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RESUMO 

 
O sucesso dos produtos da Engenharia de Tecidos é intimamente dependente da 

capacidade de eliminar corretamente os produtos derivados de processos metabólicos e 

também do suprimento nutritivo e de oxigénio da parte interior das matrizes, após implantação.  

 

A angiogénese – formação de novos capilares sanguíneos a partir de vasos pré-

existentes - é um processo morfogénico que, sendo mediado por uma complexa sequência de 

acontecimentos celulares que levam à neovascularização no local de implantação, se tem 

vindo a provar como sendo crucial para alcançar tal suprimento nutritivo.  

 

Tendo em conta o conhecimento atual nos mecanismos altamente complexos que 

motivam a ativação e invasão de células vasculares angiogénicas, um elevado número de 

estratégias têm sido desenvolvidas no sentido de promover a vascularização de implantes 

obtidos através da Engenharia de Tecidos. Tais estratégicas incluem a libertação de fatores de 

crescimento angiogénicos, a transplantação de células, maioritariamente de diferentes tipos de 

células endoteliais (células endoteliais maturas ou células progenitoras) e o uso de matrizes 

feitas de biomateriais permissivos à angiogénese. Estratégias terapêuticas com vista a 

melhorar a densidade de vasos e a restabelecer o fluxo sanguíneo são particularmente 

ambicionadas após danos no Sistema Nervoso Central (SNC), onde a formação de novos 

vasos sanguíneos foi relacionada com melhorias na recuperação funcional de vários modelos 

animais de dano do SNC.  

 

Neste sentido, o objetivo principal desta tese de mestrado era o desenvolvimento de um 

hidrogel de fibrina capaz de promover a neovascularização de tecidos, quer induzindo a 

formação de estruturas tubulares por tipos celulares da vasculatura previamente cultivados em 

hidrogéis de fibrina, ou promovendo a angiogénese in vivo através de invasão da vasculatura 

do hospedeiro. Para tal, hidrogéis de fibrina foram funcionalizados com o péptido T1 

(GQKCIVQTTSWSQCSKS), uma sequência de ligação à integrina α6β1, devido ao seu 

conhecido envolvimento na formação de estruturas tubulares por células endoteliais. Outro 

ligando da integrina α6β1 (HYD1 peptide - KIKMVISWKG), anteriormente provado pelo nosso 

grupo como sendo capaz de promover migração celular e a extensão de neurites por células 

neurais estaminais/progenitoras (derivadas de células estaminais embrionárias) cultivadas em 

géis tridimensionais de fibrina, foi também explorado. Era esperado que a funcionalização da 

fibrina com os péptidos T1 e HYD1 resultasse num melhoramento da capacidade da fibrina 

induzir a neovascularização, nomeadamente através do aumento da proliferação e migração 

celulares, assim como da formação de estruturas capilares, in vitro e da angiogénese, in vivo. 

 

Os péptidos foram covalentemente ligados à fibrina usando a ação de reticulação 

enzimática do fator XIIIa e o efeito da imobilização dos péptidos T1 e HYD1 na capacidade de 

células endoteliais formarem estruturas capilares quando cultivadas em géis tridimensionais 

funcionalizados foi avaliado usando um ensaio angiogénico in vitro (microcarrier-based 

angiogenesis assay) e microscopia de fluorescência high throughput. Como primeira 

abordagem, uma linha celular de células da microvasculatura humana do pulmão (HPMEC-

ST1.6R), com conhecida capacidade de formar estruturas capilares nos géis tridimensionais de 

fibrina, foi usada. Os resultados mostraram que a concentração mais elevada de péptido T1 
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testada (40 µM) aumentou o sprouting das células endoteliais, nomeadamente levando a um 

aumento de 1.4 vezes na área de sprouting e no número de sprouts por microcarrier e um 

aumento de 1.5 vezes no comprimento máximo de sprout, ainda que estas diferenças não 

tenham sido consideradas estatisticamente significativas, à exceção do número de sprouts por 

microcarrier. Por contrário, a imobilização do péptido HYD1 não foi efetiva na indução do 

sprouting das células endoteliais, independentemente da concentração de péptido testadas.  

 

De seguida, uma linha celular de células endoteliais da microvasculatura humana do 

cérebro (hCMEC/D3), descritas como sendo capazes de formar estruturas tubulares quando 

colocadas em cima de Matrigel, foi usada. À semelhança dos resultados já descritos, a adição 

de 40 µM de péptido T1 resultaram num sprouting significativamente maior relativamente à 

área de sprouting e ao número de sprouts por microcarrier, levando em média a um aumento 

de 1.4 vezes em todos os parâmetros considerados. Novamente, a funcionalização com o 

péptido HYD1 foi incapaz de promover o sprouting das células endoteliais, dentro da gama de 

concentrações testadas. A capacidade pro-angiogénica dos géis funcionalizados com o péptido 

T1 (40 µM de péptido) foi significativamente melhorada na presença do indutor angiogénico 

solúvel VEGF. Especificamente, a adição de VEGF (25 ng/mL) ao meio de cultura, levou a um 

aumento para o dobro no que diz respeito à área de sprouting, um aumento de 1.9 vezes no 

número de sprouts por microcarrier e um aumento de 1.5 vezes no comprimento máximo de 

sprouting. Mais ainda, também a percentagem de beads com sprouts aumentou de uma média 

de 70% na fibrina não funcionalizada para 94.6% nos géis funcionalizados com o péptido T1. A 

contribuição da integrina α6β1 no sprouting das células endoteliais nos géis funcionalizados 

com o péptido T1 foi avaliado através da incubação com anticorpos de bloqueio funcional. Os 

resultados evidenciaram que o sprouting suscitado pela imobilização do péptido T1 é 

parcialmente mediado pela integrina α6β1. Não foram encontradas diferenças estatisticamente 

significativas mas uma redução considerável foi observada quer no número de sprouts por 

microcarrier quer no comprimento máximo de sprouting. A imobilização do péptido T1 não 

afetou a viabilidade e proliferação celular, conforme demonstrado pela análise de células vivas 

e mortas por citometria de fluxo e pela atividade metabólica celular, respetivamente. Os géis 

funcionalizados foram caracterizados em termos de propriedades mecânicas e os resultados 

mostraram que não há diferenças significativas nas propriedades viscoelásticas da fibrina após 

a imobilização do péptido. Estes resultados são concordantes com o descrito na literatura, 

reportando disrupção mínima da estrutura da fibrina durante a incorporação de pequenos 

péptidos usando a mesma estratégia de reticulação enzimática.  

 

Em seguida, para avaliar o efeito dos géis de fibrina funcionalizados numa fonte de 

células endoteliais clinicamente relevante, células derivadas do sangue do cordão umbilical, 

foram cultivadas em géis de fibrina funcionalizados com 40 µM e 60 µM de péptido T1 e a sua 

capacidade de formar estruturas capilares foi avaliada. Enquanto que a concentração mais 

baixa testada falhou em promover o sprouting de células endoteliais, a concentração de 60 µM 

foi bem sucedida, levando a um aumento significativo de 1.7 vezes no número de sprouts por 

microcarrier e de 1.8 vezes no comprimento máximo de sprouting. Estes resultados sugerem 

que a concentração de ligando requerida para um aumento do sprouting das células endoteliais 

é dependente do tipo celular usado, e possivelmente relacionado com os níveis de expressão 

de integrinas.  

 

Finalmente, e dado que os resultados in vitro foram promissores, realizaram-se três 

ensaios CAM independentes com o objetivo de avaliar, in vivo, o potencial angiogénico da 

fibrina funcionalizada com o péptido T1. Para este efeito foi utilizada uma concentração de 50 
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μM de péptido T1, a qual levou a um aumento significativo de 20% no número de novos vasos, 

e comprovando deste modo o potencial angiogénico dos hidrogéis desenvolvidos. Para além 

deste facto, verificou-se uma redução significativa da reação inflamatória para a fibrina 

funcionalizada, a qual sugere um possível efeito anti-inflamatório dos hidrogéis funcionalizados. 

A confirmar-se, o efeito anti-inflamatório dos géis funcionalizados  com o péptido T1 aliado às 

suas propriedades angiogénicas pode tornar o gel desenvolvido particularmente interessante 

para aplicação em lesões do sistema nervoso central e em doenças neurodegenerativas. 

 

Em resumo, os resultados obtidos indicam que os géis funcionalizados com o péptido 

T1, para além de poderem ser potencialmente úteis para o desenvolvimento de matrizes pré-

vascularizadas, podem também ter interesse para promoverem localmente a angiogénese, 

nomeadamente  em situações clínicas tais como lesões da espinal medula, úlceras diabéticas e 

isquemia. 

 
PALAVRAS-CHAVE: Biomateriais, Hidrogéis de Fibrina, Péptidos angiogénicos, Células 

endoteliais, Regeneração do Sistema Nervoso Central, Ensaio de angiogénese com 
microcarriers, Ensaio da membrana corioalantóica 
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ABSTRACT 
 

The success of tissue-engineered constructs after implantation is closely dependent on 

the ability to correctly dispose metabolic by-products and supply the inner part of the cell-matrix 

constructs with adequate levels of nutrients and oxygen, following implantation.  
 

Angiogenesis, the formation of new capillary blood vessels from pre-existing vessels, is 

a morphogenic process that, being mediated by a complex sequence of events leading to 

neovascularization at the implant site, has been proven to be crucial for achieving this 

nourishment.  
 

Keeping in mind the present knowledge on the highly complex mechanisms motivating 

the activation and invasion of angiogenic vascular cells, a number of strategies are being 

developed to promote vascularization of tissue-engineered implants. Such strategies involve the 

delivery of angiogenic growth factors, cell transplantation, most often of different types of 

endothelial cells (mature ECs or progenitor cells), and the use of biomaterial-based matrices 

permissive to angiogenesis. Therapeutic approaches improving vessel density and restoring 

blood flow are particularly desirable following injury in the Central Nervous System (CNS), 

where the formation of new blood vessels has been correlated with improvements in functional 

recovery in a number of animal models of CNS injury.  
 

In this sense, the main goal of this master thesis was the development of a fibrin-based 

hydrogel capable of promoting the neovascularization of bioengineered tissues, either by 

inducing tubule formation by vascular cell types such as mature ECs or endothelial progenitor 

cells previously seeded in fibrin, or by promoting angiogenesis in vivo by invading host’s 

vasculature. For this purpose, fibrin hydrogels were functionalized with the integrin α6β1 binding 

sequence of the angiogenic inducer CYR61 (T1 peptide - GQKCIVQTTSWSQCSKS), due to its 

reported involvement in tubule formation by endothelial cells. Another integrin α6β1 ligand 

(HYD1 peptide - KIKMVISWKG), previously shown by our group to promote cell migration and 

neurite extension of embryonic stem cell-derived neural stem/progenitor cells cultured within 3-

D fibrin gels, was also explored.  Tethering of T1/HYD1 peptides to fibrin was expected to 

improve fibrin ability to induce neovascularization, namely by promoting proliferation, migration 

and capillary-like structure formation, in vitro, as well as angiogenesis, in vivo.   

 

Peptides were covalently bound to fibrin using the enzymatic cross-linking action of 

transglutaminase factor XIIIa and the effect of immobilized T1/HYD1 on EC ability to form 

capillary-like structures within 3D functionalized gels was evaluated using a microcarrier-based 

angiogenesis assay and high throughput fluorescence microscopy. As a first approach, a cell 

line of human microvascular ECs from the lung (HPMEC-ST1.6R), with reported ability to form 

capillary-like structures within 3-D fibrin gels, was used. Results showed for the highest 

concentration of T1 peptide tested (40 µM) an increased EC sprouting (1.4-fold increase in the 

sprouting area and number of sprouts per microcarrier and a 1.5-fold increase in the maximal 

sprouting length) although statistically significant differences were only found for the number of 

sprouts per microcarrier. In contrast, tethering of HYD1 peptide was not effective in inducing EC 

sprouting, regardless the input peptide concentration tested.   

 

Subsequently, a cell line of human brain microvascular EC (hCMEC/D3), described to be 

capable of tubule formation of top of Matrigel, was used. Further supporting the previous results, 

the modification with 40 µM of T1 peptide resulted, in average, in 1.4-fold increase in every EC 
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sprouting parameter evaluated, with statistically significant differences being observed for the 

sprouting area and number of sprouts per microcarrier. Once again, the functionalization with 

HYD1 peptide was unable to promote EC sprouting, within the range of input peptide 

concentrations tested. The pro-angiogenic ability of T1-functionalized fibrin gels (40 µM of 

peptide in the polymerizing gel) was significantly enhanced in the presence of the soluble 

angiogenic inducer vascular endothelial growth factor (VEGF). Specifically, the addition of 25 

ng/mL of VEGF to the culture medium, led to a 2-fold increase of the sprouting area, a 1.9-fold 

increase in the number of sprouts per bead and a 1.5-fold increase in the maximal sprouting 

length. Also, the percentage of beads with sprouts increased from an average of 70% in 

unmodified fibrin to 94.6% in T1-functionalized fibrin. The contribution of α6β1 integrin to EC 

sprouting in T1-functionalized gels was assessed using functional blocking antibodies. 

Incubation with monoclonal antibodies against α6 or β1 integrin subunits partially inhibited the 

number of sprouts per bead and the maximal sprouting length. Even though significant 

differences were not attained, these results suggest that the EC sprouting elicited by 

immobilized T1 peptide was partially mediated by integrin α6β1. Immobilized T1 peptide did not 

affect cell viability or proliferation, as shown by flow cytometry analysis of LIVE/DEAD cells and 

cell metabolic activity, respectively. Further characterization of T1-functionalized gels in terms of 

mechanical properties showed no significant changes in fibrin viscoelastic properties after 

peptide binding, in agreement with previous findings reporting minor disruption of fibrin structure 

during peptide incorporation using the same enzymatic cross-linking approach. 
 

Following, to get insight into the effect of T1-functionalized fibrin hydrogels on a clinically 

relevant source of endothelial cells, outgrowth endothelial cells (OEC), derived from the 

umbilical cord blood were cultured within T1-functionalized fibrin hydrogels (40 or 60 µM of 

peptide in the polymerizing gel) and their ability to form capillary-like structures was evaluated. 

While 40 µM of T1 peptide failed to promote EC sprouting, an input peptide concentration of 60 

µM was successful in enhancing EC sprouting, leading to significantly higher number of sprouts 

per bead (1.7-fold increase), as well as maximal sprouting length (1.8-fold increase). These 

findings suggest that the ligand concentration required for EC sprouting enhancement in fibrin is 

cell type dependent, and possibly related to integrin expression levels.  
 

Finally, in order to evaluate the in vivo angiogenic potential of T1-functionalized fibrin, 

the Chorioallantoic Membrane (CAM) assay was performed. Fibrin hydrogels with an 

intermediate input peptide concentration (50 µM) were used for this purpose. Results from three 

independent CAM assays evidenced a reproducible and significant increase in the number of 

newly formed vessels, namely of about 20%, therefore pointing out the angiogenic potential of 

T1-functionalized fibrin gels. Interestingly, CAMs receiving T1-functionalized fibrin showed a 

significant reduction of the inflammatory reaction when compared to that elicited by unmodified 

fibrin. The possible anti-inflammatory effect of T1-functionalized fibrin combined with its 

angiogenic properties makes it potential interesting for application in the injured CNS as well as 

in neurodegenerative disorders. 
 

Taken together, these results suggest that T1-functionalized fibrin gels, apart being 

potentially useful for the development of prevascularized matrices, may also be of interest to 

induce locally angiogenesis in clinical situations such as spinal cord injuries, diabetic skin ulcers 

and ischemia. 

 

KEY-WORDS: Biomaterials, Fibrin hydrogels, Angiogenic physical cues, Endothelial cells, 

Regeneration of the Central nervous system, Microcarrier-based in vitro angiogenic assay, 
Chorioallantoic Membrane (CAM) assay. 
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1. CONTEXTUALIZATION 

 
In 2014, around 86,000 people from the European Union (EU) were on the organ 

transplantation waiting list, with an average of 16 people dying each day, waiting for transplants 

that cannot take place because of the fact that current demand for organ and tissue transplants 

far exceeds the supply [1]. Besides, there is a considerably high rate of rejected transplants due 

to the inefficiency of providing the adequate amount of oxygen and nutrients to the cells [2]. This 

is due to the fact that the nearby blood vessels are located at a higher distance than 100-200 

μm, being such gap inadequate to deliver sufficient oxygen diffusion and nutrients [3].  

