speed running [SRP17] or the player dominant region [TH00]. Event logs, as opposed to

the player/ball trajectories, are not dense, but provide a lot of information, thus being very useful

for inferring a number of aspects about the players and the team. Spatiotemporal data from entire

competitions has some additional advantages besides the amount of matches and teams. With it, it

is possible to run experiments on the weather conditions, on the fact that teams play at home/away

or on injuries of players [GH17]. As Gudmundsson and Horton mention in their survey [GH17],
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for team-based invasion sports such as rugby or American football, it is hard for computer vision

systems to capture the spatiotemporal data from the matches. Since the number of collisions be-

tween players is very high in those sports, systems which rely on edge detection can have trouble

identifying the players.

2.3.3 Data Mining Tools for Sports

There are several tools which make use of data mining approaches applied to sports. For example,

there are already tools that analyse passing possibilities and sequences, player common trajecto-

ries and relationships between them and also the area that a player is guarding. In the examples

presented, most of the tools were built with football data in mind, but they could be easily adapted

to other sports.

2.3.3.1 Passing Analysis

One of the tools used by Gudmundsson et al.[GW14] has the objetive of evaluating football play-

ers’ passing abilities. The passing abilites of a player involve the ability of executing a pass, the

ability of receiving a pass, and the ability to detect when there is an opening for a pass. Also, in

this tool, the definition of a pass includes the start coordinates, the initial speed, the direction of the

pass and the player who performed the pass. They define the validity of the pass as when a player

p makes a pass that can be reached by a player on the same team of p (besides himself) before

anyone else. The tools receives as input 23 trajectories (1 for the ball and 22 for the players) and

a passing speed, and outputs, for every point when a player has the control of the ball, the passing

possibilities and the passable area for that given speed. This can be seen on Figure 2.4.

In this tool, is possible to choose the motion model of the players from 3 options: the first two

are very similar to the ones proposed by Taki and Hasegawa [TH00] and Fujimura and Sugihara

[FS05], and the third one is based on the historical data of a player. The motion models define

how the player movement is described and what restrictions does it have. For example, in Taki and

Hasegawa’s approach [TH00], since the acceleration of a player is a constant from a set of possible

accelerations, there is the possibility that the player’s speed increases indefinately. In Fujimura and

Sugihara’s motion model [FS05], they include a resistive force that decreases the acceleration over

time. The motions models are important to define the dominant regions of the players, which are

the regions that one player can reach before any other player. This is explained in the section

relative to the tool in which dominant regions were defined (Section 2.3.3.4). Gudmundsson et

al.[GW14] mention that the results they got with the three different motion models were similar,

so further research could be made to try to identify the differences,

The way the passable regions are defined in this tool is similar to the concept of dominant

regions. Based on the player’s position, speed and direction and the ball’s position, the passable

region of a player is the region where a player can receive the ball before any other player. Using

the possible ball’s positions in only discrete time steps, which gives a set of circles, they could
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Figure 2.4: GUI of the passing analysis tool, showing the passing possibilities and the passable
areas, colored with the team color of the receiving player. Ball is represented in white

intersect those circles with the players’ passable regions to calculate the passable areas shown in

the tool.

The authors mention that there is still the need to address more complex problems such as

evaluating the player’s passing ability, to recognize passing oportunities or to evaluate the player’s

receiving ability. Also, it is suggested that trying to address the problem from the defender’s point

of view would also be valuable for research.

2.3.3.2 Pass Sequence Analysis

Gudmundsson et al.[GW14] also developed another tool which analyses the pass sequences of one

team. This is very useful to discover what are the most common patterns of passes when a team

wants to make the a transition from the defense to the the attack or to discover players that have

more interactions between each other. An example of the output is shown in Figure 2.5. The tools

receives as input a set of players, a sequence of passes made by that set of players during several

matches and a query (T,O), in which T is the number of players involved in that pattern, and O is

the minimum number of passes that occured in the same sequence of T players. To perform these

queries, a uncompressed suffix tree is built from the inputs. A character represents each player,

and the team together forms a 11-letter alphabet. Also, a sequence of passes can be represented

by a string of players which had possession of the ball sequentially, until the team lost the ball.

Every edge of the tree corresponds to a character from that alphabet, and each node stores the

frequency of the string that goes from the root until that node. After the tree is built, it is very

easy to process a query. However, the building process is not immediate and, according to the
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Figure 2.5: GUI for the passing sequence tool. This shows a passing sequence between player 1,
2 and 3, in which player 1 passes to player 2, which dribles during 4s until it passes to player 3.

authors, the process allocated around 2GB of internal memory for this task. For future work, they

reccomend on optimising the space usage of the process.

2.3.3.3 Clustering and Correlating Subtrajectories

Again, Gudmundsson et al.[GW14] developed two other tools for analysing player movement.

The first tool clusters player’s movement and the second tool correlates the clusters obtained by

the first tool.

The objective of the first tool is finding repeated movements of a player, by clustering sub-

trajectories of him according to the input parameters m (minimum number of subtrajectories), d

(maximum distance between subtrajectories) and ` (minimum length of the subtrajectories). To

group the subtrajectories in clusters, it is needed a distance measure between the subtrajectories.

This will be further explained in Section 2.1. The measure used in this tool is the discrete Fréchet

distance, which has into account the positional similarity between subtrajectories, but not their

duration. This measure is also further explained in Subection 2.1.4. The algorithm used in the

tool is the one defined by Buchin et al.[BBG+11]. Figure 2.6 shows an example of the results of

the tool. The authors mention that the parameters d and ` (especially `) have a negative impact on

the performance of the algorithm when increased. Since ` had the most impact, they filtered the

vertices of the trajectories that were less crucial for the overall shape of the trajectory.

The second tool uses the subtrajectory clusters obtained by the first tool to find correlations be-

tween the most common movements of the players. First, the time interval when each subtrajectory

happens is associated with its cluster. This means that each cluster of similar subtrajectories has a

registry of the moments when that common movement happened. Then, the algorithm inserts the
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Figure 2.6: Visualization of all representative subtrajectories of the clusters found for a central
midfielder. It can be inferred that this central midfielder also executes corner kicks from the right
side.

subtrajectory clusters in a time line, sweeps through the timeline, and discovers a correlation be-

tween subtrajectories when the number of moments where both subtrajectories happened is higher

than a certain threshold. This is explained in detail in Section 2.1.4. An example of the correlation

between common movements of players is shown in Figure 2.7. Future work involves discussing

the criteria for determining when the subtrajectory clusters are correlated.

2.3.3.4 Determining Dominant Regions

Taki and Hasegawa [TH00] presented a system which calculates the dominant region of players.

They define the dominant region of a player as the region where a player can reach before any

other player. To obtain the dominant region, we need to calculate the Minimum Moving Time

Pattern (MMT). The authors define the MMT as the minimum time that is necessary for a player

to go from his actual position to a certain point. To calculate the MMT we need the position,

speed and an acceleration ability of the player. The latter is defined as "a set of acceleration

patterns based on the physical ability of an average player" [TH00]. So, to calculate the dominant

regions of players, we calculate the MMT of each player for each point and that point will belong

to the dominant region of the player with the least MMT. Also, if we merge the dominant regions

of the players of the same team, then we have the team’s dominant region. The team’s dominant

region can be useful for evaluating the quality of a player’s movement or pass. An example of two

teams’ dominant regions is presented in Figure X. This tool’s calculation of the MMT assumes

that players’ acceleration patterns are the same for each player, and that their are constant, which

is distant from reality. To address this second aspect, Fujimura and Sugihara [FS05] have proposed
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Figure 2.7: Correlation of the movement of three defenders.

Figure 2.8: Two teams’ dominant regions (one in light gray, and another on dark gray). Each
teams’ players are represented by a different shape (triangle or square).
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a change in the calculation of the MMT which adds a resistive force that decreases velocity over

time. This avoids that players can accelerate infinitely.

2.4 Association Rule Mining

Association rule mining is an area of Data Mining which studies ways of finding relationships

between variables in a dataset. The relationships come in the form of implications X =⇒ Y , which

we call rules. X and Y are itemsets, where X is usually called antecedent and Y called consequent.

As an example, a rule found in a supermarket dataset could be {milk,butter} =⇒ {bread}. One

way to measure how interesting a rule is, is to consider if the itemset X ∪Y is observed frequently

enough (which is called support) and if the rule is verified frequently enough (which is called

confidence).

Jorge et al.[JAP06] propose a method called Distribution Rules (DR). Instead of discovering

a relationship between two itemsets, DR discovers rules that associate a frequent itemset with a

distribution of a target variable. The rules are represented in the form A =⇒ y = Dy‖A, where

A is an itemset, y is the target variable and Dy‖A is the distribution of y when A is observed.

