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Abstract

A Super Massive Black Hole (SMBH) with a mass of ∼ 4× 106M⊙ lurks in the center of the Milky Way
known as Sagittarius A* (Sgr A*). Its presence affects both the Galactic Center (GC) interstellar gas, of
which the central molecular zone is an example, as well as the stellar system in which it resides.

A direct effect of the presence of Sgr A* is the capture of objects, in particular stars, leaving a trace of
of X-ray (soft and hard) and gamma-ray emissions. A secondary effect is the origin and powering of the
Fermi Bubbles, large superbubbles extending 8 kpc above and below the GC. Their energetic content (1055
erg) points towards an origin due to the tidal disruption of stars that end up being captured into an orbit
around the black hole. Such captures release up to 1053 erg of energy, which, at a rate of 1 capture every
105 years is enough to energize the Fermi Bubbles.

Two paramount issues require a detailed attention: (i) what is the amount of energy released in a Tidal
Disruption Event (TDE) that is available to power the black hole’s surrounding medium, and thus, the
Fermi Bubbles and (ii) how is the energy injected into the Fermi Bubbles. This thesis deals with the first
point of this quest and looks into the second issue.

When a star is scattered from its trajectory and enters in a fatal orbit onto the SMBH, the tidal forces
of the black hole overcome the star’s self-gravity disrupting it partially or completely. A fate that depends
on the strength of the encounter, which is determined by the proximity of the star to the black hole.
Therefore, in order to understand the evolution of the captured star and the energy that is released during
the process, a parametric study of the evolution of TDEs, its dependence on the penetration parameter and
of their orbit (parabolic and elliptic) was carried out using smoothed particle hydrodynamics simulations.

The main results of this work concern the passage of the star at pericentre and the effects on the stellar
structure due to the tidal forces of the SMBH. One of such effects caused by these forces is known as the
pancake phase as the star acquires a stretched shape during its passage at pericentre. Immediately after
this passage the star will develop two tidal tails of debris (gas that is removed from the stellar surface) that
can evolve into a narrow stream of gas and the tail faced on to the black hole will fall on a steady rate
of accretion onto the compact object. The penetration parameter defines how deep the star falls onto the
black hole and the amount of energy that is released by the star. TDEs that result from parabolic orbits
represent the cases where larger amounts of energy is released for the surrounding medium in the galactic
center and can contribute potentially to power up the Fermi Bubbles.

Keywords: Tidal Disruption Events, Black Hole, Galactic Centre, Fermi Bubbles, Hydrodynamics,
X-rays

xvii





Resumo

Estudo numérico de eventos de disrupção de
estrelas pelo Buraco Negro Super Massivo Sgr A*

no Cento Galáctico
Um Buraco Negro Super Massivo (SMBH) com uma massa de ∼ 4 × 106M⊙ reside no centro da Via
Láctea e é conhecido como Sagittarius A* (Sgr A*). A sua presença afecta tanto o gás interestelar do
centro galáctico, do qual a Zona Molecular Central é um exemplo, assim como o sistema estelar no qual
se inclui.

Um efeito directo da presença de Sgr A* é a captura de objectos, em particular estrelas, deixando
vestígios de emissões de raios X e de raios gama. Um efeito secundário é a origem e energização das
Bolhas de Fermi, superbolhas gigantes com cerca de 8 kpc que se estendem acima e abaixo do centro
galáctico. O seu conteúdo energético (1055 erg) aponta no sentido da origem se dever a eventos de
disrupção de estrelas que são capturadas numa órbita em torno do buraco negro. Estas capturas podem
libertar até 1053 erg de energia que, á razão de uma captura a cada 105 anos poderá ser suficiente para
energizar as Bolhas de Fermi.

Duas questões da maior importância exigem atenção detalhada: (i) qual a quantidade de energia
libertada num evento de disrupção de uma estrela que fica disponível para alimentar o meio circundante
ao buraco negro, e assim, das Bolhas de Fermi e (ii) como é injectada a energia nas Bolhas de Fermi. Esta
tese trabalha na primeira questão e lança a atenção sobre a segunda questão.

Quando uma estrela é dispersada da sua trajectória e entra numa órbita fatal em direcção ao SMBH, as
forças de maré gravitacional do buraco negro sobrepõem-se á autogravidade da estrela, promovendo a sua
disrupção parcial ou total. Este destino depende da força com que o encontro ocorre e é determinado pela
proximidade da estrela ao buraco negro. Assim e para compreender a evolução da estrela capturada e a
energia que é libertada durante este processo, foi realizado um estudo paramétrico da evolução de eventos
de disrupção de estrelas, da sua dependência do parâmetro de penetração e das suas órbitas (parabólicas
e elípticas) usando simulações hidrodinâmicas de partículas.

Os resultados mais importantes obtidos neste trabalho são relativos á passagem da estrela no pericentro
e os efeitos na estrutura estelar devido ás forças por efeito de maré gravitacional do SMBH. Um desses
efeitos devido a estas forças é conhecido como a fase da panqueca uma vez que a estrela adquire uma
forma achatada durante a sua passagem pelo pericentro. Imediatamente após esta passagem a estrela
desenvolve duas estrias de detritos (gás que é removido da superfície da estrela) que evoluem para um
longo e estreito sulco de gás e a estria voltada para o buraco negro será atraída numa taxa de acreção
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estável para o objecto compacto. O parâmetro de penetração define a profundidade com que a estrela é
atraída para o buraco negro e a quantidade de energia que esta liberta.

Os eventos de disrupção de estrelas em órbitas parabólicas libertam mais energia para o meio circundante
no centro galáctico e podem contribuir potencialmente para alimentar as Bolhas de Fermi.

Palavras-chave: Eventos de Disrupção, Buraco Negro, Centro Galáctico, Bolhas de Fermi, Hidrod-
inâmica, Raios-X



Abbreviations list

ADAF Advection Dominated Accretion Flow

ADIOS Advection Dominated Inflow Outflow Solutions

AGN Active Galactic Nuclei

AMR Adaptive Mesh Refinement

CR Cosmic Ray

CMZ Central Molecular Zone

FB Fermi Bubbles

GC Galactic Center

GCL Galactic Center Lobe

GR General Relativity

HD Hydrodynamics

Hz Hertz

IC Inverse Compton

MC Molecular Cloud

MHD Magnetohydrodynamics

MS Main Sequence

pc parsec

xxi



xxii LIST OF TABLES

RIAF Radiative Inefficient Accretion Flow

Sgr A* Sagittarius A*

SPH Smoothed Particle Hydrodynamics

SMBH Super Massive Black Hole

SNe Super Nova explosion

SNR Super Nova Remnant

TDE Tidal Disruption Event

UV Ultra Violet

WMAP Wilkinson Microwave Anisotropy Probe

yr year



1
Introduction

1.1 Astrophysical context of Tidal Disruption Events (TDEs)
Over the years observational studies coupled with theoretical arguments established Sgr A* as the dynamical
center of the galaxy and due to its mass concentration it should inevitably correspond to a Super Massive
Black Hole (SMBH) (Balick and Brown 1974; Alexander 2005).

The black hole itself is surrounded by the stellar bulge of the GC and interacts gravitationally with
it. Thus, when a star is scattered from its trajectory and approaches the black hole, it eventually comes
to a distance where the tidal forces of the compact object act upon it producing deformation and even
destryoing it. These effects take place at the pericentre distance (RP ) to the black hole that is limited
by the tidal radius (RT ); RP represents the boundary for a star to survive or to be destroyed during the
encounter. If the star reaches a pericentre distance that is smaller than the tidal radius, the star will be
destroyed because the tidal forces overcome the stellar self-gravity and shred the star.

The limit between survival and destruction is defined by the penetration parameter (b) which represents
the relation between the pericentre distance and the tidal radius (Cheng et al. 2011; Guillochon and Ramirez-
Ruiz 2013). If the star passes at RP imparted on an orbit whith b ≤ 1 it will suffer some deformation
or even partial disruption but will keep its stellar core intact (Alexander 2005). On the other hand, with
a penetration parameter b > 1, a stronger encounter occurs, the star suffers disruption and the stellar
material is ripped off from the stellar surface and spreaded around due to the orbital energy imparted on

1



2 CHAPTER 1. INTRODUCTION

the debris (Evans and Kochanek 1989). The latter will evolve into an elongated and narrow stream where
a portion of it stays bound to the star and the other portion will be forcefully ejected into the surrounding
medium.

The shocks induced by the debris can produce hot plasma (∼ 10 keV) generating velocities of ∼ 103 km
s−1 that expand into the halo heating up the gas to ∼ 1 keV, producing thermal X-rays. The subsequent
shocks due to the hot plasma injection can accelerate electrons to ∼TeV energies with radio emission
through synchrotron radiation and gamma (γ) rays through Inverse Compton effect (Cheng et al. 2011).

Recent data from Fermi-LAT (Large Area Telescope) have unveiled two gigantic features in the gamma-
ray emission with ∼ 10 kpc1 (∼ 50◦) above and below the GC known as the Fermi Bubbles (FB) (Guo
and Mathews 2012). Such features may have their origin in a large episode of energy injection in the GC,
like accretion events onto the black hole during the last ∼107 yr.These accretion events may correspond
to successive star captures that can lead to TDEs from the SMBH of the Milky Way. In fact the energy of
the FB (1055 erg) implies that either 100 captures of stars (with release of 1053 erg/capture) occured in
a short period of time or 104 Super Nova explosions (SNe; with a canonical explosion energy of 1051 erg)
occured. Hence, energetic arguments favour TDEs as the source of the FB.

1.2 Previous studies of TDEs
The initial studies of TDEs by black holes started during the 1970s in the hope to explain the observations
of Quasars2 (Hills 1975; Young et al. 1977; Frank 1978). This attempt to explain Quasars by TDEs was
soon abandoned due to the fact that it would require very high rates of TDEs in order to explain the
Quasars and that would represent an unrealistically high stellar density rate in the center of galaxies. A few
years later TDEs gained another interest with the work done by Rees (1988) that brought a more realistic
view of TDEs by black holes with estimated mass between 106−108M⊙ and sustained the idea that TDEs
could be used to detect black holes in the center of galaxies.

The trivial work on TDEs rates comprised the idea of a black hole surrounded in a star cluster, with
an isotropic distribution of the stellar velocities. Due to two body interactions with other stars, their orbits
can be altered and send an unlucky star towards the black hole that can be destroyed in a dynamical time.
In this way there is a continuous supply of stars to the disruption zone of a black hole. If stars are lost to
the black hole through fatal orbits then these orbits are in the ”loss cone”, which is the region where stars
can fall onto the black hole (Frank and Rees 1976).

For smaller distances from the black hole the velocity variations due to gravitational encounters is not
enough to refill the loss cone as Frank and Rees (1976) and Lightman and Shapiro (1977) determined. It
seems that the majority of disrupted stars comes from the loss cone regime and a more diffusive regime
with an associated energy Ecrit. As this energy overwhelms the energy of circular orbits on the disruption
zone, then stars heading to the black hole should describe approximately parabolic orbits (Magorrian and
Tremaine 1999).

The observational results of the first views of the external galactic nuclei inside the black hole radius
of influence came from the Hubble Space Telescope in the second half of the 1990s. The results were used
to determine tidal disruption rates for the first time in real galaxies by Syer and Ulmer (1999). From these
calculations they derived tidal disruption rates of 10−7 − 10−4 yr−1 Mpc−3 per galaxy, which was found
later on to be too high. Wang and Merritt (2004) computed these rates using the relation for the black
hole mass to stellar velocity dispersion MBH − σ∗ having determined the value of 10−5 for non dwarf
galaxies of ∼ 10−5yr−1Mpc−3.

In the last years a considerable amount of work has been developed concerning TDEs by massive black
holes. Some of these work treat TDEs in a Newtonian frame with moving stars around a black hole on

11 pc = 3.08567758× 1018 cm
2Quasi Stellar Radio Sources or the ”black tidal” model.
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the Schwarschild3 spacetime as in Tejeda and Rosswog (2013), where a generalized potential is used to
study parabolic TDEs and new approaches with SPH codes. The importance of the penetration parameter
on TDEs has also been studied by Guillochon and Ramirez-Ruiz (2013) that worked on the disruption of
stars by SMBHs of 106M⊙ in order to reach to a limit for a star to be destroyed. Finally and regarding the
relativistic aspect of TDEs, some of the previous work concerns the TDEs by rotating black holes with the
relativistic hydrodynamical evolution of the fluids with Newtonian SPH codes, e.g., Tejeda et al. (2017).

1.3 The relation between stars and the SMBH
The relation between stars and the SMBH varies according to their mass ratios such that stars whose orbits
are near the black hole may be treated as test particles, where the gravitational potential is dominated by
the black hole. Stars may survive to it if these lie outside the event horizon or if they escape the black
hole’s RT . For an approximation to first order, stellar orbits that have pericentre distances similar to those
of the gravitational radius can be interpreted as keplerian (Guillochon et al. 2014b) or if observational data
is accurate enough, post-Newtonian effects can be detected in those orbits and so a relativistic approach
(probing the General Relativity, GR) must be taken into account (Alexander 2005).

The stellar density at the surroundings of the SMBH is very high and due to the presence of a high
number of stars near the black hole these cannot be treated as a particle mass if stars are close enough to
the compact object, because effects of tidal distortions and disruption itself are likely to occur (Rees 1988).
This proximity to the black hole by stars can lead to interactions which are relevant for the feeding of the
black hole, potentially producing observable signals of its self existence.

The extreme environment of the ∼ 0.1 pc of the GC, where high densities, large orbital velocities and
strong tidal field occur, make this central region of the galaxy suitable for stellar collisions (Alexander
2005). Tidal disruptions are the result of the interaction between stars and the SMBH. The estimated
rate at which the SMBH captures a star is Γt ∼ 10−4yr−1 to 5 × 10−5yr−1 according to more detailed
calculations by Syer and Ulmer (1999); Ayal et al. (2000); Cheng et al. (2011); Strubbe and Quataert
(2009).

When a star is scattered from pc distances, its eccentric orbit brings it to the vicinity of the black hole,
where finally the star can no longer resist to the gravitational pull and the tidal forces of the black hole
exerted on the star promote its disruption. This shredding of the star is only possible when the star’s RP is
smaller then the black hole’s RT and in this scenario strong interactions between the star and the SMBH
will occur. Considering such interactions, if a star crosses the event horizon of the black hole it will be
completely shredded such no TDE can occur in this conditions and if the star passes the RT without falling
into the event horizon, tidal disruption will occur with the gaseous debris of the star being accreted by the
black hole (Rees 1988; Hills 1975; Lightman and Shapiro 1977).

The length-scales that describe the tidal disruption of a star by the SMBH are the stellar radius (R∗),
the Schwarzschild radius (RS) and the tidal radius (RT ). These length-scales ratios can be determined in
terms of their mass ratios and escape velocities by (Alexander 2005):

i) RT /R∗ ∼ (m/M∗)
1/3,

ii) RT /RS ∼ (c/Ve)
2(m/M∗)

−2/3,

iii) RS/R∗ = (c/Ve)
−2(m/M∗)

with V 2
e = 2GM∗/R∗, being the escape velocity from the surface of the star, c is the speed of light and

G ≈ 6, 67408×10−8 cm3kg−1s−2 is the universal gravitational constant considering a solar type star4.
3Known as the Schwarschild solution, describes the gravitational field outside a spherical mass assuming that the electric

charge of the mass, angular momentum and universal cosmological constant are zero.
4M∗ = 1M⊙, R∗ = 1R⊙; 1M⊙ - 1 solar mass; 1R⊙ - 1 solar radius
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Both the star and the black hole have physical properties that contribute to the nature of the encounter,
like the stellar self-gravity, the black hole tidal field or the gas pressure. So if these effects are not taken into
account by the time of disruption, the star particles may have free-fall trajectories under the gravitational
pull of the black hole (Kochanek 1994). After the event, the stream of the disrupted gas achieves a
complete orbit around the black hole and self-intersection of the stream debris can occur producing shocks.
As long as RP > RT the tidal interaction lasts for ∼ τtb

3/2 (b = RT /RP is the penetration parameter and
τt is the dynamical timescale). As the tidal interaction gets longer then the stellar dynamical timescale the
hydrodynamics and the stellar self-gravity must be accounted for and so the limit for the disruption to take
place must be determined, as the Newtonian limit is RT /RS ≥ 10 and the General Relativity limit (GR) is
RT /RS ≤ few (Alexander 2005).

1.4 TDEs outcome

There is a release of energy during the TDE which can be achieved by two distinct processes that comple-
ment each other. TDEs effects can last for ∼ 104 yr. One of these effects is a luminous flare that occurs
due to accretion that can take a few years and the other is a shock wave that is propagated through the
ISM lasting for ∼ 105 yr (Alexander 2005).

The properties of the TDEs in terms of its hydrodynamics and radiative pressure in the Newtonian
and relativistic limits have been studied analytically and with simulations by different authors (Rees 1988;
Kochanek 1994; Loeb and Ulmer 1997). Considering the results of the work achieved so far, a global frame
for TDEs has emerged. To approach the TDE process there are some considerations to account for in
terms of the energy involved. Initially the total energy of the system remains on the stellar binding energy,
due to the star describing a parabolic orbit which implies that the star’s orbital energy is Eorb ≃ 0.

The aftermath of the TDE is the extraction of the orbital energy of the star, unbinding it and accel-
erating the debris. On the initial stage, a portion of the mass of the star (Min) is roughly Min ∼ M∗/2
and will become bound to the black hole with an initial energy (Ein) of −Ein ≫ E∗. The other portion
of the stellar mass (Mout), about M ∼ M∗/2 will be ejected with an energy Eout, such +Eout ≫ E∗ and
E∗ = Ein + Eout (Alexander 2005). The dissipation mechanism can produce the emission of radiation
or induce particle acceleration, where by the time of the last stable orbit of the gas, the energy can be
extracted. Though, if the dissipation mechanism of the energy is to be inefficient, the heat can be trans-
ported through the flow (by advection) to the SMBH rest mass (Rees 1988; Narayan and Yi 1995).

The post disruption is dominated by the kinetic energy, where the debris self gravity and the gas pres-
sure are to be dinamically insignificant inducing the stream to follow ballistic keplerian orbits. These orbits
can be quite eccentric with 1−⟨e⟩ = RP /a = 2b(M∗/MBH)2/3, where e represents the eccentricity and a
is the semi-major axis, with a large spreading of the orbital period (P ) ranging from P → ∞(Ra-apocentre
distance) to the minimum period Pmin, where Ra ≃ RT (MBH/M∗)

1/3 (Alexander 2005). The bound
debris has a spread of energy which is dM/dE = const (Evans and Kochanek 1989; Ayal et al. 2000).
When tidal interactions are stronger corresponding to RP > RS , these leads to higher energy spreading
with increasing debris return rate (Ulmer 1999; Evans and Kochanek 1989).

After the TDE an exotic phenomena can occur, producing a luminous flare. Such flare must combine
the time for circularization of the debris and the time scale for the viscous dissipation to occur, both must
be short enough for accretion to take place. The bound debris will circularize, driven by shocks due to the
stream self-intersection that tend to return to the original point at RP . After the second passage at RP

the debris can become unbound because of the heating and shocks, with ∼M∗/4 expected to stay bound
to the SMBH (Ayal et al. 2000). There will be a rapid circularization of the debris and the corresponding
timescale shall be tcirc ∼ few × Pmin (Ulmer 1999).

TDEs can produce an observational signature due to tidal flares that may last for months to years in
its luminous phase. As the return rate of the debris drops below the Eddington rate (a few years after
a TDE) there will be an efficient cooling of the gas that will accrete to a thin accretion disc through a
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viscous timescale and the accretion disc is expected to decrease with time (Cannizzo et al. 1990). Though
there is some discrepancy between the luminosity due to accretion and the one observed at the GC, as
the luminosity from accretion of the debris from a past TDE is of ∼ 2 − 4 orders of magnitude higher
than the luminosity at the GC. This difference can be understood as most of the debris being blown off
during the super-Eddington phase, which could stop early because the accretion disc could turn to a low
radiative state with Ṁ ≤ 10−2ṀEdd or the outer parts of the disc become neutral, uncapable to support
the magnetohydrodynamic (MHD) turbulence, therefore turning forcefully inviscid (Menou and Quataert
2001; Alexander 2005).

The evidences of TDEs in the GC can assume the form of energy release, in the sense that the energy
of the debris that is ejected can present a long term signature of the disruption. TDEs can produce short
flares on the UV/X-ray emission and during the propagation of the X-ray component (photons) from the
SMBH, will meet clouds of gas and will be scattered into the line of sight in the 6.4 KeV kα (X-ray reflection
nebula) with the X-ray emission being a potential signature of a TDE (Alexander 2005; Dogiel et al. 2009).

When a star describes an orbit where RT > RP its trajectory lies outside the RT and the star can
survive to such an encounter with the black hole. This fortunate encounter of the star has nevertheless
a consequence, which is the loss of orbital energy (∆ε). A star that keeps a near radial velocity during
several orbital periods can cause the loss of the dissipational energy that will accumulate resulting in an
orbital decrease that can lead to the inspiral of the star onto the SMBH (Alexander 2005). If the star keeps
orbiting repeatedly under these conditions it can be destroyed by the black hole or can suffer disruption
through the dissipational energy.

Though a close encounter by the star with the black hole is not a guaranty for the disruption to take
place or for the star to achieve the final inspiral stage. The star may be a target for scattering during
the inspiral timescale (which is orders of magnitude longer than the orbital timescale) which can suffer a
deflection into a low angular momentum (J) orbit and then can experience a second scattering where it can
enter in a loss-cone orbit, where it will be shredded. Stars that experience a non disruptive tidal encounter
with the SMBH at the GC (RT > RS) get to be dispersed to larger orbits, though before reaching a safe
survival orbit stars may experience some extreme effects such as tidal distortion, spinning and mass loss,
that will constrain their evolution (Alexander 2005).

The fate of a star that suffers tidal inspiral (or tidal capture) is its disruption with consequent loss
of stellar mass due to accretion onto the SMBH, being similar to the contribution of direct disruption as
hypothesized by Frank and Rees (1976); Magorrian and Tremaine (1999). Tidal capture is less efficient
then TDEs as mass contributor for the black hole due to inspiral processes that are much supressed when
compared to direct infall and taking into account the scattering effects, it can be found that only a small
fraction of mass contributes above that obtained by a TDE (Alexander and Hopman 2003).

The stellar debris resultant after disruption will evolve, forming a stream of gas that will return to the
black hole in fallback. An accretion disc is likely to form due to circularization of the stellar debris, where
viscous accretion will contribute for the emission of a thermal flare in the UV/X-ray, which in turn can
be related to radio signals due to a relativistic jet that can have its origin in the inner region of the disc
(Bonnerot et al. 2016).

The stellar debris rate can decrease by t−5/3 (Lacy et al. 1982; Rees 1988; Evans and Kochanek 1989)
in terms of the fallback onto the SMBH, though this rate can be dependent of the stellar structure. The
accretion disc formation concerns several aspects that play a role in this process, mainly, the dissipation of
the kinetic energy of the stellar debris, where the new disc will be injected with thermal energy (Bonnerot
et al. 2016).

The mechanisms that may be responsible for the energy transfer and relative efficiency are the pancake
shock and self-intersection. The energy transfer efficiency due to the pancake shock means that a fraction
of the stellar material of the disrupted star is forcefully sent out of the initial ortbital plane resulting in the
debris bound in the stream orbits in a range of inclinations and it intersects vertically the orbital plane near
pericentre leading to the formation of a pancake shock due to strong compression. The self-intersection
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of the stream results from the meeting portions of the incoming debris and the outgoing counterpart that
collide and produce shocks (Evans and Kochanek 1989; Alexander 2005).

Accretion discs are process dependent in terms of the efficiency due to circularization, viscous accretion
and radiative cooling, where the timescales of these processes can be described respectively by tcirc, tvisc
and tcool (Alexander 2005). Considering different regimes of disc formation to take place if tvisc < tcirc
means that the viscosity may influence the circularization process. If tvisc > tcirc, accretion will occur after
the disc formation. With tcool < tcirc the disc will be thin due to radiative cooling and finally if tcirc < tcool
the disc will burst up during its formation because of the excess of thermal energy (Bonnerot et al. 2016).
For the Milky Way case, at present time there is no evidence of an accretion disc at the GC (Alexander
2005).

1.5 Objectives of the current work
Many studies have been made about TDEs and the relation between stars and black holes in general, as
in Frank and Rees (1976); Lacy et al. (1982); Evans and Kochanek (1989). There is today a more clear
understanding about how TDEs occur and how stars that enter in the fatal influence of black holes suffer
the effects of tidal forces from these massive compact objects. Most of the work done on this matter relates
stars with black holes of masses ∼ 106M⊙. It is known that the galactic SMBH has an estimated mass of
≃ 4× 106M⊙ (Ferrarese and Merritt 2000) and that its mass is ∼ 1/500 of the stellar bulge mass where
it resides (Alexander 2005).

The discovered Fermi Bubbles at the GC have unveiled questions about its origin and energetics. As
TDEs can release significant amounts of energy to the surroundings of the GC, these represent a good tool
to trace the possible contribution for feeding the FB with the energy released from TDEs. Therefore, one
strong motivation for this work is to have a better understanding of TDEs on stars that are disrupted by
the SMBH Sgr A* and the amounts of energy that can be released in such events.

For this work two sets of simulations of TDEs with a solar type star falling on parabolic and elliptic
orbits onto the SMBH were implemented. The recent Smoothed Particle Hydrodynamics code Phantom
(Price et al. 2017) was used in these simulations.

1.6 Structure of the thesis
This thesis is structured as follows: Chapter 2 deals with the physical mechanisms of the disruption of a
solar type star by the SMBH Sgr A* at the center of the Milky Way. The influence of the SMBH in the
surrounding medium over stars is described in terms of the strong correlation between the black hole and
the stellar velocity dispersion of the host galaxy (Tremaine et al. 2002).

The tidal disruption rates at which stars are deflected to the loss cone due to the gravitational encounters
is described, where the two regimes of the loss cone theory define the rates at which stellar disruptions
occur. The pericentre approach of the star to the black hole is characterized by a parabolic orbit and
the penetration parameter at which the star crosses the RP , where the tidal forces from the black hole
exert distortions and deformation on the stellar surface until it disrupts the star in the case of the deeper
encounters (Rees 1988) . As the star plunges onto the black hole it enters in the fallback phase and the
star is splitted in distinct portions of matter.

The rate at the material falls back onto the black hole is characterized by a decay rate where the stream
of the debris resultant from disruption follows ballistic trajectories (Guillochon et al. 2014b) around the
black hole and if relativistic effects would be taken into account the stream of the debris would enter in the
accretion disc formation phase (Bonnerot et al. 2016), though this stage is not considered for this work,
which treats the tidal disruption events under the keplerian regime.

The numerical method used in this work is briefly described in Chapter 3. This method deals with
the fluid equations using discrete particles that are carried in the flow and the hydrodynamic properties
are evaluated at particle positions. This method was initially developed by Lucy (1977) and Gingold and
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Monaghan (1977). Lagrangian and Eulerian methods have a primary difference between them for the fluid
representation, once the Eulerian method follows the behaviour of the fluid through a fixed volume in
space and the Lagrangian method follows the behaviour of a part of the fluid with respect to other parts
(Monaghan 1992).