Thus, since there is an increasing need for organ transplantation, the ability to promote 

the formation of blood vessels, in a controlled manner, is even more fundamental for its 

acceptance and success [4]. One of the main critical issues regarding the success of 

engineered constructs with clinically relevant size is also the demand for nutrients, waste and 

oxygen transport [5]. Most successes have been attained on avascular or thin tissues, such as 

the bladder, cartilage or the skin, because, since cells are merely a few hundred micrometers 

away from the capillaries, the nutrients and oxygen are able to disperse into the implants and 

sustain cellular survival and viability [6]. This issue becomes more critical in what concerns 

larger and more complex organs, such as kidney, heart, liver and brain, because those have an 

enormous mass of cells requiring individualized nourishment through an organized network of 

capillaries, veins and arteries [7]. Particularly in such situations, the inability to properly dispose 

the waste and to provide adequate nourishment to the inner part of the cell-matrix constructs in 

the initial phase after implantation of the engineered tissues and organs is critical for the 

success of the graft [2]. 

1.1. Angiogenesis  
 

Therefore, blood vessels development constitutes a crucial process for the formation 

and maintenance of tissues and organs. It can be classified in three different types – sprouting 

angiogenesis, vasculogenesis and intussusception [8] – as depicted in figure 1.  

 

 
 
 
 
 
 
 
 
 
 
 

 
 

 
Figure 1: Mechanisms of blood vessels development. 

 

Sprouting angiogenesis refers to the formation of new capillary blood vessels by 

sprouting from pre-existing vessels. This is an invasive process involving proteolytic agents 

which degrade the basement membrane, allowing cell migration, removal of blocking matrix 

proteins and creation of free space in the matrix to allow the formation of a proper lumen by 

endothelial progenitor cells (EPCs) [9]. Vasculogenesis, in turn, defines the process of 

differentiation assumed by mesodermal cells in order to originate new blood vessels. Lastly, 
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intussusception denotes the process in which pre-existing vessels split and raise daughter 

vessels [8] [10]. 

Angiogenesis, schematized in figure 2, is a morphogenic process mediated by a 

complex sequence of cellular happenings that lead to neovascularization [11]. After the 

production and release of angiogenic factors, by diseased or injured tissues, the contact 

between adjacent ECs is reduced due to the vasodilatation of the parental vessel. Then, the 

basement membrane of the parental vessel is degraded and the ECs migrate and proliferate in 

order to form a leading edge of a new capillary and, consequently, the capillary lumen is 

developed and a tubular-like structure is created.  Later, the basement membrane is synthetized 

and vascular smooth muscle cells and perycites are recruited to stabilize the newly formed 

blood vessel [7]. At the end of this events sequence, the vascular network is formed and 

comprised of a layer of ECs separated from the other present cells types through the basement 

membrane lastly formed [12]. 

The angiogenic response is dependent on the dynamic balance between stimuli and 

inhibitors, both acting in the environment of ECs [13]. Interferences in such balance can support 

the development of new vessels or lead to vessel latency or regression. During tissue 

remodeling, new blood vessels emerge from the neighbor ones, being angiogenesis a critical 

regulator of tissue function [14].  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

1.2. Angiogenesis in the Central Nervous System 
 

The Central Nervous System (CNS), consisting of the brain and spinal cord, is one of the 

most sensitive and critical of any organism. To own a highly specialized vasculature is crucial to 

answer the demands of this metabolically highly active system and also to defend the most 

sensitive neurons from toxic agents, such as metabolites and xenobiotics [15]. Therefore, it is 

essential to understand the mechanisms underlying angiogenesis in this system, since it is seen 

both as a normal physiological response and a pathological step in disease progression [15]. 

 

Figure 2: The process of angiogenesis (adapted from Angiogenesis Foundation, 2000) 
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The vascular and nervous systems share anatomical and developmental principles, 

since they have the necessity of creating a transferring circuit, respectively, for nutrients and 

information [16].  At the cellular and molecular levels, there are also similarities between the 

main elements of each system – vessels and neurons - that use similar cues to guide both ECs 

and neuronal cells [16]. Apart from the common anatomical, cellular and molecular features, 

these two systems have developed a close relationship within the CNS itself, connecting to 

each other at the interface between them – the neurovascular unit (NVU) [17] - composed by 

ECs, pericytes, glial cells and neurons, tightly connected to control cerebrovascular functions 

[16].  

 

Several decades ago, Paul Ehrlich suggested the existence of a protective and 

stabilizing feature, formed by specialized characteristics of brain vessels [17]. When injecting 

dyes in the vascular system, Ehrlich concluded that they did not penetrate into the brain tissues 

but were easily absorbed by the peripheral tissues [18] and, thus, the concept of Brain-Blood 

barrier arose. BBB is now understood as being a physiological and anatomical barrier, located 

at the level of cerebral capillaries in the frontline defense of the CNS [17], responsible for 

restricting the permeability of the surrounding blood vessels, regulating the diffusion of ions, 

peptides, amino acids and other elements from bloodstream to the neural system, while 

guaranteeing the supply of the required nutrients to the brain for a proper function of the CNS 

[19]. This barrier is covered with greatly specialized cells, such as astrocytes, pericytes and 

vascular ECs, strongly interacting with each other due to the angiopoietin (Ang-1)/Tie-2 system 

[19] and forming the neurovascular unit [17]. The blood-spinal cord barrier (BSB) is the 

correspondent to the blood-brain barrier, located between the blood flow and the spinal cord, 

playing a similar protective and regulatory responsibility for the spinal cord parenchyma as BBB 

in the brain [20]. BBB and BSB are crucial components for the promotion of angiogenesis in the 

CNS, since their formation and breakdown closely affects the proper balance of vascular 

permeability required [21].  

 

1.3. Spinal Cord and Brain injuries 

 

Spinal cord and brain injuries affect not only the neural elements but also the vascular 

ones. Therefore, it is quite important to understand the vascularity of these organs because it is 

known that the susceptibility of grey and white matter to injury is partially justified by the 

segmental distribution of blood vessels on those organs [22]. It was already described that the 

increase of blood vessel density is tightly related to improvement in recovery of several injury 

models from the CNS [23] [24]. Situations of trauma and stroke give rise to abnormalities in the 

vasculature and therefore those situations had become the core focus of diverse research 

groups who are willing to develop engineering strategies capable of establishing a proper 

angiogenic status after this kind of injury, since the angiogenic extent is closely related to neural 

regeneration, having an important role in neurologic repair [24].  

 

Angiogenesis occurs after spinal cord trauma in response to the lack of oxygen in 

restricted tissues. Hypoxic and ischemic conditions are a result of the physical damage to blood 

vessels and also of the hypoperfusion and vasoconstriction associated with the injury. The 

degree to which the vascular injury contributes to secondary pathogenesis is determined not 

only by the early disorder of blood vessels but also on the gradual disturbance of the blood-

spinal cord barrier along with the infiltration of inflammatory cells [22].  

In case of stroke, one of the main causes of death and disability in the generality of 

developed countries [25], apart from the activation of brain injury responses, regenerative 
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responses are also activated, leading to vascular remodeling, angiogenesis and neurogenesis 

[25].  

Different international research groups have concentrating their efforts in the 

development of strategies for the creation of stable and functional vessels in the CNS after 

injury [26] and different approaches have been applied both in vitro and in vivo. This kind of 

approaches has been proven to support the creation of stable vascular networks capable of 

contributing to the success of engineered constructs. This way, understanding how 

angiogenesis is regulated by the diseased microenvironment has a great importance for 

maintaining the survival and health of implanted tissues for regenerative medicine, as well as 

identifying ways of controlling angiogenesis as one path to treat neural pathologies.   

 

2. VASCULARIZATION STRATEGIES FOR TISSUE ENGINEERING  
 

There has been a great effort for developing strategies able to create a vascular network 

throughout the cell-matrix construct capable of supplying the implanted tissue with the nutrients 

and oxygen required for cell survival in the host organism.  

 

For a proper vascularization of the engineered construct after implantation, there are 

different strategies that may be followed, namely the angiogenesis approach and the 

inosculation or anastomosis approach, as depicted in figure 3. The first one is focused on the 

promotion of vascular sprouts growing from the host microvasculature into the implanted 

engineering construct [27]. In the second approach, a preformed microvascular network is 

generated within the construct prior to the implantation phase and, after the implantation, the 

micro vessels will establish interconnections with the host vasculature [27]. 

  

These matrices, in order to promote and direct the angiogenic process, the matrices may 

be combined with soluble factors capable of recruiting EPCs to the implant site or with cellular 

types that produce angiogenic factors, be colonized with endothelial cells or EPCs to foster the 

formation of a microvascular network, functionalized with physical ligands to better support 

adhesion and infiltration of vascular cell types, or be specifically designed to present a structure 

to able to guide the angiogenesis process.. In the following sub-sections some of these 

strategies will be presented in further detail. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3: Angiogenesis and Inosculation approaches (based on [27]) 
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2.1. Delivery of angiogenic factors 

 
Strategies focused on the delivery of growth factors delivery are meant to use their 

signaling properties to stimulate the cells in the area to migrate, proliferate and differentiate. 

Along the last decades, angiogenesis research has lead to the creation of a considerably 

extensive list of angiogenic molecules that can stimulate the conversion of EC to the angiogenic 

phenotype [7].  

Vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF) and 

hepatocyte growth factor (HGF) are part of the group of angiogenic factors that actuate directly 

on ECs and many studies utilized the local distribution of these factors using controlled drug 

delivery systems [28] [29]. Moreover, other growth factors were shown to induce angiogenesis 

in vivo, even though they do not induce EC proliferation and migration in vitro. These include 

platelet-derived growth factor (PDGF), transforming growth factor beta (TGF-β) and angiopoietin 

(ANG). 

 

Several studies have been developed envisaging neovascularization promotion through 

the injection of these proteins in the blood strem or locally into the target damaged tissue [30] 

[31]. The delivery of soluble angiogenic factors was shown to improve the chemotaxis of cells. 

Several in vitro and in vivo studies using cocktails of growth factors, reported that the delivery of 

the cocktails had a positive effect on underperfused and incompletely vascularized areas with 

additional blood flow, supplying the cells with nutrients and oxygen [32]. However, the rapid 

clearance of these growth factors from the body and the consequent need of increasing of the 

administered doses of these factors are important drawbacks of simple growth factor injection, 

which may lead to uncontrolled and unpredictable effects at distant locations, such as bleeding, 

tumor growth, atherosclerosis and restenosis [33] [34]. 

 

Taken all this into consideration, there is a clear need of studying and understanding the 

kinetics of growth factors and their life-time, in order to calculate the optimal administration dose 

and define the adequate route of administration [35, 36] [36]. Furthermore, even though growth 

factors have the ability to stimulate vessels formation, these newly formed vessels have to 

mature in order to maintain the stability, what may lead to the conclusion that the simple 

administration of angiogenic factors may not be sufficient to stably form the vessels.   

To overcome the previously mentioned problems of systemic injection of angiogenic 

factors, one of the classical approaches has become the decoration or supplementation of 

synthetic or natural scaffolds with pro-angiogenic factors such as the ones previously referred in 

this section [3]. This decoration mimics the in vivo ambiance, as these growth factors are 

associated with the ECM to stabilize its conformation and avoid proteolytic degradation [37]. 

Therefore, the prolonged delivery of these factors from scaffold materials has been 

adopted, since the scaffolds allow the distribution to a specific microenvironment and the 

minimization of the side effects in non-target regions [38] as well as a reduction of the toxicity 

effects associated with the bolus administration of the growth factors [39].  

 

The ability of controlling the timing and release of growth factors allows the increase of 

the control exerted on the degree of vascularization within the tissue construct [40]. To direct the 

angiogenic process it again becomes crucial to determine and control the release kinetics of the 

factors from the scaffold. This is fundamental because the time course of vascularization may 

not be compatible with the maintenance of cellular viability throughout the construct and, 

therefore, it is necessary to provide the scaffolds with known cues, with also known temporal 
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expression profiles, that further contribute with physiologically relevant properties that increase 

the sought control [3]. 

 

2.1.1. VEGF 
 

VEGF contains potent division activity specific to vascular ECs and has a crucial role in 

the promotion of vascularization facing several conditions, both normal and pathological [41]. 

This growth factor, together with its receptors, mediates many crucial angiogenic processes 

depicted in figure 4.  

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

Figure 4: Processes mediated by VEGF and its receptors. 

 

One of the mechanisms that make VEGF able to promote the angiogenesis is the up-

regulation of integrins expression and activation [41], being integrins divalent cation-dependent 

heterodimeric membrane glycoproteins, comprised by α and β subunits non-covalently 

associated, which promote cell attachment and migration on the nearby ECM [42].  

 

During the last decades many research groups have focus on the understanding of the 

molecular mechanisms underlying the regulation of angiogenesis and many investigations 

implicate integrins as regulators of ECs migration and survival during such events [42]. Different 

experimental approaches have led to several theories of the roles of distinct integrins in 

angiogenesis, including αv integrins and α2β1 integrin [42]. Tae-Hee Lee et al analyzed the 

effect of VEGF on integrin expression and activation in human brain microvascular endothelial 

cells. VEGF was found to activate α6β1 integrin and to upregulate their expression. Down-

regulation of α6 integrin expression inhibited cell adhesion and migration as well as capillary 

morphogenesis. Blocking of α6β1 integrin led to the inhibition of VEGF-induced adhesion and 

migration and also suppressed in vivo angiogenesis. Therefore, this study points out that VEGF 

can modulate angiogenesis through increasing α6 integrin expression and activation [41].  
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2.2. Cell-based therapies for angiogenesis promotion 
 

Diverse strategies that intend to induce vascularization of tissues are based in cells 

transplantation, being the most frequent transplanted cell types the mature ECs and the EPCs 

[43, 44]. Co-cultures with ECs have been used as an opening point for vascularization [45]. Co-

culturing methods have been extensively used for in vitro vascularization of several tissues, 

mostly the thicker ones, with ECs being introduced into the tissues through three-dimensional 

multicellular spheroids or simply by cultures mixing [46] [47]. Borges et al transferred human 

dermal microvascular endothelial cells (HDMVECs) spheroids and preadipocytes to the 

chorioallantoic membrane (CAM) using a fibrin matrix and results show the formation of a 

capillary network consisting of transplanted HDMVECs [47]. 

 

Wenger et al developed, in 2005, a three-dimensional spheroidal co-culturing system 

that consisted on human umbilical vein ECs (HUVECs) and human primary fibroblasts (hFBs) 

with the goal of improving angiogenesis in tissue engineering applications [46]. Morphological 

evaluation of these co-spheroids revealed a characteristic temporal and spatial organization and 

the level of apoptosis of ECs was considerably decreased upon cultivation with fibroblasts, in 

the presence or absence of growth factors such as VEGF, when compared with the apoptosis 

level seen in plain HUVEC spheroids [46]. Moreover, an in vitro angiogenic assay was 

performed with collagen- embedded spheroids in order to evaluate the effect of human 

fibroblasts on the ability of ECs to form sprouts. It was noticed that in HUVEC/hFB co-spheroids, 

the cumulative sprout length was considerably reduced when compared to the observed 

sprouting for plain HUVEC spheroids embedded in a collagen matrix containing hFBs in 

suspension culture. To investigate the reason responsible for this reduction, a transwell co-

cultivation system was used to cultivate the cells. This system, preventing the close contact 

between the cell types being considered while allowing free diffusion of soluble molecules, led 

to an absence of inhibitory effect of fibroblasts on HUVEC sprouting. It was concluded that the 

inhibition of the sprouting was not mediated by soluble factors but due to the formation of 

heterotypic cell contacts between the two cellular types [46]. Therefore, this co-spheroid model 

is suitable for supplying a preformed capillary network ex vivo, which might be useful for the 

angiogenic improvement in vivo tissue engineering applications. 

