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Global variants of Hartogs’ theorem
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Abstract. Hartogs’ theorem asserts that a separately holomorphic func-
tion, defined on an open subset of Cn, is holomorphic in all the variables.
We prove a global variant of this theorem for functions defined on an
open subset of the product of complex algebraic manifolds. We also obtain
global Hartogs-type theorems for complex Nash functions and complex
regular functions.
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1. Introduction. In this paper, by a complex algebraic variety, we mean a
quasiprojective complex algebraic variety (not necessarily irreducible). A com-
plex algebraic manifold is a nonsingular complex algebraic variety of pure di-
mension. We assume throughout that subvarieties are Zariski closed in the
ambient variety. Unless explicitly stated otherwise, we always make use of the
Euclidean (metric) topology on complex algebraic varieties. Due to the nature
of the investigated problems, we employ terminology typical to analytic ge-
ometry and differential topology (submersion, regular value, etc.). All results
stated in this section are proved in Section 2.

Let X = X1 ×· · ·×Xn be the product of n complex algebraic varieties and
let πi : X → Xi be the canonical projection. We say that a subset A of X is
parallel to the i-th factor of X if πj(A) consists of one point for each j �= i.

One of the main goals of the present paper is the following.

Theorem 1.1. Let X = X1 × · · · × Xn be the product of n complex algebraic
manifolds and let f : U → C be a function defined on an open subset U of X.
Assume that for each nonsingular algebraic curve C ⊂ X, parallel to one of
the factors of X, the restriction f |U∩C is a holomorphic function. Then f is
a holomorphic function.
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Theorem 1.1 is a generalization of the classical theorem of Hartogs, which
asserts that a separately holomorphic function f : U → C, defined on an open
subset U of Cn, is holomorphic in all the variables [1,5]. Separately holomor-
phic means precisely that for each affine line L ⊂ C

n, parallel to one of the
coordinate axes, the restriction f |U∩L is a holomorphic function.

It is natural to expect that Theorem 1.1 can be deduced from Hartogs’
theorem by means of local holomorphic charts on X. This approach indeed
works, but it requires some additional insight. The local charts have to be
chosen in a special way since only nonsingular Zariski closed curves C ⊂ X
are allowed in Theorem 1.1.

We also have a counterpart of Theorem 1.1 for complex Nash functions. For
the sake of clarity, we first recall the relevant definition. Let X,Y be complex
algebraic manifolds and let U ⊂ X,V ⊂ Y be open subsets. A map ϕ : U → V
is said to be a Nash map if it is holomorphic and each point x ∈ U has an open
neighborhood Ux ⊂ U such that the graph of the restriction ϕ|Ux

is contained
in a complex algebraic subvariety of X ×Y of dimension dimUx(= dim X) [2].
The composite of Nash maps is a Nash map. Nash isomorphisms are defined
in the standard way.

Theorem 1.2. Let X = X1 × · · · × Xn be the product of n complex algebraic
manifolds and let f : U → C be a function defined on an open subset U of X.
Assume that for each nonsingular algebraic curve C ⊂ X, parallel to one of
the factors of X, the restriction f |U∩C is a Nash function. Then f is a Nash
function.

Theorems 1.1 and 1.2 have a suitable analog for regular functions. Let X
be a complex algebraic manifold. A function f : U → C, defined on an open
subset U of X, is said to be regular if there exists a rational function R on X
such that U ⊂ X \ Pole(R) and f = R|U , where Pole(R) stands for the polar
set of R. Clearly, any regular function on U is a Nash function.

Theorem 1.3. Let X = X1 × · · · × Xn be the product of n complex algebraic
manifolds and let f : U → C be a function defined on an open subset U of
X. Assume that for each nonsingular algebraic curve C ⊂ X, parallel to one
of the factors of X, the restriction f |U∩C is a regular function. Then f is a
regular function.

In the proof of Theorem 1.3, one of the ingredients is [7, Theorem 7.3]. Both
theorems are related but not quite directly; in the former we use nonsingular
algebraic curves, while in the latter smooth arcs of (possibly singular) algebraic
curves are used. Our Theorem 2.8, which is a slighty more technical variant of
Theorem 1.3, is a sharpening of [7, Theorem 7.3].

Theorems 1.1, 1.2, and 1.3 can be viewed as global variants of Hartogs’
theorem for the appropriate classes of functions. In each of them, the case n = 1
is crucial, and we single it out in Propositions 2.3, 2.4, and 2.6, respectively.