Computing the density from a set of particles can be achieved with SPH (Price 2011) where every
particles have constant mass and the volume is inversely proportional to the number of particles in the
neighbouring area. A smoothing kernel turns the particle smoothed over a volume and the density at any
point can be obtained by the sum of the masses that lie in the region weighted by this kernel (Gingold and
Monaghan 1977). For this work the SPH code Phantom (Price et al. 2017) was used for the numerical
simulations of TDEs.

In Chapter 4 the tidal disruption of a solar type star by a Schwarschild black hole with mass of
∼ 4 × 106M⊙ is investigated. Two sets of parabolic and elliptic TDEs were implemented with different
penetration parameters in order to study the effects that the tidal forces produce on the star at RP and
immediately after. The energies involved in this process are imparted to the spread debris of the star, which
in turn is related to the mass fallback rate decay. Also the tidal energy transfer is evaluated in terms of the
kinetic energy of the star that is converted into thermal energy imparted from the resultant debris during
the disruptive process.

Chapter 5 describes the energetics of TDEs in the GC with a brief description of the central SMBH of
the Milky Way and a possible application to the Fermi Bubbles case. An approximation to the possible
evidence of the so called smoking gun through the γ rays source and the energetics of the lobes that
integrate the thermal energies at the same order of magnitude from those obtained in the TDEs from this
work is also described. Of reference is the recent data from the XMM-Newton (Ponti et al. 2015; Ponti
et al. 2019) which gathered new data from the central 1◦, 5 parsec region of the Milky Way. The structures
detected on the X-ray emitting band correspond to two bi-polar lobes which are symmetric in relation to
the galactic plane. Due to their unknown origin, these might have been originated by some large episode
of energy injection in the GC like Super Novae (SNe) or stellar capture processes Ponti et al. (2019) and
may be attributed to the base of the Fermi Bubbles larger structure.

Chapter 6 closes this thesis with final remarks and future work.





2
Tidal Disruption Events

2.1 Introduction
A Super Massive Black Hole (SMBH) resides in the center of most of the galaxies, which is surrounded
by a stellar cluster interacting gravitationally between them. From time to time, a star can be scattered
from its quiescent state and enters on eccentric orbits (from pc distances) that approximates the star to
the SMBH and leads to the disruption of the star by the tidal forces of the compact object (Rees 1988).
This scenario is achieved when the star has a pericentre distance (RP ) shorter than the tidal radius (RT ).
The rate of these encounters happen is approximately of one every 104 − 105 yr (Cheng et al. 2011).

The pericentre passage of the star is characterized by its shredding by tidal forces from the black hole
and the resultant material of this effect is spreaded in orbital energy (Guillochon and Ramirez-Ruiz 2013).
The effects of the disruption on the star are somehow different, due to the typical encounters between
the two objects. If the star suffers a weak encounter, the tidal effects of the black hole on it can result
in a partial disruption where a self-gravitating core still holds to the interaction. In the case of a strong
encounter the star can experience a strong compression that can result large amounts of thermal energy
(Rees 1988). In any case the resultant debris, due to the orbital spreading, evolves into an elongated
structure with a thin profile limited by self-gravity.

The portion of matter that stays bounded to the black hole and the one which is ejected overcoming
the gravitational pull of the compact object can be as much as about a half for each portion. The material
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that escapes becoming unbound will interact with the surrounding medium with radio and γ-ray emissions.
The bound material of the stream will eventually fall back to the compact object in a period of several
days to a few months after the TDE occurs (Alexander 2005).

2.2 SMBH influence on surrounding stars

A SMBH can influence the stellar distribution and respective stellar orbits in the inner regions of its host
galaxy. With a stellar density distribution in the galaxy of N∗ and a well defined core of radius (RC), the
stellar velocity (σ) of the stars can be defined by (Rees 1988)

σ ≃
(
GM∗
RC

)1/2

, (2.1)

where M∗ represents the stellar mass. If the SMBH has a mass MBH ≪ N∗R
3
C , with the stellar mass

being M∗ ≃ N∗R
3
C , the trajectory of a typical star would be preferentially influenced by other stars rather

than by the black hole and the stellar dynamics can be dominated by the SMBH until a certain distance of
influence (Rees 1988). The tidal disruption radius RT is the distance to the SMBH at which a star can be
disrupted by it and the largest distance in terms of RT is called the loss cone radius Rlc (Merritt 2013).

The strong correlation between the black hole mass and the stellar velocity dispersion of the host galaxy
follows the MBH − σ relation (Tremaine et al. 2002). This frame characterizes the initial phase of a TDE,
as the velocity dispersion matches with the keplerian circular velocity and the initial conditions for the
disruption of a star are satisfied. When star that is orbiting at a distance R ≫ RT may be scattered and
describe a trajectory that crosses the RT where the angular momentum (J) falls below some critical value
(J ≤ Jcrit, where Jcrit ≡ Jlc). When the star reaches RP and so lies inside the RT its velocity vector falls
onto the loss cone and the star will be shredded in a dynamical timescale (Frank and Rees 1976). At this
time the angular momentum J must be smaller than that of the loss cone Jlc for an orbit where RP ≤ RT

(i.e. RP ≡ Rlc) and for a star that reaches the distance R = Rlc the angular momentum is defined by
(Merritt 2013)

J2
lc = 2R2

lc[E − Φ(Rlc)] ≈ 2GMBHRlc, (2.2)

from this expression |E| is the orbital energy with |E| ≪ GMBH/Rlc which means that the star must be
on an orbit where the semi-major axis a ≫ Rlc and Φ represents the gravitational potential. The expression
loss cone is derived from the loss cone orbits, where J ≪ Jlc and can be defined by a set of velocity vectors
at a distance R from the SMBH that are related with orbits that pass inside the Rlc and this condition
is satisfied if the velocity vector of the star lies within a cone of semi-angle θlc (Figure 2.1) that can be
approximated by (Merritt 2013)

θlc ≈


(Rlc/R)

1/2 , R ≲ RBH(
RlcRinf/R

2
)1/2

, R ≳ RBH

(2.3)

where RBH is the SMBH gravitational field of influence and Rinf will be the influence radius of the SMBH,
that is defined for the central velocity dispersion σ as (Merritt 2013)

Rinf ≡ GMBH

σ2
≈ 2.25 pc

(
MBH

106M⊙

)( σ

200 km s−1

)4
, (2.4)

considering theMBH−σ with theMBH ≈ 1.8×106M⊙ with an estimated interval of 1.5±2.2 for the Milky
Way (Ferrarese and Merritt 2000). For the central black hole Sgr A* with a mass of MBH ≈ 4.0× 106M⊙
the radius of influence is Rinf ≈ 5.0 pc.
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Figure 2.1: The orbital trajectory of a star inbound onto the black hole at the surface of the loss cone
(Freitag and Benz 2002).

2.2.1 Relaxation time
When penetrating the loss cone, the star orbital elements suffers perturbations due to two-body encounters
with other stars. These gravitational encounters have an associated timescale that corresponds to the
relaxation time during which the stellar velocities have a variation of order unity with ∆σ ≈ σ and for an
infinite homogeneous medium the two-body relaxation time is (Spitzer 1987; Merritt 2010)

tr =
0.33σ3

G2 M2
∗ ρ ln(Λ)

= 1.272× 109
( σ

200 km s−1

)3(M∗
M⊙

)−2( ρ

106M⊙ pc−3

)−1( lnΛ
15

)−1

yr

(2.5)

with ρ representing the density of the stars, M∗ is the mass of one star, σ is the velocity dispersion of the
stars and the Coulomb logarithm is ln Λ , which is roughly given by (Merritt 2010)

lnΛ ≈ ln

(
MBH

M∗

)
≈ ln(Nh),

(2.6)

where Nh ≡MBH/M∗ is the number of stars whose mass equals the MBH .

2.2.2 Tidal disruption rates
At the GC, the rate of stellar scattering onto the SMBH, i.e., the number of stars that are deflected into
the loss cone due to gravitational encounters with other stars can be represented by F (ε) which describes
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the flux of stars into the loss cone and can be defined by (Wang and Merritt 2004)

Flc(ε) = 4π2∆J2(ε)
f(ε)

ln(R−1
0 )

, (2.7)

where ε is the orbital energy and R0(ε) represents the value of R for which f decreases to 0 as stars that
scatter into the loss cone are removed, therefore the scattering of stars into loss cone orbits allows f ̸= 0
even if J < Jlc. The approximation to R0(ε) can be defined by (Wang and Merritt 2004)

R0(ε) = Rlc(ε)


exp(−q), q(ε) > 1

exp(−0.186q − 0.824
√
q), q(ε) < 1

(2.8)

The typical change in angular momentum that a star receives in terms of the orbital period P (ε) can
be written as the ratio to the loss cone angular momentum defined by the function q(ε) as (Cohn and
Kulsrud 1978)

q(ε) ≡ ∆J2(ε)

J2
lc(ε)

=
P (ε)

tJ(ε)
(2.9)

where tJ(ε) is the typical time scale for stars during trajectories in angular momentum Jlc through two-body
relaxation process such (Cohn and Kulsrud 1978; Lightman and Shapiro 1977)

tJ(ε) ≈
(
Jlc(ε)

2

Jc(ε)

)
tr, (2.10)

as tr is the relaxation time from (2.5).
The function q(ε) can be limited by two different scenarios:

(1) The empty loss cone rate is appropriate for ∆J ≪ Jlc, where ∆J is the angular momentum for the
stellar distribution, which means that the loss cone refills more gradually than it is depleted. When
stars enter the loss cone the chances of being scattered out in an orbital period are very few, these
are disrupted by the passage at pericentre RP and the loss cone is essentially empty. This stage is
known as the diffusion limit as stars diffuse towards the loss cone through many orbital periods

(2) The full loss cone rate is the opposite case and is set for ∆J ≫ Jlc and is characterized by the
pinhole limit where the stars scattering per-orbit is large when compared to the size of the loss cone

For an isotropic distribution of stars, the flux into the loss cone scales linearly with the tidal radius RT

due to the loss cone being full and the rate is size dependent of the loss cone (J2
lc ∝ RT ). If the loss cone

is empty, the variations in its size will not affect the rate, which is set by the diffusion process.
The pinhole and diffusion limits are the relevant limits which can be taken from (2.7) as (Lightman

and Shapiro 1977)

Flc(ε) ∝


J2
lc ∝ RT q(ε) ≫ 1(pinhole),

ln(J2
lc) ∝ ln(RT ) q(ε) ≪ 1(diffusion).

(2.11)

In the empty loss cone and for time scales greater than the dynamical time tdyn the loss cone will be empty.
When a star is in the loss cone it will be removed in a dynamical time, so the capture rate Ṅempty is limited
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Figure 2.2: Empty and full loss cone regimes. The rate of the empty loss cone regime is set by the number
density × the relaxation time (Novikov et al. 1992).

by diffusion into the loss cone and is given by (Syer and Ulmer 1999)

dṄempty

dN
=

1

ln(2/θlc)tr

Ṅempty =

∫ Rcrit

0

1

ln(2/θlc)tr
dN.

(2.12)

In the full loss cone stage there is an isotropic velocity dispersions and the portion of stars in the loss cone
is simply θ2lc. In this case the capture rate Ṅfull per star is

dṄfull

dN
=

θ2lc
tdyn

Ṅfull =

∫ +∞

Rcrit

θ2lc
tdyn

dN

(2.13)

where N is the number of stars within a radius R. The total loss cone rate is therefore

Ṅ = Ṅempty + Ṅfull (2.14)

and both rates are equal at a certain distance R = Rcrit. The stellar tidal disruption rate for the GC of the
Milky Way follows the rate of scattering of stars into the SMBH’s tidal disruption sphere where R ≤ RT

and can be defined as (Merritt 2010; Wang and Merritt 2004)

Ṅ =

∫
Flc(ε)dε. (2.15)

Assuming solar type stars (M∗ = M⊙;R∗ = R⊙) and the MBH ≈ 4 × 106M⊙, the consumption rate of
the Milky Way’s SMBH can be set as (Merritt 2010)

Ṅ ≈ 4.6× 10−4

(
σ

90 km s−1

)7/2( MBH

4× 106M⊙

)−1

yr−1. (2.16)
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2.3 The pericentre approach
As a star approaches the black hole at a distance where its periapsis RP lies inside the tidal radius RT ,
it will be tidally disrupted. The tidal forces from the black hole will be approximatelly equivalent to the
star’s self-gravity at a distance RT . The self-gravity acceleration aG ≈ GM∗/R

2
∗ and the tidal acceleration

aT ≈ GMBHR∗/R
3 can be equated in order to obtain the critical distance and therefore the tidal radius

by RT (Rees 1988)
aG ≡ aT

GM∗
R2

∗
≡ GMBHR∗

R3
T

RT ≡
(
MBH

M∗

)1/3

R∗.

(2.17)

For a typical solar type star (M∗ = 1M⊙;R∗ = 1R⊙) and a typical black hole of mass MBH = 106M⊙
the tidal radius will be RT = 100R⊙ ≈ 2.254 × 10−6 pc. The Milky Way’s SMBH with a mass of
MBH = 4× 106M⊙ will have a tidal radius of

RT = 3.584× 10−6

(
MBH

106M⊙

)1/3(M∗
M⊙

)(
R∗
R⊙

)−1/3

pc, (2.18)

that is RT ≈ 159R⊙. The strength of the encounter between the star and the black hole can be evaluated
by a dimensionless impact parameter b defined by (Shen and Matzner 2014)

b ≡ RT

RP
. (2.19)

The orbit of the star can be characterized by its semi-major axis a∗ and consequently by its eccentricity
ecc (for bound orbits 0 ≤ ecc < 1). For higher values of ecc the debris produced during the disruption
of the star will stay bound to the black hole, if ecc ≤ ecccrit and so the eccentricity can be defined by
(Hayasaki et al. 2016)

e < ecrit = 1−
(
2

b

)(
MBH

M∗

)−1/3

. (2.20)

and the semi-major axis is defined by (Bonnerot et al. 2016)

a∗ =
RP

1− ecc
. (2.21)

Considering, for example, the case of b = 1 andMBH = 106M⊙ the orbit of the star with an eccentricity of
ecc = 0.8 will have its semi-major axis of a∗ = 1.127× 10−5 pc. For the case of the Milky Way, stars that
are inbound to the SMBH (MBH = 4×106M⊙) with a penetration parameter of b = 1, their orbits will be
characterized by a semi-major axis of a∗ ≈ 1.792× 10−5 pc. Associated to these orbits the correspondent
orbital period of the star is defined by (Guillochon and Ramirez-Ruiz 2015)

P∗ = 2π

(
GMBH

a3∗

)−1/2

(2.22)

For the resident SMBH (MBH = 4×106M⊙) of the Milky Way the orbital period of the star is P∗ ≈ 31
h (the star here is considered to be of solar type). TDEs can be detected if the event occurs out of the
event horizon1 of the black hole, which corresponds approximately to twice its gravitational radius (RG)

1The limit where a particle reach the point of no return, i.e., the limit where the gravitational pull of the black hole is so
high that even light cannot escape to it.
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and is given by (Guillochon and Ramirez-Ruiz 2015)

RG ≡ GMBH

c2
= 1.911× 10−7

(
MBH

106M⊙

)
pc (2.23)

where c is the speed of light and the mass of the SMBH is the typical value for the Milky Way’s compact
object.

Through the influence of tidal forces from the BH, the star that initially was in hydrostatic equilibrium
starts to suffer deformation at a certain distance RT and is gradually compressed with θT representing the
true anomaly suffered by the star as it is confined by the two orbital planes that make an angle α between
them (Figure 2.3). The gravitational pull stretches the star in a mean radial direction due to stellar elements
near the black hole. Partial tidal disruption occurs when the penetration parameter is b ≈ 1 and the star just
scratches the tidal sphere making the self-gravitating core to escape to the pericentre passage (Bonnerot
et al. 2016; Guillochon and Ramirez-Ruiz 2013).

As the star reaches the RT the stretching can develop a quadrupole distortion achieving an amplitude
of order unity by the time of disruption at RT and the pressure that results from this stretching causes
a spread in the orbital energy ∆ε of the debris Rees (1988). This is a consequence of the star being
unaffected until it reaches the RT where the trajectory of the debris is significantly modified. A decrease
in orbital energy can relate the proximity of the stellar elements to the black hole rather than to the center
of mass of the star, while an increase of this energy can relate further distances to the black hole by the
stellar elements.

Figure 2.3: A star passing the pericenter of the black hole inside the tidal sphere on a ballistic trajectory
(Coughlin 2016).

The evolution of the debris in this perspective is similar to the stellar binding energy (εb), with εb ≈
GM∗/R∗ (Rees 1988; Evans and Kochanek 1989), that in fact satisfies εb/∆ε ≈ (MBH/M∗)

−1/3 ≪ 1.
The gas moves with ballistic trajectories in the influence of the tidal sphere because the gravitational forces
of the black hole are dominant over all the forces and so the orbital energy of the debris is frozen-in
(Guillochon and Ramirez-Ruiz 2013) in the RT with no dependency of the penetration parameter b. Stars
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approach the vicinity of the tidal sphere with highly eccentric orbits with 1− e ≈ Rinf/RT = 10−6, being
described by a parabola where the orbital energy is ≈ 0. This energy is symetrically spreaded over the
debris being imparted into two categories: (1) stellar matter that has an energy increase gets unbound from
the black hole with orbital energy ∆ε and (2) stellar matter that loses orbital energy −∆ε (Rees 1988).

The matter that falls back has a mass rate that is specified by the energy distribution within the debris.
The stream falls back to it in ∼ 1/2 while the other ∼ 1/2 escapes the black hole’s gravitational pull. When
the penetration parameter is b ∼ 1, the star just grazes the tidal sphere and such encounters are more likely
to occur for such values, especially in the empty loss cone regime. In such conditions disruption is partial
and the self gravitating core of the star survives the pericentre passage (Guillochon and Ramirez-Ruiz 2013;
Mainetti et al. 2017). Moreover mass loss is asymmetric due to the fact that more stellar matter is lost
from the side facing the black hole, since the gas on this side is more bound to it and the partial disruption
results in the increase of velocity to the surviving core (like the escape velocity of the star).

The star, describing a ballistic trajectory inside the tidal sphere gradually suffers compression from two
orbital planes that intersect at pericentre and causes on the star a change in its shape, turning it into a
flat pancake shape (Figure 2.3).

2.4 The fallback phase

After the disruption of a star by the black hole the splitting of the stellar matter can occur on two distinct
portions of matter. About one half of the matter becomes bound to the SMBH describing elliptical
trajectories where RP is similar to the star’s initial RP . The other half of the stellar matter acquires orbital
energy during the disruption process and will describe hyperbolic trajectories (Guillochon et al. 2014b).
The bound material will return to the initial disruption point and the mass rate of the fallback debris can
be evaluated in terms of the stellar matter. As this rate decreases with time ∼ t−5/3 and the stream follows
ballistic trajectories around the black hole, the most bound material will have a fallback time tfb given by
Kepler’s third law for the most bound debris of (Hayasaki et al. 2016; Lodato et al. 2015),

tfb =
π√
2

(
RT

R∗

)3/2
√

R3
T

GMBH

= 3.538× 106
(
MBH

M∗

)1/2(M∗
M⊙

)−1(R∗
R⊙

)3/2

s,

(2.24)

which for the same parameters from the example given above gives a fallback time of the most bound
debris of tfb ≈ 41 days. For the Milky Way case the fallback time will be tfb ≈ 82 days. The debris reaches
the black hole with a rate of the fallback mass of Ṁ = dM/dt and the spread in energy can be traced to
a return time to RP for the bound debris to the black hole by (Kocsis and Loeb 2014)

Ṁfb =
dM

dt
=
dM

dε

dε

dt
=

(2πGMBH)2/3

3

(
dM

dε

)
t−5/3. (2.25)

The peak of the fallback mass rate (ṀP ) is achieved when the mass of a star is M∗/2 and reaches the
black hole by a time t ≥ Porb if the fallback rate decay is Ṁ ∝ t−5/3 (Rees 1988; Phinney 1989) and so
the fallback rate can be written as (Evans and Kochanek 1989)

Ṁfb =
M∗
3tfb

(
t

tfb

)−5/3

= 3M⊙

(
MBH

106M⊙

)−1/2(R∗
R⊙

)3/2(M∗
M⊙

)2

yr−1.

(2.26)
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The debris stream that stays bound to the black hole (i.e. about half of the portion of the disrupted
star that can return to the disruption point) can generate luminous flares. The debris that falls back to the
black hole suffers vertical and horizontal compression which, in turn, can generate a shock that can heat
the gas and dissipate thermal and kinetic energy (Rees 1988; Evans and Kochanek 1989). Furthermore,
the debris that crosses the pericenter for the second time will suffer an orbital rotation through general
relativistic precession angle which can reach ∼ 10◦ for a solar type star being disrupted by a 106M⊙ black
hole, also assuming that the star’s RP ≈ RT at the time of disruption (Rees 1988).

Receding from the black hole for a second time, the debris will impact the portion of debris that is still
crossing its way to the black hole and this self intersection of the debris will deplete its kinetic energy by
heating it viscously (Piran et al. 2015a). By means of such interactions the bound debris from a TDE is
assumed to dissipate its ordered kinetic energy, which consequently results in the material moving close to
the black hole. As the gas continues to lose energy efficiently, the debris can be funneled onto the black
hole while a large amount of radiation is released during this process. Through this sequence of events
the bound debris can produce intense accretion onto the black hole, during a certain period of time, which
continues as portions of the debris stream returns to the pericenter of the original star, developing the
conditions to form an accretion disc around the black hole.

If the SMBH mass is ≤ 107M⊙ and assuming that the rate at which the material returns to pericentre
is nearly the accretion rate onto the black hole, then this accretion will be super-Eddington2 for months to
years (Strubbe and Quataert 2009). This phase is characterized by isotropic radiation that in association
with the accretion luminosity will exceed the gravitational pull of the black hole and so, the material can
be blown off in a large scale wind (Strubbe and Quataert 2009), producing a spread on the disc to account
for the high luminous output and redistribution of angular momentum (Shen and Matzner 2014), or the
material can be heated till the point where the accretion disc becomes quasi-spherical (Loeb and Ulmer
1997).

2.5 Accretion disc formation
Stars that are tidally disrupted in realistic galactic nuclei are inbound to the SMBH on nearly zero energy
orbits with their apocenters lying to parsec scales (Magorrian and Tremaine 1999; Wang and Merritt
2004). It is possible then to establish the relevance of the specific energies as εorb ≪ ∆ε where εorb is the
orbital specific energy and ε∗ = GM∗/R∗ represents the star’s approximate specific binding energy before
disruption and as εorb ≪ ∆ε, ∆ε sets the fallback timescale for the most bound debris as in (2.24). After
a few fallback times, the energy dissipation through shocks will circularize the tidal debris that falls back
into an accretion disk that can induce gas transport to the SMBH through viscous processes.

The viscous timescale of the disk, at a certain radius R, given by (Shakura and Sunyaev 1973)

tvisc = α−1Ω−1(R)

(
H

R

)−2

, (2.27)

must be shorter than the mass fallback timescale and the time since disruption, where α < 1 represents the
dimensionless viscosity parameter , H(R) is the disk scale height and Ω(R) represents the orbital frequency.

The debris that returns to the disk will be quickly accreted onto the SMBH in an approximate steady-
state accretion flow. This accretion flow can be represented by the fallback rate Ṁ = (dM/dε)(dε/dt)
from (2.25). In the case of keplerian orbits, the orbital energy derivative with respect to the orbital period
P∗ is dε/dt ∝ t−5/3 (Phinney 1989). Assuming late times, where the distribution of stellar debris mass
dM/dε is approximately flat with orbital specific energy and the fallback mass will be Ṁfb from (2.26).
With such a fallback mass rate, this equation can be taken by evidence that the luminosity of a TDE flare

2The Eddington limit is considered the maximum luminosity for a star to avoid the radiative acceleration at its surface to
exceed gravity (Eddington 1926; Langer et al. 2015)
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can decrease as t−5/3, considering a bolometric luminosity3 (Lodato and Rossi 2011). The quickly accreted
debris can relate the accretion rate of the mass in the disk to the fallback rate from (2.26). If the rest
mass energy has a fraction η that can be radiated efficiently with 0 < η < 1, its luminosity can be greater
than the Eddington luminosity by (Langer et al. 2015)

Ṁfb

ṀEdd

= 1.38× 102
( η

0.1

)( MBH

106M⊙

)−3/2( t

P∗

)−5/3

, (2.28)

with the Eddington accretion rate given by ṀEdd = 1.37 × 1021 kg s−1 (Piran et al. 2015a). Through
time the accretion luminosity decays as Lacc = ηṀfbc

2 ∝ t−5/3, having a peak luminosity near that of the
Eddington luminosity given by (Piran et al. 2015a)

Lacc ≈ LEdd = 1044 erg s−1

(
MBH

106M⊙

)
(2.29)

with the accompanying effective temperature of (Ulmer 1999)

Tacc =

(
Lacc

4πR2
phσSB

)1/4

= 2× 105
(
Rph

RP

)−1/2( MBH

106M⊙

)1/4

K (2.30)

where the Stefan-Boltzman constant is represented by σSB, with a photospheric radius of Rph ≈ RP , wich
corresponds to the torus dimensions (Rees 1988; Ulmer 1999; Lodato and Rossi 2011; Miller 2015).

A star crossing the RT should conserve its orbital angular momentum before and after the disruption
moment, if no mechanism can redistribute it. The dissipation of orbital energy will then circularize the
stellar debris that is orbiting, due to shocks from orbit crossing that conserve the orbital angular momentum
before and after, the stream debris semi-major axis will approach the circularization radius of the initial
stellar orbit. To achieve an accretion disc one of the most important factors regards the efficiency of
the dissipation mechanism. To dissipate the circularization energy ∆ε = GMBH/(4RP ) in a dynamical
timescale, a rapid circularization of the stream has to occur. Two main dissipation mechanisms have to be
taken into account:

(1) The strong compression of the debris stream at pericentre, since this stream is less dense then the
star its tidal radius will be further away. As a consequence, there will be strong vertical compression
as the stream intersects its own tidal radius (Figure 2.4) Due to the shock produced during this
intersection the energy dissipation of the stream is about the same of that experienced by the star
and (Guillochon et al. 2014b)

∆εno = v2c ≈ b2
GM∗
R∗

(2.31)

is the dissipated energy, with vc given by (4.10). For a black hole of ∼ 106M⊙ and b = 1 then
∆εno/∆circ ≈ b (MBH/M∗)

−2/3 ∼ 10−4 and so a complete circularization of the debris cannot be
driven by this dissipation mechanism.

(2) Self-intersection of the stream debris (Figure 2.4) can be an effective dissipation mechanism as this
intersection occurs when the most bound stream crosses at pericentre and its orbit precesses due
to relativistic precession impacting the portion of the stream that describes a later approach to the
black hole. The collision of these two portions of the stream produce shocks that can dissipate a
significant amount of the orbital energy of the stream debris into heat. The dissipation of the energy

3The energy emitted across the whole electromagnetic spectrum.
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due to shocks by self-intersection can be obtained by

∆εsi =
ν2si
2
sin2(ψ/2) ≈ GMBH

Rint
(2.32)

where νsi ≈ (GMBH/Rint) is the velocity at the shock point, Rint is the intersection radius and
the angle formed by the incoming and outgoing stream is ψ, which in fact corresponds to the angle
between the velocity vectors of the two portions of the stream (Dai et al. 2015; Bonnerot et al. 2017a).