 

Besides the referred spheroid cultures, simple co-cultures of ECs, fibroblasts and other 

cellular types have been used to grow diverse vascularized tissues. Through these simple co-

culture strategies in a biopolymer gel (e.g. Collagen) or a porous polymer scaffolds, 

spontaneous formation of tubular structures was observed [3]. 

 

The combination of EC layers and other cell types layers within natural hydrogels is also 

a good strategy for the formation of a vascular network in an engineered tissue in vitro. Griffith 

and his group developed an in vitro three- dimensional angiogenesis model capable of forming 

the foundation of a strategy to vascularize an engineered construct previously to the 

implantation stage. Their model was composed of microcarrier beads covered with HUVECs 

and a fibroblast monolayer entrenched in a fibrin matrix. This group along this investigation 

project attained some important assumptions, concluding that the oxygen diffusion, which leads 

to a high failure rate of constructs implantation, is not a limiting factor in vitro, therefore allowing 

the creation of prevascularized tissue constructs on the order of centimetres in thickness. 

Moreover, the researchers included fibroblasts on their model since they noticed that the 

soluble factors produced by these cells are quite useful for stabilizing the capillary network and 

considerably sensitive to the diffusion distance. Mimicking the architecture of a wound healing, 
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for instance, it is believed that this model can be useful for the design of thicker engineered 

tissues beyond the diffusion threshold that presently is a limiting factor in the field of tissue 

engineering [48]. 

 
2.3. Biomaterial-based supporting matrices permissive to angiogenesis 

 
Supporting matrices have several crucial roles in what concerns to the promotion of 

vascularization in tissue engineering, both because they provide the support and stability 

required by cells to regenerate a considered damaged area and also because they contribute to 

the maintenance of cells proliferation and differentiation through the delivery of several types of 

signaling factors.  

 

Several biomaterials are being studied and tested in order to promote vascularization of 

tissues newly formed in different organs. The main concern in this field of investigation is to 

develop scaffolds able to create an environment that closely mimics the conditions of the natural 

tissue to be replaced, providing the necessary soluble and non-soluble signals, which will then 

influence the cells in different manners, enhancing their migration, proliferation and 

differentiation. Besides, there are other questions that must be considered during the scaffolds 

development, namely their controlled biodegradation rate [49], which should match the tissue 

regeneration kinetics to avoid undesired reactions and their adequate porosity to promote 

cellular colonization and ingrowth from the host. In addition, the biocompatibility of the scaffolds 

and their proper mechanical integrity are also crucial conditions in order to escape 

immunological reactions from the host and early scaffold deterioration, respectively. The 

microstructure of the matrix also affects the angiogenic response. Hamidreza Mehdizadeh et al 

developed 3-D models with well-defined pore architectures to address this issue. The simulation 

results indicate that large pores (275-400 μm) with higher connectivity and porosity support 

rapid and extensive angiogenesis [50].    

 

2.3.1. Angiogenic physical cues 

 

Following, different used angiogenic cues are presented, as well as their respective 

purposes and mediation agents. Nevertheless, the perceived biological outcomes cannot be 

attributed to the physical parameters themselves, but to the network characteristics of the matrix 

used, namely hydrogels, as a whole [51]. An overview of angiogenic physical cues that have 

been explored along the last years in the field of Tissue Engineering is presented in Table 1. 
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          Table 1: Angiogenic Physical Cues 
 

 

 
Physical cue 

 
Base matrix Cellular type Animal Model References 

 
PA22-2  
(SIKVAV-containing  
peptide) 
 

 
 

Matrigel 
 

 
 B16F10 murine 
    melanoma 
        cells 

 
 

Mouse 

 
 

[52] [53] 

  
Matrigel 

 

 
          ECs 

 
Murine and chicken 

 
[12] 

 
Ephrin-A1 

 
       PEGDA hydrogel 

 
          ECs 

-  
[54] 

 

 
Scl2-2 protein 

 
PEG 

 

 
          ECs 

 
- 

 
[55] 

 
QK peptide 

Matrigel 

 
       ECs from 
     bovine aorta 

 

 
- 

 
[56] 

 
 

  
PEGDA hydrogel 

 

 
HUVECs 

 
Mouse 

 
[57] 

  
Elastin-like 
polypeptide 

(ELP) hydrogel 
 

 
 

HUVECs 

 
- 

 
[58] 

 
 
GYIGSRG 

 
     Alginate composite 

hydrogel 
 

 
- 

 
Rat 

 
[59] 

 
YIGSR 

 
Matrigel 

 

 
ECs 

 
CAM assay 

 
[60] 

 
YIGSR  
 + RGD 
 

PEG-based 
hydrogel 

 
MVECs 

-  
[61] 

 
Heparin-binding  
domains 
 

 
Collagen gel 

 
 

HUVECs 

 
 

Lewis rats 

 
 

[62] 

 
A13 peptide 

 
Matrigel 

 
HUVEC 

 
Rat 

 
[63] 
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2.3.2. Incorporation of gradients of soluble/physical cues for cell guidance 

 

In order to improve the cell guidance control, efforts have been made concerning the 

development of tissue engineering scaffolds that present well-defined patterns, both spatially 

and temporarily, since these patterns play a fundamental role in several physiological 

processes, both in the embryogenesis and in the adult phase [64] [65].  

To study the cell response to such controlled signal spatial distribution, some 

approaches have been proposed, including electrochemical potential gradients, 

photolithography techniques, photo-initiated coupling reactions, gradient pumping and 

microstamping. Moreover, 3-D signal gradients have also been obtained though manipulation of 

laminar streams of fluids in microchannels, creating complex gradients with soluble or 

immobilized bioactive molecules [65]. 

Recently, a considerable amount of experimental data has demonstrated that the 

inclusion of immobile or mobile biological cues within material scaffolds results in a noteworthy 

enhancement of tissue morphogenesis [65]. Even though this is known, there are still some 

challenges to be surpassed, namely the most appropriate form, i.e. if it is best to have the cues 

bound or unbound, the effective dose and the most suitable spatial distribution [65].  

There are three major known mechanisms that direct cells along a gradient of attractive 

gradient cues, being them the haptotaxis, the chemotaxis and the mechanotaxis [64]. The first 

of the three is defined as being the directed movement of cells along the direction of a gradient 

of ligands immobilized in the matrix. The chemotaxis regards the response of the cells as a 

migration along a concentration gradient of unbound chemo-attractants. Lastly, mechanotaxis is 

induced by mechanical forces there are exerted through the materials.  

 

2.4. Combined strategies for promotion of the angiogenic process 

 

Besides the development of independent cell-based or biomaterial-based strategies, 

some efforts have also been directed towards the development of combinatorial and synergetic 

approaches involving several principals. The development of biomaterials that incorporate 

biomolecules or cells is one example of this.  

 

2.4.1. Fibrin as a biomaterial-based strategy  

 

2.4.1.1. Fibrin structure  

 

Being currently one of the most used biomaterials in a wide diversity of applications, 

fibrin has proved to have an efficient role in situations such as hemostasis and wound repair, 

through materials such as fibrin glues and wound dressings, and also in the creation of cell 

instructive platforms largely used for differentiation and delivery of cells, as well as induction of 

angiogenesis [66]. This way, it is quite relevant to go further in what concerns this biomaterial, in 

order to understand the processes that underlie its formation and maximize the applicability of 

fibrin matrices.  

It is not easy to define the ideal fibrin matrix, but it has to be permissive to cell infiltration 

and regeneration and, simultaneously, exhibit mechanical properties directed to the specific 

application of the matrix. Such mechanical properties are largely defined by the molecular scale 

organization of the fibers, which can be modified and adjusted through different processes. A 

simple way to vary the polymerization dynamics of fibrin is to merely adjust the concentration of 

fibrinogen and thrombin and/or modify the calcium ions or salt concentrations. As all these 
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compounds concentrations have been shown to modulate the clot’s physical properties [67], 

they will also have implications in the behavior of cells that are in contact with such matrices, 

different concentrations resulting in different proliferation, migration and differentiation rates. It is 

also interesting the fact that the simple incorporation of cells into the gels results in different 

stiffness rates of the gel [68].  

One of the most prominent players on fibrin polymerization is fibrinogen, whose structure 

is shown on figure 5. Fibrinogen is a 340-kDa dimeric glycoprotein, with each dimer being 

composed by three different chains. Each set of chains get together at the central region of 

fibrinogen and are linked by disulfide bonds at their N-terminal regions. On figure 5, fibrinogen 

Aα chains are represented in blue, Bβ chains appear in green and γ chains are symbolized in 

red. The orange connections represent the interchain disulfide bridges, which have the role of 

connecting the six-polypeptide chains in the central domain, while the yellow rings depict the 

stabilizers of the coiled-coil regions of this structure.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Fibrinogen structure. Aα chains are shown in green, Bβ chains are shown in red and γ chains are depicted 

in blue. The purple bridges connecting the six-polypeptide chains in the central domain are called interchain disulfide 

bridges. Lastly, stabilizing disulfide rings of the coiled-coil regions are shown in orange. Adpated from [66].  

 

In order to trigger fibrin polymerization, another essential player is the thrombin, 

responsible for the cleavage of two sets of fibrin peptides, respectively named A and B and 

composed by 15 and 16 amino acids, from the central domain of fibrinogen, which circulates in 

the bloodstream until being cleaved. Along with such enzymatic cleavage, the exposition of 

peptide sequences is attained at the N-terminal of both alpha and beta chains, which are thus 

available for interacting with holes a and b from the C terminal of gamma and beta chains, 

respectively. Such process is depicted on figure 6 [66]. The crosslinking of fibrin clots by Factor 

XIIIa notably raises clot stability through the increase of the clot stiffness and resistance to 

deformation, adding to the decrease of the vulnerability to degradation. The clot stability is thus 

reflected on the mechanical stability of fibrin clots having an impact in biomaterials design.  
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Figure 6: Fibrin polymerization process. Aα chains are shown in green, Bβ chains are shown in red and γ chains 

are depicted in blue. αC domains are shown in yellow. Adapted from [66]. 
 

Fibrin is thus designed to quickly assemble under physiological conditions, unlike nearly 
all-native cellular matrices and many synthetic ones [69]. Moreover, its softness and large 
compliance seems to be essential for the efficiency as a matrix for cells that are used to reside 
in very soft tissues, such as neurons and endothelial cells [14].  

 
2.4.1.2. Fibrin functionalization through the enzymatic cross-linking activity of 
transglutaminase factor XIIIa 

 

Contrarily to a synthetic matrix, fibrin is not just a passive and unresponsive matrix. 

Fibrin, by itself, contains numerous bioactive motifs, containing several binding sites for cells, 

ECM proteins and growth factor. Moreover, fibrin contains binding sequences for several 

integrins, such as αvβ3, used by endothelial cells for interaction with fibrin. In contrast, motifs 

interacting with integrin α6β1 receptors are absent [66]. Moreover, fibrin allows the specific 

binding and functionalization with several domains and growth factors, thus enhancing its 

specificity and bioactivity [69]. Peptide adhesion domains covalently immobilized within 3-D 

fibrin hydrogels can also significantly enhance the bioactivity of fibrin.  

Schense et al described a method that allows the incorporation of exogenous peptides 

into fibrin matrices by exploiting the enzymology of coagulation process [70]. During 

coagulation, the physicochemically assembled fibrin network is covalently crosslinked by the 

activity of Factor XIIIa, which consists on the activated form of factor XIII that circulates in the 

blood along with fibrinogen until being both cleaved by thrombin. Factor XIIIa, then covalently 

crosslinks specific glutamine residues within the fibrin network to lysine residues, therefore 

stabilizing the recently formed fibrin gel [71] [72]. A set of bi-domain peptides containing the 
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bioactive sequence of interest in one of the domains and a substrate for factor XIIIa in the other, 

have ben successfully immobilized into fibrin using the cross-linking action of the 

transglutaminase factor XIIIa. A schematic view of this approach is depicted in figure 7.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7: Schematic illustration of covalent incorporation of bioactive peptide sequences into fibrin hydrogels using 

the enzymatic cross-linking action of transglutaminase factor Xiiia. Adapted from: [64]  

 

This approach has been explored in our lab for the tethering of several α6β1 ligands to 

fibrin, among them T1 peptide (GQKCIVQTTSWSQCSKS) and HYD1 peptide (KIKMVISWKG). 

The T1 sequence, isolated form the third domain of the angiogenic induced CYR61, was proven 

to be the critical sequence for CYR61 binding to α6β1 integrin [73]. The interaction of CYR61 (or 

CCN1) with α6β1 integrin was shown to mediate adhesion and tubule formation by unactivated 

endothelial cells (in the absence of VEGF), as well as adhesion of fibroblasts and smooth 

muscle cells [73]. HYD1, in its turn, is a synthetic peptide with reported ability to mediate cell 

adhesion and spreading mediated by α6β1 and α3β1 integrins [74].  

HYD1 or T1-functionalized fibrin hydrogels were evaluated in terms of ability to promote 

migration of embryonic stem (ES)-derived neural stem progenitor cells (ES-NSPCs) as well as 

neurite extension from rat sensory neurons. Both the Immobilization of T1 and HYD1 showed to 

efficiently promote outward migration from ES-NSPC neurospheres mediated through α6β1 and 

α3β1 integrins, as well as neurite extension [74].  

 

3. ASSESSMENT METHODS OF ANGIOGENIC PROCESSES 
 

Many biomaterials for implantation have been developed and examined for their 

suitability to support the growth of cells. In order to be successful, a transplanted material must 

support both the growth of the cells making up the organ or tissue being replaced in vivo and 

the growth of ECs willing to develop an efficiently functioning vasculature to source the cells 

with oxygen and nutrients [75]. Therefore, the development of promotion strategies for blood 

vessels formation is not the only critical factor regarding research on angiogenesis. To assess 

and evaluate the angiogenesis capability of the existing or developing strategies is also crucial 

and there are several in vitro and in vivo angiogenesis assays that allow it. Fully developed 

models enable the development of vascularized engineered tissues for disease treatment, while 

simultaneously allow the performance of tests relating anti-angiogenic drugs for cancer therapy 

[44].  
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Nevertheless, the choice of the suitable assay constitutes a major technical challenge in 

the studies of angiogenesis and generally it is necessary to combine several assays in order to 

accurately study and identify the events responsible for the angiogenesis process [76]. Rakesh 

Jain stated, in 1997, that performing an optimal angiogenesis assay should be cost-effective, 

rapid, easy-to-use, reproducible and reliable, as well as involve [77]:  

 

a) Knowledge relating the release rate and the spatial and temporal distribution of 

angiogenic factors and inhibitors, in order to generate the dose/response curves; 

b) The definition of a quantitative measure of the structure of the newly formed vasculature; 

c) The establishment of a quantitative measure for the functional characteristics of the new 

vasculature; 

d) The existence of a clear distinction between the newly formed structures and the pre-

existing ones; 

e) The avoidance of tissue damaging, since it may lead to the formation of unwanted blood 

vessels; 

f) The confirmation of the in vitro results through the performance of in vivo assays. 

 

In tables 1 and 2 below, a brief description of both in vitro and in vivo assays for 

evaluation of angiogenic properties is presented. 

 

Table 1: In vitro assays for angiogenesis evaluation. 

 

Assay Leading principle Evaluated parameters Reference 

 

CELL CULTURE ASSAYS 

 

Cord and tube 

formation 

 

 

Cell seeding and attachment to 

a gel matrix, followed by a quick 

assessment of angiogenesis, 

due to the ability of ECs to form 

3-D structures that originate the 

tubular bodies.  

 

 

 

Tubular structures formation 

 

 

[78] [76] 

 

Cell proliferation 

 

 

Measurement of cell 

proliferation at baseline in the 

presence of angiogenic factors.  

 

 

Cell proliferation 

 

[79] 

 

Gelatin 

zymography 

 

 

Use of a quantifiable 

polyacrylamide gel-based 

electrophoretic approach to 

detect the activity of gelatinases. 