In this case, to measure how interesting a rule is, we check the difference between Dy‖A and a

reference distribution, which usually is the distribution of the whole population (Dy). In the paper

([JAP06]), they use the Kolmogorov-Smirnov statistical test [Con71]to measure the difference

between distributions. This method is useful to avoid pre-discretizing a numeric target variable,

which, in turn, avoids loss of information.

2.5 Summary

To conclude, there has been significant research in data mining applied to sports, because of the

rise in interest for sports analytics. Most data mining tools in the area of sports focus on football

and have promising future uses if further research is made to calculate more metrics that were not

included in the tools due to their complexity. Also, there is evidence that clustering, association

rule mining and subgroup discovery in spatiotemporal data can be used to extract new knowledge

about the performance of teams and their players.
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Chapter 3

Proposed Approach

The proposed solution is called UnFOOT: a data mining tool that receives players’ spatiotemporal

data from a match and displays an interactive interface for analyzing the data.1 The tool shows a

summary of each player’s performance and the overall statistics of each team. It also allows for

further analysis of the match using a data mining module. This module includes subgroup dis-

covery and association rule mining methods as well as a new method called Frequent Distribution

mining. The tool is intended to be used by trainers, sports analysts and data scientists. It includes

plots and graphs that are easily interpreted by anyone with knowledge in sports, but also include

interfaces that data scientists can use to run more advanced data mining methods.

3.1 Frequent Distributions

Time series data is constituted by a set of records, each of them recorded at a specific time [BD13].

Each record can contain values of different variables. Also, multiple entities can be represented.

This means that each entity will have multiple records associated, and the variables in the records

will represent the entity’s attributes. Let us define a time series dataset (TSD) as a table with n rows

and m+2 columns. The columns come in the format cols = {attr1,attr2, ...attrm, t,ent}. We call

A = {attr1,attr2, ...attrm} the attributes, E = {ent1, ...,entk} the entities, where k is the number of

entities in the TSD, and T = [t f irst , tlast ] the timestamps, where t f irst and tlast are the first and last

timestamps registered in the TSD. Each row r represents the record of the attributes for one of the

entities for a timestamp t. More formally, rt,enti = At,enti = {attr1,attr2, ...attrm, t,enti}, i ∈ [1,k].

Looking for ways of extracting information about the behavior of these attributes can be very

important for the analysis of the data. One of the aspects that we may be looking for is the exis-

tence of patterns on the variability of the attributes. We can call this variability patterns as profiles.

A profile (pf ) is represented as a distribution of the values of a given attribute during a time in-

terval (distattr(tstart , tend), tstart < tend ∧ tstart , tend ∈ T ). A TSDwill have a fixed set of profiles for

a given attribute (PFattr = {p f attr1, ..., p f attrn}) and the variability of an attribute can switch

1A video with a demonstration of the tool can be watched in https://www.youtube.com/watch?v=
x86tg48qEs4
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between the different profiles over time. For example, when looking at records of electricity con-

sumption, we will probably have PFconsumption = {p f consumptionday, p f consumptionnight}. For

p f consumptionday, the distribution will include lower values, as opposed to p f consumptionnight ,

which will include higher values due to the need for artificial lighting during the night. Finding

these profiles can be important for evaluating the different types of behavior an attribute can have.

The process can be compared to clustering since we are trying to aggregate data by finding a

representative (profile) for each group (a type of behavior) [HGER15a].

As mentioned in Section 2.4, Jorge et al.[JAP06] proposed an approach for mining distribution

rules of a target given a set of attributes. In their approach, they choose a target attribute, which

we will call target. Then, they apply association rule mining to obtain rules which match a set of

attributes to the distribution of target. This distribution should be different enough from the whole

distribution of target so that we do not have rules which do not add any additional information

about the data. Using this method, we can obtain a distribution of target that stands out of the

whole distribution, given a set of attributes. However, this is not useful to establish profiles. In

order to find a profile, similar distributions of the target must be observed repeatedly throughout

the time series. Also, we should be able to match each observation of target to one of the profiles.

With the distribution rules method, we can obtain a distribution of target that stands out from the

whole distribution, but there is no way of determining if that distribution is observed repeatedly in

different time intervals.

In Subsection 2.1.1.1, is mentioned that Henderson et al.[HGER15a] have another approach

which clusters distributions. Their approach uses the K-Means clustering method ([Bis16]) and the

Earth Mover’s distance ([RTG98]) to obtain the clusters of distributions of the target. In the end,

each cluster will include the distributions of the target that belong to one profile, and the centroid

of each cluster will be the representation of the corresponding profile. However, the process of

clustering involves iterating through the data multiple times, which could be time consuming.

The Frequent Distribution mining method is an approach which iteratively discovers new pro-

files in the time series data. First, we choose a target attribute (target), the size of the time

windows (wsize) and a distance threshold (threshold). The last 2 parameters will be explained

further on. The values for the target can be recorded for one or multiple entities at the same

time. Formally, disttarget(tstart , tend) = ∑i∈E
(
disttarget(tstart , tend ,enti)

)
. We divide the time series

into time intervals with wsize, called time windows and we go through them sequentially. In

each time window (tstart , tend), we observe disttarget(tstart , tend ,ent) for each ent ∈ E and try to as-

sign each disttarget to a profile. This is done by checking the distance between the distributions

and the discovered profiles using the Kolmogorov-Smirnov statistical test. The distribution is as-

signed to a profile if distance < threshold. Both distance and threshold are in the range [0,1]. If

distance(disttarget , p f targeta)≥ threshold,∀p f targeta ∈ PFtarget , then it means that a new profile

was found. When that happens, PFtarget =PFtarget∪{disttarget}. The pseudocode for Frequent Dis-

tributions is shown in Algorithm 1. With this method, by making small additions, we can record

the number of distributions that were assigned to each profile, and which profiles were assigned

to the distributions of one entity, and even on which time windows a profile was assigned to a
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distribution of an entity.

Input: target, wsize, threshold
begin

profiles_list;
foreach time_window = (tstart , tend), tend− tstart = wsize∧{tstart , tend} ∈ T do

foreach ent do
entity_distribution←− disttarget(tstart , tend ,ent);
is_distribution_distinct←− True;
foreach profile in profiles_list do

if distance(entity_distribution, pro f ile)< threshold then
is_distribution_distinct←− False;

end
end
if is_distribution_distinct then

Add entity_distribution to profiles_list;
end

end
end
return profiles_list

end
Algorithm 1: Frequent Distributions algorithm

3.1.1 Combining with Association Rules Mining

We can combine the Frequent Distributions with Association Rules mining by adding extra steps to

the method. The objective is to obtain association rules that, for each entity, measure the transition

between profiles in consecutive time windows. For example, it would be interesting to observe

that, for a given target attribute, a profile A is always followed by a profile B in the next time

window.

In order to do this, first, we have to have a record, for each entity, of the profile that was

observed in each time window. Afterward, we need to find the frequent itemsets that will be used

in the association rules mining. Each itemset will be composed of a pair of consecutive profiles: a

previous profile and a next profile. So, we need to scan through the time series and obtain, for each

consecutive time windows, the pair of consecutive profiles. After obtaining all the itemsets in the

last step, we can run off-the-shelf algorithms to find the itemsets that are frequent and afterward

use association rules mining. An itemset is considered frequent if the support for that itemset is

higher than the user-defined minimum support. Also, in our approach, an association rule will only

be considered relevant if its confidence value is higher than the user-defined minimum confidence

threshold.
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Figure 3.1: Diagram of the tools pipeline

3.2 UnFOOT

As previously stated, the UnFOOT tool receives spatiotemporal data from a match and displays an

interface which allows the analysis of the data. The data has to come in a specific format so that

the tool is able to use it. A list of requirements for the data is presented below:

1. The data should come in a .csv file with the format presented in Table 3.1. The Player_id

should be an integer value. From 0 to 23 are players from the 1st team, and from 24 to 39 are

players from the 2nd team. Period should be 1 or 2 and refers to the half of the match when

that record was obtained (1 for 1st half, 2 for the 2nd half). Timestamp is the time elapsed

since the beginning of the period. This does not have to be in seconds. The conversion rate

from timestamps to seconds has to be specified when loading the file, in the appropriate

input box. x and y are the coordinates of the player in the field, where x represents the width

and y the length. They do not need to be in meters. The conversion rate from meters to the

units of the xy data has to be specified when loading the file too.