As the two portions of the stream are crossing in opposite directions it means that sin(ψ/2) ≈ 1. The
intersection radius Rint should be near the semi-major axis of the bound debris, as Rint ≈ amin. For low
values of ϕ, ∆ϵsi/∆ϵcirc ≈ RP /amin ≈ 10−2 (for the standard MBH = 106M⊙; b = 1), which means
that self-intersection shocks cannot also circularize completely the debris. The stream debris can achieve
a complete circularization when the intersection radius decreases to Rint ≈ RP . For MBH ≥ 107 or a
penetration parameter b ≥ 5 the precession angle is expected to increase and so reducing the intersection
radius for Rint ≈ RP . The above analysis allows the conclusion that self-intersection shocks represent
a more efficient mechanism for energy dissipation in presence of black holes whose masses are of a few
MBH ≈ 106M⊙, though none of the above mechanisms are effective enough to achieve a complete circu-
larization of the stream debris, which will be possible only after several passages around the BH (Guillochon
et al. 2014b) .

Figure 2.4: The self-intersection of the most bound debris is precessed by an angle ϕ after passing RP .
The outgoing debris intersects the portion of the debris still approaching the black hole (Coughlin 2016).

Another phenomena that affects the accretion disc formation is related to radiative cooling. If radiative
cooling is inefficient than the accretion disc will not settle and the heat injected in the gas by the shocks (due
to self-intersection) will not be radiated away efficiently. The diffusion time of the gas stream tdif = Hτ/c
with the stream width given by H and τ = kTρH is the optical depth (for kT = 0.4 cm2 g−1 which is the
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opacity for Thomson scattering). A stream element has density ρ ≈ ṀP /(πH
2νsh) (by mass conservation)

where the velocity of the stream is given by νsh ≈ RP /tdyn, which sets the heat injection region with a
length of ∼ RP . The ratio between diffusion and the dynamical timescale is (Metzger and Stone 2016)

tdif
tdyn

≈ ṀρkT
πRP c

(2.33)

giving a slow cooling of the gas that suffers expansion in its distribution at near constant total energy.
The energy f∆εcirc dissipated to circularize a portion f of the imparted gas the initial energy ∆ε of the
debris yelds f = ∆ε/∆εcirc ≈ b (MBH/M∗)

−1/3 ≈ 10−2, therefore about 1% of the circularized debris can
dissipate enough energy that consequently will unbind the remaining debris (Bonnerot et al. 2017b).

Studies carried out on the process of accretion disc formation confirm that self-intersection of the
stream debris is generally the most efficient mechanism of dissipation of energy. The hydrodynamical
simulations, achieved so far, for the disc formation process have been made for the simplified cases where
the stream length is artificially reduced, because the elongated geometry of the stream debris (for the
standard MBH = 106M⊙ and b = 1) represent a large computational cost (Ayal et al. 2000). In order
to avoid such a constraint these simulations have been made for black hole masses of MBH = 103M⊙
(Ramirez-Ruiz and Rosswog 2009; Rosswog et al. 2009; Guillochon et al. 2014b; Shiokawa et al. 2015) or
the injection of the star have been made to a bound orbit, instead of a parabolic one (Bonnerot et al. 2016;
Hayasaki et al. 2016).

The accretion disc formation process have been targeted with proposals for different sources of emission
in an atempt to explain the possible origin for the low energy optical /UV emission that has been detected
in certain TDEs. Forward shocks are indicated as a major source of optical emission source (Lodato 2012;
Piran et al. 2015b). One consequence for the dissipated energy by shocks to be approximate to that of
(2.32) for self-intersection due to shocks, comes from the fact that most of the gas resides at distances
of ∼ amin, after disc formation, with Rint ≈ amin. For such case the peak luminosity can be obtained by
(Piran et al. 2015a)

Lsh = ṀP∆εsi ≈ 7× 1043 erg s−1

(
MBH

106M⊙

)−1/6

(2.34)

with an associated temperature of (Piran et al. 2015b)

Tsh =

(
Lsh

4πR2
phσSB

)1/4

= 3× 104
(
MBH

106M⊙

)−3/8

K (2.35)

and the radiation is assumed to surface from a photosphere based at a distance of Rph ≈ amin from the
BH, such temperature is consistent with the temperature found on optical TDEs. The luminosity that
results from these shocks (when the recent fallback debris encounters the new disc) is thought to scale as
Ṁfb ∝ t−5/3 (as observed). During this process the emission of X-rays may not occur due to magnetic
stresses developed on the gas located at the accretion disc, which can drive it to the event horizon and
inhibitting any accretion luminosity (Svirski et al. 2017), though none X-ray emission is expected to occur
as the gas gets closer to the gravitational radius (RG; Bonnerot et al. (2017b)). The resulting debris from
TDEs form a disc of gas that spreads radially in a continuous mode due to angular momentum redistribution
(Pringle 1981) induced by viscosity. During the accretion onto the SMBH, the outer radius (Rout) keeps
growing and its viscous timescale will be near the current time ≈ R2

out/v ≈ t. This implies an increasing
Rout as Rout ∝ t2/3 and viscosity scales with distance as v ∝ R1/2, considering a thick disc where H ≈ R
and cs ≈ νk, so hydrostatic equilibrium is imposed in the vertical direction4.

The model proposed by Rees (1988) was able to resolve the initial TDEs class detected in the soft

4In the vertical direction νk ∝ R−1/2 is the keplerian circular velocity and viscosity evolves with radius ν ∝ R1/2.
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X-rays with luminosities of ∼ 1044 erg s−1 and t−5/3 until a few years ago. As recent optical TDEs have
been detected with lower effective temperatures of ∼ 104 K, this model can no longer account for this
more recent class of TDEs, as new understanding of this phenomena dynamics arise, new proposals of
emission sources gain visibility attempting to explain such observations.

2.6 Summary
The theoretical developments on TDEs over the last years allowed to establish the basis for the work
presented in Chapter 4.

The influence of the galactic SMBH over the surrounding stars constrains the stellar distribution and
respective stellar orbits on the GC and can determine the fate of stars that fall on the sphere of influence of
the black hole. When a star suffers such influence it enters on fatal trajectories inbound onto the compact
object where it no longer escape from and such dynamic process is known as the loss cone.

During its approach to the SMBH the star suffers the influence of tidal forces (from the black hole)
that are exerted over the star producing its deformation and disruption. Such effects are determined by the
deepness of the plunge that the star takes during its fatal fall onto the compact object which is a function
of the penetration parameter (b). This phase is known as the pancake phase.

After the TDE the material that is ripped off from the stellar surface can evolve dynamically forming
two tidal tails where one tail represents the portion of the stellar debris that stays bound to the black hole
and the other portion of the stellar debris will be forcefully ejected on hyperbolic trajectories.

The bound debris will be accreted on a fallback phase that is determined by the fallback rate decay
Ṁ ∝ t−5/3 to the debris that settles in a steady rate of accretion. The stellar debris that circularizes
around the black hole can eventually form an accretion disc, which is determined by the mechanism that
can efficiently dissipate the energy of the orbiting stellar debris.





3
Smoothed Particle Hydrodynamics

3.1 Introduction
The two main approaches to computational simulations of fluids are based on Eulerian and Lagrangian
methods. The first method fixes the observer and the fluid moves relatively to him in geometric grids
that can be fixed or adaptive (e.g., AMR - Adaptive Mesh Refinement) where the fluid parameters are
evaluated over grid cells. The second method deals with the fluid equations where the observer moves with
the flow. A good example of such method is the SPH (Lucy 1977) and Gingold and Monaghan (1977)
where discrete particles are carried in the flow and the hydrodynamic properties are evaluated at particle
positions and calculated from weighted average values on other particles. In this way the particles are
smoothed over a volume of fixed mass, which turns this method implicitly adaptive in terms of the density
(Price 2012a). While Eulerian codes can be adapted to flow parameters, these present higher resolution
in a certain number of grid cells than an SPH code for the same number of particles, which is essentially
density adaptive (Monaghan 1997). On the other hand SPH codes deal better with vacuum boundary
conditions while Eulerian codes need large grids so the flow escape from the limits of the computational
domain can be prevented (Monaghan 2005). The advection of flow properties is implicit in the Lagrangian
method of SPH in such a way that mass, momentum and energy are inherently conserved, as well as for
entropy, unless it is explicitly added in shocks (Cossins 2010).

23
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3.2 Fluid equations
The basic idea of the SPH is to replace the equations of fluid dynamics by equations of particles. The SPH
formalism will be used to approximate the continuous field onto a set of equations for particles that can be
smoothed to represent the field through its derivatives, with the errors that such approximations involves.
The simplest set of the Euler equations for an ideal gas are the equations of motion in the conservative
form, which are the equations for the conservation of mass, momentum and energy. The equation for the
conservation of mass is given by (Cossins 2010)

∂ρ

∂t
+∇ · (ρv) = 0 (3.1)

where ρ is the density, t is the time and v is the velocity. Considering the case of an inviscid fluid1, the
Euler equation gives the equation of motion, where the conservation of momentum is implied and in the
absence of external forces the momentum equation can be written as (Cossins 2010)

∂ρv
∂t

+∇ · (ρv⊗ v) +∇P = 0 (3.2)

with P denoting the fluid pressure and ⊗ is the tensor product2. The energy equation embodies the
conservation of energy in the equation (Cossins 2010)

∂u

∂t
+∇ · [(u+ P )v] = 0 (3.3)

where u represents the specific internal energy and v = |v| is the velocity vector. As the above equations
have five unknowns, i.e., vx, vy and vz which are the components of the velocity, P and u, in order to
close the system an equation of state is needed, in fact it is the equation of state for an ideal gas, which
is (Cossins 2010; Price 2005)

P = (γ − 1)uρ (3.4)

where γ = 5/3 is the adiabatic index. Henceforth it will be considered that the mass of the particles is
constant (mi = const.) and that all the particles have equal mass. The following approximations will be
related to specific particle positions.

3.2.1 Conservation of mass
The SPH approximation for the density ρj of particle j is (Cossins 2010)

ρj =
∑
i

miW (rj − ri, h) (3.5)

=
∑
i

miWji (3.6)

with Wji = (rj − ri, h). The time derivative for the density is

dρj
dt

=
∑
i

mi(vj · ∇jWji + vi · ∇iWji) (3.7)

=
∑
i

mivji · ∇jWji (3.8)

1A fluid for which all surface forces applied on the boundaries of each element of the fluid act normal to those boundaries.
2A⊗B = ABT = AiBj
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noting that the gradient of the kernel is antisymmetric with

∇iWji = −∇jWji (3.9)

and vji = vj − vi. As in (3.8) the right hand side represents an estimator of −ρj∇j · vj , then this equation
can be written as

dρj
dt

= −ρj∇j · vj (3.10)

where it can be noted that is a different form to write the equation of continuity from (3.1), with the
Lagrangian time derivative being

d

dt
=

∂

∂t
+ (v · ∇) (3.11)

where the advection of flow properties is taken in the 2nd term. In (3.6) the SPH approximation for the
density is taken as conservative of mass (Cossins 2010).

3.2.2 Conservation of momentum
The equation of motion can be written in the SPH formalism in a particular form using the Lagrangian
formalism. If the discrete Lagrangian functional holds for the fundamental symmetries of the continuous
one, the SPH equations of motion will inherently oblige the conservation laws.

The Lagrangian functional L, for the case of hydrodynamical flows, can be defined as the difference
between the total kinetic energy and the total internal energy and is (Cossins 2010)

L(r, v) =
∫
V

(
1

2
ρv · v− ρu

)
dr (3.12)

where the specific internal energy is defined by u. As the specific internal energy is a function of density
and pressure (u = (ρ, P )), these in turn are a function of position (u = u(r)). If i is related to all particles
then the approximation for the Lagrangian is (Cossins 2010)

L(r, v) =
∑
i

mi

(
1

2
vi · vi − ui(ri)

)
(3.13)

with the specific internal energy defined by u. After some adequate substitutions (which are beyond of the
scope of this work) the SPH equations of motion for the linear momentum are then (Cossins 2010)

dvj
dt

= −
∑
i

mi

(
Pj

ρ2j
+
Pi

ρ2i

)
∇jWji. (3.14)

The conservation of angular momentum L = r ×mv is taken by its derivative in order of time equals to
zero. The total time derivative for the angular momentum for all particles j through (Cossins 2010)

dL

dt
= −

∑
j

∑
i

mjmi

(
Pj

ρ2j
+
Pi

ρ2i

)
rj ×∇iWij (3.15)

=
∑
i

∑
j

mimj

(
Pi

ρ2i
+
Pj

ρ2j

)
ri ×∇jWji. (3.16)

Antisymmetry can be observed in the above equations related to j and i as long as the sum is equal to
zero. The angular momentum is conserved as it is constant through time (Monaghan 1992; Cossins 2010;
Price 2005).
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3.2.3 Conservation of energy
Considering the total energy for a fluid

E = ρu+
ρv2

2
. (3.17)

which is the sum of the kinetic energy and internal energy, the SPH approximation is given by

E =
∑
i

mi

(
1

2
vi · vi + ui

)
. (3.18)

If the time derivative of the total energy is zero it implies that the energy is conserved, taking the time
derivative it becomes

dE

dt
=
∑
i

mi

(
vi ·

dvi
dt

+
Pi

ρ2i

dρi
dt

)
(3.19)

and P = P (ρ). From (3.8) and taking dρ/dt from (3.14) the time derivative for the energy equation is

dE

dt
=
∑
i

∑
j

mimj

(
Pj

ρ2j
vi +

Pi

ρ2i
vj

)
· ∇jWji. (3.20)

Noting that if the same strategy is used as for the angular momentum, then is possible to observe that
the above equation is antisymmetric of j and i which should equal to zero. Then

dE

dt
= 0 (3.21)

and that the total energy is explicitly conserved. Finally, the SPH approximation for the internal energy is
given by (Price 2005; Cossins 2010)

duj
dt

=
Pj

ρ2j

∑
i

mi(vj − vi) · ∇iWji. (3.22)

3.3 Integral interpolant and approximation to a continuous field
Assuming that the following expression

f(r) =

∫
V
f(r′)δ(r− r′)dr′ (3.23)

represents an identity where f(r) is a scalar function on a three dimensional coordinate system r over the
volume V and the Dirac delta function δ(r)3 which is a function with r’ being a variable ranging over r.
The function δ(r) can be generalized to a smoothing kernel W with a smoothing length h, such

lim
h→0

W (r, h) = δ(r) (3.24)

with the normalization condition ∫
V
W (r, h)dr′ = 1. (3.25)

3Dirac delta function is generally used to normalize wave functions which cannot be normalized to unity (Belloni and
Robinett 2014).
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If W (r − r′, h) can be expressed by a Taylor series, then for symmetric kernels W (r − r)′ = W (r´ − r)
(3.23) can be written as (Cossins 2010)

f(r) =
∫
V
f(r′)W (r− r′, h)dr′ +O(h2) (3.26)

where the 2nd order accuracy rises from the disappearance of the kernel gradient r′ = r (Price 2005;
Monaghan 1992). For a symmetric kernel of density ρ(r) over a volume V , (3.26) can be written as

f(r) =
∫
V

f(r′)
ρ(r′)W (r− r′, h)ρ(r′)dr′ +O(h2), (3.27)

which can be discretized to a series of particles of mass m = ρ(r′)dr′. Thus (3.23) becomes

f(r) ≈
∑
i

mi

ρi
f(ri)W (r− ri, h) (3.28)

with the ith particle of mass mi and density ρi having the scalar value of f(ri) and i spreads over all the
particles in the range of the smoothing kernel. Equation (3.28) represents the basis of all SPH formalism
(Price 2005), in fact, a discrete approximation to a continuous field f at a position r in the computational
domain V .

3.3.1 Derivatives

As a method of fluids flow solver, the SPH method has to account for a convenient approximation for the
derivatives (of any quantity), which are presented as follows. Applying the smoothing kernel by taking the
spatial derivative of (3.23), with ∇ ≡ ∂/∂r, then

∇f(r) = ∂

∂r

∫
V
f(r′)δ(f − r′)dr′ (3.29)

=
∂

∂r

∫
V
f(r′)W (r− r′, h)dr′ +O(h2). (3.30)

As the smoothing length W depends on r the density can be introduced in the equation to give

∇f(r) =
∫
V

f(r′)
ρ(r′)

∂

∂rW (r− r′, h)ρ(r′)dr′ +O(h2), (3.31)

whose discretization is
∇f(r) ≈

∑
i

mi

ρi
f(ri)∇W (r− r′, h), (3.32)

which represents the approximation of the gradient of a field f(r) (Price 2005; Monaghan 1992). Giving
(3.23) an equivalent form for a vector field F (r⃗), then

F (r) =
∫
V
F (r′)δ(r− r′)dr′. (3.33)

Once again, only the smoothing kernel W depends on r, the divergence in terms of r is

∇ · f(r) =
∫
V
F (r′) · ∇W (r− r′, h)dr′ +O(h2), (3.34)
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which after discretization becomes (Price 2005)

∇ · F (r) ≈ ∇W (r− r′, h)dr′ +O(h2). (3.35)

Finally, using the same arguments as before, the curl of the vector (∇ × F ) can be expressed (Price
2005) by

∇× F (r) ≈
∑
i

mi

ρi
F (ri)×∇W (r− ri, h) (3.36)

which is the approximation to the continuous field, though in this case its use is essentally to account for
MHD effects.

3.4 Errors

The errors that occur from considering only the integral term and those committed in the discretizations
are encompassed from the approximations in (3.28), (3.32), (3.35) and (3.36). In the first case the O(h2)
errors can be decreased if the smoothing kernel is reduced and in the second case the discretization errors
can be can be reduced if the number of particles increase within the smoothing kernel.

The errors are described in terms of the approximations of the function f(r) ≡ 1 and zero function,
where the definition of f implies ∇f(r) = 0. Then, the one and zero SPH approximations are Price (2005)

1 ≈
∑
i

mi

ρi
W (r− r′, h), 0 ≈

∑
i

mi

ρi
∇W (r− r′, h). (3.37)

These errors can be maintained in an acceptable level, if a suited choice for the number of particles over
the smoothing kernel and the smoothing length is done.

The choice of an adequate kernel must be done from the criteria set from (3.24) and (3.25) such that
the kernel must tend to a δ function when h→ 0 and it also has to be normalized so that the area under
the curve is of order unity. The kernel must have the first derivative well defined to calculate the gradient
and has to be spherically symmetric, so this way it only have to depend on r = |r− r′| and h. The Gaussian
function defined by

W (r, h) =
1

k3π3/2
e−x2 (3.38)

was one of the first choices for the smoothing kernel, where x = r/h. This kernel presents a disadvantage,
because all particles in the computational domain contribute, due toW > 0 for all r. The use of this kernel
makes the computational cost to scale up to O2 with N being the particles present in the simulation. For
this reason and since long range forces are negligible, the kernel should be constrained to the one with
compact support, that is to say that it must be under the condition W (r, h) = 0, with r/h > k (where k
is a constant).

This condition scales the computational cost to O(NNneigh) with Nneigh being the average number of
particles on a sphere of radius r = kh (Price 2005). In order to avoid such computational cost the use of
cubic splines is better suited (Monaghan and Lattanzio 1985) and the kernel based on this cubic splines is
defined by

W (r, h) =
1

πh3


1− 3

2x
2 + 3

4x
3 0 ≤ x ≤ 1;

1
4(2− x)3 1 ≤ x ≤ 2;

0 x ≥ 2

(3.39)
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and x is the same as in (3.38) (Monaghan 1992; Price 2005).
As most of the codes tabulate the values of the kernel and its gradient rather then compute them

directly, the form of the kernel makes little difference for the speed of the computation of the code. In the
present work the kernel used in Phantom is the M4 cubic kernel.

3.5 Shocks
When transonic and supersonic flow regimes are to be modelled, the conversion of the mechanical (kinetic)
energy into thermal (internal) energy can represent a challenge, as this conversion may not be correctly
captured, i.e., for small scales, which in SPH corresponds to the smoothing length, the discontinuities are
not well resolved by the numerical method. In order to solve this problem a small amount of viscosity is
introduced in the simulations, spreading the shocks (shock fronts) in order to be well resolved or at least
sufficiently resolved (Richtmyer and Dill 1959).

3.6 Artificial viscosity
The most used artificial viscosity form is derived from the momentum equation as (Monaghan 1992)

dvj
dt

= −
∑
i

mi

(
Pi

ρ2i
+
Pj

ρ2j
+Πji

)
∇jWji, (3.40)

with Πji given by

Πji =


−αc̄jiµji+βµ2

ji

ρ̄ji
, vji · rji < 0

0 , vji · rji > 0

, (3.41)

where the term µji is given by
µji =

hvji · rji
r2ji + η2

. (3.42)

When vji · rji > 0 the viscosity is swept away.
The artificial viscosity expression Πji has a linear term in the velocities that allows for shear and bulk

viscosity to occur (Monaghan and Lattanzio 1985). High mach number shocks must be treated with the
quadratic term which is the equivalent for the Von Neumann-Richtmeyer viscosity finite-difference methods,
with some clear advantages such:

i) is Galilean invariant;

ii) for rigid body rotation problems it disappears;

iii) linear and angular momentum are conserved.

General astrophysical applications where shock fronts have a spreading of ≈ 3h, can have good accuracy
when α = 1 and β = 2. The smoothing of the viscous term, which can be dramatic in dense regions, will
be prevented with η2 term, in µji, preventing singularities to occur having η2 = 0.01h2 (Monaghan 1992;
Price 2005).
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3.7 Thermal conductivity

The approximation to the thermal conductivity term (Monaghan 1992)

1

ρ
∇ · (k∇u) (3.43)

where k is the coefficient of thermal conductivity and is based on the SPH integral form, such

−
∑
i

mi
(qj + qi)(uj − ui)(rji · ∇jWji)

ρ̄ji(rji + η2)
, (3.44)

with the term q = k/ρ having the length × velocity dimension. In the conditions where the kernel is a
Gaussian and the density is constant, then the particle i contributes to the heat conduction of particle j
by

−2mik(uj − ui)Wji

ρh2
. (3.45)

The exchange of heat between pairs of particles leads to the thermal conduction. The conduction term
in SPH conserves total energy and with the increase of the thermal energy with temperature, the total
entropy also increases, as expected (Monaghan and Lattanzio 1985; Monaghan 1992).

The thermal energy equation can include the diffuse radiation transport (if occurs). As the total energy
is conserved with the transport no heat loss will occur, otherwise a surface term will be needed, that
can be obtained by derivation of the physical arguments. Nevertheless, simulating radiation processes in
astrophysical phenomena is still complex, though the thermal energy equation can add heating and cooling
sources but it will have to be integrated implicitly due to the large differences between the short cooling
time and the dynamical timescale (Monaghan 1992).

3.8 The magnetic field

The magnetic fields are obtained through the magnetic force and current. In SPH the current must be
estimated accurately because is where the matter is present. The magnetic force per unit mass is given by
(Monaghan 1992)

J× B
ρ

(3.32)

with the current J given by
J = εc2∇× B. (3.33)

The estimation for the current is

ρ∇× B = ∇× (ρB)− (∇ρ)× B, (3.34)

where
ρj(∇× B)j =

∑
i

mi(Bj − Bi)×∇jWji, (3.35)

which in the case of constant B it will be supressed (Gingold and Monaghan 1977). Assuming that the
kernel is a Gaussian, particle i contributes for the current in particle j through (Monaghan 1992)

−
(
2ε0c

2miWji

h2ρj

)
(Bj − Bi)× (rj − ri). (3.36)
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A consequence of (3.36) is that there is only information of the current on particle i on the direction ⊥ to
(rj − ri). The time variation of the B assumes the form

dB
dt

= −B(∇ · v) + (B+∇)v (3.37)

which has the SPH equivalent in the form

dBjj
dt

=
1

ρj

∑
i

mi(Bjjvji − vji,jBj) · ∇jWji (3.38)

and the term vji,j is the jth component of vji. The compression of the field lines by the first term increases
B and the 2nd term shears the j component of B (Gingold and Monaghan 1977).

3.9 The Phantom code

The Phantom code is based on the method of Smoothed Particle Hydrodynamics. Its a parallel and low
memory code which was developed in 3D by Price et al. (2017), for astrophysical purposes, where stellar,
galactic, planetary and high energy astrophysics have the main focus. A brief description of the code is
presented downwards.

In the Phantom code the equations describing the compressible hydrodynamics are set through the
equations of velocity, energy and the equation of state as (Price et al. 2017)

dv

dp
= −∇P

ρ
+Πshock + aext(r, t) + asink−gas + aselfgrav, (3.46)

du

dt
= −P

ρ
(∇ · v) + Λshock − Λcool, (3.47)

where P is the pressure, u represents the specific internal energy and the accelerations from external forces
(body forces), self particles and self-gravity are represented by aext, asink−gas and aselfgrav. The entropy
increase of the shocks is set by the dissipation terms Πshock and Λshock and Λcool represents the cooling
term. Assuming that shocks radiate away the heat that is generated at the shock front, the cooling term
is set to zero (Λshock = 0) and there is no cooling (Λcool = 0). The equation of state closes the set of
equations relating the pressure with the density and internal energy. This equation of state for an ideal
gas is given from equation 3.4 with the adiabatic index being represented by γ and the sound speed (cs)
is (Price et al. 2017)

cs =

√
γP

ρ
. (3.48)

The pressure of the gas can be expressed also by

P =
ρkBT

µmH
, (3.49)

where mH is the mass of an hidrogen atom and the internal energy u is related to the gas temperature by

T =
µmH

kB
(γ − 1)u. (3.50)

nstantIn this expression kB is the mean molecular weight µ and mH is an hidrogen atom (atomic mass
unit; amu). The default equation of state used in Phantom is P = (1− γ)ρµ with γ = 5/3.
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3.9.1 Timestepping
A generalized leapfrog integrator4 is used for the equations of motion. The leapfrog method is the velocity
Verlet from Verlet (1967). This method updates the positions and velocities of the particles from tn to
tn+1, admitting

vn+1/2 = vn +
1

2
∆tan, (3.51)

rn+1 = rn +∆tvn+1/2, (3.52)
an+1 = a(rn+1), (3.53)

vn+1 = vn+1/2 +
1

2
∆tan+1, (3.54)

with ∆t ≡ tn+1 − tn. The Verlet method allows the Hamiltonian nature of the SPH algorithm to be
preserved (see Price (2012b) and references therein), mainly linear and angular momentum are conserved.
The first order prediction of velocity is given by (Price et al. 2017)

vn+1/2 = vn +
1

2
∆tan, (3.55)

rn+1 = rn +∆tvn+1/2, (3.56)

v∗ = vn+1/2 +
1

2
∆tan, (3.57)

an+1 = a(rn+1, v∗), (3.58)

vn+1 = v∗ +
1

2
∆t[an+1 − an]. (3.59)

The error of the first order prediction must be smaller than a tolerance ε as

e =
|vn+1 − v∗|

vmag
< ε, (3.60)

and vmag represents the mean velocity of all SPH particles. If |vmag = 0| then the error is e = 0 and
the default value of the tolerance in the code is set to ε = 10−2. A characteristic feature in SPH codes
is to allow the timestepping in simulations to vary, under some constraints. This way the velocities and
accelerations of particles are calculated in small increments, decreasing the computational cost (Price et al.
2017). From several criteria that rule a particle timstep in Phantom, the primary constraint is the Courant
condition

∆tC = Ccour
h

vsig
, (3.61)

where Ccour = 0.3 and is the default value for the Courant factor and vsig represents the maximum signal
speed over all the neighbouring particles assuming that αAV = max(αAV , 1; with AV denoting the artificial
viscosity).