 

 

Metalloproteinases expression 

 

 

[75] [80] 

 

Sprout 

formation 

 

 

Seeding of cells on top of a gel 

or embedment of the cells within 

the gel. 

 

Cell organization and formation 

of cellular processes 

 

[44] [76]  

[77] [81] 
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Microcarrier-

based 

angiogenesis 

assay 

Cell colonization of microcarriers 

and subsequent embedment 

within hydrogels. 

Quantitative analysis of the 

cellular processes protruding 

from the microcarriers 

 

 

[81] 

 

 

Microfluidic 

systems 

 

 

 

 

Attempt to cover the exiting gap 

between in vitro and in vivo 

angiogenesis assays. High 

ability to tailor structural and 

biological aspects of the 

environment and important 

capability to tune the spatial and 

temporal control of the applied 

stimuli.  

 

 

 

Migration area and sprouts 

formation 

 

 

 

[82] 

 

ORGAN CULTURE ASSAYS 

 

Aortic ring 

assay 

 

 

Culture of rings from mouse 

aortas in 3-D gels. Addition and 

evaluation of the effects of 

angiogenic promoting and 

inhibiting factors. 

 

Neovessel outgrowth 

 

 

 

[83] [76] 

 

Chick aortic 

arch assay 

 

 

Modification made from the 

aortic ring assay. Similar rings 

are obtained from aortic arches 

of chick embryos. Placement of 

the rings on a gel and evaluation 

of the development of the cells 

and formation of vessel-like 

structures.  

 

 

Neovessel outgrowth 

 

 

 

 

[76] 

 

Table 2: In vivo assays for evaluation of angiogenesis. 

 

Assay Leading principle Evaluated parameters Reference 

 

Sponge 

implantation 

assay 

 

 

Characterization of fundamental 

compound in blood vessels and 

respective roles under 

physiological and pathological 

conditions.  

 

 

Cell migration and 

proliferation 

 

 

[84] [85] 

 

Matrigel plug 

assay 

 

 

Detection of new blood vessel 

formation in the transplanted 

gel plugs in nude mice. Precise 

 

 

Blood vessel formation 

 

[76] 
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visualization of the angiogenic 

process.  

 

Wound-

healing assay 

 

 

Evaluation of the impact of 

several culture conditions 

through the spotting of changes 

on the wound area.  

 

 

Wound area 

 

[76] 

 

Zebrafish 

assay 

 

 

Measurement of the 

angiogenesis extent via 

fluorescent imaging, due to the 

intrinsic fluorescent properties 

of zebrafish embryos.  

 

 

Angiogenesis extent 

 

[76] [86] 

 

CAM assay 

 

 

Placement of compounds of 

interest onto the CAM and 

monitoring of local 

angiogenesis through 

boundaries establishment.  

 

 

Blood vessel formation and 

biomaterials degradation 

 

[76] [87] 

 

Dorsal air sac 

model and 

chamber 

assay 

 

 

Implantation of a chamber 

across dorsal skin of mice, 

through which test substances 

are introduced.  

 

 

Local angiogenesis 

 

 

[79] [88] 

 

Even though in vivo tests tend to be more time-consuming and harder to perform and to 

quantify than the in vitro ones, it is important to invest on them because there are important 

characteristics, such as the response to test reagents, that no in vitro model can entirely attain 

[76]. In its turn, in vitro methods of evaluation are of great importance because results can be 

obtained in a short period of time, even though it is recommended to perform each test multiple 

times to obtain a maximum reliability of the results [76]. Moreover, the in vitro tests are 

important to overcome some limitations of the in vivo ones, such as the high expenses 

associated to animal experiments and the difficulties encountered when isolating specific 

phenomena in vivo [44]. 
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AIM OF THE THESIS 
 

The objective of this master thesis was the development of a fibrin-based hydrogel 

capable of promoting neovascularization of bioengineered tissues, both by inducing tubule 

formation by endothelial or endothelial progenitor cells previously seeded in fibrin and by 

promoting angiogenesis in vivo by invasion of the host’s vasculature.  

 

To achieve this objective, fibrin hydrogels were functionalized with the integrin α6β1 

binding sequence of the angiogenic inducer CYR61 (T1 peptide - GQKCIVQTTSWSQCSKS), 

due to its reported involvement in tubule formation by endothelial cells. Another ligand for 

integrin α6β1 receptor (HYD1 peptide - KIKMVISWKG), previously shown by our group to 

promote cell migration and neurite extension of neural precursors cultured within 3-D fibrin gels, 

was also explored.  

 

Moreover, as VEGF is described to increase the expression of α6β1 integrin, the effect 

of fibrin hydrogels tethered with α6β1 integrin ligands in the presence of this soluble angiogenic 

inducer was also assessed.  

 

Tethering of T1 and HYD1 peptides was expected to improve fibrin ability to induce 

neovascularization, namely by promoting cell proliferation, migration and capillary-like structures 

formation, in vitro, as well as angiogenesis, in vivo.  
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CHAPTER 2 
MATERIALS AND METHODS
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1. CELL CULTURE 

 

1.1. Culture of human pulmonary microvascular endothelial cells (HPMEC-ST1.6R 

cell line) 

 

As a first approach, a cell line of human pulmonary microvascular ECs (HPMEC-

ST1.6R), with reported ability to form capillary-like structures within 3-D fibrin gels, including by 

our group, was used [89] [90].  

Cells were routinely expanded at a cell seeding density of 1 × 104 cells/cm2 on 25-cm2 or 

75-cm2 regular plastic culture flasks were coated with a pre-warmed 0.2% (w/v) gelatin solution 

(Sigma-Aldrich) diluted from a 1% (w/v) solution and incubated at 37ºC for a period of, at least, 

30 minutes. The cells were cultured in M199 culture medium (Sigma-Aldrich), supplemented 

with 20% (v/v) FBS (Sigma-Aldrich), 1% (v/v) P/S (Gibco), 2mM Glutamax (Gibco), 50 μg/mL 

Geneticin (Gibco) and 50 μg/mL ECGS/Sodium heparin (Becton Dickinson/Sigma-Aldrich). 

Genetinic and ECGS/Sodium heparin were freshly added every time the medium is changed. 

Finally, the cells were seeded in the coated flasks at a cell seeding density of 25 × 104 cells/mL.  

The medium was changed on the first day after thawing to remove DMSO and, from 

then on, every other day until being passed. For passing, 0.25% Trypsin, 1mM EDTA (Gibco) 

was used to make the detachment and a centrifugation cycle of 1200 r.p.m, 4ºC for 5 minutes 

was performed. Whenever needed, cells were frozen using the culture medium with 10% DMSO 

(Sigma-Aldrich).  

 

1.2. Culture of human brain microvascular endothelial cells (HCMEC/D3 cell line)  

 

Afterwards, a cell line of human brain microvascular endothelial cells (hCMEC/D3), 

derived from human temporal lobe microvessels isolated from tissue that was excised during 

surgery for control of epilepsy, was used [91]. Although the culture of hCMEC/D3 within 3-D 

hydrogels was not previously reported, these cells are described to be able of tubule formation 

on top of Matrigel [92]. Cells were kindly provided by Professor Bruno Sarmento (i3S, Porto).  

 

Cells were routinely cultured using the same cell seeding density as that referred for 

HPMEC-ST1.6R cells, on culture flasks previously coated with 0.2 % (w/v) gelatin, in EndoGro-

MV culture medium (Merck Millipore), whose components are described in table 3.  

 

Table 3: EndoGRO-MV culture medium supplements 

Component Concentration 

 

EndoGRO Basal Medium 

 

EndoGRO-LS Supplement 0.2 % 

rh EGF 5 ng/mL 

L-Glutamine 10 mM 

Hydrocortisone Hemisuccinate 1 μg/mL 

Heparin Sulfate 0.75 U/mL 

Ascorbic Acid 50 μg/mL 

FBS 5% 

FGF 5 ng/mL 
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The culture medium was supplemented with 1% (v/v) P/S and EGF and FGF freshly 

added and the medium was refreshed every other day. Cell passaging was identical to that 

described for HPMEC-ST1.6R cells, although trypsin was diluted in 1mM EDTA (1:5), to be less 

aggressive to the cells. The freezing method was also the same followed with the HPMEC.  

 

1.3. Culture of outgrowth endothelial cells (OECs) 

 

Outgrowth endothelial cells (OECs) from human umbilical cord blood were provided by 

Professor Cristina Barrias (i3S, Porto). Human umbilical cord blood was obtained from the UC 

Davis Umbilical Cord Blood Collection Program (UCBCP) and isolated within 12 hours (h) after 

cord blood collection, following protocols approved by the UC Davis Stem Cell Research 

Oversight Committee and as previously described [93]. 

Cells were cultured in complete EGM-2 MV cell culture medium (Lonza) containing 

VEGF and supplemented with 1% (v/v) P/S (Gibco). Cells were used in the experiments 

between passages 5 and 7. 

 

2. MICROCARRIER (MC)-BASED IN VITRO ANGIOGENESIS ASSAY  
 

The use of a microcarrier-based angiogenesis assay allows a reliable quantitative 

analysis of the number of cellular processes protruding from the microcarriers, previously 

colonized with the desired cell types, into the gel, thus consenting an appropriate evaluation of 

the effects of the cells themselves or of any functionalization made to the gel on the angiogenic 

process in vitro [94]. 

In the experiments within the framework of this master thesis, the Cytodex®-3 

microcarrier beads (dextran beads coated with denatured porcine-skin collagen, 60-87 μm in 

diameter when dehydrated, Sigma-Aldrich) were used.   

 

2.1. MC sterilization 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 8: Schematic illustration of the protocol followed to sterilize the microcarriers. 

 
Prior to the colonization of the microcarriers by cells, 8.4 mg of dehydrated microcarriers 

were dissolved in 5 mL of PBS 1×, in order to obtain a MC stock suspension at 1.68 mg/mL. 

After three hours of incubation in PBS, at RT under stirring (using a tilting shaker), the 

supernatant was discarded and the MCs were resuspended in 5 mL of PBS 1×. Lastly, the MCs 

were sterilized by autoclave according to the recommendations of the supplier (110ºC; 30 

minutes), a sterilization method that do not compromise MCs integrity [81].  
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2.2. MC equilibrium in culture medium 

 

Before placing the microcarriers in contact with the endothelial cells, the MCs were 

allowed to settle down, the supernatant was discarded and the MCs were resuspended in 1 mL 

of pre-warmed EC complete culture medium. This procedure was repeated, immediately 

afterwards, using 0.5 mL of the same medium.  

 

2.3. MCs colonization with endothelial cells  
 

To attain a homogeneous and reproducible colonization of the MCs by the different EC 
types, the stirring process (Petri dishes placed on a rotary orbital shaker or spinner flasks 
placed on a magnetic stirrer), the stirring time (1.5 days and 2 days) and the cell seeding 
density (1.5 × 106 and 3 × 106 cells/mL) were optimized (Appendix A). After this optimization 
step, the following conditions were used for MCs colonization.  

A cell suspension containing 1.5 × 106 or 3 × 106 cells/mL for HPMEC/hCMEC/d3 and 
OECs, respectively, was initially prepared and further centrifuged (1200 r.p.m.; 4ºC; 5 minutes). 
The cells were subsequently resuspended in the MC suspension and the whole suspension was 
transferred to a partially closed FACS tube. This was then incubated at 37°C for 4 hours, being 
the FACS tube inverted every 20 minutes, to assure an homogeneous EC adhesion to the MCs. 
At the end of this period, the cell/MC suspension was transferred to a new falcon tube and the 
cell-seeded MCs were rinsed with 2.5 mL of EC complete culture medium. The cell-seeded MCs 
were finally resuspended in 6 mL of complete culture medium and transferred to three petri 
dishes placed on a rotary orbital shaker, under slow agitation (60 r.p.m.; Figure 9). The cell-
seeded MCs were kept at 37ºC in a CO2 incubator for one day and a half.  

   
 

 
 

 
 

 
 
 

 
 
 

Figure 9: Schematic representation of the steps followed to achieve a homogeneous and reproducible microcarrier 

colonization by ECs. 

 

2.4. Embedment of MCs colonized with endothelial cells in fibrin hydrogels 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 10: Schematic representation of the protocol followed for the preparation of the fibrin hydrogels. 
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2.4.1. Preparation of unmodified fibrin hydrogels 
 

Plasminogen-free fibrinogen (Sigma-Aldrich) was obtained from pooled human plasma 

containing factor XIII, the unactive form of the transglutaminase factor XIIIa. The purification of 

the fibrinogen was attained through an overnight dialysis process against tris-buffered saline 

(TBS, 137 mM NaCl; 2.7 mM KCl; 33 mM Trizma base), with the pH adjusted to 7.4. Purified 

fibrinogen solution was concentrated using 15 mL Vivaspin tubes (Merck Millipore) and its 

concentration determined spectrophotometrically at 280 and 320 nm, applying an extinction 

coefficient of 1.51 mL mg-1 cm-1 [95]. Fibrinogen solution was then sterilized by filtration using a 

low protein-binding filter and its concentration was adjusted to 12 mg/mL with TBS.  

Unmodified fibrin-gels with the following composition in the polymerizing gel were 

prepared: 6 mg/mL fibrinogen, 2 NIH U/mL bovine thrombin (Sigma-Aldrich), 2.5 mM calcium 

chloride (Merck) and 10 μg/mL aprotinin (Sigma-Aldrich). The fibrinogen concentration of 6 

mg/mL was chosen due to previous works developed in our group, which pointed out such 

concentration as appropriate for the extension of neuronal and endothelial cell sprouting 

processes within 3-D fibrin gels [96] [97]. The embedment of the cell-seeded MCs was 

performed as depicted in figure 10. The MCs were initially counted to determine the MC/cell 

suspension volume required to obtain 50-100 MCs per/fibrin hydrogel. The MC/cell suspension 

was then transferred to an eppendorf tube containing TBS and the MCs were allowed to settle 

and, 1 minute later, the supernatant was discarded and the MC/cells resuspended in 25 μL of 

fibrinogen. Finally, 25 μL of a thrombin working solution constituted by TBS, thrombin, calcium 

chloride and aprotinin were added to the same eppendorf and, after a quick homogenization, 

the mixture was transferred to the center of one well of a 8-well ibidi μ-slide chambered 

coverslip. Polymerizing gels were then incubated at 37ºC for 30 minutes in the CO2 incubator, to 

allow cross-linking by factor XIIIa. At the end of this period, 250 μL of complete culture medium 

containg 5 μg/mL of aprotinin (Sigma-Aldrich), to delay fibrin degradation, were added to the 

wells. The culture medium was replaced three times during 8 hours and after 48 hours of 

culture. When referred, VEGF (Prepotech) was added to the medium at a final concentration of 

25 ng/mL.  

 

2.4.2. Preparation of functionalized fibrin hydrogels 
 

Bi-domain peptides containing the sequence of interest (T1 or HYD1) at the carboxyl 

terminus and factor XIIIa substrate from the NH2-terminal sequence of α2-plasmin inhibitor 

(residues NQEQVSPL) at the amino terminus, were synthesized at GenScript with a C-terminal 

amide (purity greater than 95%). T1 and HYD1 bi-domain peptides were reconstituted through 

the addition of sterile ultrapure water to 0.5 mg vials, so that a final concentration of 1 mM was 

achieved. Peptides were aliquoted (30 and 40 μL aliquots) into sterile low-binding eppendorfs 

(Sigma-Aldrich) under a nitrogen atmosphere and stored at -80ºC.  

Peptides were covalently bound to fibrin using the enzymatic cross-linking action of 

transglutaminase factor XIIIa [70]. Functionalized hydrogels were prepared as described above. 

Peptides were added to the thrombin working solution at different concentrations: 20 to 60 uM in 

the case of T1 and 10 to 20 uM in the case of HYD1. Similarly to unmodified fibrin gels, 

functionalized gels were allowed to polymerize for 30 minutes at 37ºC, after which complete 

culture medium supplemented with aprotinin was added. The culture medium was replaced 

three times during 8 hours, to remove unbound peptide, and after 48 hours of cell culture.  