Table 3.1: Example Input File

ID Player_id Period Timestamp x y
1 2 1 15 -37 -45
2 2 1 16 -35 -49

2. The rate of the measurements should be constant. If the rate is 1 Hz, then there should

always be a measurement each second, even if the measurement includes only null or NaN

values.

The tool requires to have Python 3 installed, as well as the necessary modules.
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3.2.1 Data Processing

The pipeline of the tool starts with the loading and preprocessing of the file, which we call the

loading phase. In the loading phase, the user inputs the name for the match, the rate of the mea-

surements in Hz, the conversion rate from meters to units of the xy data and the file itself. After

loading the file, the tool makes one pass on the data. During this pass, the referees and the ball

records are filtered, if they exist. Also, the tool adds the team number to the player records, calcu-

lates and adds the velocity, acceleration, and distance covered to the records, and fills the null/NaN

values on the xy data by applying a linear interpolation between the records that are not null/NaN.

At the end of the loading phase, the new dataset with the extracted features has the format shown

in Table 3.2. In the next step, called the processing phase, the user has to choose a time window

Table 3.2: Example of the new dataset after the initial pass over the data

ID Player_id Period Timestamp x y team Dist Dist_x Dist_y v v_x v_y a a_x a_y
28 1 1 10 -48.9 -0.3 1 0.1 0.1 0.0 1.0 1.0 0.0 9.99 -9.99 0.0

size, in seconds. The new dataset is divided into windows of that size. For each window, several

internal modules extract different performance indicators and statistics from the positional data.

The results are stored in each module while going through all the time windows. The modules are

described below:

• Speed Module: Measures the player’s ability to reach higher speeds. In each time window,

obtains the maximum speed of each player and divides the speeds into quartiles. Each

quartile gives a score. The higher the speed, the higher the score. In each time window, the

obtained score for each player is added to the global score registered until then.

• Stamina Module: Measures the player’s ability to run for longer distances. In each time

window, obtains the distance that each player traveled in that time interval and divides the

distances into quartiles. The higher the distance, the higher the score, similar to the Speed

module.

• Agility Module: Measures the player’s ability to change his trajectory. In each time window,

for each player, calculates the agility score for each pair of consecutive positions and sums

the scores. The agility score is calculated with the product of two values: the angle between

the speed vector of the initial and final positions; the absolute value of the acceleration. The

higher the player has changed direction and the higher the acceleration while changing, the

higher the score will be.

• Pressing Module: Measures the number of times a player spent near players from the oppo-

site team. The assumption behind this module is that whenever players of different teams

are close together, they are pressing each other. For each instant, we cluster the players

according to their position using DBSCAN. The score for each player increases whenever

the player is included in a cluster with players from both teams. All the clusters that contain
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players from only one team are excluded since players from the same team do not press

each other. In the end, the more frequently the player was near the other team, the higher

his score will be.

• Positioning Module: Measures the positioning of the player relative to his team. In each time

window, for each team, equally divides the players’ positions into 3 sections, both along the

length and width of the field. Along the length, we have the sections Defense, Midfield and

Attack. Along the width we have Left, Center and Right. The number of occurrences in

each section will be counted for each player. In the end, the score of a player will look like

what is shown in Table 3.3. In this case, we can infer that this player is a defender which

plays more on the left side. This score is always relative to the team’s overall position. Even

Table 3.3: Example of a player’s positioning score.

Def Mid Atk Left Center Right
8 2 0 6 4 0

if a team is playing on the attack, the players that are playing more on the back will be

counted as being on the Defense section, even if their absolute position is, for example, the

middle of the field.

• Simple Statistics Module: Calculates simple statistics and measurements for each player in

the whole match. Includes the player’s maximum speed, average speed, total distance trav-

eled, maximum acceleration, average acceleration, total time played, and total time running.

We consider that a player is running when his speed is above 12 km/h.

• Heatmap Calculator: Transforms the field in a w× l rectangle grid, where w is the number

of rectangles along the width, and l the number of rectangles along the length. The Heatmap

Calculator registers the players’ positions that fall in each rectangle of the grid. This result

will be displayed in the Team view, which is going to be explained in Section 3.2.3.

• Overall Score Calculator: Calculates the total score of the players. This module gets the

scores from the Speed, Stamina, Agility and Pressure modules and normalizes them. Then,

it calculates the overall score for each player by calculating the mean of the 4 scores and

multiplying by 100.

3.2.2 Embedded Data Analysis

Besides the modules that were mentioned before, there are additional modules which are only used

in further phases of the pipeline. These modules contribute with an additional layer of analysis by

introducing data mining algorithms in the tool. The modules are described below:

• Association Rules Mining Module: Uses association rules to obtain relationships between

consecutive time windows for each player. Before running the algorithm, the module loads
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the results dataset. This results dataset is obtained after the processing phase, and each row

r represents the scores for each player p in one time window t. The module gets from the

results dataset a list of all the pairs (rt,p,rt+1,p), and labels all the rt,p as prev and the rt+1,p

as after. It will also pick the values for Agility and group them in quartiles, for simplicity.

Using the Apriori algorithm [AS94], the module will interpret the pairs in that list as itemsets

and find the ones that are frequent. An itemset is considered frequent if support(itemset)>

minsupport , where minsupport is defined by the user. Then, it calculates the association rules

using those frequent itemsets. We used the package mlxtend2 to make the calculations. A

rule is only accepted if con f idence(rule) > mincon f idence, where mincon f idence is defined by

the user, and if the items in the antecedents and consequents are labeled as prev and after,

respectively. In the end, we expect this module to find patterns which show, for example,

that if a player reveals a high-speed performance in a time window, he will probably reveal

a low-speed performance in the next one.

Instead of using this method, we could have used the Sequential Pattern mining method

proposed by Ayres et al.[AFGY02]. However, we were only interested in the immediate

transitions, so there was no need to build a full lexicographic transition tree, as required

by the method of Ayres et al.. We opted by using our method because it was simpler and

sufficient for this case.

• Subgroup Discovery Module: Obtains subgroups with unusual behavior relatively to a user-

defined target. The module receives a target attribute (target), a target value (target_value)

and an indication if higher or lower. Then, it will binarize the target attribute in the dataset.

This is done by setting rt,p[target] = True if rt,p[target] ≥ target_value or rt,p[target] ≤
target_value, depending if the indicator is > or < respectively. After the binarization, the

module will perform the subgroup discovery task using the Chi-Squared quality function

[Hel16]. The search for the subgroups is done using beam search (explained in Section 2.2).

The module will store the subgroups’ descriptors as well as the quality function score. For

the subgroup discovery task, we used the python module pysubgroup3. In the end, we expect

to obtain, for example, that usually, when a player reveals that his speed score is high, the

player is playing in the attack and on the left side of the field.

• Frequent Distributions Module: Obtains the profiles of a specific attribute. This module is

already described in Section 3.1. In the end, we expect to obtain, for example, that three

profiles of player speed were found, one with low speeds, one with medium speeds, and one

with high speeds.

3.2.3 User Interface

Visually, the tool is composed of 4 different views: Player, Team, Data Analysis, and Settings.

The functionalities in these views are explained below:
2http://rasbt.github.io/mlxtend/
3https://pypi.org/project/pysubgroup/
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• Player view: Allows to visualize details about each player’s performance as well as compar-

ing players. The content displayed in the view was obtained in the processing phase. In the

top of the Player tab, there are 2 dropdowns (number 1 in Figure 3.2), one on the left and one

on the right, where the user can choose the players to analyze and compare. We will call the

player chosen on the left dropdown by leftplayer and the player chosen on the right drop-

down by rightplayer. The dropdowns also show the overall score of each player, obtained

by the Overall Score Calculator (Subsection 3.2.1). Besides the dropdowns, the view has 4

main components. The first one is the radar chart (number 2 in Figure 3.2). Each corner of

the chart represents one of four player performance metrics: Speed, Stamina, Agility and

Pressure. The method for obtaining these metrics is described on subsection 3.2.1, in the

respective modules. The blue area corresponds to the left player’s performance metrics and

the orange area to the right player’s performance metrics. The second one is the statistics

table (number 3 in Figure 3.2). This table shows, for the players that the user chose, the

measurements and statistics extracted with the Simple Statistics Module (Subsection 3.2.1).

The table on the left and the table on the right show the measurements and statistics for

the left player and right player, respectively. The third one is positioning information box

(number 4 in Figure 3.2). It shows the percentage of the player’s positions that belong to

each label (Attack, Midfield, Defense, Left, Center, Right), the overall score of the player,

which is the same shown in the dropdowns, and the estimate of the player’s role in the team.