2. Proofs. We let Pn denote complex projective n-space, and identify C
n with

a subset of Pn via the map

C
n → P

n, (z1, . . . , zn) �→ (1 : z1 : · · · : zn).
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Thus 0 = (0, . . . , 0) ∈ C
n ⊂ P

n.
The following version of the Noether normalization lemma will be useful

(we were not able to find a reference for it).

Lemma 2.1. Let X be a projective complex algebraic manifold of dimension n,
and let p be a point in X. Then there exists a regular map ϕ : X → P

n for
which 0 ∈ P

n is a regular value and ϕ(p) = 0.

Proof. We may assume that X is an algebraic subvariety of Pm for some m > n,
and the following hold:

• p = (1 : 0 : · · · : 0) ∈ X;
• X ⊂ P

m \ L, where L ⊂ P
m is the projective subspace of dimension

m − n − 1 defined by

L = {(z0 : · · · : zm) ∈ P
m : z0 = 0, . . . , zn = 0};

• the regular map

π : X → P
n, (z0 : · · · : zm) �→ (z0 : · · · : zn)

is a submersion at the point p.
A map ϕ having the required properties can be constructed by perturbing

π. To this end, let M be the space of all (n + 1)-by-m matrices with complex
entries. For any constant ε > 0, set

Mε = {t = (tij) ∈ M : |tij | < ε for 0 ≤ i ≤ n, 1 ≤ j ≤ m}.

The manifold X being compact, for any ε sufficiently small, we obtain a
well-defined regular map Φ: X × Mε → P

n,

Φ(z, t) =

⎛
⎝z0 +

m∑
j=1

t0jzj : · · · : zn +
m∑

j=1

tnjzj

⎞
⎠ ,

where z = (z0 : · · · : zm) ∈ X and t = (tij) ∈ Mε.
If ε is small enough, the map Φ is a submersion since for each point z �= p

the restriction of Φ to {z} × Mε is a submersion, and π is a submersion at p.
In particular, 0 ∈ P

n is a regular value of Φ. Hence, according to the standard
consequence of Sard’s theorem [4, p. 79, Theorem 2.7], the point 0 ∈ P

n is also
a regular value of the map

Φt : X → P
n, Φt(z) = Φ(z, t)

for some t ∈ Mε. The regular map ϕ = Φt satisfies all the requirements. �
Let G1(Pn) (resp. G1(Cn)) denote the Grassmann manifold of projective

lines in P
n (resp. vector lines in C

n, that is, one-dimensional linear subspaces),
and set

G1(Pn, 0) = {L ∈ G1(Pn) : 0 ∈ L}.

It readily follows that G1(Pn, 0) is an algebraic submanifold of G1(Pn), bireg-
ularly isomorphic to P

n−1 = G1(Cn).
The map

G1(Pn, 0) → G1(Cn), L �→ L ∩ C
n



284 J. Bochnak and W. Kucharz Arch. Math.

is a biregular isomorphism.
Our next auxiliary result is inspired by [6]. In its proof, we use basic notions

and results from differential topology, all of which can be found in [4].

Lemma 2.2. Let X be a projective complex algebraic manifold of dimension
n ≥ 1, and let ϕ : X → P

n be a regular map for which 0 ∈ P
n is a regular

value. Then the set

Ω = {L ∈ G1(Pn) : ϕ is transverse to L}
is open in G1(Pn), and the set

Ω0 = Ω ∩ G1(Pn, 0)

is dense in G1(Pn, 0).

Proof. Consider the standard action of the general linear group G = GLn+1(C)
on P

n. Any element σ ∈ G determines an automorphism

σ̂ : Pn → P
n.

The subgroup

G0 = {σ ∈ G : σ̂(0) = 0}
of G acts on P

n \ {0}, and this action is transitive. Moreover, the action of G
on G1(Pn),

G × G1(Pn) → G1(Pn), (σ,L) �→ σ̂(L)

is transitive, and so is the induced action of G0 on G1(Pn, 0).
Henceforth, we work with a fixed projective line L0 ∈ G1(Pn, 0). The reg-

ular map

α : G → G1(Pn), σ �→ σ̂(L0)

is a submersion, and hence it is open. Moreover,

Ω = α(Γ) and Ω0 = α(Γ0),

where

Γ = {σ ∈ G : σ̂ ◦ ϕ is transverse to L0} and Γ0 = Γ ∩ G0.

Thus, it suffices to prove that Γ is an open subset of G, and Γ0 is a dense
subset of G0.