This way the Courant condition guarantees that the compressional waves and similar features have three
timesteps for minimum to move through a particle, implying that these features can be well resolved in
time. If an additional constraint, mainly the force condition, is applied based upon forces on the particles,
then

∆tjf = Cforce

√
hj
|aj |

and ∆tjsink−gas = Cforce

√
hj

|asink−gas|
, (3.62)

4Leapfrog integration is a particular approach to write two coupled first-order ordinary differential equations with finite
differences
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with Cforce = 0.25, being the default value, hj represents the smoothing length of the particle j and |aj |
is the magnitude of the acceleration on the particle j. The previous conditions are known as the ”force
condition” and the ”sink-gas force condition”, respectively. The timestep for a specific particle is given by
the minimum of these conditions, such (Price et al. 2017)

∆tj = min(∆tC ,∆t
j
f ,∆t

j
sink−gas), (3.63)

where the minimum value of ∆tj for all particles j in the simulation will generally be set as the timestep
of the simulation.

3.9.2 Sink particles
Sink particles are a feature in the Phantom code that can be used to approximate stars to compact objects,
i.e., the cores of stars to compact objects like black holes (the case in the present work). These particles are
used to accrete gas around them under determined conditions and so these are different of other particles
(point mass; e.g., dust and dark matter) in some characteristics like:

i) sink particles gravitational interaction is computed with a collisional direct N2 summation;

ii) sink particles can accrete gas;

iii) sink particles can store the accreted angular momentum and the accreted mass.

In this section the particle labels will be denoted by a, b and c while the labels i, j will refer to vector
indices (Price et al. 2017). The motion of sink particles can be expressed with

dvi
dt = −

Nsink∑
j=1

GMjϕ
′
ij(ε)r̂ij −

Npart∑
b=1

Gmbϕ
′
ib(εib)r̂ib, (3.64)

where the softening length of the sink-gas is represented by εib which is set to be the maximum of the
softening length of the sink particles and the softening length of the gas particle as εib ≡ max(ε, εb).

The equivalent of such motion in acceleration of SPH particles is

aasink−gas = −
Nsink∑
j=1

GMjϕ
′
aj(εaj)r̂aj , (3.65)

in both equations ϕ′ab represents the softening length kernel. If the sink has a softening length of zero
there is no softening length applied on sink-gas interactions and in such cases the accelerations of sink-gas
becomes (Price et al. 2017)

aasink−gas = −
Nsink∑
j=1

GMj

|ra − rj |3
raj . (3.66)

3.9.3 Self-gravity
Self-gravity in Phantom is calculated using direct summation of the kernel softened gravitational interaction
between a target particle and its neighbour particles. For long range interactions, these are introduced by
adding acceleration between the centre of two nodes, accounting for the quadropole moment of the node,
which means that long range interactions are computed by hierarchical grouping of the particles. A solution
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to Poisson’s equation

∇2Φ = 4πGρ(r) (3.67)
aselfgrav = −∇Φ (3.68)

is implied by selg-gravity, where Φ represents the potential, ρ is the continuous fluid density and the
acceleration term aselfgrav in the equation of motion is given by (3.68) (Price et al. 2017).

3.9.4 External forces
In terms of potentials the code uses a simple external force, which can be described by

Φa = −GM
ra

; aext = −∇Φa = −GM
|ra|3

r̂a (3.69)

that represent a point mass at the origin and ra ≡ √
ra · ra, so with this potential the particles that are

found in a certain distance of the origin can be accreted (Price et al. 2017). To better reproduce some
important features of the Schwarschild (Schwarzschild 1916) spacetime (e.g., orbital frequencies) the code
incorporates a module with a Newtonian potential implemented by Tejeda and Rosswog (2013), given by

aext = −GMr

r3
f2 +

2Rgv(v · r)
r3f

− 3Rgr(v × r)2

r5
(3.70)

where the acceleration term is aext, Rg ≡ GM/c3 and f ≡ (1−2Rg/r). A semi-implicit solution is needed
for the velocity terms, so iterations for the corrector step with a fix point will bring the velocity to a certain
tolerance of the previous value from the previous iteration (Price et al. 2017).

3.9.5 Stretch mapping
Non-uniform density profiles can be set up with stretch mapping. Spherical distributions (Herant 1994)
can be implemented for any density profile through one direction (Price and Monaghan 2004) where the
particles are initially setup in a uniform distribution, i.e., the particles should keep their relative position in
the mass distribution. In order to solve the coordinate system for each particle, the equation

f(x) =
M(x)

M(xmax)
− x0 − xmin

(xmax)− xmin
= 0 (3.71)

where x0 is the initial coordinate for the particle and M(x) represents the density profile that is integrated
over the coordinate direction, such

M(x) ≡
∫ x

xmin

ρ(x′)dxS(x′)dx′ (3.72)

with the element area represented by dS(x′) being geommetrically dependent, which direction is

dS(x) =


1 cartesian, cylindrical or spherical along ϕ, θ or z

2πx cylindrical along r
4πx2 spherical along r

(3.73)

For each particle (3.71) is resolved iteratively with Newton-Raphson (Cirnu and Badralexi 1995) method
as

x = x− f(x)

f ′(x)
(3.74)
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with f ′(x) given by
f ′x =

ρ(x)dS(x)

M(xmax)
(3.75)

until the iterations reach |f(x)| < 10−9. The stretch mapping is achieved by changing optional arguments
where the density function is chosen as needed.

3.9.6 Damping
The damping parameter fd is used to relax the particle distribution into equilibrium (Gingold and Monaghan
1977) in a way that an amount of the kinetic energy is removed every timestep and an external acceleration
is added, such

aaext,damp = −fdv (3.76)

where in the case of small values of fd, a fraction of the kinetic energy of the particles is taken in every
timestep.

3.10 Tests
The test algorithms in Phantom pretend to demonstrate the correct implementation of the code and the
results obtained from such tests are the same as those achieved by other codes. In the numerical tests the
quintic spline kernel M6 is used with the softening length hfac = 1.0 gives a mean neighbour number of
113 for the 3D cases. If the cubic spline kernel hfac = 1.2 is used, the majority of the tests results are
approximatly the same with a mean number of neighbour particles of ≈ 58.

3.10.1 The Sod shock tube
The Sod shock tube test from Sod (1978) is a benchmark in the shock tube problems. The test executed
in Phantom is in 3D and the initial conditions in the tube are set to [ρ, P ] = [1, 1] for the left side of the
tube (x ≤ 0) and [ρ, P ] = [0.125, 0.1] for the right side of the tube (x > 0), having an initial discontinuity
at x = 0 and the initial velocities and magnetic field are zero. An adiabatic equation of state with the
adiabatic index γ = 5/3 is used, with periodic boundaries for y and z. The set up of the density contrast
can be challenging in 3D SPH and this problem is set up in Phantom with the particles being initially on
a close packed lattice, fixed in number on the y(z) direction to ensure the continuity across the periodic
boundaries, where the spacing in the x direction is arranged to give the correct density over the subdomains.

The density profile contrast is initialized with equal mass for all the particles with resolution of 256×
24× 24 at x ϵ [−0.5, 0] initially and 128× 12× 12 particles for x ϵ [0, 0.5]. Boundary conditions along the
x direction is achieved by choosing the first and last rows of particles along that direction to be boundary
particles (particle properties are set constant).

The results of the test implemented in Phantom are shown in Figure 3.1 which represents the test for
256 × 24 × 24 at x ∈ [−0.5, 0] initially and 128 × 12 × 12 particles for x ∈ [0, 0.5], where the artificial
viscosity αAV = 1, βAV = 2 and the artificial conductivity αu = 1 are code defaults. The exact solution
given by the solid red line shows the shock wave at the right side which is followed by a contact discontinuity
and a rarefaction fan on the left side. The distribution of the particles given by the numerical solution
represented by the black dots trace with accuracy the features of the exact solution which gives the global
results very similar to those from Sod (1978).

3.10.2 The Brio & Wu shock tube
The MagnetoHydrodynamics (MHD) Shocktube problem from Brio and Wu (1988) has been extensively
discussed (Wu 1988; Dai and Woodward 1994) over the years, but has become a benchmark for the
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Figure 3.1: The Sod shock tube test with the particles (black dots) against the exact solution (red lines).

numerical tests of MHD. The Brio and Wu (1988) test problem is implemented with the same initial
conditions of the latter paper, with a resolution of 256 × 24 × 24 at t = 0.1 in 3D, set initially with x ∈
[−0.5, 0.5] in a close packed lattice (Figure 3.2). All particles are projected against the x-axis represented
by the black dots and the numerical solution (in this case from Balsara (1998)) is represented by the solid
red lines and the artificial viscosity was set to αAV = 1. The test represents the propagation of several
waves that grow at the same speed.

This test was set up with ρ = 1, P = 1, By = 1 and Bz = 0 for x ≤ 0 and for x > 0 was set with
ρ = 0.125, P = 0.1, By = −1 and Bz = 0 where the initial velocities are zero, Bx = 0.75 and γ = 2.
Equal mass particles were used for the initial density contrast in a close packed lattice with resolution of
256× 24× 24 particles for x ϵ [−0.5, 0.5].

The MHD shock tube test involves composed structures that present shocks and rarefactions that
propagate at the same time and so belong to the same wave family (Brio and Wu 1988). The solution for
this test shows the complex structures of the shocks that can be formed via the different waves in MHD
and consists in the components given by a set of waves moving to the left which are a fast rarefaction
fan and a slow compound wave that is composed by a slow rarefaction coupled to a slow shock and the
waves that move to the right are given by a contact discontinuity, a fast rarefaction fan and a slow shock.
The results obtained with Phantom capture with accuracy the set of waves generated and exhibit good
agreement with those given by Brio and Wu (1988) and Stone and Norman (1992).
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Figure 3.2: The MHD shock tube test with particles (black dots) against numerical solution (red lines)
with 256× 24× 24 particles placed in a close packed lattice at t = 0.1.

3.10.3 The Sedov-Taylor blast wave
The blast wave test from Taylor (1950); Sedov (1959) has a spherical geometry and is well suited for the
individual timestepping algorithm. The test consists in the propagation of a blast wave into a populated
medium of inactive particles with the consequence of loss of energy conservation (Saitoh and Makino 2009).
The set up of the problem consists in a uniform periodic box with x, y, z ϵ [−0.5, 0.5] with the thermal
energy ̸= 0 in a sphere around the origin. The equation of state is adiabatic with γ = 5/3.

The total thermal energy in the blast is E0 =
∑

amaua = 1, which is distributed over the particles
that have r < Rkernh0 (with the smoothing length kernel) such

ua =


E0W (r, h0), r/h0 ≤ Rkern

0, r/h0 > Rkern

(3.78)

with r =
√
x2 + y2 + z2, which is the radius of the particle and h0 is twice the smoothing length of the

particles.
The results obtained with Phantom for this test are shown in Figure 3.3, where the simulation of the

Sedov blast wave for 323, 643 and 1283 particles, respectively, are projected in terms of the density as a
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function of the radius. The numeric solution is represented by the black dots and the exact solution is
represented by the solid red line. This test resolves the shock position more accurately with increasing
number of particles as the thermal energy is better conserved.

Figure 3.3: The Sedov blast wave solutions for smoothed explosion energy test with 323, 643 and 1283

particles (black dots) compared with the exact solution (solid red line) placed on a uniform cubic lattice.



3.10. TESTS 39

3.10.4 The Orszag-Tang vortex

This MagnetoHydrodynamics (MHD) problem was developed by Orszag and Tang (1979) and has been
extensively used to test MHD codes in astrophysics.

The Orszag-Tang vortex test was set up in a uniform density periodic box with x, yϵ[−0.5, 0.5]. To set
up the 2D problem in 3D the boundary in the z direction was set to ±2

√
6/nx, where nx represents the

initial number of particles along xx.

Figure 3.4: The Orszag-Tang vortex test with increasing resolutions (from left to right) of 128×128×128,
256× 256× 256 and 512× 512× 512 for equal mass of the SPH particles.

The initial values were set with β0 = 10/3 for the plasma, M0 = v0/cs,0 = 1 for the Mach num-
ber, [vx, vy, vz] = [−v0 sin(2πy′), v0 cos(2πx′), 0.01v0] for the velocity field and for the magnetic field
[Bx, By, Bz]=[−B0sin(2πy

′)], with v0 = 1, B0 = 1/
√
4π, x′ ≡ x − xmin, y

′ ≡ y − ymin, which gives
P0 = 1/2B2

0/β0 ≈ 0.133 and ρ0 = γ0 P0 M0 ≃ 0.211 and γ = 5/3 is the adiabatic index for the equation
of state. In Figure 3.4 the results for three different resolutions are shown, at t = 0.5 s (top panel) and
t = 1 s, for nx = 128, nx = 256 and nx = 512 (bottom panel), respectively. At t = 0.5 s it is observed
that the shocks are well defined as also the reconnecting layer of magnetic field where it can be observed
the dense filament of captured material which can be compared to Fig. 6 of Dai and Woodward (1998)
and Fig. 22 of Stone et al. (2008). By t = 1 s the current sheet may achieve the instability mode, where
some magnetic islands will be developed and can only be observed at the higher resolution in bottom panel
for nx = 512) of Figure 3.4 due to the small numerical dissipation, which can be seen in Figure 32 of Price
et al. (2017).



40 CHAPTER 3. SMOOTHED PARTICLE HYDRODYNAMICS

3.10.5 The Kelvin-Helmoltz Instability
The Hydrodynamics (HD) Kelvin-Helmoltz Instability5 (K-H) test in Phantom is implemented through the
adopted set up by Robertson et al. (2010). The density and shear velocity along the y direction are given
by

ρ(y) = ρ1 +R(y)[ρ12 − ρ11] (3.77)
vx(y) = v1 +R(y)[v2 − v1] (3.78)

with ρ1 = 1, ρ2 = 2, v1 = −0.5 and v2 = 0.5, the pressure is constant with P = 2.5 and γ = 5/3.

Figure 3.5: The K-H test with resolutions from top to bottom 64×74×12, 128×148×12, 256×296×12.
Resolutions for this test are from top to bottom: for equal mass of the SPH particles.

The ramp function used to smoothen the initial density constrast is given by

R(y) ≡ [1− f(y)][1− g(y)] (3.79)

where f is represented by

f ≡ 1

1 + exp[2(y − 0.25)/∆]
(3.80)

g ≡ 1

1 + exp[2(0.75− y)/∆]
(3.81)

with ∆ = 0.25. The velocity is perturbed along the y direction by
5This instability can occur when there is a difference in velocities along the interface between two fluids (Frank et al. 1996).
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vy = 0.1sin(2πx) (3.82)

The Kelvin-Helmoltz Instability is set up in a 3D dimensional box.
A uniform close packed lattice is set up in a periodic box of 1× 1×

√
24/nx, with nx representing the

initial resolution along the x direction with its thickness being set with spacings of 12 particles along the
z and the box dimensions are set between [0, 1] for x and y. The initial density profile is set up by the
stretch mapping along the y direction with a 2:1 density treshold smoothed transition.

The results obtained for this test problem are consistent to those obtained by (Robertson et al. 2010)
and a cross-section of the density at z = 0 for three resolutions, nx = 64, nx = 128 and nx = 256
respectively, is represented in Figure 3.5.

3.10.6 The MHD rotor
The MHD rotor test problem was developed for the study and test of the propagation of rotational discon-
tinuities. The setup of this test is implemented in 3D in Phantom in the same way as in Monaghan and
Price (2005) and following Tóth (2000).

Figure 3.6: Plots of the MHD rotor problem for density (top panel), pressure (middle panel) and magnetic
pressure (bottom panel) are shown with 30 contours equally spaced. Resolutions increase from left to right,
respectively, nx = 64, nx = 128 and nx = 256.
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The test consists in a dense rotating disc with density ρ = 10 which is set up with a cylindrical radius
R = 0.1 on a periodic box with [x, y] ∈ [−0.5, 0.5] and the boundary in z is −

√
6/2nx,

√
6/2nx on a

closed packed lattice. The setup has an initial density contrast unsmoothed placing two uniform lattices of
particles which are spaced inside the cylinder by the inverse cube root of the density contrast.

The initial velocities are set to vx,0 = −v0(y − y0)/r and vy,0 = v0(x − x0)/r, where v0 = 2 and
r = x2 + y2, for r < R. The density is ρ = 1 and initial pressure is uniform with P = 1 and the magnetic
field is [Bx, By, By, Bz] = [5/

√
4π, 0, 0] and γ = 1.4. In the highest resolution of nx = 256 the number of

particles is 1145392.
The results for the density, pressure and magnetic pressure at resolutions of nx = 64, nx = 128 and

nx = 256 are shown in Figure 3.6, where thirty contours of equal space between the minimum and the
maximum are applied in each plot. The sharp discontinuities and the symmetry of the solution (which
is preserved by the numerical scheme) can be compared for nx = 256 in Phantom against the grid of
400× 400 cells in Stone et al. (2008).

3.10.7 The Galaxy merger
The SPH implementation of the galaxy merger test requires gravity for the interaction of multiple particles
(e.g., stars, gas, dark matter) where the particles interact hydrodynamically between them and the gas
interacts with itself Price et al. (2017).

The evolution of the galaxy merger implemented in Phantom can be compared with the results obtained
with the Hydra N-body/SPH code (Couchman et al. 1995; Thacker and Couchman 2006). In the Phantom
code the galaxy merger test was implemented with GalacTics (Kuijken and Dubinski 1995; Widrow and
Dubinski 2005; Widrow et al. 2008) in order to obtain a Milky Way-type galaxy with a stellar disc, a stellar
bulge and a dark matter halo Price et al. (2017). The stellar disc was duplicated in the x = y plane so
this way there are no coincidences with star particles and the gas disc can be created taking 10% of the
total stellar mass. The gas halo was encapsulated within the dark matter halo with a temperatuyre profile
from Kaufmann et al. (2007) and a β-profile6 (Cavaliere and Fusco-Femiano 1976; Ettori 2000), where the
mass from the hot gas halo was taken from the dark matter particles to keep a total halo mass (Price et al.
2017).

The merger of the galaxies (after duplication of the galaxy to obtain two similar structures) was set
with a distance of 70 kpc between them and approaching each other on a parabolic trajectory (Wurster
and Thacker 2013). In Table 3.1

Component M/M⊙(10
10) m/M⊙(10

5) N

Dark matter halo 89.92 89.92 100 000
Hot gas halo 0.60 2.77 21 619
Stellar bulge 1.34 18.10 7 407
Stellar disc 3.56 18.10 19 662
Gas disc 0.54 2.77 19 662

Table 3.1: Components of each galaxy in the galaxy merger test in Phantom. The total mass is M , the
particle mass is m and the total number of particles is N for each component, respectively.

The evolution between t = 100 Myr to t = 1.4 Gyr of the column gas density obtained for the galaxy
merger test with Phantom is shown in Figure 3.7 and the insets on the bottom right corner represent the
galaxy merger obtained from the Hydra code. The distance that separates the two galaxies at t = 450
Myr is ≈ 61 kpc in Phantom and ≈ 59 kpc in Hydra. At t = 905 Myr and t = 875 Myr for Phantom
and Hydra, respectively, the second encounter at the pericentre of their trajectories represents a difference
of ∼ 3.4% since the initial moment (beginning of simulation) and the density in Phantom is ∼ 10 times

6Observed surface brightness that constrains the gas density distribution
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lower, possibly due to a more diffuse core Price et al. (2017).
Some significant differences in the algorithms from both codes are indicated by Price et al. (2017), as

follows.

1) Gravity solver - In Phantom a main optimization of the treecode is to compute the long-range
gravitational interaction per leaf-node instead of computing it per particle, while in Hydra an adaptive
particle-mesh algorithm is used.

2) Smoothing length - The smoothing length (hi) is calculated self-consistently and no lower limit is
fixed while in Hydra the smoothing length is limited as hi = max(hi, hmin).

Figure 3.7: The galaxy merger test from Phantom with the evolution of the gas density of two Milky
Way-type galaxies. In the bottom right corner of each frame the inset of the same test with the Hydra
code is shown.

The more recent code Phantom presents some differences from the Hydra code which may be attributed
to the improved SPH algorithms incorporated in the first. This comparison between the two codes was
simplified as no star formation recipe is considered as well as no black holes and no feedback from Active
Galactic Nuclei (AGN), thus only the SPH and gravity algorithms were taken into account.

3.10.8 Summary
The Smoothed Particle Hydrodynamics (SPH) method is based on the Lagrangian method that deals with
the fluid equations where discrete particles are used with hydrodynamic properties evaluated at particle po-
sitions from the calculated weighted average values on other particles. This method is implicitly adaptive
due to the smoothing of the particles over a volume of fixed mass and is also suited to deal with vacuum
boundary conditions.
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In SPH mass, momentum and energy are inherently conserved.Though magnetic fields were not con-
sidered for the present work, the SPH approximation equations for the magnetic fileds are presented.

The Phantom code was developed by Price et al. (2017) over the last decade for astrophysical appli-
cations in 3D. Presented as a fast, parallel and low-memory SPH code it is specially suited for high energy
astrophysics (stellar, galactic and planetary) and studies of accretion phenomena such as accretion discs or
black hole accretion. Some of the algorithms of the code were outlined as these were extensively used in
this work (e.g., self-gravity, external forces).

In terms of the accuracy and performance the Phantom code is supported with several standard and
well studied tests extensively used in astrophysics with known solutions or analytic solutions which were
compared to the results obtained with the code. The results obtained with some of these tests can be
compared to those obtained with the most extensively used Eulerian codes such as Zeus-MP (Hayes et al.
2006), as for example, the MHD vortex and the MHD rotor tests.



4
Parabolic and Elliptic TDEs - Results

from numerical simulations

4.1 Introduction
The tidal disruption of a star by a ∼ 4×106M⊙ Schwarschild SMBH is investigated. For this configuration
the black hole is modelled by an external potential in the Keplerian regime with a tidal radius of RT =
(MBH/M∗)

1/3R∗. Two sets of Parabolic and Elliptic TDEs involving a star describing different orbits, with
different penetration parameters and consequently different pericentre distances RP were implemented.
TDEs are a complex process that can be analitically described to a reasonable precision (Rees 1988)
though are also a non-linear interaction between gravity, gas dynamics and radiation, to name a few, which
for a realistic approach to study such disruptive processes, numerical simulations represent a reliable tool
(Kochanek 1994; Evans and Kochanek 1989; Bonnerot et al. 2016).

The study of TDEs in this work is based on the type of star and its mass, its polytropic index,
the characteristic black hole (for this work a Schwarschild black hole was chosen, with a mass that is
approximately the mass of the central SMBH of the Milky Way), the eccentricity of the star for parabolic
and elliptic orbits, and the penetration parameter b. For a fixed penetration parameter, RP scales with
(MBH)1/2 and the RP crossing time does not depend on the MBH . As RP ≪ RT , the asymmetry of the
tidal field becomes less significant and the tidal field strength at RP , for encounters of the order 106 : 1 is
≈ 3% (Guillochon et al. 2011) and even more for 4×106 : 1. In TDEs, stars that fall into the gravitational

45
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field of a black hole are scattered due to the sphere of influence of the black hole (Magorrian and Tremaine
1999; Wang and Merritt 2004) and for the same penetration parameter the orbits, the asymmetry of the
tides and the star’s dynamical time tdyn =

√
R3

∗/GM∗ are somewhat very similar, the tidal forces that the
star suffers as a function of time are independent of the parameters MBH , ecc,M∗ and R∗ and so TDEs
that have origin in SMBHs can be described by the penetration parameter.

The physical units used in this work are shown in Table 4.1

Quantity Unit
Mass 1.989× 1033 g
Length 6.965× 108 cm
Time 1.594× 103 s
Energy 3.793× 1048 erg
En/m 1.907× 1015 erg g−1

Velocity 4.367× 107 cm s−1

G 6.670× 10−11 m3 kg−1 s−2

Table 4.1: Physical units (cgs) used in the simulations of the parabolic and elliptic TDEs.

4.2 Parabolic TDEs
A set of eight TDEs involving a star on a parabolic orbit passing the SMBH at the GCr were performed.
A non-rotating Schwarschild black hole with a mass of MBH ∼ 4 × 106M⊙ has a tidal radius of 159R⊙
defined by RT = (MBH/M∗)

1/3R∗ (∼ 3.5844556 × 10−6 pc). The star considered for these simulations
is of solar type with a mass M∗ = 1M⊙ and radius R∗ = 1R⊙. It was evolved hydrodynamically as a
polytropic star with an adiabatic index of γ = 5/3 and an SPH resolution of 5× 105 particles, which was
relaxed for 1.593× 105 s with a γ = 5/3 equation of state was used.

4.2.1 Setup and initial conditions
The simulations begin with the star at r0 as the starting point. The star begins its trajectory on an orbit
that is a function of the eccentricity (ecc = 1 for parabolic orbits) and the penetration parameter b. The
parameters for the simulations with the initial conditions are shown in Table 4.2.

Model b r0[R⊙] RP [R⊙] RT [R⊙]

1 0.5 4.49× 102 3.175× 102 159
2 1 2.24× 102 1.587× 102 159
3 2 1.12× 102 7.937× 101 159
4 3 7.48× 101 5.291× 101 159
5 5 4.49× 101 3.175× 101 159
6 6 3.74× 101 2.646× 101 159
7 7 3.21× 101 2.268× 101 159
8 8 2.81× 101 1.984× 101 159

Table 4.2: Simulation parameters for each model of the parabolic TDEs.

The geometric complexity of a parabolic TDE is illustrated in Figure 4.1 where a 1M⊙ star describes
an orbit inbound onto the SMBH, where it will experience the effects of the tidal forces from the black
hole. After the pericentre passage at RP the star, describing a trajectory indicated by the dashed black
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line, is stretched into an elongated shape with lobes forming in the extremities, with the stellar core in the
centre. The SMBH is located at the origin (0,0) and the tidal radius RT is represented by the dotted gray
circle.

Figure 4.1: Time evolution of a star and its debris in a parabolic orbit around the SMBH.

Though the physical processes regarding TDEs are complex, the numerical simulations have to account
for the geometry of the debris that evolves in large length and time scales.
Considering a star approaching the SMBH (see Figure 4.1), if it crosses the RP inside the RT it is expected
that the star will be tidally disrupted, i.e., if its RP < RT defined in (2.17). The initial gas distribution of
the star should correspond to a spherically symmetric stellar equilibrium that should occupy only a small
fraction of the computational volume as

R3
∗

R3
0

≃ 10−8

(
M∗
M⊙

)(
106M⊙
M

)
(4.1)

where R0 is the initial position of the star (Guillochon et al. 2009). To such consideration, the numerical
simulations should be implemented in the reference frame of the star’s centre of mass, where the black
hole represents an external force varying in time (Guillochon and Ramirez-Ruiz 2013).