The role estimate is made by comparing the values of each label or checking if the values

are above certain thresholds. The input data for this component is the Positioning module

results (Subsection 3.2.1). The fourth one is the plot of the player metrics along the time

of the match (number 5 in Figure 3.2). In the upper section of this component, there is a

dropdown where the user can select between one of the four player performance metrics.

After the selection, a line plot with the values for the selected metric is shown.

• Team view: Allows to visualize aspects about the performance of each team and compare

them. The content displayed in this view was also obtained in the processing phase. In the

team tab, there are 2 main components. The first is the overall scoreboard (number 1 in Fig-

ure 3.3). In this board is shown the overall score of the two teams and the three best players

of each team and their overall scores. The overall score of each team is the sum of the over-

all scores of the players of that team. The second component is the graph display (number

2 in Figure 3.3). There is a dropdown on the upper section of this component to choose one

of several options: Team Positions, Speed, Stamina, Agility, Pressure, Playing zones per

player. When the user chooses the Team Positions option, a heatmap representation of each

team’s positions is shown (Figure 3.4). Red tiles represent higher values and blue tiles rep-

resent lower values. The size and input values for the heatmap are obtained from the results

of the Heatmap Calculator module (Subsection 3.2.1). When the user chooses one of the

options Speed, Stamina, Agility or Pressure, a histogram of the chosen performance metric

will be shown (number 2 in Figure 3.3). The histograms have bins of size = 10, with the
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Figure 3.2: Image of the Player view. 1 - Dropdowns to choose the players to compare; 2 - Radar
chart with performance metrics; 3 - Simples statistics tables; 4 - Positioning information boxes; 5
- Charts with player metrics along time
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Figure 3.3: Image of the Team view. 1 - Overall Score board; 2 - Graph display

Figure 3.4: Example of the Heatmaps display
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Figure 3.5: Example of the Playing zones per player display

blue bars representing team 1, and the orange bars representing team 2. Each bar represents

the number of players of that team whose score falls on that bin. Also, the teams’ scores for

the chosen performance metric will be shown above the dropdown. When the user chooses

the Playing zones per player option, a horizontal bar chart is displayed per team. Each bar

corresponds to a player. The values for the bars are obtained from the results of the Posi-

tioning module (Subsection 3.2.1). The green part corresponds to the Defense score, the

yellow part to the Midfield score and the red part to the Attack score.

• Data Analysis view: Allows to run the modules described in Subsubsection 3.2.2. It has

3 separators, as shown in Figure 3.6. Each separator as a set of inputs, a button to start

running the analysis and a button to show the results. The first separator runs the Frequent

Distributions module. From left to right, there is a dropdown to select the target attribute,

an input box to select the size of the time windows, another input box to filter the results by

a minimum support and a slider bar to select the distance threshold. The second separator

runs the Association Rules Mining module. From left to right, there is a dropdown to select

Figure 3.6: Image of the Data Analysis view
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Figure 3.7: Example of the Frequent Distribution results of the tool

the player which we will analyze, another dropdown to select the minimum support for the

frequent itemsets, and another dropdown to select the minimum confidence for the rules

obtained. The third separator runs the Subgroup Discovery module. From left to right, there

is a dropdown to select the target attribute, another dropdown to select the indication (higher

or lower), and an input box to select the target value. An example visualization of the results

can be seen in Figures 3.7, 3.8 and 3.9.

• Settings view: This is where the user uploads the match data file and chooses the parameters

for the analysis, starting the pipeline. There are 2 main components in this view. The first

is the file upload board (number 1 in Figure 3.10). In this component, the user inputs the

values needed for the start of the loading phase, as described in Subsection 3.2.1. After

the user selects/drags the file in the Upload File box, the folder is created as well as files

containing the input values. The second component is the match analysis board (number 2

in Figure 3.10). The Select Match dropdown in this component allows selecting one of the

match files that have already been uploaded to the tool. The user can input the size of the

time window and then click on the Analyze button to start the processing phase. This phase

is explained in Subsection 3.2.1. When a match has already been processed, a green label

with the word "Done" will appear, meaning that it is already possible to analyze the data in

the other 3 views. The Period switch in this component is used to switch the period of the

displayed results.
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Figure 3.8: Example of the Association Rules results of the tool

Figure 3.9: Example of the Subgroup Discovery results of the tool
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Figure 3.10: Image of the Settings view. 1 - File Upload board; 2 - Match Analysis board
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Chapter 4

Results and Experimental Setup

On the start of this chapter, the datasets that were used for the experiments are described. It is

given a general description of what they contain and how they were adapted to be used in the

experiments. Afterwards, we present the results of the frequent distributions method, as well as its

combination with association rules. In the end, we show the results of the tool itself. We compare

the results of the scores obtained with the results of the real matches, and then we present and

analyse the results obtained in the Association Rules and Subgroup Discovery modules.

4.1 Datasets

For the testing of the UnFOOT tool, seven different matches were used. Six of them were from

Source A and one was from Source B.

4.1.1 Source A Datasets

The datasets from Source A represent 6 competitive matches of Team A versus other teams. The

datasets were obtained with the Amisco system1, and come in XML format. They include infor-

mation about the match, the teams and each half of the match. After analyzing the dataset, we

could infer the following aspects:

• The players’ positions are measured 10 times per second (10 Hz).

• The players’ x and y coordinates are in decimetres. x represents the width and y represents

the length.

• The center of the field is (x,y) = (0,0), and the approximate range of coordinates inside the

field are x = [−525,525] and y = [−340,340].

• The team of the player can be inferred by his id (NumAmisco).

• The dataset also includes the positions of the ball and referees.

1https://www.stats.com/
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An example of the dataset is shown in Appendix B (Listing B.1).

To parse the Source A XML files, a Python script was created to read the XML file and to store

the data in the format seen in Table 3.1. This program consists of using an XML reader module to

read the positions player by player.

4.1.2 Source B Dataset

The dataset from Source B represents one friendly match. It comes in the Electronic Performance

and Tracking Systems (EPTS) Standard Data Format and comes in two files: a TXT file with the

position measurements from the match, and an XML file with the configuration of the measure-

ments. After analyzing the dataset, we could infer the following aspects:

• The players’ positions are measured 25 times per second (25 Hz).

• The players’ coordinates come in the format (x, y, z, v). x represents the length, y represents

the width, z represents the height and v represents the speed. x, y, and z are in meters, and

v is in m/s.

• The center of the field is (x,y) = (34.0,52.5) The approximate range of coordinates inside

the field is x = [0,68] and y = [0,105]. (z and v were ignored)

• While a player is not playing, his x and y values are 0. This applies before and after substi-

tutions.

• When the tracking system could not detect the player, his x and y values were also 0.

• The recordings have some big jumps between consecutive measurements, which could not

be humanly possible. This was due to the tracking system occasionally mistaking one player

with another player/with the referee.

• The tracking system had difficulties tracking the goalkeepers.

• The dataset also includes the positions of the ball.

• The data, in general, was noisy.

An example of the configuration XML is shown in Listing B.2, and an example of the position

measurements file is shown in Table B.1. The listing and the table can be found in Appendix B.

While the substitute players are not playing, their x and y values are 0. The UnFOOT tool

interprets this as the substitute players being in the position (x, y) = (0, 0). This leads to multiple

mistakes in the end results. For example, the substitute players positioning would not be correct,

as well as the total playing time. This would also happen with the starting lineup players who

were substituted later in the game. To solve this issue, we remove the leading and trailing (0,

0) positions of every player. To address the problem where players are temporarily not detected,

we chose to reconstruct the missing values using linear interpolation. After solving these two

problems, the Source B dataset is ready to be input in the tool.
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4.1.3 Electricity Dataset

For the frequent distributions + association rule mining analysis, we also used the well-known

electricity dataset2 to test if this approach would work outside the sports context. Electricity

dataset has the following aspects:

• Includes electricity data from Australian New South Wales and Victoria states from 1996 to

1998.

• The electricity records are measured every 30 minutes.

• Includes the normalized electricity price and demand for both states.

The electricity dataset needed to be transformed before being used in the experiments. The

program expects that the data has a player_id. So, we gave to each state an id and named it

"player_id" (New South Wales = 1, Victoria = 2). Also, the program expects to have consecutive

numbered timestamps. So, we transformed the dataset so that each record refers to only one state.

This means that each original dataset record was split in two: one regarding New South Wales

state, and the other regarding the Victoria state. In the end of the transformation, the dataset had

the format seen in Table 4.1.