Step 1. The subset Γ is open in G.
Consider the space C∞(X,Pn) of C∞ maps, endowed with the C∞ topology.

The set

U = {f ∈ C∞(X,Pn) : f is transverse to L0}
is open in C∞(X,Pn), see [4, p. 74, Theorem 2.1]. Moreover, since the manifold
X is compact, the map

β : G → C∞(X,Pn), σ �→ σ̂ ◦ ϕ

is continuous. The proof of Step 1 is complete since Γ = β−1(U).
Step 2. The subset Γ0 is dense in G0.
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The regular map

ψ : G0 × X → P
n, (σ, x) �→ σ̂ ◦ ϕ

is a submersion since 0 ∈ P
n is a regular value of ϕ, and G0 acts transitively

on P
n \ {0}. In particular, ψ is transverse to L0. For any element σ ∈ G0, let

ψσ : X → P
n

be the map defined by

ψσ(x) = ψ(σ, x) = (σ̂ ◦ ϕ)(x).

Clearly,

Γ0 = {σ ∈ G0 : ψσ is transverse to L0}.

By the standard transversality theorem [4, p. 79, Theorem 2.7], the set on the
right hand side of the last equality is dense in G0. The proof is complete. �

The following will play a key role in the proof of Theorem 1.1.

Proposition 2.3. Let X be a complex algebraic manifold and let f : U → C be a
function defined on an open subset U of X. Assume that for each nonsingular
algebraic curve C ⊂ X the restriction f |U∩C is a holomorphic function. Then
f is a holomorphic function.

Proof. According to Hironaka’s theorem on resolution of singularities [3], we
may assume that the manifold X is projective. Moreover, it suffices to consider
the case n = dim X > 1. Now we are ready to apply Lemmas 2.1 and 2.2. Pick
a point p ∈ X. By Lemma 2.1, there exists a regular map ϕ : X → P

n for
which 0 ∈ P

n is a regular value and ϕ(p) = 0. In view of Lemma 2.2, the set

Ω = {L ∈ G1(Pn) : ϕ is transverse to L}
is open in G1(Pn), and the set

Ω0 = Ω ∩ G1(Pn, 0)

is dense in G1(Pn, 0). Hence, there exist n projective lines L1, . . . , Ln in Ω0

such that the vector lines L1 ∩C
n, . . . , Ln ∩C

n in C
n are linearly independent.

Changing coordinates in C
n, we may assume that Li∩C

n is the i-th coordinate
axis in C

n for i = 1, . . . , n. Given a constant ε > 0, we let A(ε) denote the set
comprised of all affine lines l ⊂ C

n with the following properties:
• l is parallel to one of the coordinate axes;
• l ∩ P (ε) �= ∅, where P (ε) is the polydisc

P (ε) = {(z1, . . . , zn) ∈ C
n : |zj | < ε for j = 1, . . . , n}.

The assignment λ �→ L(λ), to every affine line λ ⊂ C
n its Zariski closure

L(λ) ⊂ P
n, gives an embedding of the Grassmann manifold of affine lines in

C
n into the Grassmann manifold G1(Pn). Hence, since Ω is an open subset of

G1(Pn), we can choose ε sufficiently small so that L(l) ∈ Ω for all l ∈ A(ε).
It follows that for every l ∈ A(ε) the inverse image C(l) = ϕ−1(L(l)) is a
nonsingular algebraic curve in X.
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We can complete the proof as follows. Choose an open neighborhood Up ⊂
U of p so that the set Wp = ϕ(Up) is contained in P (ε) and the restriction

ϕp : Up → Wp

of ϕ is a biholomorphism. The composite function f ◦ ϕ−1
p : Wp → C is sep-

arately holomorphic since for any affine line l ∈ A(ε) the restriction f |U∩C(l)

is a holomorphic function. Hence, by Hartogs’ theorem, the function f ◦ ϕ−1
p

is holomorphic, which in turn implies holomorphicity of the restriction f |Up
.

Thus, f is a holomorphic function, the point p ∈ U being arbitrary. �

Proof of Theorem 1.1. Pick a point p = (p1, . . . , pn) in X = X1 × · · · × Xn.
For i = 1, . . . , n, let

X(i) = Yi1 × · · · × Yin,

where Yii = Xi and Yij = {pj} if i �= j. By Proposition 2.3, the restriction
f |U∩X(i) is a holomorphic function. It follows immediately that the function f
is holomorphic in a neighborhood of the point p. Indeed, it suffices to choose
a local holomorphic chart in a neighborhood of each point pi, and then apply
Hartogs’ theorem. The proof is complete since p is an arbitrary point of X.