Figure 4.2 represents the initial setup model for the simulations. The computational domain is defined
in physical units of solar radius 1R⊙ = 6.957 × 1010 cm and time in hours (top right corner). The scale
of the computational domain and the mass of the black hole are shown in the bottom right and top
left corners, respectively. The TDEs are simulated over five days (120 hours) after disruption and the
subsequent evolution of the stellar debris that forms after the impact with the black hole.

The tidal disruption process is simulated by setting the star in motion through the gravitational field of
influence of the black hole, modelled as an external potential Φ = −GM/R (see 3.9.3) with an accretion
radius given by the Schwarschild radius (RS)

RS = 2
GMBH

C2
(4.2)

where c1 represents the speed of light and RS ≈ 17R⊙.

1c ≈ 3× 108 m s−1
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Figure 4.2: Initial configuration of the parabolic simulations with the star and black hole locations.

4.2.2 Results
4.2.2.1 Spatial distribution of debris after RP

The passage of the star at RP is essentially defined by the penetration parameter. The scattering of stars
to the black hole is achieved when the sphere of influence of the black hole brings the star to typical orbits
inbound to the compact object (Guillochon and Ramirez-Ruiz 2013). In these trajectories when the star
passes at RP it suffers the effects of tidal forces from the black hole, even if it is not disrupted, but still
affecting the stellar surface. The stellar envelope material is sheared as the gravitational torque applied
by the tidal forces distort the star. Depending on the deepness of the encounter a portion of the stellar
envelope material becomes unbound from the star being ejected and forming two tidal tails (the near tail
will be face on to the black hole side; Tejeda et al. (2017)).

The spatial distribution of the most bound stellar debris increases with time and is due to the geodesic
motion of the stellar bound debris. As each event have different periapsis trajectories due to the different
penetration parameters, the fluid shifts experienced by each of the events assume different shapes with time
and (as long as the self-gravity forces along the stream are small enough) these still increase in thickness
(Figure 4.3 for 5 hrs and 30 hrs of evolution of the debris and figures 4.4 and 4.5, for the last 120 hrs).
Because the star describes a parabolic orbit, the distance to the black hole as a function of time varies
rapidly which causes the Hill radius2 of the star to be also time-dependent.

In figures 4.4 and 4.5 each model simulation is represented after 120 hrs of evolution of the stream
debris after the first passage at RP . From left to right and from top to bottom the first four panels represent
the events of models 1, 2, 3 and 4 whose penetration parameters are respectively b = 0.5, b = 1, b = 2 and

2The region around the compact object where the object’s gravity dominates that of the star that orbits around it (Raymond
2014).
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Figure 4.3: Spatial distribution of the debris for all the models at t ≈ 5 hrs and t ≈ 30 hrs. The direction
of the trajectory is indicated by the black dashed arrow.

b = 3. In model 1 the penetration parameter gives the closest approach to pericenter that is RP = 2RT

the distance of tidal radius to the black hole and the star suffers small deformation from tidal forces. It
presents still, the formation of two tidal tails that are the result of the tidal torque applied on the star b
y the black hole. In model 2, the passage at pericentre equals that of tidal radius RP = RT and reaches
the pericenter where it suffers a more pronounced distortion from tidal forces. It can be observed that
thought the stellar core is deformed after 120 hrs, the star is able to keep its basic structure. The tidal tails
are more distorted, meaning that the tidal forces that act on the star produce bigger deformation. These
two models represent the situations of self-gravitating cores that survive to the effects of tidal forces by
the passage at RP . These scenarios are confirmed by numerical simulations (Guillochon and Ramirez-Ruiz
2013) and Mainetti et al. (2017). Model 3 with b = 2 represents the limit above which the star suffers
effective disruption as the stellar core is more and more stretched and the less bound stellar material (mass
envelope of the star) starts to be accreted onto the black hole. This phase is associated to the pancake
phase (Coughlin 2016). The deeper encounters from model 4 with b = 3 and above are less likely than
the grazing ones but nevertheless represent a significant portion of TDEs, where for b ≥ 3 these events are
about 1/b = 1/3 ≈ 33% (Luminet and Barbuy 1990).

4.2.2.2 Mass removal

When the star enters in the sphere of influence of the SMBH, it becomes scattered from its previous
trajectory and starts to describe a typical orbit from apocenter distances that leads to the encounter at RP

producing partial or complete disruption of the star.
The tidal forces at RP produce distortions on the stellar surface that can reach an amplitude of order

unity (Guillochon and Ramirez-Ruiz 2013). As the tidal forces induce a gravitational torque on the stellar
envelope material, a portion of it becomes unbound from the star and is ejected to form two tidal tails.
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Figure 4.4: Snapshots of the evolution of the spatial distribution of the debris at t = 120 hrs.

Figure 4.5: Snapshots of the evolution of the spatial distribution of the debris at t = 120 hrs.
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The star’s centre of mass still follows parabolic trajectories with the material on the far tail (the one on
the opposite side of the black hole) being unbound and ejected as the material on the near tail (the one
closer to the black hole) will be gravitationally pulled onto the compact object.

The tidal field of a 106 M⊙ black hole is ≈ 3% asymmetric on the scale of the star at RT , as asymmetry
scales with b (Eastwood and Khochfar 2018). The formation of two similar tidal tails is the reflex of the
symmetry (as in Figure 4.4, top panels), which is consistent with those resulting from disruptions of main
sequence (MS) stars (Guillochon and Ramirez-Ruiz 2013). MS stars (and so solar type stars) posess cores
that are denser than their envelopes and the ratio of the central to average density is ρcore/ρ̄∗ ≈ 100 as
the ρcore ≃ 150 g cm−3 and the ρ̄∗ = 1.6 g cm−3.

The material of the core is perturbed much later than that of the envelope because the dynamical time
of the core is much smaller compared to the envelope dynamical time. For low b encounters the material of
the core is not perturbed or is perturbed a few but the gravitational influence on it changes the arrangement
of the surrounding envelope material as the encounter evolves. For polytropes like the ones used in this
simulations, the adiabatic response is the contraction as mass is removed (Hjellming and Webbink 1987).
The tidal force at RP increases with b and removes a significant fraction of the stellar envelope mass.

The rate of mass loss is halted when the total envelope mass that remains on the stellar structure is
similar to the mass of the core. As the core represents a significant amount of mass of the total mass of the
star, the stellar structure responds to the loss of mass by contracting (Rees 1988; Guillochon et al. 2014a).
During the encounters, the mass loss asymptotes values less then the mass envelope Menv (Figure 4.6),
where −∆M represents the mass loss as a function of b. With an increasing b the tidal mass removal makes
the mass envelope to contract more and as a consequence the steepening of the penetration parameter
leads to the asymptotic behaviour of the mass loss −∆M (Figure 4.6).

The contraction of the mass envelope develops regarding the expansion of the fluid trajectories on the
frame of the black hole potential and the resisting core due to the enclosed mass that holds after RP . This
enclosed mass shows that the envelope is contracting and so its mass increases (Figure 4.7). The enclosed
mass in terms of the Hill radius can be obtained by the Hill radius of the stellar core as a function of time
by (Guillochon and Ramirez-Ruiz 2015; Guillochon et al. 2016)

Rh,core(t) =

(
M∗
MBH

)1/3

r(t) (4.3)

with r(t) being the distance between the stellar core and the black hole . The enclosed mass Menc reaches
its minimum value at RP where Rh,core = b−1(M∗/MBH)1/3R∗ (Guillochon and Ramirez-Ruiz 2015) and
increase after the passage at RP due to the contraction of the envelope material in terms of the expanding
frame of the stellar disruption (Figure 4.6).

The debris resultant from disruption, which corresponds to the mass loss from the star to the black
hole, will return to RP in a fallback rate that represents the peak fallback rate of the material. Thus as
the peak fall back rate Ṁ needs many dynamical times and the simulations performed have a time scale of
hours regarding the disruption moment, the amount of accreted mass is quantified by the mass accretion
rate (Figure 4.8) that follows the t−5/3 predicted for the peak fallback rate (Guillochon and Ramirez-Ruiz
2013). In Table 4.3 the amount of material stripped from the star as a function of b is presented.

The net mass loss −∆M as a fraction of the envelope mass Menv for the b = 0.5 encounter is only ≈
6% of the total mass of the envelope. For the b = 1 encounter the mass loss increases by a factor of ≈ 3
compared to the previous encounter, stripping about 16% of the stellar mass of the envelope.

For the deeper encounters of b ≥ 2 the net mass loss can increase to more then half of the envelope
mass, as for the encounters with b = 5, b = 6, b = 7 and b = 8 as in the last case the stripped material can
go up to more than 60% of the mass of the stellar envelope. The amount of mass loss with b is expected
to increase with time, as more mass will be depletted from the stellar surface onto the black hole.

The fallback mass rate is shown in Figure 4.8. After the pericentre passage the bound debris that
contributes to the fallback mass will move on ballistic trajectories that will send it far from the black hole
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Figure 4.6: The net mass loss (−∆M) as a fraction of the mass envelope (Menv) with increasing b after
the first passage at pericentre, for the parabolic TDEs. The respective orbits of b are shown on the inset
on the top left corner of the figure.

Model b −∆M [Menv]

1 0.5 5.987401321× 10−2

2 1 1.644928701× 10−1

3 2 3.124796697× 10−1

4 3 3.888414118× 10−1

5 5 5.020154706× 10−1

6 6 5.499332193× 10−1

7 7 5.939326339× 10−1

8 8 6.348241402× 10−1

Table 4.3: Quantified stripped material as a function of the penetration parameter after the first periapsis
passage for the parabolic TDEs.

Figure 4.7: The adiabatic response of the stellar envelope to the loss mass is to contract becoming more
dense and shielding it self from more loss of mass.

until it no longer resists to the gravitational pull and starts to fallback. After the passage at RP the stream
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debris produced in all models converge to a similar regime of accretion onto the black hole, as can be
observed by the evolution of accretion of the debris in time. In both panels of Figure 4.8 it can be observed
the evolution of the fallback rate of the material that is accreted onto the black hole, which are related to
the passage of the star at RP . To each increasing b the distance of RP to RS decreases and all the effects
related to this proximity are amplified which causes the accretion regime of the fallback material to vary
for each case. In the left panel, the cases for the shorter penetration parameters are shown.

The trajectories of the star in these cases have a wider range as the respective b’s are less penetrating
which causes the bound material to be spreaded in a larger area. In the right panel, the same regime of
the fallback rate can be observed. In these cases the penetration parameters are higher which sets the
star’s trajectories to shorter distances to RS and by consequence the accretion of the material increases.
Approximately after 12 hours the fallback rate increases, meaning that there is a faster return of the
material to the black hole.

Figure 4.8: The mass accretion rate for the models 1, 2, 3 and 4 on the left panel and for models 5, 6, 7,
and 8 on the right panel.

The peak of the fallback rate Ṁfb occurs when the stellar mass reaches ∼ M∗/2 which will occur in
the fallback time interval, as t ≥ P∗. In parabolic TDEs the P∗ is related to the fraction of the most bound
stellar debris, as the rest of the material is ejected in hyperbolic orbits and will not return to RP . The
evolution of the stellar debris at the dynamic balance of the star and the black hole reflect the passage
at pericenter which evolve through a short timescale, as the star continuous to be depleted of mass that
plunges the short potential barrier between the star and the black hole.

The spread in energy can be traced to a return to RP for the bound material to the black hole through
(2.25) which implies that the fallback rate decay law is dependent of the energy distribution dM/dE (Rees
1988). If the energy distribution is flat then dM/dE is independent of E and the mass fallback rate will
decay as Ṁ ∝ t−5/3 as shown in Figure 4.9.

The evolution of the specific binding energy of the stellar fluid elements relative to the black hole can
trace the bound debris of the star, which gives the spread of mass per unit energy dM/dE where E is the
specific orbital energy relative to the black hole. The bound debris is shown in Figure 4.9, where the specific
binding energy is plotted in the x axis. The return of the debris to the black hole will be characterized by
the peak of the mass fallback rate that can be obtained from (2.24) and (2.26). The fallback time given
by (2.24) is related to a MBH = 106M⊙.

The Milky Way’s SMBH is ≈ 4× 106M⊙ which gives a fallback time of tfb = 7.077× 106 s ≈ 82 days.
From (2.26) the estimated peak of the fallback mass rate is Ṁ ≃ 3M⊙ yr−1, which is in close agreement
with the Ṁ ≃ 3.3M⊙ yr−1 from Evans and Kochanek (1989).
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Figure 4.9: Spread of the bound debris per unit mass of the star as a function of the specific orbital energy
relative to the black hole.

4.3 Elliptic TDEs
As for the parabolic TDEs, a set of nine elliptic TDEs were performed, involving a solar type star with the
same characteristics of mass and size (i.e. M∗ = 1M⊙;R∗ = 1R⊙) which is inbound onto the SMBH Sgr
A* (with MBH = 4× 106M⊙ and tidal radius RT = 159R⊙) in elliptical orbit, at the center of the Milky
Way.

4.3.1 Setup and initial conditions
In this set of simulations the star is placed at r0 defining an elliptical orbit which passes by the apocenter
of the trajectory. In order to simplify the initial moment of the simulations, r0 was set to equal the
semi-major axis (a∗; 2.21) of the stellar orbit which defines the starting point. As these simulations have
elliptical orbits, the trajectory of the star is also defined by its eccentricity (ecc), which was fixed for all the
penetration parameters as ecc = 0.3. The setup parameters for this set of simulations consider also the
orbital period P∗ (2.22) of the star and are shown in Table 4.4.

Model b a∗[R⊙] P∗ [hrs] RP [R⊙]

9 0.5 4.535× 102 13.43 3.175× 102

10 1 2.268× 102 4.75 1.587× 102

11 2 1.134× 102 1.68 7.937× 101

12 3 7.559× 101 0.914 5.291× 101

13 4 5.669× 101 0.593 3.969× 101

14 5 4.535× 101 0.425 3.175× 101

14 6 3.780× 101 0.323 2.646× 101

15 7 3.240× 101 0.256 2.268× 101

16 8 2.835× 101 0.209 1.984× 101

Table 4.4: Simulation parameters for each model of the elliptic TDEs.

In Figure 4.10 a schematic of the complexity of an elliptical TDE is shown. The passage of a 1M⊙
type star whose orbit has an eccentricity of 0.3 by the SMBH shows the evolution of the deformation that
the star suffers due to tidal forces from the central black hole. The trajectory of the star is represented by
the dashed black line and its direction is given by the dashed black arrow. The SMBH is located at (0,0)
represented by the black circle and the tidal radius RT is represented by the grey dotted circle around the
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black hole. The stretching of the star is clear after two hours and increases as the star completes its orbital
trajectory.

Figure 4.10: Time evolution of a star and its debris with an elliptical orbit around the SMBH.

Figure 4.11 represents the initial setup model for the simulations. The computational domain is defined
in physical units of solar radius 1R⊙ = 6.957× 1010 cm and time comes in hours (top right corner). The
scale of the computational domain and the mass of the black hole are shown in the bottom right and top
left corners, respectively.

Analogously for the parabolic TDEs the tidal disruption process is simulated by placing the star in
orbit by the gravitational field of influence of the black hole, which is modeled by an external potential Φ
(defined previously in 4.2.1) with an accretion radius given by RS (also defined in 4.2.1).

4.3.2 Results
In this section the results obtained from the simulations of elliptic TDEs are presented. The simulations are
presented in terms of the orbital periods, due to their elliptical nature and are evolved through t = 20P∗,
though the major effects on the stellar structure occur immediately after the passage at RP and a few
orbital periods next. The thermal energy release is plotted for t = 5P∗.

4.3.2.1 Spatial distribution of the debris after RP

The spatial distribution of the debris for the elliptic TDEs can also be described in terms of the stellar
envelope material that is sheared from the stellar surface due to the gravitational torque applied by the tidal
forces of the black hole. There is also in the elliptical tidal disruption a portion of the stellar material that
becomes unbound from the star and is ejected forming two tidal tails (Tejeda et al. 2017). The different
penetration parameters imply different pericenter distances, which causes the fluid to shift to different
configurations for each event .

In Figure 4.12 the simulations for each model show the deformation that the star suffers after the first
orbital period P∗ = 1. The more grazing penetration parameters of models 9 and 10, respectively b = 0.5
and b = 1 have a less deformation in respect to the rest of the models (with b ≥ 2). The deformation of
the star in model 9 shows clearly the formation of two tidal tails, where the less bound material is forcefully
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Figure 4.11: Initial configuration of the elliptic simulations with the star and black hole locations.

ejected from the stellar surface. In model 10 it is still possible to observe the stretch due to the tidal forces
of the SMBH. The rest of the models which have penetration parameters of b ≥ 2 (models 11 to 17)
produce more pronounced deformations.

As the penetration parameter increases, it can be observed that the debris resultant from the disruption
process describes near circular orbits (with an eccentricity of ecc = 0.3). Also the elliptic TDEs are
characterized by the pancake phase, which is the limit that separates the star from suffering deformation
when its penetration parameter is b > 2.

Higher values of b imply an effective disruption of the stellar core that is progressively stretched and
the less bound material of the star (the stellar envelope) starts to suffer accretion onto the black hole. The
TDEs with b ≥ 3 are less frequent to occur than the grazing ones, though still represent an important
amount of TDEs, which are accounted to be ≈ 33% (Luminet and Barbuy 1990).

When the star crosses RP deep inside the RT its material is ballistically accelerated and the star is
compressed into two orbital planes that intersect each other at RP and the star is deformed into the pancake
shape. The star experiences a strong vertical collapse at RP and acquires a collapse velocity vc defined
by (4.10). Again, the strong vertical compression suffered by the star results in shocks and the kinetic
energy is converted into thermal energy due to the shocks that increase the temperature of the stellar core
(Luminet and Barbuy 1990). The generalized equation (4.10) for the collapse velocity is applied to both
cases, parabolic and elliptic orbits, which generically have the same velocity of collapse for the star.

The elliptic TDEs have specific circularization energy εcirc, which is given by (Bonnerot et al. 2016)

Ecirc = −GMBH

2Rcirc
(4.4)
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Figure 4.12: Spatial distribution of the debris for the models of the elliptic TDEs at the first orbital period
t=1 P∗, as a function of the penetration parameter b.

and results in a ring of debris that forms outside the circularization radius (Rcirc) (Bonnerot et al. 2016)

Rcirc = (1 + ecc)RP . (4.5)

The kinetic energy (Ekin) of the star is therefore converted into thermal energy (Eth) during its passage
at RP . The net effect of the several passages of the debris at RP is the reduction of the kinetic energy
and its conversion into thermal energy. In Figure 4.13 the circularization radius (left panel) as a function
of the penetration parameter is shown.

The debris resultant from the disruption process stays bound to the black hole at the distance where
the loss of angular momentum is not enough for the debris to be accreted. This debris acquires an excess of
angular momentum which allows it to settle in a near circular orbit, where the minimum distance is defined
by the circularization radius (Bonnerot et al. 2016). The specific circularization energy (in the right panel)
results from the redistribution of the angular momentum of the debris that settles around the SMBH as
described above.

4.3.2.2 Mass removal

As the tidal force at RP grows with increasing b, the adiabatic response of the star to those forces is to
contract, while a considerable amount of mass is removed from the stellar envelope. When the remainder
mass of the stellar envelope that wasn’t removed equals the mass of the core, there is a cut-off in the rate
of the mass loss. The stellar structure response to such mass loss is to contract (Rees 1988; Guillochon
et al. 2014a), as described previously. The mass loss −∆M was obtained as a function of the penetration
parameter b (see Figure 4.14 and its quantified values in Table 4.5).
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Figure 4.13: The circularization radius (Rcirc; left panel) and the circularization energy (Ecirc; right panel)
as a function of the penetration parameter b.

Figure 4.14: The net mass loss (−∆M) as a fraction of the mass envelope (Menv) with increasing b after
the first passage at pericentre, for the elliptic TDEs. The respective orbits of b are shown on the inset on
the top left corner of the figure. The blue line represents the linear fit to the relation −∆M = f(b).

The enclosed mass (Menc) that remains after RP results from the contraction of the mass envelope
regarding the resisting core. By the passage of the star at pericenter, the Menc reaches its minimum
with a Hill radius of the stellar core (Rh,core = b−1(M∗/MBH)1/3R∗; (Guillochon and Ramirez-Ruiz 2015;
Guillochon et al. 2016)) which will increase after pericenter because the envelope material contracts (Figure
4.15). The net mass loss in the grazing encounters of model 9 (b = 0.5) and model 10 (b = 1) is respectively
∼ 3.6% and ∼ 6%, which is about twice the amount of mass loss of model 10 in relation to model 9 (and
also their respective distances to RP ). The deeper encounters have mass losses of ∼ 10%, ∼ 13% and
∼ 18% for the models 11 (b = 2), 12 (b = 3) and 13 (b = 4). The models 14 (b = 5) and 15 (b = 6) have
∼ 23% and ∼ 28% of mass loss and finally the deepest encounters of models 16 (b = 7) and 17 (b = 8)
have mass losses of ∼ 40% and ∼ 58%.

4.4 Tidal energy transfer
The energy required to tidally deform or disrupt a star, i.e., the energy needed to overwhelm the stellar
binding energy, reduces the energy of its orbit such that the star’s kinetic energy will decrease. When the
star is crossing at RT its orbital kinetic energy is of the order of (MBH/M∗)

2/3 (Rees 1988). If a star
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Figure 4.15: The stellar envelope reacts adiabatically to the loss mass by contracting becoming more dense
and shielding it self from more loss of mass.

Model b −∆M [Menv]

9 0.5 3.650597278× 10−3

10 1 6.489950717× 10−3

11 2 1.176303567× 10−2

12 3 2.312044943× 10−2

13 4 4.603808790× 10−2

14 5 8.416654836× 10−2

15 6 1.882085708× 10−1

16 7 3.587725881× 10−1

17 8 6.702636540× 10−1

Table 4.5: Quantified stripped material as a function of the penetration parameter after the first periapsis
passage for the elliptic TDEs.

approaches the black hole at a distance shorter than the lowest marginally bound orbit then it will inevitably
fall onto the black hole (Kozlowski et al. 1978). The tidal disruption event of a star by the black hole
should release a certain amount of energy resultant from its initial formation. The energy of a polytropic
star can be estimated by the Chandrasekhar expression for polytropes Chandrasekhar (1967) which is of
the order of ≈ 5.8 × 1048 erg (M∗/M⊙)

2(R∗/R⊙). The polytropic star used in these simulations has an
energy of ≈ 2.042× 1048 erg.

The SMBH that resides at the center of the Milky Way with an estimated mass of MBH ∼ 4× 106M⊙
dominates the gravitational potential in the inner 0.1 pc of the GC (Ayal et al. 2000; Strubbe and Quataert
2009; Cheng et al. 2011). Considering a typical solar type star that approaches the SMBH, whose mass is
MBH ≫M∗, it will reach RP with an estimated orbital velocity at pericentre defined by

Vp =

(
2GMBH

RP

)1/2

= v∗

(
MBH

M∗

)1/2(R∗
RP

)1/2

(4.6)

and v∗ ≡ (2GM∗/R∗)
1/2 represents the escape velocity at the stellar surface. The tidal force exerted by

the SMBH on the star at RP is

F ≃ GMBH

R3
P

R∗ = a∗

(
MBH

M∗

)(
R∗
RP

)3

(4.7)
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where the acceleration from the self-gravity of the star is given by a∗ = GM∗/R
2
∗ (Khokhlov and Melia

1996) . Assuming that the star’s compression begins when the tidal force of the star is similar to its self-
graviy acceleration, it means that it occurs at a distance to the black hole of R ≃ R∗(MBH/M∗)

1/3 > RP .
The star will reach RP at the time t ≃ a∗(MBH/M∗)

1/2 ≃ R∗/v∗. The total velocity of the star is given
by

vtot =
√
2v∗

(
R∗
RP

)(
MBH

M∗

)1/2

. (4.8)

The velocity of the star and the tidal force per unit mass at RP that the SMBH exerts on the star during
its pericenter passage were determined. The escape velocity at the stellar surface is v∗ = 6.177× 107 cm
s−1. In Table 4.6 the values for the velocity of the star and the tidal force were obtained by the equations
(4.6) and (4.7).

The cases where the star passes at RP deep inside the RT (RP < RT ), the stellar matter moves
ballistically resulting in a compression of the star in two orbital planes which intersect near RP and the star
is continuously compressed until it acquires a pancake like shape. For the larger penetration parameters
the angle α between the two planes can be defined by

α ≈ R∗
RT sinθt

(4.9)

where θt is the true anomaly suffered by the star at RT and since the star is moving on a parabolic trajectory
cosθt = 2RP /RT − 1 giving sinθt ≈ (RP /RT )

1/2 and α ≈ R∗/(RPRT )
1/2. The strong vertical collapse

that the star suffers at RP is given by its velocity collapse vc which is defined by the star’s velocity at
pericentre Vp and the angle α defined in respect with the orbital planes, which is roughly vc ≈ vpα. The
velocity of collapse of the star is therefore

vc ≈ b

(
GM∗
R∗

)1/2

(4.10)

and the resulting strong vertical compression of the star results in shocks that can convert the kinetic energy
into heat (thermal energy) which produces an increase in the temperature of the stellar core Tc ≈ b2T∗
(Luminet and Barbuy 1990; Guillochon et al. 2014b). The collapse velocity for the star in each model is
quantified in Table 4.6. From this table is possible to establish a relation between the orbital velocities at
pericentre VP and the penetration parameters b of the respective models.

The velocities increase as each encounter occurs more deeply inside RT . The grazing encounters with
b = 0.5 and b = 1 have an increase of the initial velocity of the star v∗ = 6.177 × 107 at its apoapsis to
about two orders of magnitude ∼ 109 cm s−1. As for the encounters with b ≥ 2 the star attains velocities
up to three orders of magnitude ∼ 1010 cm s−1 higher than its initial velocity, due to the accelerations
produced over the star by the passage inside RT , with RP distances shorter at each increasing b.

As the star reaches RP the tidal forces from the black hole exert a growing effect of deformation on the
stellar surface that can lead to partial or complete disruption of the star. In the encounters with b = 0.5
and b = 1 (the most grazing ones) the tidal forces applied on the star are of the order of ∼ 103 − 104 N
g−1, respectively. For the enccounters that occur deep inside RT , the tidal forces scale up to four orders
of magnitude higher than the first encounter, due to the shorter distance of the star to the black hole. The
deep encounters b ≥ 5 will produce a complete disruption of the star (Guillochon et al. 2014a).

In Figure 4.16 are plotted the orbital velocities at pericenter and the velocities of collapse of the
star for both cases (parabolic and elliptic). As both velocities are plotted as a function of the penetration
parameter b, it can be observed that the increase of Vc can be due the strong vertical collapse that the
star suffers at RP .