At the end of three days of cell culture, the effect of bi-domain peptides on EC sprouting 

was assessed.  
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2.4.3. F-actin/DNA fluorescent staining 
 

After washing the cultures with PBS 1× at RT, cells were fixed with 3.7% 

paraformaldehyde (Merck Millipore) for 20 minutes, also at RT. Until being immunostained, the 

cultures were washed and stored in PBS at 4°C.  

The first step of the immunostaining was to permeabilize the cells with 0.2% (v/v) Triton 

X-100 (Sigma-Aldrich) in PBS buffer, under gentle stirring (50 rpm) in an orbital shaker, for 30 

minutes. After three washings with PBS 1×, and in order to minimize non-specific adsorption, 

the samples were incubated for 60 minutes at RT with 1% (w/v) Bovine Serum Albumin (BSA) 

(Merck Millipore) solution in PBS under gentle stirring. Following, incubation with Alexa Fluor 

594-conjugated Phalloidin (Invitrogen) diluted 1:100 in the 1% BSA solution was performed for 

60 minutes in the dark and under stirring.  

After washings with PBS (3×, 30 minutes each), the samples were incubated with 

Hoechst 33342 (3 μg/mL in PBS) (Molecular Probes) for 20 minutes at RT under stirring in an 

orbital shaker.  

Lastly, the samples were again washed with PBS 1× and kept in Fluoromount ™ 

Aqueous Mounting Medium (Sigma-Aldrich) at 4°C in the dark until further analysis in the high 

throughput fluorescence microscope In Cell Analyzer 2000 imaging system (GE Healthcare).  

 

2.4.4. Integrin functional blocking 

 

To assess the contribution of α6β1 integrin to EC sprouting in functionalized fibrin 

hydrogels, in parallel, function blocking monoclonal antibodies against α6 and β1 integrin 

subunits and correspondent isotype controls were added to the culture medium. The antibodies 

were added 8 hours after fibrin gel polymerization. 

To assess the contribution of α6 integrin, the cells were incubated with Rat Anti-human 

CD49f (clone NKI-GoH3, Abd Serotec) or with the isotype RAT IgG2a negative control (Bio-

Rad) at a concentration of 40 μg/mL.  

In turn, to assess the contribution of β1 integrin, the cells were incubated with Hamster 

Anti-Rat CD29 (clone Ha2/5, Pharmingen) and Hamster IgM, λ1 Isotype Control (Pharmingen), 

both used at the concentration of 10 μg/mL. 

 

3. IMMUNOCYTOCHEMISTRY   
3.1. Immunofluorescence staining of α6 integrin subunit 

 

After three days of culture, the plate was removed from the incubator and the cells 

embedded in the fibrin hydrogel were fixed with 2% paraformaldehyde (Merck Millipore) in 

culture medium for 30 minutes at RT. After, washings in PBS buffer (3 ×, 5 minutes each), 

samples were processed for immunostaining. Samples were incubated in the blocking buffer 

(PBS buffer containing 5% Normal Goat Serum) for 60 minutes at RT, under gentle stirring 

(around 50 r.p.m.) in an orbital shaker. Subsequently, samples were incubated with the primary 

antibody (Rat Anti-human CD49f; Abdserotec; 50 μg/mL) diluted in PBS buffer containing 1% 

NGS (Invitrogen), overnight at 4ºC. After washing with PBS buffer containing 1% NGS (3×, 30 

minutes each, under mild agitation) the primary antibody was detected with an Alexa Fluor 594-

conjugated goat anti-rat secondary antibody (Invitrogen)– diluted 1:500 in PBS buffer containing 

1% NGS. The samples were incubated at 4ºC for 3 hours and then washed in PBS buffer (3×, 

30 minutes each, under mild agitation).  
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Finally, the samples were incubated with DAPI (0.1 μg/mL diluted in PBS; Gibco) for 20 

minutes at RT for DNA staining, washed with PBS buffer (3×, 5 minutes each) and mounted in 

Fluoromount ™ Aqueous Mounting Medium (Sigma-Aldrich).  

 

3.2. Double Immunofluorescence staining of Laminin (LN) and α6 integrin subunit   

 

Samples were fixed as described above. Afterwards, samples were incubated in the 

blocking buffer (1% BSA and 4% FBS in PBS buffer), for 1 hour at RT under slow agitation in an 

orbital shaker and then with the primary antibodies – Rat Anti-human CD49f (Abd Serotec; 50 

μg/mL) and Rabbit Anti-laminin polyclone antibody (Sigma-Aldrich; 10 μg/mL) diluted in blocking 

buffer, overnight at 4ºC under slow agitation. After washings in PBS buffer containing 1% BSA 

and 1% FBS (3 ×, 30 minutes each, under mild agitation), the primary antibodies were detected 

with donkey 488-conjugated anti-rat and donkey 647-conjugated anti-rabbit secondary 

antibodies (both Invitrogen) both diluted 1:500 in blocking buffer for 1 hour at RT, under slow 

agitation. The samples were incubated at 4ºC for 3 hours and then washed using PBS buffer (3 

×, 30 minutes each, under mild agitation). 

The samples were finally incubated with DAPI as described above, washed with PBS ad 

mounted in Fluoromount ™ Aqueous Mounting Medium.   

 

4. CELL METABOLIC ACTIVITY EVALUATION 
 

Cell metabolic activity was quantified to assess cell proliferation of hCMEC/D3 cells 

seeded in functionalized gels at 2 × 106 cells/mL. For this purpose, a resazurin-based assay 

was used. Briefly, the cell-fibrin constructs were incubated with 20% (v/v) of resazurin dye 

(Sigma-Aldrich) for two hours and fifteen minutes. At the end of the incubation period, 100 μL of 

the supernatant from each well were transferred to a black 96-well plate with clear bottom 

(Greiner) and the fluorescence readout read at 530 nm excitation and 590 nm emission 

wavelengths using a spectrophotometer microplate reader (Biotek Synergy MX). Acellular fibrin 

gels were used as blanks. The cell number was deduced from a polynomial standard curve, in 

which fluorescence values were plotted against a known number of cells seeded in parallel 

within unmodified fibrin gels.  

 

5. CELL VIABILITY EVALUATION 
5.1. Qualitative analysis 

 

To assess the effect of immobilized peptides on cell viability and cell proliferation, 

hCMEC/D3 cells were seeded as single cells at different cell seeding densities in fibrin gels (50 

μL-drops) formed in the wells of 24-well tissue culture plates. After 30 minutes of gel 

polymerization at 37ºC, 500 µL of complete EndoGRO-MV culture medium was added to each 

well, supplemented with 5 μg/mL of aprotinin.  

Cell viability in the three dimensional fibrin gels was evaluated through incubation of the 

gels with Calcein AM and Propidium Iodide (PI) after four days of culture, with a daily routine of 

change of the culture medium. Calcein AM freely diffuses into the cells, being hydrolyzed by 

nonspecific esterases into fluorescent products that are taken by the cells with uncompromised 

plasma membranes. PI is, in turn, used to mark the nonviable cells, entering and staining the 

cells with damaged membranes.  

Quickly, the cells embedded in the fibrin constructs were incubated with 1 μM of Calcein 

AM (Invitrogen) diluted in pre-warmed PBS, for 20 minutes at 37°C. After removing this solution, 
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the hydrogels were incubated for more 10 minutes at 37°C, this time with PI (Sigma-Aldrich) 

diluted in pre-warmed PBS.  Lastly, 500 μL of fresh complete EndoGRO-MV culture media 

(Merck Millipore) were added to each well and the samples were observed under Confocal 

Laser Scanning Microscopy (CLSM) (Leica Microsystems TCS SP5) as soon as possible 

(Calcein AM excitation/emission: 488/530 nm; PI excitation/emission: 535/617 nm). 

 

5.2. Quantitative analysis by Flow Cytometry 

 

Quantitative analysis of cell viability was performed by flow cytometry, in four-pooled Fb 

drops, after cell isolation from the cell-Fb constructs. Briefly, the constructs were washed twice 

with PBS, and sequentially incubated with 1.25 mg/mL of collagenase type II (Gibco; 1 h at 

37°C) and 1× trypsin-EDTA (Gibco; 30 min at 37°C) under stirring (70 rpm). After trypsin 

inactivation with serum-containing media cells were gently dissociated, centrifuged, and 

suspended in cell culture medium. The single cell suspensions were then incubated with 67 nM 

calcein AM (20 min at 37°C) or with 6 µM PI (10 min at 37°C) to label live and dead cells, 

respectively. Cells were finally washed trice with FACS buffer [2% (v/v) fetal bovine serum 

(FBS) in PBS], and immediately run on a flow cytometer (FACS CaliburTM, BDBiosciences). 

Cell debris were excluded by gating on forward and side scatter and fluorescence gates set, 

using unlabeled cells as negative control.  

 

6. EVALUATION OF THE VISCOELASTIC PROPERTIES OF THE FIBRIN 

GELS 
 

The effect of fibrin functionalization on fibrin viscoelastic properties was assessed by 

rheometry using a Kinexus Pro Rheometer (Malvern) and the Rspace for Kinexus software.  

The samples consisted in acellular fibrin gels of 50 μL (25 μL of fibrinogen and 25 μL of the 

respective thrombin working solution). After calibrating the equipment, a gap of 1 mm was 

defined and the mixed solution was directly and fastly dropped in the chosen plate, in order to 

avoid both the polymerization of the gel in the pipette’s tip and the formation of air bubbles. 

Afterwards, the upper geometry fell down to the defined gap and the gel was left polymerizing 

for one hour.  

After one hour, the gel was ready to undergo the desired tests.  For each condition, the 

linear viscoelastic region (LVR) was first determined performing strain amplitude sweeps (shear 

strain: 0.1 to 100%; frequency: 0.1Hz). Frequency sweeps (frequency: 0.01 to 10 Hz; shear 

strain: 5%) were then performed within the LVR.  

Six gels were analyzed per condition and the values of the shear elastic (G’), shear 

viscous (G’’) and complex (G*) modulus were recorded.  

 

7. PROCESS OUTGROWTH AND OCCUPIED AREA QUANTIFICATION  
 

Endothelial cells outgrowth was determined in z-stacks of fluorescent images of samples 

stained for F-actin and DNA acquired in the IN Cell Analyzer 2000. The IN Cell Analyzer 2000 

imaging system (GE Healthcare) is an automated high-throughput microscope that was 

designed with the purpose of providing the users with the performance and throughput that are 

desirable both for high content analysis and screening.  

Since the goal was to analyze and quantify the sprouting of the cells into the 3-D fibrin 

gel, images of the lower part of the gels (near the bottom of the well) were not acquired. For 
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each condition tested, 21 z-stacks, separated by 10 μm and of around 100 fields, were acquired 

using a magnification of 20×0.75 Pan Apo.  

Afterwards, a massive image analysis was done in order to quantify both the maximal 

extension of the sproutings and the sprouting area, considering every independent bead on 

each gel. In this regard, Fiji software was a crucial tool, specifically its Freehand Line and Oval 

Selection functions, used to draw the contours required to calculate the area of the beads and 

the total area (with the sproutings). Subsequently, the area of each bead was subtracted in 

order to get the value of the sprouting area alone.  

Furthermore, the View 5D plugin, also from Fiji software, was used to quantify the 

maximal sprouting length protruding from each microcarrier. This plugin allows a 3-D 

visualization of the z-stack images acquired and allows the determination of the coordinates of 

each cell. After, selecting the coordinates of a cell on the surface of the bead and the ones of 

the most distant cell, a conversion was made on Excel in order to get the value of the distance 

between those two cells.  

In order to correctly evaluate the sprouting area and the maximal sprouting length some 

sensitivity was required. Since a z-step of 10 μm was used, some connections between cells 

were deleted from the images. Thus, the analysis had to be made considering the orientation of 

the nuclei. Whenever a nucleus presented a radial orientation in relation to the microcarrier, it 

was considered in the sprouting. Further, the orientation in relation to the preceding cells had 

also to be considered in the situations where the sprout was not completely straight. An 

endothelial sprout was considered as any cell extension leaving the microcarrier in direction to 

the fibrin matrix, as defined by Grasseli et al [98].  

The Fiji tools were used as shown in figure 11. As additional parameters, the 

percentage of beads with sprouts and the number of sprouts per bead were also quantified. 
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Figure 11 (A-B): Quantification of the sprouting area (A) and maximal sprouting length (B) using Fiji software

A B 
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8. IN VIVO CHICK CHORIOALLANTOIC MEMBRANE (CAM) ASSAY 
 

In order to validate, in vivo, the most promising results obtained through the in vitro 

studies, the chorioallantoic membrane (CAM) assay was performed. CAM is a highly 

vascularized and specialized tissue of the avian embryo, being vastly used for angiogenic 

studies. At incubation day 0, fertilized chicken eggs were washed with 70% ethanol and then 

incubated at 37°C. After three days, 3 mL of albumen were extracted, allowing the developing 

CAM to grow detached from the top of the egg’s shell. A window of about 1.5 cm2 was opened 

on the top of the egg, without harming the embryo. To prevent dehydration and infections, the 

window was closed with transparent adhesive tape, which was removed seven days later to 

proceed with the placement of the testing hydrogels on the top of the membrane. The hydrogels 

were made before the removal of the adhesive tape and were left polymerizing for 30 minutes. 

After the 30 minutes of incubation, unmodified and functionalized fibrin gels were washed trice 

with EndoGRO-MV basal medium as described above, to eliminate unbound peptide. Incubation 

day 10 was the time point chosen for the inoculation because, at this time, CAM mitotic rate has 

stabilized. At incubation day 13, CAM inoculation site was excised, some macroscopic images 

were acquired and the tissues were prepared for histological processing. Between the 10th and 

13th days, the hydrogels were hydrated twice a day with 150 μL of PBS 1×.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9. STATISTICAL ANALYSIS 
 

Statistically significant differences were assessed using the IBM® SPSS® Statistics 

Software (version 24) was used. Unmodified and functionalized fibrin hydrogels were compared 

using independent-samples t-test, which automatically performs a Levene’s test to assess the 

equality of variances between the considered groups. Specifically for analysis of CAM results, 

the paired-samples t-test was used. Results were considered statistically significant whenever 

p-value was lower than 0,05. The graphs presented along this master thesis were made using 

GraphPad Prism 7.  

Figure 12: Workflow of the CAM Assay. 
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1. EFFECT OF IMMOBILIZED α6β1 LIGANDS ON HPMEC BEHAVIOR IN 

3-D FIBRIN GELS 

 

1.1. HPMEC-ST1.6R sprouting in functionalized fibrin gels 

 

The pulmonary microvascular endothelial cells are isolated from adult human pulmonary 

arteries, in which they form a semiselective barrier crucial for gas exchanges and fluidic 

regulations between the blood flow and the interstitial spaces in the lung [89].  

Krump-Konvalinkova and his co-workers generated the microvascular endothelial cell 

line that was used in this work – HPMEC-ST1.6R - isolating the cells from adult donors and 

willing to develop a cell line capable of overcoming some of the limitations of the primary 

cultures, while demonstrating all of the fundamental characteristics of the microvascular 

endothelial cells [89].  

 

This said, and considering its ability to form sprouts within biological extracellular 

matrices, including in fibrin, this cell line was used for the preliminary assessment of the 

angiogenic properties of the functionalized fibrin hydrogels. 

Fibrin hydrogels functionalized with the two different peptides (T1 and HYD1) at two 

different input concentrations each (20 μM and 40 μM for T1 and 10 μM and 20 μM for HYD1), 

were assessed for their ability to promote EC sprouting.  HPMEC sprouting in functionalized 

fibrin gels was evaluated using the microcarrier-based assay after three days of cell culture, 

namely in terms of number of sprouts per bead, sprouting area and maximal sprouting length. 