�

We already recalled the notion of a Nash map (hence, in particular, Nash
function) in the introduction. Clearly, a function f : U → C, defined on an
open subset U of Cn, is a Nash function if and only if it is holomorphic and
algebraic. Here, algebraic means that for each connected component W of U
there exists a nonzero polynomial function P on C

n × C with

P (z, f(z)) = 0 for all z ∈ W.

Hence, by [1, p. 202, Theorem 6], a variant of Hartogs’ theorem holds in the
Nash case. Namely, f is a Nash function if and only if it is a separately Nash
function. Obviously, separately Nash is a counterpart of separately holomor-
phic. The cited result of [1] can be transferred to functions on open subsets of
algebraic manifolds.

Proposition 2.4. Let X be a complex algebraic manifold and let f : U → C be a
function defined on an open subset U of X. Assume that for each nonsingular
algebraic curve C ⊂ X the restriction f |U∩C is a Nash function. Then f is a
Nash function.

Proof. With notation as in the proof of Proposition 2.3, the holomorphic chart

ϕp : Up → Wp ⊂ C
n

is actually a Nash isomorphism. Hence, the composite function f ◦ϕ−1
p : Wp →

C is a Nash function since it is a separately Nash function. It follows that f is
a Nash function, as asserted. �

Proof of Theorem 1.2. We can repeat the proof of Theorem 1.1, substituting
Proposition 2.4 for Proposition 2.3. �



Vol. 113 (2019) Global variants of Hartogs’ theorem 287

It remains to consider regular functions. We will make use of Bertini’s
theorem [8] to produce connected, nonsingular algebraic curves. Given integers
k and N , with 1 ≤ k ≤ N , we let Gk(PN ) denote the Grassmann manifold of
k-dimensional projective subspaces of PN .

Let X be a complex algebraic manifold of dimension d ≥ 1, and let W1,W2

be nonempty open subsets of X. Assume that the manifold X is connected
(which in this case is the same as irreducible). Then there exists a connected,
nonsingular algebraic curve C ⊂ X such that C ∩ Wi �= ∅ for i = 1, 2. This
assertion is obvious if d = 1, so suppose that d ≥ 2. We may assume that X
is a Zariski locally closed subset of PN for some N . Setting k = N − d + 1, by
Bertini’s theorem, the intersection C = X ∩ Λ of X with a suitable projective
subspace Λ ∈ Gk(PN ) is an algebraic curve with the required properties.

Lemma 2.5. Let X = X1 × · · · × Xn be the product of n complex algebraic
manifolds and let f : U → C be a function defined on an open subset U of X.
Let {Uα}α∈A be the collection of all connected components of U . Assume that
the following two conditions hold:
(a) The restriction f |Uα

is a regular function for all α ∈ A.
(b) For each nonsingular algebraic curve C ⊂ X, parallel to one of the factors

of X, the restriction f |U∩C is a regular function.
Then f is a regular function.

Proof. It suffices to consider the case in which all the Xi are connected, with
dim X1 ≥ 1. By assumption (a), for each α ∈ A there exists a rational function
Rα on X such that

Uα ⊂ Xα := X \ Pole(Rα) and f |Uα
= Rα|Uα

.

Clearly, if Rα = Rβ for all α, β ∈ A, then f is a regular function, and the
proof is complete.

Suppose to the contrary that Rμ �= Rν for some μ, ν ∈ A. It follows that
Rμ(p) �= Rν(p) for some point p = (p1, . . . , pn) in Uμ ∩ Xν , and hence the set

W = {x ∈ Uμ ∩ Xν : Rμ(x) �= Rν(x)}
is an open neighborhood of p in X.

Observe that there exists a connected, nonsingular algebraic curve C ⊂ X,
parallel to the 1st factor of X, such that

W ∩ C �= ∅ and Uν ∩ C �= ∅.

Indeed, we can obtain such a curve C of the form C = C1 × {p2} × · · · ×
{pn}, where C1 ⊂ X1 is a suitably chosen connected, nonsingular algebraic
curve, having nonempty intersections with the images of W and Uν under
the canonical projection from X onto X1 (see the discussion in the paragraph
preceding Lemma 2.5). By assumption (b), there exists a rational function RC

on C such that

U ∩ C ⊂ C0 := C \ Pole(RC) and f |U∩C = RC |U∩C .