The velocity at pericentre and the angle formed by the orbital planes result in a strong vertical com-
pression of the star which is also a function of the tidal forces of the black hole. The orbital velocity at
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Models b VP [cm s−1] Ftidal [N g−1] Vc [cm s−1]
1, 9 0.5 6.933× 109 2.742× 103 2.184× 107

2, 10 1 9.805× 109 3.428× 104 4.368× 107

3, 11 2 1.387× 1010 2.194× 105 8.735× 107

4, 12 3 1.698× 1010 7.404× 105 1.310× 108

13 4 1.961× 1010 1.754× 106 1.747× 108

5, 14 5 2.193× 1010 3.428× 106 2.184× 108

6, 15 6 2.402× 1010 5.923× 106 2.621× 108

7, 16 7 2.594× 1010 9.405× 106 3.057× 108

8, 17 8 2.773× 1010 1.404× 107 3.494× 108

Table 4.6: Quantified values for the orbital velocity of the star VP and the tidal force Ftidal exerted on the
star by the black hole at pericenter.

pericentre VP is also a function of the tidal forces and in this case it has a more asymptotic increase as the
tidal forces are higher. It can be due to the penetration of the star deep inside RT (with higher b), where
the effects of the tidal forces are highly amplified.

Figure 4.16: Evolution of the orbital velocity (green line) of the star and its velocity of collapse (blue line)
as it passes at pericenter as a function of the penetration parameter b.

When the star approaches the SMBH with a certain kinetic energy it starts to experience the distortion
and compression due to tidal forces. During the passage at pericentre it suffers maximum compression and
deformation and there will be a release of thermal energy that is imparted to the resultant debris at the
expense of the kinetic energy. On the other hand, the thermal energy will decrease after RP due to the
expansion of the stream. About 10% of the thermal energy due to the shock is radiated, while the majority
is converted into expansion kinetic energy (Jiang et al. 2016).

The thermal energy release is shown in figures 4.17 and 4.19. The left panel of Figure 4.17 is related
to models 1 and 2 which represent the lower penetration parameters. Model 1 (b = 0.5) does not release
significant energy after the passage at pericentre. This is the consequence of the passage of the star at 2RT

which causes the star to suffer minor effects from the tidal forces of the black hole. The star, nevertheless,
is perturbed and though disruption does not occur, the resulting effects on the star are the formation of
two tidal tails that start to elongate as it gets further away from the black hole, though the stellar core
is completely preserved. Model 2 has a penetration parameter of b = 1 and is still considered a grazing
encounter as its trajectory brings the star at the same distance of the tidal radius RT (with b = 1 it implies
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that RT = RP ) and so b ≡ 159R⊙ ≡ 1RT . In this case a certain amount of thermal energy is released
about the same order of magnitude of that of the star ∼ 1048 erg.

Figure 4.17: Thermal energy released by the star at the passage at RP for models 1, 2, 3 and 4. The
dashed lines represent the trajectory of the star whith RP corresponding to the lower point of the trajectory.

The effects are more pronounced as the tidal tails that formed after RP are more elongated and present
a bigger deformation at t = 120 hrs, as can be seen from Figure 4.4. In the right panel of Figure 4.17
the models 3 and 4 (b = 2 and b = 3 respectively), have their pericentres inside the tidal radius and the
effects from tidal forces of the black hole on the stellar structure results in the disruption of the star in
both models. The release of energy due to this passage is higher in model 4 as it passes the black hole
with shorter RP and the amount of energy scales to one order of magnitude of that of the star.

The passage at pericentre is characterized also by the decrease in angular momentum of the star as
it falls inwards to the black hole. It can be observed from Figure 4.18 that the lowest values of angular
momentum in each case correspond to the respective RP ’s. A comparison with the results of Figure 4.17
shows that the thermal energy release occurs after the passage of the star at RP .

Figure 4.18: Specific angular momentum for models 1, 2, 3 and 4.

Models 5 and 6 are represented in the left panel of Figure 4.19. With increasing b the distance at which
the star passes at RP is much shorter then the previous cases, which means that the effects of the tidal
forces exerted on the stellar structure are much more amplified and the result is the complete destruction
of the star (Guillochon et al. 2014a). The distances at RP for models 5 and 6, are of ∼ 31R⊙ and
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∼ 26.5R⊙ respectively and the tidal forces are ∼ 2 to 3 orders of magnitude higher then in the previous
cases. By t = 120 hrs a long stream of stellar debris has formed and the material is accreted in a steady
state regime defined by the mass fallback rate. The same scenario occurs for the models 7 and 8 with
b = 7 and b = 8, respectively. The extreme penetration parameters that define these two simulations have
a pericentre distance much closer to the black hole than any other case. In fact, for model 8 the distance
the distance to the black hole is very near of the Schwarschild radius which is RS = 17R⊙ (see Table 4.2).

Figure 4.19: Thermal energy released by the star at the passage at RP for models 5, 6, 7, and 8. The
dashed lines represent the trajectory of the star whith RP corresponding to the lower point of the trajectory.

At this close distance to RS the tidal forces are high enough to strip away a considerable amount of
the envelope mass of the star, in fact in this case more than 50% of the stellar mass envelope is removed
by the passage of the star at RP with a release of thermal energy after the RP passage of the order of
∼ 1050 erg. At t = 120 hrs there is a considerable amount of gas around the black hole that will stay
bound to it as it loses its angular momentum.

If tidal torque is exerted over the gas around the black hole it will gradually spiral inward on a dissipa-

Figure 4.20: Specific angular momentum for models 5, 6, 7 and 8.

tion timescale. This gas will have a gravitational binding energy onto the SMBH that will be converted into
thermal energy until it reaches the last stable orbit around the black hole, that corresponds roughly to 3RS

considering the Schwarschild black hole Rees (1988); Alexander (2005). In Figure 4.20 the evolution of the
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specific angular momentum of the star at each passage by RP is shown. In Figures 4.17 and 4.19 the peaks
of the thermal energy that are observed are related to the release of such energy after the passage of the
star at RP . In fact these figures show that the release of energy takes place immediately after the pericentre
passage, as the RP ’s are given by the lowest values of the potencial energy of the star (represented by
the respective dashed lines) and the energy release occurs after the passage at RP . During this phase the
black hole’s tidal forces exerted on the star produce deformations and strong vertical compression on the
stellar structure that result in the energy release with the maximum values attained immediately after the
RP passage.

In the case of the elliptic TDEs, the release of the thermal energy that is imparted from the kinetic
energy of the star is achieved by each passage of the star at RP . The models of the elliptic TDEs have the
same RP distances as the parabolic ones. Therefore the behaviour is similar in terms of the energy release,
i.e., the first passage of the star at RP is characterized by the release of the highest amount of thermal
energy. In the subsequent passages by RP there is a consecutive decrease of the energy release.

In Figure 4.21 the models 9 and 10 are the grazing ones and are shown in the left panel in terms of
the thermal energy release as a function of the orbital period P∗ of the star. The star in these two models
suffers the less deformation by the tidal forces of the black hole as it passes at RP ≃ 2RT in model 9 (with
b = 0.5) and passes at RP ≃ RT in model 10 (with b = 1) with a release of thermal energy of the order
of a few 1047 erg.

Figure 4.21: The thermal energy in models 9 and 10 (left panel) and models 11 and 12 (right panel),
while the respective penetration parameters for each model appear at the top center of each panel. The
pericenters are indicated in the bottom left corner.

Though it can be observed that the thermal energy release is achieved at each passage of the star
at RP . In the right panel of Figure 4.21 the models 11 and 12, which correspond to the penetration
parameters of b = 2 and b = 3 respectively, have the larger amount of thermal energy release after the
first passage at RP and through each P∗ after. The two spikes of the thermal energy that are observed at
t ≃ 1P∗ can be attributed to the deformation of the star as it reaches RP and begins to be stretched in
two tidal tails. The energy release is of the order of ∼ 1047 for model 11 and of ∼ 1048 for model 12.

The evolution of the specific angular momentum of the star for each P∗ by the passage at RP is shown.
The loss of angular momentum from the star finds a match with the lowest potential energy that gives the
point of RP where the release of thermal energy occurs.

In Figure 4.23 the release of the thermal energy is represented for the models 13 and 14 in the left panel
and for the models 15, 16 and 17 in the right panel. Model 13 has a penetration parameter of b = 4 and
presents a very similar behaviour in terms of the energy release than model 14, which has a penetration
parameter of b = 5. With increasing b the distance between RP and the black hole, with the RS defining
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Figure 4.22: Evolution of the specific angular momentum J/JT for the models 9, 10, 11 and 12.

Figure 4.23: In the left panel are shown the models 13 and 14 and in the right panel the models 15, 16 and
17. The respective penetration parameters for each model appear at the top center of each panel. The
pericenters are indicated in the bottom left corner.

its radius, decreases and the tidal forces destroy the star completely. In fact, at the first passage at RP the
star in model 13 loses ∼ 18% of its initial mass and in model 14 ∼ 23%, with the respective decreasing
distances of ∼ 39R⊙ and ∼ 31R⊙. The last three models 15, 16 and 17 represent those where the star
has the shorter distances to the black hole. The energy release is of the order of ∼ 1049 erg.

The evolution of the specific angular momentum of the star for the models 13, 14, 15, 16 and 17 is

Figure 4.24: Evolution of the specific angular momentum J/JT for the models 13, 14, 15, 16 and 17.
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shown in Figure 4.24. As the star loses its angular momentum by the passage at RP it releases the thermal
energy that is imparted from the kinetic energy of the star as it approaches the black hole. The tidal
energy transfer results from the passage of the star at RP , where the tidal forces from the SMBH produce
deformations on the stellar structure that will result in partial or complete destruction of the star. Such
deformations are a function of the penetration parameter, meaning that with increasing b the tidal forces
increase assimptotically, contributing to increasing amounts of thermal energy release that is imparted
from the kinetic energy of the star at RP . An interesting fact that results from the analysis of the thermal
energy release in the parabolic and elliptic TDEs is that the most energetic events occur on the side of the
parabolic TDEs, presenting in the most extreme situations (b ≥ 6) ∼ 1 order of magnitude higher in terms
of thermal energy release (see Figure 4.25 and Table 4.7).

Models b Parabolic Eth [erg] Elliptic Eth [erg]
1, 9 0.5 1.22× 1048 1.31× 1047

2, 10 1 1.42× 1048 2.26× 1047

3, 11 2 5.18× 1048 1.96× 1048

4, 12 3 1.44× 1049 3.79× 1048

13 4 −−− 7.11× 1048

5, 14 5 5.69× 1049 1.09× 1049

6, 15 6 9.29× 1049 1.37× 1049

7, 16 7 1.35× 1050 1.66× 1049

8, 17 8 1.78× 1050 1.92× 1049

Table 4.7: Quantified values for the thermal energy release for the parabolic and elliptic TDEs. Models 1
to 9 correspond to the parabolic case and models 10 to 17 to the elliptic case.

Figure 4.25: Thermal energy release for the parabolic (blue line) and elliptic (green line) TDEs as a function
of the penetration parameter b. The parabolic b = 4 value was obtained by interpolation.

4.5 Stellar survival vs destruction
Stars in the presence of a point mass potential will follow keplerian orbits3 if no external force acts upon
them (Rees 1988). The position and velocity of a star can be recorded at its passage at RP by the time
when its gravity and pressure are no longer relevant. At RT this conditions can be acomplished since the
tidal force is greater than that of the stellar self-gravity. The limit for the survival or destruction of a star

3From the celestial mechanics, is the motion of one body in relation to another, describing ellpitic, parabolic or hiperbolic
trajectories.
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passing at RP is not exclusively dependent on the tidal forces acting over the star to remove some mass
but depends also on the potential of those forces to disrupt the stellar core (Guillochon and Ramirez-Ruiz
2013).

Figure 4.26: Snapshots of the density log ρ of the models 1, 2 and 3 of the parabolic TDEs. The limit
between disruption and no disruption separates models 1 and 2 from the rest.

Figure 4.27: Snapshots of the density log ρ of the models 9, 10 and 11 of elliptic TDEs. The limit between
disruption and no disruption separates models 1 and 2 from the rest.

As Main Sequence4 (MS) stars have cores which are denser then their envelopes, their ratio to mass
density is ρcore/ρ̄∗ ≈ 100. The stellar dynamical time of the core is lower than that of the envelope
but during the encounter and depending on its strength, the gravitational influence of the core modifies

4Solar type stars can be classified as G-Type Main Sequence stars
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the surrounding material of the envelope. Because of this rearrangement the adiabatic response of the
condensed polytrope has the effect to contract during the mass loss, preventing the star from loosing more
mass (Hjellming and Webbink 1987; Willson et al. 1987). In Figure 4.26 is shown the evolution of the
stellar cores of the parabolic TDEs for the models 1 and 2 and generically the evolution of the cores from
the models with penetration parameters of b ≥ 2. While in models 1 and 2 the deformation of the star due
to tidal forces is small and these are able to maintain their cores preserved, in all the other cases, by the
same time, it can be observed (Figure 4.26) that the disruption of the star is effective with an associated
loss of mass, where the stellar core suffers gradual deformation and is unable to avoid disruption due to
the distortions from tidal forces.

Figure 4.27 shows the evolution of the stellar cores of the elliptic TDEs for the models 9 and 10, and
in the same manner, a generic evolution for the models with b ≥ 2. Also in the elliptic cases, the models
9 and 10 (b = 0.5 and b = 1, respectively) have less deformation then the other cases when t = 1P∗.
Though the stellar cores can be preserved in the grazing encounters, the several passages at RP implies
that the tidal forces are able to continuously act on the stellar material, so deformation is more evident
after some orbital periods, in this case after t = 5P∗.

For the cases where b ≥ 2 the deformation of the stellar core occurs faster due to the steeper penetration
parameters that imply deeper plunges of the star inside RT . From the simulations, the models with the
penetration parameter that lies between [0.5 − 1] exhibit the capacity for the stellar core to maintain the
envelope gas as shown in Figure 4.28 for the b = 0.5 parabolic case. The upper panel is a close view of the
inner region of the star, where the core appears intact, though after the passage at RP the star is excited
but still its core is not disrupted.

Figure 4.28: Close view of the stellar core of model 1. The inset shows that the core is unperturbed and
the star maintain the envelope gas after the passage at RP .

4.6 Summary
The SPH simulations implemented for this work concern the tidal disruption of a solar type starM∗ = 1M⊙
by a SMBH with mass MBH ∼ 4× 106M⊙, which is approximately the mass of the Milky Way’s resident
black hole Sgr A*. Two types of TDEs, parabolic and elliptic, were implemented in the keplerian regime,
meaning that the relativistic effects are not taken into account (e.g., apsidal precession that leads to the
self-intersection, collision and shocks of the debris).
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A distinct feature of the simulated TDEs is the spatial distribution of the debris that forms after the
passage of the star at RP , which are quite different in the parabolic and elliptic cases.
In the parabolic TDEs the star describes an orbit with a parabolic trajectory that has an eccentricity of
ecc = 1. The passage of the star at RP causes deformation on the stellar structure due to the tidal forces
of the black hole, which are a function of the penetration parameter b. As a result the star will develop
two tidal tails produced by the debris that is depletted from its surface, which corresponds to the least
bound material of the star. A portion of the debris, which can correspond up to ∼ 1/2 of the debris that
is removed from the star will be forcefully ejected, while the remainder will be bound to the black hole and
will be accreted to it on a fallback rate of the bound debris.

The less penetrating encounters b = 0.5 and b = 1 are characterized by minor deformations due to the
weaker effects of the tidal forces which allows for the star to maintain its self-gravitating core unperturbed
or at least with small deformation. The encounters where b ≥ 2 the star will suffer gradual deformation
with the core being stretched with increasing b, until the self-binding energy of the star no longer resist to
the tidal forces of the black hole. In such conditions the star is partially or completely disrupted foming an
elongated shape known has the pancake phase. In elliptic TDEs the spatial distribution of the debris can
be characterized by the circularization of the debris that results from the passage of the star at RP . As
the orbits have an eccentricity of ecc = 0.3, the resultant debris from the tidal disruption will settle in a
near circular orbit.

The grazing encounters produce small deformation on the star at t = 1P∗ though for deeper encounters
the star is quite deformed. After a few P∗ the debris will settle around the black hole, though the star
continuous to be depletted of its mass and the stellar core is progressively stretched until effective disruption
occurs. The consecutive RP crossing will produce a stream of the stellar debris that describes near circular
orbits until it starts to be accreted, after several orbital periods. The debris that attains enough angular
momentum and do not fall into the black hole will settle on a certain circularization radius which is defined
by the specific circularization energy that results from the redistribution of the debris.

After the star crosses at RP and suffers the effects of the tidal forces a fraction of its mass will be
depletted from the stellar surface, which is quantified as a function of the penetration parameter. In the
parabolic TDEs the net mass loss (−∆M) at the first passage of the star at pericenter can be between
∼ 5% for the b = 0.5 case up to ∼ 63% for the deepest b = 8 case. In the elliptic TDEs the −∆M
for the first passage at pericenter the mass that is removed from the star can be of ∼ 3% for the lower
b = 0.5 and ∼ 58% for the b = 8 encounter. The amount of mass loss with b is expected to increase with
time, as more mass will be depleted from the stellar surface onto the black hole. The loss mass (−∆M)
asymptotes for the deeper encounters (b ≥ 5) while the encounters with lower b have more accretion time
than the rest due to their longer crossing distances at pericentre.

The debris that returns to the SMBH is characterized by the peak of the mass fallback rate. The Milky
Way’s SMBH is ≈ 4× 106M⊙ which gives a fallback time of tfb = 7.077× 106 s ≈ 82 days. The return
of the debris to the black hole is estimated by the peak of the fallback mass rate Ṁ ≃ 3M⊙ yr−1.

The disruption of a star requires a certain amount of energy that must be greater than the binding
energy of the star so its orbital energy will be reduced and consequently the kinetic energy of the star
will decrease. With the crossing at RP the star will have a kinetic energy of the order of (MBH/M∗)

2/3

and will experience the distortion and compression due to tidal forces in such a way that the star suffers
maximum compression and deformation and there will be a release of thermal energy that is imparted to
the resultant debris at the expense of the kinetic energy. The gravitational binding energy of the gas to
the SMBH will be converted in thermal energy until it reaches the last stable orbit around the black hole.

If the gas can dissipate the heat by the emission of radiation or acceleration of particles, then the
thermal energy can be extracted by the time it reaches the last stable orbit. If on the other hand the
dissipation of energy is inefficient, the heat can be advected onto the SMBH where it will be added to its
rest mass (Rees 1988; Alexander 2005).

The tidal energy transfer results from the kinetic energy of the star by its passage at RP . Due to
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the tidal forces of the black hole the kinetic energy is imparted into thermal energy, which is released for
the surrounding medium. The amount of thermal energy release can be of the order of ∼ 1047 erg for
the b = 0.5 encounter in both parabolic and elliptic TDEs and can go up to ∼ 1050 erg for the deepest
encounter with b = 8 for the parabolic case and of the order of ∼ 1048 erg for the elliptic one.

The thermal energy release increases with b in both parabolic and elliptc TDEs. From the results
obtained from the simulations it can be observed (Figure 4.25) that the parabolic TDEs release more
thermal energy than the elliptic TDES by the first passage of the star at RP .

The results described here match both the theory and those published by different authors. However,
the new results described in this chapter stem from the high-resolution calculations and numerical methods
adopted in the present simulations.



5
TDEs - a possible application to the

Fermi Bubbles case

5.1 Introduction
The SMBH has observational properties that characterize it in terms of its mass and size as well as its
spectrum, radio variability and even the regime of accretion (accretion rate). Some proposed models for
the galactic black hole Sgr A* are briefly described, which relate some of the observed features (e.g.,
radio emission) to their possible origin. The TDEs signature that can be observed are shortly presented in
terms of the unbound debris streams formed after the disruption of the star and also the CRs and γ rays
production.

A possible contribution of the TDEs may be adressed to the Fermi Bubbles, whose origin and feeding
mechanism is still not well understood. Results from the XMM-Newton satellite are refered to help unveiling
the new evidences of the FB structures detected in these observations, especially those from 2016-2018 that
detected the X-ray chimneys in the GC. The Fermi Bubbles were also targeted in hydrodynamical numerical
simulations considering the relativistic jet scenario that can contribute to accelerate and transport the CRs,
by advection, through the ∼ 10 kpc length of the bubbles suggesting that the CRs have the same age of
the FB.

71
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5.2 The SMBH in the GC - observational properties
The SMBH that resides in the center of the Milky Way was initially proposed as a compact radio source
by Lynden-Bell and Rees (1971). Known as Sagittarius A* it is the most studied and well constrained
black hole due to its proximity (∼ 8 kpc). The initital evidences for the presence of the dark and compact
object came from the Mid-Infrared (MIR) and X-rays (Lacy et al. 1979; Serabyn et al. 1988) and from the
radio recombination line observations of gas streams around Sgr A* Roberts and Goss (1993); Zhao et al.
(2010).

The improvement of the high spatial resolution and the capability in the detection of individual stars
around Sgr A* gave the final breakthrough. Proper motion of stars can be detected Eckart and Genzel
(1996); Ghez et al. (1998) and so the motions of individual stars have been traced over the last decades
being used to map out the gravitational potential within stars describe their motion Ghez et al. (2000);
Genzel et al. (2000). These stars move in general keplerian orbits with orbital speeds of 104 km s−1 and
orbital periods of ∼ 15 years (Schödel et al. 2002; Gillessen et al. 2009). In fact these observations show
that the gravitational potential in the central parsec of the Milky Way might be dominated by a point
source which is comparable to the estimated black hole mass which is situated at a few hundreds of RS

from Sgr A* (Ghez et al. 2008) .
The exact location of Sgr A* represents the major limiting factor in the Near-Infrared (NIR) coordinate

frame though it can be good within ∼ 2 mas (miliarcsecond), which corresponds to ∼ 200 RS (Menten
et al. 1997).

The proper motion of many stars combined with their radial velocities (determined from high resolution
spectroscopy) yield the geometric distance of d = 8.3 (±0.4) kpc (Eisenhauer et al. 2003; Ghez et al. 2008).
The galactic SMBH can also provide the evidence for its own location, which associates the presence of a
dark and compact object with its proper motion. The use of radio telescopes in the frame of Very Long
Baseline Interferometry (VLBI) have tracked the position of the source for several years to a fraction of a
mas per epoch (Reid et al. 1999; Reid and Brunthaler 2004). In Figure 5.1 is shown the radio position of
Sgr A* and the measured locations and fitted orbit of the star S2, around Sgr A*.

As the motion on the sky of Sgr A* is very consistent with the motion of the solar system around the
GC, i.e., the GC is the location of the radio source (not in the background or in the foreground), which
implies that any motion perpendicular to the projected motion is less than 0.4 (±0.9) km s−1. In this
frame, more than 10% of the dark mass is associated with the radio source.

5.2.1 Spectrum of Sgr A*
To understand the SMBH Sgr A* as a source it is important to know how its size and emission spectrum
are linked. The radio flux density Sν (provided from the combination of all radio data on Sgr A*) presents
a flat-to-inverted spectrum, which means that it rises in a slow rate with the frequency has the 1012 Hz
peak in the submm band.

The radio spectrum of Sgr A* is represented in Figure 5.2. The broad-band spectrum of Sgr A* varies
as ν ×Lν , with Lν = 4πD2

SgrA∗Sν . In the GHz frequencies Sν ∝ να (α ≃ 0.3± 0.1) and continues at the
low frequency range (≃ 300MHz) not showing signs of absorption Roy and Pramesh Rao (2004); Nord
et al. (2004).

The spectrum extends to the higher frequencies entering in the subTHz range (submm wavelength;
Zylka and Mezger (1988); Mezger et al. (1989)). The spectrum has a peak in this range and shows a
cut-off after, known as the submm bump and is due to the transition of the optically thick to thin of the
synchrotron emission. Only the most compact regions can give rise to such emission, being these regions
several RS in diameter Falcke et al. (1998).

In Figure 5.2 the average spectrum is represented by the black points (Falcke et al. 1998; Zhao et al.
2003). The outer accretion flow dominates the black bowtie representative of the X-ray from Bondi radius
scales (Baganoff et al. 2003) with a possible contribution of 10% of the flux from Sgr A* (Neilsen et al.



5.2. THE SMBH IN THE GC - OBSERVATIONAL PROPERTIES 73

Figure 5.1: Radio position of Sgr A*
The radio position of Sgr A* from measured locations and fitted orbit of the star S2 around the SMBH
(left panel), taken from Gillessen et al. (2009); Genzel et al. (2010).

Figure 5.2: The broad-band spectrum of Sgr A*. The quiescent and flaring states are shown (Falcke and
Markoff 2013).

2013). Radio data is represented by the red dots taken from ALMA, the InfraRed (IR) data are represented
by the green dots from (Schödel et al. 2011) and the lower and upper limits of IR, respectively the pink and
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cyan dots are taken from (Ghez et al. 2004; Genzel et al. 2003). One of the few detected IR with a slope
that is simultaneously a X-ray detection is represented by the green bowtie and is taken from (Bremer et al.
2011) and the orange bowtie is representative of the largest X-ray flare that was detected with Chandra
(Nowak et al. 2012). Finally the blue dots are from two flares detected from NuSTAR, taken from Barrière
et al. (2014).

5.2.2 Size and structure of Sgr A*
From interferometric data of Sgr A* it was found that the measured size and source did not correlate
directly to the source itself. An ellipse of axial ratio 2:1 with east-west orientation produces a blur that
covers the shape of Sgr A* and is caused by the scattering of radio waves of electrons in the ISM (more
exactly between the solar system and the GC; Davies et al. (1976); Lo et al. (1985); Lo et al. (1998)).
The dimensions of Sgr A* from observations follows a λ2 law, where the scattered-broadened angular size
(Falcke et al. 2009) can be given by

ϕscatt = (1.36± 0.02)mas× (λcm−1)2. (5.1)

The measured sizes have a small deviation from λ2 at 22 and 43 GHz, obtained by a closure amplitude
technique Bower et al. (2004).

Figure 5.3: On the left panel the axis size of Sgr A* as a function of the measured wavelength. The
scattering law λ2 is indicated by the solid blue line. The intrinsic size of Sgr A* is derived, in the right
panel. The event horizon is indicated by the solid orange line and the orange dashed lines are refered to
the uncertainties of the scattering law. Pictures taken from Falcke et al. (2011)

Closure amplitudes form to combine complex amplitudes of the corelated data (known as the ”visibili-
ties”) that are taken from different telescopes, which implies that telescope-based gain errors are cancelled.
This way an accurate measure of the source size is provided by the closure amplitude. In fact, as the
intrinsic size decreases with frequency it was revealed that for 230 GHz its size is only ∼ 4RS . Combining
all data (Falcke et al. 2009) an intrinsic size for Sgr A* can be obtained

ϕSgrA∗ = (0.52± 0.03)mas× (λcm−1)1.3±0.1. (5.2)

The value of (0.52± 0.03) mas corresponds to ∼ (51± 3)RS , as can be seen in Figure 5.3.

5.2.3 Radio transience of Sgr A*
The variability in radio emission of Sgr A* seems to increase in amplitude with frequency. For wavelengths
of 13, 3.6, 2, 1.3 and 0.7 cm, the radio spectrum variation is of the order of 2.5, 6%, 16%, 17% and 21%,
respectively (Falcke et al. 2009), which reveals consistency with the adiabatic expansion of blobs of plasma
that flows outwards in the form of a jet (Maitra et al. 2009). Different frequencies produce a time gap
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between flares, such that these occur at frequencies of 43 GHz and precede those that occur at frequencies
of 22 GHz, by a time difference of ∼ 20 minutes. There is a difference of ∼ 30 light minutes between
the two frequencies and to produce a flare that propagates from higher to lower frequencies it would be
needed a relativistic outflow, if this represents density or energy enhancements in the radio-emitting plasma
(Falcke et al. 2009).