Table 4.1: Example of the electricity dataset records after the transformation

date day period price demand transfer class player_id timestamp
0.00 2 0.00 0.056443 0.439155 0.414912 UP 1 0

4.2 Frequent Distributions Analysis

Recalling the definition of a profile found in Section 3.1, a profile is represented as a distribution of

the values of a given attribute during a time interval. We used the Frequent Distributions method

combined with association rule mining in order to obtain speed profiles of players and relationships

between them. We could have also searched for profiles of distance covered, but due to time

restrictions this was not possible to do in this project. Also, experiments were made with the

Electricity dataset to obtain profiles of the electricity prices. This was done to verify if the method

works in contexts other than football. A jupyter notebook was made to combine the two methods

and display the results. Several experiments were made with different datasets and parameters.

As explained in Chapter 3, wsize is the size of the time windows, and threshold is the distance

threshold for two distributions to be considered distinct. Some preliminary experiments were

made to find a value of threshold that produced clearly distinguishable profiles.

• Experiment 1: Source A - Match 1 dataset; wsize = 50; threshold = 0.7

• Experiment 2: Source A - Match 1 dataset; wsize = 100; threshold = 0.7

2https://moa.cms.waikato.ac.nz/datasets/
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• Experiment 3: Source A - Match 1 dataset; wsize = 100; threshold = 0.8

• Experiment 4: Source A - Match 1 dataset; wsize = 100; threshold = 0.9

• Experiment 5: Source A - Match 1 dataset; wsize = 200; threshold = 0.7

• Experiment 6: SciSport dataset; wsize = 100; threshold = 0.8

• Experiment 7: SciSport dataset; wsize = 250; threshold = 0.8

• Experiment 8: SciSport dataset; wsize = 500; threshold = 0.8

• Experiment 9: Electricity dataset; wsize = 144; threshold = 0.8

• Experiment 10: Source A - Match 1 dataset; wsize = 600; threshold = 0.6

• Experiment 11: Electricity dataset; wsize = 48; threshold = 0.8

• Experiment 12: Electricity dataset; wsize = 96; threshold = 0.8

The results obtained in the experiments are shown in Appendix A. All rules which have con f idence<

0.5 were omitted due to irrelevancy.

An aspect that is common to all experiments is that the smaller the wsize value is, the more

profiles are found. This can be explained by the fact that having smaller windows implies that

more distributions will be observed since each distribution will include fewer samples from the

dataset. Fewer samples lead to more variability between the distributions observed, which in the

end translates into finding more profiles.

From the results of the Source A dataset experiments (1, 2, 3, 4, 5, 10), we can observe that, in

general, there are 3 main profiles. This is more evident in experiments 4, 5 and 10. (Figure 4.1).

(a) Speed profile 0 (b) Speed profile 1 (c) Speed profile 2

Figure 4.1: Speed profiles of players obtained in Experiment 5: Source A

There is one profile for standing still/walking (Figure 4.1c), a second profile for slow running

(Figure 4.1a) and third profile for bursts of speed (Figure 4.1b). This third profile has a lot more

variability than the others since the range of speeds observed goes from 0 to 22km/h. This can

mean that, in this profile, the player is not always running but increases and decreases his speed

considerably.

In Experiments 2 and 3, four profiles were found (Figure 4.2).
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(a) Speed profile 0 (b) Speed profile 1

(c) Speed profile 2 (d) Speed profile 3

Figure 4.2: Speed profiles of players obtained in Experiment 3: Source A

Similarly to Experiments 4, 5 and 10, there is one profile for standing still/walking and a profile

for slow running (Figures 4.2d and 4.2a). The other two profiles are for running and sprinting

(Figures 4.2b and 4.2c).

Regarding the relationships between profiles, it was found that is common for players to switch

from the running profile to the slow running one. In Experiment 2, for 9 players it happened more

than 50% of the times when they were in the running profile; in Experiment 3, for 2 players; in

Experiment 5, for 14 players; and in Experiment 10, for every player. The rules are shown in

Table 4.2, numbers 1, 2, 3 and 4. Also, it was found that was common for players to switch from

the standing still/walking to the slow running profile. In Experiment 2, for 5 players it happened

more than 50% of the times when they were in the standing still/walking profile; in Experiment

5, for 3 players; and in Experiment 10, for 15 players. The rules are shown in Table 4.2, numbers

5, 6 and 7. It was also found that was common for players to keep in the slow running profile. In

Experiment 2, for 12 players it happened more than 50% of the times when they were in the slow

running profile; in Experiment 3, for 2 players; in Experiment 5, for 12 players; in Experiment 10,

for all players. The rules are shown in Table 4.2, numbers 8, 9, 10 and 11.

This reveals that, in the Source A dataset, players have a tendency to keep in the slow running

profile or to return to it after being in a different profile.

In the Source B data, there was a big number of profiles found. Experiment 6 was found 102

profiles, in Experiment 7 were found 22, and in Experiment 8 were found 13. Most profiles in

these 3 experiments involved distributions with the same unique value (assuming a precision of 1

decimal digit). Due to the unrealistic nature of the results, these were discarded. One of the reasons

considered for the existence of the unrealistic profiles was the fact that some players’ records were

very noisy. These records had to suffer a substantial amount of filtering and transformations, which

could have lead to poor results.

In the Electricity dataset, Experiments 11 and 12 had similar results to Source B: there was a
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Table 4.2: Most important rules found in Match 2: Source A

rule_id antecedent consequent support confidence number of players experiment
1 prevDist=1 afterDist=0 3-16% 50-58% 9 Experiment 2
2 prevDist=1 afterDist=0 3%,12% 50% 2 Experiment 3
3 prevDist=1 afterDist=0 17-20% 50-54% 14 Experiment 5
4 prevDist=1 afterDist=0 6-25% 50-73% 22 Experiment 10
5 prevDist=3 afterDist=0 6-20% 50-53% 5 Experiment 2
6 prevDist=2 afterDist=0 6% 51-52% 3 Experiment 5
7 prevDist=2 afterDist=0 1-17% 50-67% 3 Experiment 10
8 prevDist=0 afterDist=0 25-31% 51-56% 12 Experiment 2
9 prevDist=0 afterDist=0 25% 50% 2 Experiment 3
10 prevDist=0 afterDist=0 25-29% 50-54% 12 Experiment 5
11 prevDist=0 afterDist=0 25-47% 50-68% 22 Experiment 10

big number of profiles found, each with just the same unique value. However, for Experiment 9

were found only 7 profiles. This can mean that using bigger windows may allow obtaining more

meaningful profiles. The profiles are shown in Figure 4.3.

The rules found were only relative to the Victoria state. The rules state that, in more than 60%

of the times that Victoria state was in the profile 1 or 3, it stayed on that profile. These rules are

shown in Table 4.3. Those two profiles are the ones which involve the cheapest prices. This means

that, when is observed that the city has very cheap electricity prices for 2 days (wsize = 144), it is

likely to keep the same for the next 2 days.

Table 4.3: Association rules found in the Electricity dataset relative to the Victoria state: Experi-
ment 9

rule_id antecedent consequent support confidence
1 prevDist=1 afterDist=1 27% 64%
2 prevDist=3 afterDist=3 24% 62%

4.3 UnFOOT Analysis

To analyze the UnFOOT results, we used the datasets from Source A. Due to external sources, we

could know more details about the match, such as the player of the match, which team won and

what are the usual roles of each player. We used this external information to validate our results.

However, some details cannot be shown in order to preserve the privacy of the players involved.

According to some metrics obtained (Table 4.4), the best player of the match was usually

found on the top three players of the winning team. In two cases, they even had the best score

overall. We note that the overall score was not originally designed to predict the best player of

the match. Still, we used it to validate the scoring function. We should also note that this scoring

function can only reasonably assess the quality of players, which are no goalkeepers. This is seen

in Game 5, where the best player was actually a goalkeeper.
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(a) Electricity Price profile 0 (b) Electricity Price profile 1 (c) Electricity Price profile 2

(d) Electricity Price profile 3 (e) Electricity Price profile 4 (f) Electricity Price profile 5

(g) Electricity Price profile 6

Figure 4.3: Profiles of the electricity prices. Note that distribution 2 scale is different from the
others.