Note that both Uμ ∩C0 and Uν ∩C0 are nonempty open subsets of C0. Since

Rμ|Uμ∩C0 = f |Uμ∩C0 = RC |Uμ∩C0 ,
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we get

Rμ|Xμ∩C0 = RC |Xμ∩C0 .

Similarly, we have

Rν |Xν∩C0 = RC |Xν∩C0 .

Consequently,

Rμ|Xμ∩Xν∩C0 = Rν |Xμ∩Xν∩C0 .

The last equality leads to a contradiction since W ∩ Xμ ∩ Xν ∩ C0 �= ∅. �
Let X be a complex algebraic manifold and let f : U → C be a function

defined on an open subset U of X. We say that a rational function R on X is a
rational representation of f if there exists a Zariski open dense subset X0 ⊂ X
such that

X0 ⊂ X \ Pole(R) and f |U∩X0 = R|U∩X0 .

Since X is nonsingular, any continuous function on U that admits a rational
representation is actually regular by the Riemann extension theorem.

Proposition 2.6. Let X be a complex algebraic manifold and let f : U → C be a
function defined on an open subset U of X. Assume that for each nonsingular
algebraic curve C ⊂ X the restriction f |U∩C is a regular function. Then f is
a regular function.

Proof. We may assume that the manifold X is connected and d = dim X ≥ 2.
In view of Lemma 2.5 (with n = 1), it suffices to consider the case in which the
set U is connected. By Proposition 2.4, f is a Nash function. Hence, since U is
connected, the graph of f is contained in an irreducible algebraic hypersurface
Y ⊂ X × C. The function f admits a rational representation if and only
if π : Y → X, the restriction of the canonical projection X × C → X, is a
birational map. Suppose that π is not birational, that is, it has degree m > 1.
We obtain a contradiction as follows. We may assume that X is a Zariski locally
closed subset of PN for some N . Set k = N − d + 1. By Bertini’s theorem, for
a general projective subspace Λ ∈ Gk(PN ) both X ∩ Λ and π−1(X ∩ Λ) are
irreducible algebraic curves. Clearly, the restriction πΛ : π−1(X ∩ Λ) → X ∩ Λ
of π has degree m. We can choose Λ so that the curve C = X∩Λ is nonsingular
and U ∩ C �= ∅. The function f |U∩C does not admit a rational representation
since its graph is contained in π−1(C). However, by assumption, f |U∩C is a
regular function, so we get a contradiction. Thus, f is a Nash function which
admits a rational representation. In conclusion, f is a regular function. �
Proof of Theorem 1.3. In view of Lemma 2.5, we may assume that the set U is
connected. Pick a point p = (p1, . . . , pn) in X = X1×· · ·×Xn. For i = 1, . . . , n,
let

X(i) = Yi1 × · · · × Yin,

where Yii = Xi and Yij = {pj} for i �= j. According to Proposition 2.6, the
restriction f |U∩X(i) is a regular function. Since p is an arbitrary point of X,
the function f is regular by [7, Theorem 7.3]. �
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We conclude this section by presenting two improvements upon some results
of [7]. The following is a sharpening of [7, Theorem 7.2].

Proposition 2.7. Let X be a complex algebraic manifold and let f : U → C be
a function defined on a connected open subset U of X. Assume that for each
nonsingular algebraic curve C ⊂ X and each point x ∈ U ∩ C there exists an
open neighborhood Ux ⊂ U of x such that the restriction f |Ux∩C is a regular
function. Then f is a regular function.

Proof. Clearly, the restriction f |Ux∩C is a Nash function for every point x ∈
U ∩C, which means that f |U∩C is a Nash function. Hence, by Proposition 2.4,
f is a Nash function. Now we can argue as in the proof of Proposition 2.6. �

Finally, [7, Theorem 7.3] can be sharpened as follows.

Theorem 2.8. Let X = X1 × · · · × Xn be the product of n complex algebraic
manifolds and let f : U → C be a function defined on a connected open subset U
of X. Assume that for each nonsingular algebraic curve C ⊂ X, parallel to one
of the factors of X, and each point x ∈ U ∩C there exists an open neighborhood
Ux ⊂ U of x such that the restriction f |Ux∩C is a regular function. Then f is
a regular function.

Proof. We can argue as in the proof of Theorem 1.3, substituting Proposi-
tion 2.7 for Proposition 2.6. �
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