Results are presented in Figures 13 and 14.  
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Figure 13 (A-C): EC sprouting of HPMECs into T1-functionalized fibrin hydrogels after 3 days of culture in terms of 

(A) number of sprouts per bead, (B) sprouting area and (C) maximal sprouting length. The microcarriers embedded in 

each fibrin gel drop were analyzed and mean values were determined. EC sprouting was normalized to sprouting in 

unmodified Fb. The percentage of beads with EC sprouts was also determined (Appendix B). Graphs denote results 

from replicate cultures from two (T1 20 µM) to three independent experiments.  
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Figure 14 (A-C): EC sprouting of HPMECs in HYD1-functionalized fibrin hydrogels after 3 days of culture, in terms of 

(A) number of sprouts per bead, (B) sprouting area and (C) maximal sprouting length. The microcarriers embedded in 

each fibrin gel drop were analyzed and mean values were determined. EC sprouting was normalized to sprouting in 

unmodified Fb. The percentage of beads with EC sprouts was also determined (Appendix B). Graphs denote results 

from replicate cultures from two (10 µM) to three independent experiments. 

 
Fibrin functionalization with the T1 bi-domain peptide elicited in average a 1.4-fold 

increase in all EC sprouting parameters considered, when added at 40 µM in the polymerizing 

gel, though significant differences were only found in the number of sprouts per microcarrier.  

Considering the functionalization with 20 μM of T1 bi-domain peptide, the resulting 

scenario was fairly different, since a significant inhibition was perceived both in the number of 

sprouts per bead and sprouting area.  

The tethering of HYD1 failed to induce EC sprouting, independently of the EC sprouting 

parameter considered (figure 14). Indeed, the functionalization of fibrin hydrogels with both 

HYD1 concentrations resulted in a reduction of sprouting area, number of sprouts per bead and 

maximal sprouting length and some statistically significant differences were found concerning 

the number of sprouts per bead and the sprouting area.  

 

C 
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In figure 17 some representative images are shown for each of the tested conditions.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 15 (A-E): IN Cell Analyzer representative images of HPMEC sprouting formation observed for (A) unmodified, 

(B) T1 20 μM-functionalized, (C) T1 40 μM-functionalized, (D) HYD1 10 μM-functionalized and (E) HYD1 20 μM-

functionalized fibrin hydrogels. The samples were processed for F-actin and DNA staining. Grey arrows indicate EC 

sproutings. 
 

Of note, Figure 15-C, is highly representative of what was previously referred regarding 

the loss of information between z-steps. For such reason, even though 3-D Fiji plugins were 

used along the image analysis, some sprouting structures were probably underestimated due to 

situations where the cells appear to be unconnected and their nuclei orientation do not provide 

any undeniable opposing information. 

In addition to the studies already presented, the impact of the addition of VEGF to the 

culture medium was also evaluated with the goal of understanding if the pro-angiogenic 

capability of the functionalized hydrogels would be enhanced. It was expected that the addition 

of this growth factor would increase the observed values for any of the parameters being 

evaluated and that the trends noticed in the experiments without VEGF would be intensified and 

not reduced [41]. However, the results indicate the exact same tendencies previously observed, 

with an inhibition being caused by the functionalization of the hydrogels with the lower 

concentration of T1 and both concentrations of HYD1 and a slight increase being noticed with 

the higher T1 concentration, indicating that VEGF was not leading to an effect.  

Even though the results are shown in Figures 43 and 44 (Appendix C), these findings 

cannot be considered since we found out later hat the bioactivity of the VEGF was 

compromised, possibly due to changes in the freezer’s temperature when INEB moved to i3S’ 

facilities. 

DNA F-actin DNA F-actin DNA F-actin 
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2. EFFECT OF IMMOBILIZED α6β1 LIGANDS ON HCMEC/D3 BEHAVIOR 

IN 3-D FIBRIN GELS 
 

The human brain microvascular endothelial cell line was derived from human temporal 

lobe microvessels isolated from tissue that was excised during surgery for control of epilepsy. In 

their first passage, cells were successively immortalized using the same resources used for the 

immortalization of the previously referred pulmonary cell line. After the immortalization, limited 

dilution cloning technique was used to selectively isolate the cells and the clones were very well 

characterized for brain endothelial phenotype [91]. 

 

2.1. hCMEC/D3 sprouting in functionalized fibrin gels 
 

Similarly to the studies performed with the HPMEC-ST1.6R cell line, the formation of 

capillary-like structures by hCMEC/D3 cells was evaluated using the microcarrier-based 

angiogenesis assay. Results are shown in figure 16. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 16 (A-C): EC sprouting of hCMEC/D3 in T1-functionalized fibrin hydrogels after 3 days of culture., in terms of 

(A) number of sprouts per bead, (B) sprouting area and (C) maximal sprouting length. The microcarriers embedded in 
each fibrin gel drop were analyzed and mean values were determined. EC sprouting was normalized to sprouting in 
unmodified Fb. The percentage of beads with EC sprouts was also determined (Appendix B). Graphs denote results 
from replicate cultures from two to three independent experiments. 
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At the point when the experiments with hCMEC/D3 were still being performed and 

analyzed, a High Throughput Confocal Microscope (HCS Confocal CX7, Thermo Fisher 

Scientific) was in demonstration at i3S. Having the opportunity to try it, we decided to take two 

samples and get representative images of those conditions: unmodified and T1 40 μM-

functionalized fibrin hydrogels, since the most marked effects were being observed for T1-

functionalized gels. Images are shown in figure 17. 

 

 

Figure 17 (A-B): HCS Confocal CX7 representative images of the hCMEC/D3 sprouting formation observed for 

unmodified (A) and T1 40 μM-modified (B) fibrin hydrogels. The samples were processed for DNA and F-actin 

staining, respectively shown in blue and red. Grey arrows indicate EC sproutings.  

 

Even though the differences between (A) unmodified and (B) T1 40 μM fibrin hydrogels 

were not quantified using these images, differences between the two conditions were obvious. 

In line with the results obtained for the total of analyzed hydrogels (figure 16), the 

functionalization of the fibrin hydrogel with a 40-μM concentration of T1 bi-domain peptide 

resulted on a considerable increase of the angiogenic response in comparison to the control 

hydrogel.  
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Figure 18 (A-C): EC sprouting of hCMEC/D3 in HYD1-functionalized fibrin hydrogels after 3 days of culture, in terms 

of (A) number of sprouts per bead, (B) sprouting area and (C) maximal sprouting length. The microcarriers embedded 

in each fibrin gel drop were analyzed and mean values were determined. EC sprouting was normalized to sprouting 

in unmodified Fb. The percentage of beads with EC sprouts was also determined (Appendix B). Graphs denote 

results from replicate cultures from two to three independent experiments 

 

An increasing trend on every EC sprouting parameter was observed for hydrogels 

functionalized with T1 peptide, this tendency being more striking for the highest concentration 

tested (figure 16). The hydrogels functionalized with 40 μM of T1 peptide led in average to a 

1.4-fold increase in every considered parameter, when compared to unmodified fibrin. 

Statistically significant differences were found for the number of sprouts per bead and the 

sprouting area. Regarding the lower concentration of T1 peptide tested (20 µM), a slight yet not 

significant increase was also noticed. In turn, the tethering of fibrin with both tested 

concentrations of HYD1 peptide failed to promote EC sprouting, as shown in figure 18.  
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2.2. hCMEC/D3 sprouting in T1-functionalized fibrin gels in the presence of VEGF 

 

Tae-Hee Lee et al evaluated the effect of the addition of VEGF on integrin expression 

and activation in human brain microvascular endothelial cells (HBMEC). Their results indicated 

a direct role of α6 integrin in mediating the angiogenic processes of HBMEC and suggested that 

α6 integrin expression and activity was induced by VEGF, a positive angiogenic regulator. 

Additionally, when stimulating the cells with VEGF, HBMEC showed an increased adhesion 

onto laminin-coated plates, being such effect eliminated after treatment with α6 integrin 

antibody, showing that α6 integrin is, in these cells, activated by VEGF [41]. 

 

 

 

 

 

 
 

 
 

 
 

 
 

 
 
 
 
 
 
 
 

 
 

 
 

 
 

 
 

 
 

 
 
 
 
 

 
 
Figure 19 (A-D): EC sprouting of hCMEC/D3 in T1-functionalized fibrin hydrogels after 3 days of culture in the 

presence of 25 ng/mL of VEGF. (A) Number of sprouts per bead, (B) Sprouting area and (C) Maximal sprouting 

length. The microcarriers embedded in each fibrin gel drop were analyzed and mean values were determined. The 

percentage of beads with EC sprouts was also determined (D). EC sprouting was normalized to sprouting in 

unmodified Fb. Graphs denote results from replicate cultures from two independent experiments. 
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In the presence of VEGF, hCMEC/D3 cells were therefore expected to express higher 

levels of α6β1 integrin and lead to a higher cell response to immobilized T1 bi-domain peptide, 

namely in terms of EC sprouting. In fact, as shown in Figure 19, in the presence of VEGF the 

differences between T1-functionalized fibrin and unmodified gels were more notorious.  

Statistically significant differences were achieved in all the considered sprouting parameters, 

with T1-functionalized gels leading to a 1.9-fold increase of the number of sprouts per bead, a 2-

fold increase of the sprouting area and a 1.5-fold increase of the maximal sprouting length. 

Additionally, an increase of about 25% was noticed for the quantification of the percentage of 

beads with sprouts.  

In figure 20 representative images of the angiogenic response obtained for unmodified 

and T1 40 μM-modified fibrin hydrogels, after three days of culture in the presence of VEGF, are 

shown.  

 

 
Figure 20 (A-B): Confocal representative images of hCMEC/D3 sprouting in unmodified (A) and T1 40 μM-modified 

(B) fibrin hydrogels in the presence of 25 ng/mL of VEGF. The samples were processed for F-actin and DNA staining, 
shown in red and blue, respectively. Grey arrows indicate endothelial cell sproutings. 
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2.3. Immunocytochemical analysis of α6 integrin expression and Laminin deposition in T1-functionalized fibrin gels 

 

The expression of α6 integrin and laminin deposition by hCMEC/D3 embedded in T1-functionalized fibrin gels was investigated by 

immunofluorescence staining after 3 days of culture.  

 

 

Figure 21: Double immunofluorescence staining of α6 integrin and Laminin in unmodified (upper line) and T1-functionalized (lower line) fibrin hydrogels. Cell/fibrin constructs were 

cultured for 3 days and subsequently processed for immunofluorescence labeling of α6 integrin subunit (in green) and Laminin (in red). Representative 2-D projections of CLSM z-stack 

images of cell/fibrin constructs covering a depth of approximately 60 μm are shown. White arrows indicate cellular sproutings. Scale Bar: 50 μm
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The α6 integrin subunit is known to mediate a set of biological activities. Stepp and 

respective co-workers showed that this integrin is involved in the maintenance of the integrity of 

stratified tissues through mechanical connections between laminin and the filamentous 

cytoskeleton of the cells [99]. Moreover, studies by Tae-Hee Lee with HBMEC indicated a 

straight role of α6 integrin in the angiogenic process of those cells [41]. Since it is known that 

the integrity of tissues is maintained by mechanical connections between the cytoskeleton of 

cells and laminin, a large non-collageneous glycoprotein from basement membranes [100], 

double immunostaining of α6 integrin and laminin was performed with hCMEC/D3 in order to 

evaluate their expression, localization and distribution. Representative 2-D projections of CLSM 

z-stack images of cell/fibrin constructs are shown in figure 21. In fact, the expression of α6 

integrin by hCMEC/D3 was observed, along with the deposition of laminin. 

Besides the double staining, a single immunofluorescence staining of α6 integrin was 

also made with the same cells. Representative 2-D projections of CLSM z-stack images of 

cell/fibrin constructs are presented in Figure 45 (Appendix D).  

No differences were found between cells embedded in unmodified and T1-functionalized 

hydrogels.  

 
2.4. Effect of immobilized T1 on EC sprouting within fibrin mediated by α6β1 
integrin  
 

After confirming the expression of α6 integrin subunit by hCMEC/D3, similarly to what 

was previously observed with HBMECs [41], we assessed if EC sprouting within T1-

functionalized fibrin hydrogels (40 μM in the polymerizing gel) was mediated through integrin 

α6β1. For this purpose, functional blocking monoclonal antibodies against α6 (Rat Anti-human 

CD49f) or β1 integrin subunits (Hamster Anti-rat CD29) were used. Results are shown in figure 

22.  
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Figure 22 (A-C): Functional blocking assay: EC sprouting of hCMEC/D3 in T1-functionalized fibrin hydrogels (40 

µM in the polymerizing gel), after 3 days of culture in the absence (control) or presence of functional blocking 

monoclonal antibodies against α6 or β1 integrin subunits. Cells were cultured in the presence of 25 ng/mL of VEGF 

and EC sprouting was determined using the microcarrier-based in vitro angiogenic assay. (A) represents the results 

of the quantification of the number of sprouts per bead and (B) the results of maximal sprouting length. EC sprouting 

was normalized to sprouting in unmodified Fb. 10 to 15 microcarriers embedded in each fibrin gel drop were analyzed 

and mean values determined. The percentage of beads with EC sprouts was also determined (C). Graphs denote 

results from replicate cultures from one independent experiment. 

 
The results presented in figure 22 were obtained from only one independent experiment 

and the number of quantified microcarriers was reduced (10 to 15 beads from each fibrin gel). 

Nevertheless, the blocking of α6 integrin subunit resulted in EC sprouting inhibition in terms of 

number of sprouts per bead and maximal sprouting length, even though significant differences 

were not attained. In line with these results, blocking of β1 integrin subunit elicited a similar 

effect. As expected, blocking of α6 integrin subunit did not impact EC sprouting in unmodified 

fibrin gels, as expected from the absence in native fibrin of binding sites for integrin α6β1 [66].  
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The tendency observed corroborate the results obtained by Tae-Hee Lee on his study 

regarding the regulation of α6 integrin by VEGF [41] and are a strong endorsement of the role of 

α6 and β1 integrins on the angiogenic processes of hCMEC/D3. Besides, Shr-Jeng Leu and co-

workers also tested the inhibition of α6β1-dependent cell adhesion and CCN1-induced 

endothelial tubule formation through the addition of soluble T1 peptide, confirming that soluble 

T1 peptide blocks the interaction between CCN1 and α6β1 integrin, therefore inhibiting the 

formation of tubule structures [73]. 

Despite its important and undeniable role, the interaction between α6β1 integrin with T1 

peptide is not the only responsible for the promotion of the adhesion of endothelial cells and the 

formation of tubule structures. Heparan sulfate proteoglycans are also required to act as co-

receptors, interacting with heparin binding motifs [101].  

It is known from the literature that fibrin presents numerous binding sites for cells, ECM 

proteins and growth factors, contributing to its considerable ability in modulating important 

cellular processes. Moreover, it is also known that cells can interact with fibrin through cell-

surface receptors binding to heparin-binding domains on fibrinogen molecules [66]. Even though 

no statistically significant differences were found, the observed tendencies in the functional 

blocking assays are in line with these findings, since the obtained inhibition rates were always 

lower than the fold increases described in section 2.2, confirming the involvement of other 

interactions.  

 

2.5. hCMEC/D3 metabolic activity in functionalized fibrin gels 

 

In order to assess the effect of immobilized peptides on cell viability and cell 

proliferation, hCMEC/D3 cells were firstly seeded as single cells in fibrin gels (50 μL-drops). For 

this purpose, hCMEC/D3 were initially cultured in unmodified fibrin hydrogels at three different 

cell-seeding densities (ranging from 1 to 3 × 106 cells/mL). The cell seeding density allowing a 

higher cellular organization without compromise of cell viability was then selected for 

subsequent studies. Results are presented in figure 23. Among the three densities, the 

intermediate one appeared to be the best concentration for use in the subsequent assays, since 

it resulted in cells with a spindle-shaped morphology starting to organize into 3-D large round 

structures, highlighted by the arrows in the figure. 

 

 

Figure 23 (A-C): Effect of the cell seeding density on the distribution of viable (in green) and dead (in red) 

hCMEC/D3 cells within 3-D unmodified fibrin gels, after 4 days of cell culture. (A) 1 × 10
6
 cells/mL; (B) 2 × 10

6
 

cells/mL; (C) 3 × 10
6
 cells/mL. The cell/fibrin constructs were incubated with Calcein AM and Propidium Iodide for 

labeling of viable and dead cells, respectively, and imaged by laser confocal scanning microscopy (CLSM). ). 