Relatively to the positioning module results, which we can see in Table 4.5, the positioning

labels given by the module matched the players’ roles around 67% of the times. Match 3 was

ignored since there was a problem with the data when gathering these results. There are two

possible reasons for the mismatch between the label and the role of the players. The first reason

could be that the players with a mismatch played very differently from their initial role. For

example, a right midfielder could have played more in the offensive because the left defender

from the other team gave him space. Because of that, that player would have been labeled as a

Right Winger by the tool, instead of a Midfielder. The second reason could be because of the

way that the positioning of the player is calculated, which is explained in Subsection 3.2.1. Since

the players’ positions are divided into 3 sections with the same positions count, it could happen

that two very similar positions were assigned to different sections. This is better illustrated in an

example: if the total number of positions was 33, then we would have 11 positions labeled as

Defense, 11 as Midfield and 11 as Attack. So, if we had 12 positions that were clearly should be

labeled as defensive, only the first 11 would be labeled as that.
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Table 4.4: Comparison between the real match results and the results of the tool

Match Winner Team A score Team B score Rank of best player
1 A 758 778 3rd of Team A
2 A 814 811 1st overall
3 A 795 805 3rd of Team A
4 B 832 855 3rd of Team B
5 A 813 796 Last overall
6 A 816 819 1st overall

Relatively to the team scores, which we can also see in Table 4.4, we cannot infer from the

team global scores who was the winning team. In only 3 of the 6 matches analyzed the winning

team was the one with the highest score. The team global score reflects the sum of the individual

scores of the players, as explained in Subsection 3.2.3. From this, we can deduce that the sum of

individual performances may not be enough to evaluate the performance of the whole team. We

also have to consider that the player individual scores do not have into account aspects such as a

shot or pass accuracy, or even communication and teamwork. This could mean that positional data

analysis is not enough to infer which team won and that event data analysis is needed in this case.

The results of the frequent distributions module obtained in UnFOOT are consistent with the

ones obtained on the experiments done in Section 4.2. In all matches, when searching for speed

profiles, we obtained 3 main profiles, except for Match 2, where only 2 profiles where found. A

plot of the profiles is shown in Figure 4.4. For the parameters values, we used wsize = 200 and

threshold = 0.8. The first main profile reflects walking speed, the second one reflects slow running

speed, and the third one reflects running/sprinting speed.

(a) Speed profile 0 (b) Speed profile 1 (c) Speed profile 2

Figure 4.4: Speed profiles of the players in Match 2.

The first profile was not found in Match 2. A possible interpretation for this is that Match 2

was a more intense game, there was less frequent to register low speeds for a long time.

4.3.1 Association Rules

Regarding the association rules module results, the following aspects need to be mentioned:

• The Speed, Stamina, and Agility values vary from 1 to 4, each one representing a quartile,

from the lowest to the highest score (Section 3.2).

• The Pressure values vary between 1 and 10.
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Table 4.5: Number of players correctly classified by the position module in each match of Source
A.

Match Correct
1 16 out of 22
2 14 out of 22
3 0 out of 22
4 14 out of 22
5 15 out of 22
6 15 out of 22

• The matches analyzed where Match 1 and 2 from Source A.

In both matches we observed that most rules had Pressure=0 in the consequents. Given the high

frequency of items with Pressure=0 in the itemsets, it would be very common to find the item with

Pressure=0 in the consequents, no matter what the other items were. Nevertheless, we can infer

that players spend most of the match away from pressure situations.

In Match 2, one of the rules indicated that, players tend to keep non-intermediate performance

(high or low) throughout the game. This happened for at least 19 players out of 22. At least in

10% of Match 2, players had Speed/Stamina=1, which kept the same at least 50% of the times.

This is shown in Table 4.6, in rules 1, 2, 3 and 4. The exact value for the percentages depends on

the player. The goalkeepers have higher support/confidence in the low performance rules (rules 1

and 2) but the high performance rules (rules 3 and 4) do not apply to them. One of the best rules

in Match 2 indicated that one striker of Team B (player 33) was subject to a lot of pressure during

the match. During 13% of the match, this player had an intermediate pressure score, which was

followed by a high pressure score in 81% of the time. This is shown in Table 4.6, in rule 7.

In Match 1, one rule showed that player 28 frequently revealed very high intensity periods

while not in pressure situations. In at least 22% of the match, player 28 had Speed/Stamina=4 and

Pressure=0, followed by Pressure=0 again in at least 88% of the times. The rules are shown in

Table 4.6, in rules 5 and 6. Player 28 is a Right Back, which is a position where usually the player

is more isolated than midfielders and forwards and has to run along the sides of the field. This

could be a possible explanation for the finding of this rule.

Table 4.6: Best association rules of Match 1 and 2

rule_id antecedent consequent support confidence player_id match
1 Speed=1 Speed=1 10-50% 50-79% multiple Match 2
2 Stamina=1 Stamina=1 10-61% 53-86% multiple Match 2
3 Speed=4 Speed=4 11-23% 52-66% multiple Match 2
4 Stamina=4 Stamina=4 12-27% 54-72% multiple Match 2
5 Pressure=0, Speed=4 Pressure=0 24% 89% 28 Match 1
6 Pressure=0, Stamina=4 Pressure=0 22% 88% 28 Match 1
7 Pressure=6 Pressure=9 13% 81% 33 Match 2

41



Results and Experimental Setup

4.3.2 Subgroup Discovery

Regarding the subgroup discovery module results, some additional aspects must be mentioned:

• The aspects from the Association Rules results section (Subsection 4.3.1) still maintain.

• With exception of the Agility score, that has an average value of approximately 30 in Match

1, and 27 in Match 2.

• Def, Med and Atk values vary between 0 and 10.

In both matches, two subgroups indicate that, when players achieved higher speed scores,

they usually revealed either a higher stamina score, or a lower stamina score. The subgroups that

indicate this are subgroups 1 and 2 of Table 4.7. It were also found two subgroups which indicate

that high pressure was observed when players were playing in the defense. This is indicated

by subgroups 6 and 7 of Table 4.7. However, one particular subgroup also indicates that high

pressure score was observed in situations where players were not in the defense and where the

average speed was low (subgroup 8 and 9 of Table 4.7). A possible explanation for this is that

these subgroups may correspond to strikers of both teams. In the tool, it was verified in the Player

view that the strikers have a high pressure score. If we assume that strikers wait for the ball near

the opposite team’s defense line, and that they do not run to save the energy for counterattacks,

then the above explanation could be plausible.

In match 2, three subgroups indicate that players showed high agility scores when they were

playing in the offensive with a high speed score. This is indicated by subgroups 3, 4 and 5 of

Table 4.7. All of these subgroups include the highest speed quartile (Speed=4) and show that a

high agility score was usually observed when players were playing in the attack (Def=0, Med=0,

Atk=10).

Table 4.7: Subgroups found in Match 1 and 2 with different targets

subgroup_id subgroup target match
1 Stamina=1 Speed≥3 both
2 Stamina=4 Speed≥3 both
3 Speed=4 AND Med=0 Agility≥80 Match 2
4 Speed=4 AND Def=0 Agility≥80 Match 2
5 Speed=4 AND Atk=10 Agility≥80 Match 2
6 Atk=0 AND Med=0 Pressure≥9 both
7 Def=10 AND Atk=0 Pressure≥9 both
8 AverageSpeed<2.82m/s AND Def=0 Pressure≥9 Match 1
9 AverageSpeed<3.12m/s AND Def=0 Pressure≥9 Match 2
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

This project had the objective of providing a data mining tool to aid sports trainers, sports analysts

and data scientists in the visualization and analysis of player’s spatiotemporal data from a match.

This was accomplished through the UnFOOT tool.

One of the objectives was giving insights on the performance of football and hockey players.

UnFOOT was built to use football data, but can easily be extended to use hockey data. Also,

feature engineering was supposed to be applied on the data. This was accomplished, since we

identified and extracted features from the data, such as the players’ velocity, acceleration and dis-

tance covered. The extracted features allowed to obtain the performance metrics of the players.

Another objective was implementing a data mining module, which was accomplished in the Data

Analysis interface, which includes subgroup discovery and association rules mining. Addition-

ally, in the data analysis interface, a new method called Frequent Distributions was developed for

obtaining players profiles regarding performance metrics such as speed and stamina. Finally, the

tool should provide a data visualization module. This was accomplished through two different

interfaces: one to visualize player performance, and another to visualize team performance. In

these interfaces the user could analyse and compare players’ and teams’ performance.

The player scoring function could make a rough estimate of the players’ performance, except

for the goalkeepers, but the team scoring function was not able to describe the teams’ performance.

Also, the positioning module could infer most of the players’ positioning roles in the team.

The aim of the project was using spatiotemporal data from players, so no analysis of ball data

or match events data is done.