5.2.4 Accretion onto the SMBH

The level of activity of the black hole can be determined by the accretion rate, which is the second most
important parameter and can determine the level of activity (which varies by many levels of magnitude).
The accretion rate of the SMBH can be estimated by the power that is radiated, unless the case is Radiative
Inefficient Accretion Flow (RIAF).

Considering that Sgr A* may be accreting from winds of the surrounding stars, its accretion rate is
estimated to be between ∼ 10−6M⊙ yr−1 and ∼ 10−4M⊙ yr−1 (Coker and Melia 1997; Genzel et al.
1994). The radial scale that determines the limit of accretion of the black hole (the Bondi Radius RB)
is mass and speed dependent of the surrounding gas, with RB = 2GM/v2w, which represents the ideal
Bondi-Hoyle accretion (Bondi and Hoyle 1944). In such case, stellar wind flows of vw = 600 km s−1 have
a Bondi radius of ∼ RB ≃ 2.5 × 105RS ≃ 0.1 pc, which corresponds to the projected area in the sky of
the GC (Melia 1992).

In terms of polarization Sgr A* is unpolarized in the range [5 GHz - 43 GHz] (Bower et al. 1999; Bower
et al. 1999) as the accretion flow can produce a depolarization of the radiation due to a high Rotation
Measure (RM ≃ −6× 105 rad m2) that results in a very fast rotation of the polarization vector.

Linear polarization was detected at submm-waves with a RM ≃ −6× 105 rad m−2 (Bower et al. 2005;
Marrone et al. 2006; Macquart et al. 2006), which is the highest RM being in any source. The accretion
rate in the range of magnetic field profiles for the accretion flows can be limited in the interval between
Ṁ ≥ 10−9M⊙ yr −1 and Ṁ ≥ 10−7M⊙ yr −1, where the scales can lie between 102 − 103RS Marrone
et al. (2006); Sharma et al. (2007).

Thermal X-ray emission was associated to Sgr A* by the Chandra X-ray Observatory during the first
polarization measurements (with a spatial resolution of 0.6 × 1012 km ≃ 0.02 pc). That emission from
Sgr A* has a kBT = 1.9 KeV with a slight extension for the bound accretion flow (∼ RB; Baganoff et al.
(2003)). The Bondi accretion rate (ṀBondi) is given by

ṀBondi = 4πnG2M2
BHc

−3
s (5.3)

≃ 10−4M⊙yr
−1

(
MBH

4.3× 106M⊙

)2 ( η

160 cm−3

)( kBT

1.9 keV

)−3

, (5.4)

with the density normalization being inferred from X-ray measurements Baganoff et al. (2003) and the
sound speed (cs) is

cs =

√
5

3
kBT/mp =

(
kBT

1.9 keV

)1/2

550 km s−1. (5.5)

Radio polarization increase the accretion scenarios with associated mass loss (Wang et al. 2013). At
0.1 pc, near Sgr A*, the detection of a radio pulsar showed a very high rotation measure of RM ≃ 7× 104

rad m−2 that requires magnetic fields of the order of a few mG. The Faraday screen associated to Sgr A*
can be supported by this idea, implying that the accretion flow is developing (Eatough et al. 2013).
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5.2.4.1 Accretion energy onto the SMBH from TDEs
The accretion energy onto the SMBH is the highest energy scale in TDEs (Alexander 2005). The stellar
bound debris can circularize around the black hole after disruption and its stream can self intersect, collide
and shock. If the gas is to fall gravitationally into the black hole, than it will have to lose its angular
momentum and the black hole will exert tidal torque over the orbiting gas in order to induce a spiral inward
of the gas through a viscous timescale.

The gas that is gravitationally inbound to the black hole can be converted into heat when it reaches
the last stable orbit around the compact object. It will then fall into its event horizon on a dynamical
timescale. If there is emission of radiation, it will dissipate the heat that was produced or the heat can also
be dissipated by the acceleration of particles. If the gas does not fall into the black hole, it can escape as
a wind by advection dominated inflow-outflow solutions - ADIOS (Narayan et al. 2000). For the radiative
efficiency case the accretion energy onto the SMBH is given by Alexander (2005)

Eacc ∼ η

(
M∗
2

)
c2 ∼ ηb2

(
M∗
MBH

)1/3( c

Ve

)2

Eout, (5.6)

where Eout is the kinetic energy carried by the stellar debris (Eout ∼W ). In case of radiative inefficiency,
i.e., if the energy dissipation is inefficient, the heat produced can be transported (by advection) by the flow
into the black hole where it will be added to its rest mass, in a process of Advection Dominated Accretion
Flow (ADAF) solution (Van Den Bergh 1982; Narayan and Yi 1995).

For a typical TDE at the Galactic Center (GC) with a penetration parameter of b ≃ 1 the work done
over the stellar debris is W ≳ 100E∗ which causes the debris to be released with specific energies of the
order (E∗ ±W )/M∗.

The tidal force that exerts a specific amount of work (W ) over the stellar debris is Alexander (2005)

W ∼M∗ϕBH(RP ) ∼
GMBHM∗

R2
P

R∗, (5.7)

where M∗ϕBH(RP ) is the the black hole’s gravitational potential difference across the star at RP .

5.2.4.2 Emission curve from the simulated TDEs
From the simulated TDEs of the present work an emission curve of the accretion energy and work done on
the stellar surface was obtained with the quantified values shown in Table 5.1 and in Figure 5.4.

Model b Eacc [erg] Work [erg]
1, 9 0.5 1.012× 1050 1.505× 1050

2, 10 1 4.048× 1050 6.022× 1050

3, 11 2 1.620× 1051 2.409× 1051

4, 12 3 3.644× 1051 5.420× 1051

13 5 2.050× 1051 9.633× 1051

5, 14 5 1.012× 1052 1.505× 1052

6, 15 6 1.458× 1052 2.168× 1052

7, 16 7 1.984× 1052 2.951× 1052

8, 17 8 2.591× 1052 3.854× 1052

Table 5.1: Quantified values for the accretion energy (Eacc) and work done over the stellar debris (Work)
from TDEs at RP .

The disruption of the star implies that the tidal torquing spins the star up in the same direction of the
stellar orbit which increases an excess of velocity that is higher than the orbital velocity of the star on the
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far side of the black hole, which contrasts with the opposing deficit in velocity in the near side. These
discrepancies in the velocities will develop a spreading of the specific kinetic energies. Such energies are
considered as the second highest energy scale related to TDEs. The highest energy scale regarding these
events is the accretion energy Eacc. Both the work W and the energy accretion Eacc can be obtained by
(5.6) and (5.7) Alexander (2005) . From Figure 5.4 it is shown that both Eacc and the W increase as a
function of the penetration parameter b.

Figure 5.4: Work done on the stellar debris (black line) and the accretion energy onto the SMBH (brown
line), as a function of the penetration parameter b.

5.3 Proposed models for the emission on Sgr A*
The closest SMBH to the solar system is Sgr A* and it represents a valuable source for the study of
accretion (accretion theory), the emission processes and also its physical geometry. Different interpretations
for the emission model can take to different interpretations of the data for the region near the black hole.
Understanding the astrophysics of this region is fundamental to predict the gravitational scenarios.

5.3.1 Accretion models
There are a few puzzling facts about Sgr A* that are mentioned to be pointed out, such:

i) The SMBH Sgr A* presents today a very low level of activity. It’s actual accretion rate seems to be
below the accretion rate that is needed to develop a few 106M⊙, about four orders of magnitude, in
a Hubble time (Bower et al. 1999);

ii) The luminosity function for radio cores is above the radio luminosity of Sgr A* (Nagar et al. 2005);

iii) Sgr A* needs to be fueled by an amount of gas that is many orders of magnitude higher than what
is actually observed (Clarke 1981; Haubois et al. 2012).

Sgr A* initial models needed vrey high accretion rates due to their inefficiency, though after the
availability of the radio polarization results, these accretion rates were adapted. Models based on the
Radiative Inefficiency Accretion Flows (RIAF) could explain the weak radio and X-ray emissions (L(2-
10)KeV ≃ 2.5 ×1033 erg s−1) by the Advection Dominated Accretion Flow (ADAF; Narayan and Yi
(1995); Narayan et al. (1998)). The RIAF models have a common characteristic involving the radiative
efficiency which is the ability to mask the energy with less radiative protons and ions that can advect the
energy beyond the SMBH event horizon and can also enable the mass loss from accretion flows through
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outflows.
From the accreted material, only a small portion of it can make it to the most inner regions of the

SMBH, the rest of the material will be lost. The X-Ray Visionary Campaign Project (XVP) returned results
that corroborate the evidence of an outflow. These results show that the diffuse emission is elongated
consistently with the stellar disk that can be observed with the NIR (Wang et al. 2013). Also used for the
first time in such campaigns, the High Energy Transmission Greetings Spectrometer (HETGS; Canizares
et al. (2005)) provided high resolution spectroscopy and the highest spatial resolution in the X-ray band,
providing also the resolution of the Fe and Kαcomplex into distinct lines. The radial profiles of the gas
temperature and density have been constrained due to the measured ratio of H-like to He-like Fe lines and
in these conditions the frame of the no–outflow was put aside Shcherbakov and Baganoff (2010).

5.3.2 Possible jet in Sgr A*
The radio emission from Sgr A* was suggested (Reynolds and McKee 1980) to be from a jet or wind from
stellar-sized objects. Larger scales have lesser dense regions and weaker magnetic fields, which imply a
lower frequency emission (Blandford and Königl 1979). These facts contributed to explain the spectrum
and frequency-dependent size of Sgr A* that were attributed to a down-graded quasar jet (a SMBH with
a very low accretion rate; Falcke et al. (1993); Falcke and Markoff (2000)). Though jets have not been
observed directly pouring from Sgr A*, there are models that have proposed the emission being produced
in the accretion flow itself (Yuan et al. 2003). Also, the radio time lags may suggest a relativistic outflow
with the non-thermal emission of the X-ray flares fitting on fundamental plane of black hole activity. The
plane connects radio and X-ray emission of low accreting black hole mass (Falcke et al. 2004; Merloni et al.
2003). It looks like that Sgr A* is poorly fueled, radiatively inefficient though launching a jet (Liu et al.
2004).

5.3.3 Production of flares and particle heating
Some arguments such the flattening of the X-ray spectrum, the NIR variability and the flares fast timescale
sustain a non-thermal process. The fast heating and particle acceleration resulting in direct synchrotron
emission form the up-scattered submm bump photons can be the consequence from magnetic reconnection
and stochastic processes (Markoff et al. 2001; Liu et al. 2004; Yuan et al. 2004). A consequence of this
can be the resulting synchrotron emission of X-ray or the synchrotron-self Compton emission due to the
photons that were up-scattered in the submm bump.

Accretion flows in Sgr A* can transport fragmented/vaporized asteroids that can trigger flares in the
NIR/X-ray, which are consistent with observations (Zubovas et al. 2012). The synchrotron-self Compton
emission seems to be favoured by some flares in the NIR/X-ray (Eckart et al. 2004) while direct synchrotron
emission in the X-ray band seems to be favoured by others Dodds-Eden et al. (2009), though it may be
an interplay between both processes. Flares produced in the NIR/X-ray seem to play an effect of particle
acceleration which can represent an increase of the size of the jet photosphere, that depends on the ra-
diating particle distribution , which allows a small size in the jet photosphere (Markoff et al. 2007). On
the other hand, if the particle acceleration result in a bright flare, the plasma is then advected into the jet
where the variability in the size can be associated to the NIR/X-ray flares.

The Very Long Baseline Array (VLBA) observations from the XVP-linked multi-wavelength campaign
were deployed by the NIR flares, where an observation of what could be the variability in the radio photo-
sphere was obtained (Bower et al. 2004).

5.3.4 Cosmic Rays production
The production of CRs occurs from strong shocks (like those produced in TDEs.) The Diffuse Shock
Acceleration (DSA; Fermi (1949)) is the mechanism that is responsible for such production and it is well
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established due to the studies from SNRs (Hinton and Hofmann 2009). From these studies it is suggested
that ∼ 10% of the kinetic energy that is injected in the shock can be knocked to accelerate CRs. Also
suggested is the fact that the CRs that escape from the shock region follow the universal power law of γ ≃ 2
(Treumann 2009). A collision between the unbound debris stream and MCs would produce an amount of
kinetic energy of εk ∼ 1049 erg of CRs. Considering Tp the space of kinetic energy as the convenient frame
for the neutral π0 and γ ray production, the CRs spectrum (Cheng et al. 2011) would be

dNp

dTp
∝ Tp + 1

(T 2
p + 2Tp)(γ0+1)/2

. (5.8)

The CR spectrum will have a cut off at a maximum Tp,max, if γ ≤ 2, so the total εk does not diverge.
The particle acceleration mechanism, the strength of the magnetic field and the power of the shock are
the factors from which the maximum energy depends of. The maximum energy Tp,max can be Hinton and
Hofmann (2009) obtained by

Tp,max ≃ 102v23t2BmG, (5.9)

with v3 = vs/(10
3)km s−1 and t2 = ts/(10

2 yr) which are the shock strength and the shock acceleration
timescale (ts with units of 100 yr) and the magnetic field strength BmG with units of mG, with the above
formula being considered under the Bohm diffusion1, where the lower limit for Tp,max can be obtained.

As the shock velocity decays with time as (t/t0)−1 , where t0 ≃ D/v0 ≃ 1.6×102m
−1/6
6 m

−1/3
∗ r

1/2
∗ D1,

with D ∼ 1 pc ≫ RT (MBH/M∗)
1/3; vs = (6000, 3800) ms−1 and ts = t − t0 = (10, 100) yr, under the

assumption of m6 = m∗, r∗ = D1 = 1. From observations of the GC for the magnetic field (Yusef-Zadeh
et al. 1996) it was showned that BmG ranges from 2-4 mG at the edge of MCs and 0.2 mG between MCs
(Crocker et al. 2005). Assuming that BmG = 1 the maximum energy ranges between Tp,max ≃ (0.36, 1.4)
PeV for t− t0 = (10, 100) yr (Chen et al. 2016). From the interaction of the unbound debris streams and a
smooth ISM, the maximum energy is also in the range of PeV and so the bound debris streams effectively
accelerate the PeV Crs Cheng et al. (2011). The non-relativistic protons in the MC will be hit with the
CRs that escape from the shock region and an important amount of proton-proton collisions (pp-collisions)
will be inelastic so the CRs can loose their kinetic energy and cool down. The timescale of pp-collisions
can be obtained through (σppnHc)

−1 where the cross section for the collisions σpp ≃ 40 mbarn2 and the
speed of light is c. The cooling timescale for pp-collisions (τpp) is given by

τpp = (kσppnHc)
−1 ≃ 5.9 yr, (5.10)

with k = 0.45 representing the inleasticity of the collision Fatuzzo et al. (2006)

5.3.5 Gamma Rays production
The neutral π0 for the γ rays production by pp-collisions and the γ ray luminosity is given by (Fatuzzo
et al. 2006)

Lγ = η(σppnHc)ECR(t). (5.11)

The total energy of CRs that are inside a MC is ECR(t) and the background protons is σppnHc. The
neutral pions π0 production is given by η. The increase of γ0 from 2 to 2.6 implies a decrease of η from
0.18 to 0.04 (Crocker et al. 2005). When the unbound debris stream collides with a mC from t = t0
to t0 + τpp, the CRs that are produced don´t cool down immediatly so the total energy of CRs (ECR)
increases monotically. The luminosity increases as Lγ = (ηε/k)EkC(t)/τpp when the time lies between

1When particles cross the shock front in the slowest diffusion process
2Unit of area: mbarn=10−27 cm2, used to express the cross sections of scattering processes in high-energy physics
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t0 < t < t0 + τpp and C(t) = 1 − (t/t0)
−4. The evolution of the luminosity Lγ implies that the γ ray

emission is only effective several hundreds of years after the TDE occur and has a timescale of tens of
years. The peak luminosity of a TDE is Lpeak ∼ 1039 erg s−1, meaning that there is a higher π0 production
rate for a lower CR cooling time, if nH is large enough (Chen et al. 2016).

5.4 The Fermi Bubbles case
The TDEs phenomena that occur in the GC due to the SMBH interaction with stars has been pointed as
a possible contribution to explain the FB. These structures were discovered during the Fermi-LAT (Fermi-
Large Area Telescope) survey that detected two very large bubbles in the γ ray spectrum, with an extension
of ∼ 10 Kpc in diameter north and south of the GC. First discovered in the X-rays by the ROSAT X-ray
it was later confirmed with the WMAP (Wilkinson Microwave Anisotropy Probe) that detected an excess
of radio signals in the region of the FB.

The origin of the FB is still not clear and several scenarios have been proposed in an attemptive to
explain its formation and how such structures are maintained. Proposed scenarios for the FB are the energy
injection by accretion events onto the SMBH or a nuclear starburst in the past 107 yr (Cheng et al. 2011;
Su et al. 2010). The accretion episodes can be due to sucessive star captures by the black hole producing
TDEs. The SMBH Sgr A* has a capture rate of ∼ 3×10−5 yr−1 and energy release that can go up top 1052

erg per capture. These processes can produce very hot plasma ∼ 10 KeV and winds with velocities of ∼ 108

cm s−1. When injected into the halo, the gas can be heated up to ∼ 1 KeV producing thermal X-rays.
Periodic injection of such hot plasma can produce shocks in the halo where electrons will be accelerated
to ∼ TeV and radio emission will occur through synchrotron radiation and IC scattering that can produce
γ rays (Cheng et al. 2011). A schematic of the FB mechanism is shown in Figure 5.5 to summarize the
observations.

Figure 5.5: Schematic of the FB structures from observations showing two symmetric bubbles at the GC
(Su et al. 2010).

Two blue bubbles symmetric to the Galactic disk indicate the geometry of the gamma-ray bubbles
observed by the Fermi-LAT. Morphologically, it can be observed the features in ROSAT soft X-ray maps,
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shown as green arcs covering the bubbles. The WMAP haze shares the same edges as the Fermi bubbles
(the pink ellipse inside the blue bubbles) with smaller extension in latitude. Such structures can have a
similar physical origin: past AGN activities or a nuclear starburst in the GC (represented the yellow star).

The XMM-Newton survey of the 1, 5 degrees of the GC gives a very high spatial resolution that allowed
to obtain images of the physical processes occurring in the GC. The Central Molecular Zone (CMZ)
concentrates (3−5)×107M⊙ in the inner ∼ 200 pc, which corresponds to ∼ 1% of all the molecular mass
of the Milky Way (Morris and Serabyn 1996). Two lobes were detected in the soft X-ray with dimensions
of ∼ (5-10) pc, north and south of Sgr A*, known as the bipolar Sgr A* lobes (Markoff 2010).

5.4.1 Sgr A* lobes morphology from XMM-Newton
The north and the south lobes at the GC present a co-aligned major axis that have a perpendicular
orientation with respect to the galactic plane. The position of Sgr A* seems to be the point of origin of the
lobes (bubbles). The emission of harder soft X-ray from the lobes (with an orange color) can be observed
in Figure 5.6.

Figure 5.6: The orange colors of the lobes (dashed yellow cirles) indicate a harder soft X-ray emission
compared to the surrounding regions (Ponti et al. 2015).

The lobe on top of the galactic plane - the northern lobe, evidences a brighter and harder structure,
suggesting the presence of a shock, which might be an indication that this lobe is a bubble involved by a
thin shell of hot material that is enhanced by the Chandra data in Figure 5.7 . The southern lobe presents
two britght points (one at the center and the other at the tip) that seem to be like two enhancements in
the northern lobe as these are located at the same approximate distance in the opposite direction (that of
the northern lobe). As both lobes appear to have the same physical origin, also the formation mechanism
of the two bubbles seems to be symmetric about the galactic plane and appears to have the same location
of Sgr A*, which might be sugestive of a near symmetric ejection of hot gas, above and below the GC
during some energetic event. Considering that there is absorption by MCs of the soft X-rays, the symmetry
between the two lobes becomes more evidenced (Ponti et al. 2015). The isotropic outflow from Sgr A* is
assimilated by the circumnuclear disc which contributes to create the bubbles of hot plasma. These bubbles
(lobes) can be the result of a sequential injection of energy from the immediate surroundings of Sgr A*
(Morris et al. 2003).

Considering a large scale structure that might be interacting with massive clouds from the CMZ and
with a possible magnetic origin is the Galactic Center Lobe (GCL). A possible origin for the GCL is related
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to the transport of plasma from the galactic plane, due to GC activity like a past AGN (Law et al. 2011).
In terms of the energy involved, the lobes integrate an amount of thermal energy of Eth ∼ 9 × 1049

erg, over a cylinder of 5 pc in radius and 12 pc in height (corresponding approximately to the size of the
lobes; (Ponti et al. 2015)). Within 1 pc of the GC is estimated that massive stars will lose ∼ 5× 10−3M⊙
yr−1 due to the effect of stellar winds that can reach to 1000 km s−1 (Geballe et al. 1987). During shocks
the kinetic energy that is converted to thermal energy is of the order of E ∼ 5× 1049 erg s−1, considering
the above mass rate of the outflow (Quataert and Loeb 2005). The time required to inflate the lobes in
such scenario is of ∼ 4× 103 yr, which gives a release of energy of E ∼ 5× 1049 erg (Ponti et al. 2015).

Figure 5.7: Chandra data of the lobes, considering there is absorption by MCs the symmetry between the
two structures is more clear (Ponti et al. 2015).

In terms of the accretion flow onto Sgr A*, ∼ 1% of the matter that is captured reaches the central
region of Sgr A* (Wang et al. 2013). The remain material represents the accretion power of ∼ 1031 erg
s−1 that can be converted into kinetic energy that will carry away the bulk material in an outflow, taking
∼ 1050 erg of total energy to the lobes, within its inflation time (Ponti et al. 2015). Sgr A* was ∼ 106

times brighter than it is today witin the Central Molecular Zone (CMZ). About 5% to 10% of the last
∼ 103 yr it had a luminosity of LX ∼ 1039 erg s−1 (Ponti 2012). If such events have occurred over the
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last (5-10)×103 yr with a luminosity of L ∼ 2 × 1039 erg s−1 during ∼ 103 yr in the last ∼ 104 yr, then
it could have achieved a total energy of E ∼ 5× 1049 erg. Considering that the former activity of Sgr A*
might have been due to outburts characterized by outflows with kinetic luminosity reaching the radiated
power, then such events could be viewed as the main source to form the lobes (bubbles; Ponti et al. (2015)).

5.4.2 X-ray chimneys in the GC
At the GC, bipolar lobes develop on scales of ∼ 15 pc, which can be observed in X-ray and radio parts of
the spectrum Zhao et al. (2016) that reveal vast ouflows from the GC and perpendicular to the galactic
plane. The SMBH at the center of the Milky Way is the radio source Sgr A* located at the GC in the
approximate location of the bipolar lobes as can be seen in Figure 5.8. From the observations of the
XMM-Newton between 2016-2018 two new structures of moderate edge-bright at 160 pc both above and
below Sgr A* which are refered by Ponti et al. (2019) as the northern and southern GC chimneys. These
structures are two extended long channels of well collimated expansion of very hot gas that streams above
and below the galactic plane of the Milky Way (Tomisaka and Ikeuchi 1986; de Avillez 2000; de Avillez
and Breitschwerdt 2005)

As these chimneys present an approximate X-ray brightness and colour it is likely that they also share
a common origin and emission mechanism, probably at the GC.

These chimneys develop more than 1 degree over the galactic plane in both north and south regions
where the ROSAT X-ray detected a wider plasma emission, which might be identified as the counterparts
of the FB or these observed X-rays were originated from shocks of thermal gas that surrounded the lobes
probably due to past activity at the GC (e.g., Active Galactic Nuclei, AGN). The thermal energy of these
lobes is ∼ 1058 erg with an outflow power of ∼ 8 × 1038 erg s−1 if the age of the lobes is ∼ 3 × 104 yr.
Such energetics could be provided by accretion events onto the SMBH like TDEs that can release thermal
energy in the range between [1051 − 1052] erg with a stellar capture rate of ∼ 3× 10−5 yr−1 or by SNe at
the GC.

The X-ray data give a thermal energy in the chimneys of ∼ 4 × 1052 erg with an energy filling of the
lobes with a power of pc ≃ 4×1039 erg s−1 (Ponti et al. 2019). These structures are likely to be restricted
in the longitudinal direction with sharp edges throughout their vertical extent as shown in Figure 5.9.

The X-ray emitting gas as an estimated pressure in the chimneys of P ≃ 0.1 − 0.2 KeV cm−3 which
seems to be in agreement with this restriction given the magnetic pressure of p ≃ B2/8π for a required
60-90 µG. As these structures appear to have an approximate cylindrical shape of ∼ 100 pc width for a
latitude of b > ±2 the latter author cast the possibility that these might be formed by an energy injection
mechanism in the GC. Above 1 degree the chimneys appear to mix with the FB as seen in ROSAT X-ray
(Figure 5.9) which can be attributed to a decrease in temperature occuring above the galactic plane at ∼
160 pc for the northern chimney Ponti et al. (2019).

On the light of these new data from XMM-Newton (2016-2018 observations) the authors argue the fact
that the 160 pc chimneys and the ∼ 15 pc bipolar lobes might be parts of an outflow with origin near Sgr
A*, though the X-ray data seem to put aside the idea of these structures being the prolongation of the inner
lobes, which can represent the most recent event of energy injection in the chimneys within the most inner
parsec. One possible hypothesis is the energy release by a SNe justifying the distribution of massive stars
in the GC. Though other hypothesis cannot be discarded like TDEs which contribute with very energetic
events which are associated to accretion onto the SMBH, where the chimneys could represent a chanel for
the propagation of matter and energy to the regions above the disc (Ponti et al. 2019).

5.4.3 Fermi Bubbles and the jet scenario
As refered previously about the location of the FB and its morphology, these structures suggest a large
event of energy injection in the GC, which may be attributed to a nuclear starbust in the last ∼ 10 Myr or
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Figure 5.8: The bipolar lobes observed on the X-ray emission from the central region of the Milky Way
(Ponti et al. 2019).

some previous accretion event onto the SMBH with energy release in the form of an outflow (Yang et al.
2012), where the relativistic jet scenarios are plausible to occur.

Relativistic jets can be originated from past activity in the GC. These jets can accelerate CRs to higher
energies and thus contribute for the γ ray emission. As observed before, the FB present a hard spectrum
which implies the CRs to travel from their origin to the FB location where these are effectively observed
(Yang et al. 2012). Considering the IC scattering as the primary mechanism for the γ ray emission by CR
electrons with energies between 10 ≲ ECR ≲ 100 GeV, then the FB age can be characterized by the IC
cooling time with ∼ 100 GeV electrons, which give an estimate time of a few Myr (Su et al. 2010).