Representative 2-D projections of CLSM z-stack images of cell/fibrin constructs covering a depth of approximately 50 

μm are shown. Scale bar: 200 μm. 
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Afterwards, the metabolic activity of hCMEC/D3 within functionalized fibrin hydrogels (40 

µM in the polymerizing gel) was evaluated through a resazurin-based assay. Such method 

consists on the reduction of the resazurin dye, which is a blue and non-fluorescent dye, into a 

pink and fluorescent compound that is called resorufin, being this reduction a responsibility of 

the reductases existing in the living cells. This said, resorufin fluorescence has been used as an 

indicator of cell viability and has been correlated with cell proliferation and cytotoxicity 

phenomena. 

The graph in figure 24 represents the results of the calibration curve obtained at day 0, 

required to estimate cell numbers at the different time points of culture from fluorescence 

readings. 

 
 
 
 
 
 
 

 
 
 

 
 
 

 
 

Figure 24: Standard curve of resazurin signal, as a function of cell number. hCMEC/D3 were seeded within 

unmodified fibrin-gels at cell number ranging from 0 to 30 × 10
4
 cells per 50 μL-gel. Results shown correspond to 

samples incubated for two hours and fifteen minutes in complete medium containing 20% (v/v) of resazurin. Each cell 

density was evaluated in triplicates (mean ± SD; n=3).  

 

Afterwards, cell proliferation on unmodified and T1-functionalized (40 μM of peptide in 

the polymerizing gel) fibrin hydrogels was evaluated at day 0 and day 2. Results are presented 

in figure 25 and show that the immobilization of T1 peptide did not affect cell proliferation.  

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 25: Effect of immobilized T1 peptide on cell proliferation of hCMEC/d3 in fibrin hydrogels. Cell number at day 

0 and day 2 of cell culture was estimated from cell metabolic activity, as determined using a resazurin-based assay. 

The cell number was deduced from a polynomial standard curve, in which fluorescence values were plotted against a 

known number of cells seeded in parallel within unmodified fibrin gels. (mean ± SD; n=4). 
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2.6. Cell viability evaluation in functionalized-fibrin gels 
 

Cell viability of hCMEC/D3 cells cultured within unmodified and T1-functionalized fibrin hydrogels (40 µM in the polymerizing gel) was assessed at 
the end 4 days of cell culture, incubating the cell/fibrin constructs with Calcein AM/PI and Hoechst 33342. Representative 2-D projections of CLSM z-stack 
images are shown in Figure 26. 
 

 

 
Figure 26: Cell viability of hCMEC/D3 cultured in unmodified (upper line) and T1- functionalized (lower line) fibrin hydrogels. Cell/fibrin constructs were cultured for 4 days and subsequently 

incubated with Calcein AM, PI and Hoechst 33342, for detection of live (in green), dead (in red), and DNA (in blue), respectively. Representative 2-D projections of CLSM z-stack images of 
cell/fibrin constructs covering a depth of approximately 50 μm are shown. Scale Bar: 200 μm. 
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Qualitative analysis of cell viability showed no apparent differences regarding the 

number of dead cells between the two conditions analyzed.  

Afterwards, a quantitative analysis of cell viability was performed by flow cytometry to 

disclosure the effect of immobilized T1 on cell viability. Results are shown in figures 27 and 28 

and reveal similar percentages of live and dead cells on unmodified and T1-functionalized fibrin 

hydrogels, thus confirming that T1 immobilization did not compromise cell viability within fibrin 

hydrogels.  

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 27: Cell viability flow cytometry analysis of hCMEC/D3 cultured in unmodified and T1-functionalized fibrin 

hydrogels. Cells were dissociated with StemPro® Accutase®, incubated with calcein AM (for detection of viable cells) 
or PI (for detection of dead cells), and analyzed by flow cytometry. Debris were excluded by gating on forward and 
side scatter and fluorescence gates set using unlabeled cells. (A) Representative forward and side scatter dot-plot of 
the unstained population. Representative fluorescence histograms for (B) cells isolated from unmodified fibrin 
hydrogels and (C) cells isolated from T1-functionalized fibrin hydrogels. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 28: Cell viability flow cytometry analysis of hCMEC/D3 cultured in unmodified and T1-functionalized fibrin 

hydrogels. Percentage of live and dead hCMEC/d3 isolated from unmodified and T1-functionalized fibrin hydrogels 

(mean ± SD; n=3, each correspondent to a pool of four Fb drop cultures). 
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3. EVALUATION OF THE VISCOELASTIC PROPERTIES OF THE FIBRIN 

GELS 

 

Dynamic shear measurements were used to disclosure if the covalent immobilization of 

bi-domain peptides affected the stiffness properties (viscoelastic properties) of the gel, which 

are known to modulate cell behavior. 

 

Oscillatory shear techniques are commonly used to evaluate the rheological behavior of 

viscoelastic materials. In such method, the relative contributions of both viscous and elastic 

components of the materials are quantified to characterize their viscoelasticity.  

The shear elastic modulus (G’) and the shear viscous modulus (G’’) are defined as the 

amplitude ratio of the component of the stress in phase with the strain to the strain amplitude 

and theirs values are given by the following equations: 

 

 
 

Figure 29: Equations for the calculation of the shear elastic and shear viscous   

modulus (G’ and G’’). δ represents the contact angle 

 

For a material that is perfectly elastic, the stress and the strain waveforms are in phase, 

which means that the contact angle and the G’’ values are zero and that G’ has a finite value. 

Thus, for a given value of strain amplitude, G’ gives a measure of the energy that is elastically 

stored by the system when exposed to frequency oscillation [102].  

In turn, for a completely viscous material, the stress and strain waveforms are totally out 

of phase, with a value of 90º for the contact angle, 0 for the G’ and a finite value for G’’. In such 

situation, G’’ represents a measure of the energy that is being dissipated during flow, per cycle 

of oscillation, for each value of strain amplitude [102].  

Thus, the viscoelastic performance of a material consists of a viscous and elastic 

portion. Complex modulus (G*) is the vector sum of the two and it depicts the gel stiffness 

properties. Its value is given by the following equation and the toughness of the material 

increases with the increase of this modulus [102]. 

 

      

 
     Figure 30: Equation for the calculation of the complex modulus (G*) 

 

In the present study, dynamic shear strain amplitude sweep tests were initially performed, 

in which the samples were subjected to different shear stress values at a constant frequency to 

determine the linear viscoelastic region of the fibrin hydrogel. The G* was monitored as a 

function of the strain values and the range in which the G* values remained more or less 

constant was denoted as the linear viscoelastic region of the gel at the known frequency and 

temperature values. Subsequently, dynamic frequency sweep tests were performed, during 

which the samples were exposed to different frequency values at a constant stress and 

temperature. The storage (G’) and loss (G’’) modulus were recorded as a function of frequency 

and the dominant modulus at a particular frequency indicated whether the material was elastic 

or viscous.  
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Results are presented in Figure 31. These reveal that both the unmodified and modified 

fibrin gels presented a mostly-elastic behavior, as their shear elastic modulus showed to be 

considerably higher than the shear viscous one. The obtained complex moduli (G*) are close to 

those reported for mammalian (rat) brain (ranging from 400 to 1000 Pa) [103]. Such result could 

also be confirmed by the vector sum of viscous and elastic components, given by complex 

modulus (G*). Although the values found for G’ and G’’ moduli were lower than those reported in 

the literature for the same concentration of fibrinogen (6 mg/mL) [104] [96], the ratio between 

the G’ and G’’ moduli is in agreement with previous studies. Both native and functionalized 

hydrogels present a noteworthy elastic behavior, which is fundamental for the natural function of 

fibrin in blood clots [105]. Most importantly, it can be inferred that the T1-modification of the 

hydrogel did not significantly affect its mechanical properties, which is in agreement with 

previous findings reporting minor disruption of fibrin structure when small peptides were 

immobilized into fibrin using the same immobilization approach [70]. 

In fact, this strategy allows the covalent incorporation of peptides into fibrin with retention 

of biological activity, to specific sites in fibrin(ogen) α chain that are not used for fibrinogen 

intermolecular crosslinking [106]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 
 

Figure 31 (A-C): Effect of T1 bi-domain peptide immobilization on fibrin stiffness. Storage modulus (G’), loss modulus 

(G’’), and complex modulus (G*) of unmodified and T1-functionalized fibrin hydrogels (40 µM in the polymerizing 

solution) are shown, as assessed by rheological analysis (mean ± SD; n = 6 independent measurements). 
 

These results were important since changes in fibrin properties at the viscoelasticity 

level could also impact cellular behavior. Our results therefore suggest that the EC sprouting 

enhancement observed in T1-functionalized gel was not associated to changes in fibrin network 

structure.
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4. EFFECT OF IMMOBILIZED α6β1 LIGANDS ON OEC BEHAVIOR IN T1-

FUNCTIONALIZED FIBRIN GELS 

 
4.1. EC sprouting of OECs in T1-functionalized fibrin gels 
 

To disclosure if T1-functionalized fibrin hydrogels were effective in promoting EC 

sprouting of a clinically relevant source of endothelial cells, the microcarrier-based angiogenic 

assay was performed using outgrowth endothelial cells (OECs) derived from human umbilical 

cord blood. The reported phenotype characterization of these cells reveal that they uniformly 

express endothelial markers such as CD34, CD36 and VE-Cadherin [107]. Moreover, OECs are 

uniformly negative for hematopoietic cell-specific surface antigens, such as CD45 or CD14 

[108].  

 As OECs are routinely expanded in culture medium with VEGF, supplementary VEGF 

was not added to the culture during in vitro angiogenic experiments. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Figure 32 (A-C): EC sprouting of OECs seeded in T1-functionalized fibrin hydrogels after 3 days of culture, in terms 

of (A) Number of sprouts per bead and (B) maximal sprouting length. The microcarriers embedded in each fibrin gel 
drop were analyzed and mean values were determined. The percentage of beads with EC sprouts was also 
determined (C). EC sprouting was normalized to sprouting in unmodified Fb. Graphs denote results from replicate 
cultures from two independent experiments. 
.  
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 As shown in Figure 32, the functionalization of the hydrogels with 40 μM of T1 bi-domain 

peptide did not result in a significant increase in relation to unmodified fibrin, in contrast to its 

effect on HPMEC-ST1.6R and hCMEC/D3. However, the rising of the input concentration of T1 

peptide to 60 μM led to a statistically significant increase in EC sprouting in terms of maximal 

sprouting length (1.8-fold increase) and the number of sprouts per bead (1.7-fold increase). In 

what concerns to the percentage of beads with sprouts, the differences were not so evident. 

Nevertheless, a slight increase could be noticed when functionalizing the fibrin with 60 μM of T1 

peptide, while a mild decrease was observed with the lower T1 peptide concentration.  

 Additionally, statistically significant differences were obtained when increasing the 

concentration of T1 peptide from 40 μM to 60 μM, with p-values of 0.002 and 0.013 being 

obtained for maximal sprouting length and number of sprouts per bead, respectively.  

 

 In figure 33 representative images of the three tested conditions are presented. The 

image chosen to represent the lowest concentration of T1 peptide does not have any sprouts, 

since the quantification of the percentage of beads with sprouting structures, presented in 

figure 32-C, indicated that less than 50% of the beads presented sprouts. Considering the 

global results in terms of number of sprouts and maximal sprouting length, the results between 

unmodified and T1-40 μM modified fibrin gels were really similar and significantly lower than the 

T1-60 μM functionalized gels, as confirmed by the images. These findings suggest that the 

ligand concentration required for EC sprouting improvement in fibrin is cell type dependent, and 

possibly associated with integrin expression levels. 

 
 

 

 

Figure 33 (A-C): Confocal representative images of EC sprouting of OECs cultured in (A) unmodified, (B) T1 40 μM-

functionalized and (C) T1 60 μM-functionalized fibrin hydrogels. The samples were processed for DNA and F-actin 

staining, shown in blue and red respectively. Grey arrows indicate EC sproutings. 
 

DNA F-actin DNA F-actin DNA F-actin 
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5. IN VIVO CAM ASSAY 
 

As demonstrated by the previously described results, the functionalization of the fibrin 

hydrogels with the T1 peptide, obtained by the cleavage of the CCN1 angiogenic protein, has 

been shown to have the ability to promote endothelial cell migration and proliferation, as well as 

the formation of capillary-like structures in vitro. Such positive results encouraged the 

progression to in vivo studies. The CAM assay was the chosen method since it is a complete in 

vivo environment, immuno-incompetent until birth, with no relevant ethical issues associated. 

Further, it allows a non-invasive observation of the impact of the test substances placed onto 

the CAM [109] [110].   

Three days after the implantation of the hydrogels on the top of the CAM, the tissue 

(CAM inoculation site) was excised and the gross evaluations and morphologies of CAM tissue 

responses to the implanted scaffolds are shown, in a macro perspective, in figure 34.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 34 (A-B): StereoMicroscope images representative of the two tested conditions: (A) unmodified and (B) T1-

functionalized fibrin gels in the CAM’s inoculation site. In both cases it was possible to observe some remains of the 

gel (*) and to distinguish the pre-existing vessels () from the newly formed ones (< 20 μm diameter) (☐). In addition 

to the angiogenic response, an inflammatory reaction was observed, mainly in CAMs with unmodified fibrin gels (). 

Magnification: 20×. 
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 Moreover, a quantitative vascular density assay was made, showing that T1-

functionalized hydrogels induced a significantly higher angiogenic response than the unmodified 

gel, as displayed in figure 35. Figure 35-A displays, individually, the results from the three 

independent experiments, showing that the increased angiogenic response induced by the 

functionalized fibrin hydrogels was a reproducible result. In turn, in figure 35-B, a summary of 

all the evaluated pairs is shown, revealing the statistically significant increase of the number of 

newly-formed vessels by CAM’s inoculation with T1-functionalized hydrogels, corresponding to 

an average increase of 20%.  

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figures 35 (A-B): Quantitative studies of the number of newly formed vessels in each of the conditions tested. Graph 

A represents the results of the pairs obtained in each of the three independent experiments and Graph B shows a 

comparison between the two conditions based on all the pairs.  

 

Further, CAM tissue was also processed for histological analysis. Below, two 

representative examples of CAMs exposed to unmodified (Figure 36-A and C) and T-1 

modified (Figure 36-B and D) fibrin hydrogels. Histological analysis validated previous results, 

obtained by optical analysis of the entire inoculation site. Specifically in what concerns the 

inflammatory reaction and the presence of fibrin residues.  
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Figure 36 (A-D): Hematoxylin-eosin (H&E) staining of CAM with control unmodified (A and C) and T1-functionalized 

(B and D) fibrin hydrogels, 3 days after inoculation. White arrows indicate fibrin hydrogel remains that were not 

degraded by the invading cells and black arrows represent blood vessels. Moreover, the recruitment of immune 

precursor cells is also observable, mainly in the control situations. Magnification: 100×.  

 

In the first example, the tissue in contact with the control hydrogel (figure 36-A), is 

extensively more dilated than the membrane in contact with the modified hydrogel (figure 36-

B), most likely as a consequence of the inflammatory process (note the recruitment of immune 

precursor cells - the little and rounded ones that stain purple by the H&E staining).  

Moreover, it is still possible to observe fibrin hydrogel remains in figure 36-A, contrarily 

to the opposite image (figure 36-B). This is in accordance with the counting of the newly formed 

vessels, as the cells were not able to fully degrade the hydrogel and, thus, were not able to 

proliferate and migrate more and, consequently, less vascular structures were formed.   

In the second example, the membrane in contact with the modified hydrogel (figure 36-

D) shows some level of dilation and inflammation but it is still a mild response in comparison to 

the control condition (figure 36-D). Fibrin residues are again noticeable in the control but not in 

the presence of T1 peptide.  

The inflammatory response was quantified using a semi-quantitative score analysis 

(score 1: whenever inflammation was higher than in the counterpart area; score 0: whenever 

inflammation was lower than in the counterpart area), both in the macroscopic images of the 

excised tissues and the H&E stained slides. Inflammatory response was identified by the 
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presence of denser and darker zones at the inoculation site or, in the H&E staining, by dilation 

of the CAM and recruitment of immune precursor cells. 