5.2 Future Work

Solving some remaining bugs in the tool should be addressed in the future. In the Data Analysis

interface, a possible improvement is the implementation of other data mining algorithms, which
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can be useful in the analysis of player spatiotemporal data. Regarding the positioning module, fur-

ther improvements can be made to increase the number of times that the tool can infer the player’s

positioning role in the team, or also suggest multiple possible roles. Automatic recognition of

teams’ formation can be a possible addition to this module as well. Regarding the team scores, a

new way of calculating the team score should be found, since the current one cannot evaluate well

the performance of the teams. The player scores and metric calculation could also be improved

in the future, in order to better evaluate goalkeepers. Also, improving the treatment of the noisy

data should be considered, to get better results in datasets similar to Source B. Future research can

involve further study in the Frequent Distributions method.
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Appendix A

Frequent Itemsets + Association Rules
experiments

(a) Speed Profile 0 (b) Speed Profile 1 (c) Speed Profile 2

(d) Speed Profile 3 (e) Speed Profile 4 (f) Speed Profile 5

Figure A.1: Speed profiles of players in Experiment 1

Table A.1: Association rules found in Experiment 1

player_id antecedents consequents support confidence
1 prevProfile=1 afterProfile=0 0.02 0.42
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(a) Speed Profile 0 (b) Speed Profile 1 (c) Speed Profile 2

(d) Speed Profile 3

Figure A.2: Speed profiles of players in Experiment 2

Table A.2: Association rules found in Experiment 2

player_id antecedents consequents support confidence
1 prevDist=0 afterDist=0 0.29 0.54
1 prevDist=1 afterDist=0 0.04 0.58
1 prevDist=3 afterDist=0 0.20 0.52
3 prevDist=0 afterDist=0 0.25 0.50
4 prevDist=0 afterDist=0 0.26 0.51
4 prevDist=1 afterDist=0 0.14 0.51
4 prevDist=3 afterDist=0 0.07 0.51
5 prevDist=0 afterDist=0 0.25 0.51
9 prevDist=0 afterDist=0 0.27 0.53
9 prevDist=1 afterDist=0 0.14 0.52
11 prevDist=0 afterDist=0 0.25 0.51
11 prevDist=1 afterDist=0 0.14 0.51
24 prevDist=0 afterDist=0 0.25 0.51
24 prevDist=1 afterDist=0 0.03 0.56
25 prevDist=0 afterDist=0 0.30 0.55
25 prevDist=1 afterDist=0 0.14 0.54
25 prevDist=3 afterDist=0 0.07 0.51
26 prevDist=0 afterDist=0 0.26 0.52
26 prevDist=1 afterDist=0 0.14 0.51
27 prevDist=3 afterDist=0 0.05 0.50
30 prevDist=0 afterDist=0 0.26 0.52
30 prevDist=1 afterDist=0 0.16 0.51
33 prevDist=0 afterDist=0 0.24 0.50
34 prevDist=0 afterDist=0 0.25 0.51
34 prevDist=1 afterDist=0 0.14 0.50
34 prevDist=3 afterDist=0 0.07 0.50
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(a) Speed Profile 0 (b) Speed Profile 1 (c) Speed Profile 2

(d) Speed Profile 3

Figure A.3: Speed profiles of players in Experiment 3

Table A.3: Association rules found in Experiment 2

player_id antecedents consequents support confidence
1 prevDist=0 afterDist=0 0.24 0.5
1 prevDist=1 afterDist=0 0.03 0.5
25 prevDist=0 afterDist=0 0.25 0.5
25 prevDist=1 afterDist=0 0.11 0.5

(a) Speed Profile 0 (b) Speed Profile 1 (c) Speed Profile 2

Figure A.4: Speed profiles of players in Experiment 4

Table A.4: Association rules found in Experiment 4

player_id antecedents consequents support confidence
- - - - -

(a) Speed Profile 0 (b) Speed Profile 1 (c) Speed Profile 2

Figure A.5: Speed profiles of players in Experiment 5
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Table A.5: Association rules found in Experiment 5

player_id antecedents consequents support confidence
1 prevDist=0 afterDist=0 0.25 0.51
2 prevDist=1 afterDist=0 0.18 0.50
4 prevDist=0 afterDist=0 0.29 0.54
4 prevDist=1 afterDist=0 0.19 0.54
4 prevDist=2 afterDist=0 0.06 0.52
5 prevDist=0 afterDist=0 0.25 0.50
5 prevDist=1 afterDist=0 0.17 0.50
6 prevDist=0 afterDist=0 0.25 0.51
6 prevDist=1 afterDist=0 0.19 0.52
7 prevDist=1 afterDist=0 0.20 0.50
9 prevDist=0 afterDist=0 0.26 0.52
9 prevDist=1 afterDist=0 0.19 0.52
11 prevDist=0 afterDist=0 0.26 0.51
11 prevDist=1 afterDist=0 0.18 0.52
25 prevDist=0 afterDist=0 0.29 0.54
25 prevDist=1 afterDist=0 0.19 0.54
25 prevDist=2 afterDist=0 0.06 0.52
27 prevDist=0 afterDist=0 0.26 0.51
27 prevDist=1 afterDist=0 0.20 0.51
29 prevDist=1 afterDist=0 0.20 0.51
30 prevDist=0 afterDist=0 0.28 0.53
30 prevDist=1 afterDist=0 0.20 0.54
31 prevDist=0 afterDist=0 0.26 0.51
31 prevDist=1 afterDist=0 0.20 0.51
33 prevDist=0 afterDist=0 0.26 0.51
33 prevDist=1 afterDist=0 0.19 0.51
34 prevDist=0 afterDist=0 0.25 0.50
34 prevDist=1 afterDist=0 0.19 0.50
34 prevDist=2 afterDist=0 0.06 0.51

Table A.6: Association rules found in Experiment 9

player_id antecedents consequents support confidence
2 afterDist=1 prevDist=1 0.27 0.64
2 prevDist=1 afterDist=1 0.27 0.64
2 afterDist=3 prevDist=3 0.24 0.61
2 prevDist=3 afterDist=3 0.24 0.62
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(a) Speed Profile 0 (b) Speed Profile 1 (c) Speed Profile 2

(d) Speed Profile 3 (e) Speed Profile 4 (f) Speed Profile 5

(g) Speed Profile 6

Figure A.6: Speed profiles of players in Experiment 9

(a) Speed Profile 0 (b) Speed Profile 1 (c) Speed Profile 2

Figure A.7: Speed profiles of players in Experiment 10
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Table A.7: Association rules found in Experiment 10 for Team 1

player_id antecedents consequents support confidence
1 prevDist=0 afterDist=0 0.47 0.68
1 prevDist=1 afterDist=0 0.11 0.73
1 prevDist=2 afterDist=0 0.10 0.67
2 prevDist=0 afterDist=0 0.26 0.51
2 prevDist=1 afterDist=0 0.24 0.51
2 prevDist=2 afterDist=0 0.01 0.50
2 prevDist=2 afterDist=1 0.01 0.50
3 prevDist=0 afterDist=0 0.28 0.52
3 prevDist=1 afterDist=0 0.23 0.52
3 prevDist=2 afterDist=0 0.01 0.50
3 prevDist=2 afterDist=1 0.01 0.50
4 prevDist=0 afterDist=0 0.29 0.53
4 prevDist=1 afterDist=0 0.24 0.54
5 prevDist=0 afterDist=0 0.27 0.51
5 prevDist=1 afterDist=0 0.23 0.52
5 prevDist=2 afterDist=0 0.02 0.50
6 prevDist=0 afterDist=0 0.26 0.51
6 prevDist=1 afterDist=0 0.24 0.51
6 prevDist=2 afterDist=0 0.01 0.50
6 prevDist=2 afterDist=1 0.01 0.50
7 prevDist=0 afterDist=0 0.26 0.51
7 prevDist=1 afterDist=0 0.24 0.51
7 prevDist=2 afterDist=0 0.01 0.50
7 prevDist=2 afterDist=1 0.01 0.50
8 prevDist=0 afterDist=0 0.26 0.51
8 prevDist=1 afterDist=0 0.24 0.51
8 prevDist=2 afterDist=0 0.01 0.50
8 prevDist=2 afterDist=1 0.01 0.50
9 prevDist=0 afterDist=0 0.28 0.53
9 prevDist=1 afterDist=0 0.24 0.53
10 prevDist=0 afterDist=0 0.25 0.50
10 prevDist=1 afterDist=0 0.23 0.50
11 prevDist=0 afterDist=0 0.27 0.52
11 prevDist=1 afterDist=0 0.22 0.52
11 prevDist=2 afterDist=0 0.02 0.50
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Table A.8: Association rules found in Experiment 10 for Team 2