The transport of CRs from their origin to distances of several kpc, must be very fast. Its transport
velocity is given by (Yang et al. 2012)

vtransport ≈ 104
(

l

10 kpc

)(
tage

1 Myr

)−1

kms−1 (5.12)
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Figure 5.9: The X-ray emission at different scales in the GC. a) represents the ROSAT X-ray large-scale
map of the GC; b) the XMM-Newton map of the central degrees of the Milky Way; c) a representation of
the diffuse X-ray emitting features of the central 500 pc from gr A*and d) the Chandra RGB map of the
central tens of parsecs of the Milky Way (Ponti et al. 2019). of the Galactic Centre

where l is the length and tage the age of the FB.
Considering the scenario for the formation of the FB from relativistic jets Guo and Mathews (2012) im-

plemented hydrodynamic numerical simulations where it was determined that relativistic jets can transport
efficiently CRs to a few kpc in a time frame of ∼ 1-3 Myr. However they found some differences between
their simulations and the observed FB. The simulated bubbles structure present hydrodynamic instabilities
that produce spiral structures on the sides of the bubbles against the smoother surface from observations.
It was also demonstrated that for the bubbles edges to be sharp it would imply that the CR diffusion could
not occur on the bubbles surface because the CRs diffuse in an isotropic way and the bubbles edges should
be smoother, with typical galactic coefficients (Guo and Mathews 2012; Yang et al. 2012).

The stellar disruption of a star by a SMBH occurs when the tidal forces of the black hole overcome the
self-gravity of the star, which occurs when the RP lies inside RT (Rees 1988). When disruption occurs it
unbinds ∼ 1/2 of the stellar debris (Rees 1988) and the rest of the stellar mass describes eccentric orbits
Evans and Kochanek (1989). The most bound debris will fallback onto the SMBH and it will collide and
shock as it intersects itself, circularizing and being accreted by the black hole Kochanek (1994). As the
accretion rate finds its peak at t ∼ tfb it will decrease as Ṁ ∝ t−5/3 with Ṁ given by (2.26).

One consequence of accretion by black holes is the relativistic outflows (Yang et al. 2012). There is
a substantial fraction of the power from accretion that is transfered to the relativistic jet (Ghisellini et al.
2009; Yang et al. 2012).
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Jets that are formed from SMBHs occur when the accretion rate is Ṁ ∝ t−5/3 and decreases to
≲ 0.03ṀEdd ≡ Ṁt for times ≳ 10tEdd (Yang et al. 2012). With such low accretion rate the accretion disc
that forms (considering the relativistic effects, which are beyond the scope of this work) is expected to be
radiatively inefficient (Narayan and Yi 1995; Blandford and Begelman 1999).

Considering that an accretion disc is formed around the SMBH after a TDE, due essentially to the
apsidal precession of the stellar debris that self-intersects, collide and shock (Bonnerot et al. 2016), the
penetration parameter should lie between b = [1, 5], otherwise with b ≥ 5 the stellar debris will be greatly
swallowed (Guillochon and Ramirez-Ruiz 2013; Guillochon et al. 2009). After its formation the accretion
disc can loose its angular momentum through magnetic stresses and it will infall onto the SMBH. With a
specific angular momentum ≥ 2RSc this infall will stop due to the centrifugal barrier where the pressure and
density increase much and will accelerate the disc plasma in the vertical direction (zz) (Koide et al. 1999;
Kudoh et al. 2002). If no magnetic fields are applied the accretion disc will fall into the compact object
but when the magnetic field is strong enough there will occur the ejection of the debris of the accretion
disc on the form of a collimated jet by the magnetic field and a fraction will turn into a fast jet due to
the combined acceleration between the gas pressure and the magnetic forces, forming the better known
pressure-driven jet (Koide et al. 1999; Blandford and Payne 1982). The region outside this pressure-driven
jet is known to be the magnetically driven jet if the plasma is accelerated by the magnetic forces and so it
can be considered that the jet presents a two layered structure where the most inner part is accelerated by
the gas pressure and the outer part where it is magnetically accelerated (Koide et al. 1999).

These type of relativistic jets originated from black holes are thought to transport the magnetic field
as it represents an important part in the jet collimation3 and its acceleration (Appl and Camenzind 1993).

The FB morphology presents a bilobular structure which suggests that the CRs in the bubbles may not
be formed from the diffused initial CRs driven and accelerated by SN shocks in the GC. These type of CRs
should form a single CR bubble instead of two symmetric ones at the GC and also the sharp edges of the
FB would consequently imply that across the bubbles surface the diffusion would be very much supressed
(Guo and Mathews 2012).

The large event of energy injection scenario in the GC might be responsible for the formation of the
FB as pointed by Su et al. (2010). A possible contribution for this is the relativistic jet scenario resultant
from past activity in the GC. These jets are known to transport high energy CRs, already detected from
radio synchrotron emission and even observed creating CR-filled bubbles (Laing et al. 2006).

The bubbles can be observed in the Fermi maps at 1 ≲ Eγ ≲ 100 GeV, considering that the γ rays
are due to IC scattering (Guo and Mathews 2012). These CR electrons have an IC cooling time of ∼ 106

yr (Su et al. 2010) and due to the age and symmetry of the bubbles these might have a common origin.
One important issue pointed by Guo and Mathews (2012) refers to the turbulence being triggered in both
bubbles at the approximate same time, as the two structures are quite large (∼ 10 kpc). If CRs could be
originated by a single event and carried to the FB, then it would be plausible that the CRs could share the
same intermediate point of origin, the GC (Yang et al. 2012).

It is known that the CR particles attain velocities near the speed of light but if these are colectively
transported, their speed in the galaxy is considerably smaller (Zirakashvili 2014). Such decrease in the
speed of CRs might be due to the magnetic irregularities that scatter the CRs. If this scattering is big
enough, then the CRs will be trapped and move with the magnetic irregularities. In this case CRs can be
advected with the thermal gas and so the CRs transport is called advection (Guo and Mathews 2012).

Another consideration besides advection is that CR may diffuse through the thermal gas where mag-
netic inhomogeneities are scattered off. The diffusion of CRs is measured by the diffusion coefficient k that
depends on the magnetic field structure and the energy of CR. For a 1 GeV CRs the diffusion coefficient
has values of k ∼ (3− 5)× 1028 cm2 s−1 (Strong et al. 2010). If CRs in the bubbles are originated in the
GC, these must be carried very quickly with a speed of vtransport ∼ 10kpc/tage ∼ 104(tage/10

6yr)−1 km
s−1 to produce the structures of the bubbles (Guo and Mathews 2012).

3To narrow a beam of particles or waves
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The FB should have an age of a few 106 yr because of the small IC cooling times of CR emis-

Figure 5.10: The CR energy density at times t = 1.0 Myr and t = 2.06 Myr for a propagation time of the
jet of tjet = 0.3 Myr. The dotted regions represent the enclose the observed northern FB. R and z are
respectively the radius and vertical component in kpc (Guo and Mathews 2012).

sions that produce the detected γ ray emission. The principal mechanism of CR transport should not be
diffusion because in this case it would form one single γ ray bubble centered at the GC. To carry CRs
by diffusion to a distance of l ∼ 10 kpc in the time tage of the FB, the diffusion coefficient should be
k ∼ l2/tage ∼ 3×1031(tage/10

6yr)−1 cm2 s−1, which is about three orders of magnitude higher in respect
to typical CR diffusivity in the galaxy (Mulcahy et al. 2016). Another fact about diffusion is that it tends
to develop blurred boundaries instead of the sharp edges in γ ray for the observed FB (Attallah 2016).

The main transport mechanim of CRs from the GC to the FB cannot be diffusion and so the alternative
mechanism should lie on advection of CRs with the thermal gas (Yang et al. 2012). Relativistic jets can
transport CRs which can attain sub-relativistic or relativistic velocities on pc and kpc scales and so these
will propagate much faster then galactic winds (Guo and Mathews 2012). These authors implemented
numerical simulations to adress the issue of the FB formation due to CR transport by jets in the GC, with
the focus on the morphology and dynamical evolution of the FB.

In Figure 5.10 the evolution of CR density (left panel) from t = 1 Myr to t = 2.06 Myr is shown. The
thermal electron number density evolution is shown in Figure 5.11 for the same time interval. It can be
observed that the jet expands rapidly producing a CR bubble that is similar to the actual north FB that is
observed at t = 2.06 Myr.

It is implied that the transport of CR is dominated by advection as the jet results from the high velocities
of the thermal gas. The low diffusivity parameter k = 3 × 1027 cm2 s−1 for the CR diffusivity plays a
very small effect as the sharp edges of the CR bubble show, which represents an important feature in the
observed FB (Guo and Mathews 2012).

The high internal pressure in the bubbles can explain the lateral expansion that can be the result of
both the CRs and the shocked thermal gas associated to a fast decrease of the ambient gas pressure with
distance to the GC. With lower internal preessure the initial jet should be much narrow and the expansion of
the gas density is much lower inside the bubbles, as shown in Figure 5.11. This way the X-ray cavities that
are observed, towards the center of the FB, from ROSAT X-ray can be explained (Guo and Mathews 2012).
Figure 5.12 shows the thermal electron number density at t = tFermi (tFermi corresponds to the time at
which the FB are observed) where the dashed line indicates the outer edge of the ROSAT X-ray emission
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Figure 5.11: The CR thermal electron number density at times t = 1.0 Myr and t = 2.06 Myr for a
propagation time of the jet of tjet = 0.3 Myr. The dotted regions represent the enclose the observed
northern FB. The dashed lines represent the ROSAT X-ray shell feature. R and z are respectively the
radius and vertical component in kpc (Guo and Mathews 2012).

of the northern FB. The latter authors found a good matching between their model and the observed FB,
even with varying jet parameters and also fiind that their simulations reproduce the CR bubbles with a
similar match when compared to the observed FB.

The CRs can be accelerated to very high energies near the SMBH, considering the jet scenario. The
time considered for the CR bubbles to be filled is a few Myr with a time of the jet propagation of tjet = 0.3
Myr. The age of the FB can be inferred from the γ ray emission being dominated by IC emission of electron
CRs (Dobler et al. 2010; Su et al. 2010) which allow the acceleration and transport of CRs through the ∼
10 kpc FB length. The FB present a bilobular morphology with the symmetry in respect to the GC, which
can also be explained by jet event in two opposite directions.

With the jet duration of tjet = 0.3 Myr which is much shorter then the FB age it can suggest that the
CRs have about the same age at present time through the whole bubbles. This can justify the fact that the
γ ray spectral index must be uniform along a considerable region within the FB. The ROSAT X-ray shell
features that surround the bubbles can be explained by the strong shocks from jets that heat and compress
the surrounding gas in the galactic halo.
Finally, the FB expansion may be due to CR advection that can explain the sharp edges of the observed
FB and where the CR diffusion is highly supressed (Guo and Mathews 2012).

5.5 Summary
The resident SMBH in the center of the Milky Way presents strong evidences in terms of its nature and
its position has been accurately determined. Its mass has been also determined with good accuracy from
stellar orbits, in fact it is the most well determined compact object to present. The SMBH mass is highly
associated to the compact radio source Sgr A*, which is located in the GC and presents no proper motion
- typical for a massive compact object. The radio polarization observations and X-ray imaging has allowed
to constrain the accretion rate onto the Sgr A*, which has a low bolometric luminosity and presents a
cut-off in the submm (THz) waves that support the existence of the event horizon. The radio emitting
region gets smaller with the increase of the frequency and attains event horizon scales for frequencies ≃
230 GHz (from radio interferometric measurements).

The quasi-symmetric bubbles detected north and south of Sgr A* at the GC are still enshrouded by
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Figure 5.12: The CR thermal electron number density at time t = tFermi for a propagation time of the jet
of tjet = 0.3 Myr. The dotted regions represent the enclose the observed northern FB. The dashed lines
represent the ROSAT X-ray shell feature. R and z are respectively the radius and vertical component in
kpc (Guo and Mathews 2012).

some uncertainty related to their origin. The contributions from some past activity at the GC such as SNe
or TDEs are good candidates for the formation of such structures. More accurate suggestions were brought
to discussion on this subject. The northern lobe presents a sharp and bright edge which can be associated
to a shock, probably a SNR. The two lobes can also be the result of an outflow due to: i) winds from young
stars originated from the GC cluster, ii) accretion flow onto Sgr A* by winds and iii) an X-ray generating
process. Some features (south-west) of Sgr A* suggest that the soft X-ray can be some shell-like structure
presenting thermal energy Eth ∼ 10× 1051 erg which makes such feature a superbubble candidate at the
GC or it may represent a remnant structure of a TDE, due to its high energy. The GCL may be a structure
with enhanced soft X-ray emission and might correspond to the base of larger structures, such as the Fermi
Bubbles (Ponti et al. 2015).

In a more recent work and on the sight of new data from the XMM-Newton satellite, there were
detected two bilobular lobes extending to approximately 15 pc above and below the GC and refered to
as the northern and southern chimneys, which seem to share the same origin, the GC. From this latest
developments Ponti et al. (2019) casts the hypothesis for the 160 pc chimneys and ∼ 15 pc bipolar lobes
to be parts of an outflow that has its origin very close to the center of the galaxy near Sgr A*. Due
to the energetics involved related to the chimneys there is the chance that the energy release might be
explained by a SNe justifying the distribution of massive stars in the GC. Another hypothesis is related to
TDEs as the very energetic events related to the disruption of stars associated to large accretion episodes
onto the SMBH find in the chimneys structures a channel for the propagation of matter and energy to the
surrounding areas of the GC Ponti et al. (2019).

Past activity in the GC like energy injection episodes associated to high accretion rates onto the SMBH
or even nuclear starbust events in the last ∼ 10 Myr might have contributed to the formation of the large
structures detected at the GC and known as the Fermi Bubbles (FB). The energy release from accretion
events from the central black hole are thought to produce outflows from the GC which may develop other
phenomena like relativistic jets (Yang et al. 2012).

The relativistic jet scenario can be interpreted as a consequence of accretion episodes from the SMBH
where the power from accretion can be substantially transfered to the relativistic jet (Ghisellini et al. 2009).
After a TDE and if relativity is to play a role on the accretion process, this fact may contribute to the
formation of an accretion disc around the SMBH due to the circularization stellar debris that remains bound
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to it. An important relativistic effect is the apsidal precession of the stellar debris that implies the material
to self intersect between the incoming debris and the outgoing one, which will collide and shock. These
shocks can release large amounts of energy (e.g., thermal energy). After the formation of the accretion
disc and if no magnetic fields develop influence the accretion disc will collapse into the SMBH but if the
magnetic fields are strong enough the stellar debris that circularizes around the black hole will be ejected
on the form of a collimated jet by the magnetic field (Koide et al. 1999).

The principal mechanism to transport CRs from the GC to the FB must be due to advection of CRs
that are carried with the thermal gas (Yang et al. 2012). Relativistic jets can accelerate efficiently the CRs
to very high energies with sub-relativistic or relativistic velocities on pc and kpc scales. The CR bubbles
can be replenished in a few Myr considering a certain time of duration of the relativistic jet (as shown
in the hydrodynamical numerical simulations of Guo and Mathews (2012)) and the age of the FB can
be estimated from the γ ray emission which is dominated by the IC emission of electron CRs (Dobler
et al. 2010; Su et al. 2010) that accelerate and transport the CRs for the ∼ 10 kpc FB. The observed FB
structures may be the result of CR advection that can explain its sharp edges and where the CR diffusion
is highly supressed (Guo and Mathews 2012).



6
Final remarks and future work

6.1 Summary of the thesis contents
The research described in this thesis born from the need to describe the formation and evolution of the
Fermi Bubbles as its origin may be linked to the captures of stars by the black hole Sgr A* releasing at
least 1053 erg of energy per capture. Hence, 100 captures are needed to comply with the energy of 1055
erg determined for the FB. Another option is the explosion of 104 massive stars (m> 8M⊙ with an energy
release of 1051 erg (the canonical value). However, such hypothesis is unlikely as there is no evidence of
such large activity that would leave an imprint in the soft X-ray emission from the Galactic center and the
central molecular zone as shown in the high-resolution X-ray surveys of these areas by Ponti et al. (2015)
and Ponti et al. (2019).

The most relevant theoretical aspects concerning TDEs were presented along Chapter 2, where the
influence of Sgr A* over the surrounding stars and their orbits on the central region of the galaxy can
determine the fate of the stars when they enter on the sphere of influence of the black hole. Such influence
is presented within the loss cone theory focused to the relevant aspects to TDEs. The approach of a
solar type star to an SMBH and the effects that it suffers under the influence of its tidal forces leads to
the deformation and disruption of the star. Such effects are determined by the penetration parameter (b)
during the pancake phase. After a TDE the material that is removed from the stellar surface is described
in terms of its dynamics - most evident effect is the formation of two tidal tails with each portion evolving
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in different ways: one part of the stellar debris stays bound to the black hole and the other is ejected on
hyperbolic trajectories. The accretion disc that forms around the black hole constitutes a strong mechanism
of dissipation of energy of the orbiting stellar debris whose emission can be traced using different space
telescopes (e.g., XMM-Newton, Suzaku, Nustar).

A detailed study of TDEs is only possible through the use of a Smoothed Particle Hydrodynamics
(SPH), such as the Phantom code Price et al. (2017) whose description and tests (and comparison with
the results obtained with the Zeus-MP (Hayes et al. 2006) code) are presented in Chapter 3. Phantom
treats the fluid equations with discrete particles that are used with hydrodynamic properties and their
evaluation is carried out at particle positions from weighted average values on other particles. The method
is implicitly adaptive and is well suited to deal with vacuum boundary conditions and large regions that are
devoid of gas (particles).

Chapter 4 deals with the details and results of the parametric (penetration parameter b and eccentricity
ecc) study of TDEs where a solar mass star describes parabolic and elliptic trajectories around Sgr A*
(MBH ∼ 4× 106M⊙) in the keplerian regime. The spatial distribution of the debris that results after the
passage of the star at RP , evolves in different fashion among the two types of trajectories:

i) Parabolic trajectories: For ecc = 1) the passage of the star at RP causes deformation of its structure
due to the tidal forces exerted by the black hole (depending on b) and resulting in the formation
of two tidal tails produced by the debris that is depleted from the stellar surface (the least bound
material of the star). Approximately half of the stellar debris removed from the star is ejected, while
the rest is accreted by the black hole at a fallback rate.
The encounters with b = 0.5 and b = 1 are characterized by small deformation as the tidal forces
exerted on the stellar surface are small. Hence, the star can keep its core unperturbed or with a
few percent perturbation. For b ≥ 2 encounters the star is gradually deformed with its core being
stretched with increasing b, until the binding energy of the star no longer balances the tidal forces of
the black hole. Consequently the star is partially or completely disrupted (pancake phase).

ii) Elliptic tractories: The spatial distribution of the debris is characterized by the circularization of the
debris resultant from the crossing of the star at RP . As the orbits have an eccentricity of ecc = 0.3,
the resultant debris from the tidal disruption will settle in a near circular orbit. After a few P∗ the
debris will settle around the black hole, though the mass of the star is continuously removed and
the stellar core is progressively deformed until disruption occurs. The consecutive passages of the
star at RP will produce a stream of debris that describes near circular orbits until it starts to be
accreted, after several orbital periods. The debris that attains enough angular momentum and do
not fall into the black hole will settle on a circularization radius defined by the specific circularization
energy resultant from the debris that is redistributed.

The debris that returns to the SMBH is characterized by the peak of the mass fallback rate. The Milky
Way’s SMBH is ≈ 4× 106M⊙ which gives a fallback time of tfb = 7.077× 106 s ≈ 82 days. The return
of the debris to the black hole is estimated by the peak of the fallback mass rate Ṁ ≃ 3M⊙ yr−1.

By the passage at RP the star will have a kinetic energy of the order of (MBH/M∗)
2/3 and will be

distorted and compressed due to tidal forces in a way that thermal energy will be released and will be
imparted to the resultant debris at the expense of the kinetic energy. The gravitational binding energy of
the gas to the SMBH will be converted in thermal energy until it reaches the last stable orbit around the
black hole.

If the gas can dissipate the heat by the emission of radiation or acceleration of particles, then the
thermal energy can be extracted by the time it reaches the last stable orbit. If the dissipation of energy is
inefficient, the heat can be advected onto the SMBH where it will be added to its rest mass (Rees 1988;
Alexander 2005).

Due to the tidal forces of the black hole the kinetic energy is imparted into thermal energy, which is
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released for the surrounding medium. The thermal energy released can be of the order ∼ 1047 erg for the
b = 0.5 encounter in both parabolic and elliptic TDEs and can go up to ∼ 1050 erg for the highest b = 8
encounters for the parabolic case and of the order ∼ 1048 erg for the elliptic case.

The results obtained from the simulations show that the parabolic TDEs release more thermal energy
than the elliptic TDES by the first passage of the star at RP .

Chapter 5 deals with the most important characteristics of Sgr A* including the latest X-ray observa-
tions and the presence of two lobes and chimneys on either side of the Galactic Center associated to activity
near or in the Sgr A*. The Fermi Bubbles origin is described taking into account the jet scenario.

The SMBH Sgr A* presents strong evidences in terms of its nature with an accurate determined position
in the GC. Its mass is well determined from stellar orbits and in fact it is the most well determined compact
object to date. The mass of the central black hole is highly associated to the compact radio source Sgr A*
located at the GC and presents no proper motion. Observations of radio polarization and X-ray imaging
have constrained the accretion rate onto the Sgr A* that has a low bolometric luminosity with a cut-off in
the submm (THz) waves confirming the existence of the event horizon.

The quasi-symmetric lobes detected north and south of Sgr A* at the GC still cast doubts related
to their origin. The contributions from some past activity at the GC such as SNe or TDEs might have
contributed for the formation of such structures. The lobes can be the result of an outflow due to winds
from young stars originated from the GC, an accretion flow onto Sgr A* or an X-ray generating process.
Some features suggest that the soft X-ray might be attributed to a shell-like structure presenting thermal
energy Eth ∼ 10 × 1051 erg turning it potentially in a superbubble candidate at the GC or it may be a
remnant structure of a TDE, due to its high energy. The GCL may be a structure with enhanced soft X-ray
emission and might correspond to the base of larger structures, such as the Fermi Bubbles (Ponti et al.
2015).

Recent data from the XMM-Newton satellite detected two lobes that extend ∼ 15 pc above and below
the GC which are designated by the northern and southern chimneys and apparently share the same origin
which is the GC. This more recent developments Ponti et al. (2019) unveil the hypothesis for the chimneys
and the bipolar lobes to be parts of an outflow with origin very close to the center of the galaxy near
Sgr A*. Due to the energetics involved the energy release might be explained by a SNe which explains the
distribution of massive stars in the GC. TDEs might be another hypothesis as the very energetic events
related to the disruption of stars are associated to large accretion episodes onto the SMBH finding in the
chimneys a way to propagate the matter and energy to the surroundings of the GC (Ponti et al. 2019).

The past activity in the GC in the last ∼ 10 Myr might have contributed to form the large structures
at the GC, known as the Fermi Bubbles (FB). Accretion events may contribute for the energy release from
the central black hole which are thought to produce outflows from the GC and develop other phenomena
like relativistic jets (Yang et al. 2012).

The jet scenario can be the consequence of accretion episodes from the SMBH and the energy resultant
from the accretion process can be transfered to the relativistic jet (Ghisellini et al. 2009). After a TDE an
accretion disc around the SMBH can be formed due to the circularization stellar debris that remains bound
to it. Important relativistic effects like the apsidal precession of the stellar debris can release large amounts
of energy (e.g., thermal energy). After the formation of the disc and if no magnetic fields develop influence
the accretion disc will collapse into the SMBH. In the presence of strong magnetic fields the stellar debris
that orbits around the black hole can be ejected on the form of a collimated jet by the magnetic field
(Koide et al. 1999).

The main mechanism of CRs transport from the GC to the FB must be due to advection of CRs that are
carried with the thermal gas (Yang et al. 2012). Relativistic jets can accelerate CRs to very high energies
with sub-relativistic or relativistic velocities on pc and kpc scales. The CR bubbles can be filled in a few
Myr according to the duration of the jet and the age of the FB can be estimated from the γ ray emission
which is dominated by the IC emission of electron CRs (Dobler et al. 2010; Su et al. 2010) accelerating
and transporting the CRs to the ∼ 10 kpc FB. CR advection can explain the observed FB due to its sharp
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edges and where the CR diffusion is highly supressed (Guo and Mathews 2012).
In a recent work Curd and Narayan (2019) studies the jetted TDEs with General Relativity Radia-

tion MagnetoHydrodynamics (GRRMHD) which enlights new and important information on the complex
process from the initial TDEs to the formation of accretion disc and relativistic jets.

6.2 Future work
The work presented in this thesis is just the beginning of a long research program to carry out in the next
few years. This program comprises four lines of work:
(a) Inclusion of relativistic effects. These effects are important for the circularization of debris and the

formation/evolution of the accretion disc. The latter results from the settling of the debris under an
accretion rate of the stellar matter onto the black hole. An accretion disc can form from the debris
and is essentially driven by relativistic apsidal precession (another relativistic effect) that causes the
stream to self-intersect, leading to shocks and therefore more energetic events to account for. The
structure of the disc depends on the cooling efficiency of the gas by considering two extreme cases.
If efficient cooling occurs, the debris will settle in a thin and narrow ring of gas but on the other way
if the cooling is inefficient it will settle into a thick and extended torus.

(b) The smoking gun and the formation of the Fermi Bubbles. The recent X-ray emission observations by
Ponti et al. (2015) and Ponti et al. (2019) show hot plasma moving away from the GC and forming
chimneys. Their origin and evolution was the subject of intense studies over the last 30 years (see,
e.g., review by de Avillez and Breitschwerdt (2010) and references therein). Knowing the amount
of thermal energy released (and thus the heat up of the interstellar gas) by the TDE and their time
of occurrence one needs to bring together high resolution simulations of the TDE evolution and the
expansion of the hot plasma on either side of the GC by combining the SPH and adaptive mesh
refinement grid simulations. Thus, tracing the formation of the superbubbles and their emission
properties using the Collisional+Photo Ionization Plasma Emission Software (CPIPES; de Avillez and
Breitschwerdt 2017; de Avillez 2018; de Avillez et al. 2018).

(c) Study of the emission properties of the accretion disk and corona. With CPIPES study the time
dependent ionization structure and the emission processes in the accretion disk and corona. The
latter is a high-energetic hot and optically thin region that reprocesses the thermal photons from
the accretion disk. The corona emission feeds back into the accretion disk and thus its emission
properties have to be traced jointly with a radiative transfer calculation. The emission spectra of the
two regions is then passed through the X-ray telescope response matrices and be used to compare
with real observations using the spectral fitting package XSPEC1 and the KY relativistic accretion
disk model package of (Dovčiak et al. 2004).

(d) Study of the vertical structure of the accretion disk in a consistent way with the radiation field.
Taking into account the emission from the accretion disk and from the corona, which feedback into
the dynamics of the accretion disk through the equation of state and momentum equation (see, e.g.,
Schmutzler and Tscharnuter (1993); de Avillez and Breitschwerdt (2012), carry out high-resolution
multi-fluid simulations of the accretion disk using radiative transfer and taking into account the
photons emitted from the different components and absorbed by the accretion disk. This is important
as in general it is assumed that the accretion disk has a constant density atmosphere as this simplifies
the energetic and emission calculations and simplifying radiative transfer calculations.

In summary we favour the formation of the Fermi Bubbles within a short period of time (not longer
than 10 Myr) mainly due to captures of stars by the SMBH residing in the Sgr A* region. Supernova

1https://heasarc.gsfc.nasa.gov/xanadu/xspec
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activity in the vicinity only contributed to energize the bubbles within a sound crossing time, preventing
the plasma to cool and making difficult their detection.

The End
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