 

The graph bellow (figure 37) summarizes our results, showing that CAMs in contact with 

unmodified gels presented a significantly higher inflammatory response than the tissues that 

were in contact with the functionalized ones. Results are consistent both for the macro images 

and the H&E slides.  

In addition, a quantitative evaluation of the reaction area was made, through 

measurements of the referred dense and dark areas and the results are depicted in figure 38.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 37: Inflammatory score of the inoculated pairs. Upper bars represent the results from H&E slides evaluation, 

while the lower bars represent the results from the macro evaluation. Score 1: more inflammation than in the 

counterpart ring; Score 0: less inflammation than in the counterpart ring.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Image 38: Quantification of inflammatory areas of the inoculated pairs. 
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As summarized in the upper bars of figure 37, the histological sections were also used 

to score inflammation, as a way of confirming the inflammatory scores that were noticed in the 

macroscopic images. Illustrative images of the inflammatory reaction are shown in figure 39. 

Figure 39-A is highly representative of the huge inflammatory reaction that could be seen in 

almost every control tissue, while Figure 39-B illustrates the counterpart area, in which the 

CAM in contact with the T1-functionalized hydrogel also presented some inflammation.  

The number of inflammatory cells is clearly superior on the implantation site of 

unmodified gels. In turn, the inoculation with T1-functionalized hydrogels also originated, for 

some cases, an inflammatory response in the CAM, but it was significantly lower in most of the 

cases.  

Figures 39 (A-B): H&E staining of CAM at day 3 after implantation. Representative images of the inflammatory 

reaction observed for unmodified (A) and T1-functionalized (B) fibrin hydrogels. White arrows indicate the presence of 

fibrin residues and black arrows represent blood vessels. Magnification: 200×.  

 
It is important to highlight that the example depicted on figure 39-B was not common, 

since most of the tissues that were in contact with modified gels did not present any 

considerable inflammatory reaction. Therefore, this figure is being presented only as a 

comparison tool, as the extent of the inflammation is very different from one situation to another.  

Together with the studies of the inflammatory reaction, a semi-quantitative scoring 

evaluation was made, in the basis of the H&E slides, regarding the presence of fibrin residues in 

either case. The results revealed that 50% of the control cases still presented fibrin remains at 

the time of the tissue excision, against only 2% of the T1-functionalized gels.  

It was expected some kind of immune reaction to happen, since a foreign body was 

being placed upon the membrane, but the enormous inflammation observed for the control gels, 

as well as its almost inexistence for the modified ones, was not predictable.  

This reduction of the inflammatory reaction observed for the T1-functionalized gels was, 

as already mentioned, accompanied by an increase of fibrin degradation. These two findings 

can be related, since a higher rate of biomaterial degradation would reduce the contact time 

between the tissue and the material and, as a consequence, the inflammatory reaction is 

expected to be less aggressive. Moreover, T1 peptide might have an inductor role for the 

secretion of anti-inflammatory cytokines, causing the global anti-inflammatory effect of the 

functionalized fibrin.  

As far as we know, the anti-inflammatory effect of T1-functionalized fibrin hydrogels, 

suggested by the previously reported data, is yet to be investigated. If proven right, the 

combination of pro-angiogenic and anti-inflammatory properties of such hydrogels would have 

an important impact in research and clinical applications, namely in what respects 

neurodegenerative disorders.  
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FINAL REMARKS 
 

The objective of the herein reported work consisted in the development of fibrin-based 

hydrogels able to foster the neovascularization of bioengineered tissues, in particular for 

application in the injured central nervous system. For this purpose, fibrin hydrogels were 

functionalized with the integrin α6β1 binding sequence of the angiogenic inducer CYR61 (T1 

peptide), due to its reported pro-angiogenic activity. . The immobilization of T1 peptide to a 

biomaterial as a strategy to enhance its angiogenic properties is novel. In addition, we explored 

the binding of another integrin α6β1 ligand – the synthetic peptide HYD1 – previously shown by 

our group to promote cell migration and neurite extension of embryonic stem cell-derived neural 

stem/progenitor cells cultured within 3-D fibrin gels. Fibrin functionalization was expected to 

enhance fibrin ability to promote neovascularization, namely by promoting proliferation, 

migration and capillary-like structure formation, in vitro, as well as angiogenesis, in vivo.  

 

For the preliminary assessment of the angiogenic ability of T1/HYD1-functionalized fibrin 

gels, a cell line of human pulmonary microvascular endothelial cells (HPMEC-ST1.6R) and the 

in vitro microcarrier-based assay were used. For the highest input concentration tested of T1 

peptide (40 µM), already a trend for a 1.4-fold increase in average was detected in all the 

evaluated EC sprouting parameters, though significant differences were only observed in the 

number of sprouts per microcarrier. Immobilization of HYD1, however, failed to induce EC 

sprouting, regardless of the input concentration tested. 

 

The bioactivity of functionalized gels was then assessed using a cell line of human brain 

microvascular endothelial cells (hCMEC/D3). Further supporting the previous results, 

functionalization of fibrin gels with 40 µM of T1 peptide resulted, in average, in a 1.4-fold 

increase of hCMEC/D3 sprouting in all the parameters analyzed, and statistically significant 

differences were found, this time, in the number of sprouts per bead and also in the sprouting 

area. However, and also in line with the previous results, HYD1 showed no angiogenic effect. 

The effect of T1 peptide was enhanced in the presence of VEGF, a soluble angiogenic inducer 

described to induce integrin α6β1 activation and expression [41].  Specifically, fibrin gels 

functionalized with 40 µM of T1 bi-domain peptide elicited a statistically significant increase in all 

EC sprouting parameters, namely to a 1.9-fold increase of the number of sprouts per bead, a 2-

fold increase of the sprouting area, and a 1.5-fold increase in the maximal sprouting length. 

Additionally, a 25% increase in the percentage of beads presenting sprouting structures was 

observed. Incubation with functional blocking monoclonal antibodies against α6 and β1integrin 

subunits, partially inhibited the number of sprouts per bead and the maximal sprouting length in 

T1-functionalized gels, but not in unmodified gels. Although the differences observed were not 

significant, these results suggest that the EC sprouting elicited by immobilized T1 peptide was 

partially mediated by integrin α6β1.  

Immobilized T1 peptide did not affect cell viability or proliferation of hCMEC/d3, as 

shown by flow cytometry analysis of LIVE/DEAD cells and cell metabolic activity, respectively. 

Further characterization of T1-functionalized gels in terms of mechanical properties 

showed no significant changes in fibrin viscoelastic properties after covalent binding of T1 

peptide, pointing out that the EC sprouting enhancement observed in T1-functionalized gel was 

not associated to changes in fibrin network structure. 
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The testing of T1-functionalized fibrin gels with OECs from human umbilical cord blood 

provided relevant evidence of the bioactivity of T1-functionalized fibrin. In brief, 60 µM of T1 in 

the polymerizing gel gave rise to a statistically significant increase of EC sprouting, leading to a 

1.7-fold increase of the number of sprouts per bead and to a 1.8-fold increase of the maximal 

sprouting length, when comparing to unmodified fibrin gels. In turn, functionalization with 40 µM 

of T1 did not instigate any differences in comparison to the unmodified control. These findings 

suggest that the ligand concentration required for EC sprouting improvement in fibrin is cell-type 

dependent, and possibly associated with integrin expression levels. 

 

Finally, to evaluate the in vivo angiogenic potential of T1-functionalized fibrin, a CAM 

assay was performed using fibrin gels functionalized with an intermediate concentration of T1 

(50µM) and unmodified fibrin gels as control.  The results were reproducible between the three 

independent experiments performed and statistically significant differences were found, with an 

increase of about 20% in what concerns the number of newly formed vessels, therefore pointing 

out the pro-angiogenic potential of T1-functionalized fibrin gels. CAMs receiving T1-

functionalized fibrin gels displayed a significant decrease of the inflammatory reaction when 

compared to that caused by unmodified fibrin, which may be related to the faster degradation 

observed for these gels as compared to unmodified gels, associated to the increased formation 

of new vessels by invasive vasculature. The possible anti-inflammatory effect of T1-

functionalized fibrin combined with its angiogenic properties makes it potential interesting for 

application in the injured CNS as well as in neurodegenerative disorders. 
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FUTURE PERSPECTIVES 
 

Taking into consideration the obtained results along the development of this master 

thesis, future studies are required in order to increase the robustness of the results.  

 

First and foremost, it is important to increase the number of MCs analyzed in certain 

experiments, such as that of the function-blocking assay, so that the robustness of the work is 

increased. Due to time constraints, this was not possible until the delivery of this report.  

  

Moreover, although some significant differences were already obtained, it is necessary 

to increase the number of experiments to confirm the effect of the addition of VEGF to the 

culture medium of hCMEC/D3 cells, since only two independent experiments were performed.  

 

Furthermore, regarding OECs, even tough statistically significant differences were 

already observed, there is a need of investing some more time and repeat the experiment, as 

only two independent assays (with three replicates) were made with the highest concentration of 

T1 peptide. 

 

In what concerns the rheological study carried out, since it is a quite time-consuming 

procedure, the characterization of all the fibrin gels developed was not possible. It may be 

interesting to characterize HYD1-modified hydrogels, as well as fibrin gels functionalized with 60 

µM of T1 peptide, in order to assess if such modifications affect the viscoelasticity properties of 

the hydrogel, even though it is not expected to happen.    

 

Moreover, since the increase of the bi-domain peptides concentration, specially in what 

regards the T1 peptide, seemed to result in a rise of the number of sprouts and their extension, 

it would be interesting to investigate the effect of higher concentrations of T1 peptide on cell 

behavior. Besides, a quantification of the number of cells per sprout should be performed, in 

order to better define the concept of capillary-like structure.  

 

Concerning the CAM assay, some interesting results were obtained considering a 

potential anti-inflammatory effect of the T1-modified hydrogels. To our knowledge, such effect is 

yet to be explored and the investment on the consolidation of these results seems to be 

appealing and easily justifiable, due to the range of possible applications of a hydrogel that is 

simultaneously pro-angiogenic and anti-inflammatory. To get insight into the pro-angiogenic 

ability of T1-functionalized fibrin gels in vivo, other animal models, such as a subcutaneous one 

or a rat model of spinal cord injury - such as the contusion model – should be used. 

 

The until-now obtained results indicate that fibrin gels functionalized with the T1 peptide 

are interesting for endothelial cell culture in a 3-D environment and potentially promising for the 

development of prevascularized tissues and their in vivo application. Together with previous 

findings regarding their capability of promoting neural stem cell migration and neuronal 

extension, these results seem very promising in what concerns the applicability of these 

hydrogels within the CNS.  
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SUPPLEMENTARY DATA 
 
APPENDIX A 
 
Optimization of the in vitro microcarrier-based assay to assess the 
angiogenic properties of functionalized fibrin gels.  
 

To attain a homogeneous colonization of the MCs by EC cells, two stirring process were 

investigated. The stirring process should allow the homogeneous colonization of a high number 

of MCs while assuring the retention of MC integrity and preventing MC aggregation. The two 

different strategies applied are illustrated in figure 40: (A) the use of Petri dishes containing 2 

mL of MC/cell suspension placed an orbital shaker and (B) the use of spinner flasks containing 

8 mL of MC/cell suspension placed on a magnetic stirrer. In both stirring processes, the orbital 

speed was set to 60 r.p.m.. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 40 (A-B): Strategies used along the optimization the colonization of the microcarriers by hCMEC/D3 cells. (A) 

shows Petri dishes containing the cell/MC suspension on an orbital shaker. (B) shows the cell/MC suspension in a 
spinner flask placed on top of a magnetic stirrer. 

 
Secondly, the effect of the stirring time was investigated: 1.5 days and 2 days. After 

several experiments, the use of Petri dishes on an orbital shaker and the lower stirring time (1.5 

days) turned to be more satisfactory, in terms of preservation of MC integrity, MC aggregation, 

and efficiency of MC coating.  

 

Finally, the cell seeding density required to obtain a homogeneous and reproducible 

colonization of the microcarriers was established for each cell type. A cell seeding density of 1.5 

× 106 cells/mL was used to the two cell lines (HPMEC-ST1.6R and hCMEC/D3), while a higher 

cell density was required for OECs (3 × 106 cells/mL; figure 41 (A-D).  

As the use of this cell density with OECs led to a poor and heterogeneous colonization 

of the MCs, a higher density was also tested (3 × 106 cells/mL).  As shown in figure 41 (C and 

A 
B 
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D), the higher density resulted in a homogenous coating of the MCs and was therefore selected 

for the assay.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 41 (A-D): Optimization of the cell density required for microcarrier colonization by HPMECs, hCMEC/d3 and 

OECs. (A) Colonization with 1.5 × 10
6
 HPMEC/mL, (B) Colonization with 1.5 × 10

6 
hCMEC/D3/mL. (C) Colonization 

with 1.5 × 10
6
 OEC/mL. (D) Colonization with 3 × 10

6
 OEC/mL. Cells were cultured for 1.5 days under dynamic cell 

culture provided by an orbital shaker, and subsequently processed for DNA staining (Hoechst). Representative 2-D 
projections of IN Cell Analyzer z-stack images of the microcarriers covering a depth of approximately 100 μm are 
shown. Scale bar: 20 μm 
A 1.5 × 10

6
 cell seeding density resulted in a poor and heterogeneous colonization of the MCs by OEC, while a 

higher density (3 × 10
6 

cells/mL) successfully promoted a homogeneous and reproducible colonization of the MCs. 

A 
 

B 

C D 
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APPENDIX B 
 
Percentage of beads with sprouts 
 

 HPMEC 
 
 
 

 HCMEC 
 

 
 

 
 

 
 
 
 
 
 
 
 
 
 

 hCMEC/D3 without VEGF 
 
 
 

 
 

 
 

 
 
 

 
 

 
 
 
 

 
Figure 42 (A-D): EC sprouting into T1-functionalized and HYD1-functionalized fibrin hydrogels in terms of percentage 

of beads with sprouts. (A and B) HPMEC cells and (C and D) hCMEC/D3 cells.. Graphs denote results from replicate 
cultures from two to three independent experiments. 
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APPENDIX C 
 
Effect of the addition of VEGF to the culture medium 
 
 
 
 
 

 
 

 
 

 
 

 
 

 
 
 
 

 
 

 
 
 
 
 
 
 
 

 
 
 

 
 

 
 

 
 

 
 

 

 
 
 
 
 
 
 
Figure 43 (A-D): EC sprouting of HPMECs into T1-functionalized fibrin hydrogels after 3 days of culture in the 

presence of 25 ng/mL of VEGF. (A) Number of sprouts per bead, (B) sprouting area and (C) maximal sprouting 
length,. The microcarriers embedded in each fibrin gel drop were analyzed and mean values were determined. The 
percentage of beads with EC sprouts was also determined (D). Graphs denote results from replicate cultures from 
two (20 µM) to three independent experiments. 
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Figure 44 (A-D): EC sprouting of HPMECs into HYD1-functionalized fibrin hydrogels after 3 days of culture in the 

presence of 25 ng/mL of VEGF. (A) Number of sprouts per bead, (B) sprouting area and (C) maximal sprouting 
length,. The microcarriers embedded in each fibrin gel drop were analyzed and mean values were determined. The 
percentage of beads with EC sprouts was also determined (D). Graphs denote results from replicate cultures from 
two (10 µM) to three independent experiments. 
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APPENDIX D 
 

α6 integrin single immunofluorescence staining 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
Figure 45: Immunofluorescence staining of α6 integrin in unmodified (upper images) and T1-functionalized (lower images) fibrin hydrogels. Cell/fibrin constructs were cultured for 

3 days and subsequently processed for immunofluorescent labeling of α6 integrin (in red). Representative 2-D projections of CLSM z-stack images of cell/fibrin constructs covering 
a depth of approximately 60 μm are shown. White arrows indicate cellular sprouting. Scale Bar: 50 μm. 

DNA 

DNA 

Alpha 6 

Alpha 6 

DNA ALpha 6 

DNA ALpha 6 