player_id antecedents consequents support confidence
24 prevDist=0 afterDist=0 0.37 0.61
24 prevDist=1 afterDist=0 0.06 0.70
24 prevDist=2 afterDist=0 0.17 0.55
25 prevDist=0 afterDist=0 0.28 0.53
25 prevDist=1 afterDist=0 0.24 0.54
25 prevDist=2 afterDist=0 0.01 0.50
25 prevDist=2 afterDist=1 0.01 0.50
26 prevDist=0 afterDist=0 0.29 0.54
26 prevDist=1 afterDist=0 0.22 0.54
26 prevDist=2 afterDist=0 0.03 0.50
26 prevDist=2 afterDist=1 0.03 0.50
27 prevDist=0 afterDist=0 0.26 0.51
27 prevDist=1 afterDist=0 0.24 0.51
28 prevDist=0 afterDist=0 0.25 0.50
28 prevDist=1 afterDist=0 0.25 0.50
28 prevDist=0 afterDist=1 0.25 0.50
28 prevDist=1 afterDist=1 0.25 0.50
29 prevDist=0 afterDist=0 0.26 0.52
29 prevDist=1 afterDist=0 0.24 0.52
29 prevDist=2 afterDist=0 0.02 0.50
29 prevDist=2 afterDist=1 0.02 0.50
30 prevDist=0 afterDist=0 0.27 0.52
30 prevDist=1 afterDist=0 0.24 0.53
31 prevDist=0 afterDist=0 0.28 0.53
31 prevDist=1 afterDist=0 0.24 0.53
32 prevDist=0 afterDist=0 0.27 0.52
32 prevDist=1 afterDist=0 0.24 0.52
32 prevDist=2 afterDist=0 0.01 0.50
32 prevDist=2 afterDist=1 0.01 0.50
33 prevDist=0 afterDist=0 0.27 0.52
33 prevDist=1 afterDist=0 0.24 0.53
33 prevDist=2 afterDist=0 0.02 0.50
33 prevDist=2 afterDist=1 0.02 0.50
34 prevDist=0 afterDist=0 0.27 0.52
34 prevDist=1 afterDist=0 0.24 0.53
34 prevDist=2 afterDist=0 0.01 0.50
34 prevDist=2 afterDist=1 0.01 0.50
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Appendix B

Dataset Examples

1 <MATCH_SHEET Competition="Source A Competition 1" Date="14/06/19" PitchCode="STADI"

Pitch="Stadium 1" DurationTime="45" ExtraTimeDuration="15" PitchWidth="

105.000000" PitchHeight="68.000000">

2 <tTeam Id="1234" Name="Team FC" Color1="1231231">

3 <PLAYER NumAmisco="123123" SecondName="Ronaldo" FirstName="Cristiano"

ShirtNumber="7"/>

4 <PLAYER ... />

5 ...

6 </tTeam>

7 <tTeam Id="2345" Name="Team 2 FC" Color1="2342342">

8 <PLAYER ... />

9 <PLAYER ... />

10 ...

11 </tTeam>

12 <tTeam Id="0" Name="" Color="16777215">

13 <PLAYER ... />

14 <PLAYER ... />

15 ...

16 </tTeam>

17 </MATCH_SHEET>

18 <TRAJECTORIES>

19 <PERIOD Id="1">

20 <PLAYER NumAmisco="0" StartTime="0" EndTime="28176">

21 <Pos Times="0" X="0" Y="0"/>

22 <Pos Times="1" X="-1" Y="-10"/>

23 <Pos .../>

24 ...

25 </PLAYER>

26 <PLAYER ...>

27 ...

28 </PLAYER>

29 ...

30 </PERIOD>
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31 <PERIOD Id="2">

32 ...

33 </PERIOD>

34 </TRAJECTORIES>

Listing B.1: Example of the Source A dataset. Some attributes and values have been ommited due

to simplicity and data confidentiality.

1 <Metadata>

2 <GlobalConfig>

3 <FrameRate>25</FrameRate>

4 <Encoding>UTF-8</Encoding>

5 <ProviderGlobalParameters>

6 <ProviderParameter>

7 <Value>34.0,52.5</Value>

8 <Description>X and Y coordinates of the centre of the pitch</

Description>

9 <Name>pitchcentre</Name>

10 </ProviderParameter>

11 </ProviderGlobalParameters>

12 </GlobalConfig>

13 <Sessions>

14 <Session id="0">

15 <SessionType>Period</SessionType>

16 <SessionName>1H</SessionName>

17 <Start>2019-02-26T18:00:37.886+01:00</Start>

18 <End>2019-02-26T18:45:18.325+01:00</End>

19 <MatchParameters>

20 <FieldSize>

21 <Length>105.0</Length>

22 <Width>68.0</Width>

23 </FieldSize>

24 </MatchParameters>

25 <Location>Name of the location</Location>

26 <ProviderSessionParameters>

27 <ProviderParameter>

28 <Value>8448</Value>

29 <Description>Frameid for the start of this session</Description>

30 <Name>frame</Name>

31 </ProviderParameter>

32 </ProviderSessionParameters>

33 </Session>

34 <Session id="1">

35 <SessionType>Period</SessionType>

36 <SessionName>2H</SessionName>

37 (...)

38 </Session>

39 </Sessions>
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40 <Teams>

41 <Team id="HOME Team"/>

42 <Team id="AWAY Team"/>

43 </Teams>

44 <Players>

45 <Player id="1" teamId="HOME Team">

46 <ShirtNumber>1</ShirtNumber>

47 </Player>

48 <Player id="2" teamId="HOME Team">

49 <ShirtNumber>2</ShirtNumber>

50 </Player>

51 ...

52 </Players>

53 <Devices>

54 <Device id="dev1">

55 <Name>BallJames Ball Tracking</Name>

56 <Sensors>

57 <Sensor id="position">

58 <Name>Position</Name>

59 <Channels>

60 <Channel id="x">

61 <Name>X Position</Name>

62 <Unit>m</Unit>

63 </Channel>

64 <Channel id="y">

65 <Name>Y Position</Name>

66 <Unit>m</Unit>

67 </Channel>

68 <Channel id="z">

69 <Name>Z Position</Name>

70 <Unit>m</Unit>

71 </Channel>

72 <Channel id="v">

73 <Name>Velocity</Name>

74 <Unit>m/s</Unit>

75 </Channel>

76 </Channels>

77 </Sensor>

78 </Sensors>

79 </Device>

80 </Devices>

81 <PlayerChannels>

82 <PlayerChannel id="1_x" channelId="x" playerId="1"/>

83 <PlayerChannel id="1_y" channelId="y" playerId="1"/>

84 <PlayerChannel id="1_z" channelId="z" playerId="1"/>

85 <PlayerChannel id="1_v" channelId="v" playerId="1"/>

86 <PlayerChannel id="2_x" channelId="x" playerId="2"/>

87 <PlayerChannel id="2_y" channelId="y" playerId="2"/>

88 <PlayerChannel id="2_z" channelId="z" playerId="2"/>

59



Dataset Examples

89 <PlayerChannel id="2_v" channelId="v" playerId="2"/>

90 (...)

91 </PlayerChannels>

92 </Metadata>

93 <DataFormatSpecifications>

94 <DataFormatSpecification separator=":" startFrame="8448" endFrame="165425">

95 <StringRegister name="frame"/>

96 <SplitRegister separator=";">

97 <SplitRegister separator=",">

98 <PlayerChannelRef playerChannelId="1_x"/>

99 <PlayerChannelRef playerChannelId="1_y"/>

100 <PlayerChannelRef playerChannelId="1_z"/>

101 <PlayerChannelRef playerChannelId="1_v"/>

102 </SplitRegister>

103 <SplitRegister separator=",">

104 <PlayerChannelRef playerChannelId="2_x"/>

105 <PlayerChannelRef playerChannelId="2_y"/>

106 <PlayerChannelRef playerChannelId="2_z"/>

107 <PlayerChannelRef playerChannelId="2_v"/>

108 </SplitRegister>

109 (...)

110 </SplitRegister>

111 <SplitRegister separator=",">

112 <BallChannelRef channelId="x"/>

113 <BallChannelRef channelId="y"/>

114 <BallChannelRef channelId="z"/>

115 <BallChannelRef channelId="v"/>

116 </SplitRegister>

117 </DataFormatSpecification>

118 </DataFormatSpecifications>

Listing B.2: Example of the Source B XML configuration

Table B.1: Example of the TXT file from Source B with the position measurements

1 8448:.000,.000,.000,.000;17.011,57.107,.000,.000;.000,.000,.000,.000; (...)
:35.776,29.522,.222,.137

2 8449:.000,.000,.000,.000;17.076,57.092,.000,1.683;.000,.000,.000,.000; (...)
3 :36.180,29.281,.237,11.773
4 8450:.000,.000,.000,.000;17.151,57.106,.000,1.894;.000,.000,.000,.000; (...)
5 :36.524,29.072,.240,10.064
6 (...)
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